diff --git a/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp b/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp index 59be4c34ef..207485b5de 100644 --- a/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp +++ b/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp @@ -1,539 +1,545 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSurfaceInterpolationController.h" #include "mitkMemoryUtilities.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkImageToSurfaceFilter.h" // Check whether the given contours are coplanar bool ContoursCoplanar(mitk::SurfaceInterpolationController::ContourPositionInformation leftHandSide, mitk::SurfaceInterpolationController::ContourPositionInformation rightHandSide) { // Here we check two things: // 1. Whether the normals of both contours are at least parallel // 2. Whether both contours lie in the same plane // Check for coplanarity: // a. Span a vector between two points one from each contour // b. Calculate dot product for the vector and one of the normals // c. If the dot is zero the two vectors are orthogonal and the contours are coplanar double vec[3]; vec[0] = leftHandSide.contourPoint[0] - rightHandSide.contourPoint[0]; vec[1] = leftHandSide.contourPoint[1] - rightHandSide.contourPoint[1]; vec[2] = leftHandSide.contourPoint[2] - rightHandSide.contourPoint[2]; double n[3]; n[0] = rightHandSide.contourNormal[0]; n[1] = rightHandSide.contourNormal[1]; n[2] = rightHandSide.contourNormal[2]; double dot = vtkMath::Dot(n, vec); double n2[3]; n2[0] = leftHandSide.contourNormal[0]; n2[1] = leftHandSide.contourNormal[1]; n2[2] = leftHandSide.contourNormal[2]; // The normals of both contours have to be parallel but not of the same orientation double lengthLHS = leftHandSide.contourNormal.GetNorm(); double lengthRHS = rightHandSide.contourNormal.GetNorm(); double dot2 = vtkMath::Dot(n, n2); bool contoursParallel = mitk::Equal(fabs(lengthLHS*lengthRHS), fabs(dot2), 0.001); if (mitk::Equal(dot, 0.0, 0.001) && contoursParallel) return true; else return false; } mitk::SurfaceInterpolationController::ContourPositionInformation CreateContourPositionInformation(mitk::Surface::Pointer contour) { mitk::SurfaceInterpolationController::ContourPositionInformation contourInfo; contourInfo.contour = contour; double n[3]; double p[3]; contour->GetVtkPolyData()->GetPoints()->GetPoint(0, p); vtkPolygon::ComputeNormal(contour->GetVtkPolyData()->GetPoints(), n); contourInfo.contourNormal = n; contourInfo.contourPoint = p; return contourInfo; } mitk::SurfaceInterpolationController::SurfaceInterpolationController() :m_SelectedSegmentation(0) { m_ReduceFilter = ReduceContourSetFilter::New(); m_NormalsFilter = ComputeContourSetNormalsFilter::New(); m_InterpolateSurfaceFilter = CreateDistanceImageFromSurfaceFilter::New(); m_ReduceFilter->SetUseProgressBar(false); // m_ReduceFilter->SetProgressStepSize(1); m_NormalsFilter->SetUseProgressBar(true); m_NormalsFilter->SetProgressStepSize(1); m_InterpolateSurfaceFilter->SetUseProgressBar(true); m_InterpolateSurfaceFilter->SetProgressStepSize(7); m_Contours = Surface::New(); m_PolyData = vtkSmartPointer::New(); vtkSmartPointer points = vtkSmartPointer::New(); m_PolyData->SetPoints(points); m_InterpolationResult = 0; m_CurrentNumberOfReducedContours = 0; } mitk::SurfaceInterpolationController::~SurfaceInterpolationController() { //Removing all observers std::map::iterator dataIter = m_SegmentationObserverTags.begin(); for (; dataIter != m_SegmentationObserverTags.end(); ++dataIter ) { (*dataIter).first->RemoveObserver( (*dataIter).second ); } m_SegmentationObserverTags.clear(); } mitk::SurfaceInterpolationController* mitk::SurfaceInterpolationController::GetInstance() { static mitk::SurfaceInterpolationController::Pointer m_Instance; if ( m_Instance.IsNull() ) { m_Instance = SurfaceInterpolationController::New(); } return m_Instance; } void mitk::SurfaceInterpolationController::AddNewContour (mitk::Surface::Pointer newContour) { - ContourPositionInformation contourInfo = CreateContourPositionInformation(newContour); - this->AddToInterpolationPipeline(contourInfo); + if( newContour->GetVtkPolyData()->GetNumberOfPoints() > 0) + { + ContourPositionInformation contourInfo = CreateContourPositionInformation(newContour); + this->AddToInterpolationPipeline(contourInfo); - this->Modified(); + this->Modified(); + } } void mitk::SurfaceInterpolationController::AddNewContours(std::vector newContours) { for (unsigned int i = 0; i < newContours.size(); ++i) { - ContourPositionInformation contourInfo = CreateContourPositionInformation(newContours.at(i)); - this->AddToInterpolationPipeline(contourInfo); + if( newContours.at(i)->GetVtkPolyData()->GetNumberOfPoints() > 0) + { + ContourPositionInformation contourInfo = CreateContourPositionInformation(newContours.at(i)); + this->AddToInterpolationPipeline(contourInfo); + } } this->Modified(); } void mitk::SurfaceInterpolationController::AddToInterpolationPipeline(ContourPositionInformation contourInfo) { int pos (-1); ContourPositionInformationList currentContourList = m_ListOfInterpolationSessions[m_SelectedSegmentation]; mitk::Surface* newContour = contourInfo.contour; for (unsigned int i = 0; i < currentContourList.size(); i++) { ContourPositionInformation contourFromList = currentContourList.at(i); if (ContoursCoplanar(contourInfo, contourFromList)) { pos = i; break; } } //Don't save a new empty contour if (pos == -1 && newContour->GetVtkPolyData()->GetNumberOfPoints() > 0) { m_ReduceFilter->SetInput(m_ListOfInterpolationSessions[m_SelectedSegmentation].size(), newContour); m_ListOfInterpolationSessions[m_SelectedSegmentation].push_back(contourInfo); } else if (pos != -1 && newContour->GetVtkPolyData()->GetNumberOfPoints() > 0) { m_ListOfInterpolationSessions[m_SelectedSegmentation].at(pos) = contourInfo; m_ReduceFilter->SetInput(pos, newContour); } else if (newContour->GetVtkPolyData()->GetNumberOfPoints() == 0) { this->RemoveContour(contourInfo); } m_ReduceFilter->Update(); m_CurrentNumberOfReducedContours = m_ReduceFilter->GetNumberOfOutputs(); for (unsigned int i = 0; i < m_CurrentNumberOfReducedContours; i++) { m_NormalsFilter->SetInput(i, m_ReduceFilter->GetOutput(i)); m_InterpolateSurfaceFilter->SetInput(i, m_NormalsFilter->GetOutput(i)); } } bool mitk::SurfaceInterpolationController::RemoveContour(ContourPositionInformation contourInfo) { ContourPositionInformationList::iterator it = m_ListOfInterpolationSessions[m_SelectedSegmentation].begin(); while (it != m_ListOfInterpolationSessions[m_SelectedSegmentation].end()) { ContourPositionInformation currentContour = (*it); if (ContoursCoplanar(currentContour, contourInfo)) { m_ListOfInterpolationSessions[m_SelectedSegmentation].erase(it); this->ReinitializeInterpolation(); return true; } ++it; } return false; } const mitk::Surface* mitk::SurfaceInterpolationController::GetContour(ContourPositionInformation contourInfo) { ContourPositionInformationList contourList = m_ListOfInterpolationSessions[m_SelectedSegmentation]; for (unsigned int i = 0; i < contourList.size(); ++i) { ContourPositionInformation currentContour = contourList.at(i); if (ContoursCoplanar(contourInfo, currentContour)) return currentContour.contour; } return 0; } unsigned int mitk::SurfaceInterpolationController::GetNumberOfContours() { return m_ListOfInterpolationSessions[m_SelectedSegmentation].size(); } void mitk::SurfaceInterpolationController::Interpolate() { if (m_CurrentNumberOfReducedContours< 2) { //If no interpolation is possible reset the interpolation result m_InterpolationResult = 0; return; } //Setting up progress bar mitk::ProgressBar::GetInstance()->AddStepsToDo(10); // create a surface from the distance-image mitk::ImageToSurfaceFilter::Pointer imageToSurfaceFilter = mitk::ImageToSurfaceFilter::New(); imageToSurfaceFilter->SetInput( m_InterpolateSurfaceFilter->GetOutput() ); imageToSurfaceFilter->SetThreshold( 0 ); imageToSurfaceFilter->SetSmooth(true); imageToSurfaceFilter->SetSmoothIteration(20); imageToSurfaceFilter->Update(); m_InterpolationResult = imageToSurfaceFilter->GetOutput(); vtkSmartPointer polyDataAppender = vtkSmartPointer::New(); for (unsigned int i = 0; i < m_ListOfInterpolationSessions[m_SelectedSegmentation].size(); i++) { polyDataAppender->AddInputData(m_ListOfInterpolationSessions[m_SelectedSegmentation].at(i).contour->GetVtkPolyData()); } polyDataAppender->Update(); m_Contours->SetVtkPolyData(polyDataAppender->GetOutput()); //Last progress step mitk::ProgressBar::GetInstance()->Progress(20); m_InterpolationResult->DisconnectPipeline(); } mitk::Surface::Pointer mitk::SurfaceInterpolationController::GetInterpolationResult() { return m_InterpolationResult; } mitk::Surface* mitk::SurfaceInterpolationController::GetContoursAsSurface() { return m_Contours; } void mitk::SurfaceInterpolationController::SetDataStorage(DataStorage::Pointer ds) { m_DataStorage = ds; } void mitk::SurfaceInterpolationController::SetMinSpacing(double minSpacing) { m_ReduceFilter->SetMinSpacing(minSpacing); } void mitk::SurfaceInterpolationController::SetMaxSpacing(double maxSpacing) { m_ReduceFilter->SetMaxSpacing(maxSpacing); m_NormalsFilter->SetMaxSpacing(maxSpacing); } void mitk::SurfaceInterpolationController::SetDistanceImageVolume(unsigned int distImgVolume) { m_InterpolateSurfaceFilter->SetDistanceImageVolume(distImgVolume); } mitk::Image::Pointer mitk::SurfaceInterpolationController::GetCurrentSegmentation() { return m_SelectedSegmentation; } mitk::Image* mitk::SurfaceInterpolationController::GetImage() { return m_InterpolateSurfaceFilter->GetOutput(); } double mitk::SurfaceInterpolationController::EstimatePortionOfNeededMemory() { double numberOfPointsAfterReduction = m_ReduceFilter->GetNumberOfPointsAfterReduction()*3; double sizeOfPoints = pow(numberOfPointsAfterReduction,2)*sizeof(double); double totalMem = mitk::MemoryUtilities::GetTotalSizeOfPhysicalRam(); double percentage = sizeOfPoints/totalMem; return percentage; } unsigned int mitk::SurfaceInterpolationController::GetNumberOfInterpolationSessions() { return m_ListOfInterpolationSessions.size(); } template void mitk::SurfaceInterpolationController::GetImageBase(itk::Image* input, itk::ImageBase<3>::Pointer& result) { result->Graft(input); } void mitk::SurfaceInterpolationController::SetCurrentSegmentationInterpolationList(mitk::Image::Pointer segmentation) { this->SetCurrentInterpolationSession(segmentation); } void mitk::SurfaceInterpolationController::SetCurrentInterpolationSession(mitk::Image::Pointer currentSegmentationImage) { if (currentSegmentationImage.GetPointer() == m_SelectedSegmentation) return; if (currentSegmentationImage.IsNull()) { m_SelectedSegmentation = 0; return; } m_SelectedSegmentation = currentSegmentationImage.GetPointer(); ContourListMap::iterator it = m_ListOfInterpolationSessions.find(currentSegmentationImage.GetPointer()); // If the session does not exist yet create a new ContourPositionPairList otherwise reinitialize the interpolation pipeline if (it == m_ListOfInterpolationSessions.end()) { ContourPositionInformationList newList; m_ListOfInterpolationSessions.insert(std::pair(m_SelectedSegmentation, newList)); m_InterpolationResult = 0; m_CurrentNumberOfReducedContours = 0; itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction(this, &SurfaceInterpolationController::OnSegmentationDeleted); m_SegmentationObserverTags.insert( std::pair( m_SelectedSegmentation, m_SelectedSegmentation->AddObserver( itk::DeleteEvent(), command ) ) ); } this->ReinitializeInterpolation(); } void mitk::SurfaceInterpolationController::RemoveSegmentationFromContourList(mitk::Image *segmentation) { this->RemoveInterpolationSession(segmentation); } void mitk::SurfaceInterpolationController::RemoveInterpolationSession(mitk::Image::Pointer segmentationImage) { if (segmentationImage) { if (m_SelectedSegmentation == segmentationImage) { m_NormalsFilter->SetSegmentationBinaryImage(NULL); m_SelectedSegmentation = 0; } m_ListOfInterpolationSessions.erase(segmentationImage); // Remove observer std::map::iterator pos = m_SegmentationObserverTags.find(segmentationImage); if (pos != m_SegmentationObserverTags.end()) { segmentationImage->RemoveObserver((*pos).second); m_SegmentationObserverTags.erase(pos); } } } void mitk::SurfaceInterpolationController::RemoveAllInterpolationSessions() { //Removing all observers std::map::iterator dataIter = m_SegmentationObserverTags.begin(); while (dataIter != m_SegmentationObserverTags.end()) { mitk::Image* image = (*dataIter).first; image->RemoveObserver((*dataIter).second); ++dataIter; } m_SegmentationObserverTags.clear(); m_SelectedSegmentation = 0; m_ListOfInterpolationSessions.clear(); } void mitk::SurfaceInterpolationController::ReinitializeInterpolation(mitk::Surface::Pointer contours) { // 1. detect coplanar contours // 2. merge coplanar contours into a single surface // 4. add contour to pipeline // Split the surface into separate polygons vtkSmartPointer existingPolys; vtkSmartPointer existingPoints; existingPolys = contours->GetVtkPolyData()->GetPolys(); existingPoints = contours->GetVtkPolyData()->GetPoints(); existingPolys->InitTraversal(); vtkSmartPointer ids = vtkSmartPointer::New(); typedef std::pair PointNormalPair; std::vector list; std::vector > pointsList; int count (0); for( existingPolys->InitTraversal(); existingPolys->GetNextCell(ids);) { // Get the points vtkSmartPointer points = vtkSmartPointer::New(); existingPoints->GetPoints(ids, points); ++count; pointsList.push_back(points); PointNormalPair p_n; double n[3]; vtkPolygon::ComputeNormal(points, n); p_n.first = n; double p[3]; existingPoints->GetPoint(ids->GetId(0), p); p_n.second = p; ContourPositionInformation p_info; p_info.contourNormal = n; p_info.contourPoint = p; list.push_back(p_info); continue; } // Detect and sort coplanar polygons std::vector::iterator outer = list.begin(); std::vector< std::vector< vtkSmartPointer > > relatedPoints; while (outer != list.end()) { std::vector::iterator inner = outer; ++inner; std::vector< vtkSmartPointer > rel; std::vector< vtkSmartPointer >::iterator pointsIter = pointsList.begin(); rel.push_back((*pointsIter)); pointsIter = pointsList.erase(pointsIter); while (inner != list.end()) { if(ContoursCoplanar((*outer),(*inner))) { inner = list.erase(inner); rel.push_back((*pointsIter)); pointsIter = pointsList.erase(pointsIter); } else { ++inner; ++pointsIter; } } relatedPoints.push_back(rel); ++outer; } // Build the separate surfaces again std::vector finalSurfaces; for (unsigned int i = 0; i < relatedPoints.size(); ++i) { vtkSmartPointer contourSurface = vtkSmartPointer::New(); vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer polygons = vtkSmartPointer::New(); unsigned int pointId (0); for (unsigned int j = 0; j < relatedPoints.at(i).size(); ++j) { unsigned int numPoints = relatedPoints.at(i).at(j)->GetNumberOfPoints(); vtkSmartPointer polygon = vtkSmartPointer::New(); polygon->GetPointIds()->SetNumberOfIds(numPoints); polygon->GetPoints()->SetNumberOfPoints(numPoints); vtkSmartPointer currentPoints = relatedPoints.at(i).at(j); for (unsigned k = 0; k < numPoints; ++k) { points->InsertPoint(pointId, currentPoints->GetPoint(k)); polygon->GetPointIds()->SetId(k, pointId); ++pointId; } polygons->InsertNextCell(polygon); } contourSurface->SetPoints(points); contourSurface->SetPolys(polygons); contourSurface->BuildLinks(); mitk::Surface::Pointer surface = mitk::Surface::New(); surface->SetVtkPolyData(contourSurface); finalSurfaces.push_back(surface); } // Add detected contours to interpolation pipeline this->AddNewContours(finalSurfaces); } void mitk::SurfaceInterpolationController::OnSegmentationDeleted(const itk::Object *caller, const itk::EventObject &/*event*/) { mitk::Image* tempImage = dynamic_cast(const_cast(caller)); if (tempImage) { if (m_SelectedSegmentation == tempImage) { m_NormalsFilter->SetSegmentationBinaryImage(NULL); m_SelectedSegmentation = 0; } m_SegmentationObserverTags.erase(tempImage); m_ListOfInterpolationSessions.erase(tempImage); } } void mitk::SurfaceInterpolationController::ReinitializeInterpolation() { m_NormalsFilter->SetSegmentationBinaryImage(m_SelectedSegmentation); // If session has changed reset the pipeline m_ReduceFilter->Reset(); m_NormalsFilter->Reset(); m_InterpolateSurfaceFilter->Reset(); itk::ImageBase<3>::Pointer itkImage = itk::ImageBase<3>::New(); AccessFixedDimensionByItk_1( m_SelectedSegmentation, GetImageBase, 3, itkImage ); m_InterpolateSurfaceFilter->SetReferenceImage(itkImage.GetPointer()); for (unsigned int i = 0; i < m_ListOfInterpolationSessions[m_SelectedSegmentation].size(); i++) { m_ReduceFilter->SetInput(i, m_ListOfInterpolationSessions[m_SelectedSegmentation].at(i).contour); } m_ReduceFilter->Update(); m_CurrentNumberOfReducedContours = m_ReduceFilter->GetNumberOfOutputs(); for (unsigned int i = 0; i < m_CurrentNumberOfReducedContours; i++) { m_NormalsFilter->SetInput(i, m_ReduceFilter->GetOutput(i)); m_InterpolateSurfaceFilter->SetInput(i, m_NormalsFilter->GetOutput(i)); } Modified(); }