diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp index 925b75879c..67fc533441 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp @@ -1,834 +1,797 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigure.h" #include "mitkPlaneGeometry.h" #include #include #include mitk::PlanarFigure::PlanarFigure() : m_SelectedControlPoint( -1 ), m_PreviewControlPointVisible( false ), m_FigurePlaced( false ), m_PlaneGeometry( NULL ), m_PolyLineUpToDate(false), m_HelperLinesUpToDate(false), m_FeaturesUpToDate(false), m_FeaturesMTime( 0 ) { m_HelperPolyLinesToBePainted = BoolContainerType::New(); m_DisplaySize.first = 0.0; m_DisplaySize.second = 0; this->SetProperty( "closed", mitk::BoolProperty::New( false ) ); // Currently only single-time-step geometries are supported this->InitializeTimeGeometry( 1 ); } mitk::PlanarFigure::~PlanarFigure() { } mitk::PlanarFigure::PlanarFigure(const Self& other) : BaseData(other), m_ControlPoints(other.m_ControlPoints), m_NumberOfControlPoints(other.m_NumberOfControlPoints), m_SelectedControlPoint(other.m_SelectedControlPoint), m_PolyLines(other.m_PolyLines), m_HelperPolyLines(other.m_HelperPolyLines), m_HelperPolyLinesToBePainted(other.m_HelperPolyLinesToBePainted->Clone()), m_PreviewControlPoint(other.m_PreviewControlPoint), m_PreviewControlPointVisible(other.m_PreviewControlPointVisible), m_FigurePlaced(other.m_FigurePlaced), m_PlaneGeometry(other.m_PlaneGeometry), // do not clone since SetPlaneGeometry() doesn't clone either m_PolyLineUpToDate(other.m_PolyLineUpToDate), m_HelperLinesUpToDate(other.m_HelperLinesUpToDate), m_FeaturesUpToDate(other.m_FeaturesUpToDate), m_Features(other.m_Features), m_FeaturesMTime(other.m_FeaturesMTime), m_DisplaySize(other.m_DisplaySize) { } void mitk::PlanarFigure::SetPlaneGeometry( mitk::PlaneGeometry *geometry ) { this->SetGeometry( geometry ); m_PlaneGeometry = dynamic_cast(GetGeometry(0));//geometry; } const mitk::PlaneGeometry *mitk::PlanarFigure::GetPlaneGeometry() const { return m_PlaneGeometry; } bool mitk::PlanarFigure::IsClosed() const { mitk::BoolProperty* closed = dynamic_cast< mitk::BoolProperty* >( this->GetProperty( "closed" ).GetPointer() ); if ( closed != NULL ) { return closed->GetValue(); } return false; } void mitk::PlanarFigure::PlaceFigure( const mitk::Point2D& point ) { for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { m_ControlPoints.push_back( this->ApplyControlPointConstraints( i, point ) ); } m_FigurePlaced = true; m_SelectedControlPoint = 1; } bool mitk::PlanarFigure::AddControlPoint( const mitk::Point2D& point, int position ) { // if we already have the maximum number of control points, do nothing if ( m_NumberOfControlPoints < this->GetMaximumNumberOfControlPoints() ) { // if position has not been defined or position would be the last control point, just append the new one // we also append a new point if we click onto the line between the first two control-points if the second control-point is selected // -> special case for PlanarCross if ( position == -1 || position > (int)m_NumberOfControlPoints-1 || (position == 1 && m_SelectedControlPoint == 2) ) { if ( m_ControlPoints.size() > this->GetMaximumNumberOfControlPoints()-1 ) { // get rid of deprecated control points in the list. This is necessary // as ::ResetNumberOfControlPoints() only sets the member, does not resize the list! m_ControlPoints.resize( this->GetNumberOfControlPoints() ); } m_ControlPoints.push_back( this->ApplyControlPointConstraints( m_NumberOfControlPoints, point ) ); m_SelectedControlPoint = m_NumberOfControlPoints; } else { // insert the point at the given position and set it as selected point ControlPointListType::iterator iter = m_ControlPoints.begin() + position; m_ControlPoints.insert( iter, this->ApplyControlPointConstraints( position, point ) ); for( unsigned int i = 0; i < m_ControlPoints.size(); ++i ) { if( point == m_ControlPoints.at(i) ) { m_SelectedControlPoint = i; } } } // polylines & helperpolylines need to be repainted m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; // one control point more ++m_NumberOfControlPoints; return true; } else { return false; } } bool mitk::PlanarFigure::SetControlPoint( unsigned int index, const Point2D& point, bool createIfDoesNotExist ) { bool controlPointSetCorrectly = false; if (createIfDoesNotExist) { if ( m_NumberOfControlPoints <= index ) { m_ControlPoints.push_back( this->ApplyControlPointConstraints( index, point ) ); m_NumberOfControlPoints++; } else { m_ControlPoints.at( index ) = this->ApplyControlPointConstraints( index, point ); } controlPointSetCorrectly = true; } else if ( index < m_NumberOfControlPoints ) { m_ControlPoints.at( index ) = this->ApplyControlPointConstraints( index, point ); controlPointSetCorrectly = true; } else { return false; } if ( controlPointSetCorrectly ) { m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; } return controlPointSetCorrectly; } bool mitk::PlanarFigure::SetCurrentControlPoint( const Point2D& point ) { if ( (m_SelectedControlPoint < 0) || (m_SelectedControlPoint >= (int)m_NumberOfControlPoints) ) { return false; } return this->SetControlPoint(m_SelectedControlPoint, point, false); } unsigned int mitk::PlanarFigure::GetNumberOfControlPoints() const { return m_NumberOfControlPoints; } bool mitk::PlanarFigure::SelectControlPoint( unsigned int index ) { if ( index < this->GetNumberOfControlPoints() ) { m_SelectedControlPoint = index; return true; } else { return false; } } bool mitk::PlanarFigure::DeselectControlPoint() { bool wasSelected = ( m_SelectedControlPoint != -1); m_SelectedControlPoint = -1; return wasSelected; } void mitk::PlanarFigure::SetPreviewControlPoint( const Point2D& point ) { m_PreviewControlPoint = point; m_PreviewControlPointVisible = true; } void mitk::PlanarFigure::ResetPreviewContolPoint() { m_PreviewControlPointVisible = false; } mitk::Point2D mitk::PlanarFigure::GetPreviewControlPoint() { return m_PreviewControlPoint; } bool mitk::PlanarFigure::IsPreviewControlPointVisible() { return m_PreviewControlPointVisible; } mitk::Point2D mitk::PlanarFigure::GetControlPoint( unsigned int index ) const { if ( index < m_NumberOfControlPoints ) { return m_ControlPoints.at( index ); } itkExceptionMacro( << "GetControlPoint(): Invalid index!" ); } mitk::Point3D mitk::PlanarFigure::GetWorldControlPoint( unsigned int index ) const { Point3D point3D; if ( (m_PlaneGeometry != NULL) && (index < m_NumberOfControlPoints) ) { m_PlaneGeometry->Map( m_ControlPoints.at( index ), point3D ); return point3D; } itkExceptionMacro( << "GetWorldControlPoint(): Invalid index!" ); } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) { mitk::PlanarFigure::PolyLineType polyLine; if ( index > m_PolyLines.size() || !m_PolyLineUpToDate ) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.at( index );; } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) const { return m_PolyLines.at( index ); } void mitk::PlanarFigure::ClearPolyLines() { for ( std::vector::size_type i=0; iGenerateHelperPolyLine(mmPerDisplayUnit, displayHeight); m_HelperLinesUpToDate = true; // store these parameters to be able to check next time if somebody zoomed in or out m_DisplaySize.first = mmPerDisplayUnit; m_DisplaySize.second = displayHeight; } helperPolyLine = m_HelperPolyLines.at(index); } return helperPolyLine; } void mitk::PlanarFigure::ClearHelperPolyLines() { for ( std::vector::size_type i=0; iGeneratePolyLine(); } this->EvaluateFeaturesInternal(); m_FeaturesUpToDate = true; } } void mitk::PlanarFigure::UpdateOutputInformation() { // Bounds are NOT calculated here, since the PlaneGeometry defines a fixed // frame (= bounds) for the planar figure. Superclass::UpdateOutputInformation(); this->GetTimeGeometry()->Update(); } void mitk::PlanarFigure::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::PlanarFigure::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::PlanarFigure::VerifyRequestedRegion() { return true; } void mitk::PlanarFigure::SetRequestedRegion(const itk::DataObject * /*data*/ ) { } void mitk::PlanarFigure::ResetNumberOfControlPoints( int numberOfControlPoints ) { // DO NOT resize the list here, will cause crash!! m_NumberOfControlPoints = numberOfControlPoints; } mitk::Point2D mitk::PlanarFigure::ApplyControlPointConstraints( unsigned int /*index*/, const Point2D& point ) { if ( m_PlaneGeometry == NULL ) { return point; } Point2D indexPoint; m_PlaneGeometry->WorldToIndex( point, indexPoint ); BoundingBox::BoundsArrayType bounds = m_PlaneGeometry->GetBounds(); if ( indexPoint[0] < bounds[0] ) { indexPoint[0] = bounds[0]; } if ( indexPoint[0] > bounds[1] ) { indexPoint[0] = bounds[1]; } if ( indexPoint[1] < bounds[2] ) { indexPoint[1] = bounds[2]; } if ( indexPoint[1] > bounds[3] ) { indexPoint[1] = bounds[3]; } Point2D constrainedPoint; m_PlaneGeometry->IndexToWorld( indexPoint, constrainedPoint ); return constrainedPoint; } unsigned int mitk::PlanarFigure::AddFeature( const char *featureName, const char *unitName ) { unsigned int index = m_Features.size(); Feature newFeature( featureName, unitName ); m_Features.push_back( newFeature ); return index; } void mitk::PlanarFigure::SetFeatureName( unsigned int index, const char *featureName ) { if ( index < m_Features.size() ) { m_Features[index].Name = featureName; } } void mitk::PlanarFigure::SetFeatureUnit( unsigned int index, const char *unitName ) { if ( index < m_Features.size() ) { m_Features[index].Unit = unitName; } } void mitk::PlanarFigure::SetQuantity( unsigned int index, double quantity ) { if ( index < m_Features.size() ) { m_Features[index].Quantity = quantity; } } void mitk::PlanarFigure::ActivateFeature( unsigned int index ) { if ( index < m_Features.size() ) { m_Features[index].Active = true; } } void mitk::PlanarFigure::DeactivateFeature( unsigned int index ) { if ( index < m_Features.size() ) { m_Features[index].Active = false; } } void mitk::PlanarFigure::InitializeTimeGeometry( unsigned int timeSteps ) { mitk::PlaneGeometry::Pointer geometry2D = mitk::PlaneGeometry::New(); geometry2D->Initialize(); // The geometry is propagated automatically to all time steps, // if EvenlyTimed is true... ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry2D, timeSteps); SetTimeGeometry(timeGeometry); } void mitk::PlanarFigure::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); os << indent << this->GetNameOfClass() << ":\n"; if (this->IsClosed()) os << indent << "This figure is closed\n"; else os << indent << "This figure is not closed\n"; os << indent << "Minimum number of control points: " << this->GetMinimumNumberOfControlPoints() << std::endl; os << indent << "Maximum number of control points: " << this->GetMaximumNumberOfControlPoints() << std::endl; os << indent << "Current number of control points: " << this->GetNumberOfControlPoints() << std::endl; os << indent << "Control points:" << std::endl; for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { //os << indent.GetNextIndent() << i << ": " << m_ControlPoints->ElementAt( i ) << std::endl; os << indent.GetNextIndent() << i << ": " << m_ControlPoints.at( i ) << std::endl; } os << indent << "Geometry:\n"; this->GetPlaneGeometry()->Print(os, indent.GetNextIndent()); } unsigned short mitk::PlanarFigure::GetPolyLinesSize() { if ( !m_PolyLineUpToDate ) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.size(); } unsigned short mitk::PlanarFigure::GetHelperPolyLinesSize() { return m_HelperPolyLines.size(); } bool mitk::PlanarFigure::IsHelperToBePainted(unsigned int index) { return m_HelperPolyLinesToBePainted->GetElement( index ); } bool mitk::PlanarFigure::ResetOnPointSelect() { return false; } void mitk::PlanarFigure::RemoveControlPoint( unsigned int index ) { if ( index > m_ControlPoints.size() ) return; if ( (m_ControlPoints.size() -1) < this->GetMinimumNumberOfControlPoints() ) return; ControlPointListType::iterator iter; iter = m_ControlPoints.begin() + index; m_ControlPoints.erase( iter ); m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; --m_NumberOfControlPoints; } void mitk::PlanarFigure::RemoveLastControlPoint() { RemoveControlPoint( m_ControlPoints.size()-1 ); } void mitk::PlanarFigure::SetNumberOfPolyLines( unsigned int numberOfPolyLines ) { m_PolyLines.resize(numberOfPolyLines); } void mitk::PlanarFigure::SetNumberOfHelperPolyLines( unsigned int numberOfHerlperPolyLines ) { m_HelperPolyLines.resize(numberOfHerlperPolyLines); } void mitk::PlanarFigure::AppendPointToPolyLine( unsigned int index, PolyLineElement element ) { if ( index < m_PolyLines.size() ) { m_PolyLines[index].push_back(element); m_PolyLineUpToDate = false; } else { MITK_ERROR << "Tried to add point to PolyLine " << index+1 << ", although only " << m_PolyLines.size() << " exists"; } } void mitk::PlanarFigure::AppendPointToHelperPolyLine( unsigned int index, PolyLineElement element ) { if ( index < m_HelperPolyLines.size() ) { m_HelperPolyLines[index].push_back(element); m_HelperLinesUpToDate = false; } else { MITK_ERROR << "Tried to add point to HelperPolyLine " << index+1 << ", although only " << m_HelperPolyLines.size() << " exists"; } } bool mitk::PlanarFigure::Equals(const mitk::PlanarFigure& other) const { //check geometries if ( this->GetPlaneGeometry() && other.GetPlaneGeometry() ) { if( !Equal(*(this->GetPlaneGeometry()), *(other.GetPlaneGeometry()), mitk::eps, true)) { return false; } } else { MITK_ERROR << "Geometry is not equal"; return false; } //check isPlaced member if ( this->m_FigurePlaced != other.m_FigurePlaced) { MITK_ERROR << "Is_Placed is not equal"; return false; } //check closed property if (this->IsClosed() != other.IsClosed()) { MITK_ERROR << "Is_closed is not equal"; return false; } //check poly lines if (this->m_PolyLines.size() != other.m_PolyLines.size()) { return false; } else { std::vector::const_iterator itThis = this->m_PolyLines.begin(); std::vector::const_iterator itEnd = this->m_PolyLines.end(); std::vector::const_iterator itOther = other.m_PolyLines.begin(); while( itThis != itEnd ) { if(itThis->size() != itOther->size()) return false; else { PolyLineType::const_iterator itLineThis = itThis->begin(); PolyLineType::const_iterator itLineEnd = itThis->end(); PolyLineType::const_iterator itLineOther = itOther->begin(); while(itLineThis != itLineEnd) { Point2D p1 = *itLineThis; Point2D p2 = *itLineOther; ScalarType delta = fabs(p1[0]-p2[0])+fabs(p1[1]-p2[1]); if(delta > .001) { MITK_ERROR << "Poly line is not equal"; MITK_ERROR << p1 << "/" << p2; return false; } ++itLineThis; ++itLineOther; } } ++itThis; ++itOther; } } //check features if (this->GetNumberOfFeatures() != other.GetNumberOfFeatures()) { MITK_ERROR << "Number of Features is Different"; return false; } else { std::vector::const_iterator itThis = m_Features.begin(); std::vector::const_iterator itEnd = m_Features.end(); std::vector::const_iterator itOther = other.m_Features.begin(); while(itThis != itEnd) { if(( itThis->Quantity - itOther->Quantity) > .001 ) { MITK_ERROR << "Quantity is Different" << itThis->Quantity << "/" << itOther->Quantity; return false; } if( itThis->Unit.compare(itOther->Unit) != 0 ) { MITK_ERROR << "Unit is Different" << itThis->Unit << "/" << itOther->Unit; return false; } if( itThis->Name.compare(itOther->Name) != 0 ) { MITK_ERROR << "Name of Measure is Different " << itThis->Name << "/ " << itOther->Name;; return false; } ++itThis; ++itOther; } } return true; } -void mitk::PlanarFigure::DeepCopy( Self::Pointer oldFigure ) -{ - //DeepCopy only same types of planar figures - //Notice to get typeid polymorph you have to use the *operator - if( typeid(*oldFigure) != typeid(*this) ) - { - itkExceptionMacro( << "DeepCopy(): Inconsistent type of source (" << typeid(*oldFigure).name() << ") and destination figure (" << typeid(*this).name() << ")!" ); - return; - } - - m_ControlPoints.clear(); - this->ClearPolyLines(); - this->ClearHelperPolyLines(); - - // clone base data members - SetPropertyList(oldFigure->GetPropertyList()->Clone()); - - /// deep copy members - m_FigurePlaced = oldFigure->m_FigurePlaced; - m_SelectedControlPoint = oldFigure->m_SelectedControlPoint; - m_FeaturesMTime = oldFigure->m_FeaturesMTime; - m_Features = oldFigure->m_Features; - m_NumberOfControlPoints = oldFigure->m_NumberOfControlPoints; - - //copy geometry 2D of planar figure - SetPlaneGeometry( oldFigure->m_PlaneGeometry->Clone().GetPointer() ); - - for(unsigned long index=0; index < oldFigure->GetNumberOfControlPoints(); index++) - { - m_ControlPoints.push_back( oldFigure->GetControlPoint( index )); - } - - //After setting the control points we can generate the polylines - this->GeneratePolyLine(); -} - - bool mitk::Equal( const mitk::PlanarFigure& leftHandSide, const mitk::PlanarFigure& rightHandSide, ScalarType /*eps*/, bool /*verbose*/ ) { // FIXME: use eps and verbose return leftHandSide.Equals(rightHandSide); } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h index 03448cbde8..f274b8cb96 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h @@ -1,409 +1,406 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_PLANAR_FIGURE_H_ #define _MITK_PLANAR_FIGURE_H_ #include #include "mitkBaseData.h" #include "mitkCommon.h" #include namespace mitk { class PlaneGeometry; /** * \brief Base-class for geometric planar (2D) figures, such as * lines, circles, rectangles, polygons, etc. * * \warning Currently does not support time-resolved data handling * * Behavior and appearance of PlanarFigures are controlled by various properties; for a detailed * list of appearance properties see mitk::PlanarFigureMapper2D * * The following properties control general PlanarFigure behavior: * *
    *
  • "selected": true if the planar figure is selected *
  • "planarfigure.ishovering": true if the mouse "hovers" over the planar figure *
  • "planarfigure.iseditable": true if the planar figure can be edited (otherwise, * it can only be picked/selected, but its control points cannot be edited); default is true *
  • "planarfigure.isextendable": true if new control points can be inserted into the list of control points; * default is false *
* * * TODO: Implement local 2D transform (including center of rotation...) * */ class MitkPlanarFigure_EXPORT PlanarFigure : public BaseData { public: mitkClassMacro( PlanarFigure, BaseData ) itkCloneMacro( Self ) typedef Point2D PolyLineElement; typedef itk::VectorContainer< unsigned long, bool> BoolContainerType; typedef std::deque< Point2D > ControlPointListType; typedef std::vector< PolyLineElement > PolyLineType; /** \brief Sets the 2D geometry on which this figure will be placed. * * In most cases, this is a Geometry already owned by another object, e.g. * describing the slice of the image on which measurements will be * performed. */ virtual void SetPlaneGeometry( mitk::PlaneGeometry *geometry ); /** \brief Returns (previously set) 2D geometry of this figure. */ virtual const PlaneGeometry *GetPlaneGeometry() const; /** \brief True if the planar figure is closed. * * Default is false. The "closed" boolean property must be set in sub-classes. */ virtual bool IsClosed() const; /** \brief True if the planar figure has been placed (and can be * displayed/interacted with). */ virtual bool IsPlaced() const { return m_FigurePlaced; }; /** \brief Place figure at the given point (in 2D index coordinates) onto * the given 2D geometry. * * By default, the first two control points of the figure are set to the * passed point. Further points can be set via AddControlPoint(), if the * current number of control points is below the maximum number of control * points. * * Can be re-implemented in sub-classes as needed. */ virtual void PlaceFigure( const Point2D& point ); /** * \brief Adds / inserts new control-points * * This method adds a new control-point with the coordinates defined by point at the given index. * If 'index' == -1 or index is greater than the number of control-points the new point is appended * to the back of the list of control points. * If a control-point already exists for 'index', an additional point is inserted at that position. * It is not possible to add more points if the maximum number of control-points (GetMaximumNumberOfControlPoints()) * has been reached. */ virtual bool AddControlPoint( const Point2D& point, int index = -1 ); virtual bool SetControlPoint( unsigned int index, const Point2D& point, bool createIfDoesNotExist = false); virtual bool SetCurrentControlPoint( const Point2D& point ); /** \brief Returns the current number of 2D control points defining this figure. */ unsigned int GetNumberOfControlPoints() const; /** \brief Returns the minimum number of control points needed to represent * this figure. * * Must be implemented in sub-classes. */ virtual unsigned int GetMinimumNumberOfControlPoints() const = 0; /** \brief Returns the maximum number of control points allowed for * this figure (e.g. 3 for triangles). * * Must be implemented in sub-classes. */ virtual unsigned int GetMaximumNumberOfControlPoints() const = 0; /** \brief Selects currently active control points. */ virtual bool SelectControlPoint( unsigned int index ); /** \brief Deselect control point; no control point active. */ virtual bool DeselectControlPoint(); /** \brief Return currently selected control point. */ virtual int GetSelectedControlPoint() const { return m_SelectedControlPoint; } /** \brief Returns specified control point in 2D world coordinates. */ Point2D GetControlPoint( unsigned int index ) const; /** \brief Returns specified control point in world coordinates. */ Point3D GetWorldControlPoint( unsigned int index ) const; /** \brief Returns the polyline representing the planar figure * (for rendering, measurements, etc.). */ const PolyLineType GetPolyLine(unsigned int index); /** \brief Returns the polyline representing the planar figure * (for rendering, measurments, etc.). */ const PolyLineType GetPolyLine(unsigned int index) const; /** \brief Returns the polyline that should be drawn the same size at every scale * (for text, angles, etc.). */ const PolyLineType GetHelperPolyLine( unsigned int index, double mmPerDisplayUnit, unsigned int displayHeight ); /** \brief Sets the position of the PreviewControlPoint. Automatically sets it visible.*/ void SetPreviewControlPoint( const Point2D& point ); /** \brief Marks the PreviewControlPoint as invisible.*/ void ResetPreviewContolPoint(); /** \brief Returns whether or not the PreviewControlPoint is visible.*/ bool IsPreviewControlPointVisible(); /** \brief Returns the coordinates of the PreviewControlPoint. */ Point2D GetPreviewControlPoint(); /** \brief Returns the number of features available for this PlanarFigure * (such as, radius, area, ...). */ virtual unsigned int GetNumberOfFeatures() const; /** \brief Returns the name (identifier) of the specified features. */ const char *GetFeatureName( unsigned int index ) const; /** \brief Returns the physical unit of the specified features. */ const char *GetFeatureUnit( unsigned int index ) const; /** Returns quantity of the specified feature (e.g., length, radius, * area, ... ) */ double GetQuantity( unsigned int index ) const; /** \brief Returns true if the feature with the specified index exists and * is active (an inactive feature may e.g. be the area of a non-closed * polygon. */ bool IsFeatureActive( unsigned int index ) const; /** \brief Returns true if the feature with the specified index exists and is set visible */ bool IsFeatureVisible( unsigned int index ) const; /** \brief Defines if the feature with the specified index will be shown as an * overlay in the RenderWindow */ void SetFeatureVisible( unsigned int index, bool visible ); /** \brief Calculates quantities of all features of this planar figure. */ virtual void EvaluateFeatures(); /** \brief Intherited from parent */ virtual void UpdateOutputInformation(); /** \brief Intherited from parent */ virtual void SetRequestedRegionToLargestPossibleRegion(); /** \brief Intherited from parent */ virtual bool RequestedRegionIsOutsideOfTheBufferedRegion(); /** \brief Intherited from parent */ virtual bool VerifyRequestedRegion(); /** \brief Intherited from parent */ virtual void SetRequestedRegion( const itk::DataObject *data); /** \brief Returns the current number of polylines */ virtual unsigned short GetPolyLinesSize(); /** \brief Returns the current number of helperpolylines */ virtual unsigned short GetHelperPolyLinesSize(); /** \brief Returns whether a helper polyline should be painted or not */ virtual bool IsHelperToBePainted(unsigned int index); /** \brief Returns true if the planar figure is reset to "add points" mode * when a point is selected. * * Default return value is false. Subclasses can overwrite this method and * execute any reset / initialization statements required. */ virtual bool ResetOnPointSelect(); /** \brief removes the point with the given index from the list of controlpoints. */ virtual void RemoveControlPoint( unsigned int index ); /** \brief Removes last control point */ virtual void RemoveLastControlPoint(); /** \brief Allow sub-classes to apply constraints on control points. * * Sub-classes can define spatial constraints to certain control points by * overwriting this method and returning a constrained point. By default, * the points are constrained by the image bounds. */ virtual Point2D ApplyControlPointConstraints( unsigned int /*index*/, const Point2D& point ); /** * \brief Compare two PlanarFigure objects * Note: all subclasses have to implement the method on their own. */ virtual bool Equals(const mitk::PlanarFigure& other) const; - /** \brief Copies contents and state of a figure provided as parameter to the current object. */ - void DeepCopy(Self::Pointer oldFigure); - protected: PlanarFigure(); virtual ~PlanarFigure(); PlanarFigure(const Self& other); /** \brief Set the initial number of control points of the planar figure */ void ResetNumberOfControlPoints( int numberOfControlPoints ); /** Adds feature (e.g., circumference, radius, angle, ...) to feature vector * of a planar figure object and returns integer ID for the feature element. * Should be called in sub-class constructors. */ virtual unsigned int AddFeature( const char *featureName, const char *unitName ); /** Sets the name of the specified feature. INTERNAL METHOD. */ void SetFeatureName( unsigned int index, const char *featureName ); /** Sets the physical unit of the specified feature. INTERNAL METHOD. */ void SetFeatureUnit( unsigned int index, const char *unitName ); /** Sets quantity of the specified feature. INTERNAL METHOD. */ void SetQuantity( unsigned int index, double quantity ); /** Sets the specified feature as active. INTERAL METHOD. */ void ActivateFeature( unsigned int index ); /** Sets the specified feature as active. INTERAL METHOD. */ void DeactivateFeature( unsigned int index ); /** \brief Generates the poly-line representation of the planar figure. * Must be implemented in sub-classes. */ virtual void GeneratePolyLine() = 0; /** \brief Generates the poly-lines that should be drawn the same size regardless of zoom. * Must be implemented in sub-classes. */ virtual void GenerateHelperPolyLine(double mmPerDisplayUnit, unsigned int displayHeight) = 0; /** \brief Calculates quantities of all features of this planar figure. * Must be implemented in sub-classes. */ virtual void EvaluateFeaturesInternal() = 0; /** \brief Initializes the TimeGeometry describing the (time-resolved) * geometry of this figure. Note that each time step holds one PlaneGeometry. */ virtual void InitializeTimeGeometry( unsigned int timeSteps = 1 ); /** \brief defines the number of PolyLines that will be available */ void SetNumberOfPolyLines( unsigned int numberOfPolyLines ); /** \brief Append a point to the PolyLine # index */ void AppendPointToPolyLine( unsigned int index, PolyLineElement element ); /** \brief clears the list of PolyLines. Call before re-calculating a new Polyline. */ void ClearPolyLines(); /** \brief defines the number of HelperPolyLines that will be available */ void SetNumberOfHelperPolyLines( unsigned int numberOfHelperPolyLines ); /** \brief Append a point to the HelperPolyLine # index */ void AppendPointToHelperPolyLine( unsigned int index, PolyLineElement element ); /** \brief clears the list of HelperPolyLines. Call before re-calculating a new HelperPolyline. */ void ClearHelperPolyLines(); virtual void PrintSelf( std::ostream& os, itk::Indent indent ) const; ControlPointListType m_ControlPoints; unsigned int m_NumberOfControlPoints; // Currently selected control point; -1 means no point selected int m_SelectedControlPoint; std::vector m_PolyLines; std::vector m_HelperPolyLines; BoolContainerType::Pointer m_HelperPolyLinesToBePainted; // this point is used to store the coordiantes an additional 'ControlPoint' that is rendered // when the mouse cursor is above the figure (and not a control-point) and when the // property 'planarfigure.isextendable' is set to true Point2D m_PreviewControlPoint; bool m_PreviewControlPointVisible; bool m_FigurePlaced; private: // not implemented to prevent PlanarFigure::New() calls which would create an itk::Object. static Pointer New(); struct Feature { Feature( const char *name, const char *unit ) : Name( name ), Unit( unit ), Quantity( 0.0 ), Active( true ), Visible( true ) { } std::string Name; std::string Unit; double Quantity; bool Active; bool Visible; }; virtual itk::LightObject::Pointer InternalClone() const = 0; PlaneGeometry *m_PlaneGeometry; bool m_PolyLineUpToDate; bool m_HelperLinesUpToDate; bool m_FeaturesUpToDate; // Vector of features available for this geometric figure typedef std::vector< Feature > FeatureVectorType; FeatureVectorType m_Features; unsigned long m_FeaturesMTime; // this pair is used to store the mmInDisplayUnits (m_DisplaySize.first) and the displayHeight (m_DisplaySize.second) // that the helperPolyLines have been calculated for. // It's used to determine whether or not GetHelperPolyLine() needs to recalculate the HelperPolyLines. std::pair m_DisplaySize; }; MITK_CORE_EXPORT bool Equal( const mitk::PlanarFigure& leftHandSide, const mitk::PlanarFigure& rightHandSide, ScalarType eps, bool verbose ); } // namespace mitk #endif //_MITK_PLANAR_FIGURE_H_ diff --git a/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp b/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp index 8482b3611e..9780a61045 100644 --- a/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp +++ b/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp @@ -1,95 +1,128 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include "mitkPlanarArrow.h" #include "mitkPlaneGeometry.h" class mitkPlanarArrowTestClass { public: static void TestPlanarArrowPlacement( mitk::PlanarArrow::Pointer PlanarArrow ) { // Test for correct minimum number of control points in cross-mode MITK_TEST_CONDITION( PlanarArrow->GetMinimumNumberOfControlPoints() == 2, "Minimum number of control points" ); // Test for correct maximum number of control points in cross-mode MITK_TEST_CONDITION( PlanarArrow->GetMaximumNumberOfControlPoints() == 2, "Maximum number of control points" ); // Initial placement of PlanarArrow mitk::Point2D p0; p0[0] = 00.0; p0[1] = 0.0; PlanarArrow->PlaceFigure( p0 ); // Add second control point mitk::Point2D p1; p1[0] = 50.0; p1[1] = 00.0; PlanarArrow->SetControlPoint(1, p1 ); // Test for number of control points MITK_TEST_CONDITION( PlanarArrow->GetNumberOfControlPoints() == 2, "Number of control points after placement" ); // Test for number of polylines const mitk::PlanarFigure::PolyLineType polyLine0 = PlanarArrow->GetPolyLine( 0 ); mitk::PlanarFigure::PolyLineType::const_iterator iter = polyLine0.begin(); MITK_TEST_CONDITION( PlanarArrow->GetPolyLinesSize() == 1, "Number of polylines after placement" ); // Get polylines and check if the generated coordinates are OK const mitk::Point2D& pp0 = *iter; iter++; const mitk::Point2D& pp1 = *iter; MITK_TEST_CONDITION( (pp0 == p0) && (pp1 == p1), "Correct polyline 1" ); // Test for number of measurement features // none yet } }; /** * mitkPlanarArrowTest tests the methods and behavior of mitk::PlanarArrow with sub-tests: * * 1. Instantiation and basic tests * */ int mitkPlanarArrowTest(int /* argc */, char* /*argv*/[]) { // always start with this! MITK_TEST_BEGIN("PlanarArrow") // create PlaneGeometry on which to place the PlanarArrow mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( 100.0, 100.0 ); // ************************************************************************** // 1. Instantiation and basic tests mitk::PlanarArrow::Pointer PlanarArrow = mitk::PlanarArrow::New(); PlanarArrow->SetPlaneGeometry( planeGeometry ); // first test: did this work? MITK_TEST_CONDITION_REQUIRED( PlanarArrow.IsNotNull(), "Testing instantiation" ); // Test placement of PlanarArrow by control points mitkPlanarArrowTestClass::TestPlanarArrowPlacement( PlanarArrow ); + PlanarArrow->EvaluateFeatures(); + + mitk::PlanarArrow::Pointer clonedArrow = PlanarArrow->Clone(); + MITK_TEST_CONDITION_REQUIRED( clonedArrow.IsNotNull(), "Testing cloning" ); + bool identical( true ); + identical &= clonedArrow->GetMinimumNumberOfControlPoints() == PlanarArrow->GetMinimumNumberOfControlPoints(); + identical &= clonedArrow->GetMaximumNumberOfControlPoints() == PlanarArrow->GetMaximumNumberOfControlPoints(); + identical &= clonedArrow->IsClosed() == PlanarArrow->IsClosed(); + identical &= clonedArrow->IsPlaced() == PlanarArrow->IsPlaced(); + identical &= clonedArrow->GetNumberOfControlPoints() == PlanarArrow->GetNumberOfControlPoints(); + identical &= clonedArrow->GetNumberOfControlPoints() == PlanarArrow->GetNumberOfControlPoints(); + identical &= clonedArrow->GetSelectedControlPoint() == PlanarArrow->GetSelectedControlPoint(); + identical &= clonedArrow->IsPreviewControlPointVisible() == PlanarArrow->IsPreviewControlPointVisible(); + identical &= clonedArrow->GetPolyLinesSize() == PlanarArrow->GetPolyLinesSize(); + identical &= clonedArrow->GetHelperPolyLinesSize() == PlanarArrow->GetHelperPolyLinesSize(); + identical &= clonedArrow->ResetOnPointSelect() == PlanarArrow->ResetOnPointSelect(); + + for ( int i=0; iGetNumberOfControlPoints(); ++i ) + { + identical &= clonedArrow->GetControlPoint(i) == PlanarArrow->GetControlPoint(i); + } + + for ( int i=0; iGetPolyLinesSize(); ++i ) + { + mitk::PlanarFigure::PolyLineType polyLine = clonedArrow->GetPolyLine( i ); + for ( int j=0; jGetPolyLine(i).at(j); + } + } + + + MITK_TEST_CONDITION_REQUIRED( identical, "Cloning completely successful" ); // always end with this! MITK_TEST_END(); }