diff --git a/Modules/PhotoacousticsLib/src/Generator/mitkPATissueGenerator.cpp b/Modules/PhotoacousticsLib/src/Generator/mitkPATissueGenerator.cpp index e618155824..580cc4fb01 100644 --- a/Modules/PhotoacousticsLib/src/Generator/mitkPATissueGenerator.cpp +++ b/Modules/PhotoacousticsLib/src/Generator/mitkPATissueGenerator.cpp @@ -1,178 +1,182 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPATissueGenerator.h" #include "mitkPAVector.h" #include "mitkPAVolumeManipulator.h" mitk::pa::InSilicoTissueVolume::Pointer mitk::pa::InSilicoTissueGenerator::GenerateInSilicoData( TissueGeneratorParameters::Pointer parameters) { MITK_DEBUG << "Initializing Empty Volume"; const double RESAMPLING_FACTOR = 2; if (parameters->GetDoPartialVolume()) { parameters->SetXDim(parameters->GetXDim() * RESAMPLING_FACTOR); parameters->SetYDim(parameters->GetYDim() * RESAMPLING_FACTOR); parameters->SetZDim(parameters->GetZDim() * RESAMPLING_FACTOR); parameters->SetVesselBifurcationFrequency(parameters->GetVesselBifurcationFrequency() * RESAMPLING_FACTOR); parameters->SetVoxelSpacingInCentimeters(parameters->GetVoxelSpacingInCentimeters() / RESAMPLING_FACTOR); } auto generatedVolume = mitk::pa::InSilicoTissueVolume::New(parameters); const double DIRECTION_VECTOR_INITIAL_VARIANCE = 0.2; std::mt19937 randomNumberGenerator; std::random_device randomDevice; if (parameters->GetUseRngSeed()) { randomNumberGenerator.seed(parameters->GetRngSeed()); } else { if (randomDevice.entropy() > 0.1) { randomNumberGenerator.seed(randomDevice()); } else { randomNumberGenerator.seed(std::chrono::duration_cast(std::chrono::high_resolution_clock::now().time_since_epoch()).count()); } } std::uniform_int_distribution randomNumVesselDistribution(parameters->GetMinNumberOfVessels(), parameters->GetMaxNumberOfVessels()); std::uniform_real_distribution randomBendingDistribution(parameters->GetMinVesselBending(), parameters->GetMaxVesselBending()); std::uniform_real_distribution randomAbsorptionDistribution(parameters->GetMinVesselAbsorption(), parameters->GetMaxVesselAbsorption()); std::uniform_real_distribution randomRadiusDistribution(parameters->GetMinVesselRadiusInMillimeters(), parameters->GetMaxVesselRadiusInMillimeters()); std::uniform_real_distribution randomScatteringDistribution(parameters->GetMinVesselScattering(), parameters->GetMaxVesselScattering()); std::uniform_real_distribution randomAnisotropyDistribution(parameters->GetMinVesselAnisotropy(), parameters->GetMaxVesselAnisotropy()); std::uniform_int_distribution borderTypeDistribution(0, 3); int numberOfBloodVessels = randomNumVesselDistribution(randomNumberGenerator); generatedVolume->AddIntProperty("numberOfVessels", numberOfBloodVessels); generatedVolume->AddIntProperty("bifurcationFrequency", parameters->GetVesselBifurcationFrequency()); MITK_INFO << "Simulating " << numberOfBloodVessels << " vessel structures"; for (int vesselNumber = 0; vesselNumber < numberOfBloodVessels; vesselNumber++) { Vector::Pointer initialPosition = Vector::New(); Vector::Pointer initialDirection = Vector::New(); double initialRadius = randomRadiusDistribution(randomNumberGenerator) / parameters->GetVoxelSpacingInCentimeters() / 10; std::stringstream radiusString; radiusString << "vessel_" << vesselNumber + 1 << "_radius"; generatedVolume->AddDoubleProperty(radiusString.str(), initialRadius); double absorptionCoefficient = randomAbsorptionDistribution(randomNumberGenerator); std::stringstream absorptionString; absorptionString << "vessel_" << vesselNumber + 1 << "_absorption"; generatedVolume->AddDoubleProperty(absorptionString.str(), absorptionCoefficient); double bendingFactor = randomBendingDistribution(randomNumberGenerator); std::stringstream bendingString; bendingString << "vessel_" << vesselNumber + 1 << "_bendingFactor"; generatedVolume->AddDoubleProperty(bendingString.str(), bendingFactor); double vesselScattering = randomScatteringDistribution(randomNumberGenerator); std::stringstream scatteringString; scatteringString << "vessel_" << vesselNumber + 1 << "_scattering"; generatedVolume->AddDoubleProperty(scatteringString.str(), vesselScattering); double vesselAnisotropy = randomAnisotropyDistribution(randomNumberGenerator); std::stringstream anisotropyString; anisotropyString << "vessel_" << vesselNumber + 1 << "_anisotropy"; generatedVolume->AddDoubleProperty(anisotropyString.str(), vesselAnisotropy); /*The vessel tree shall start at one of the 4 sides of the volume. * The vessels will always be completely contained in the volume * when starting to meander. * They will meander in a direction perpendicular to the * plane they started from (within the limits of the * DIRECTION_VECTOR_INITIAL_VARIANCE) */ int borderType = borderTypeDistribution(randomNumberGenerator); switch (borderType) { case 0: initialPosition->Randomize(0, 0, initialRadius, parameters->GetYDim() - initialRadius, parameters->GetMinVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), parameters->GetMaxVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), &randomNumberGenerator); initialDirection->Randomize(1, 2, -DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, -DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, &randomNumberGenerator); break; case 1: - initialPosition->Randomize(parameters->GetXDim(), parameters->GetXDim(), initialRadius, parameters->GetYDim() - initialRadius, parameters->GetMinVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), + initialPosition->Randomize(parameters->GetXDim() - 1, parameters->GetXDim() - 1, initialRadius, parameters->GetYDim() - initialRadius, parameters->GetMinVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), parameters->GetMaxVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), &randomNumberGenerator); initialDirection->Randomize(-2, -1, -DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, -DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, &randomNumberGenerator); break; case 2: initialPosition->Randomize(initialRadius, parameters->GetXDim() - initialRadius, 0, 0, parameters->GetMinVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), parameters->GetMaxVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), &randomNumberGenerator); initialDirection->Randomize(-DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, 1, 2, -DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, &randomNumberGenerator); break; case 3: - initialPosition->Randomize(initialRadius, parameters->GetXDim() - initialRadius, parameters->GetYDim(), parameters->GetYDim(), parameters->GetMinVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), + initialPosition->Randomize(initialRadius, parameters->GetXDim() - initialRadius, parameters->GetYDim() - 1, parameters->GetYDim() - 1, parameters->GetMinVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), parameters->GetMaxVesselZOrigin() / parameters->GetVoxelSpacingInCentimeters(), &randomNumberGenerator); initialDirection->Randomize(-DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, -2, -1, -DIRECTION_VECTOR_INITIAL_VARIANCE, DIRECTION_VECTOR_INITIAL_VARIANCE, &randomNumberGenerator); break; } + initialDirection->Normalize(); + MITK_INFO << initialPosition->GetElement(0) << " | " << initialPosition->GetElement(1) << " | " << initialPosition->GetElement(2); + MITK_INFO << initialDirection->GetElement(0) << " | " << initialDirection->GetElement(1) << " | " << initialDirection->GetElement(2); + VesselProperties::Pointer vesselParams = VesselProperties::New(); vesselParams->SetDirectionVector(initialDirection); vesselParams->SetPositionVector(initialPosition); vesselParams->SetRadiusInVoxel(initialRadius); vesselParams->SetAbsorptionCoefficient(absorptionCoefficient); vesselParams->SetScatteringCoefficient(vesselScattering); vesselParams->SetAnisotopyCoefficient(vesselAnisotropy); vesselParams->SetBifurcationFrequency(parameters->GetVesselBifurcationFrequency()); vesselParams->SetDoPartialVolume(parameters->GetDoPartialVolume()); VesselTree::Pointer vesselTree = VesselTree::New(vesselParams); while (!vesselTree->IsFinished()) { vesselTree->Step(generatedVolume, parameters->GetCalculateNewVesselPositionCallback(), bendingFactor, &randomNumberGenerator); } } if (parameters->GetDoPartialVolume()) { VolumeManipulator::RescaleImage(generatedVolume, (1.0 / RESAMPLING_FACTOR)); parameters->SetXDim(parameters->GetXDim() / RESAMPLING_FACTOR); parameters->SetYDim(parameters->GetYDim() / RESAMPLING_FACTOR); parameters->SetZDim(parameters->GetZDim() / RESAMPLING_FACTOR); parameters->SetVesselBifurcationFrequency(parameters->GetVesselBifurcationFrequency() / RESAMPLING_FACTOR); parameters->SetVoxelSpacingInCentimeters(parameters->GetVoxelSpacingInCentimeters() * RESAMPLING_FACTOR); } generatedVolume->FinalizeVolume(); return generatedVolume; } mitk::pa::InSilicoTissueGenerator::InSilicoTissueGenerator() { } mitk::pa::InSilicoTissueGenerator::~InSilicoTissueGenerator() { }