diff --git a/Core/Code/Rendering/mitkMapper.cpp b/Core/Code/Rendering/mitkMapper.cpp index 6a2e00d78c..8a8e2ebe88 100644 --- a/Core/Code/Rendering/mitkMapper.cpp +++ b/Core/Code/Rendering/mitkMapper.cpp @@ -1,149 +1,150 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkMapper.h" #include "mitkDataNode.h" #include "mitkBaseRenderer.h" #include "mitkProperties.h" mitk::Mapper::Mapper() :m_TimeStep( 0 ) { } mitk::Mapper::~Mapper() { } mitk::BaseData* mitk::Mapper::GetData() const { return m_DataNode->GetData(); } + mitk::DataNode* mitk::Mapper::GetDataNode() const { return this->m_DataNode.GetPointer(); } bool mitk::Mapper::GetColor(float rgb[3], mitk::BaseRenderer* renderer, const char* name) const { const mitk::DataNode* node=GetDataNode(); if(node==NULL) return false; return node->GetColor(rgb, renderer, name); } bool mitk::Mapper::GetVisibility(bool &visible, mitk::BaseRenderer* renderer, const char* name) const { const mitk::DataNode* node=GetDataNode(); if(node==NULL) return false; return node->GetVisibility(visible, renderer, name); } bool mitk::Mapper::GetOpacity(float &opacity, mitk::BaseRenderer* renderer, const char* name) const { const mitk::DataNode* node=GetDataNode(); if(node==NULL) return false; return node->GetOpacity(opacity, renderer, name); } bool mitk::Mapper::GetLevelWindow(mitk::LevelWindow& levelWindow, mitk::BaseRenderer* renderer, const char* name) const { const mitk::DataNode* node=GetDataNode(); if(node==NULL) return false; return node->GetLevelWindow(levelWindow, renderer, name); } bool mitk::Mapper::IsVisible(mitk::BaseRenderer* renderer, const char* name) const { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, name); return visible; } void mitk::Mapper::CalculateTimeStep( mitk::BaseRenderer *renderer ) { if ( ( renderer != NULL ) && ( m_DataNode.GetPointer() != NULL ) ) { m_TimeStep = renderer->GetTimeStep(m_DataNode->GetData()); } else { m_TimeStep = 0; } } void mitk::Mapper::Update(mitk::BaseRenderer *renderer) { const DataNode* node = GetDataNode(); assert(node!=NULL); //safety cause there are datatreenodes that have no defined data (video-nodes and root) unsigned int dataMTime = 0; mitk::BaseData::Pointer data = static_cast(node->GetData()); if (data.IsNotNull()) { dataMTime = data->GetMTime(); } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep( renderer ); // Check if time step is valid const TimeSlicedGeometry *dataTimeGeometry = data->GetTimeSlicedGeometry(); if ( ( dataTimeGeometry == NULL ) || ( dataTimeGeometry->GetTimeSteps() == 0 ) || ( !dataTimeGeometry->IsValidTime( m_TimeStep ) ) ) { // TimeSlicedGeometry or time step is not valid for this data: // reset mapper so that nothing is displayed this->ResetMapper( renderer ); return; } if( (m_LastUpdateTime < GetMTime()) || (m_LastUpdateTime < node->GetDataReferenceChangedTime()) || (m_LastUpdateTime < dataMTime) || (renderer && (m_LastUpdateTime < renderer->GetTimeStepUpdateTime())) ) { m_LastUpdateTime.Modified(); } this->GenerateDataForRenderer(renderer); } void mitk::Mapper::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "visible", mitk::BoolProperty::New(true), renderer, overwrite ); node->AddProperty( "layer", mitk::IntProperty::New(0), renderer, overwrite); node->AddProperty( "name", mitk::StringProperty::New("No Name!"), renderer, overwrite ); } diff --git a/Modules/DiffusionImaging/Connectomics/Rendering/mitkConnectomicsNetworkMapper3D.cpp b/Modules/DiffusionImaging/Connectomics/Rendering/mitkConnectomicsNetworkMapper3D.cpp index 92d0e23579..c660e9d9e1 100644 --- a/Modules/DiffusionImaging/Connectomics/Rendering/mitkConnectomicsNetworkMapper3D.cpp +++ b/Modules/DiffusionImaging/Connectomics/Rendering/mitkConnectomicsNetworkMapper3D.cpp @@ -1,756 +1,756 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkConnectomicsNetworkMapper3D.h" #include #include "vtkGraphLayout.h" #include #include "vtkGraphToPolyData.h" #include #include "vtkGlyph3D.h" #include "vtkGlyphSource2D.h" #include "mitkConnectomicsRenderingProperties.h" #include "mitkConnectomicsRenderingSchemeProperty.h" #include "mitkConnectomicsRenderingEdgeFilteringProperty.h" #include "mitkConnectomicsRenderingNodeFilteringProperty.h" #include "mitkConnectomicsRenderingNodeColorParameterProperty.h" #include "mitkConnectomicsRenderingNodeRadiusParameterProperty.h" #include "mitkConnectomicsRenderingEdgeColorParameterProperty.h" #include "mitkConnectomicsRenderingEdgeRadiusParameterProperty.h" #include "mitkConnectomicsRenderingNodeThresholdParameterProperty.h" #include "mitkConnectomicsRenderingEdgeThresholdParameterProperty.h" #include mitk::ConnectomicsNetworkMapper3D::ConnectomicsNetworkMapper3D() { m_NetworkAssembly = vtkPropAssembly::New(); } mitk::ConnectomicsNetworkMapper3D:: ~ConnectomicsNetworkMapper3D() { m_NetworkAssembly->Delete(); } void mitk::ConnectomicsNetworkMapper3D::GenerateDataForRenderer(mitk::BaseRenderer* renderer) { if( this->GetInput() == NULL ) { return; } bool propertiesHaveChanged = this->PropertiesChanged(); if( this->GetInput()->GetIsModified( ) || propertiesHaveChanged ) { m_NetworkAssembly->Delete(); m_NetworkAssembly = vtkPropAssembly::New(); // Here is the part where a graph is given and converted to points and connections between points... std::vector< mitk::ConnectomicsNetwork::NetworkNode > vectorOfNodes = this->GetInput()->GetVectorOfAllNodes(); std::vector< std::pair< std::pair< mitk::ConnectomicsNetwork::NetworkNode, mitk::ConnectomicsNetwork::NetworkNode > , mitk::ConnectomicsNetwork::NetworkEdge > > vectorOfEdges = this->GetInput()->GetVectorOfAllEdges(); // Decide on the style of rendering due to property if( m_ChosenRenderingScheme == connectomicsRenderingMITKScheme ) { mitk::Point3D tempWorldPoint, tempCNFGeometryPoint; //////////////////////Prepare coloring and radius//////////// std::vector< double > vectorOfNodeRadiusParameterValues; vectorOfNodeRadiusParameterValues.resize( vectorOfNodes.size() ); double maxNodeRadiusParameterValue( FillNodeParameterVector( &vectorOfNodeRadiusParameterValues, m_NodeRadiusParameter ) ); std::vector< double > vectorOfNodeColorParameterValues; vectorOfNodeColorParameterValues.resize( vectorOfNodes.size() ); double maxNodeColorParameterValue( FillNodeParameterVector( &vectorOfNodeColorParameterValues, m_NodeColorParameter ) ); std::vector< double > vectorOfEdgeRadiusParameterValues; vectorOfEdgeRadiusParameterValues.resize( vectorOfEdges.size() ); double maxEdgeRadiusParameterValue( FillEdgeParameterVector( &vectorOfEdgeRadiusParameterValues, m_EdgeRadiusParameter ) ); std::vector< double > vectorOfEdgeColorParameterValues; vectorOfEdgeColorParameterValues.resize( vectorOfEdges.size() ); double maxEdgeColorParameterValue( FillEdgeParameterVector( &vectorOfEdgeColorParameterValues, m_EdgeColorParameter ) ); //////////////////////Prepare Filtering////////////////////// // true will be rendered std::vector< bool > vectorOfNodeFilterBools( vectorOfNodes.size(), true ); if( m_ChosenNodeFilter == connectomicsRenderingNodeThresholdingFilter ) { FillNodeFilterBoolVector( &vectorOfNodeFilterBools, m_NodeThresholdParameter ); } std::vector< bool > vectorOfEdgeFilterBools( vectorOfEdges.size(), true ); if( m_ChosenEdgeFilter == connectomicsRenderingEdgeThresholdFilter ) { FillEdgeFilterBoolVector( &vectorOfEdgeFilterBools, m_EdgeThresholdParameter ); } //////////////////////Create Spheres///////////////////////// for(unsigned int i = 0; i < vectorOfNodes.size(); i++) { vtkSmartPointer sphereSource = vtkSmartPointer::New(); for(unsigned int dimension = 0; dimension < 3; dimension++) { tempCNFGeometryPoint.SetElement( dimension , vectorOfNodes[i].coordinates[dimension] ); } - this->GetData()->GetGeometry()->IndexToWorld( tempCNFGeometryPoint, tempWorldPoint ); + GetDataNode()->GetData()->GetGeometry()->IndexToWorld( tempCNFGeometryPoint, tempWorldPoint ); sphereSource->SetCenter( tempWorldPoint[0] , tempWorldPoint[1], tempWorldPoint[2] ); // determine radius double radiusFactor = vectorOfNodeRadiusParameterValues[i] / maxNodeRadiusParameterValue; double radius = m_NodeRadiusStart + ( m_NodeRadiusEnd - m_NodeRadiusStart) * radiusFactor; sphereSource->SetRadius( radius ); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInput(sphereSource->GetOutput()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); // determine color double colorFactor = vectorOfNodeColorParameterValues[i] / maxNodeColorParameterValue; double redStart = m_NodeColorStart.GetElement( 0 ); double greenStart = m_NodeColorStart.GetElement( 1 ); double blueStart = m_NodeColorStart.GetElement( 2 ); double redEnd = m_NodeColorEnd.GetElement( 0 ); double greenEnd = m_NodeColorEnd.GetElement( 1 ); double blueEnd = m_NodeColorEnd.GetElement( 2 ); double red = redStart + ( redEnd - redStart ) * colorFactor; double green = greenStart + ( greenEnd - greenStart ) * colorFactor; double blue = blueStart + ( blueEnd - blueStart ) * colorFactor; actor->GetProperty()->SetColor( red, green, blue); if( vectorOfNodeFilterBools[i] ) { m_NetworkAssembly->AddPart(actor); } } //////////////////////Create Tubes///////////////////////// double maxWeight = (double) this->GetInput()->GetMaximumWeight(); for(unsigned int i = 0; i < vectorOfEdges.size(); i++) { vtkSmartPointer lineSource = vtkSmartPointer::New(); for(unsigned int dimension = 0; dimension < 3; dimension++) { tempCNFGeometryPoint[ dimension ] = vectorOfEdges[i].first.first.coordinates[dimension]; } - this->GetData()->GetGeometry()->IndexToWorld( tempCNFGeometryPoint, tempWorldPoint ); + GetDataNode()->GetData()->GetGeometry()->IndexToWorld( tempCNFGeometryPoint, tempWorldPoint ); lineSource->SetPoint1(tempWorldPoint[0], tempWorldPoint[1],tempWorldPoint[2] ); for(unsigned int dimension = 0; dimension < 3; dimension++) { tempCNFGeometryPoint[ dimension ] = vectorOfEdges[i].first.second.coordinates[dimension]; } - this->GetData()->GetGeometry()->IndexToWorld( tempCNFGeometryPoint, tempWorldPoint ); + GetDataNode()->GetData()->GetGeometry()->IndexToWorld( tempCNFGeometryPoint, tempWorldPoint ); lineSource->SetPoint2(tempWorldPoint[0], tempWorldPoint[1], tempWorldPoint[2] ); vtkSmartPointer tubes = vtkSmartPointer::New(); tubes->SetInput( lineSource->GetOutput() ); tubes->SetNumberOfSides( 12 ); // determine radius double radiusFactor = vectorOfEdgeRadiusParameterValues[i] / maxEdgeRadiusParameterValue; double radius = m_EdgeRadiusStart + ( m_EdgeRadiusEnd - m_EdgeRadiusStart) * radiusFactor; tubes->SetRadius( radius ); // originally we used a logarithmic scaling, // double radiusFactor = 1.0 + ((double) vectorOfEdges[i].second.weight) / 10.0 ; // tubes->SetRadius( std::log10( radiusFactor ) ); vtkSmartPointer mapper2 = vtkSmartPointer::New(); mapper2->SetInput( tubes->GetOutput() ); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper2); // determine color double colorFactor = vectorOfEdgeColorParameterValues[i] / maxEdgeColorParameterValue; double redStart = m_EdgeColorStart.GetElement( 0 ); double greenStart = m_EdgeColorStart.GetElement( 1 ); double blueStart = m_EdgeColorStart.GetElement( 2 ); double redEnd = m_EdgeColorEnd.GetElement( 0 ); double greenEnd = m_EdgeColorEnd.GetElement( 1 ); double blueEnd = m_EdgeColorEnd.GetElement( 2 ); double red = redStart + ( redEnd - redStart ) * colorFactor; double green = greenStart + ( greenEnd - greenStart ) * colorFactor; double blue = blueStart + ( blueEnd - blueStart ) * colorFactor; actor->GetProperty()->SetColor( red, green, blue); if( vectorOfEdgeFilterBools[i] ) { m_NetworkAssembly->AddPart(actor); } } } else if( m_ChosenRenderingScheme == connectomicsRenderingVTKScheme ) { vtkSmartPointer graph = vtkSmartPointer::New(); std::vector< vtkIdType > networkToVTKvector; networkToVTKvector.resize(vectorOfNodes.size()); for(unsigned int i = 0; i < vectorOfNodes.size(); i++) { networkToVTKvector[vectorOfNodes[i].id] = graph->AddVertex(); } for(unsigned int i = 0; i < vectorOfEdges.size(); i++) { graph->AddEdge(networkToVTKvector[vectorOfEdges[i].first.first.id], networkToVTKvector[vectorOfEdges[i].first.second.id]); } vtkSmartPointer points = vtkSmartPointer::New(); for(unsigned int i = 0; i < vectorOfNodes.size(); i++) { double x = vectorOfNodes[i].coordinates[0]; double y = vectorOfNodes[i].coordinates[1]; double z = vectorOfNodes[i].coordinates[2]; points->InsertNextPoint( x, y, z); } graph->SetPoints(points); vtkGraphLayout* layout = vtkGraphLayout::New(); layout->SetInput(graph); layout->SetLayoutStrategy(vtkPassThroughLayoutStrategy::New()); vtkGraphToPolyData* graphToPoly = vtkGraphToPolyData::New(); graphToPoly->SetInputConnection(layout->GetOutputPort()); // Create the standard VTK polydata mapper and actor // for the connections (edges) in the tree. vtkPolyDataMapper* edgeMapper = vtkPolyDataMapper::New(); edgeMapper->SetInputConnection(graphToPoly->GetOutputPort()); vtkActor* edgeActor = vtkActor::New(); edgeActor->SetMapper(edgeMapper); edgeActor->GetProperty()->SetColor(0.0, 0.5, 1.0); // Glyph the points of the tree polydata to create // VTK_VERTEX cells at each vertex in the tree. vtkGlyph3D* vertGlyph = vtkGlyph3D::New(); vertGlyph->SetInputConnection(0, graphToPoly->GetOutputPort()); vtkGlyphSource2D* glyphSource = vtkGlyphSource2D::New(); glyphSource->SetGlyphTypeToVertex(); vertGlyph->SetInputConnection(1, glyphSource->GetOutputPort()); // Create a mapper for the vertices, and tell the mapper // to use the specified color array. vtkPolyDataMapper* vertMapper = vtkPolyDataMapper::New(); vertMapper->SetInputConnection(vertGlyph->GetOutputPort()); /*if (colorArray) { vertMapper->SetScalarModeToUsePointFieldData(); vertMapper->SelectColorArray(colorArray); vertMapper->SetScalarRange(colorRange); }*/ // Create an actor for the vertices. Move the actor forward // in the z direction so it is drawn on top of the edge actor. vtkActor* vertActor = vtkActor::New(); vertActor->SetMapper(vertMapper); vertActor->GetProperty()->SetPointSize(5); vertActor->SetPosition(0, 0, 0.001); m_NetworkAssembly->AddPart(edgeActor); m_NetworkAssembly->AddPart(vertActor); } - (static_cast ( GetData() ) )->SetIsModified( false ); + (static_cast ( GetDataNode()->GetData() ) )->SetIsModified( false ); } } const mitk::ConnectomicsNetwork* mitk::ConnectomicsNetworkMapper3D::GetInput() { - return static_cast ( GetData() ); + return static_cast ( GetDataNode()->GetData() ); } void mitk::ConnectomicsNetworkMapper3D::SetDefaultProperties(DataNode* node, BaseRenderer* renderer , bool overwrite) { // Initialize enumeration properties mitk::ConnectomicsRenderingSchemeProperty::Pointer connectomicsRenderingScheme = mitk::ConnectomicsRenderingSchemeProperty::New(); mitk::ConnectomicsRenderingEdgeFilteringProperty::Pointer connectomicsRenderingEdgeFiltering = mitk::ConnectomicsRenderingEdgeFilteringProperty::New(); mitk::ConnectomicsRenderingNodeFilteringProperty::Pointer connectomicsRenderingNodeFiltering = mitk::ConnectomicsRenderingNodeFilteringProperty::New(); mitk::ConnectomicsRenderingNodeColorParameterProperty::Pointer connectomicsRenderingNodeGradientColorParameter = mitk::ConnectomicsRenderingNodeColorParameterProperty::New(); mitk::ConnectomicsRenderingNodeRadiusParameterProperty::Pointer connectomicsRenderingNodeRadiusParameter = mitk::ConnectomicsRenderingNodeRadiusParameterProperty::New(); mitk::ConnectomicsRenderingEdgeColorParameterProperty::Pointer connectomicsRenderingEdgeGradientColorParameter = mitk::ConnectomicsRenderingEdgeColorParameterProperty::New(); mitk::ConnectomicsRenderingEdgeRadiusParameterProperty::Pointer connectomicsRenderingEdgeRadiusParameter = mitk::ConnectomicsRenderingEdgeRadiusParameterProperty::New(); mitk::ConnectomicsRenderingNodeThresholdParameterProperty::Pointer connectomicsRenderingNodeThresholdParameter = mitk::ConnectomicsRenderingNodeThresholdParameterProperty::New(); mitk::ConnectomicsRenderingEdgeThresholdParameterProperty::Pointer connectomicsRenderingEdgeThresholdParameter = mitk::ConnectomicsRenderingEdgeThresholdParameterProperty::New(); // set the properties node->AddProperty( connectomicsRenderingSchemePropertyName.c_str(), connectomicsRenderingScheme, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeFilteringPropertyName.c_str(), connectomicsRenderingEdgeFiltering, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeThresholdFilterParameterName.c_str(), connectomicsRenderingEdgeThresholdParameter, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeThresholdFilterThresholdName.c_str(), connectomicsRenderingEdgeThresholdFilterThresholdDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeFilteringPropertyName.c_str(), connectomicsRenderingNodeFiltering, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeThresholdFilterParameterName.c_str(), connectomicsRenderingNodeThresholdParameter, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeThresholdFilterThresholdName.c_str(), connectomicsRenderingNodeThresholdFilterThresholdDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeGradientStartColorName.c_str(), connectomicsRenderingNodeGradientStartColorDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeGradientEndColorName.c_str(), connectomicsRenderingNodeGradientEndColorDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeGradientColorParameterName.c_str(), connectomicsRenderingNodeGradientColorParameter, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeRadiusStartName.c_str(), connectomicsRenderingNodeRadiusStartDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeRadiusEndName.c_str(), connectomicsRenderingNodeRadiusEndDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeRadiusParameterName.c_str(), connectomicsRenderingNodeRadiusParameter, renderer, overwrite ); node->AddProperty( connectomicsRenderingNodeChosenNodeName.c_str(), connectomicsRenderingNodeChosenNodeDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeGradientStartColorName.c_str(), connectomicsRenderingEdgeGradientStartColorDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeGradientEndColorName.c_str(), connectomicsRenderingEdgeGradientEndColorDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeGradientColorParameterName.c_str(), connectomicsRenderingEdgeGradientColorParameter, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeRadiusStartName.c_str(), connectomicsRenderingEdgeRadiusStartDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeRadiusEndName.c_str(), connectomicsRenderingEdgeRadiusEndDefault, renderer, overwrite ); node->AddProperty( connectomicsRenderingEdgeRadiusParameterName.c_str(), connectomicsRenderingEdgeRadiusParameter, renderer, overwrite ); Superclass::SetDefaultProperties(node, renderer, overwrite); } void mitk::ConnectomicsNetworkMapper3D::ApplyProperties(mitk::BaseRenderer* renderer) { //TODO: implement } void mitk::ConnectomicsNetworkMapper3D::SetVtkMapperImmediateModeRendering(vtkMapper *mapper) { //TODO: implement } void mitk::ConnectomicsNetworkMapper3D::UpdateVtkObjects() { //TODO: implement } vtkProp* mitk::ConnectomicsNetworkMapper3D::GetVtkProp(mitk::BaseRenderer *renderer) { return m_NetworkAssembly; } bool mitk::ConnectomicsNetworkMapper3D::PropertiesChanged() { mitk::ConnectomicsRenderingSchemeProperty * renderingScheme = static_cast< mitk::ConnectomicsRenderingSchemeProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingSchemePropertyName.c_str() ) ); mitk::ConnectomicsRenderingEdgeFilteringProperty * edgeFilter = static_cast< mitk::ConnectomicsRenderingEdgeFilteringProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeFilteringPropertyName.c_str() ) ); mitk::FloatProperty * edgeThreshold = static_cast< mitk::FloatProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeThresholdFilterThresholdName.c_str() ) ); mitk::ConnectomicsRenderingNodeFilteringProperty * nodeFilter = static_cast< mitk::ConnectomicsRenderingNodeFilteringProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeFilteringPropertyName.c_str() ) ); mitk::ConnectomicsRenderingNodeThresholdParameterProperty * nodeThresholdParameter = static_cast< mitk::ConnectomicsRenderingNodeThresholdParameterProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeThresholdFilterParameterName.c_str() ) ); mitk::ConnectomicsRenderingEdgeThresholdParameterProperty * edgeThresholdParameter = static_cast< mitk::ConnectomicsRenderingEdgeThresholdParameterProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeThresholdFilterParameterName.c_str() ) ); mitk::FloatProperty * nodeThreshold = static_cast< mitk::FloatProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeThresholdFilterThresholdName.c_str() ) ); mitk::ColorProperty * nodeColorStart = static_cast< mitk::ColorProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeGradientStartColorName.c_str() ) ); mitk::ColorProperty * nodeColorEnd = static_cast< mitk::ColorProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeGradientEndColorName.c_str() ) ); mitk::FloatProperty * nodeRadiusStart = static_cast< mitk::FloatProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeRadiusStartName.c_str() ) ); mitk::FloatProperty * nodeRadiusEnd = static_cast< mitk::FloatProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeRadiusEndName.c_str() ) ); mitk::StringProperty * chosenNode = static_cast< mitk::StringProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeChosenNodeName.c_str() ) ); mitk::ColorProperty * edgeColorStart = static_cast< mitk::ColorProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeGradientStartColorName.c_str() ) ); mitk::ColorProperty * edgeColorEnd = static_cast< mitk::ColorProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeGradientEndColorName.c_str() ) ); mitk::FloatProperty * edgeRadiusStart = static_cast< mitk::FloatProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeRadiusStartName.c_str() ) ); mitk::FloatProperty * edgeRadiusEnd = static_cast< mitk::FloatProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeRadiusEndName.c_str() ) ); mitk::ConnectomicsRenderingNodeColorParameterProperty * nodeColorParameter = static_cast< mitk::ConnectomicsRenderingNodeColorParameterProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeGradientColorParameterName.c_str() ) ); mitk::ConnectomicsRenderingNodeRadiusParameterProperty * nodeRadiusParameter = static_cast< mitk::ConnectomicsRenderingNodeRadiusParameterProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingNodeRadiusParameterName.c_str() ) ); mitk::ConnectomicsRenderingEdgeColorParameterProperty * edgeColorParameter = static_cast< mitk::ConnectomicsRenderingEdgeColorParameterProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeGradientColorParameterName.c_str() ) ); mitk::ConnectomicsRenderingEdgeRadiusParameterProperty * edgeRadiusParameter = static_cast< mitk::ConnectomicsRenderingEdgeRadiusParameterProperty * > ( this->GetDataNode()->GetProperty( connectomicsRenderingEdgeRadiusParameterName.c_str() ) ); if( m_ChosenRenderingScheme != renderingScheme->GetValueAsString() || m_ChosenEdgeFilter != edgeFilter->GetValueAsString() || m_EdgeThreshold != edgeThreshold->GetValue() || m_EdgeThresholdParameter != edgeThresholdParameter->GetValueAsString() || m_ChosenNodeFilter != nodeFilter->GetValueAsString() || m_NodeThreshold != nodeThreshold->GetValue() || m_NodeThresholdParameter != nodeThresholdParameter->GetValueAsString() || m_NodeColorStart != nodeColorStart->GetValue() || m_NodeColorEnd != nodeColorEnd->GetValue() || m_NodeRadiusStart != nodeRadiusStart->GetValue() || m_NodeRadiusEnd != nodeRadiusEnd->GetValue() || m_ChosenNodeLabel != chosenNode->GetValueAsString() || m_EdgeColorStart != edgeColorStart->GetValue() || m_EdgeColorEnd != edgeColorEnd->GetValue() || m_EdgeRadiusStart != edgeRadiusStart->GetValue() || m_EdgeRadiusEnd != edgeRadiusEnd->GetValue() || m_NodeColorParameter != nodeColorParameter->GetValueAsString() || m_NodeRadiusParameter != nodeRadiusParameter->GetValueAsString() || m_EdgeColorParameter != edgeColorParameter->GetValueAsString() || m_EdgeRadiusParameter != edgeRadiusParameter->GetValueAsString() ) { m_ChosenRenderingScheme = renderingScheme->GetValueAsString(); m_ChosenEdgeFilter = edgeFilter->GetValueAsString(); m_EdgeThreshold = edgeThreshold->GetValue(); m_EdgeThresholdParameter = edgeThresholdParameter->GetValueAsString(); m_ChosenNodeFilter = nodeFilter->GetValueAsString(); m_NodeThreshold = nodeThreshold->GetValue(); m_NodeThresholdParameter = nodeThresholdParameter->GetValueAsString(); m_NodeColorStart = nodeColorStart->GetValue(); m_NodeColorEnd = nodeColorEnd->GetValue(); m_NodeRadiusStart = nodeRadiusStart->GetValue(); m_NodeRadiusEnd = nodeRadiusEnd->GetValue(); m_ChosenNodeLabel = chosenNode->GetValueAsString(); m_EdgeColorStart = edgeColorStart->GetValue(); m_EdgeColorEnd = edgeColorEnd->GetValue(); m_EdgeRadiusStart = edgeRadiusStart->GetValue(); m_EdgeRadiusEnd = edgeRadiusEnd->GetValue(); m_NodeColorParameter = nodeColorParameter->GetValueAsString(); m_NodeRadiusParameter = nodeRadiusParameter->GetValueAsString(); m_EdgeColorParameter = edgeColorParameter->GetValueAsString(); m_EdgeRadiusParameter = edgeRadiusParameter->GetValueAsString(); return true; } return false; } double mitk::ConnectomicsNetworkMapper3D::FillNodeParameterVector( std::vector< double > * parameterVector, std::string parameterName ) { int end( parameterVector->size() ); // constant parameter - uniform style if( parameterName == connectomicsRenderingNodeParameterConstant ) { for(int index(0); index < end; index++) { parameterVector->at( index ) = 1.0; } return 1.0; } double maximum( 0.0 ); // using the degree as parameter if( parameterName == connectomicsRenderingNodeParameterDegree ) { std::vector< int > vectorOfDegree = this->GetInput()->GetDegreeOfNodes(); for(int index(0); index < end; index++) { parameterVector->at( index ) = vectorOfDegree[ index ]; } maximum = *std::max_element( parameterVector->begin(), parameterVector->end() ); } // using betweenness centrality as parameter if( parameterName == connectomicsRenderingNodeParameterBetweenness ) { std::vector< double > vectorOfBetweenness = this->GetInput()->GetNodeBetweennessVector(); for(int index(0); index < end; index++) { parameterVector->at( index ) = vectorOfBetweenness[index]; } maximum = *std::max_element( parameterVector->begin(), parameterVector->end() ); } // using clustering coefficient as parameter if( parameterName == connectomicsRenderingNodeParameterClustering ) { const std::vector< double > vectorOfClustering = this->GetInput()->GetLocalClusteringCoefficients(); for(int index(0); index < end; index++) { parameterVector->at( index ) = vectorOfClustering[index]; } maximum = *std::max_element( parameterVector->begin(), parameterVector->end() ); } // using distance to a specific node as parameter if( parameterName == connectomicsRenderingNodeParameterColoringShortestPath ) { bool labelFound( this->GetInput()->CheckForLabel( m_ChosenNodeLabel ) ); // check whether the chosen node is valid if( !labelFound ) { MITK_WARN << "Node chosen for rendering is not valid."; for(int index(0); index < end; index++) { parameterVector->at( index ) = 1.0; } return 1.0; } else { const std::vector< double > distanceVector = this->GetInput()->GetShortestDistanceVectorFromLabel( m_ChosenNodeLabel ); for(int index(0); index < end; index++) { parameterVector->at( index ) = distanceVector[index]; } maximum = *std::max_element( parameterVector->begin(), parameterVector->end() ); } } // if the maximum is nearly zero if( std::abs( maximum ) < mitk::eps ) { maximum = 1.0; } return maximum; } double mitk::ConnectomicsNetworkMapper3D::FillEdgeParameterVector( std::vector< double > * parameterVector, std::string parameterName ) { int end( parameterVector->size() ); // constant parameter - uniform style if( parameterName == connectomicsRenderingEdgeParameterConstant ) { for(int index(0); index < end; index++) { parameterVector->at( index ) = 1.0; } return 1.0; } double maximum( 0.0 ); // using the weight as parameter if( parameterName == connectomicsRenderingEdgeParameterWeight ) { std::vector< std::pair< std::pair< mitk::ConnectomicsNetwork::NetworkNode, mitk::ConnectomicsNetwork::NetworkNode > , mitk::ConnectomicsNetwork::NetworkEdge > > vectorOfEdges = this->GetInput()->GetVectorOfAllEdges(); for(int index(0); index < end; index++) { parameterVector->at( index ) = vectorOfEdges[ index ].second.weight; } maximum = *std::max_element( parameterVector->begin(), parameterVector->end() ); } // using the edge centrality as parameter if( parameterName == connectomicsRenderingEdgeParameterCentrality ) { const std::vector< double > vectorOfCentrality = this->GetInput()->GetEdgeBetweennessVector(); for(int index(0); index < end; index++) { parameterVector->at( index ) = vectorOfCentrality[index]; } maximum = *std::max_element( parameterVector->begin(), parameterVector->end() ); } // if the maximum is nearly zero if( std::abs( maximum ) < mitk::eps ) { maximum = 1.0; } return maximum; } void mitk::ConnectomicsNetworkMapper3D::FillNodeFilterBoolVector( std::vector< bool > * boolVector, std::string parameterName ) { std::vector< double > parameterVector; parameterVector.resize( boolVector->size() ); int end( parameterVector.size() ); // using the degree as parameter if( parameterName == connectomicsRenderingNodeParameterDegree ) { std::vector< int > vectorOfDegree = this->GetInput()->GetDegreeOfNodes(); for(int index(0); index < end; index++) { parameterVector.at( index ) = vectorOfDegree[ index ]; } } // using betweenness centrality as parameter if( parameterName == connectomicsRenderingNodeParameterBetweenness ) { std::vector< double > vectorOfBetweenness = this->GetInput()->GetNodeBetweennessVector(); for(int index(0); index < end; index++) { parameterVector.at( index ) = vectorOfBetweenness[index]; } } // using clustering coefficient as parameter if( parameterName == connectomicsRenderingNodeParameterClustering ) { const std::vector< double > vectorOfClustering = this->GetInput()->GetLocalClusteringCoefficients(); for(int index(0); index < end; index++) { parameterVector.at( index ) = vectorOfClustering[index]; } } for( int index( 0 ), end( boolVector->size() ); index < end; index++ ) { if( parameterVector.at( index ) >= m_NodeThreshold ) { boolVector->at( index ) = true; } else { boolVector->at( index ) = false; } } return; } void mitk::ConnectomicsNetworkMapper3D::FillEdgeFilterBoolVector( std::vector< bool > * boolVector, std::string parameterName ) { std::vector< double > parameterVector; parameterVector.resize( boolVector->size() ); int end( parameterVector.size() ); // using the weight as parameter if( parameterName == connectomicsRenderingEdgeParameterWeight ) { std::vector< std::pair< std::pair< mitk::ConnectomicsNetwork::NetworkNode, mitk::ConnectomicsNetwork::NetworkNode > , mitk::ConnectomicsNetwork::NetworkEdge > > vectorOfEdges = this->GetInput()->GetVectorOfAllEdges(); for(int index(0); index < end; index++) { parameterVector.at( index ) = vectorOfEdges[ index ].second.weight; } } // using the edge centrality as parameter if( parameterName == connectomicsRenderingEdgeParameterCentrality ) { const std::vector< double > vectorOfCentrality = this->GetInput()->GetEdgeBetweennessVector(); for(int index(0); index < end; index++) { parameterVector.at( index ) = vectorOfCentrality[index]; } } for( int index( 0 ), end( boolVector->size() ); index < end; index++ ) { if( parameterVector.at( index ) >= m_EdgeThreshold ) { boolVector->at( index ) = true; } else { boolVector->at( index ) = false; } } return; } diff --git a/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.h b/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.h index 307b5ab403..ebb39a1a04 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.h +++ b/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.h @@ -1,145 +1,145 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef ODFVTKMAPPER2D_H_HEADER_INCLUDED #define ODFVTKMAPPER2D_H_HEADER_INCLUDED -#include "mitkVtkMapper2D.h" +#include "mitkVtkMapper.h" #include "vtkPropAssembly.h" #include "vtkAppendPolyData.h" #include "vtkActor.h" #include "vtkPolyDataMapper.h" #include "vtkPlane.h" #include "vtkCutter.h" #include "vtkClipPolyData.h" #include "vtkTransform.h" #include "vtkDataArrayTemplate.h" #include "vtkSmartPointer.h" #include "vtkOdfSource.h" #include "vtkThickPlane.h" namespace mitk { //##Documentation //## @brief Mapper for spherical object densitiy function representations //## template -class OdfVtkMapper2D : public VtkMapper2D +class OdfVtkMapper2D : public VtkMapper { struct OdfDisplayGeometry { vtkFloatingPointType vp[ 3 ], vnormal[ 3 ]; Vector3D normal; double d, d1, d2; mitk::Point3D M3D, L3D, O3D; vtkFloatingPointType vp_original[ 3 ], vnormal_original[ 3 ]; mitk::Vector2D size, origin; bool Equals(OdfDisplayGeometry other) { return other.vp_original[0] == vp[0] && other.vp_original[1] == vp[1] && other.vp_original[2] == vp[2] && other.vnormal_original[0] == vnormal[0] && other.vnormal_original[1] == vnormal[1] && other.vnormal_original[2] == vnormal[2] && other.size[0] == size[0] && other.size[1] == size[1] && other.origin[0] == origin[0] && other.origin[1] == origin[1]; } }; public: - mitkClassMacro(OdfVtkMapper2D,VtkMapper2D) + mitkClassMacro(OdfVtkMapper2D,VtkMapper) itkNewMacro(Self) virtual vtkProp* GetVtkProp(mitk::BaseRenderer* renderer); bool IsVisibleOdfs(mitk::BaseRenderer* renderer); virtual void MitkRenderOverlay(mitk::BaseRenderer* renderer); virtual void MitkRenderOpaqueGeometry(mitk::BaseRenderer* renderer); virtual void MitkRenderTranslucentGeometry(mitk::BaseRenderer* renderer); virtual void MitkRenderVolumetricGeometry(mitk::BaseRenderer* /*renderer*/){} OdfDisplayGeometry MeasureDisplayedGeometry(mitk::BaseRenderer* renderer); double GetMinImageSpacing( int index ); void ApplyPropertySettings(); virtual void Slice(mitk::BaseRenderer* renderer, OdfDisplayGeometry dispGeo); virtual int GetIndex(mitk::BaseRenderer* renderer); static void SetDefaultProperties(DataNode* node, BaseRenderer* renderer = NULL, bool overwrite = false); virtual void Update(mitk::BaseRenderer * renderer); virtual void GenerateDataForRenderer(mitk::BaseRenderer* renderer); virtual bool IsLODEnabled( BaseRenderer * /*renderer*/ ) const { return true; } class LocalStorage : public mitk::Mapper::BaseLocalStorage { public: std::vector< vtkSmartPointer > m_PropAssemblies; std::vector< vtkSmartPointer > m_OdfsPlanes; std::vector< vtkSmartPointer > m_OdfsActors; std::vector< vtkSmartPointer > m_OdfsMappers; vtkSmartPointer< vtkPolyData > m_TemplateOdf; itk::TimeStamp m_LastUpdateTime; /** \brief Default constructor of the local storage. */ LocalStorage(); /** \brief Default deconstructor of the local storage. */ ~LocalStorage() { } }; protected: OdfVtkMapper2D(); virtual ~OdfVtkMapper2D(); static void GlyphMethod(void *arg); bool IsPlaneRotated(mitk::BaseRenderer* renderer); private: mitk::Image* GetInput(); static vtkSmartPointer m_OdfTransform; static vtkSmartPointer m_OdfSource; static float m_Scaling; static int m_Normalization; static int m_ScaleBy; static float m_IndexParam1; static float m_IndexParam2; int m_ShowMaxNumber; std::vector< vtkSmartPointer > m_Planes; std::vector< vtkSmartPointer > m_Cutters; std::vector< vtkSmartPointer > m_ThickPlanes1; std::vector< vtkSmartPointer > m_Clippers1; std::vector< vtkSmartPointer > m_ThickPlanes2; std::vector< vtkSmartPointer > m_Clippers2; vtkImageData* m_VtkImage ; OdfDisplayGeometry m_LastDisplayGeometry; mitk::Mapper::LocalStorageHandler m_LSH; }; } // namespace mitk #include "mitkOdfVtkMapper2D.txx" #endif /* ODFVTKMAPPER2D_H_HEADER_INCLUDED */ diff --git a/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx b/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx index 5e5884a2bd..444ca013a9 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx +++ b/Modules/DiffusionImaging/DiffusionCore/Rendering/mitkOdfVtkMapper2D.txx @@ -1,882 +1,884 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __mitkOdfVtkMapper2D_txx__ #define __mitkOdfVtkMapper2D_txx__ #include "mitkOdfVtkMapper2D.h" #include "mitkDataNode.h" #include "mitkBaseRenderer.h" #include "mitkMatrixConvert.h" #include "mitkGeometry3D.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkProperties.h" #include "mitkTensorImage.h" #include "vtkSphereSource.h" #include "vtkPropCollection.h" #include "vtkMaskedGlyph3D.h" #include "vtkGlyph2D.h" #include "vtkGlyph3D.h" #include "vtkMaskedProgrammableGlyphFilter.h" #include "vtkImageData.h" #include "vtkLinearTransform.h" #include "vtkCamera.h" #include "vtkPointData.h" #include "vtkTransformPolyDataFilter.h" #include "vtkTransform.h" #include "vtkOdfSource.h" #include "vtkDoubleArray.h" #include "vtkLookupTable.h" #include "vtkProperty.h" #include "vtkPolyDataNormals.h" #include "vtkLight.h" #include "vtkLightCollection.h" #include "vtkMath.h" #include "vtkFloatArray.h" #include "vtkDelaunay2D.h" #include "vtkMapper.h" #include "vtkRenderer.h" #include "itkOrientationDistributionFunction.h" #include "itkFixedArray.h" #include #include "vtkOpenGLRenderer.h" #define _USE_MATH_DEFINES #include template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfTransform = vtkSmartPointer::New(); template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfSource = vtkSmartPointer::New(); template float mitk::OdfVtkMapper2D::m_Scaling; template int mitk::OdfVtkMapper2D::m_Normalization; template int mitk::OdfVtkMapper2D::m_ScaleBy; template float mitk::OdfVtkMapper2D::m_IndexParam1; template float mitk::OdfVtkMapper2D::m_IndexParam2; #define ODF_MAPPER_PI M_PI template mitk::OdfVtkMapper2D::LocalStorage::LocalStorage() { m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes[0]->AddInput(vtkPolyData::New()); m_OdfsPlanes[1]->AddInput(vtkPolyData::New()); m_OdfsPlanes[2]->AddInput(vtkPolyData::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors[0]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[1]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[2]->GetProperty()->SetInterpolationToGouraud(); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); vtkLookupTable *lut = vtkLookupTable::New(); m_OdfsMappers[0]->SetLookupTable(lut); m_OdfsMappers[1]->SetLookupTable(lut); m_OdfsMappers[2]->SetLookupTable(lut); m_OdfsActors[0]->SetMapper(m_OdfsMappers[0]); m_OdfsActors[1]->SetMapper(m_OdfsMappers[1]); m_OdfsActors[2]->SetMapper(m_OdfsMappers[2]); } template mitk::OdfVtkMapper2D ::OdfVtkMapper2D() { m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters[0]->SetCutFunction( m_Planes[0] ); m_Cutters[0]->GenerateValues( 1, 0, 1 ); m_Cutters[1]->SetCutFunction( m_Planes[1] ); m_Cutters[1]->GenerateValues( 1, 0, 1 ); m_Cutters[2]->SetCutFunction( m_Planes[2] ); m_Cutters[2]->GenerateValues( 1, 0, 1 ); // Windowing the cutted planes in direction 1 m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1[0]->SetClipFunction( m_ThickPlanes1[0] ); m_Clippers1[1]->SetClipFunction( m_ThickPlanes1[1] ); m_Clippers1[2]->SetClipFunction( m_ThickPlanes1[2] ); // Windowing the cutted planes in direction 2 m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2[0]->SetClipFunction( m_ThickPlanes2[0] ); m_Clippers2[1]->SetClipFunction( m_ThickPlanes2[1] ); m_Clippers2[2]->SetClipFunction( m_ThickPlanes2[2] ); m_ShowMaxNumber = 500; } template mitk::OdfVtkMapper2D ::~OdfVtkMapper2D() { } template mitk::Image* mitk::OdfVtkMapper2D ::GetInput() { return static_cast ( m_DataNode->GetData() ); } template vtkProp* mitk::OdfVtkMapper2D ::GetVtkProp(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); return localStorage->m_PropAssemblies[GetIndex(renderer)]; } template int mitk::OdfVtkMapper2D ::GetIndex(mitk::BaseRenderer* renderer) { if(!strcmp(renderer->GetName(),"stdmulti.widget1")) return 0; if(!strcmp(renderer->GetName(),"stdmulti.widget2")) return 1; if(!strcmp(renderer->GetName(),"stdmulti.widget3")) return 2; return 0; } template void mitk::OdfVtkMapper2D ::GlyphMethod(void *arg) { vtkMaskedProgrammableGlyphFilter* pfilter=(vtkMaskedProgrammableGlyphFilter*)arg; double point[3]; double debugpoint[3]; pfilter->GetPoint(point); pfilter->GetPoint(debugpoint); itk::Point p(point); Vector3D spacing = pfilter->GetGeometry()->GetSpacing(); p[0] /= spacing[0]; p[1] /= spacing[1]; p[2] /= spacing[2]; mitk::Point3D p2; pfilter->GetGeometry()->IndexToWorld( p, p2 ); point[0] = p2[0]; point[1] = p2[1]; point[2] = p2[2]; vtkPointData* data = pfilter->GetPointData(); vtkDataArray* odfvals = data->GetArray("vector"); vtkIdType id = pfilter->GetPointId(); m_OdfTransform->Identity(); m_OdfTransform->Translate(point[0],point[1],point[2]); typedef itk::OrientationDistributionFunction OdfType; OdfType odf; if(odfvals->GetNumberOfComponents()==6) { float tensorelems[6] = { (float)odfvals->GetComponent(id,0), (float)odfvals->GetComponent(id,1), (float)odfvals->GetComponent(id,2), (float)odfvals->GetComponent(id,3), (float)odfvals->GetComponent(id,4), (float)odfvals->GetComponent(id,5), }; itk::DiffusionTensor3D tensor(tensorelems); odf.InitFromTensor(tensor); } else { for(int i=0; iGetComponent(id,i); } switch(m_ScaleBy) { case ODFSB_NONE: m_OdfSource->SetScale(m_Scaling); break; case ODFSB_GFA: m_OdfSource->SetScale(m_Scaling*odf.GetGeneralizedGFA(m_IndexParam1, m_IndexParam2)); break; case ODFSB_PC: m_OdfSource->SetScale(m_Scaling*odf.GetPrincipleCurvature(m_IndexParam1, m_IndexParam2, 0)); break; } m_OdfSource->SetNormalization(m_Normalization); m_OdfSource->SetOdf(odf); m_OdfSource->Modified(); } template typename mitk::OdfVtkMapper2D::OdfDisplayGeometry mitk::OdfVtkMapper2D ::MeasureDisplayedGeometry(mitk::BaseRenderer* renderer) { Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); // set up the cutter orientation according to the current geometry of // the renderers plane vtkFloatingPointType vp[ 3 ], vnormal[ 3 ]; Point3D point = worldPlaneGeometry->GetOrigin(); Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( point.Get_vnl_vector(), vp ); vnl2vtk( normal.Get_vnl_vector(), vnormal ); mitk::DisplayGeometry::Pointer dispGeometry = renderer->GetDisplayGeometry(); mitk::Vector2D size = dispGeometry->GetSizeInMM(); mitk::Vector2D origin = dispGeometry->GetOriginInMM(); // // |------O------| // | d2 | // L d1 M | // | | // |-------------| // mitk::Vector2D M; mitk::Vector2D L; mitk::Vector2D O; M[0] = origin[0] + size[0]/2; M[1] = origin[1] + size[1]/2; L[0] = origin[0]; L[1] = origin[1] + size[1]/2; O[0] = origin[0] + size[0]/2; O[1] = origin[1] + size[1]; mitk::Point2D point1; point1[0] = M[0]; point1[1] = M[1]; mitk::Point3D M3D; dispGeometry->Map(point1, M3D); point1[0] = L[0]; point1[1] = L[1]; mitk::Point3D L3D; dispGeometry->Map(point1, L3D); point1[0] = O[0]; point1[1] = O[1]; mitk::Point3D O3D; dispGeometry->Map(point1, O3D); double d1 = sqrt((M3D[0]-L3D[0])*(M3D[0]-L3D[0]) + (M3D[1]-L3D[1])*(M3D[1]-L3D[1]) + (M3D[2]-L3D[2])*(M3D[2]-L3D[2])); double d2 = sqrt((M3D[0]-O3D[0])*(M3D[0]-O3D[0]) + (M3D[1]-O3D[1])*(M3D[1]-O3D[1]) + (M3D[2]-O3D[2])*(M3D[2]-O3D[2])); double d = d1>d2 ? d1 : d2; d = d2; OdfDisplayGeometry retval; retval.vp[0] = vp[0]; retval.vp[1] = vp[1]; retval.vp[2] = vp[2]; retval.vnormal[0] = vnormal[0]; retval.vnormal[1] = vnormal[1]; retval.vnormal[2] = vnormal[2]; retval.normal[0] = normal[0]; retval.normal[1] = normal[1]; retval.normal[2] = normal[2]; retval.d = d; retval.d1 = d1; retval.d2 = d2; retval.M3D[0] = M3D[0]; retval.M3D[1] = M3D[1]; retval.M3D[2] = M3D[2]; retval.L3D[0] = L3D[0]; retval.L3D[1] = L3D[1]; retval.L3D[2] = L3D[2]; retval.O3D[0] = O3D[0]; retval.O3D[1] = O3D[1]; retval.O3D[2] = O3D[2]; retval.vp_original[0] = vp[0]; retval.vp_original[1] = vp[1]; retval.vp_original[2] = vp[2]; retval.vnormal_original[0] = vnormal[0]; retval.vnormal_original[1] = vnormal[1]; retval.vnormal_original[2] = vnormal[2]; retval.size[0] = size[0]; retval.size[1] = size[1]; retval.origin[0] = origin[0]; retval.origin[1] = origin[1]; return retval; } template void mitk::OdfVtkMapper2D ::Slice(mitk::BaseRenderer* renderer, OdfDisplayGeometry dispGeo) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); int index = GetIndex(renderer); vtkSmartPointer inversetransform = vtkSmartPointer::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; ((vtkTransform*)vtktransform)->GetScale(myscale); inversetransform->PostMultiply(); inversetransform->Scale(1*myscale[0],1*myscale[1],1*myscale[2]); inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); // vtk works in axis align coords // thus the normal also must be axis align, since // we do not allow arbitrary cutting through volume // // vnormal should already be axis align, but in order // to get rid of precision effects, we set the two smaller // components to zero here int dims[3]; m_VtkImage->GetDimensions(dims); double spac[3]; m_VtkImage->GetSpacing(spac); if(fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[0]/spac[0]) < 0.4) dispGeo.vp[0] = 0.4*spac[0]; if(fabs(dispGeo.vp[0]/spac[0]) > (dims[0]-1)-0.4) dispGeo.vp[0] = ((dims[0]-1)-0.4)*spac[0]; dispGeo.vnormal[1] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[0]) && fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[1]/spac[1]) < 0.4) dispGeo.vp[1] = 0.4*spac[1]; if(fabs(dispGeo.vp[1]/spac[1]) > (dims[1]-1)-0.4) dispGeo.vp[1] = ((dims[1]-1)-0.4)*spac[1]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[0]) ) { if(fabs(dispGeo.vp[2]/spac[2]) < 0.4) dispGeo.vp[2] = 0.4*spac[2]; if(fabs(dispGeo.vp[2]/spac[2]) > (dims[2]-1)-0.4) dispGeo.vp[2] = ((dims[2]-1)-0.4)*spac[2]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[1] = 0; } m_Planes[index]->SetTransform( (vtkAbstractTransform*)NULL ); m_Planes[index]->SetOrigin( dispGeo.vp ); m_Planes[index]->SetNormal( dispGeo.vnormal ); vtkSmartPointer points; vtkSmartPointer tmppoints; vtkSmartPointer polydata; vtkSmartPointer pointdata; vtkSmartPointer delaunay; vtkSmartPointer cuttedPlane; // the cutter only works if we do not have a 2D-image // or if we have a 2D-image and want to see the whole image. // // for side views of 2D-images, we need some special treatment if(!( (dims[0] == 1 && dispGeo.vnormal[0] != 0) || (dims[1] == 1 && dispGeo.vnormal[1] != 0) || (dims[2] == 1 && dispGeo.vnormal[2] != 0) )) { m_Cutters[index]->SetCutFunction( m_Planes[index] ); m_Cutters[index]->SetInput( m_VtkImage ); m_Cutters[index]->Update(); cuttedPlane = m_Cutters[index]->GetOutput(); } else { // cutting of a 2D-Volume does not work, // so we have to build up our own polydata object cuttedPlane = vtkPolyData::New(); points = vtkPoints::New(); points->SetNumberOfPoints(m_VtkImage->GetNumberOfPoints()); for(int i=0; iGetNumberOfPoints(); i++) { points->SetPoint(i, m_VtkImage->GetPoint(i)); } cuttedPlane->SetPoints(points); pointdata = vtkFloatArray::New(); int comps = m_VtkImage->GetPointData()->GetScalars()->GetNumberOfComponents(); pointdata->SetNumberOfComponents(comps); int tuples = m_VtkImage->GetPointData()->GetScalars()->GetNumberOfTuples(); pointdata->SetNumberOfTuples(tuples); for(int i=0; iSetTuple(i,m_VtkImage->GetPointData()->GetScalars()->GetTuple(i)); pointdata->SetName( "vector" ); cuttedPlane->GetPointData()->AddArray(pointdata); int nZero1, nZero2; if(dims[0]==1) { nZero1 = 1; nZero2 = 2; } else if(dims[1]==1) { nZero1 = 0; nZero2 = 2; } else { nZero1 = 0; nZero2 = 1; } tmppoints = vtkPoints::New(); for(int j=0; jGetNumberOfPoints(); j++){ double pt[3]; m_VtkImage->GetPoint(j,pt); tmppoints->InsertNextPoint(pt[nZero1],pt[nZero2],0); } polydata = vtkPolyData::New(); polydata->SetPoints( tmppoints ); delaunay = vtkDelaunay2D::New(); delaunay->SetInput( polydata ); delaunay->Update(); vtkCellArray* polys = delaunay->GetOutput()->GetPolys(); cuttedPlane->SetPolys(polys); } if(cuttedPlane->GetNumberOfPoints()) { // WINDOWING HERE inversetransform = vtkTransform::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; ((vtkTransform*)vtktransform)->GetScale(myscale); inversetransform->PostMultiply(); inversetransform->Scale(1*myscale[0],1*myscale[1],1*myscale[2]); dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.O3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.O3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.O3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes1[index]->count = 0; m_ThickPlanes1[index]->SetTransform((vtkAbstractTransform*)NULL ); m_ThickPlanes1[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes1[index]->SetThickness(dispGeo.d2); m_Clippers1[index]->SetClipFunction( m_ThickPlanes1[index] ); m_Clippers1[index]->SetInput( cuttedPlane ); m_Clippers1[index]->SetInsideOut(1); m_Clippers1[index]->Update(); dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.L3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.L3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.L3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes2[index]->count = 0; m_ThickPlanes2[index]->SetTransform((vtkAbstractTransform*)NULL ); m_ThickPlanes2[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes2[index]->SetThickness(dispGeo.d1); m_Clippers2[index]->SetClipFunction( m_ThickPlanes2[index] ); m_Clippers2[index]->SetInput( m_Clippers1[index]->GetOutput() ); m_Clippers2[index]->SetInsideOut(1); m_Clippers2[index]->Update(); cuttedPlane = m_Clippers2[index]->GetOutput (); if(cuttedPlane->GetNumberOfPoints()) { localStorage->m_OdfsPlanes[index]->RemoveAllInputs(); vtkSmartPointer normals = vtkSmartPointer::New(); normals->SetInputConnection( m_OdfSource->GetOutputPort() ); normals->SplittingOff(); normals->ConsistencyOff(); normals->AutoOrientNormalsOff(); normals->ComputePointNormalsOn(); normals->ComputeCellNormalsOff(); normals->FlipNormalsOff(); normals->NonManifoldTraversalOff(); vtkSmartPointer trans = vtkSmartPointer::New(); trans->SetInputConnection( normals->GetOutputPort() ); trans->SetTransform(m_OdfTransform); vtkSmartPointer glyphGenerator = vtkSmartPointer::New(); glyphGenerator->SetMaximumNumberOfPoints(std::min(m_ShowMaxNumber,(int)cuttedPlane->GetNumberOfPoints())); glyphGenerator->SetRandomMode(0); glyphGenerator->SetUseMaskPoints(1); glyphGenerator->SetSource( trans->GetOutput() ); glyphGenerator->SetInput(cuttedPlane); glyphGenerator->SetColorModeToColorBySource(); glyphGenerator->SetInputArrayToProcess(0,0,0, vtkDataObject::FIELD_ASSOCIATION_POINTS , "vector"); glyphGenerator->SetGeometry(this->GetDataNode()->GetData()->GetGeometry()); glyphGenerator->SetGlyphMethod(&(GlyphMethod),(void *)glyphGenerator); try { glyphGenerator->Update(); } catch( itk::ExceptionObject& err ) { std::cout << err << std::endl; } localStorage->m_OdfsPlanes[index]->AddInput(glyphGenerator->GetOutput()); localStorage->m_OdfsPlanes[index]->Update(); } } localStorage->m_PropAssemblies[index]->VisibilityOn(); if(localStorage->m_PropAssemblies[index]->GetParts()->IsItemPresent(localStorage->m_OdfsActors[index])) localStorage->m_PropAssemblies[index]->RemovePart(localStorage->m_OdfsActors[index]); localStorage->m_OdfsMappers[index]->SetInput(localStorage->m_OdfsPlanes[index]->GetOutput()); localStorage->m_PropAssemblies[index]->AddPart(localStorage->m_OdfsActors[index]); } template bool mitk::OdfVtkMapper2D ::IsVisibleOdfs(mitk::BaseRenderer* renderer) { mitk::Image::Pointer input = const_cast(this->GetInput()); const TimeSlicedGeometry *inputTimeGeometry = input->GetTimeSlicedGeometry(); if(inputTimeGeometry==NULL || inputTimeGeometry->GetTimeSteps()==0 || !inputTimeGeometry->IsValidTime(this->GetTimestep())) return false; if(this->IsPlaneRotated(renderer)) return false; bool retval = false; switch(GetIndex(renderer)) { case 0: - retval = this->IsVisible(renderer, "VisibleOdfs_T"); + GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_T"); break; case 1: - retval = this->IsVisible(renderer, "VisibleOdfs_S"); + GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_S"); break; case 2: - retval = this->IsVisible(renderer, "VisibleOdfs_C"); + GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_C"); break; } return retval; } template void mitk::OdfVtkMapper2D ::MitkRenderOverlay(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); } template void mitk::OdfVtkMapper2D ::MitkRenderOpaqueGeometry(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs( renderer )==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { // adapt cam pos OdfDisplayGeometry dispGeo = MeasureDisplayedGeometry( renderer); this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); } } template void mitk::OdfVtkMapper2D ::MitkRenderTranslucentGeometry(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); } template void mitk::OdfVtkMapper2D ::Update(mitk::BaseRenderer* renderer) { - if ( !this->IsVisible( renderer ) ) - return; + bool visible = true; + GetDataNode()->GetVisibility(visible, renderer, "visible"); + + if ( !visible ) return; mitk::Image::Pointer input = const_cast( this->GetInput() ); if ( input.IsNull() ) return ; std::string classname("TensorImage"); if(classname.compare(input->GetNameOfClass())==0) m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); std::string qclassname("QBallImage"); if(qclassname.compare(input->GetNameOfClass())==0) m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); if( m_VtkImage ) { // make sure, that we have point data with more than 1 component (as vectors) vtkPointData* pointData = m_VtkImage->GetPointData(); if ( pointData == NULL ) { itkWarningMacro( << "m_VtkImage->GetPointData() returns NULL!" ); return ; } if ( pointData->GetNumberOfArrays() == 0 ) { itkWarningMacro( << "m_VtkImage->GetPointData()->GetNumberOfArrays() is 0!" ); return ; } else if ( pointData->GetArray(0)->GetNumberOfComponents() != N && pointData->GetArray(0)->GetNumberOfComponents() != 6 /*for tensor visualization*/) { itkWarningMacro( << "number of components != number of directions in ODF!" ); return; } else if ( pointData->GetArrayName( 0 ) == NULL ) { m_VtkImage->GetPointData()->GetArray(0)->SetName("vector"); } GenerateDataForRenderer(renderer); } else { itkWarningMacro( << "m_VtkImage is NULL!" ); return ; } } template void mitk::OdfVtkMapper2D ::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); OdfDisplayGeometry dispGeo = MeasureDisplayedGeometry( renderer); if ( (localStorage->m_LastUpdateTime >= m_DataNode->GetMTime()) //was the node modified? && (localStorage->m_LastUpdateTime >= m_DataNode->GetPropertyList()->GetMTime()) //was a property modified? && (localStorage->m_LastUpdateTime >= m_DataNode->GetPropertyList(renderer)->GetMTime()) && dispGeo.Equals(m_LastDisplayGeometry)) return; localStorage->m_LastUpdateTime.Modified(); if(!IsVisibleOdfs(renderer)) { localStorage->m_OdfsActors[0]->VisibilityOff(); localStorage->m_OdfsActors[1]->VisibilityOff(); localStorage->m_OdfsActors[2]->VisibilityOff(); } else { localStorage->m_OdfsActors[0]->VisibilityOn(); localStorage->m_OdfsActors[1]->VisibilityOn(); localStorage->m_OdfsActors[2]->VisibilityOn(); m_OdfSource->SetAdditionalScale(GetMinImageSpacing(GetIndex(renderer))); ApplyPropertySettings(); Slice(renderer, dispGeo); m_LastDisplayGeometry = dispGeo; } } template double mitk::OdfVtkMapper2D::GetMinImageSpacing( int index ) { // Spacing adapted scaling double spacing[3]; m_VtkImage->GetSpacing(spacing); double min; if(index==0) { min = spacing[0]; min = min > spacing[1] ? spacing[1] : min; } if(index==1) { min = spacing[1]; min = min > spacing[2] ? spacing[2] : min; } if(index==2) { min = spacing[0]; min = min > spacing[2] ? spacing[2] : min; } return min; } template void mitk::OdfVtkMapper2D ::ApplyPropertySettings() { this->GetDataNode()->GetFloatProperty( "Scaling", m_Scaling ); this->GetDataNode()->GetIntProperty( "ShowMaxNumber", m_ShowMaxNumber ); OdfNormalizationMethodProperty* nmp = dynamic_cast(this->GetDataNode()->GetProperty( "Normalization" )); if(nmp) m_Normalization = nmp->GetNormalization(); OdfScaleByProperty* sbp = dynamic_cast(this->GetDataNode()->GetProperty( "ScaleBy" )); if(sbp) m_ScaleBy = sbp->GetScaleBy(); this->GetDataNode()->GetFloatProperty( "IndexParam1", m_IndexParam1); this->GetDataNode()->GetFloatProperty( "IndexParam2", m_IndexParam2); } template bool mitk::OdfVtkMapper2D ::IsPlaneRotated(mitk::BaseRenderer* renderer) { Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); vtkFloatingPointType vnormal[ 3 ]; Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( normal.Get_vnl_vector(), vnormal ); vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); vtkSmartPointer inversetransform = vtkSmartPointer::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double* n = inversetransform->TransformNormal(vnormal); int nonZeros = 0; for (int j=0; j<3; j++) { if (fabs(n[j])>mitk::eps){ nonZeros++; } } if(nonZeros>1) return true; return false; } template void mitk::OdfVtkMapper2D ::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* /*renderer*/, bool /*overwrite*/) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 150 ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs_T", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_C", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_S", mitk::BoolProperty::New( false ) ); node->SetProperty ("layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); } #endif // __mitkOdfVtkMapper2D_txx__ diff --git a/Modules/DiffusionImaging/FiberTracking/Rendering/mitkFiberBundleXThreadMonitorMapper3D.cpp b/Modules/DiffusionImaging/FiberTracking/Rendering/mitkFiberBundleXThreadMonitorMapper3D.cpp index 281db2efb0..311a5f6733 100644 --- a/Modules/DiffusionImaging/FiberTracking/Rendering/mitkFiberBundleXThreadMonitorMapper3D.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Rendering/mitkFiberBundleXThreadMonitorMapper3D.cpp @@ -1,206 +1,205 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkFiberBundleXThreadMonitorMapper3D.h" #include #include //#include #include mitk::FiberBundleXThreadMonitorMapper3D::FiberBundleXThreadMonitorMapper3D() : m_FiberMonitorMapper(vtkSmartPointer::New()) , m_TextActorClose(vtkSmartPointer::New()) , m_TextActorOpen(vtkSmartPointer::New()) , m_TextActorHeading(vtkSmartPointer::New()) , m_TextActorMask(vtkSmartPointer::New()) , m_TextActorStatus(vtkSmartPointer::New()) , m_TextActorStarted(vtkSmartPointer::New()) , m_TextActorFinished(vtkSmartPointer::New()) , m_TextActorTerminated(vtkSmartPointer::New()) , m_FiberAssembly(vtkPropAssembly::New()) , m_lastModifiedMonitorNodeTime(-1) { m_FiberAssembly->AddPart(m_TextActorClose); m_FiberAssembly->AddPart(m_TextActorOpen); m_FiberAssembly->AddPart(m_TextActorHeading); m_FiberAssembly->AddPart(m_TextActorMask); m_FiberAssembly->AddPart(m_TextActorStatus); m_FiberAssembly->AddPart(m_TextActorStarted); m_FiberAssembly->AddPart(m_TextActorFinished); m_FiberAssembly->AddPart(m_TextActorTerminated); } mitk::FiberBundleXThreadMonitorMapper3D::~FiberBundleXThreadMonitorMapper3D() { m_FiberAssembly->Delete(); } const mitk::FiberBundleXThreadMonitor* mitk::FiberBundleXThreadMonitorMapper3D::GetInput() { return static_cast ( GetDataNode()->GetData() ); } /* This method is called once the mapper gets new input, for UI rotation or changes in colorcoding this method is NOT called */ void mitk::FiberBundleXThreadMonitorMapper3D::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { // MITK_INFO << m_LastUpdateTime; FiberBundleXThreadMonitor* monitor = dynamic_cast ( GetDataNode()->GetData() ); // m_TextActor->SetInput( monitor->getTextL1().toStdString().c_str() ); m_TextActorClose->SetInput( monitor->getBracketClose().toStdString().c_str() ); vtkTextProperty* tpropClose = m_TextActorClose->GetTextProperty(); //tprop->SetFontFamilyToArial (); //tprop->SetLineSpacing(1.0); tpropClose->SetFontSize(16); tpropClose->SetColor(0.85,0.8,0.8); m_TextActorClose->SetDisplayPosition( monitor->getBracketClosePosition()[0], monitor->getBracketClosePosition()[1] ); //m_TextActorClose->Modified(); m_TextActorOpen->SetInput( monitor->getBracketOpen().toStdString().c_str() ); vtkTextProperty* tpropOpen = m_TextActorOpen->GetTextProperty(); //tprop->SetFontFamilyToArial (); //tprop->SetLineSpacing(1.0); tpropOpen->SetFontSize(16); tpropOpen->SetColor(0.85,0.8,0.8); m_TextActorOpen->SetDisplayPosition( monitor->getBracketOpenPosition()[0], monitor->getBracketOpenPosition()[1] ); //m_TextActorOpen->Modified(); m_TextActorHeading->SetInput( monitor->getHeading().toStdString().c_str() ); vtkTextProperty* tpropHeading = m_TextActorHeading->GetTextProperty(); tpropHeading->SetFontSize(12); tpropHeading->SetOpacity( monitor->getHeadingOpacity() * 0.1 ); tpropHeading->SetColor(0.85,0.8,0.8); m_TextActorHeading->SetDisplayPosition( monitor->getHeadingPosition()[0], monitor->getHeadingPosition()[1] ); //m_TextActorHeading->Modified(); m_TextActorMask->SetInput( monitor->getMask().toStdString().c_str() ); vtkTextProperty* tpropMask = m_TextActorMask->GetTextProperty(); tpropMask->SetFontSize(12); tpropMask->SetOpacity( monitor->getMaskOpacity() * 0.1 ); tpropMask->SetColor(1.0,1.0,1.0); m_TextActorMask->SetDisplayPosition( monitor->getMaskPosition()[0], monitor->getMaskPosition()[1] ); //m_TextActorHeading->Modified(); m_TextActorStatus->SetInput(monitor->getStatus().toStdString().c_str()); vtkTextProperty* tpropStatus = m_TextActorStatus->GetTextProperty(); tpropStatus->SetFontSize(10); tpropStatus->SetOpacity( monitor->getStatusOpacity() * 0.1 ); tpropStatus->SetColor(0.85,0.8,0.8); m_TextActorStatus->SetDisplayPosition( monitor->getStatusPosition()[0], monitor->getStatusPosition()[1] ); //m_TextActorStatus->Modified(); m_TextActorStarted->SetInput(QString::number(monitor->getStarted()).toStdString().c_str()); vtkTextProperty* tpropStarted = m_TextActorStarted->GetTextProperty(); tpropStarted->SetFontSize(12); tpropStarted->SetOpacity( monitor->getStartedOpacity() * 0.1 ); tpropStarted->SetColor(0.0,1.0,0.0); m_TextActorStarted->SetDisplayPosition( monitor->getStartedPosition()[0], monitor->getStartedPosition()[1] ); //m_TextActorStarted->Modified(); m_TextActorFinished->SetInput(QString::number(monitor->getFinished()).toStdString().c_str()); vtkTextProperty* tpropFinished = m_TextActorFinished->GetTextProperty(); tpropFinished->SetFontSize(12); tpropFinished->SetOpacity( monitor->getFinishedOpacity() * 0.1 ); tpropFinished->SetColor(1.0,1.0,1.0); m_TextActorFinished->SetDisplayPosition( monitor->getFinishedPosition()[0], monitor->getFinishedPosition()[1] ); //m_TextActorFinished->Modified(); m_TextActorTerminated->SetInput(QString::number(monitor->getTerminated()).toStdString().c_str()); vtkTextProperty* tpropTerminated = m_TextActorTerminated->GetTextProperty(); tpropTerminated->SetFontSize(12); tpropTerminated->SetOpacity( monitor->getTerminatedOpacity() * 0.1 ); tpropTerminated->SetColor(1.0,1.0,1.0); m_TextActorTerminated->SetDisplayPosition( monitor->getTerminatedPosition()[0], monitor->getTerminatedPosition()[1] ); //m_TextActorTerminated->Modified(); bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) return; // Calculate time step of the input data for the specified renderer (integer value) // this method is implemented in mitkMapper // this->CalculateTimeStep( renderer ); const DataNode *node = this->GetDataNode(); if (m_lastModifiedMonitorNodeTime < node->GetMTime()) { - this->GenerateData(); m_lastModifiedMonitorNodeTime = node->GetMTime(); } } void mitk::FiberBundleXThreadMonitorMapper3D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { // MITK_INFO << "FiberBundleXxXXMapper3D()SetDefaultProperties"; Superclass::SetDefaultProperties(node, renderer, overwrite); } vtkProp* mitk::FiberBundleXThreadMonitorMapper3D::GetVtkProp(mitk::BaseRenderer *renderer) { //MITK_INFO << "FiberBundleXxXXMapper3D()GetVTKProp"; //this->GenerateData(); return m_FiberAssembly; } void mitk::FiberBundleXThreadMonitorMapper3D::ApplyProperties(mitk::BaseRenderer* renderer) { // MITK_INFO << "FiberBundleXXXXMapper3D ApplyProperties(renderer)"; } void mitk::FiberBundleXThreadMonitorMapper3D::UpdateVtkObjects() { // MITK_INFO << "FiberBundleXxxXMapper3D UpdateVtkObjects()"; } void mitk::FiberBundleXThreadMonitorMapper3D::SetVtkMapperImmediateModeRendering(vtkMapper *) { } diff --git a/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.cpp b/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.cpp index 4fbc1d95c0..4cf207e539 100644 --- a/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.cpp +++ b/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.cpp @@ -1,274 +1,277 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkContourModelGLMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkContourModel.h" #include "mitkContourModelSubDivisionFilter.h" #include #include "mitkGL.h" mitk::ContourModelGLMapper2D::ContourModelGLMapper2D() { } mitk::ContourModelGLMapper2D::~ContourModelGLMapper2D() { } void mitk::ContourModelGLMapper2D::Paint(mitk::BaseRenderer * renderer) { - if(IsVisible(renderer)==false) return; + bool visible = true; + GetDataNode()->GetVisibility(visible, renderer, "visible"); + + if ( !visible ) return; bool updateNeccesary=true; int timestep = renderer->GetTimeStep(); mitk::ContourModel::Pointer input = const_cast(this->GetInput()); mitk::ContourModel::Pointer renderingContour = input; bool subdivision = false; this->GetDataNode()->GetBoolProperty( "subdivision curve", subdivision, renderer ); if (subdivision) { mitk::ContourModel::Pointer subdivContour = mitk::ContourModel::New(); mitk::ContourModelSubDivisionFilter::Pointer subdivFilter = mitk::ContourModelSubDivisionFilter::New(); subdivFilter->SetInput(input); subdivFilter->Update(); subdivContour = subdivFilter->GetOutput(); if(subdivContour->GetNumberOfVertices() == 0 ) { subdivContour = input; } renderingContour = subdivContour; } renderingContour->UpdateOutputInformation(); if( renderingContour->GetMTime() < this->m_LastUpdateTime ) updateNeccesary = false; if(renderingContour->GetNumberOfVertices(timestep) < 1) updateNeccesary = false; if (updateNeccesary) { // ok, das ist aus GenerateData kopiert mitk::DisplayGeometry::Pointer displayGeometry = renderer->GetDisplayGeometry(); assert(displayGeometry.IsNotNull()); //apply color and opacity read from the PropertyList ApplyProperties(renderer); mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty("contour.color", renderer)); if(colorprop) { //set the color of the contour double red = colorprop->GetColor().GetRed(); double green = colorprop->GetColor().GetGreen(); double blue = colorprop->GetColor().GetBlue(); glColor4f(red,green,blue,0.5); } mitk::ColorProperty::Pointer selectedcolor = dynamic_cast(GetDataNode()->GetProperty("points.color", renderer)); if(!selectedcolor) { selectedcolor = mitk::ColorProperty::New(1.0,0.0,0.1); } vtkLinearTransform* transform = GetDataNode()->GetVtkTransform(); // ContourModel::OutputType point; mitk::Point3D point; mitk::Point3D p, projected_p; float vtkp[3]; float lineWidth = 3.0; if (dynamic_cast(this->GetDataNode()->GetProperty("contour.width")) != NULL) lineWidth = dynamic_cast(this->GetDataNode()->GetProperty("contour.width"))->GetValue(); glLineWidth(lineWidth); bool drawit=false; mitk::ContourModel::VertexIterator pointsIt = renderingContour->IteratorBegin(timestep); Point2D pt2d; // projected_p in display coordinates Point2D lastPt2d; while ( pointsIt != renderingContour->IteratorEnd(timestep) ) { lastPt2d = pt2d; point = (*pointsIt)->Coordinates; itk2vtk(point, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); Vector3D diff=p-projected_p; ScalarType scalardiff = diff.GetSquaredNorm(); //draw lines bool projectmode=false; GetDataNode()->GetVisibility(projectmode, renderer, "project"); if(projectmode) drawit=true; else { if(diff.GetSquaredNorm()<0.5) drawit=true; } if(drawit) { //lastPt2d is not valid in first step if( !(pointsIt == renderingContour->IteratorBegin(timestep)) ) { glBegin (GL_LINES); glVertex2f(pt2d[0], pt2d[1]); glVertex2f(lastPt2d[0], lastPt2d[1]); glEnd(); } //draw active points if ((*pointsIt)->IsControlPoint) { float pointsize = 4; Point2D tmp; Vector2D horz,vert; horz[0]=pointsize-scalardiff*2; horz[1]=0; vert[0]=0; vert[1]=pointsize-scalardiff*2; horz[0]=pointsize; vert[1]=pointsize; glColor3f(selectedcolor->GetColor().GetRed(), selectedcolor->GetColor().GetBlue(), selectedcolor->GetColor().GetGreen()); glLineWidth(1); //a rectangle around the point with the selected color glBegin (GL_LINE_LOOP); tmp=pt2d-horz; glVertex2fv(&tmp[0]); tmp=pt2d+vert; glVertex2fv(&tmp[0]); tmp=pt2d+horz; glVertex2fv(&tmp[0]); tmp=pt2d-vert; glVertex2fv(&tmp[0]); glEnd (); glLineWidth(1); //the actual point in the specified color to see the usual color of the point glColor3f(colorprop->GetColor().GetRed(),colorprop->GetColor().GetGreen(),colorprop->GetColor().GetBlue()); glPointSize(1); glBegin (GL_POINTS); tmp=pt2d; glVertex2fv(&tmp[0]); glEnd (); } } pointsIt++; }//end while iterate over controlpoints //close contour if necessary if(renderingContour->IsClosed(timestep) && drawit) { lastPt2d = pt2d; point = renderingContour->GetVertexAt(0,timestep)->Coordinates; itk2vtk(point, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); glBegin (GL_LINES); glVertex2f(lastPt2d[0], lastPt2d[1]); glVertex2f( pt2d[0], pt2d[1] ); glEnd(); } //draw selected vertex if exists if(renderingContour->GetSelectedVertex()) { //transform selected vertex point = renderingContour->GetSelectedVertex()->Coordinates; itk2vtk(point, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); Vector3D diff=p-projected_p; ScalarType scalardiff = diff.GetSquaredNorm(); //---------------------------------- //draw point if close to plane if(scalardiff<0.5) { float pointsize = 3.2; Point2D tmp; glColor3f(0.0, 1.0, 0.0); glLineWidth(1); //a diamond around the point glBegin (GL_LINE_LOOP); //begin from upper left corner and paint clockwise tmp[0]=pt2d[0]-pointsize; tmp[1]=pt2d[1]+pointsize; glVertex2fv(&tmp[0]); tmp[0]=pt2d[0]+pointsize; tmp[1]=pt2d[1]+pointsize; glVertex2fv(&tmp[0]); tmp[0]=pt2d[0]+pointsize; tmp[1]=pt2d[1]-pointsize; glVertex2fv(&tmp[0]); tmp[0]=pt2d[0]-pointsize; tmp[1]=pt2d[1]-pointsize; glVertex2fv(&tmp[0]); glEnd (); } //------------------------------------ } } } const mitk::ContourModel* mitk::ContourModelGLMapper2D::GetInput(void) { - return static_cast ( GetData() ); + return static_cast ( GetDataNode()->GetData() ); } void mitk::ContourModelGLMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "contour.color", ColorProperty::New(0.9, 1.0, 0.1), renderer, overwrite ); node->AddProperty( "points.color", ColorProperty::New(1.0, 0.0, 0.1), renderer, overwrite ); node->AddProperty( "contour.width", mitk::FloatProperty::New( 1.0 ), renderer, overwrite ); node->AddProperty( "subdivision curve", mitk::BoolProperty::New( false ), renderer, overwrite ); Superclass::SetDefaultProperties(node, renderer, overwrite); } diff --git a/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.h b/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.h index dfd5e85a1c..1dc114ab1d 100644 --- a/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.h +++ b/Modules/Segmentation/Rendering/mitkContourModelGLMapper2D.h @@ -1,67 +1,67 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITK_ContourModelGLMapper2D_H_ #define MITK_ContourModelGLMapper2D_H_ #include "mitkCommon.h" #include "SegmentationExports.h" -#include "mitkGLMapper2D.h" +#include "mitkGLMapper.h" namespace mitk { class BaseRenderer; class ContourModel; /** * @brief OpenGL-based mapper to display a mitk::Contour object in a 2D render window * * * @ingroup Mapper */ -class Segmentation_EXPORT ContourModelGLMapper2D : public GLMapper2D +class Segmentation_EXPORT ContourModelGLMapper2D : public GLMapper { public: - mitkClassMacro(ContourModelGLMapper2D, GLMapper2D); + mitkClassMacro(ContourModelGLMapper2D, GLMapper); itkNewMacro(Self); /** * reimplemented from Baseclass */ virtual void Paint(BaseRenderer * renderer); /** * return a refernce of the rendered data object */ const ContourModel* GetInput(void); static void SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer = NULL, bool overwrite = false); protected: ContourModelGLMapper2D(); virtual ~ContourModelGLMapper2D(); }; } // namespace mitk #endif diff --git a/Modules/Segmentation/Rendering/mitkContourModelMapper2D.cpp b/Modules/Segmentation/Rendering/mitkContourModelMapper2D.cpp index c21f69c6ad..cbdfcbce77 100644 --- a/Modules/Segmentation/Rendering/mitkContourModelMapper2D.cpp +++ b/Modules/Segmentation/Rendering/mitkContourModelMapper2D.cpp @@ -1,437 +1,390 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include mitk::ContourModelMapper2D::ContourModelMapper2D() { } mitk::ContourModelMapper2D::~ContourModelMapper2D() { } const mitk::ContourModel* mitk::ContourModelMapper2D::GetInput( void ) { //convient way to get the data from the dataNode - return static_cast< const mitk::ContourModel * >( this->GetData() ); + return static_cast< const mitk::ContourModel * >( GetDataNode()->GetData() ); } vtkProp* mitk::ContourModelMapper2D::GetVtkProp(mitk::BaseRenderer* renderer) { //return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_Actor; } -void mitk::ContourModelMapper2D::MitkRenderOverlay(BaseRenderer* renderer) -{ - if ( this->IsVisible(renderer)==false ) - return; - if ( this->GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); - } -} - - - -void mitk::ContourModelMapper2D::MitkRenderOpaqueGeometry(BaseRenderer* renderer) -{ - if ( this->IsVisible( renderer )==false ) - return; - if ( this->GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); - } -} - - - -void mitk::ContourModelMapper2D::MitkRenderTranslucentGeometry(BaseRenderer* renderer) -{ - if ( this->IsVisible(renderer)==false ) - return; - if ( this->GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); - } -} - - - -void mitk::ContourModelMapper2D::MitkRenderVolumetricGeometry(BaseRenderer* renderer) -{ - if(IsVisible(renderer)==false) - return; - if ( GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderVolumetricGeometry(renderer->GetVtkRenderer()); - } -} - - - void mitk::ContourModelMapper2D::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { /*++ convert the contour to vtkPolyData and set it as input for our mapper ++*/ LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); - mitk::ContourModel* inputContour = static_cast< mitk::ContourModel* >( this->GetData() ); + mitk::ContourModel* inputContour = static_cast< mitk::ContourModel* >( GetDataNode()->GetData() ); unsigned int timestep = renderer->GetTimeStep(); //if there's something to be rendered if( inputContour->GetNumberOfVertices(timestep) > 0) { localStorage->m_OutlinePolyData = this->CreateVtkPolyDataFromContour(inputContour, renderer); } this->ApplyContourProperties(renderer); localStorage->m_Mapper->SetInput(localStorage->m_OutlinePolyData); } void mitk::ContourModelMapper2D::Update(mitk::BaseRenderer* renderer) { - if ( !this->IsVisible( renderer ) ) - { - return; - } + bool visible = true; + GetDataNode()->GetVisibility(visible, renderer, "visible"); + + if ( !visible ) return; + //check if there is something to be rendered - mitk::ContourModel* data = static_cast< mitk::ContourModel*>( this->GetData() ); + mitk::ContourModel* data = static_cast< mitk::ContourModel*>( GetDataNode()->GetData() ); if ( data == NULL ) { return; } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep( renderer ); LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); // Check if time step is valid const TimeSlicedGeometry *dataTimeGeometry = data->GetTimeSlicedGeometry(); if ( ( dataTimeGeometry == NULL ) || ( dataTimeGeometry->GetTimeSteps() == 0 ) || ( !dataTimeGeometry->IsValidTime( renderer->GetTimeStep() ) ) ) { //clear the rendered polydata localStorage->m_Mapper->RemoveAllInputs();//SetInput(vtkSmartPointer::New()); return; } const DataNode *node = this->GetDataNode(); data->UpdateOutputInformation(); //check if something important has changed and we need to rerender if ( (localStorage->m_LastUpdateTime < node->GetMTime()) //was the node modified? || (localStorage->m_LastUpdateTime < data->GetPipelineMTime()) //Was the data modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2DUpdateTime()) //was the geometry modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2D()->GetMTime()) || (localStorage->m_LastUpdateTime < node->GetPropertyList()->GetMTime()) //was a property modified? || (localStorage->m_LastUpdateTime < node->GetPropertyList(renderer)->GetMTime()) ) { this->GenerateDataForRenderer( renderer ); } // since we have checked that nothing important has changed, we can set // m_LastUpdateTime to the current time localStorage->m_LastUpdateTime.Modified(); } vtkSmartPointer mitk::ContourModelMapper2D::CreateVtkPolyDataFromContour(mitk::ContourModel* inputContour, mitk::BaseRenderer* renderer) { unsigned int timestep = this->GetTimestep(); // Create a polydata to store everything in vtkSmartPointer resultingPolyData = vtkSmartPointer::New(); //check for the worldgeometry from the current render window mitk::PlaneGeometry* currentWorldGeometry = dynamic_cast( const_cast(renderer->GetCurrentWorldGeometry2D())); if(currentWorldGeometry) { //origin and normal of vtkPlane mitk::Point3D origin = currentWorldGeometry->GetOrigin(); mitk::Vector3D normal = currentWorldGeometry->GetNormal(); //the implicit function to slice through the polyData vtkSmartPointer plane = vtkSmartPointer::New(); plane->SetOrigin(origin[0], origin[1], origin[2]); plane->SetNormal(normal[0], normal[1], normal[2]); /* First of all convert the control points of the contourModel to vtk points * and add lines in between them */ //the points to draw vtkSmartPointer points = vtkSmartPointer::New(); //the lines to connect the points vtkSmartPointer lines = vtkSmartPointer::New(); // Create a polydata to store everything in vtkSmartPointer polyDataIn3D = vtkSmartPointer::New(); vtkSmartPointer appendPoly = vtkSmartPointer::New(); mitk::ContourModel::Pointer renderingContour = mitk::ContourModel::New(); renderingContour = inputContour; bool subdivision = false; this->GetDataNode()->GetBoolProperty( "subdivision curve", subdivision, renderer ); if (subdivision) { mitk::ContourModel::Pointer subdivContour = mitk::ContourModel::New(); mitk::ContourModelSubDivisionFilter::Pointer subdivFilter = mitk::ContourModelSubDivisionFilter::New(); subdivFilter->SetInput(inputContour); subdivFilter->Update(); subdivContour = subdivFilter->GetOutput(); if(subdivContour->GetNumberOfVertices() == 0 ) { subdivContour = inputContour; } renderingContour = subdivContour; } //iterate over all control points mitk::ContourModel::VertexIterator current = renderingContour->IteratorBegin(timestep); mitk::ContourModel::VertexIterator next = renderingContour->IteratorBegin(timestep); if(next != renderingContour->IteratorEnd(timestep)) { next++; mitk::ContourModel::VertexIterator end = renderingContour->IteratorEnd(timestep); while(next != end) { mitk::ContourModel::VertexType* currentControlPoint = *current; mitk::ContourModel::VertexType* nextControlPoint = *next; vtkIdType p1 = points->InsertNextPoint(currentControlPoint->Coordinates[0], currentControlPoint->Coordinates[1], currentControlPoint->Coordinates[2]); vtkIdType p2 = points->InsertNextPoint(nextControlPoint->Coordinates[0], nextControlPoint->Coordinates[1], nextControlPoint->Coordinates[2]); //add the line between both contorlPoints lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); if ( currentControlPoint->IsControlPoint ) { double coordinates[3]; coordinates[0] = currentControlPoint->Coordinates[0]; coordinates[1] = currentControlPoint->Coordinates[1]; coordinates[2] = currentControlPoint->Coordinates[2]; double distance = plane->DistanceToPlane(coordinates); if(distance < 0.1) { vtkSmartPointer sphere = vtkSmartPointer::New(); sphere->SetRadius(1.2); sphere->SetCenter(coordinates[0], coordinates[1], coordinates[2]); sphere->Update(); appendPoly->AddInput(sphere->GetOutput()); } } current++; next++; }//end while (it!=end) //check if last control point is enabled to draw it if ( (*current)->IsControlPoint ) { double coordinates[3]; coordinates[0] = (*current)->Coordinates[0]; coordinates[1] = (*current)->Coordinates[1]; coordinates[2] = (*current)->Coordinates[2]; double distance = plane->DistanceToPlane(coordinates); if(distance < 0.1) { vtkSmartPointer sphere = vtkSmartPointer::New(); sphere->SetRadius(1.2); sphere->SetCenter(coordinates[0], coordinates[1], coordinates[2]); sphere->Update(); appendPoly->AddInput(sphere->GetOutput()); } } /* If the contour is closed an additional line has to be created between the very first point * and the last point */ if(renderingContour->IsClosed(timestep)) { //add a line from the last to the first control point mitk::ContourModel::VertexType* firstControlPoint = *(renderingContour->IteratorBegin(timestep)); mitk::ContourModel::VertexType* lastControlPoint = *(--(renderingContour->IteratorEnd(timestep))); vtkIdType p2 = points->InsertNextPoint(lastControlPoint->Coordinates[0], lastControlPoint->Coordinates[1], lastControlPoint->Coordinates[2]); vtkIdType p1 = points->InsertNextPoint(firstControlPoint->Coordinates[0], firstControlPoint->Coordinates[1], firstControlPoint->Coordinates[2]); //add the line between both contorlPoints lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); }//end if(isClosed) // Add the points to the dataset polyDataIn3D->SetPoints(points); // Add the lines to the dataset polyDataIn3D->SetLines(lines); //cut through polyData bool useCuttingPlane = false; this->GetDataNode()->GetBoolProperty( "use cutting plane", useCuttingPlane, renderer ); if (useCuttingPlane) { //slice through the data to get a 2D representation of the (possible) 3D contour //needed because currently there is no outher solution if the contour is within the plane vtkSmartPointer tubeFilter = vtkSmartPointer::New(); tubeFilter->SetInput(polyDataIn3D); tubeFilter->SetRadius(0.05); //cuts through vtkPolyData with a given implicit function. In our case a plane vtkSmartPointer cutter = vtkSmartPointer::New(); cutter->SetCutFunction(plane); cutter->SetInputConnection(tubeFilter->GetOutputPort()); //we want the scalars of the input - so turn off generating the scalars within vtkCutter cutter->GenerateCutScalarsOff(); cutter->Update(); //set to 2D representation of the contour resultingPolyData= cutter->GetOutput(); }//end if(project contour) else { //set to 3D polyData resultingPolyData = polyDataIn3D; } }//end if (it != end) appendPoly->AddInput(resultingPolyData); appendPoly->Update(); //return contour with control points return appendPoly->GetOutput(); }else { //return empty polyData return resultingPolyData; } } void mitk::ContourModelMapper2D::ApplyContourProperties(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); float lineWidth(1.0); if (this->GetDataNode()->GetFloatProperty( "width", lineWidth, renderer )) { localStorage->m_Actor->GetProperty()->SetLineWidth(lineWidth); } mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty("color", renderer)); if(colorprop) { //set the color of the contour double red = colorprop->GetColor().GetRed(); double green = colorprop->GetColor().GetGreen(); double blue = colorprop->GetColor().GetBlue(); localStorage->m_Actor->GetProperty()->SetColor(red, green, blue); } //make sure that directional lighting isn't used for our contour localStorage->m_Actor->GetProperty()->SetAmbient(1.0); localStorage->m_Actor->GetProperty()->SetDiffuse(0.0); localStorage->m_Actor->GetProperty()->SetSpecular(0.0); } /*+++++++++++++++++++ LocalStorage part +++++++++++++++++++++++++*/ mitk::ContourModelMapper2D::LocalStorage* mitk::ContourModelMapper2D::GetLocalStorage(mitk::BaseRenderer* renderer) { return m_LSH.GetLocalStorage(renderer); } mitk::ContourModelMapper2D::LocalStorage::LocalStorage() { m_Mapper = vtkSmartPointer::New(); m_Actor = vtkSmartPointer::New(); m_OutlinePolyData = vtkSmartPointer::New(); //set the mapper for the actor m_Actor->SetMapper(m_Mapper); } void mitk::ContourModelMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "color", ColorProperty::New(0.9, 1.0, 0.1), renderer, overwrite ); node->AddProperty( "width", mitk::FloatProperty::New( 1.0 ), renderer, overwrite ); node->AddProperty( "use cutting plane", mitk::BoolProperty::New( true ), renderer, overwrite ); node->AddProperty( "subdivision curve", mitk::BoolProperty::New( false ), renderer, overwrite ); Superclass::SetDefaultProperties(node, renderer, overwrite); } diff --git a/Modules/Segmentation/Rendering/mitkContourModelMapper2D.h b/Modules/Segmentation/Rendering/mitkContourModelMapper2D.h index 90bb5d66f7..c0d3f9b34f 100644 --- a/Modules/Segmentation/Rendering/mitkContourModelMapper2D.h +++ b/Modules/Segmentation/Rendering/mitkContourModelMapper2D.h @@ -1,113 +1,108 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_CONTOURMODEL_MAPPER_H_ #define _MITK_CONTOURMODEL_MAPPER_H_ #include "mitkCommon.h" #include "SegmentationExports.h" #include "mitkBaseRenderer.h" -#include "mitkVtkMapper2D.h" +#include "mitkVtkMapper.h" #include "mitkContourModel.h" //#include "mitkContourModelToVtkPolyDataFilter.h" #include #include #include #include #include #include namespace mitk { - class Segmentation_EXPORT ContourModelMapper2D : public VtkMapper2D + class Segmentation_EXPORT ContourModelMapper2D : public VtkMapper { public: /** Standard class typedefs. */ - mitkClassMacro( ContourModelMapper2D,VtkMapper2D ); + mitkClassMacro( ContourModelMapper2D,VtkMapper ); /** Method for creation through the object factory. */ itkNewMacro(Self); const mitk::ContourModel* GetInput(void); /** \brief Checks whether this mapper needs to update itself and generate * data. */ virtual void Update(mitk::BaseRenderer * renderer); /*+++ methods of MITK-VTK rendering pipeline +++*/ virtual vtkProp* GetVtkProp(mitk::BaseRenderer* renderer); - - virtual void MitkRenderOverlay(BaseRenderer* renderer); - virtual void MitkRenderOpaqueGeometry(BaseRenderer* renderer); - virtual void MitkRenderTranslucentGeometry(BaseRenderer* renderer); - virtual void MitkRenderVolumetricGeometry(BaseRenderer* renderer); /*+++ END methods of MITK-VTK rendering pipeline +++*/ class Segmentation_EXPORT LocalStorage : public mitk::Mapper::BaseLocalStorage { public: /** \brief Actor of a 2D render window. */ vtkSmartPointer m_Actor; /** \brief Mapper of a 2D render window. */ vtkSmartPointer m_Mapper; //mitk::ContourModelToVtkPolyDataFilter::Pointer m_contourToPolyData; vtkSmartPointer m_OutlinePolyData; /** \brief Timestamp of last update of stored data. */ itk::TimeStamp m_LastUpdateTime; /** \brief Default constructor of the local storage. */ LocalStorage(); /** \brief Default deconstructor of the local storage. */ ~LocalStorage() { } }; /** \brief The LocalStorageHandler holds all (three) LocalStorages for the three 2D render windows. */ mitk::Mapper::LocalStorageHandler m_LSH; /** \brief Get the LocalStorage corresponding to the current renderer. */ LocalStorage* GetLocalStorage(mitk::BaseRenderer* renderer); /** \brief Set the default properties for general image rendering. */ static void SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer = NULL, bool overwrite = false); protected: ContourModelMapper2D(); virtual ~ContourModelMapper2D(); void GenerateDataForRenderer( mitk::BaseRenderer *renderer ); virtual vtkSmartPointer CreateVtkPolyDataFromContour(mitk::ContourModel* inputContour, mitk::BaseRenderer* renderer); virtual void ApplyContourProperties(mitk::BaseRenderer* renderer); }; } #endif diff --git a/Modules/Segmentation/Rendering/mitkContourModelMapper3D.cpp b/Modules/Segmentation/Rendering/mitkContourModelMapper3D.cpp index 3bd8662b59..45075dc3da 100644 --- a/Modules/Segmentation/Rendering/mitkContourModelMapper3D.cpp +++ b/Modules/Segmentation/Rendering/mitkContourModelMapper3D.cpp @@ -1,291 +1,242 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include mitk::ContourModelMapper3D::ContourModelMapper3D() { } mitk::ContourModelMapper3D::~ContourModelMapper3D() { } const mitk::ContourModel* mitk::ContourModelMapper3D::GetInput( void ) { //convient way to get the data from the dataNode - return static_cast< const mitk::ContourModel * >( this->GetData() ); + return static_cast< const mitk::ContourModel * >( GetDataNode()->GetData() ); } vtkProp* mitk::ContourModelMapper3D::GetVtkProp(mitk::BaseRenderer* renderer) { //return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_Actor; } -void mitk::ContourModelMapper3D::MitkRenderOverlay(BaseRenderer* renderer) -{ - if ( this->IsVisible(renderer)==false ) - return; - if ( this->GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); - } -} - - - -void mitk::ContourModelMapper3D::MitkRenderOpaqueGeometry(BaseRenderer* renderer) -{ - if ( this->IsVisible( renderer )==false ) - return; - if ( this->GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); - } -} - - - -void mitk::ContourModelMapper3D::MitkRenderTranslucentGeometry(BaseRenderer* renderer) -{ - if ( this->IsVisible(renderer)==false ) - return; - if ( this->GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); - } -} - - - -void mitk::ContourModelMapper3D::MitkRenderVolumetricGeometry(BaseRenderer* renderer) -{ - if(IsVisible(renderer)==false) - return; - if ( GetVtkProp(renderer)->GetVisibility() ) - { - this->GetVtkProp(renderer)->RenderVolumetricGeometry(renderer->GetVtkRenderer()); - } -} - - - void mitk::ContourModelMapper3D::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { /* First convert the contourModel to vtkPolyData, then tube filter it and * set it input for our mapper */ LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); - mitk::ContourModel* inputContour = static_cast< mitk::ContourModel* >( this->GetData() ); + mitk::ContourModel* inputContour = static_cast< mitk::ContourModel* >( GetDataNode()->GetData() ); localStorage->m_OutlinePolyData = this->CreateVtkPolyDataFromContour(inputContour); this->ApplyContourProperties(renderer); //tube filter the polyData localStorage->m_TubeFilter->SetInput(localStorage->m_OutlinePolyData); float lineWidth(1.0); if (this->GetDataNode()->GetFloatProperty( "3D contour width", lineWidth, renderer )) { localStorage->m_TubeFilter->SetRadius(lineWidth); }else { localStorage->m_TubeFilter->SetRadius(0.2); } localStorage->m_TubeFilter->CappingOn(); localStorage->m_TubeFilter->SetNumberOfSides(10); localStorage->m_TubeFilter->Update(); localStorage->m_Mapper->SetInput(localStorage->m_TubeFilter->GetOutput()); } void mitk::ContourModelMapper3D::Update(mitk::BaseRenderer* renderer) { - if ( !this->IsVisible( renderer ) ) - { - return; - } + bool visible = true; + GetDataNode()->GetVisibility(visible, renderer, "visible"); + - mitk::ContourModel* data = static_cast< mitk::ContourModel*>( this->GetData() ); + mitk::ContourModel* data = static_cast< mitk::ContourModel*>( GetDataNode()->GetData() ); if ( data == NULL ) { return; } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep( renderer ); LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); // Check if time step is valid const TimeSlicedGeometry *dataTimeGeometry = data->GetTimeSlicedGeometry(); if ( ( dataTimeGeometry == NULL ) || ( dataTimeGeometry->GetTimeSteps() == 0 ) || ( !dataTimeGeometry->IsValidTime( renderer->GetTimeStep() ) ) ) { //clear the rendered polydata localStorage->m_Mapper->SetInput(vtkSmartPointer::New()); return; } const DataNode *node = this->GetDataNode(); data->UpdateOutputInformation(); //check if something important has changed and we need to rerender if ( (localStorage->m_LastUpdateTime < node->GetMTime()) //was the node modified? || (localStorage->m_LastUpdateTime < data->GetPipelineMTime()) //Was the data modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2DUpdateTime()) //was the geometry modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2D()->GetMTime()) || (localStorage->m_LastUpdateTime < node->GetPropertyList()->GetMTime()) //was a property modified? || (localStorage->m_LastUpdateTime < node->GetPropertyList(renderer)->GetMTime()) ) { this->GenerateDataForRenderer( renderer ); } // since we have checked that nothing important has changed, we can set // m_LastUpdateTime to the current time localStorage->m_LastUpdateTime.Modified(); } vtkSmartPointer mitk::ContourModelMapper3D::CreateVtkPolyDataFromContour(mitk::ContourModel* inputContour) { unsigned int timestep = this->GetTimestep(); //the points to draw vtkSmartPointer points = vtkSmartPointer::New(); //the lines to connect the points vtkSmartPointer lines = vtkSmartPointer::New(); // Create a polydata to store everything in vtkSmartPointer polyData = vtkSmartPointer::New(); //iterate over the control points mitk::ContourModel::VertexIterator current = inputContour->IteratorBegin(timestep); mitk::ContourModel::VertexIterator next = inputContour->IteratorBegin(timestep); if(next != inputContour->IteratorEnd(timestep)) { next++; mitk::ContourModel::VertexIterator end = inputContour->IteratorEnd(timestep); while(next != end) { mitk::ContourModel::VertexType* currentControlPoint = *current; mitk::ContourModel::VertexType* nextControlPoint = *next; if( !(currentControlPoint->Coordinates[0] == nextControlPoint->Coordinates[0] && currentControlPoint->Coordinates[1] == nextControlPoint->Coordinates[1] && currentControlPoint->Coordinates[2] == nextControlPoint->Coordinates[2])) { vtkIdType p1 = points->InsertNextPoint(currentControlPoint->Coordinates[0], currentControlPoint->Coordinates[1], currentControlPoint->Coordinates[2]); vtkIdType p2 = points->InsertNextPoint(nextControlPoint->Coordinates[0], nextControlPoint->Coordinates[1], nextControlPoint->Coordinates[2]); //add the line between both contorlPoints lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } current++; next++; } if(inputContour->IsClosed(timestep)) { // If the contour is closed add a line from the last to the first control point mitk::ContourModel::VertexType* firstControlPoint = *(inputContour->IteratorBegin(timestep)); mitk::ContourModel::VertexType* lastControlPoint = *(--(inputContour->IteratorEnd(timestep))); if( lastControlPoint->Coordinates[0] != firstControlPoint->Coordinates[0] && lastControlPoint->Coordinates[1] != firstControlPoint->Coordinates[1] && lastControlPoint->Coordinates[2] != firstControlPoint->Coordinates[2]) { vtkIdType p2 = points->InsertNextPoint(lastControlPoint->Coordinates[0], lastControlPoint->Coordinates[1], lastControlPoint->Coordinates[2]); vtkIdType p1 = points->InsertNextPoint(firstControlPoint->Coordinates[0], firstControlPoint->Coordinates[1], firstControlPoint->Coordinates[2]); //add the line to the cellArray lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } } // Add the points to the dataset polyData->SetPoints(points); // Add the lines to the dataset polyData->SetLines(lines); } return polyData; } void mitk::ContourModelMapper3D::ApplyContourProperties(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty ("color", renderer)); if(colorprop) { //set the color of the contour double red = colorprop->GetColor().GetRed(); double green = colorprop->GetColor().GetGreen(); double blue = colorprop->GetColor().GetBlue(); localStorage->m_Actor->GetProperty()->SetColor(red, green, blue); } } /*+++++++++++++++++++ LocalStorage part +++++++++++++++++++++++++*/ mitk::ContourModelMapper3D::LocalStorage* mitk::ContourModelMapper3D::GetLocalStorage(mitk::BaseRenderer* renderer) { return m_LSH.GetLocalStorage(renderer); } mitk::ContourModelMapper3D::LocalStorage::LocalStorage() { m_Mapper = vtkSmartPointer::New(); m_Actor = vtkSmartPointer::New(); m_OutlinePolyData = vtkSmartPointer::New(); m_TubeFilter = vtkSmartPointer::New(); //set the mapper for the actor m_Actor->SetMapper(m_Mapper); } void mitk::ContourModelMapper3D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "color", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "3D contour width", mitk::FloatProperty::New( 0.2 ), renderer, overwrite ); Superclass::SetDefaultProperties(node, renderer, overwrite); } diff --git a/Modules/Segmentation/Rendering/mitkContourModelMapper3D.h b/Modules/Segmentation/Rendering/mitkContourModelMapper3D.h index 3bf54bf5d3..a14f65f0ff 100644 --- a/Modules/Segmentation/Rendering/mitkContourModelMapper3D.h +++ b/Modules/Segmentation/Rendering/mitkContourModelMapper3D.h @@ -1,114 +1,110 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_CONTOURMODEL_MAPPER_3D_H_ #define _MITK_CONTOURMODEL_MAPPER_3D_H_ #include "mitkCommon.h" #include "SegmentationExports.h" #include "mitkBaseRenderer.h" -#include "mitkVtkMapper2D.h" +#include "mitkVtkMapper.h" #include "mitkContourModel.h" //#include "mitkContourModelToVtkPolyDataFilter.h" #include #include #include #include #include #include namespace mitk { - class Segmentation_EXPORT ContourModelMapper3D : public VtkMapper2D + class Segmentation_EXPORT ContourModelMapper3D : public VtkMapper { public: /** Standard class typedefs. */ - mitkClassMacro( ContourModelMapper3D,VtkMapper2D ); + mitkClassMacro( ContourModelMapper3D,VtkMapper ); /** Method for creation through the object factory. */ itkNewMacro(Self); const mitk::ContourModel* GetInput(void); /** \brief Checks whether this mapper needs to update itself and generate * data. */ virtual void Update(mitk::BaseRenderer * renderer); /*+++ methods of MITK-VTK rendering pipeline +++*/ virtual vtkProp* GetVtkProp(mitk::BaseRenderer* renderer); - virtual void MitkRenderOverlay(BaseRenderer* renderer); - virtual void MitkRenderOpaqueGeometry(BaseRenderer* renderer); - virtual void MitkRenderTranslucentGeometry(BaseRenderer* renderer); - virtual void MitkRenderVolumetricGeometry(BaseRenderer* renderer); /*+++ END methods of MITK-VTK rendering pipeline +++*/ class Segmentation_EXPORT LocalStorage : public mitk::Mapper::BaseLocalStorage { public: /** \brief Actor of a 2D render window. */ vtkSmartPointer m_Actor; /** \brief Mapper of a 2D render window. */ vtkSmartPointer m_Mapper; vtkSmartPointer m_TubeFilter; //mitk::ContourModelToVtkPolyDataFilter::Pointer m_contourToPolyData; vtkSmartPointer m_OutlinePolyData; /** \brief Timestamp of last update of stored data. */ itk::TimeStamp m_LastUpdateTime; /** \brief Default constructor of the local storage. */ LocalStorage(); /** \brief Default deconstructor of the local storage. */ ~LocalStorage() { } }; /** \brief The LocalStorageHandler holds all (three) LocalStorages for the three 2D render windows. */ mitk::Mapper::LocalStorageHandler m_LSH; /** \brief Get the LocalStorage corresponding to the current renderer. */ LocalStorage* GetLocalStorage(mitk::BaseRenderer* renderer); /** \brief Set the default properties for general image rendering. */ static void SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer = NULL, bool overwrite = false); protected: ContourModelMapper3D(); virtual ~ContourModelMapper3D(); void GenerateDataForRenderer( mitk::BaseRenderer *renderer ); virtual vtkSmartPointer CreateVtkPolyDataFromContour(mitk::ContourModel* inputContour); virtual void ApplyContourProperties(mitk::BaseRenderer* renderer); }; } #endif diff --git a/Modules/ToFProcessing/mitkToFSurfaceVtkMapper3D.cpp b/Modules/ToFProcessing/mitkToFSurfaceVtkMapper3D.cpp index 016e4cbfa2..2b438adea2 100644 --- a/Modules/ToFProcessing/mitkToFSurfaceVtkMapper3D.cpp +++ b/Modules/ToFProcessing/mitkToFSurfaceVtkMapper3D.cpp @@ -1,506 +1,507 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkToFSurfaceVtkMapper3D.h" #include "mitkDataNode.h" #include "mitkProperties.h" #include "mitkColorProperty.h" #include "mitkLookupTableProperty.h" #include "mitkVtkRepresentationProperty.h" #include "mitkVtkInterpolationProperty.h" #include "mitkVtkScalarModeProperty.h" #include "mitkClippingProperty.h" #include "mitkShaderProperty.h" #include "mitkShaderRepository.h" #include #include #include #include #include #include #include #include #include #include #include //const mitk::ToFSurface* mitk::ToFSurfaceVtkMapper3D::GetInput() const mitk::Surface* mitk::ToFSurfaceVtkMapper3D::GetInput() { //return static_cast ( GetData() ); - return static_cast ( GetData() ); + return static_cast ( GetDataNode->GetData() ); } mitk::ToFSurfaceVtkMapper3D::ToFSurfaceVtkMapper3D() { // m_Prop3D = vtkActor::New(); m_GenerateNormals = false; this->m_Texture = NULL; this->m_TextureWidth = 0; this->m_TextureHeight = 0; this->m_VtkScalarsToColors = NULL; } mitk::ToFSurfaceVtkMapper3D::~ToFSurfaceVtkMapper3D() { // m_Prop3D->Delete(); } void mitk::ToFSurfaceVtkMapper3D::GenerateDataForRenderer(mitk::BaseRenderer* renderer) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); - bool visible = IsVisible(renderer); + bool visible = true; + GetDataNode()->GetVisibility(visible, renderer, "visible"); - if(visible==false) + if ( !visible ) { ls->m_Actor->VisibilityOff(); return; } // // set the input-object at time t for the mapper // //mitk::ToFSurface::Pointer input = const_cast< mitk::ToFSurface* >( this->GetInput() ); mitk::Surface::Pointer input = const_cast< mitk::Surface* >( this->GetInput() ); vtkPolyData * polydata = input->GetVtkPolyData( this->GetTimestep() ); if(polydata == NULL) { ls->m_Actor->VisibilityOff(); return; } if ( m_GenerateNormals ) { ls->m_VtkPolyDataNormals->SetInput( polydata ); ls->m_VtkPolyDataMapper->SetInput( ls->m_VtkPolyDataNormals->GetOutput() ); } else { ls->m_VtkPolyDataMapper->SetInput( polydata ); } // // apply properties read from the PropertyList // ApplyProperties(ls->m_Actor, renderer); if(visible) ls->m_Actor->VisibilityOn(); // // TOF extension for visualization (color/texture mapping) // if (this->m_VtkScalarsToColors) { // set the color transfer funtion if applied ls->m_VtkPolyDataMapper->SetLookupTable(this->m_VtkScalarsToColors); } if (this->m_Texture) { ls->m_Actor->SetTexture(this->m_Texture); } else { // remove the texture ls->m_Actor->SetTexture(0); } } void mitk::ToFSurfaceVtkMapper3D::ResetMapper( BaseRenderer* renderer ) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); ls->m_Actor->VisibilityOff(); } void mitk::ToFSurfaceVtkMapper3D::ApplyMitkPropertiesToVtkProperty(mitk::DataNode *node, vtkProperty* property, mitk::BaseRenderer* renderer) { // Colors { double ambient [3] = { 0.5,0.5,0.0 }; double diffuse [3] = { 0.5,0.5,0.0 }; double specular[3] = { 1.0,1.0,1.0 }; float coeff_ambient = 0.5f; float coeff_diffuse = 0.5f; float coeff_specular= 0.5f; float power_specular=10.0f; // Color { mitk::ColorProperty::Pointer p; node->GetProperty(p, "color", renderer); if(p.IsNotNull()) { mitk::Color c = p->GetColor(); ambient[0]=c.GetRed(); ambient[1]=c.GetGreen(); ambient[2]=c.GetBlue(); diffuse[0]=c.GetRed(); diffuse[1]=c.GetGreen(); diffuse[2]=c.GetBlue(); // Setting specular color to the same, make physically no real sense, however vtk rendering slows down, if these colors are different. specular[0]=c.GetRed(); specular[1]=c.GetGreen(); specular[2]=c.GetBlue(); } } // Ambient { mitk::ColorProperty::Pointer p; node->GetProperty(p, "material.ambientColor", renderer); if(p.IsNotNull()) { mitk::Color c = p->GetColor(); ambient[0]=c.GetRed(); ambient[1]=c.GetGreen(); ambient[2]=c.GetBlue(); } } // Diffuse { mitk::ColorProperty::Pointer p; node->GetProperty(p, "material.diffuseColor", renderer); if(p.IsNotNull()) { mitk::Color c = p->GetColor(); diffuse[0]=c.GetRed(); diffuse[1]=c.GetGreen(); diffuse[2]=c.GetBlue(); } } // Specular { mitk::ColorProperty::Pointer p; node->GetProperty(p, "material.specularColor", renderer); if(p.IsNotNull()) { mitk::Color c = p->GetColor(); specular[0]=c.GetRed(); specular[1]=c.GetGreen(); specular[2]=c.GetBlue(); } } // Ambient coeff { node->GetFloatProperty("material.ambientCoefficient", coeff_ambient, renderer); } // Diffuse coeff { node->GetFloatProperty("material.diffuseCoefficient", coeff_diffuse, renderer); } // Specular coeff { node->GetFloatProperty("material.specularCoefficient", coeff_specular, renderer); } // Specular power { node->GetFloatProperty("material.specularPower", power_specular, renderer); } property->SetAmbient( coeff_ambient ); property->SetDiffuse( coeff_diffuse ); property->SetSpecular( coeff_specular ); property->SetSpecularPower( power_specular ); property->SetAmbientColor( ambient ); property->SetDiffuseColor( diffuse ); property->SetSpecularColor( specular ); } // Render mode { // Opacity { float opacity = 1.0f; if( node->GetOpacity(opacity,renderer) ) property->SetOpacity( opacity ); } // Wireframe line width { float lineWidth = 1; node->GetFloatProperty("material.wireframeLineWidth", lineWidth, renderer); property->SetLineWidth( lineWidth ); } // Representation { mitk::VtkRepresentationProperty::Pointer p; node->GetProperty(p, "material.representation", renderer); if(p.IsNotNull()) property->SetRepresentation( p->GetVtkRepresentation() ); } // Interpolation { mitk::VtkInterpolationProperty::Pointer p; node->GetProperty(p, "material.interpolation", renderer); if(p.IsNotNull()) property->SetInterpolation( p->GetVtkInterpolation() ); } } } void mitk::ToFSurfaceVtkMapper3D::ApplyProperties(vtkActor* /*actor*/, mitk::BaseRenderer* renderer) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); // Applying shading properties { - ApplyColorAndOpacityProperties( ls->m_Actor, renderer ) ; + ApplyColorAndOpacityProperties( renderer, ls->m_Actor ) ; // VTK Properties ApplyMitkPropertiesToVtkProperty( this->GetDataNode(), ls->m_Actor->GetProperty(), renderer ); // Shaders mitk::ShaderRepository::GetGlobalShaderRepository()->ApplyProperties(this->GetDataNode(),ls->m_Actor,renderer,ls->m_ShaderTimestampUpdate); } mitk::LookupTableProperty::Pointer lookupTableProp; this->GetDataNode()->GetProperty(lookupTableProp, "LookupTable", renderer); if (lookupTableProp.IsNotNull() ) { ls->m_VtkPolyDataMapper->SetLookupTable(lookupTableProp->GetLookupTable()->GetVtkLookupTable()); } mitk::LevelWindow levelWindow; if(this->GetDataNode()->GetLevelWindow(levelWindow, renderer, "levelWindow")) { ls->m_VtkPolyDataMapper->SetScalarRange(levelWindow.GetLowerWindowBound(),levelWindow.GetUpperWindowBound()); } else if(this->GetDataNode()->GetLevelWindow(levelWindow, renderer)) { ls->m_VtkPolyDataMapper->SetScalarRange(levelWindow.GetLowerWindowBound(),levelWindow.GetUpperWindowBound()); } bool scalarVisibility = false; this->GetDataNode()->GetBoolProperty("scalar visibility", scalarVisibility); ls->m_VtkPolyDataMapper->SetScalarVisibility( (scalarVisibility ? 1 : 0) ); if(scalarVisibility) { mitk::VtkScalarModeProperty* scalarMode; if(this->GetDataNode()->GetProperty(scalarMode, "scalar mode", renderer)) { ls->m_VtkPolyDataMapper->SetScalarMode(scalarMode->GetVtkScalarMode()); } else ls->m_VtkPolyDataMapper->SetScalarModeToDefault(); bool colorMode = false; this->GetDataNode()->GetBoolProperty("color mode", colorMode); ls->m_VtkPolyDataMapper->SetColorMode( (colorMode ? 1 : 0) ); float scalarsMin = 0; if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum")) != NULL) scalarsMin = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum"))->GetValue(); float scalarsMax = 1.0; if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum")) != NULL) scalarsMax = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum"))->GetValue(); ls->m_VtkPolyDataMapper->SetScalarRange(scalarsMin,scalarsMax); } // deprecated settings bool deprecatedUseCellData = false; this->GetDataNode()->GetBoolProperty("deprecated useCellDataForColouring", deprecatedUseCellData); bool deprecatedUsePointData = false; this->GetDataNode()->GetBoolProperty("deprecated usePointDataForColouring", deprecatedUsePointData); if (deprecatedUseCellData) { ls->m_VtkPolyDataMapper->SetColorModeToDefault(); ls->m_VtkPolyDataMapper->SetScalarRange(0,255); ls->m_VtkPolyDataMapper->ScalarVisibilityOn(); ls->m_VtkPolyDataMapper->SetScalarModeToUseCellData(); ls->m_Actor->GetProperty()->SetSpecular (1); ls->m_Actor->GetProperty()->SetSpecularPower (50); ls->m_Actor->GetProperty()->SetInterpolationToPhong(); } else if (deprecatedUsePointData) { float scalarsMin = 0; if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum")) != NULL) scalarsMin = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum"))->GetValue(); float scalarsMax = 0.1; if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum")) != NULL) scalarsMax = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum"))->GetValue(); ls->m_VtkPolyDataMapper->SetScalarRange(scalarsMin,scalarsMax); ls->m_VtkPolyDataMapper->SetColorModeToMapScalars(); ls->m_VtkPolyDataMapper->ScalarVisibilityOn(); ls->m_Actor->GetProperty()->SetSpecular (1); ls->m_Actor->GetProperty()->SetSpecularPower (50); ls->m_Actor->GetProperty()->SetInterpolationToPhong(); } int deprecatedScalarMode = VTK_COLOR_MODE_DEFAULT; if(this->GetDataNode()->GetIntProperty("deprecated scalar mode", deprecatedScalarMode, renderer)) { ls->m_VtkPolyDataMapper->SetScalarMode(deprecatedScalarMode); ls->m_VtkPolyDataMapper->ScalarVisibilityOn(); ls->m_Actor->GetProperty()->SetSpecular (1); ls->m_Actor->GetProperty()->SetSpecularPower (50); //m_Actor->GetProperty()->SetInterpolationToPhong(); } // Check whether one or more ClippingProperty objects have been defined for // this node. Check both renderer specific and global property lists, since // properties in both should be considered. const PropertyList::PropertyMap *rendererProperties = this->GetDataNode()->GetPropertyList( renderer )->GetMap(); const PropertyList::PropertyMap *globalProperties = this->GetDataNode()->GetPropertyList( NULL )->GetMap(); // Add clipping planes (if any) ls->m_ClippingPlaneCollection->RemoveAllItems(); PropertyList::PropertyMap::const_iterator it; for ( it = rendererProperties->begin(); it != rendererProperties->end(); ++it ) { this->CheckForClippingProperty( renderer,(*it).second.GetPointer() ); } for ( it = globalProperties->begin(); it != globalProperties->end(); ++it ) { this->CheckForClippingProperty( renderer,(*it).second.GetPointer() ); } if ( ls->m_ClippingPlaneCollection->GetNumberOfItems() > 0 ) { ls->m_VtkPolyDataMapper->SetClippingPlanes( ls->m_ClippingPlaneCollection ); } else { ls->m_VtkPolyDataMapper->RemoveAllClippingPlanes(); } } vtkProp *mitk::ToFSurfaceVtkMapper3D::GetVtkProp(mitk::BaseRenderer *renderer) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); return ls->m_Actor; } void mitk::ToFSurfaceVtkMapper3D::CheckForClippingProperty( mitk::BaseRenderer* renderer, mitk::BaseProperty *property ) { LocalStorage *ls = m_LSH.GetLocalStorage(renderer); // m_Prop3D = ls->m_Actor; ClippingProperty *clippingProperty = dynamic_cast< ClippingProperty * >( property ); if ( (clippingProperty != NULL) && (clippingProperty->GetClippingEnabled()) ) { const Point3D &origin = clippingProperty->GetOrigin(); const Vector3D &normal = clippingProperty->GetNormal(); vtkPlane *clippingPlane = vtkPlane::New(); clippingPlane->SetOrigin( origin[0], origin[1], origin[2] ); clippingPlane->SetNormal( normal[0], normal[1], normal[2] ); ls->m_ClippingPlaneCollection->AddItem( clippingPlane ); clippingPlane->UnRegister( NULL ); } } void mitk::ToFSurfaceVtkMapper3D::SetDefaultPropertiesForVtkProperty(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { // Shading { node->AddProperty( "material.wireframeLineWidth", mitk::FloatProperty::New(1.0f) , renderer, overwrite ); node->AddProperty( "material.ambientCoefficient" , mitk::FloatProperty::New(0.05f) , renderer, overwrite ); node->AddProperty( "material.diffuseCoefficient" , mitk::FloatProperty::New(0.9f) , renderer, overwrite ); node->AddProperty( "material.specularCoefficient", mitk::FloatProperty::New(1.0f) , renderer, overwrite ); node->AddProperty( "material.specularPower" , mitk::FloatProperty::New(16.0f) , renderer, overwrite ); //node->AddProperty( "material.ambientColor" , mitk::ColorProperty::New(1.0f,1.0f,1.0f), renderer, overwrite ); //node->AddProperty( "material.diffuseColor" , mitk::ColorProperty::New(1.0f,1.0f,1.0f), renderer, overwrite ); //node->AddProperty( "material.specularColor" , mitk::ColorProperty::New(1.0f,1.0f,1.0f), renderer, overwrite ); node->AddProperty( "material.representation" , mitk::VtkRepresentationProperty::New() , renderer, overwrite ); node->AddProperty( "material.interpolation" , mitk::VtkInterpolationProperty::New() , renderer, overwrite ); } // Shaders { mitk::ShaderRepository::GetGlobalShaderRepository()->AddDefaultProperties(node,renderer,overwrite); } } void mitk::ToFSurfaceVtkMapper3D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "color", mitk::ColorProperty::New(1.0f,1.0f,1.0f), renderer, overwrite ); node->AddProperty( "opacity", mitk::FloatProperty::New(1.0), renderer, overwrite ); mitk::ToFSurfaceVtkMapper3D::SetDefaultPropertiesForVtkProperty(node,renderer,overwrite); // Shading node->AddProperty( "scalar visibility", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "color mode", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "scalar mode", mitk::VtkScalarModeProperty::New(), renderer, overwrite ); mitk::Surface::Pointer surface = dynamic_cast(node->GetData()); if(surface.IsNotNull()) { if((surface->GetVtkPolyData() != 0) && (surface->GetVtkPolyData()->GetPointData() != NULL) && (surface->GetVtkPolyData()->GetPointData()->GetScalars() != 0)) { node->AddProperty( "scalar visibility", mitk::BoolProperty::New(true), renderer, overwrite ); node->AddProperty( "color mode", mitk::BoolProperty::New(true), renderer, overwrite ); } } Superclass::SetDefaultProperties(node, renderer, overwrite); } void mitk::ToFSurfaceVtkMapper3D::SetImmediateModeRenderingOn(int /*on*/) { /* if (m_VtkPolyDataMapper != NULL) m_VtkPolyDataMapper->SetImmediateModeRendering(on); */ } void mitk::ToFSurfaceVtkMapper3D::SetTexture(vtkImageData *img) { this->m_Texture = vtkSmartPointer::New(); this->m_Texture->SetInput(img); // MITK_INFO << "Neuer Code"; } vtkSmartPointer mitk::ToFSurfaceVtkMapper3D::GetTexture() { return this->m_Texture; } void mitk::ToFSurfaceVtkMapper3D::SetVtkScalarsToColors(vtkScalarsToColors* vtkScalarsToColors) { this->m_VtkScalarsToColors = vtkScalarsToColors; } vtkScalarsToColors* mitk::ToFSurfaceVtkMapper3D::GetVtkScalarsToColors() { return this->m_VtkScalarsToColors; }