diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkKspaceImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkKspaceImageFilter.cpp index 0c71053a1b..929497fbc7 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkKspaceImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkKspaceImageFilter.cpp @@ -1,384 +1,384 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkKspaceImageFilter_txx #define __itkKspaceImageFilter_txx #include #include #include #include "itkKspaceImageFilter.h" #include #include #include #include #define _USE_MATH_DEFINES #include namespace itk { template< class TPixelType > KspaceImageFilter< TPixelType > ::KspaceImageFilter() : m_Z(0) , m_UseConstantRandSeed(false) , m_SpikesPerSlice(0) , m_IsBaseline(true) { m_DiffusionGradientDirection.Fill(0.0); m_CoilPosition.Fill(0.0); } template< class TPixelType > void KspaceImageFilter< TPixelType > ::BeforeThreadedGenerateData() { m_Spike = vcl_complex(0,0); typename OutputImageType::Pointer outputImage = OutputImageType::New(); itk::ImageRegion<2> region; region.SetSize(0, m_OutSize[0]); region.SetSize(1, m_OutSize[1]); outputImage->SetLargestPossibleRegion( region ); outputImage->SetBufferedRegion( region ); outputImage->SetRequestedRegion( region ); outputImage->Allocate(); outputImage->FillBuffer(m_Spike); m_KSpaceImage = InputImageType::New(); m_KSpaceImage->SetLargestPossibleRegion( region ); m_KSpaceImage->SetBufferedRegion( region ); m_KSpaceImage->SetRequestedRegion( region ); m_KSpaceImage->Allocate(); m_KSpaceImage->FillBuffer(0.0); m_Gamma = 42576000; // Gyromagnetic ratio in Hz/T if ( m_Parameters.m_SignalGen.m_EddyStrength>0 && m_DiffusionGradientDirection.GetNorm()>0.001) { m_DiffusionGradientDirection.Normalize(); m_DiffusionGradientDirection = m_DiffusionGradientDirection * m_Parameters.m_SignalGen.m_EddyStrength/1000 * m_Gamma; m_IsBaseline = false; } this->SetNthOutput(0, outputImage); m_Transform = m_Parameters.m_SignalGen.m_ImageDirection; for (int i=0; i<3; i++) for (int j=0; j<3; j++) m_Transform[i][j] *= m_Parameters.m_SignalGen.m_ImageSpacing[j]; double a = m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)*m_Parameters.m_SignalGen.m_ImageSpacing[0]; double b = m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)*m_Parameters.m_SignalGen.m_ImageSpacing[1]; double diagonal = sqrt(a*a+b*b)/1000; // image diagonal in m switch (m_Parameters.m_SignalGen.m_CoilSensitivityProfile) { case SignalGenerationParameters::COIL_CONSTANT: { - m_CoilSensitivityFactor = 1; + m_CoilSensitivityFactor = 1; // same signal everywhere break; } case SignalGenerationParameters::COIL_LINEAR: { - m_CoilSensitivityFactor = -1/diagonal; + m_CoilSensitivityFactor = -1/diagonal; // about 50% of the signal in the image center remaining break; } case SignalGenerationParameters::COIL_EXPONENTIAL: { - m_CoilSensitivityFactor = -log(0.1)/diagonal; + m_CoilSensitivityFactor = -log(0.1)/diagonal; // about 32% of the signal in the image center remaining break; } } } template< class TPixelType > double KspaceImageFilter< TPixelType >::CoilSensitivity(DoubleVectorType& pos) { // ************************************************************************* // Coil ring is moving with excited slice (FIX THIS SOMETIME) m_CoilPosition[2] = pos[2]; // ************************************************************************* switch (m_Parameters.m_SignalGen.m_CoilSensitivityProfile) { case SignalGenerationParameters::COIL_CONSTANT: return 1; case SignalGenerationParameters::COIL_LINEAR: { DoubleVectorType diff = pos-m_CoilPosition; double sens = diff.GetNorm()*m_CoilSensitivityFactor + 1; if (sens<0) sens = 0; return sens; } case SignalGenerationParameters::COIL_EXPONENTIAL: { DoubleVectorType diff = pos-m_CoilPosition; double dist = diff.GetNorm(); return exp(-dist*m_CoilSensitivityFactor); } default: return 1; } } template< class TPixelType > void KspaceImageFilter< TPixelType > ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, ThreadIdType threadID) { itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); randGen->SetSeed(); if (m_UseConstantRandSeed) // always generate the same random numbers? randGen->SetSeed(threadID*100); else randGen->SetSeed(); typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); typedef ImageRegionConstIterator< InputImageType > InputIteratorType; double kxMax = outputImage->GetLargestPossibleRegion().GetSize(0); // k-space size in x-direction double kyMax = outputImage->GetLargestPossibleRegion().GetSize(1); // k-space size in y-direction double xMax = m_CompartmentImages.at(0)->GetLargestPossibleRegion().GetSize(0); // scanner coverage in x-direction double yMax = m_CompartmentImages.at(0)->GetLargestPossibleRegion().GetSize(1); // scanner coverage in y-direction double numPix = kxMax*kyMax; double dt = m_Parameters.m_SignalGen.m_tLine/kxMax; double fromMaxEcho = -m_Parameters.m_SignalGen.m_tLine*kyMax/2-dt*kxMax/2; double upsampling = xMax/kxMax; // discrepany between k-space resolution and image resolution double yMaxFov = kyMax*upsampling; // actual FOV in y-direction (in x-direction xMax==FOV) int xRingingOffset = xMax-kxMax; int yRingingOffset = yMaxFov-kyMax; double noiseVar = m_Parameters.m_SignalGen.m_PartialFourier*m_Parameters.m_SignalGen.m_NoiseVariance/(yMaxFov*kxMax); // adjust noise variance since it is the intended variance in physical space and not in k-space while( !oit.IsAtEnd() ) { itk::Index< 2 > kIdx; kIdx[0] = oit.GetIndex()[0]; kIdx[1] = oit.GetIndex()[1]; // dephasing time double t= fromMaxEcho + ((double)kIdx[1]*kxMax+(double)kIdx[0])*dt; // readout time double tall = 0; // if (!m_Parameters.m_SignalGen.m_ReversePhase) tall = ((double)kIdx[1]*kxMax+(double)kIdx[0])*dt; // else // tall = ((double)(kyMax-1-kIdx[1])*kxMax+(double)kIdx[0])*dt; // calculate eddy current decay factor double eddyDecay = 0; if ( m_Parameters.m_SignalGen.m_EddyStrength>0) eddyDecay = exp(-tall/m_Parameters.m_SignalGen.m_Tau ); // calcualte signal relaxation factors std::vector< double > relaxFactor; if ( m_Parameters.m_SignalGen.m_DoSimulateRelaxation) for (unsigned int i=0; ikyMax*m_Parameters.m_SignalGen.m_PartialFourier) pf = true; // reverse readout direction if (oit.GetIndex()[1]%2 == 1) kIdx[0] = kxMax-kIdx[0]-1; // if (!pf) // m_KSpaceImage->SetPixel(kIdx, t ); // rearrange slice if( kIdx[0] < kxMax/2 ) kIdx[0] = kIdx[0] + kxMax/2; else kIdx[0] = kIdx[0] - kxMax/2; if( kIdx[1] < kyMax/2 ) kIdx[1] = kIdx[1] + kyMax/2; else kIdx[1] = kIdx[1] - kyMax/2; // add ghosting double kx = kIdx[0]; double ky = kIdx[1]; if (oit.GetIndex()[1]%2 == 1) kx -= m_Parameters.m_SignalGen.m_KspaceLineOffset; // add gradient delay induced offset else kx += m_Parameters.m_SignalGen.m_KspaceLineOffset; // add gradient delay induced offset if (!pf) { // add gibbs ringing offset (cropps k-space) if (kx>=kxMax/2) kx += xRingingOffset; if (ky>=kyMax/2) ky += yRingingOffset; vcl_complex s(0,0); InputIteratorType it(m_CompartmentImages.at(0), m_CompartmentImages.at(0)->GetLargestPossibleRegion() ); while( !it.IsAtEnd() ) { double x = it.GetIndex()[0]-xMax/2; double y = it.GetIndex()[1]-yMax/2; DoubleVectorType pos; pos[0] = x; pos[1] = y; pos[2] = m_Z; pos = m_Transform*pos/1000; // vector from image center to current position (in meter) vcl_complex f(0, 0); // sum compartment signals and simulate relaxation for (unsigned int i=0; i( m_CompartmentImages.at(i)->GetPixel(it.GetIndex()) * relaxFactor.at(i) * m_Parameters.m_SignalGen.m_SignalScale, 0); else f += std::complex( m_CompartmentImages.at(i)->GetPixel(it.GetIndex()) * m_Parameters.m_SignalGen.m_SignalScale ); if (m_Parameters.m_SignalGen.m_CoilSensitivityProfile!=SignalGenerationParameters::COIL_CONSTANT) f *= CoilSensitivity(pos); // simulate eddy currents and other distortions double omega = 0; // frequency offset if ( m_Parameters.m_SignalGen.m_EddyStrength>0 && !m_IsBaseline) { omega += (m_DiffusionGradientDirection[0]*pos[0]+m_DiffusionGradientDirection[1]*pos[1]+m_DiffusionGradientDirection[2]*pos[2]) * eddyDecay; } if (m_Parameters.m_SignalGen.m_FrequencyMap.IsNotNull()) // simulate distortions { itk::Point point3D; ItkDoubleImgType::IndexType index; index[0] = it.GetIndex()[0]; index[1] = it.GetIndex()[1]; index[2] = m_Zidx; if (m_Parameters.m_SignalGen.m_DoAddMotion) { m_Parameters.m_SignalGen.m_FrequencyMap->TransformIndexToPhysicalPoint(index, point3D); point3D = m_FiberBundle->TransformPoint(point3D.GetVnlVector(), -m_Rotation[0],-m_Rotation[1],-m_Rotation[2],-m_Translation[0],-m_Translation[1],-m_Translation[2]); m_Parameters.m_SignalGen.m_FrequencyMap->TransformPhysicalPointToIndex(point3D, index); if (m_Parameters.m_SignalGen.m_FrequencyMap->GetLargestPossibleRegion().IsInside(index)) omega += m_Parameters.m_SignalGen.m_FrequencyMap->GetPixel(index); } else { omega += m_Parameters.m_SignalGen.m_FrequencyMap->GetPixel(index); } } if (y<-yMaxFov/2) y += yMaxFov; else if (y>=yMaxFov/2) y -= yMaxFov; // actual DFT term s += f * exp( std::complex(0, 2 * M_PI * (kx*x/xMax + ky*y/yMaxFov + omega*t/1000 )) ); ++it; } s /= numPix; if (m_SpikesPerSlice>0 && sqrt(s.imag()*s.imag()+s.real()*s.real()) > sqrt(m_Spike.imag()*m_Spike.imag()+m_Spike.real()*m_Spike.real()) ) m_Spike = s; if (m_Parameters.m_SignalGen.m_NoiseVariance>0) s = vcl_complex(s.real()+randGen->GetNormalVariate(0,noiseVar), s.imag()+randGen->GetNormalVariate(0,noiseVar)); outputImage->SetPixel(kIdx, s); m_KSpaceImage->SetPixel(oit.GetIndex(), sqrt(s.imag()*s.imag()+s.real()*s.real()) ); // m_KSpaceImage->SetPixel(kIdx, sqrt(s.imag()*s.imag()+s.real()*s.real()) ); } ++oit; } } template< class TPixelType > void KspaceImageFilter< TPixelType > ::AfterThreadedGenerateData() { typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); double kxMax = outputImage->GetLargestPossibleRegion().GetSize(0); // k-space size in x-direction double kyMax = outputImage->GetLargestPossibleRegion().GetSize(1); // k-space size in y-direction ImageRegionIterator< OutputImageType > oit(outputImage, outputImage->GetLargestPossibleRegion()); while( !oit.IsAtEnd() ) // use hermitian k-space symmetry to fill empty k-space parts resulting from partial fourier acquisition { itk::Index< 2 > kIdx; kIdx[0] = oit.GetIndex()[0]; kIdx[1] = oit.GetIndex()[1]; // reverse phase if (!m_Parameters.m_SignalGen.m_ReversePhase) kIdx[1] = kyMax-1-kIdx[1]; if (kIdx[1]>kyMax*m_Parameters.m_SignalGen.m_PartialFourier) { // reverse readout direction if (oit.GetIndex()[1]%2 == 1) kIdx[0] = kxMax-kIdx[0]-1; // flip k-space if( kIdx[0] < kxMax/2 ) kIdx[0] = kIdx[0] + kxMax/2; else kIdx[0] = kIdx[0] - kxMax/2; if( kIdx[1] < kyMax/2 ) kIdx[1] = kIdx[1] + kyMax/2; else kIdx[1] = kIdx[1] - kyMax/2; itk::Index< 2 > kIdx2; kIdx2[0] = (int)(kxMax-kIdx[0])%(int)kxMax; kIdx2[1] = (int)(kyMax-kIdx[1])%(int)kyMax; vcl_complex s = outputImage->GetPixel(kIdx2); s = vcl_complex(s.real(), -s.imag()); outputImage->SetPixel(kIdx, s); m_KSpaceImage->SetPixel(oit.GetIndex(), sqrt(s.imag()*s.imag()+s.real()*s.real()) ); // m_KSpaceImage->SetPixel(kIdx, sqrt(s.imag()*s.imag()+s.real()*s.real()) ); } ++oit; } itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); randGen->SetSeed(); if (m_UseConstantRandSeed) // always generate the same random numbers? randGen->SetSeed(0); else randGen->SetSeed(); m_Spike *= m_Parameters.m_SignalGen.m_SpikeAmplitude; itk::Index< 2 > spikeIdx; for (unsigned int i=0; iGetIntegerVariate()%(int)kxMax; spikeIdx[1] = randGen->GetIntegerVariate()%(int)kyMax; outputImage->SetPixel(spikeIdx, m_Spike); } } } #endif