diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp index 3467b387aa..2d1c6840a3 100755 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp @@ -1,1013 +1,1139 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractsToDWIImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace itk { template< class PixelType > TractsToDWIImageFilter< PixelType >::TractsToDWIImageFilter() : m_FiberBundle(NULL) , m_StatusText("") , m_UseConstantRandSeed(false) , m_RandGen(itk::Statistics::MersenneTwisterRandomVariateGenerator::New()) { m_RandGen->SetSeed(); } template< class PixelType > TractsToDWIImageFilter< PixelType >::~TractsToDWIImageFilter() { } template< class PixelType > TractsToDWIImageFilter< PixelType >::DoubleDwiType::Pointer TractsToDWIImageFilter< PixelType >::DoKspaceStuff( std::vector< DoubleDwiType::Pointer >& images ) { // create slice object ImageRegion<2> sliceRegion; sliceRegion.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); sliceRegion.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); Vector< double, 2 > sliceSpacing; sliceSpacing[0] = m_UpsampledSpacing[0]; sliceSpacing[1] = m_UpsampledSpacing[1]; // frequency map slice SliceType::Pointer fMapSlice = NULL; if (m_Parameters.m_FrequencyMap.IsNotNull()) { fMapSlice = SliceType::New(); ImageRegion<2> region; region.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); region.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); fMapSlice->SetLargestPossibleRegion( region ); fMapSlice->SetBufferedRegion( region ); fMapSlice->SetRequestedRegion( region ); fMapSlice->Allocate(); fMapSlice->FillBuffer(0.0); } DoubleDwiType::Pointer newImage = DoubleDwiType::New(); newImage->SetSpacing( m_Parameters.m_ImageSpacing ); newImage->SetOrigin( m_Parameters.m_ImageOrigin ); newImage->SetDirection( m_Parameters.m_ImageDirection ); newImage->SetLargestPossibleRegion( m_Parameters.m_ImageRegion ); newImage->SetBufferedRegion( m_Parameters.m_ImageRegion ); newImage->SetRequestedRegion( m_Parameters.m_ImageRegion ); newImage->SetVectorLength( images.at(0)->GetVectorLength() ); newImage->Allocate(); std::vector< unsigned int > spikeVolume; for (unsigned int i=0; iGetIntegerVariate()%images.at(0)->GetVectorLength()); std::sort (spikeVolume.begin(), spikeVolume.end()); std::reverse (spikeVolume.begin(), spikeVolume.end()); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; unsigned long lastTick = 0; boost::progress_display disp(2*images.at(0)->GetVectorLength()*images.at(0)->GetLargestPossibleRegion().GetSize(2)); for (unsigned int g=0; gGetVectorLength(); g++) { std::vector< unsigned int > spikeSlice; while (!spikeVolume.empty() && spikeVolume.back()==g) { spikeSlice.push_back(m_RandGen->GetIntegerVariate()%images.at(0)->GetLargestPossibleRegion().GetSize(2)); spikeVolume.pop_back(); } std::sort (spikeSlice.begin(), spikeSlice.end()); std::reverse (spikeSlice.begin(), spikeSlice.end()); for (unsigned int z=0; zGetLargestPossibleRegion().GetSize(2); z++) { std::vector< SliceType::Pointer > compartmentSlices; std::vector< double > t2Vector; for (unsigned int i=0; i* signalModel; if (iSetLargestPossibleRegion( sliceRegion ); slice->SetBufferedRegion( sliceRegion ); slice->SetRequestedRegion( sliceRegion ); slice->SetSpacing(sliceSpacing); slice->Allocate(); slice->FillBuffer(0.0); // extract slice from channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; slice->SetPixel(index2D, images.at(i)->GetPixel(index3D)[g]); if (fMapSlice.IsNotNull() && i==0) fMapSlice->SetPixel(index2D, m_Parameters.m_FrequencyMap->GetPixel(index3D)); } compartmentSlices.push_back(slice); t2Vector.push_back(signalModel->GetT2()); } if (this->GetAbortGenerateData()) return NULL; // create k-sapce (inverse fourier transform slices) itk::Size<2> outSize; outSize.SetElement(0, m_Parameters.m_ImageRegion.GetSize(0)); outSize.SetElement(1, m_Parameters.m_ImageRegion.GetSize(1)); itk::KspaceImageFilter< SliceType::PixelType >::Pointer idft = itk::KspaceImageFilter< SliceType::PixelType >::New(); idft->SetCompartmentImages(compartmentSlices); idft->SetT2(t2Vector); idft->SetUseConstantRandSeed(m_UseConstantRandSeed); idft->SetParameters(m_Parameters); idft->SetZ((double)z-(double)images.at(0)->GetLargestPossibleRegion().GetSize(2)/2.0); idft->SetDiffusionGradientDirection(m_Parameters.GetGradientDirection(g)); idft->SetFrequencyMapSlice(fMapSlice); idft->SetOutSize(outSize); int numSpikes = 0; while (!spikeSlice.empty() && spikeSlice.back()==z) { numSpikes++; spikeSlice.pop_back(); } idft->SetSpikesPerSlice(numSpikes); idft->Update(); ComplexSliceType::Pointer fSlice; fSlice = idft->GetOutput(); ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; // fourier transform slice SliceType::Pointer newSlice; itk::DftImageFilter< SliceType::PixelType >::Pointer dft = itk::DftImageFilter< SliceType::PixelType >::New(); dft->SetInput(fSlice); dft->Update(); newSlice = dft->GetOutput(); // put slice back into channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::PixelType pix3D = newImage->GetPixel(index3D); pix3D[g] = newSlice->GetPixel(index2D); newImage->SetPixel(index3D, pix3D); } ++disp; newTick = 50*disp.count()/disp.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; } } m_StatusText += "\n\n"; return newImage; } template< class PixelType > void TractsToDWIImageFilter< PixelType >::GenerateData() { m_TimeProbe.Start(); m_StatusText = "Starting simulation\n"; // check input data if (m_FiberBundle.IsNull()) itkExceptionMacro("Input fiber bundle is NULL!"); if (m_Parameters.m_NonFiberModelList.empty()) itkExceptionMacro("No diffusion model for non-fiber compartments defined!"); int baselineIndex = m_Parameters.GetFirstBaselineIndex(); if (baselineIndex<0) itkExceptionMacro("No baseline index found!"); if (m_UseConstantRandSeed) // always generate the same random numbers? m_RandGen->SetSeed(0); else m_RandGen->SetSeed(); // initialize output dwi image ImageRegion<3> croppedRegion = m_Parameters.m_ImageRegion; croppedRegion.SetSize(1, croppedRegion.GetSize(1)*m_Parameters.m_CroppingFactor); itk::Point shiftedOrigin = m_Parameters.m_ImageOrigin; shiftedOrigin[1] += (m_Parameters.m_ImageRegion.GetSize(1)-croppedRegion.GetSize(1))*m_Parameters.m_ImageSpacing[1]/2; typename OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Parameters.m_ImageSpacing ); outImage->SetOrigin( shiftedOrigin ); outImage->SetDirection( m_Parameters.m_ImageDirection ); outImage->SetLargestPossibleRegion( croppedRegion ); outImage->SetBufferedRegion( croppedRegion ); outImage->SetRequestedRegion( croppedRegion ); outImage->SetVectorLength( m_Parameters.GetNumVolumes() ); outImage->Allocate(); typename OutputImageType::PixelType temp; temp.SetSize(m_Parameters.GetNumVolumes()); temp.Fill(0.0); outImage->FillBuffer(temp); // ADJUST GEOMETRY FOR FURTHER PROCESSING // is input slize size a power of two? unsigned int x=m_Parameters.m_ImageRegion.GetSize(0); unsigned int y=m_Parameters.m_ImageRegion.GetSize(1); ItkDoubleImgType::SizeType pad; pad[0]=x%2; pad[1]=y%2; pad[2]=0; m_Parameters.m_ImageRegion.SetSize(0, x+pad[0]); m_Parameters.m_ImageRegion.SetSize(1, y+pad[1]); if (m_Parameters.m_FrequencyMap.IsNotNull() && (pad[0]>0 || pad[1]>0)) { itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_FrequencyMap); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_FrequencyMap = zeroPadder->GetOutput(); } if (m_Parameters.m_MaskImage.IsNotNull() && (pad[0]>0 || pad[1]>0)) { itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_MaskImage); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_MaskImage = zeroPadder->GetOutput(); } // Apply in-plane upsampling for Gibbs ringing artifact double upsampling = 1; if (m_Parameters.m_DoAddGibbsRinging) upsampling = 2; m_UpsampledSpacing = m_Parameters.m_ImageSpacing; m_UpsampledSpacing[0] /= upsampling; m_UpsampledSpacing[1] /= upsampling; m_UpsampledImageRegion = m_Parameters.m_ImageRegion; m_UpsampledImageRegion.SetSize(0, m_Parameters.m_ImageRegion.GetSize()[0]*upsampling); m_UpsampledImageRegion.SetSize(1, m_Parameters.m_ImageRegion.GetSize()[1]*upsampling); m_UpsampledOrigin = m_Parameters.m_ImageOrigin; m_UpsampledOrigin[0] -= m_Parameters.m_ImageSpacing[0]/2; m_UpsampledOrigin[0] += m_UpsampledSpacing[0]/2; m_UpsampledOrigin[1] -= m_Parameters.m_ImageSpacing[1]/2; m_UpsampledOrigin[1] += m_UpsampledSpacing[1]/2; m_UpsampledOrigin[2] -= m_Parameters.m_ImageSpacing[2]/2; m_UpsampledOrigin[2] += m_UpsampledSpacing[2]/2; // generate double images to store the individual compartment signals std::vector< DoubleDwiType::Pointer > compartments; for (unsigned int i=0; iSetSpacing( m_UpsampledSpacing ); doubleDwi->SetOrigin( m_UpsampledOrigin ); doubleDwi->SetDirection( m_Parameters.m_ImageDirection ); doubleDwi->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleDwi->SetBufferedRegion( m_UpsampledImageRegion ); doubleDwi->SetRequestedRegion( m_UpsampledImageRegion ); doubleDwi->SetVectorLength( m_Parameters.GetNumVolumes() ); doubleDwi->Allocate(); DoubleDwiType::PixelType pix; pix.SetSize(m_Parameters.GetNumVolumes()); pix.Fill(0.0); doubleDwi->FillBuffer(pix); compartments.push_back(doubleDwi); } // initialize output volume fraction images m_VolumeFractions.clear(); for (unsigned int i=0; iSetSpacing( m_UpsampledSpacing ); doubleImg->SetOrigin( m_UpsampledOrigin ); doubleImg->SetDirection( m_Parameters.m_ImageDirection ); doubleImg->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleImg->SetBufferedRegion( m_UpsampledImageRegion ); doubleImg->SetRequestedRegion( m_UpsampledImageRegion ); doubleImg->Allocate(); doubleImg->FillBuffer(0); m_VolumeFractions.push_back(doubleImg); } // get volume fraction images ItkDoubleImgType::Pointer sumImage = ItkDoubleImgType::New(); bool foundVolumeFractionImage = false; for (unsigned int i=0; iGetVolumeFractionImage().IsNotNull()) { foundVolumeFractionImage = true; itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_NonFiberModelList[i]->SetVolumeFractionImage(zeroPadder->GetOutput()); sumImage->SetSpacing( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetSpacing() ); sumImage->SetOrigin( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetOrigin() ); sumImage->SetDirection( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetDirection() ); sumImage->SetLargestPossibleRegion( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion() ); sumImage->SetBufferedRegion( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion() ); sumImage->SetRequestedRegion( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion() ); sumImage->Allocate(); sumImage->FillBuffer(0); break; } } if (!foundVolumeFractionImage) { sumImage->SetSpacing( m_UpsampledSpacing ); sumImage->SetOrigin( m_UpsampledOrigin ); sumImage->SetDirection( m_Parameters.m_ImageDirection ); sumImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); sumImage->SetBufferedRegion( m_UpsampledImageRegion ); sumImage->SetRequestedRegion( m_UpsampledImageRegion ); sumImage->Allocate(); sumImage->FillBuffer(0.0); } for (unsigned int i=0; iGetVolumeFractionImage().IsNull()) { ItkDoubleImgType::Pointer doubleImg = ItkDoubleImgType::New(); doubleImg->SetSpacing( sumImage->GetSpacing() ); doubleImg->SetOrigin( sumImage->GetOrigin() ); doubleImg->SetDirection( sumImage->GetDirection() ); doubleImg->SetLargestPossibleRegion( sumImage->GetLargestPossibleRegion() ); doubleImg->SetBufferedRegion( sumImage->GetLargestPossibleRegion() ); doubleImg->SetRequestedRegion( sumImage->GetLargestPossibleRegion() ); doubleImg->Allocate(); doubleImg->FillBuffer(1.0/m_Parameters.m_NonFiberModelList.size()); m_Parameters.m_NonFiberModelList[i]->SetVolumeFractionImage(doubleImg); } ImageRegionIterator it(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage(), m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { sumImage->SetPixel(it.GetIndex(), sumImage->GetPixel(it.GetIndex())+it.Get()); ++it; } } for (unsigned int i=0; i it(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage(), m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { if (sumImage->GetPixel(it.GetIndex())>0) it.Set(it.Get()/sumImage->GetPixel(it.GetIndex())); ++it; } } // resample mask image and frequency map to fit upsampled geometry if (m_Parameters.m_DoAddGibbsRinging) { if (m_Parameters.m_MaskImage.IsNotNull()) { // rescale mask image (otherwise there are problems with the resampling) itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0,m_Parameters.m_MaskImage); rescaler->SetOutputMaximum(100); rescaler->SetOutputMinimum(0); rescaler->Update(); // resample mask image itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(rescaler->GetOutput()); resampler->SetOutputParametersFromImage(m_Parameters.m_MaskImage); resampler->SetSize(m_UpsampledImageRegion.GetSize()); resampler->SetOutputSpacing(m_UpsampledSpacing); resampler->SetOutputOrigin(m_UpsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(nn_interpolator); resampler->Update(); m_Parameters.m_MaskImage = resampler->GetOutput(); itk::ImageFileWriter::Pointer w = itk::ImageFileWriter::New(); w->SetFileName("/local/mask_ups.nrrd"); w->SetInput(m_Parameters.m_MaskImage); w->Update(); } // resample frequency map if (m_Parameters.m_FrequencyMap.IsNotNull()) { itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(m_Parameters.m_FrequencyMap); resampler->SetOutputParametersFromImage(m_Parameters.m_FrequencyMap); resampler->SetSize(m_UpsampledImageRegion.GetSize()); resampler->SetOutputSpacing(m_UpsampledSpacing); resampler->SetOutputOrigin(m_UpsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(nn_interpolator); resampler->Update(); m_Parameters.m_FrequencyMap = resampler->GetOutput(); } } // no input tissue mask is set -> create default bool maskImageSet = true; if (m_Parameters.m_MaskImage.IsNull()) { m_StatusText += "No tissue mask set\n"; MITK_INFO << "No tissue mask set"; m_Parameters.m_MaskImage = ItkUcharImgType::New(); m_Parameters.m_MaskImage->SetSpacing( m_UpsampledSpacing ); m_Parameters.m_MaskImage->SetOrigin( m_UpsampledOrigin ); m_Parameters.m_MaskImage->SetDirection( m_Parameters.m_ImageDirection ); m_Parameters.m_MaskImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); m_Parameters.m_MaskImage->SetBufferedRegion( m_UpsampledImageRegion ); m_Parameters.m_MaskImage->SetRequestedRegion( m_UpsampledImageRegion ); m_Parameters.m_MaskImage->Allocate(); m_Parameters.m_MaskImage->FillBuffer(1); maskImageSet = false; } else { m_StatusText += "Using tissue mask\n"; MITK_INFO << "Using tissue mask"; } m_Parameters.m_ImageRegion = croppedRegion; x=m_Parameters.m_ImageRegion.GetSize(0); y=m_Parameters.m_ImageRegion.GetSize(1); if ( x%2 == 1 ) m_Parameters.m_ImageRegion.SetSize(0, x+1); if ( y%2 == 1 ) m_Parameters.m_ImageRegion.SetSize(1, y+1); // resample fiber bundle for sufficient voxel coverage m_StatusText += "\n"+this->GetTime()+" > Resampling fibers ...\n"; double segmentVolume = 0.0001; float minSpacing = 1; if(m_UpsampledSpacing[0]GetDeepCopy(); double volumeAccuracy = 10; fiberBundle->ResampleFibers(minSpacing/volumeAccuracy); double mmRadius = m_Parameters.m_AxonRadius/1000; if (mmRadius>0) segmentVolume = M_PI*mmRadius*mmRadius*minSpacing/volumeAccuracy; double maxVolume = 0; double voxelVolume = m_UpsampledSpacing[0]*m_UpsampledSpacing[1]*m_UpsampledSpacing[2]; ofstream logFile; if (m_Parameters.m_DoAddMotion) { std::string fileName = "fiberfox_motion_0.log"; std::string filePath = mitk::IOUtil::GetTempPath(); if (m_Parameters.m_OutputPath.size()>0) filePath = m_Parameters.m_OutputPath; int c = 1; while (itksys::SystemTools::FileExists((filePath+fileName).c_str())) { fileName = "fiberfox_motion_"; fileName += boost::lexical_cast(c); fileName += ".log"; c++; } logFile.open((filePath+fileName).c_str()); logFile << "0 rotation: 0,0,0; translation: 0,0,0\n"; if (m_Parameters.m_DoRandomizeMotion) { m_StatusText += "Adding random motion artifacts:\n"; m_StatusText += "Maximum rotation: +/-" + boost::lexical_cast(m_Parameters.m_Rotation) + "°\n"; m_StatusText += "Maximum translation: +/-" + boost::lexical_cast(m_Parameters.m_Translation) + "mm\n"; } else { m_StatusText += "Adding linear motion artifacts:\n"; m_StatusText += "Maximum rotation: " + boost::lexical_cast(m_Parameters.m_Rotation) + "°\n"; m_StatusText += "Maximum translation: " + boost::lexical_cast(m_Parameters.m_Translation) + "mm\n"; } m_StatusText += "Motion logfile: " + (filePath+fileName) + "\n"; MITK_INFO << "Adding motion artifacts"; MITK_INFO << "Maximum rotation: " << m_Parameters.m_Rotation; MITK_INFO << "Maxmimum translation: " << m_Parameters.m_Translation; } maxVolume = 0; m_StatusText += "\n"+this->GetTime()+" > Generating " + boost::lexical_cast(m_Parameters.m_FiberModelList.size()+m_Parameters.m_NonFiberModelList.size()) + "-compartment diffusion-weighted signal.\n"; int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers*m_Parameters.GetNumVolumes()); // get transform for motion artifacts FiberBundleType fiberBundleTransformed = fiberBundle; VectorType rotation = m_Parameters.m_Rotation/m_Parameters.GetNumVolumes(); VectorType translation = m_Parameters.m_Translation/m_Parameters.GetNumVolumes(); // creat image to hold transformed mask (motion artifact) ItkUcharImgType::Pointer tempTissueMask = ItkUcharImgType::New(); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(m_Parameters.m_MaskImage); duplicator->Update(); tempTissueMask = duplicator->GetOutput(); // second upsampling needed for motion artifacts ImageRegion<3> upsampledImageRegion = m_UpsampledImageRegion; itk::Vector upsampledSpacing = m_UpsampledSpacing; upsampledSpacing[0] /= 4; upsampledSpacing[1] /= 4; upsampledSpacing[2] /= 4; upsampledImageRegion.SetSize(0, m_UpsampledImageRegion.GetSize()[0]*4); upsampledImageRegion.SetSize(1, m_UpsampledImageRegion.GetSize()[1]*4); upsampledImageRegion.SetSize(2, m_UpsampledImageRegion.GetSize()[2]*4); itk::Point upsampledOrigin = m_UpsampledOrigin; upsampledOrigin[0] -= m_UpsampledSpacing[0]/2; upsampledOrigin[0] += upsampledSpacing[0]/2; upsampledOrigin[1] -= m_UpsampledSpacing[1]/2; upsampledOrigin[1] += upsampledSpacing[1]/2; upsampledOrigin[2] -= m_UpsampledSpacing[2]/2; upsampledOrigin[2] += upsampledSpacing[2]/2; ItkUcharImgType::Pointer upsampledTissueMask = ItkUcharImgType::New(); itk::ResampleImageFilter::Pointer upsampler = itk::ResampleImageFilter::New(); upsampler->SetInput(m_Parameters.m_MaskImage); upsampler->SetOutputParametersFromImage(m_Parameters.m_MaskImage); upsampler->SetSize(upsampledImageRegion.GetSize()); upsampler->SetOutputSpacing(upsampledSpacing); upsampler->SetOutputOrigin(upsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); upsampler->SetInterpolator(nn_interpolator); upsampler->Update(); upsampledTissueMask = upsampler->GetOutput(); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; unsigned long lastTick = 0; - for (unsigned int g=0; gGetFiberPolyData(); + for (unsigned int g=0; gSetSpacing( m_UpsampledSpacing ); + intraAxonalVolumeImage->SetOrigin( m_UpsampledOrigin ); + intraAxonalVolumeImage->SetDirection( m_Parameters.m_ImageDirection ); + intraAxonalVolumeImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); + intraAxonalVolumeImage->SetBufferedRegion( m_UpsampledImageRegion ); + intraAxonalVolumeImage->SetRequestedRegion( m_UpsampledImageRegion ); + intraAxonalVolumeImage->Allocate(); + intraAxonalVolumeImage->FillBuffer(0); + + vtkPolyData* fiberPolyData = fiberBundleTransformed->GetFiberPolyData(); + + // generate fiber signal (if there are any fiber models present) + if (!m_Parameters.m_FiberModelList.empty()) + for( int i=0; iGetCell(i); + int numPoints = cell->GetNumberOfPoints(); + vtkPoints* points = cell->GetPoints(); + + if (numPoints<2) + continue; + + for( int j=0; jGetAbortGenerateData()) + { + m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; + return; + } + + double* temp = points->GetPoint(j); + itk::Point vertex = GetItkPoint(temp); + itk::Vector v = GetItkVector(temp); + + itk::Vector dir(3); + if (jGetPoint(j+1))-v; + else + dir = v-GetItkVector(points->GetPoint(j-1)); + + if (dir.GetSquaredNorm()<0.0001 || dir[0]!=dir[0] || dir[1]!=dir[1] || dir[2]!=dir[2]) + continue; + + itk::Index<3> idx; + itk::ContinuousIndex contIndex; + tempTissueMask->TransformPhysicalPointToIndex(vertex, idx); + tempTissueMask->TransformPhysicalPointToContinuousIndex(vertex, contIndex); + + if (!tempTissueMask->GetLargestPossibleRegion().IsInside(idx) || tempTissueMask->GetPixel(idx)<=0) + continue; + + // generate signal for each fiber compartment + for (unsigned int k=0; kSetFiberDirection(dir); + DoubleDwiType::PixelType pix = compartments.at(k)->GetPixel(idx); + pix[g] += segmentVolume*m_Parameters.m_FiberModelList[k]->SimulateMeasurement(g); + compartments.at(k)->SetPixel(idx, pix); + } + + // update fiber volume image + double vol = intraAxonalVolumeImage->GetPixel(idx) + segmentVolume; + intraAxonalVolumeImage->SetPixel(idx, vol); + if (g==0 && vol>maxVolume) + maxVolume = vol; + } + + // progress report + ++disp; + unsigned long newTick = 50*disp.count()/disp.expected_count(); + for (unsigned int tick = 0; tick<(newTick-lastTick); tick++) + m_StatusText += "*"; + lastTick = newTick; + } + // generate non-fiber signal + ImageRegionIterator it3(tempTissueMask, tempTissueMask->GetLargestPossibleRegion()); + double fact = 1; + if (m_Parameters.m_AxonRadius<0.0001 || maxVolume>voxelVolume) + fact = voxelVolume/maxVolume; + while(!it3.IsAtEnd()) + { + if (it3.Get()>0) + { + DoubleDwiType::IndexType index = it3.GetIndex(); + + // get fiber volume fraction + double intraAxonalVolume = intraAxonalVolumeImage->GetPixel(index)*fact; + + for (unsigned int i=0; iGetPixel(index); + pix[g] *= fact; + compartments.at(i)->SetPixel(index, pix); + } + + if (intraAxonalVolume>0.0001 && m_Parameters.m_DoDisablePartialVolume) // only fiber in voxel + { + DoubleDwiType::PixelType pix = compartments.at(0)->GetPixel(index); + pix[g] *= voxelVolume/intraAxonalVolume; + compartments.at(0)->SetPixel(index, pix); + m_VolumeFractions.at(0)->SetPixel(index, 1); + for (unsigned int i=1; iGetPixel(index); + pix[g] = 0; + compartments.at(i)->SetPixel(index, pix); + } + } + else + { + m_VolumeFractions.at(0)->SetPixel(index, intraAxonalVolume/voxelVolume); + + double extraAxonalVolume = voxelVolume-intraAxonalVolume; // non-fiber volume + double interAxonalVolume = 0; + if (m_Parameters.m_FiberModelList.size()>1) + interAxonalVolume = extraAxonalVolume * intraAxonalVolume/voxelVolume; // inter-axonal fraction of non fiber compartment scales linearly with f + double other = extraAxonalVolume - interAxonalVolume; // rest of compartment + double singleinter = interAxonalVolume/(m_Parameters.m_FiberModelList.size()-1); + + // adjust non-fiber and intra-axonal signal + for (unsigned int i=1; iGetPixel(index); + if (intraAxonalVolume>0) // remove scaling by intra-axonal volume from inter-axonal compartment + pix[g] /= intraAxonalVolume; + pix[g] *= singleinter; + compartments.at(i)->SetPixel(index, pix); + m_VolumeFractions.at(i)->SetPixel(index, singleinter/voxelVolume); + } + for (unsigned int i=0; i point; + tempTissueMask->TransformIndexToPhysicalPoint(index, point); + + if (m_Parameters.m_DoAddMotion) + { + if (m_Parameters.m_DoRandomizeMotion && g>0) + point = fiberBundle->TransformPoint(point.GetVnlVector(), -rotation[0],-rotation[1],-rotation[2],-translation[0],-translation[1],-translation[2]); + else + point = fiberBundle->TransformPoint(point.GetVnlVector(), -rotation[0]*g,-rotation[1]*g,-rotation[2]*g,-translation[0]*g,-translation[1]*g,-translation[2]*g); + } + + double weight = 1; + if (m_Parameters.m_NonFiberModelList.size()>1) + { + DoubleDwiType::IndexType newIndex; + m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->TransformPhysicalPointToIndex(point, newIndex); + if (!m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion().IsInside(newIndex)) + { + MITK_WARN << "Volume fraction image is too small for the chosen motion artifacts! Due to motion a volume fraction outside of the specified image volume is requested."; + continue; + } + weight = m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetPixel(newIndex); + } + + DoubleDwiType::Pointer doubleDwi = compartments.at(i+m_Parameters.m_FiberModelList.size()); + DoubleDwiType::PixelType pix = doubleDwi->GetPixel(index); + + pix[g] += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement(g)*other*weight; + doubleDwi->SetPixel(index, pix); + m_VolumeFractions.at(i+m_Parameters.m_FiberModelList.size())->SetPixel(index, other/voxelVolume*weight); + } + } + } + ++it3; + } + + // move fibers + if (m_Parameters.m_DoAddMotion && gGetDeepCopy(); + rotation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[0]*2)-m_Parameters.m_Rotation[0]; + rotation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[1]*2)-m_Parameters.m_Rotation[1]; + rotation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[2]*2)-m_Parameters.m_Rotation[2]; + translation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[0]*2)-m_Parameters.m_Translation[0]; + translation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[1]*2)-m_Parameters.m_Translation[1]; + translation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[2]*2)-m_Parameters.m_Translation[2]; + } + + // rotate mask image + if (maskImageSet) + { + ImageRegionIterator maskIt(upsampledTissueMask, upsampledTissueMask->GetLargestPossibleRegion()); + tempTissueMask->FillBuffer(0); + + while(!maskIt.IsAtEnd()) + { + if (maskIt.Get()<=0) + { + ++maskIt; + continue; + } + + DoubleDwiType::IndexType index = maskIt.GetIndex(); + itk::Point point; + upsampledTissueMask->TransformIndexToPhysicalPoint(index, point); + if (m_Parameters.m_DoRandomizeMotion) + point = fiberBundle->TransformPoint(point.GetVnlVector(), rotation[0],rotation[1],rotation[2],translation[0],translation[1],translation[2]); + else + point = fiberBundle->TransformPoint(point.GetVnlVector(), rotation[0]*(g+1),rotation[1]*(g+1),rotation[2]*(g+1),translation[0]*(g+1),translation[1]*(g+1),translation[2]*(g+1)); + + tempTissueMask->TransformPhysicalPointToIndex(point, index); + if (tempTissueMask->GetLargestPossibleRegion().IsInside(index)) + tempTissueMask->SetPixel(index,100); + ++maskIt; + } + } + + // rotate fibers + if (logFile.is_open()) + { + logFile << g+1 << " rotation: " << rotation[0] << "," << rotation[1] << "," << rotation[2] << ";"; + logFile << " translation: " << translation[0] << "," << translation[1] << "," << translation[2] << "\n"; + } + fiberBundleTransformed->TransformFibers(rotation[0],rotation[1],rotation[2],translation[0],translation[1],translation[2]); + } + } + if (logFile.is_open()) + { + logFile << "DONE"; + logFile.close(); + } + m_StatusText += "\n\n"; + } + else + { ItkDoubleImgType::Pointer intraAxonalVolumeImage = ItkDoubleImgType::New(); intraAxonalVolumeImage->SetSpacing( m_UpsampledSpacing ); intraAxonalVolumeImage->SetOrigin( m_UpsampledOrigin ); intraAxonalVolumeImage->SetDirection( m_Parameters.m_ImageDirection ); intraAxonalVolumeImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->SetBufferedRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->SetRequestedRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->Allocate(); intraAxonalVolumeImage->FillBuffer(0); - // generate fiber signal (if there are any fiber models present) - if (!m_Parameters.m_FiberModelList.empty()) - for( int i=0; i it2(tempTissueMask, tempTissueMask->GetLargestPossibleRegion()); + while(!it2.IsAtEnd()) + { + if (this->GetAbortGenerateData()) { - vtkCell* cell = fiberPolyData->GetCell(i); - int numPoints = cell->GetNumberOfPoints(); - vtkPoints* points = cell->GetPoints(); + m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; + return; + } - if (numPoints<2) - continue; + if (it2.Get()>0) + { + int numFibs = 3; - for( int j=0; jGetVariateWithClosedRange(voxelVolume); + double sum = 0; + std::vector< double > fractions; + for (int i=0; iGetAbortGenerateData()) - { - m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; - return; - } - - double* temp = points->GetPoint(j); - itk::Point vertex = GetItkPoint(temp); - itk::Vector v = GetItkVector(temp); - - itk::Vector dir(3); - if (jGetPoint(j+1))-v; - else - dir = v-GetItkVector(points->GetPoint(j-1)); - - if (dir.GetSquaredNorm()<0.0001 || dir[0]!=dir[0] || dir[1]!=dir[1] || dir[2]!=dir[2]) - continue; - - itk::Index<3> idx; - itk::ContinuousIndex contIndex; - tempTissueMask->TransformPhysicalPointToIndex(vertex, idx); - tempTissueMask->TransformPhysicalPointToContinuousIndex(vertex, contIndex); + fractions.push_back(m_RandGen->GetVariateWithClosedRange(voxelVolume)/3.0); + sum += fractions.at(i); + } - if (!tempTissueMask->GetLargestPossibleRegion().IsInside(idx) || tempTissueMask->GetPixel(idx)<=0) - continue; + for (int i=0; i dir; + dir[0] = m_RandGen->GetVariateWithClosedRange(2)-1.0; + dir[1] = m_RandGen->GetVariateWithClosedRange(2)-1.0; + dir[2] = m_RandGen->GetVariateWithClosedRange(2)-1.0; + dir.Normalize(); // generate signal for each fiber compartment for (unsigned int k=0; kSetFiberDirection(dir); - DoubleDwiType::PixelType pix = compartments.at(k)->GetPixel(idx); - pix[g] += segmentVolume*m_Parameters.m_FiberModelList[k]->SimulateMeasurement(g); - compartments.at(k)->SetPixel(idx, pix); + DoubleDwiType::PixelType pix = compartments.at(k)->GetPixel(it2.GetIndex()); + pix += (volume/voxelVolume)*fractions.at(i)*m_Parameters.m_FiberModelList[k]->SimulateMeasurement(); + compartments.at(k)->SetPixel(it2.GetIndex(), pix); } - - // update fiber volume image - double vol = intraAxonalVolumeImage->GetPixel(idx) + segmentVolume; - intraAxonalVolumeImage->SetPixel(idx, vol); - if (g==0 && vol>maxVolume) - maxVolume = vol; } - // progress report - ++disp; - unsigned long newTick = 50*disp.count()/disp.expected_count(); - for (unsigned int tick = 0; tick<(newTick-lastTick); tick++) - m_StatusText += "*"; - lastTick = newTick; + intraAxonalVolumeImage->SetPixel(it2.GetIndex(), volume); + if (volume>maxVolume) + maxVolume = volume; } + ++it2; + } + + // generate non-fiber signal ImageRegionIterator it3(tempTissueMask, tempTissueMask->GetLargestPossibleRegion()); - double fact = 1; - if (m_Parameters.m_AxonRadius<0.0001 || maxVolume>voxelVolume) - fact = voxelVolume/maxVolume; while(!it3.IsAtEnd()) { if (it3.Get()>0) { DoubleDwiType::IndexType index = it3.GetIndex(); // get fiber volume fraction - double intraAxonalVolume = intraAxonalVolumeImage->GetPixel(index)*fact; - - for (unsigned int i=0; iGetPixel(index); - pix[g] *= fact; - compartments.at(i)->SetPixel(index, pix); - } + double intraAxonalVolume = intraAxonalVolumeImage->GetPixel(index); if (intraAxonalVolume>0.0001 && m_Parameters.m_DoDisablePartialVolume) // only fiber in voxel { DoubleDwiType::PixelType pix = compartments.at(0)->GetPixel(index); - pix[g] *= voxelVolume/intraAxonalVolume; + pix *= voxelVolume/intraAxonalVolume; compartments.at(0)->SetPixel(index, pix); m_VolumeFractions.at(0)->SetPixel(index, 1); for (unsigned int i=1; iGetPixel(index); - pix[g] = 0; + DoubleDwiType::PixelType pix; pix.Fill(0.0); compartments.at(i)->SetPixel(index, pix); } } else { m_VolumeFractions.at(0)->SetPixel(index, intraAxonalVolume/voxelVolume); double extraAxonalVolume = voxelVolume-intraAxonalVolume; // non-fiber volume double interAxonalVolume = 0; if (m_Parameters.m_FiberModelList.size()>1) interAxonalVolume = extraAxonalVolume * intraAxonalVolume/voxelVolume; // inter-axonal fraction of non fiber compartment scales linearly with f double other = extraAxonalVolume - interAxonalVolume; // rest of compartment double singleinter = interAxonalVolume/(m_Parameters.m_FiberModelList.size()-1); // adjust non-fiber and intra-axonal signal for (unsigned int i=1; iGetPixel(index); if (intraAxonalVolume>0) // remove scaling by intra-axonal volume from inter-axonal compartment - pix[g] /= intraAxonalVolume; - pix[g] *= singleinter; + pix /= intraAxonalVolume; + pix *= singleinter; compartments.at(i)->SetPixel(index, pix); m_VolumeFractions.at(i)->SetPixel(index, singleinter/voxelVolume); } for (unsigned int i=0; i point; tempTissueMask->TransformIndexToPhysicalPoint(index, point); - if (m_Parameters.m_DoAddMotion) - { - if (m_Parameters.m_DoRandomizeMotion && g>0) - point = fiberBundle->TransformPoint(point.GetVnlVector(), -rotation[0],-rotation[1],-rotation[2],-translation[0],-translation[1],-translation[2]); - else - point = fiberBundle->TransformPoint(point.GetVnlVector(), -rotation[0]*g,-rotation[1]*g,-rotation[2]*g,-translation[0]*g,-translation[1]*g,-translation[2]*g); - } - double weight = 1; if (m_Parameters.m_NonFiberModelList.size()>1) - { - DoubleDwiType::IndexType newIndex; - m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->TransformPhysicalPointToIndex(point, newIndex); - if (!m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion().IsInside(newIndex)) - { - MITK_INFO << index; - MITK_INFO << point; - MITK_INFO << newIndex; - - MITK_WARN << "Volume fraction image is too small for the chosen motion artifacts! Due to motion a volume fraction outside of the specified image volume is requested."; - continue; - } - weight = m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetPixel(newIndex); - } + weight = m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetPixel(index); DoubleDwiType::Pointer doubleDwi = compartments.at(i+m_Parameters.m_FiberModelList.size()); DoubleDwiType::PixelType pix = doubleDwi->GetPixel(index); - pix[g] += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement(g)*other*weight; + pix += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement()*other*weight; doubleDwi->SetPixel(index, pix); m_VolumeFractions.at(i+m_Parameters.m_FiberModelList.size())->SetPixel(index, other/voxelVolume*weight); } } } ++it3; } - - // move fibers - if (m_Parameters.m_DoAddMotion && gGetDeepCopy(); - rotation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[0]*2)-m_Parameters.m_Rotation[0]; - rotation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[1]*2)-m_Parameters.m_Rotation[1]; - rotation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[2]*2)-m_Parameters.m_Rotation[2]; - translation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[0]*2)-m_Parameters.m_Translation[0]; - translation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[1]*2)-m_Parameters.m_Translation[1]; - translation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[2]*2)-m_Parameters.m_Translation[2]; - } - - // rotate mask image - if (maskImageSet) - { - ImageRegionIterator maskIt(upsampledTissueMask, upsampledTissueMask->GetLargestPossibleRegion()); - tempTissueMask->FillBuffer(0); - - while(!maskIt.IsAtEnd()) - { - if (maskIt.Get()<=0) - { - ++maskIt; - continue; - } - - DoubleDwiType::IndexType index = maskIt.GetIndex(); - itk::Point point; - upsampledTissueMask->TransformIndexToPhysicalPoint(index, point); - if (m_Parameters.m_DoRandomizeMotion) - point = fiberBundle->TransformPoint(point.GetVnlVector(), rotation[0],rotation[1],rotation[2],translation[0],translation[1],translation[2]); - else - point = fiberBundle->TransformPoint(point.GetVnlVector(), rotation[0]*(g+1),rotation[1]*(g+1),rotation[2]*(g+1),translation[0]*(g+1),translation[1]*(g+1),translation[2]*(g+1)); - - tempTissueMask->TransformPhysicalPointToIndex(point, index); - if (tempTissueMask->GetLargestPossibleRegion().IsInside(index)) - tempTissueMask->SetPixel(index,100); - ++maskIt; - } - } - - // rotate fibers - if (logFile.is_open()) - { - logFile << g+1 << " rotation: " << rotation[0] << "," << rotation[1] << "," << rotation[2] << ";"; - logFile << " translation: " << translation[0] << "," << translation[1] << "," << translation[2] << "\n"; - } - fiberBundleTransformed->TransformFibers(rotation[0],rotation[1],rotation[2],translation[0],translation[1],translation[2]); - } } - if (logFile.is_open()) - { - logFile << "DONE"; - logFile.close(); - } - m_StatusText += "\n\n"; + if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } // do k-space stuff DoubleDwiType::Pointer doubleOutImage; if (m_Parameters.m_Spikes>0 || m_Parameters.m_FrequencyMap.IsNotNull() || m_Parameters.m_KspaceLineOffset>0 || m_Parameters.m_DoSimulateRelaxation || m_Parameters.m_EddyStrength>0 || m_Parameters.m_DoAddGibbsRinging || m_Parameters.m_CroppingFactor<1.0) { m_StatusText += this->GetTime()+" > Adjusting complex signal\n"; MITK_INFO << "Adjusting complex signal:"; if (m_Parameters.m_DoSimulateRelaxation) m_StatusText += "Simulating signal relaxation\n"; if (m_Parameters.m_FrequencyMap.IsNotNull()) m_StatusText += "Simulating distortions\n"; if (m_Parameters.m_DoAddGibbsRinging) m_StatusText += "Simulating ringing artifacts\n"; if (m_Parameters.m_EddyStrength>0) m_StatusText += "Simulating eddy currents\n"; if (m_Parameters.m_Spikes>0) m_StatusText += "Simulating spikes\n"; if (m_Parameters.m_CroppingFactor<1.0) m_StatusText += "Simulating aliasing artifacts\n"; if (m_Parameters.m_KspaceLineOffset>0) m_StatusText += "Simulating ghosts\n"; doubleOutImage = DoKspaceStuff(compartments); m_Parameters.m_SignalScale = 1; } else { m_StatusText += this->GetTime()+" > Summing compartments\n"; MITK_INFO << "Summing compartments"; doubleOutImage = compartments.at(0); for (unsigned int i=1; i::Pointer adder = itk::AddImageFilter< DoubleDwiType, DoubleDwiType, DoubleDwiType>::New(); adder->SetInput1(doubleOutImage); adder->SetInput2(compartments.at(i)); adder->Update(); doubleOutImage = adder->GetOutput(); } } if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } m_StatusText += this->GetTime()+" > Finalizing image\n"; MITK_INFO << "Finalizing image"; if (m_Parameters.m_SignalScale>1) m_StatusText += " Scaling signal\n"; if (m_Parameters.m_NoiseModel!=NULL) m_StatusText += " Adding noise\n"; unsigned int window = 0; unsigned int min = itk::NumericTraits::max(); ImageRegionIterator it4 (outImage, outImage->GetLargestPossibleRegion()); DoubleDwiType::PixelType signal; signal.SetSize(m_Parameters.GetNumVolumes()); boost::progress_display disp2(outImage->GetLargestPossibleRegion().GetNumberOfPixels()); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; lastTick = 0; while(!it4.IsAtEnd()) { if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } ++disp2; unsigned long newTick = 50*disp2.count()/disp2.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; typename OutputImageType::IndexType index = it4.GetIndex(); signal = doubleOutImage->GetPixel(index)*m_Parameters.m_SignalScale; if (m_Parameters.m_NoiseModel!=NULL) { DoubleDwiType::PixelType accu = signal; accu.Fill(0.0); for (unsigned int i=0; iAddNoise(temp); accu += temp; } signal = accu/m_Parameters.m_Repetitions; } for (unsigned int i=0; i0) signal[i] = floor(signal[i]+0.5); else signal[i] = ceil(signal[i]-0.5); if (!m_Parameters.IsBaselineIndex(i) && signal[i]>window) window = signal[i]; if (!m_Parameters.IsBaselineIndex(i) && signal[i]SetNthOutput(0, outImage); m_StatusText += "\n\n"; m_StatusText += "Finished simulation\n"; m_StatusText += "Simulation time: "+GetTime(); m_TimeProbe.Stop(); } template< class PixelType > itk::Point TractsToDWIImageFilter< PixelType >::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class PixelType > itk::Vector TractsToDWIImageFilter< PixelType >::GetItkVector(double point[3]) { itk::Vector itkVector; itkVector[0] = point[0]; itkVector[1] = point[1]; itkVector[2] = point[2]; return itkVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(double point[3]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(Vector& vector) { vnl_vector_fixed vnlVector; vnlVector[0] = vector[0]; vnlVector[1] = vector[1]; vnlVector[2] = vector[2]; return vnlVector; } template< class PixelType > double TractsToDWIImageFilter< PixelType >::RoundToNearest(double num) { return (num > 0.0) ? floor(num + 0.5) : ceil(num - 0.5); } template< class PixelType > std::string TractsToDWIImageFilter< PixelType >::GetTime() { m_TimeProbe.Stop(); unsigned long total = RoundToNearest(m_TimeProbe.GetTotal()); unsigned long hours = total/3600; unsigned long minutes = (total%3600)/60; unsigned long seconds = total%60; std::string out = ""; out.append(boost::lexical_cast(hours)); out.append(":"); out.append(boost::lexical_cast(minutes)); out.append(":"); out.append(boost::lexical_cast(seconds)); m_TimeProbe.Start(); return out; } } diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToVectorImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToVectorImageFilter.cpp index b431eff166..ef8b897311 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToVectorImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToVectorImageFilter.cpp @@ -1,832 +1,835 @@ #include "itkTractsToVectorImageFilter.h" // VTK #include #include #include // ITK #include #include // misc #define _USE_MATH_DEFINES #include #include namespace itk{ static bool CompareVectorLengths(const vnl_vector_fixed< double, 3 >& v1, const vnl_vector_fixed< double, 3 >& v2) { return (v1.magnitude()>v2.magnitude()); } template< class PixelType > TractsToVectorImageFilter< PixelType >::TractsToVectorImageFilter(): m_AngularThreshold(0.7), m_Epsilon(0.999), m_MaskImage(NULL), m_NormalizeVectors(false), m_UseWorkingCopy(true), m_UseTrilinearInterpolation(false), m_MaxNumDirections(3), m_Thres(0.5), m_NumDirectionsImage(NULL) { this->SetNumberOfRequiredOutputs(1); } template< class PixelType > TractsToVectorImageFilter< PixelType >::~TractsToVectorImageFilter() { } template< class PixelType > vnl_vector_fixed TractsToVectorImageFilter< PixelType >::GetVnlVector(double point[]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } template< class PixelType > itk::Point TractsToVectorImageFilter< PixelType >::GetItkPoint(double point[]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class PixelType > void TractsToVectorImageFilter< PixelType >::GenerateData() { mitk::BaseGeometry::Pointer geometry = m_FiberBundle->GetGeometry(); // calculate new image parameters itk::Vector spacing; itk::Point origin; itk::Matrix direction; ImageRegion<3> imageRegion; if (!m_MaskImage.IsNull()) { spacing = m_MaskImage->GetSpacing(); imageRegion = m_MaskImage->GetLargestPossibleRegion(); origin = m_MaskImage->GetOrigin(); direction = m_MaskImage->GetDirection(); } else { spacing = geometry->GetSpacing(); origin = geometry->GetOrigin(); mitk::BaseGeometry::BoundsArrayType bounds = geometry->GetBounds(); origin[0] += bounds.GetElement(0); origin[1] += bounds.GetElement(2); origin[2] += bounds.GetElement(4); for (int i=0; i<3; i++) for (int j=0; j<3; j++) direction[j][i] = geometry->GetMatrixColumn(i)[j]; imageRegion.SetSize(0, geometry->GetExtent(0)); imageRegion.SetSize(1, geometry->GetExtent(1)); imageRegion.SetSize(2, geometry->GetExtent(2)); m_MaskImage = ItkUcharImgType::New(); m_MaskImage->SetSpacing( spacing ); m_MaskImage->SetOrigin( origin ); m_MaskImage->SetDirection( direction ); m_MaskImage->SetRegions( imageRegion ); m_MaskImage->Allocate(); m_MaskImage->FillBuffer(1); } OutputImageType::RegionType::SizeType outImageSize = imageRegion.GetSize(); m_OutImageSpacing = m_MaskImage->GetSpacing(); m_ClusteredDirectionsContainer = ContainerType::New(); // initialize crossings image m_CrossingsImage = ItkUcharImgType::New(); m_CrossingsImage->SetSpacing( spacing ); m_CrossingsImage->SetOrigin( origin ); m_CrossingsImage->SetDirection( direction ); m_CrossingsImage->SetRegions( imageRegion ); m_CrossingsImage->Allocate(); m_CrossingsImage->FillBuffer(0); // initialize num directions image m_NumDirectionsImage = ItkUcharImgType::New(); m_NumDirectionsImage->SetSpacing( spacing ); m_NumDirectionsImage->SetOrigin( origin ); m_NumDirectionsImage->SetDirection( direction ); m_NumDirectionsImage->SetRegions( imageRegion ); m_NumDirectionsImage->Allocate(); m_NumDirectionsImage->FillBuffer(0); // resample fiber bundle double minSpacing = 1; if(m_OutImageSpacing[0]GetDeepCopy(); // resample fiber bundle for sufficient voxel coverage m_FiberBundle->ResampleFibers(minSpacing/3); // iterate over all fibers vtkSmartPointer fiberPolyData = m_FiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); int numFibers = m_FiberBundle->GetNumFibers(); itk::TimeProbe clock; m_DirectionsContainer = ContainerType::New(); if (m_UseTrilinearInterpolation) MITK_INFO << "Generating directions from tractogram (trilinear interpolation)"; else MITK_INFO << "Generating directions from tractogram"; boost::progress_display disp(numFibers); for( int i=0; iGetNextCell ( numPoints, points ); if (numPoints<2) continue; itk::Index<3> index; index.Fill(0); itk::ContinuousIndex contIndex; vnl_vector_fixed dir, wDir; itk::Point worldPos; vnl_vector v; for( int j=0; jGetPoint(points[j]); worldPos = GetItkPoint(temp); v = GetVnlVector(temp); dir = GetVnlVector(fiberPolyData->GetPoint(points[j+1]))-v; dir.normalize(); m_MaskImage->TransformPhysicalPointToIndex(worldPos, index); m_MaskImage->TransformPhysicalPointToContinuousIndex(worldPos, contIndex); if (m_MaskImage->GetPixel(index)==0) continue; if (!m_UseTrilinearInterpolation) { if (index[0] < 0 || (unsigned long)index[0] >= outImageSize[0]) continue; if (index[1] < 0 || (unsigned long)index[1] >= outImageSize[1]) continue; if (index[2] < 0 || (unsigned long)index[2] >= outImageSize[2]) continue; unsigned int idx = index[0] + outImageSize[0]*(index[1] + outImageSize[1]*index[2]); DirectionContainerType::Pointer dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, dir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), dir); } else { dirCont->InsertElement(0, dir); m_DirectionsContainer->InsertElement(idx, dirCont); } continue; } double frac_x = contIndex[0] - index[0]; double frac_y = contIndex[1] - index[1]; double frac_z = contIndex[2] - index[2]; if (frac_x<0) { index[0] -= 1; frac_x += 1; } if (frac_y<0) { index[1] -= 1; frac_y += 1; } if (frac_z<0) { index[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (index[0] < 0 || (unsigned long)index[0] >= outImageSize[0]-1) continue; if (index[1] < 0 || (unsigned long)index[1] >= outImageSize[1]-1) continue; if (index[2] < 0 || (unsigned long)index[2] >= outImageSize[2]-1) continue; DirectionContainerType::Pointer dirCont; int idx; wDir = dir; double weight = ( frac_x)*( frac_y)*( frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0] + outImageSize[0]*(index[1] + outImageSize[1]*index[2] ); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } wDir = dir; weight = ( frac_x)*(1-frac_y)*( frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0] + outImageSize[0]*(index[1]+1+ outImageSize[1]*index[2] ); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } wDir = dir; weight = ( frac_x)*( frac_y)*(1-frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0] + outImageSize[0]*(index[1] + outImageSize[1]*index[2]+outImageSize[1]); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } wDir = dir; weight = ( frac_x)*(1-frac_y)*(1-frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0] + outImageSize[0]*(index[1]+1+ outImageSize[1]*index[2]+outImageSize[1]); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } wDir = dir; weight = (1-frac_x)*( frac_y)*( frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0]+1 + outImageSize[0]*(index[1] + outImageSize[1]*index[2] ); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } wDir = dir; weight = (1-frac_x)*( frac_y)*(1-frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0]+1 + outImageSize[0]*(index[1] + outImageSize[1]*index[2]+outImageSize[1]); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } wDir = dir; weight = (1-frac_x)*(1-frac_y)*( frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0]+1 + outImageSize[0]*(index[1]+1+ outImageSize[1]*index[2] ); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } wDir = dir; weight = (1-frac_x)*(1-frac_y)*(1-frac_z); if (weight>m_Thres) { wDir *= weight; idx = index[0]+1 + outImageSize[0]*(index[1]+1+ outImageSize[1]*index[2]+outImageSize[1]); dirCont = DirectionContainerType::New(); if (m_DirectionsContainer->IndexExists(idx)) { dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull()) { dirCont = DirectionContainerType::New(); dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } else dirCont->InsertElement(dirCont->Size(), wDir); } else { dirCont->InsertElement(0, wDir); m_DirectionsContainer->InsertElement(idx, dirCont); } } } clock.Stop(); } vtkSmartPointer m_VtkCellArray = vtkSmartPointer::New(); vtkSmartPointer m_VtkPoints = vtkSmartPointer::New(); itk::ImageRegionIterator dirIt(m_NumDirectionsImage, m_NumDirectionsImage->GetLargestPossibleRegion()); itk::ImageRegionIterator crossIt(m_CrossingsImage, m_CrossingsImage->GetLargestPossibleRegion()); m_DirectionImageContainer = DirectionImageContainerType::New(); unsigned int maxNumDirections = 0; MITK_INFO << "Clustering directions"; boost::progress_display disp2(outImageSize[0]*outImageSize[1]*outImageSize[2]); for(crossIt.GoToBegin(); !crossIt.IsAtEnd(); ++crossIt) { ++disp2; OutputImageType::IndexType index = crossIt.GetIndex(); int idx = index[0]+(index[1]+index[2]*outImageSize[1])*outImageSize[0]; if (!m_DirectionsContainer->IndexExists(idx)) { ++dirIt; continue; } DirectionContainerType::Pointer dirCont = m_DirectionsContainer->GetElement(idx); if (dirCont.IsNull() || index[0] < 0 || (unsigned long)index[0] >= outImageSize[0] || index[1] < 0 || (unsigned long)index[1] >= outImageSize[1] || index[2] < 0 || (unsigned long)index[2] >= outImageSize[2]) { ++dirIt; continue; } std::vector< DirectionType > directions; for (unsigned int i=0; iSize(); i++) if (dirCont->ElementAt(i).magnitude()>0.0001) directions.push_back(dirCont->ElementAt(i)); if (!directions.empty()) directions = FastClustering(directions); std::sort( directions.begin(), directions.end(), CompareVectorLengths ); if ( directions.size() > maxNumDirections ) { for (unsigned int i=maxNumDirections; i(directions.size(), m_MaxNumDirections); i++) { ItkDirectionImageType::Pointer directionImage = ItkDirectionImageType::New(); directionImage->SetSpacing( spacing ); directionImage->SetOrigin( origin ); directionImage->SetDirection( direction ); directionImage->SetRegions( imageRegion ); directionImage->Allocate(); Vector< float, 3 > nullVec; nullVec.Fill(0.0); directionImage->FillBuffer(nullVec); m_DirectionImageContainer->InsertElement(i, directionImage); } maxNumDirections = std::min(directions.size(), m_MaxNumDirections); } unsigned int numDir = directions.size(); if (numDir>m_MaxNumDirections) numDir = m_MaxNumDirections; for (unsigned int i=0; i container = vtkSmartPointer::New(); itk::ContinuousIndex center; center[0] = index[0]; center[1] = index[1]; center[2] = index[2]; itk::Point worldCenter; m_MaskImage->TransformContinuousIndexToPhysicalPoint( center, worldCenter ); DirectionType dir = directions.at(i); + if (dir.magnitude()<0.4) + continue; + // set direction image pixel ItkDirectionImageType::Pointer directionImage = m_DirectionImageContainer->GetElement(i); Vector< float, 3 > pixel; pixel.SetElement(0, dir[0]); pixel.SetElement(1, dir[1]); pixel.SetElement(2, dir[2]); directionImage->SetPixel(index, pixel); // add direction to vector field (with spacing compensation) itk::Point worldStart; worldStart[0] = worldCenter[0]-dir[0]/2*minSpacing; worldStart[1] = worldCenter[1]-dir[1]/2*minSpacing; worldStart[2] = worldCenter[2]-dir[2]/2*minSpacing; vtkIdType id = m_VtkPoints->InsertNextPoint(worldStart.GetDataPointer()); container->GetPointIds()->InsertNextId(id); itk::Point worldEnd; worldEnd[0] = worldCenter[0]+dir[0]/2*minSpacing; worldEnd[1] = worldCenter[1]+dir[1]/2*minSpacing; worldEnd[2] = worldCenter[2]+dir[2]/2*minSpacing; id = m_VtkPoints->InsertNextPoint(worldEnd.GetDataPointer()); container->GetPointIds()->InsertNextId(id); m_VtkCellArray->InsertNextCell(container); } dirIt.Set(numDir); ++dirIt; } vtkSmartPointer directionsPolyData = vtkSmartPointer::New(); directionsPolyData->SetPoints(m_VtkPoints); directionsPolyData->SetLines(m_VtkCellArray); m_OutputFiberBundle = mitk::FiberBundleX::New(directionsPolyData); } template< class PixelType > std::vector< vnl_vector_fixed< double, 3 > > TractsToVectorImageFilter< PixelType >::FastClustering(std::vector< vnl_vector_fixed< double, 3 > >& inDirs) { std::vector< vnl_vector_fixed< double, 3 > > outDirs; if (inDirs.empty()) return outDirs; vnl_vector_fixed< double, 3 > oldMean, currentMean, workingMean; std::vector< vnl_vector_fixed< double, 3 > > normalizedDirs; std::vector< int > touched; for (unsigned int i=0; i0.0001) { counter = 0; oldMean = currentMean; workingMean = oldMean; workingMean.normalize(); currentMean.fill(0.0); for (unsigned int i=0; i=m_AngularThreshold) { currentMean += inDirs[i]; touched[i] = 1; counter++; } else if (-angle>=m_AngularThreshold) { currentMean -= inDirs[i]; touched[i] = 1; counter++; } } } // found stable mean if (counter>0) { currentMean /= counter; double mag = currentMean.magnitude(); if (mag>0) { if (mag>max) max = mag; outDirs.push_back(currentMean); } } // find next unused seed free = false; for (unsigned int i=0; i0) for (unsigned int i=0; i std::vector< vnl_vector_fixed< double, 3 > > TractsToVectorImageFilter< PixelType >::Clustering(std::vector< vnl_vector_fixed< double, 3 > >& inDirs) { std::vector< vnl_vector_fixed< double, 3 > > outDirs; if (inDirs.empty()) return outDirs; vnl_vector_fixed< double, 3 > oldMean, currentMean, workingMean; std::vector< vnl_vector_fixed< double, 3 > > normalizedDirs; std::vector< int > touched; for (std::size_t i=0; i0.0001) { counter = 0; oldMean = currentMean; workingMean = oldMean; workingMean.normalize(); currentMean.fill(0.0); for (std::size_t i=0; i=m_AngularThreshold) { currentMean += inDirs[i]; counter++; } else if (-angle>=m_AngularThreshold) { currentMean -= inDirs[i]; counter++; } } } // found stable mean if (counter>0) { bool add = true; vnl_vector_fixed< double, 3 > normMean = currentMean; normMean.normalize(); for (std::size_t i=0; i dir = outDirs[i]; dir.normalize(); if ((normMean-dir).magnitude()<=0.0001) { add = false; break; } } currentMean /= counter; if (add) { double mag = currentMean.magnitude(); if (mag>0) { if (mag>max) max = mag; outDirs.push_back(currentMean); } } } } if (m_NormalizeVectors) for (std::size_t i=0; i0) for (std::size_t i=0; i TractsToVectorImageFilter< PixelType >::DirectionContainerType::Pointer TractsToVectorImageFilter< PixelType >::MeanShiftClustering(DirectionContainerType::Pointer dirCont) { DirectionContainerType::Pointer container = DirectionContainerType::New(); double max = 0; for (DirectionContainerType::ConstIterator it = dirCont->Begin(); it!=dirCont->End(); ++it) { vnl_vector_fixed mean = ClusterStep(dirCont, it.Value()); if (mean.is_zero()) continue; bool addMean = true; for (DirectionContainerType::ConstIterator it2 = container->Begin(); it2!=container->End(); ++it2) { vnl_vector_fixed dir = it2.Value(); double angle = fabs(dot_product(mean, dir)/(mean.magnitude()*dir.magnitude())); if (angle>=m_Epsilon) { addMean = false; break; } } if (addMean) { if (m_NormalizeVectors) mean.normalize(); else if (mean.magnitude()>max) max = mean.magnitude(); container->InsertElement(container->Size(), mean); } } // max normalize voxel directions if (max>0 && !m_NormalizeVectors) for (std::size_t i=0; iSize(); i++) container->ElementAt(i) /= max; if (container->Size()Size()) return MeanShiftClustering(container); else return container; } template< class PixelType > vnl_vector_fixed TractsToVectorImageFilter< PixelType >::ClusterStep(DirectionContainerType::Pointer dirCont, vnl_vector_fixed currentMean) { vnl_vector_fixed newMean; newMean.fill(0); for (DirectionContainerType::ConstIterator it = dirCont->Begin(); it!=dirCont->End(); ++it) { vnl_vector_fixed dir = it.Value(); double angle = dot_product(currentMean, dir)/(currentMean.magnitude()*dir.magnitude()); if (angle>=m_AngularThreshold) newMean += dir; else if (-angle>=m_AngularThreshold) newMean -= dir; } if (fabs(dot_product(currentMean, newMean)/(currentMean.magnitude()*newMean.magnitude()))>=m_Epsilon || newMean.is_zero()) return newMean; else return ClusterStep(dirCont, newMean); } } diff --git a/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp b/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp index c6c0c2a327..914d9df06f 100755 --- a/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp +++ b/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp @@ -1,163 +1,163 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include #include #include #include #include #include "ctkCommandLineParser.h" #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include int FiberDirectionExtraction(int argc, char* argv[]) { ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::String, "input tractogram (.fib, vtk ascii file format)", us::Any(), false); parser.addArgument("out", "o", ctkCommandLineParser::String, "output root", us::Any(), false); parser.addArgument("mask", "m", ctkCommandLineParser::String, "mask image"); parser.addArgument("athresh", "a", ctkCommandLineParser::Float, "angular threshold in degrees. closer fiber directions are regarded as one direction and clustered together.", 25, true); parser.addArgument("verbose", "v", ctkCommandLineParser::Bool, "output optional and intermediate calculation results"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; string fibFile = us::any_cast(parsedArgs["input"]); string maskImage(""); if (parsedArgs.count("mask")) maskImage = us::any_cast(parsedArgs["mask"]); float angularThreshold = 25; if (parsedArgs.count("athresh")) angularThreshold = us::any_cast(parsedArgs["athresh"]); string outRoot = us::any_cast(parsedArgs["out"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); try { typedef itk::Image ItkUcharImgType; typedef itk::Image< itk::Vector< float, 3>, 3 > ItkDirectionImage3DType; typedef itk::VectorContainer< unsigned int, ItkDirectionImage3DType::Pointer > ItkDirectionImageContainerType; // load fiber bundle mitk::FiberBundleX::Pointer inputTractogram = dynamic_cast(mitk::IOUtil::LoadDataNode(fibFile)->GetData()); // load/create mask image ItkUcharImgType::Pointer itkMaskImage = NULL; if (maskImage.compare("")!=0) { MITK_INFO << "Using mask image"; itkMaskImage = ItkUcharImgType::New(); mitk::Image::Pointer mitkMaskImage = dynamic_cast(mitk::IOUtil::LoadDataNode(maskImage)->GetData()); mitk::CastToItkImage(mitkMaskImage, itkMaskImage); } // extract directions from fiber bundle itk::TractsToVectorImageFilter::Pointer fOdfFilter = itk::TractsToVectorImageFilter::New(); fOdfFilter->SetFiberBundle(inputTractogram); fOdfFilter->SetMaskImage(itkMaskImage); fOdfFilter->SetAngularThreshold(cos(angularThreshold*M_PI/180)); - fOdfFilter->SetNormalizeVectors(true); + fOdfFilter->SetNormalizeVectors(false); fOdfFilter->SetUseWorkingCopy(false); fOdfFilter->Update(); ItkDirectionImageContainerType::Pointer directionImageContainer = fOdfFilter->GetDirectionImageContainer(); // write direction images for (unsigned int i=0; iSize(); i++) { itk::TractsToVectorImageFilter::ItkDirectionImageType::Pointer itkImg = directionImageContainer->GetElement(i); typedef itk::ImageFileWriter< itk::TractsToVectorImageFilter::ItkDirectionImageType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_DIRECTION_"); outfilename.append(boost::lexical_cast(i)); outfilename.append(".nrrd"); MITK_INFO << "writing " << outfilename; writer->SetFileName(outfilename.c_str()); writer->SetInput(itkImg); writer->Update(); } if (verbose) { // write vector field mitk::FiberBundleX::Pointer directions = fOdfFilter->GetOutputFiberBundle(); mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) { if ( (*it)->CanWriteBaseDataType(directions.GetPointer()) ) { string outfilename = outRoot; outfilename.append("_VECTOR_FIELD.fib"); (*it)->SetFileName( outfilename.c_str() ); (*it)->DoWrite( directions.GetPointer() ); } } // write num direction image { ItkUcharImgType::Pointer numDirImage = fOdfFilter->GetNumDirectionsImage(); typedef itk::ImageFileWriter< ItkUcharImgType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_NUM_DIRECTIONS.nrrd"); MITK_INFO << "writing " << outfilename; writer->SetFileName(outfilename.c_str()); writer->SetInput(numDirImage); writer->Update(); } } MITK_INFO << "DONE"; } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } RegisterDiffusionMiniApp(FiberDirectionExtraction);