diff --git a/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp b/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp index 284619a973..ab4d7f5781 100644 --- a/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp +++ b/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp @@ -1,810 +1,807 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date$ Version: $Revision$ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "mitkGeometry2DDataVtkMapper3D.h" #include "mitkImageVtkMapper2D.h" #include "mitkLookupTableProperty.h" #include "mitkSmartPointerProperty.h" #include "mitkSurface.h" #include "mitkVtkRepresentationProperty.h" #include "mitkWeakPointerProperty.h" #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateOr.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace mitk { Geometry2DDataVtkMapper3D::Geometry2DDataVtkMapper3D() : m_DisplayNormals(false), m_ColorTwoSides(false), m_InvertNormals(true), m_NormalsActorAdded(false), m_DataStorage(NULL) { m_EdgeTuber = vtkTubeFilter::New(); m_EdgeMapper = vtkPolyDataMapper::New(); // Disable OGL Displaylist for the "Edge". Workaround for Bug #1787 // m_EdgeMapper->ImmediateModeRenderingOn(); m_SurfaceCreator = Geometry2DDataToSurfaceFilter::New(); m_SurfaceCreatorBoundingBox = BoundingBox::New(); m_SurfaceCreatorPointsContainer = BoundingBox::PointsContainer::New(); m_Edges = vtkFeatureEdges::New(); m_Edges->BoundaryEdgesOn(); m_Edges->FeatureEdgesOff(); m_Edges->NonManifoldEdgesOff(); m_Edges->ManifoldEdgesOff(); m_EdgeTransformer = vtkTransformPolyDataFilter::New(); m_NormalsTransformer = vtkTransformPolyDataFilter::New(); m_EdgeActor = vtkActor::New(); m_BackgroundMapper = vtkPolyDataMapper::New(); m_BackgroundActor = vtkActor::New(); m_Prop3DAssembly = vtkAssembly::New(); m_ImageAssembly = vtkAssembly::New(); m_SurfaceCreatorBoundingBox->SetPoints( m_SurfaceCreatorPointsContainer ); m_Cleaner = vtkCleanPolyData::New(); m_Cleaner->PieceInvariantOn(); m_Cleaner->ConvertLinesToPointsOn(); m_Cleaner->ConvertPolysToLinesOn(); m_Cleaner->ConvertStripsToPolysOn(); m_Cleaner->PointMergingOn(); // Make sure that the FeatureEdge algorithm is initialized with a "valid" // (though empty) input vtkPolyData *emptyPolyData = vtkPolyData::New(); m_Cleaner->SetInput( emptyPolyData ); emptyPolyData->Delete(); m_Edges->SetInput(m_Cleaner->GetOutput()); m_EdgeTransformer->SetInput( m_Edges->GetOutput() ); m_EdgeTuber->SetInput( m_EdgeTransformer->GetOutput() ); m_EdgeTuber->SetVaryRadiusToVaryRadiusOff(); m_EdgeTuber->SetNumberOfSides( 12 ); m_EdgeTuber->CappingOn(); m_EdgeMapper->SetInput( m_EdgeTuber->GetOutput() ); m_EdgeMapper->ScalarVisibilityOff(); m_BackgroundMapper->SetInput(emptyPolyData); // m_BackgroundMapper->ImmediateModeRenderingOn(); m_EdgeActor->SetMapper( m_EdgeMapper ); m_BackgroundActor->GetProperty()->SetAmbient( 0.5 ); m_BackgroundActor->GetProperty()->SetColor( 0.0, 0.0, 0.0 ); m_BackgroundActor->GetProperty()->SetOpacity( 1.0 ); m_BackgroundActor->SetMapper( m_BackgroundMapper ); vtkProperty * backfaceProperty = m_BackgroundActor->MakeProperty(); backfaceProperty->SetColor( 0.0, 0.0, 0.0 ); m_BackgroundActor->SetBackfaceProperty( backfaceProperty ); backfaceProperty->Delete(); m_FrontHedgeHog = vtkHedgeHog::New(); m_BackHedgeHog = vtkHedgeHog::New(); m_FrontNormalsMapper = vtkPolyDataMapper::New(); m_FrontNormalsMapper->SetInput( m_FrontHedgeHog->GetOutput() ); m_BackNormalsMapper = vtkPolyDataMapper::New(); m_Prop3DAssembly->AddPart( m_EdgeActor ); m_Prop3DAssembly->AddPart( m_ImageAssembly ); m_FrontNormalsActor = vtkActor::New(); m_FrontNormalsActor->SetMapper(m_FrontNormalsMapper); m_BackNormalsActor = vtkActor::New(); m_BackNormalsActor->SetMapper(m_BackNormalsMapper); m_DefaultLookupTable = vtkLookupTable::New(); m_DefaultLookupTable->SetTableRange( -1024.0, 4096.0 ); m_DefaultLookupTable->SetSaturationRange( 0.0, 0.0 ); m_DefaultLookupTable->SetHueRange( 0.0, 0.0 ); m_DefaultLookupTable->SetValueRange( 0.0, 1.0 ); m_DefaultLookupTable->Build(); m_DefaultLookupTable->SetTableValue( 0, 0.0, 0.0, 0.0, 0.0 ); m_ImageMapperDeletedCommand = MemberCommandType::New(); m_ImageMapperDeletedCommand->SetCallbackFunction( this, &Geometry2DDataVtkMapper3D::ImageMapperDeletedCallback ); } Geometry2DDataVtkMapper3D::~Geometry2DDataVtkMapper3D() { m_ImageAssembly->Delete(); m_Prop3DAssembly->Delete(); m_EdgeTuber->Delete(); m_EdgeMapper->Delete(); m_EdgeTransformer->Delete(); m_Cleaner->Delete(); m_Edges->Delete(); m_NormalsTransformer->Delete(); m_EdgeActor->Delete(); m_BackgroundMapper->Delete(); m_BackgroundActor->Delete(); m_DefaultLookupTable->Delete(); m_FrontNormalsMapper->Delete(); m_FrontNormalsActor->Delete(); m_FrontHedgeHog->Delete(); m_BackNormalsMapper->Delete(); m_BackNormalsActor->Delete(); m_BackHedgeHog->Delete(); // Delete entries in m_ImageActors list one by one m_ImageActors.clear(); LookupTablePropertiesList::iterator it; for(it = m_LookupTableProperties.begin(); it != m_LookupTableProperties.end();++it) { if ( it->second.LookupTableSource != NULL ) { it->second.LookupTableSource->Delete(); it->second.LookupTableSource = NULL; } } m_DataStorage = NULL; } vtkProp* Geometry2DDataVtkMapper3D::GetVtkProp(mitk::BaseRenderer * /*renderer*/) { if ( (this->GetDataNode() != NULL ) && (m_ImageAssembly != NULL) ) { // Do not transform the entire Prop3D assembly, but only the image part // here. The colored frame is transformed elsewhere (via m_EdgeTransformer), // since only vertices should be transformed there, not the poly data // itself, to avoid distortion for anisotropic datasets. m_ImageAssembly->SetUserTransform( this->GetDataNode()->GetVtkTransform() ); } return m_Prop3DAssembly; } void Geometry2DDataVtkMapper3D::UpdateVtkTransform(mitk::BaseRenderer * /*renderer*/) { m_ImageAssembly->SetUserTransform( this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); } const Geometry2DData * Geometry2DDataVtkMapper3D::GetInput() { return static_cast ( GetData() ); } void Geometry2DDataVtkMapper3D::SetDataStorageForTexture(mitk::DataStorage* storage) { if (storage != NULL) { if( m_DataStorage != storage ) { m_DataStorage = storage; this->Modified(); } } } // // METHOD COMMENTED OUT SINCE IT IS CURRENTLY UNUSED // //void //Geometry2DDataVtkMapper3D::BuildPaddedLookupTable( // vtkLookupTable *inputLookupTable, vtkLookupTable *outputLookupTable, // vtkFloatingPointType min, vtkFloatingPointType max ) //{ // // Copy the table values from the input lookup table // vtkUnsignedCharArray *inputTable = vtkUnsignedCharArray::New(); // inputTable->DeepCopy( inputLookupTable->GetTable() ); // // vtkUnsignedCharArray *outputTable = outputLookupTable->GetTable(); // // // Calculate the size of one lookup table "bin" // vtkFloatingPointType binSize = (max - min) / 256.0; // // // Calculate the extended table size, assuming the range [-32767, max], // // increased by 1. // int tableSize = (int) ((max + 32767) / binSize) + 1; // outputLookupTable->SetNumberOfTableValues( tableSize ); // // unsigned char *inputPtr = inputTable->WritePointer( 0, 0 ); // unsigned char *outputPtr = outputTable->WritePointer( 0, 0 ); // // // Initialize the first (translucent) bin. // *outputPtr++ = 0; *outputPtr++ = 0; *outputPtr++ = 0; *outputPtr++ = 0; // // int i; // for ( i = 1; i < tableSize; ++i ) // { // *outputPtr++ = *inputPtr++; // *outputPtr++ = *inputPtr++; // *outputPtr++ = *inputPtr++; // *outputPtr++ = *inputPtr++; // // // While filling the padded part of the table, use the default value // // (the first value of the input table) // if ( i < (tableSize - 256) ) // { // inputPtr -= 4; // } // } // // // Apply the new table range; the lower boundary is decreased by binSize // // since we have one additional translucent bin. // outputLookupTable->SetTableRange( -32767.0 - binSize, max ); // // inputTable->Delete(); //} int Geometry2DDataVtkMapper3D::FindPowerOfTwo( int i ) { int size; for ( --i, size = 1; i > 0; size *= 2 ) { i /= 2; } return size; } void Geometry2DDataVtkMapper3D::ImageMapperDeletedCallback( itk::Object *caller, const itk::EventObject& /*event*/ ) { ImageVtkMapper2D *imageMapper = dynamic_cast< ImageVtkMapper2D * >( caller ); if ( (imageMapper != NULL) ) { if ( m_ImageActors.count( imageMapper ) > 0) { m_ImageActors[imageMapper].m_Sender = NULL; // sender is already destroying itself m_ImageActors.erase( imageMapper ); } if ( m_LookupTableProperties.count( imageMapper ) > 0 ) { m_LookupTableProperties[imageMapper].LookupTableSource->Delete(); m_LookupTableProperties.erase( imageMapper ); } } } void Geometry2DDataVtkMapper3D::GenerateData(BaseRenderer* renderer) { SetVtkMapperImmediateModeRendering(m_EdgeMapper); SetVtkMapperImmediateModeRendering(m_BackgroundMapper); // Remove all actors from the assembly, and re-initialize it with the // edge actor m_ImageAssembly->GetParts()->RemoveAllItems(); if ( !this->IsVisible(renderer) ) { // visibility has explicitly to be set in the single actors // due to problems when using cell picking: // even if the assembly is invisible, the renderer contains // references to the assemblies parts. During picking the // visibility of each part is checked, and not only for the // whole assembly. m_ImageAssembly->VisibilityOff(); m_EdgeActor->VisibilityOff(); return; } // visibility has explicitly to be set in the single actors // due to problems when using cell picking: // even if the assembly is invisible, the renderer contains // references to the assemblies parts. During picking the // visibility of each part is checked, and not only for the // whole assembly. m_ImageAssembly->VisibilityOn(); m_EdgeActor->VisibilityOn(); Geometry2DData::Pointer input = const_cast< Geometry2DData * >(this->GetInput()); if (input.IsNotNull() && (input->GetGeometry2D() != NULL)) { SmartPointerProperty::Pointer surfacecreatorprop; surfacecreatorprop = dynamic_cast< SmartPointerProperty * >(GetDataNode()->GetProperty("surfacegeometry", renderer)); if ( (surfacecreatorprop.IsNull()) || (surfacecreatorprop->GetSmartPointer().IsNull()) || ((m_SurfaceCreator = dynamic_cast( surfacecreatorprop->GetSmartPointer().GetPointer())).IsNull() ) ) { //m_SurfaceCreator = Geometry2DDataToSurfaceFilter::New(); m_SurfaceCreator->PlaceByGeometryOn(); surfacecreatorprop = SmartPointerProperty::New( m_SurfaceCreator ); GetDataNode()->SetProperty("surfacegeometry", surfacecreatorprop); } m_SurfaceCreator->SetInput(input); int res; if (GetDataNode()->GetIntProperty("xresolution", res, renderer)) { m_SurfaceCreator->SetXResolution(res); } if (GetDataNode()->GetIntProperty("yresolution", res, renderer)) { m_SurfaceCreator->SetYResolution(res); } double tubeRadius = 1.0; // Radius of tubular edge surrounding plane // Clip the Geometry2D with the reference geometry bounds (if available) if ( input->GetGeometry2D()->HasReferenceGeometry() ) { Geometry3D *referenceGeometry = input->GetGeometry2D()->GetReferenceGeometry(); BoundingBox::PointType boundingBoxMin, boundingBoxMax; boundingBoxMin = referenceGeometry->GetBoundingBox()->GetMinimum(); boundingBoxMax = referenceGeometry->GetBoundingBox()->GetMaximum(); if ( referenceGeometry->GetImageGeometry() ) { for ( unsigned int i = 0; i < 3; ++i ) { boundingBoxMin[i] -= 0.5; boundingBoxMax[i] -= 0.5; } } m_SurfaceCreatorPointsContainer->CreateElementAt( 0 ) = boundingBoxMin; m_SurfaceCreatorPointsContainer->CreateElementAt( 1 ) = boundingBoxMax; m_SurfaceCreatorBoundingBox->ComputeBoundingBox(); m_SurfaceCreator->SetBoundingBox( m_SurfaceCreatorBoundingBox ); tubeRadius = referenceGeometry->GetDiagonalLength() / 450.0; } else { // If no reference geometry is available, clip with the current global // bounds if (m_DataStorage.IsNotNull()) { m_SurfaceCreator->SetBoundingBox(m_DataStorage->ComputeVisibleBoundingBox(NULL, "includeInBoundingBox")); tubeRadius = sqrt( m_SurfaceCreator->GetBoundingBox()->GetDiagonalLength2() ) / 450.0; } } // Calculate the surface of the Geometry2D m_SurfaceCreator->Update(); Surface *surface = m_SurfaceCreator->GetOutput(); // Check if there's something to display, otherwise return if ( (surface->GetVtkPolyData() == 0 ) || (surface->GetVtkPolyData()->GetNumberOfCells() == 0) ) { m_ImageAssembly->VisibilityOff(); return; } // add a graphical representation of the surface normals if requested DataNode* node = this->GetDataNode(); node->GetBoolProperty("draw normals 3D", m_DisplayNormals, renderer); node->GetBoolProperty("color two sides", m_ColorTwoSides, renderer); node->GetBoolProperty("invert normals", m_InvertNormals, renderer); if ( m_DisplayNormals || m_ColorTwoSides ) { float frontColor[3] = { 0.0, 0.0, 1.0 }; node->GetColor( frontColor, renderer, "front color" ); float backColor[3] = { 1.0, 0.0, 0.0 }; node->GetColor( backColor, renderer, "back color" ); if ( m_DisplayNormals ) { m_NormalsTransformer->SetInput( surface->GetVtkPolyData() ); m_NormalsTransformer->SetTransform(node->GetVtkTransform(this->GetTimestep()) ); m_FrontHedgeHog->SetInput( m_NormalsTransformer->GetOutput() ); m_FrontHedgeHog->SetVectorModeToUseNormal(); m_FrontHedgeHog->SetScaleFactor( m_InvertNormals ? 1.0 : -1.0 ); m_FrontNormalsActor->GetProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); m_BackHedgeHog->SetInput( m_NormalsTransformer->GetOutput() ); m_BackHedgeHog->SetVectorModeToUseNormal(); m_BackHedgeHog->SetScaleFactor( m_InvertNormals ? -1.0 : 1.0 ); m_BackNormalsActor->GetProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); if ( !m_NormalsActorAdded ) { m_Prop3DAssembly->AddPart( m_FrontNormalsActor ); m_Prop3DAssembly->AddPart( m_BackNormalsActor ); m_NormalsActorAdded = true; } } if ( m_ColorTwoSides ) { if ( !m_InvertNormals ) { m_BackgroundActor->GetBackfaceProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); m_BackgroundActor->GetProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); } else { m_BackgroundActor->GetProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); m_BackgroundActor->GetBackfaceProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); } } } else if ( !m_DisplayNormals ) { if ( m_NormalsActorAdded ) { m_Prop3DAssembly->RemovePart( m_FrontNormalsActor ); m_Prop3DAssembly->RemovePart( m_BackNormalsActor ); m_NormalsActorAdded = false; } } // Add black background for all images (which may be transparent) m_BackgroundMapper->SetInput( surface->GetVtkPolyData() ); m_ImageAssembly->AddPart( m_BackgroundActor ); LayerSortedActorList layerSortedActors; // Traverse the data tree to find nodes resliced by ImageVtkMapper2D mitk::NodePredicateOr::Pointer p = mitk::NodePredicateOr::New(); p->AddPredicate(mitk::NodePredicateDataType::New("Image")); p->AddPredicate(mitk::NodePredicateDataType::New("DiffusionImage")); p->AddPredicate(mitk::NodePredicateDataType::New("TensorImage")); p->AddPredicate(mitk::NodePredicateDataType::New("QBallImage")); mitk::DataStorage::SetOfObjects::ConstPointer all = m_DataStorage->GetSubset(p); for (mitk::DataStorage::SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) { DataNode *node = it->Value(); if (node != NULL) this->ProcessNode(node, renderer, surface, layerSortedActors); } // Add all image actors to the assembly, sorted according to // layer property LayerSortedActorList::iterator actorIt; for ( actorIt = layerSortedActors.begin(); actorIt != layerSortedActors.end(); ++actorIt ) m_ImageAssembly->AddPart( actorIt->second ); // Configurate the tube-shaped frame: size according to the surface // bounds, color as specified in the plane's properties vtkPolyData *surfacePolyData = surface->GetVtkPolyData(); m_Cleaner->SetInput(surfacePolyData); m_EdgeTransformer->SetTransform(this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); // Determine maximum extent vtkFloatingPointType* surfaceBounds = surfacePolyData->GetBounds(); vtkFloatingPointType extent = surfaceBounds[1] - surfaceBounds[0]; vtkFloatingPointType extentY = surfaceBounds[3] - surfaceBounds[2]; vtkFloatingPointType extentZ = surfaceBounds[5] - surfaceBounds[4]; if ( extent < extentY ) extent = extentY; if ( extent < extentZ ) extent = extentZ; // Adjust the radius according to extent m_EdgeTuber->SetRadius( tubeRadius ); // Get the plane's color and set the tube properties accordingly ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(this->GetDataNode()->GetProperty( "color" )); if ( colorProperty.IsNotNull() ) { const Color& color = colorProperty->GetColor(); m_EdgeActor->GetProperty()->SetColor(color.GetRed(), color.GetGreen(), color.GetBlue()); } else { m_EdgeActor->GetProperty()->SetColor( 1.0, 1.0, 1.0 ); } m_ImageAssembly->SetUserTransform(this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); } VtkRepresentationProperty* representationProperty; this->GetDataNode()->GetProperty(representationProperty, "material.representation", renderer); if ( representationProperty != NULL ) m_BackgroundActor->GetProperty()->SetRepresentation( representationProperty->GetVtkRepresentation() ); } void Geometry2DDataVtkMapper3D::ProcessNode( DataNode * node, BaseRenderer* renderer, Surface * surface, LayerSortedActorList &layerSortedActors ) { if ( node != NULL ) { ImageVtkMapper2D *imageMapper = dynamic_cast< ImageVtkMapper2D * >( node->GetMapper(1) ); if(!imageMapper) { if(node->GetMapper(1)) { std::string cname(node->GetMapper(1)->GetNameOfClass()); if(!cname.compare("CompositeMapper")) { imageMapper = dynamic_cast( node->GetMapper(3) ); } } } if ( (node->IsVisible(renderer)) && imageMapper ) { WeakPointerProperty::Pointer rendererProp = dynamic_cast< WeakPointerProperty * >(GetDataNode()->GetPropertyList()->GetProperty("renderer")); if ( rendererProp.IsNotNull() ) { BaseRenderer::Pointer planeRenderer = dynamic_cast< BaseRenderer * >(rendererProp->GetWeakPointer().GetPointer()); if ( planeRenderer.IsNotNull() ) { // If it has not been initialized already in a previous pass, // generate an actor, a lookup table and a texture object to // render the image associated with the ImageVtkMapper2D. vtkActor *imageActor; vtkDataSetMapper *dataSetMapper = NULL; vtkLookupTable *lookupTable; vtkTexture *texture; if ( m_ImageActors.count( imageMapper ) == 0 ) { dataSetMapper = vtkDataSetMapper::New(); dataSetMapper->ImmediateModeRenderingOn(); lookupTable = vtkLookupTable::New(); lookupTable->DeepCopy( m_DefaultLookupTable ); lookupTable->SetRange( -1024.0, 4095.0 ); texture = vtkTexture::New(); texture->InterpolateOn(); texture->SetLookupTable( lookupTable ); texture->RepeatOff(); imageActor = vtkActor::New(); imageActor->GetProperty()->SetAmbient( 0.5 ); imageActor->SetMapper( dataSetMapper ); imageActor->SetTexture( texture ); // Make imageActor the sole owner of the mapper and texture // objects lookupTable->UnRegister( NULL ); dataSetMapper->UnRegister( NULL ); texture->UnRegister( NULL ); // Store the actor so that it may be accessed in following // passes. m_ImageActors[imageMapper].Initialize(imageActor, imageMapper, m_ImageMapperDeletedCommand); } else { // Else, retrieve the actor and associated objects from the // previous pass. imageActor = m_ImageActors[imageMapper].m_Actor; dataSetMapper = (vtkDataSetMapper *)imageActor->GetMapper(); texture = imageActor->GetTexture(); //BUG (#1551) added dynamic cast for VTK5.2 support #if ( ( VTK_MAJOR_VERSION >= 5 ) && ( VTK_MINOR_VERSION>=2) ) lookupTable = dynamic_cast(texture->GetLookupTable()); #else lookupTable = texture->GetLookupTable(); #endif } // Set poly data new each time its object changes (e.g. when // switching between planar and curved geometries) if ( dataSetMapper != NULL ) { if ( dataSetMapper->GetInput() != surface->GetVtkPolyData() ) { dataSetMapper->SetInput( surface->GetVtkPolyData() ); } } imageActor->GetMapper()->GetInput()->Update(); imageActor->GetMapper()->Update(); // We have to do this before GenerateAllData() is called // since there may be no RendererInfo for renderer yet, // thus GenerateAllData won't update the (non-existing) // RendererInfo for renderer. By calling GetRendererInfo // a RendererInfo will be created for renderer (if it does not // exist yet). - imageMapper->GetRendererInfo( planeRenderer ); - - imageMapper->GenerateAllData(); // ensure the right openGL context, as 3D widgets may render and take their plane texture from 2D image mappers renderer->GetRenderWindow()->MakeCurrent(); // Retrieve and update image to be mapped - const ImageVtkMapper2D::RendererInfo *rit = - imageMapper->GetRendererInfo( planeRenderer ); - if(rit->m_Image != NULL) + const ImageVtkMapper2D::LocalStorage* localStorage = imageMapper->m_LSH.GetLocalStorage(planeRenderer); + + if(localStorage->m_ReslicedImage != NULL) { - rit->m_Image->Update(); - texture->SetInput( rit->m_Image ); + localStorage->m_ReslicedImage->Update(); + texture->SetInput( localStorage->m_ReslicedImage ); // check for level-window-prop and use it if it exists ScalarType windowMin = 0.0; ScalarType windowMax = 255.0; LevelWindow levelWindow; bool binary = false; node->GetBoolProperty( "binary", binary, renderer ); // VTK (mis-)interprets unsigned char (binary) images as color images; // So, we must manually turn on their mapping through a (gray scale) lookup table; if( binary ) texture->MapColorScalarsThroughLookupTableOn(); else texture->MapColorScalarsThroughLookupTableOff(); if( binary ) { windowMin = 0; windowMax = 1; } else if( node->GetLevelWindow( levelWindow, planeRenderer, "levelWindow" ) || node->GetLevelWindow( levelWindow, planeRenderer ) ) { windowMin = levelWindow.GetLowerWindowBound(); windowMax = levelWindow.GetUpperWindowBound(); } vtkLookupTable *lookupTableSource; // check for "use color" bool useColor; if ( !node->GetBoolProperty( "use color", useColor, planeRenderer ) ) useColor = false; if ( binary ) useColor = true; // check for LookupTable LookupTableProperty::Pointer lookupTableProp; lookupTableProp = dynamic_cast< LookupTableProperty * >(node->GetPropertyList()->GetProperty( "LookupTable" )); // If there is a lookup table supplied, use it; otherwise, // use the default grayscale table if ( lookupTableProp.IsNotNull() && !useColor ) { lookupTableSource = lookupTableProp->GetLookupTable()->GetVtkLookupTable(); } else { lookupTableSource = m_DefaultLookupTable; } LookupTableProperties &lutProperties = m_LookupTableProperties[imageMapper]; // If there has been some change since the last pass which // makes it necessary to re-build the lookup table, do it. if ( (lutProperties.LookupTableSource != lookupTableSource) || (lutProperties.windowMin != windowMin) || (lutProperties.windowMax != windowMax) ) { // Note the values for the next pass (lutProperties is a // reference to the list entry!) if ( lutProperties.LookupTableSource != NULL ) { lutProperties.LookupTableSource->Delete(); } lutProperties.LookupTableSource = lookupTableSource; lutProperties.LookupTableSource->Register( NULL ); lutProperties.windowMin = windowMin; lutProperties.windowMax = windowMax; lookupTable->DeepCopy( lookupTableSource ); lookupTable->SetRange( windowMin, windowMax ); } // Apply color property (of the node, not of the plane) float rgb[3] = { 1.0, 1.0, 1.0 }; node->GetColor( rgb, renderer ); imageActor->GetProperty()->SetColor( rgb[0], rgb[1], rgb[2] ); //m_BackgroundActor->GetProperty()->SetColor(1,1,1); // Apply opacity property (of the node, not of the plane) float opacity = 0.999; node->GetOpacity( opacity, renderer ); imageActor->GetProperty()->SetOpacity( opacity ); // Set texture interpolation on/off bool textureInterpolation = node->IsOn( "texture interpolation", renderer ); texture->SetInterpolate( textureInterpolation ); // Store this actor to be added to the actor assembly, sort // by layer int layer = 1; node->GetIntProperty( "layer", layer ); layerSortedActors.insert(std::pair< int, vtkActor * >( layer, imageActor ) ); } } } } } } void Geometry2DDataVtkMapper3D::ActorInfo::Initialize(vtkActor* actor, itk::Object* sender, itk::Command* command) { m_Actor = actor; m_Sender = sender; // Get informed when ImageMapper object is deleted, so that // the data structures built here can be deleted as well m_ObserverID = sender->AddObserver( itk::DeleteEvent(), command ); } Geometry2DDataVtkMapper3D::ActorInfo::ActorInfo() : m_Actor(NULL), m_Sender(NULL), m_ObserverID(0) { } Geometry2DDataVtkMapper3D::ActorInfo::~ActorInfo() { if(m_Sender != NULL) { m_Sender->RemoveObserver(m_ObserverID); } if(m_Actor != NULL) { m_Actor->Delete(); } } } // namespace mitk diff --git a/Core/Code/Rendering/mitkImageVtkMapper2D.cpp b/Core/Code/Rendering/mitkImageVtkMapper2D.cpp index 677781ae75..98640db9fe 100644 --- a/Core/Code/Rendering/mitkImageVtkMapper2D.cpp +++ b/Core/Code/Rendering/mitkImageVtkMapper2D.cpp @@ -1,1224 +1,1149 @@ /*========================================================================= Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ //MITK #include #include #include #include #include #include #include #include #include #include #include #include //MITK Rendering #include "mitkImageVtkMapper2D.h" #include "mitkVtkPropRenderer.h" #include "vtkMitkThickSlicesFilter.h" //VTK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //ITK #include -int mitk::ImageVtkMapper2D::numRenderer = 0; //Number of renderers data is stored for. - mitk::ImageVtkMapper2D::ImageVtkMapper2D() { m_VtkBased = true; } mitk::ImageVtkMapper2D::~ImageVtkMapper2D() { - this->Clear(); this->InvokeEvent( itk::DeleteEvent() ); //TODO <- what is this doing exactly? } void mitk::ImageVtkMapper2D::AdjustCamera(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //activate parallel projection for 2D renderer->GetVtkRenderer()->GetActiveCamera()->SetParallelProjection(true); const mitk::DisplayGeometry* displayGeometry = renderer->GetDisplayGeometry(); double imageHeightInMM = localStorage->m_ReslicedImage->GetDimensions()[1]; //the height of the current slice in mm double displayHeightInMM = displayGeometry->GetSizeInMM()[1]; //the display height in mm (gets smaller when you zoom in) - // double zoomFactor = displayHeightInMM/imageHeightInMM; //determine how much of the image can be displayed double zoomFactor = imageHeightInMM/displayHeightInMM; //determine how much of the image can be displayed Vector2D displayGeometryOriginInMM = displayGeometry->GetOriginInMM(); //top left of the render window (Origin) Vector2D displayGeometryCenterInMM = displayGeometryOriginInMM + displayGeometry->GetSizeInMM()*0.5; //center of the render window: (Origin + Size/2) //Scale the rendered object: //The image is scaled by a single factor, because in an orthographic projection sizes //are preserved (so you cannot scale X and Y axis with different parameters). The //parameter sets the size of the total display-volume. If you set this to the image //height, the image plus a border with the size of the image will be rendered. //Therefore, the size is imageHeightInMM / 2. renderer->GetVtkRenderer()->GetActiveCamera()->SetParallelScale(imageHeightInMM*0.5 ); //zooming with the factor calculated by dividing displayHeight through imegeHeight. The factor is inverse, because the VTK zoom method is working inversely. renderer->GetVtkRenderer()->GetActiveCamera()->Zoom(zoomFactor); //the center of the view-plane double viewPlaneCenter[3]; viewPlaneCenter[0] = displayGeometryCenterInMM[0]; viewPlaneCenter[1] = displayGeometryCenterInMM[1]; viewPlaneCenter[2] = 0.0; //the view-plane is located in the XY-plane with Z=0.0 //define which direction is "up" for the ciamera (like default for vtk (0.0, 1.0, 0.0) double cameraUp[3]; cameraUp[0] = 0.0; cameraUp[1] = 1.0; cameraUp[2] = 0.0; //the position of the camera (center[0], center[1], 1000) double cameraPosition[3]; cameraPosition[0] = viewPlaneCenter[0]; cameraPosition[1] = viewPlaneCenter[1]; - cameraPosition[2] = 1.0; //Reason for 5000 => VTK seems to calculate the clipping planes wrong for Z=1 + cameraPosition[2] = 500000000.0; //Reason for 500000000 => VTK seems to calculate the clipping planes wrong for Z=1 //set the camera corresponding to the textured plane vtkSmartPointer camera = renderer->GetVtkRenderer()->GetActiveCamera(); if (camera) { camera->SetPosition( cameraPosition ); //set the camera position on the textured plane normal (in our case this is the view plane normal) camera->SetFocalPoint( viewPlaneCenter ); //set the focal point to the center of the textured plane camera->SetViewUp( cameraUp ); //set the view-up for the camera } //reset the clipping range -// renderer->GetVtkRenderer()->ResetCameraClippingRange(); - camera->SetClippingRange(0.5, 100.5); + renderer->GetVtkRenderer()->ResetCameraClippingRange(); } //set the two points defining the textured plane according to the dimension and spacing void mitk::ImageVtkMapper2D::GeneratePlane(mitk::BaseRenderer* renderer, vtkFloatingPointType planeBounds[6]) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //Set the origin to (xMin; yMin; 0) of the plane. This is necessary for obtaining the correct //plane size in crosshair rotation and swivel mode. localStorage->m_Plane->SetOrigin(planeBounds[0], planeBounds[2], 0.0); //These two points define the axes of the plane in combination with the origin. //Point 1 is the x-axis and point 2 the y-axis. //Each plane is transformed according to the view (transversal, coronal and saggital) afterwards. localStorage->m_Plane->SetPoint1(planeBounds[1], planeBounds[2], 0.0); //P1: (xMax, yMin, 0) localStorage->m_Plane->SetPoint2(planeBounds[0], planeBounds[3], 0.0); //P2: (xMin, yMax, 0) } const mitk::Image* mitk::ImageVtkMapper2D::GetInput( void ) { return static_cast< const mitk::Image * >( this->GetData() ); } vtkProp* mitk::ImageVtkMapper2D::GetVtkProp(mitk::BaseRenderer* renderer) { this->Update(renderer); //return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_Actor; } void mitk::ImageVtkMapper2D::MitkRenderOverlay(BaseRenderer* renderer) { if ( this->IsVisible(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); } } void mitk::ImageVtkMapper2D::MitkRenderOpaqueGeometry(BaseRenderer* renderer) { if ( this->IsVisible( renderer )==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { - // vtkSmartPointer ren = - // vtkSmartPointer::New(); - // vtkSmartPointer renderWindow = - // vtkSmartPointer::New(); - // renderWindow->AddRenderer(ren); - // vtkSmartPointer renderWindowInteractor = - // vtkSmartPointer::New(); - // renderWindowInteractor->SetRenderWindow(renderWindow); - // ren->AddActor(m_LSH.GetLocalStorage(renderer)->m_Actor); - // renderWindow->Render(); - // renderWindowInteractor->Start(); this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); } } void mitk::ImageVtkMapper2D::MitkRenderTranslucentGeometry(BaseRenderer* renderer) { if ( this->IsVisible(renderer)==false ) return; //TODO is it possible to have a visible BaseRenderer AND an invisible VtkRenderer??? - if ( this->GetVtkProp(renderer)->GetVisibility() ) { + if ( this->GetVtkProp(renderer)->GetVisibility() ) + { + // vtkSmartPointer ren = + // vtkSmartPointer::New(); + // vtkSmartPointer renderWindow = + // vtkSmartPointer::New(); + // renderWindow->AddRenderer(ren); + // vtkSmartPointer renderWindowInteractor = + // vtkSmartPointer::New(); + // renderWindowInteractor->SetRenderWindow(renderWindow); + // ren->AddActor(m_LSH.GetLocalStorage(renderer)->m_Actor); + // renderWindow->Render(); + // renderWindowInteractor->Start(); this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); } } void mitk::ImageVtkMapper2D::MitkRenderVolumetricGeometry(BaseRenderer* renderer) { if(IsVisible(renderer)==false) return; //TODO is it possible to have a visible BaseRenderer AND an invisible VtkRenderer??? if ( GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderVolumetricGeometry(renderer->GetVtkRenderer()); } void mitk::ImageVtkMapper2D::GenerateData( mitk::BaseRenderer *renderer ) { + // MITK_INFO << "GenerateData"; LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); mitk::Image *input = const_cast< mitk::Image * >( this->GetInput() ); //TODO WTF CONST CAST?!?!?111 => Error in class design? if ( input == NULL ) { return; } - RendererInfo &rendererInfo = this->AccessRendererInfo( renderer ); - //check if there is a valid worldGeometry TODO: Move to Update()? const Geometry2D *worldGeometry = renderer->GetCurrentWorldGeometry2D(); if( ( worldGeometry == NULL ) || ( !worldGeometry->IsValid() ) || ( !worldGeometry->HasReferenceGeometry() )) { return; } // check if there is something to display. TODO: Move to Update()? if ( !input->IsVolumeSet( this->GetTimestep() ) ) return; input->Update(); vtkImageData* inputData = input->GetVtkImageData( this->GetTimestep() ); if ( inputData == NULL ) { return; } // how big the area is in physical coordinates: widthInMM x heightInMM pixels mitk::ScalarType widthInMM, heightInMM; // where we want to sample Point3D origin; Vector3D right, bottom, normal; // take transform of input image into account const TimeSlicedGeometry *inputTimeGeometry = input->GetTimeSlicedGeometry(); const Geometry3D* inputGeometry = inputTimeGeometry->GetGeometry3D( this->GetTimestep() ); //World spacing ScalarType mmPerPixel[2]; // Bounds information for reslicing (only reuqired if reference geometry // is present) vtkFloatingPointType sliceBounds[6]; bool boundsInitialized = false; for ( int i = 0; i < 6; ++i ) { sliceBounds[i] = 0.0; } //Extent (in pixels) of the image Vector2D extent; // Do we have a simple PlaneGeometry? // This is the "regular" case (e.g. slicing through an image axis-parallel or even oblique) const PlaneGeometry *planeGeometry = dynamic_cast< const PlaneGeometry * >( worldGeometry ); if ( planeGeometry != NULL ) { origin = planeGeometry->GetOrigin(); right = planeGeometry->GetAxisVector( 0 ); // right = Extent of Image in mm (worldspace) bottom = planeGeometry->GetAxisVector( 1 ); normal = planeGeometry->GetNormal(); bool inPlaneResampleExtentByGeometry = false; GetDataNode()->GetBoolProperty("in plane resample extent by geometry", inPlaneResampleExtentByGeometry, renderer); if ( inPlaneResampleExtentByGeometry ) { // Resampling grid corresponds to the current world geometry. This // means that the spacing of the output 2D image depends on the // currently selected world geometry, and *not* on the image itself. extent[0] = worldGeometry->GetExtent( 0 ); extent[1] = worldGeometry->GetExtent( 1 ); } else { // Resampling grid corresponds to the input geometry. This means that // the spacing of the output 2D image is directly derived from the // associated input image, regardless of the currently selected world // geometry. //TODO use new method instead of deprecated Vector3D rightInIndex, bottomInIndex; inputGeometry->WorldToIndex( origin, right, rightInIndex ); inputGeometry->WorldToIndex( origin, bottom, bottomInIndex ); extent[0] = rightInIndex.GetNorm(); extent[1] = bottomInIndex.GetNorm(); } // Get the extent of the current world geometry and calculate resampling // spacing therefrom. widthInMM = worldGeometry->GetExtentInMM( 0 ); heightInMM = worldGeometry->GetExtentInMM( 1 ); mmPerPixel[0] = widthInMM / extent[0]; mmPerPixel[1] = heightInMM / extent[1]; right.Normalize(); bottom.Normalize(); normal.Normalize(); //Translate the origin from center based to corner based //by adding (mm per pixel)/2 in the corresponding direction (right/bottom). origin += right * ( mmPerPixel[0] * 0.5 ); origin += bottom * ( mmPerPixel[1] * 0.5 ); // Use inverse transform of the input geometry for reslicing the 3D image localStorage->m_Reslicer->SetResliceTransform( inputGeometry->GetVtkTransform()->GetLinearInverse() ); // Set background level to TRANSLUCENT (see Geometry2DDataVtkMapper3D) localStorage->m_Reslicer->SetBackgroundLevel( -32768 ); //TODO why -32768 and not 0.0??? // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. boundsInitialized = this->CalculateClippedPlaneBounds( worldGeometry->GetReferenceGeometry(), planeGeometry, sliceBounds ); //TODO braucht man nicht immer } else { // Do we have an AbstractTransformGeometry? // This is the case for AbstractTransformGeometry's (e.g. a thin-plate-spline transform) const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * >(worldGeometry); if(abstractGeometry != NULL) { extent[0] = abstractGeometry->GetParametricExtent(0); extent[1] = abstractGeometry->GetParametricExtent(1); widthInMM = abstractGeometry->GetParametricExtentInMM(0); heightInMM = abstractGeometry->GetParametricExtentInMM(1); mmPerPixel[0] = widthInMM / extent[0]; mmPerPixel[1] = heightInMM / extent[1]; origin = abstractGeometry->GetPlane()->GetOrigin(); right = abstractGeometry->GetPlane()->GetAxisVector(0); right.Normalize(); bottom = abstractGeometry->GetPlane()->GetAxisVector(1); bottom.Normalize(); normal = abstractGeometry->GetPlane()->GetNormal(); normal.Normalize(); // Use a combination of the InputGeometry *and* the possible non-rigid // AbstractTransformGeometry for reslicing the 3D Image vtkGeneralTransform *composedResliceTransform = vtkGeneralTransform::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( inputGeometry->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); localStorage->m_Reslicer->SetResliceTransform( composedResliceTransform ); composedResliceTransform->UnRegister( NULL ); // decrease RC // Set background level to BLACK instead of translucent, to avoid // boundary artifacts (see Geometry2DDataVtkMapper3D) localStorage->m_Reslicer->SetBackgroundLevel( -1023 ); } else { //no geometry => we can't reslice return; } } // Make sure that the image to display has a certain minimum size. if ( (extent[0] <= 2) && (extent[1] <= 2) ) { return; } // Initialize the interpolation mode for resampling; switch to nearest // neighbor if the input image is too small. if ( (input->GetDimension() >= 3) && (input->GetDimension(2) > 1) ) { VtkResliceInterpolationProperty *resliceInterpolationProperty; this->GetDataNode()->GetProperty( resliceInterpolationProperty, "reslice interpolation" ); int interpolationMode = VTK_RESLICE_NEAREST; if ( resliceInterpolationProperty != NULL ) { interpolationMode = resliceInterpolationProperty->GetInterpolation(); } switch ( interpolationMode ) { case VTK_RESLICE_NEAREST: localStorage->m_Reslicer->SetInterpolationModeToNearestNeighbor(); break; case VTK_RESLICE_LINEAR: localStorage->m_Reslicer->SetInterpolationModeToLinear(); break; case VTK_RESLICE_CUBIC: localStorage->m_Reslicer->SetInterpolationModeToCubic(); break; } } else { localStorage->m_Reslicer->SetInterpolationModeToNearestNeighbor(); } //Begin Thickslicing int thickSlicesMode = 0; int thickSlicesNum = 1; // Thick slices parameters if( inputData->GetNumberOfScalarComponents() == 1 ) // for now only single component are allowed { DataNode *dn=renderer->GetCurrentWorldGeometry2DNode(); if(dn) { ResliceMethodProperty *resliceMethodEnumProperty=0; if( dn->GetProperty( resliceMethodEnumProperty, "reslice.thickslices" ) && resliceMethodEnumProperty ) thickSlicesMode = resliceMethodEnumProperty->GetValueAsId(); IntProperty *intProperty=0; if( dn->GetProperty( intProperty, "reslice.thickslices.num" ) && intProperty ) { thickSlicesNum = intProperty->GetValue(); if(thickSlicesNum < 1) thickSlicesNum=1; if(thickSlicesNum > 10) thickSlicesNum=10; } } else { MITK_WARN << "no associated widget plane data tree node found"; } } localStorage->m_UnitSpacingImageFilter->SetInput( inputData ); localStorage->m_Reslicer->SetInput( localStorage->m_UnitSpacingImageFilter->GetOutput() ); //number of pixels per mm in x- and y-direction of the resampled Vector2D pixelsPerMM; pixelsPerMM[0] = 1.0 / mmPerPixel[0]; pixelsPerMM[1] = 1.0 / mmPerPixel[1]; //calulate the originArray and the orientations for the reslice-filter double originArray[3]; itk2vtk( origin, originArray ); localStorage->m_Reslicer->SetResliceAxesOrigin( originArray ); double cosines[9]; // direction of the X-axis of the sampled result vnl2vtk( right.Get_vnl_vector(), cosines ); // direction of the Y-axis of the sampled result vnl2vtk( bottom.Get_vnl_vector(), cosines + 3 );//fill next 3 elements // normal of the plane vnl2vtk( normal.Get_vnl_vector(), cosines + 6 );//fill the last 3 elements localStorage->m_Reslicer->SetResliceAxesDirectionCosines( cosines ); int xMin, xMax, yMin, yMax; if ( boundsInitialized ) { // Calculate output extent (integer values) xMin = static_cast< int >( sliceBounds[0] / mmPerPixel[0] + 0.5 ); xMax = static_cast< int >( sliceBounds[1] / mmPerPixel[0] + 0.5 ); yMin = static_cast< int >( sliceBounds[2] / mmPerPixel[1] + 0.5 ); yMax = static_cast< int >( sliceBounds[3] / mmPerPixel[1] + 0.5 ); } else { // If no reference geometry is available, we also don't know about the // maximum plane size; xMin = yMin = 0; xMax = static_cast< int >( extent[0] - pixelsPerMM[0] + 0.5); yMax = static_cast< int >( extent[1] - pixelsPerMM[1] + 0.5); } // Disallow huge dimensions if ( (xMax-xMin) * (yMax-yMin) > 4096*4096 ) { return; } // Calculate dataset spacing in plane z direction (NOT spacing of current // world geometry) double dataZSpacing = 1.0; Vector3D normInIndex; inputGeometry->WorldToIndex( origin, normal, normInIndex ); if(thickSlicesMode > 0) { dataZSpacing = 1.0 / normInIndex.GetNorm(); localStorage->m_Reslicer->SetOutputDimensionality( 3 ); localStorage->m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, -thickSlicesNum, 0+thickSlicesNum ); } else { localStorage->m_Reslicer->SetOutputDimensionality( 2 ); localStorage->m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, 0, 0 ); } localStorage->m_Reslicer->SetOutputOrigin( 0.0, 0.0, 0.0 ); localStorage->m_Reslicer->SetOutputSpacing( mmPerPixel[0], mmPerPixel[1], dataZSpacing ); // xMax and yMax are meant exclusive until now, whereas // SetOutputExtent wants an inclusive bound. Thus, we need // to subtract 1. // Do the reslicing. Modified() is called to make sure that the reslicer is // executed even though the input geometry information did not change; this // is necessary when the input /em data, but not the /em geometry changes. // The reslicing result is used both for 2D and for 3D mapping. // The reslicing result is stored also for the 3D mapping. // Check the result vtkImageData* reslicedImage = 0; if(thickSlicesMode>0) { localStorage->m_TSFilter->SetThickSliceMode( thickSlicesMode-1 ); localStorage->m_TSFilter->SetInput( localStorage->m_Reslicer->GetOutput() ); localStorage->m_TSFilter->Modified(); localStorage->m_TSFilter->Update(); reslicedImage = localStorage->m_TSFilter->GetOutput(); } else { localStorage->m_Reslicer->Modified(); localStorage->m_Reslicer->Update(); reslicedImage = localStorage->m_Reslicer->GetOutput(); } if((reslicedImage == NULL) || (reslicedImage->GetDataDimension() < 1)) { MITK_WARN << "reslicer returned empty image"; return; } // Store the result in a VTK image if ( localStorage->m_ReslicedImage == NULL ) { localStorage->m_ReslicedImage = vtkImageData::New(); } //TODO image is stored 2x. Do we still need that? - rendererInfo.m_Image->DeepCopy( reslicedImage ); - // localStorage->m_ReslicedImage->Update(); - - //TODO how does the reslicer know for which render window it is reslicing for? //set the current slice for the localStorage - localStorage->m_ReslicedImage = reslicedImage; + localStorage->m_ReslicedImage->DeepCopy( reslicedImage ); //set the current slice as texture for the plane localStorage->m_Texture->SetInput(localStorage->m_ReslicedImage); //set the size textured plane this->GeneratePlane( renderer, sliceBounds ); //turn the light out in the scene in order to render correct grey values. TODO How to turn it on if you need it? renderer->GetVtkRenderer()->RemoveAllLights(); //remove the VTK interaction renderer->GetVtkRenderer()->GetRenderWindow()->SetInteractor(NULL); //get the transformation matrix of the reslicer in order to render the slice as transversal, coronal or saggital vtkSmartPointer trans = vtkSmartPointer::New(); vtkSmartPointer matrix = localStorage->m_Reslicer->GetResliceAxes(); trans->SetMatrix(matrix); //apply the properties after the slice was set this->ApplyProperties( renderer, trans, mmPerPixel ); vtkCamera* cam = renderer->GetVtkRenderer()->GetActiveCamera(); //set up the camera to view the transformed plane - MITK_INFO << "######################### vor"; - cam->Print(std::cout); + // MITK_INFO << "######################### vor"; + // cam->Print(std::cout); this->AdjustCamera( renderer ); renderer->GetVtkRenderer()->SetBackground(1, 1, 1); //Transform the camera to the current position (transveral, coronal and saggital plane). //This is necessary, because the vtkTransformFilter does not manipulate the vtkCamera. //(Without not all three planes would be visible). -// renderer->GetVtkRenderer()->GetActiveCamera()->ApplyTransform(trans); + renderer->GetVtkRenderer()->GetActiveCamera()->ApplyTransform(trans); + + // MITK_INFO << "pos Z:" << cam->GetPosition()[2]; + // MITK_INFO << "foc Z:" << cam->GetFocalPoint()[2]; + // MITK_INFO << "pla Z:" << localStorage->m_Plane->GetCenter()[2]; + + // renderer->GetVtkRenderer()->ResetCameraClippingRange(); // We have been modified - MITK_INFO << "######################### nach"; - cam->Print(std::cout); + // MITK_INFO << "######################### nach"; + // cam->Print(std::cout); localStorage->m_LastUpdateTime.Modified(); } bool mitk::ImageVtkMapper2D::LineIntersectZero( vtkPoints *points, int p1, int p2, vtkFloatingPointType *bounds ) { vtkFloatingPointType point1[3]; vtkFloatingPointType point2[3]; points->GetPoint( p1, point1 ); points->GetPoint( p2, point2 ); if ( (point1[2] * point2[2] <= 0.0) && (point1[2] != point2[2]) ) { double x, y; x = ( point1[0] * point2[2] - point1[2] * point2[0] ) / ( point2[2] - point1[2] ); y = ( point1[1] * point2[2] - point1[2] * point2[1] ) / ( point2[2] - point1[2] ); if ( x < bounds[0] ) { bounds[0] = x; } if ( x > bounds[1] ) { bounds[1] = x; } if ( y < bounds[2] ) { bounds[2] = y; } if ( y > bounds[3] ) { bounds[3] = y; } bounds[4] = bounds[5] = 0.0; return true; } return false; } bool mitk::ImageVtkMapper2D::CalculateClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ) { // Clip the plane with the bounding geometry. To do so, the corner points // of the bounding box are transformed by the inverse transformation // matrix, and the transformed bounding box edges derived therefrom are // clipped with the plane z=0. The resulting min/max values are taken as // bounds for the image reslicer. const mitk::BoundingBox *boundingBox = boundingGeometry->GetBoundingBox(); mitk::BoundingBox::PointType bbMin = boundingBox->GetMinimum(); mitk::BoundingBox::PointType bbMax = boundingBox->GetMaximum(); vtkSmartPointer points = vtkSmartPointer::New(); if(boundingGeometry->GetImageGeometry()) { points->InsertPoint( 0, bbMin[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 1, bbMin[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 2, bbMin[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 3, bbMin[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 4, bbMax[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 5, bbMax[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 6, bbMax[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 7, bbMax[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); } else { points->InsertPoint( 0, bbMin[0], bbMin[1], bbMin[2] ); points->InsertPoint( 1, bbMin[0], bbMin[1], bbMax[2] ); points->InsertPoint( 2, bbMin[0], bbMax[1], bbMax[2] ); points->InsertPoint( 3, bbMin[0], bbMax[1], bbMin[2] ); points->InsertPoint( 4, bbMax[0], bbMin[1], bbMin[2] ); points->InsertPoint( 5, bbMax[0], bbMin[1], bbMax[2] ); points->InsertPoint( 6, bbMax[0], bbMax[1], bbMax[2] ); points->InsertPoint( 7, bbMax[0], bbMax[1], bbMin[2] ); } vtkSmartPointer newPoints = vtkSmartPointer::New(); vtkSmartPointer transform = vtkSmartPointer::New(); transform->Identity(); transform->Concatenate( planeGeometry->GetVtkTransform()->GetLinearInverse() ); transform->Concatenate( boundingGeometry->GetVtkTransform() ); transform->TransformPoints( points, newPoints ); bounds[0] = bounds[2] = 10000000.0; bounds[1] = bounds[3] = -10000000.0; bounds[4] = bounds[5] = 0.0; this->LineIntersectZero( newPoints, 0, 1, bounds ); this->LineIntersectZero( newPoints, 1, 2, bounds ); this->LineIntersectZero( newPoints, 2, 3, bounds ); this->LineIntersectZero( newPoints, 3, 0, bounds ); this->LineIntersectZero( newPoints, 0, 4, bounds ); this->LineIntersectZero( newPoints, 1, 5, bounds ); this->LineIntersectZero( newPoints, 2, 6, bounds ); this->LineIntersectZero( newPoints, 3, 7, bounds ); this->LineIntersectZero( newPoints, 4, 5, bounds ); this->LineIntersectZero( newPoints, 5, 6, bounds ); this->LineIntersectZero( newPoints, 6, 7, bounds ); this->LineIntersectZero( newPoints, 7, 4, bounds ); if ( (bounds[0] > 9999999.0) || (bounds[2] > 9999999.0) || (bounds[1] < -9999999.0) || (bounds[3] < -9999999.0) ) { return false; } else { // The resulting bounds must be adjusted by the plane spacing, since we // we have so far dealt with index coordinates const float *planeSpacing = planeGeometry->GetFloatSpacing(); bounds[0] *= planeSpacing[0]; bounds[1] *= planeSpacing[0]; bounds[2] *= planeSpacing[1]; bounds[3] *= planeSpacing[1]; bounds[4] *= planeSpacing[2]; bounds[5] *= planeSpacing[2]; return true; } } -void mitk::ImageVtkMapper2D::GenerateAllData() -{ - RendererInfoMap::iterator it, end = m_RendererInfo.end(); - - for ( it = m_RendererInfo.begin(); it != end; ++it) - { - this->Update( it->first ); - } -} - -void mitk::ImageVtkMapper2D::Clear() -{ - RendererInfoMap::iterator it, end = m_RendererInfo.end(); - for ( it = m_RendererInfo.begin(); it != end; ++it ) - { - it->second.RemoveObserver(); - } - m_RendererInfo.clear(); -} - void mitk::ImageVtkMapper2D::ApplyProperties(mitk::BaseRenderer* renderer, vtkSmartPointer transform, mitk::ScalarType mmPerPixel[2]) { //get the current localStorage for the corresponding renderer LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); // check for interpolation properties bool textureInterpolation = false; GetDataNode()->GetBoolProperty( "texture interpolation", textureInterpolation, renderer ); //set the interpolation modus according to the property localStorage->m_Texture->SetInterpolate(textureInterpolation); //do not repeat the texture (the image) localStorage->m_Texture->RepeatOff(); float rgb[3]= { 1.0f, 1.0f, 1.0f }; float opacity = 1.0f; + // check for opacity prop and use it for rendering if it exists + GetOpacity( opacity, renderer ); + //set the opacity according to the properties + localStorage->m_Actor->GetProperty()->SetOpacity(opacity); + // check for color prop and use it for rendering if it exists // binary image hovering & binary image selection - //TODO do we need this? bool hover = false; bool selected = false; GetDataNode()->GetBoolProperty("binaryimage.ishovering", hover, renderer); GetDataNode()->GetBoolProperty("selected", selected, renderer); if(hover && !selected) { mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty ("binaryimage.hoveringcolor", renderer)); if(colorprop.IsNotNull()) memcpy(rgb, colorprop->GetColor().GetDataPointer(), 3*sizeof(float)); else GetColor( rgb, renderer ); } if(selected) { mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty ("binaryimage.selectedcolor", renderer)); if(colorprop.IsNotNull()) memcpy(rgb, colorprop->GetColor().GetDataPointer(), 3*sizeof(float)); else GetColor( rgb, renderer ); } if(!hover && !selected) { GetColor( rgb, renderer ); } - //END TODO do we need this? - - // check for opacity prop and use it for rendering if it exists - GetOpacity( opacity, renderer ); - //set the opacity according to the properties - localStorage->m_Actor->GetProperty()->SetOpacity(opacity); //get the binary property bool binary = false; this->GetDataNode()->GetBoolProperty( "binary", binary, renderer ); localStorage->m_Texture->SetMapColorScalarsThroughLookupTable(binary); //use color means that we want to use the color from the property list and not a lookuptable bool useColor = true; this->GetDataNode()->GetBoolProperty( "use color", useColor, renderer ); //the finalLookuptable will be used for the rendering and can either be a user-defined table or the default lut vtkSmartPointer finalLookuptable = vtkSmartPointer::New(); //BEGIN PROPERTY user-defined lut //currently we do not allow a lookuptable if it is a binary image bool useDefaultLut = true; if((!useColor) && (!binary)) { // If lookup table use is requested... mitk::LookupTableProperty::Pointer LookupTableProp; LookupTableProp = dynamic_cast (this->GetDataNode()->GetProperty("LookupTable")); //...check if there is a lookuptable provided by the user if ( LookupTableProp.IsNull() ) { MITK_WARN << "The use of a lookuptable is requested, but there is no lookuptable supplied by the user! The default lookuptable will be used instead."; } else { // If lookup table use is requested and supplied by the user: // only update the lut, when the properties have changed... if( LookupTableProp->GetLookupTable()->GetMTime() <= this->GetDataNode()->GetPropertyList()->GetMTime() ) { LookupTableProp->GetLookupTable()->ChangeOpacityForAll( opacity ); LookupTableProp->GetLookupTable()->ChangeOpacity(0, 0.0); } //we use the user-defined lookuptable finalLookuptable = LookupTableProp->GetLookupTable()->GetVtkLookupTable(); //we obtained a user-defined lut and dont have to use the default table useDefaultLut = false; } }//END PROPERTY user-defined lut //check if we need the default table if( useDefaultLut ) { finalLookuptable = localStorage->m_LookupTable; double rgbConv[3] = {(double)rgb[0], (double)rgb[1], (double)rgb[2]}; //conversion to double for VTK localStorage->m_Actor->GetProperty()->SetColor(rgbConv); } else { //If the user defines a lut, we dont want to use the color and take white instead. localStorage->m_Actor->GetProperty()->SetColor(1.0, 1.0, 1.0); } bool binaryOutline = false; this->GetDataNode()->GetBoolProperty( "outline binary", binaryOutline, renderer ); localStorage->m_Mapper->ScalarVisibilityOn(); if ( binary ) { finalLookuptable->SetAlphaRange(0.0, 1.0); finalLookuptable->SetRange(0.0, 1.0); //0 is already mapped to transparent. //1 is now mapped to the current color and alpha if ( this->GetInput()->GetPixelType().GetBpe() <= 8 ) { if (binaryOutline) { //generate ontours/outlines TODO: not always necessary localStorage->m_OutlinePolyData = CreateOutlinePolyData(localStorage->m_ReslicedImage, mmPerPixel); float binaryOutlineWidth(1.0); if (this->GetDataNode()->GetFloatProperty( "outline width", binaryOutlineWidth, renderer )) { localStorage->m_Actor->GetProperty()->SetLineWidth(binaryOutlineWidth); } } } else { //TODO still true for MITK with VTK rendering? MITK_WARN << "Type of all binary images should be (un)signed char. Outline does not work on other pixel types!"; } } //END binary image handling else { LevelWindow levelWindow; this->GetLevelWindow( levelWindow, renderer ); //set up the lookuptable with the level window range finalLookuptable->SetRange( levelWindow.GetLowerWindowBound(), levelWindow.GetUpperWindowBound() ); // obtain and apply opacity level window mitk::LevelWindow opacLevelWindow; if( this->GetLevelWindow( opacLevelWindow, renderer, "opaclevelwindow" ) ) { finalLookuptable->SetAlphaRange(opacLevelWindow.GetLowerWindowBound()/255.0, opacLevelWindow.GetLowerWindowBound()/255.0); } else { finalLookuptable->SetAlphaRange(0.0, 1.0); } } //use the finalLookuptable for mapping the colors localStorage->m_Texture->SetLookupTable( finalLookuptable ); //transform the plane to the corresponding view (transversal, coronal or saggital) localStorage->m_TransformFilter->SetTransform(transform); if(binaryOutline && binary) { localStorage->m_TransformFilter->SetInput(localStorage->m_OutlinePolyData); localStorage->m_Actor->SetTexture(NULL); } else { //transform the plane to the corresponding view (transversal, coronal or saggital) localStorage->m_TransformFilter->SetInputConnection(localStorage->m_Plane->GetOutputPort()); //set the texture for the actor localStorage->m_Actor->SetTexture(localStorage->m_Texture); } localStorage->m_TransformFilter->Update(); - localStorage->m_Mapper->SetInputConnection(localStorage->m_Plane->GetOutputPort()); + localStorage->m_Mapper->SetInputConnection(localStorage->m_TransformFilter->GetOutputPort()); localStorage->m_Mapper->ScalarVisibilityOff(); } void mitk::ImageVtkMapper2D::Update(mitk::BaseRenderer* renderer) { + // MITK_INFO << "Update"; if ( !this->IsVisible( renderer ) ) { return; } mitk::Image* data = const_cast( this->GetInput() ); if ( data == NULL ) { return; } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep( renderer ); // Check if time step is valid const TimeSlicedGeometry *dataTimeGeometry = data->GetTimeSlicedGeometry(); if ( ( dataTimeGeometry == NULL ) || ( dataTimeGeometry->GetTimeSteps() == 0 ) || ( !dataTimeGeometry->IsValidTime( this->GetTimestep() ) ) ) { return; } const DataNode *node = this->GetDataNode(); data->UpdateOutputInformation(); LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //check if something important has changed and we need to rerender if ( (localStorage->m_LastUpdateTime < node->GetMTime()) //was the node modified? || (localStorage->m_LastUpdateTime < data->GetPipelineMTime()) //Was the data modified? || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2DUpdateTime()) //was the geometry modified? || (localStorage->m_LastUpdateTime < renderer->GetDisplayGeometryUpdateTime()) // TODO this does not work || (localStorage->m_LastUpdateTime < renderer->GetDisplayGeometry()->GetMTime()) //was the display geometry modified? e.g. zooming, panning || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldGeometry2D()->GetMTime()) || (localStorage->m_LastUpdateTime < node->GetPropertyList()->GetMTime()) //was a property modified? || (localStorage->m_LastUpdateTime < node->GetPropertyList(renderer)->GetMTime()) ) { this->GenerateData( renderer ); } // since we have checked that nothing important has changed, we can set // m_LastUpdateTime to the current time localStorage->m_LastUpdateTime.Modified(); } -void mitk::ImageVtkMapper2D::DeleteRendererCallback( itk::Object *object, const itk::EventObject & ) -{ - mitk::BaseRenderer *renderer = dynamic_cast< mitk::BaseRenderer* >( object ); - if ( renderer ) - { - m_RendererInfo.erase( renderer ); - } -} - -mitk::ImageVtkMapper2D::RendererInfo::RendererInfo() - : m_RendererID(-1), - m_Renderer(NULL), - m_Image(NULL), - m_ObserverID( 0 ) -{ -}; - -mitk::ImageVtkMapper2D::RendererInfo::~RendererInfo() -{ - if ( m_Image != NULL ) - { - m_Image->Delete(); - } -} - -void mitk::ImageVtkMapper2D::RendererInfo::RemoveObserver() -{ - if ( m_ObserverID != 0 ) - { - // m_ObserverID has to be decreased by one. Was incremented by one after creation to make the test m_ObserverID != 0 possible. - m_Renderer->RemoveObserver( m_ObserverID-1 ); - } -} - -void mitk::ImageVtkMapper2D::RendererInfo::Initialize( int rendererID, mitk::BaseRenderer *renderer, - unsigned long observerID ) -{ - // increase ID by one to avoid 0 ID, has to be decreased before remove of the observer - m_ObserverID = observerID+1; - - assert(rendererID>=0); - assert(m_RendererID<0); - - m_Image = vtkImageData::New(); - - m_RendererID = rendererID; - m_Renderer = renderer; -} - void mitk::ImageVtkMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { mitk::Image::Pointer image = dynamic_cast(node->GetData()); // Properties common for both images and segmentations node->AddProperty( "use color", mitk::BoolProperty::New( true ), renderer, overwrite ); node->AddProperty( "outline binary", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty( "outline width", mitk::FloatProperty::New( 1.0 ), renderer, overwrite ); if(image->IsRotated()) node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_CUBIC) ); else node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ); node->AddProperty( "texture interpolation", mitk::BoolProperty::New( mitk::DataNodeFactory::m_TextureInterpolationActive ) ); // set to user configurable default value (see global options) node->AddProperty( "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ); node->AddProperty( "bounding box", mitk::BoolProperty::New( false ) ); bool isBinaryImage(false); if ( ! node->GetBoolProperty("binary", isBinaryImage) ) { // ok, property is not set, use heuristic to determine if this // is a binary image mitk::Image::Pointer centralSliceImage; ScalarType minValue = 0.0; ScalarType maxValue = 0.0; ScalarType min2ndValue = 0.0; ScalarType max2ndValue = 0.0; mitk::ImageSliceSelector::Pointer sliceSelector = mitk::ImageSliceSelector::New(); sliceSelector->SetInput(image); sliceSelector->SetSliceNr(image->GetDimension(2)/2); sliceSelector->SetTimeNr(image->GetDimension(3)/2); sliceSelector->SetChannelNr(image->GetDimension(4)/2); sliceSelector->Update(); centralSliceImage = sliceSelector->GetOutput(); if ( centralSliceImage.IsNotNull() && centralSliceImage->IsInitialized() ) { minValue = centralSliceImage->GetScalarValueMin(); maxValue = centralSliceImage->GetScalarValueMax(); min2ndValue = centralSliceImage->GetScalarValue2ndMin(); max2ndValue = centralSliceImage->GetScalarValue2ndMax(); } if ( minValue == maxValue ) { // centralSlice is strange, lets look at all data minValue = image->GetScalarValueMin(); maxValue = image->GetScalarValueMaxNoRecompute(); min2ndValue = image->GetScalarValue2ndMinNoRecompute(); max2ndValue = image->GetScalarValue2ndMaxNoRecompute(); } isBinaryImage = ( maxValue == min2ndValue && minValue == max2ndValue ); } // some more properties specific for a binary... if (isBinaryImage) { node->AddProperty( "opacity", mitk::FloatProperty::New(0.3f), renderer, overwrite ); node->AddProperty( "color", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.selectedcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.selectedannotationcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.hoveringcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.hoveringannotationcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binary", mitk::BoolProperty::New( true ), renderer, overwrite ); node->AddProperty("layer", mitk::IntProperty::New(10), renderer, overwrite); } else //...or image type object { node->AddProperty( "opacity", mitk::FloatProperty::New(1.0f), renderer, overwrite ); node->AddProperty( "color", ColorProperty::New(1.0,1.0,1.0), renderer, overwrite ); node->AddProperty( "binary", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty("layer", mitk::IntProperty::New(0), renderer, overwrite); } if(image.IsNotNull() && image->IsInitialized()) { if((overwrite) || (node->GetProperty("levelwindow", renderer)==NULL)) { mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); mitk::LevelWindow levelwindow; levelwindow.SetAuto( image, true, true ); levWinProp->SetLevelWindow( levelwindow ); node->SetProperty( "levelwindow", levWinProp, renderer ); } if(((overwrite) || (node->GetProperty("opaclevelwindow", renderer)==NULL)) && (image->GetPixelType().GetItkTypeId() && *(image->GetPixelType().GetItkTypeId()) == typeid(itk::RGBAPixel))) { mitk::LevelWindow opaclevwin; opaclevwin.SetRangeMinMax(0,255); opaclevwin.SetWindowBounds(0,255); mitk::LevelWindowProperty::Pointer prop = mitk::LevelWindowProperty::New(opaclevwin); node->SetProperty( "opaclevelwindow", prop, renderer ); } if((overwrite) || (node->GetProperty("LookupTable", renderer)==NULL)) { // add a default rainbow lookup table for color mapping mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); vtkLookupTable* vtkLut = mitkLut->GetVtkLookupTable(); vtkLut->SetHueRange(0.6667, 0.0); vtkLut->SetTableRange(0.0, 20.0); vtkLut->Build(); mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); mitkLutProp->SetLookupTable(mitkLut); node->SetProperty( "LookupTable", mitkLutProp ); } } Superclass::SetDefaultProperties(node, renderer, overwrite); } vtkSmartPointer mitk::ImageVtkMapper2D::CreateOutlinePolyData(vtkSmartPointer binarySlice, mitk::ScalarType mmPerPixel[2]){ int* dims = binarySlice->GetDimensions(); //dimensions of the image int line = dims[0]; //how many pixels per line? int x = 0; //pixel index x int y = 0; //pixel index y char* currentPixel; int nn = dims[0]*dims[1]; //max pixel(n,n) vtkSmartPointer points = vtkSmartPointer::New(); //the points to draw vtkSmartPointer lines = vtkSmartPointer::New(); //the lines to connect the points for (int ii = 0; ii(binarySlice->GetScalarPointer(x, y, 0)); //if the current pixel value is set to something if (*currentPixel != 0) { //check in which direction a line is necessary if (ii >= line && *(currentPixel-line) == 0) { //x direction - bottom edge of the pixel //add the 2 points vtkIdType p1 = points->InsertNextPoint(x*mmPerPixel[0], y*mmPerPixel[1], 0); vtkIdType p2 = points->InsertNextPoint((x+1)*mmPerPixel[0], y*mmPerPixel[1], 0); //add the line between both points lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } if (ii <= nn-line && *(currentPixel+line) == 0) { //x direction - top edge of the pixel vtkIdType p1 = points->InsertNextPoint(x*mmPerPixel[0], (y+1)*mmPerPixel[1], 0); vtkIdType p2 = points->InsertNextPoint((x+1)*mmPerPixel[0], (y+1)*mmPerPixel[1], 0); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } if (ii > 1 && *(currentPixel-1) == 0) { //y direction - left edge of the pixel vtkIdType p1 = points->InsertNextPoint(x*mmPerPixel[0], y*mmPerPixel[1], 0); vtkIdType p2 = points->InsertNextPoint(x*mmPerPixel[0], (y+1)*mmPerPixel[1], 0); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } if (ii < nn-1 && *(currentPixel+1) == 0) { //y direction - right edge of the pixel vtkIdType p1 = points->InsertNextPoint((x+1)*mmPerPixel[0], y*mmPerPixel[1], 0); vtkIdType p2 = points->InsertNextPoint((x+1)*mmPerPixel[0], (y+1)*mmPerPixel[1], 0); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } } //reached end of line x++; if (x >= line) { x = 0; y++; } } // Create a polydata to store everything in vtkSmartPointer polyData = vtkSmartPointer::New(); // Add the points to the dataset polyData->SetPoints(points); // Add the lines to the dataset polyData->SetLines(lines); return polyData; } mitk::ImageVtkMapper2D::LocalStorage::LocalStorage() { //TODO initialize everything with NULL in the list ??? m_ReslicedImage = vtkSmartPointer::New(); m_Plane = vtkSmartPointer::New(); m_Texture = vtkSmartPointer::New(); m_LookupTable = vtkSmartPointer::New(); m_Mapper = vtkSmartPointer::New(); m_Actor = vtkSmartPointer::New(); m_TransformFilter = vtkSmartPointer::New(); m_Reslicer = vtkSmartPointer::New(); m_TSFilter = vtkSmartPointer::New(); m_UnitSpacingImageFilter = vtkSmartPointer::New(); m_OutlinePolyData = vtkSmartPointer::New(); - m_flag = true; //the following actions are always the same and thus can be performed //in the constructor for each image (i.e. the image-corresponding local storage) - m_TSFilter->ReleaseDataFlagOn(); m_Reslicer->ReleaseDataFlagOn(); m_UnitSpacingImageFilter->SetOutputSpacing( 1.0, 1.0, 1.0 ); //built a default lookuptable m_LookupTable->SetSaturationRange( 0.0, 0.0 ); m_LookupTable->SetHueRange( 0.0, 0.0 ); m_LookupTable->SetValueRange( 0.0, 1.0 ); m_LookupTable->Build(); //map all black values to transparent m_LookupTable->SetTableValue(0, 0.0, 0.0, 0.0, 0.0); //set the mapper for the actor m_Actor->SetMapper(m_Mapper); } diff --git a/Core/Code/Rendering/mitkImageVtkMapper2D.h b/Core/Code/Rendering/mitkImageVtkMapper2D.h index 4581d2ce06..be4574b174 100644 --- a/Core/Code/Rendering/mitkImageVtkMapper2D.h +++ b/Core/Code/Rendering/mitkImageVtkMapper2D.h @@ -1,283 +1,187 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date$ Version: $Revision$ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef MITKIMAGEVTKMAPPER2D_H_HEADER_INCLUDED_C10E906E #define MITKIMAGEVTKMAPPER2D_H_HEADER_INCLUDED_C10E906E //MITK Rendering #include "mitkCommon.h" #include "mitkBaseRenderer.h" #include "mitkVtkMapper2D.h" //VTK #include class vtkActor; class vtkPolyDataMapper; class vtkPlaneSource; class vtkImageData; class vtkTransformPolyDataFilter; class vtkLookupTable; class vtkImageReslice; class vtkImageChangeInformation; class vtkPoints; class vtkMitkThickSlicesFilter; class vtkPolyData; namespace mitk { /** \brief Mapper to resample and display 2D slices of a 3D image. * * Currently implemented for mapping on PlaneGeometry and * AbstractTransformGeometry. The resulting 2D image (by reslicing the * underlying 3D input image appropriately) can either be directly rendered * in a 2D view or just be calculated to be used later on by another * rendering entity, e.g. in texture mapping in a 3D view. * * This results in a flipped version when used for texture mapping. Furthermore, * not the complete rectangular area described by the Geometry2D from the renderer * is resampled, @em if the Geometry2D is larger than the image dimension in the * requested direction. This results in a stretched version when used for texture * mapping. * * Properties that can be set for images and influence the imageMapper2D are: * * - \b "modality": (mitkModalityProperty) Modality of the image * - \b "opacity": (FloatProperty) Opacity of the image * - \b "color": (ColorProperty) Color of the image * - \b "use color": (BoolProperty) Use the color of the image or not * - \b "binary": (BoolProperty) is the image a binary image or not * - \b "outline binary": (BoolProperty) show outline of the image or not * - \b "texture interpolation": (BoolProperty) texture interpolation of the image * - \b "reslice interpolation": (VtkResliceInterpolationProperty) reslice interpolation of the image * - \b "in plane resample extent by geometry": (BoolProperty) Do it or not * - \b "bounding box": (BoolProperty) Is the Bounding Box of the image shown or not * - \b "layer": (IntProperty) Layer of the image * - \b "volume annotation color": (ColorProperty) color of the volume annotation * - \b "volume annotation unit": (StringProperty) annotation unit as string (does not implicit convert the unit!) unit is ml/cm3 * The default properties are: * - \b "opacity", mitk::FloatProperty::New(0.3f), renderer, overwrite ) * - \b "color", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ) * - \b "use color", mitk::BoolProperty::New( true ), renderer, overwrite ) * - \b "binary", mitk::BoolProperty::New( true ), renderer, overwrite ) * - \b "outline binary", mitk::BoolProperty::New( false ), renderer, overwrite ) * - \b "texture interpolation", mitk::BoolProperty::New( mitk::DataNodeFactory::m_TextureInterpolationActive ) ) * - \b "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ) * - \b "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ) * - \b "bounding box", mitk::BoolProperty::New( false ) ) * - \b "layer", mitk::IntProperty::New(10), renderer, overwrite) * If the modality-property is set for an image, the mapper uses modality-specific default properties, * e.g. color maps, if they are defined. * \ingroup Mapper */ class MITK_CORE_EXPORT ImageVtkMapper2D : public VtkMapper2D { public: /** Standard class typedefs. */ mitkClassMacro( ImageVtkMapper2D,VtkMapper2D ); /** Method for creation through the object factory. */ itkNewMacro(Self); /** \brief Get the Image to map */ const mitk::Image *GetInput(void); - /** \brief Calls Update() for all associated renderers. */ - virtual void GenerateAllData(); - /** \brief Checks whether this mapper needs to update itself and generate * data. */ virtual void Update(mitk::BaseRenderer * renderer); virtual void ApplyProperties(mitk::BaseRenderer* renderer, vtkSmartPointer transform, ScalarType mmPerPixel[2]); virtual vtkProp* GetVtkProp(mitk::BaseRenderer* renderer); virtual void MitkRenderOverlay(BaseRenderer* renderer); virtual void MitkRenderOpaqueGeometry(BaseRenderer* renderer); virtual void MitkRenderTranslucentGeometry(BaseRenderer* renderer); virtual void MitkRenderVolumetricGeometry(BaseRenderer* renderer); /** \brief Internal class holding the mapper, actor, etc. for each of the 3 2D render windows */ class MITK_CORE_EXPORT LocalStorage : public mitk::Mapper::BaseLocalStorage { public: /** \brief Actor of a 2D render window. */ vtkSmartPointer m_Actor; /** \brief Mapper of a 2D render window. */ vtkSmartPointer m_Mapper; /** \brief Current slice of a 2D render window. */ vtkSmartPointer m_ReslicedImage; /** \brief Plane on which the slice is rendered as texture. */ vtkSmartPointer m_Plane; /** \brief The texture which is used to render the current slice. */ vtkSmartPointer m_Texture; /** \brief The lookuptable for colors and level window */ vtkSmartPointer m_LookupTable; /** \brief transform the plane */ vtkSmartPointer m_TransformFilter; /** \brief The actual reslicer (one per renderer) */ vtkSmartPointer m_Reslicer; /** \brief Thickslices post filtering */ vtkSmartPointer m_TSFilter; /** \brief Using unit spacing for resampling makes life easier TODO improve docu ...*/ vtkSmartPointer m_UnitSpacingImageFilter; /** \brief PolyData object containg all lines/points needed for outlining the contour.*/ vtkSmartPointer m_OutlinePolyData; - bool m_flag; - /** \brief timestamp of last update of stored data */ itk::TimeStamp m_LastUpdateTime; /** \brief Constructor of the local storage. Do as much actions as possible in here to avoid double executions. */ LocalStorage(); ~LocalStorage() { } }; - /** \brief This member holds all three LocalStorages for the three 2D render windows. */ + /** \brief This member holds all (three) LocalStorages for the three 2D render windows. */ mitk::Mapper::LocalStorageHandler m_LSH; - /** \brief Internal storage class for data needed for rendering into a - * renderer - */ - class MITK_CORE_EXPORT RendererInfo - { - /** \brief internal id of the renderer the data is stored for */ - int m_RendererID; - - mitk::BaseRenderer* m_Renderer; - - public: - /** \brief stores the id of the observer for delete event of renderer */ - unsigned long m_ObserverID; - - vtkImageData* m_Image; - - RendererInfo(); - - ~RendererInfo(); - - inline bool IsInitialized() const - { - return m_RendererID >= 0; - } - - void Initialize( int rendererID, mitk::BaseRenderer *renderer, - unsigned long observerID ); - - inline int GetRendererID() const - { - return m_RendererID; - } - - void RemoveObserver(); - - }; // RendererInfo - - /** \brief Get the RendererInfo for \a renderer */ - const RendererInfo *GetRendererInfo( mitk::BaseRenderer *renderer ) - { - return &this->AccessRendererInfo(renderer); - } - - /** \brief Release memory allocated for buffering */ - virtual void Clear(); - static void SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer = NULL, bool overwrite = false); protected: //Generate a plane with size of the image in mm void GeneratePlane(mitk::BaseRenderer* renderer, vtkFloatingPointType planeBounds[6]); //set the camera to view the textured plane void AdjustCamera(mitk::BaseRenderer* renderer); vtkSmartPointer CreateOutlinePolyData(vtkSmartPointer binarySlice, ScalarType mmPerPixel[2]); ImageVtkMapper2D(); virtual ~ImageVtkMapper2D(); /** Does the actual resampling, without rendering the image yet. */ virtual void GenerateData(mitk::BaseRenderer *renderer); - /** \brief Get the RendererInfo for @a renderer */ - inline RendererInfo & AccessRendererInfo( mitk::BaseRenderer* renderer ) - { - RendererInfo& rendererInfo = m_RendererInfo[renderer]; - if(rendererInfo.IsInitialized()==false) - { - // Add observer for renderer reset events (RendererInfo will - // automatically be removed from list when a Renderer is deleted) - // - // Note: observer ID is passed to rendererInfo, which will take - // responsiblity to remove the observer upon its destruction - typedef itk::MemberCommand< ImageVtkMapper2D > MemberCommandType; - MemberCommandType::Pointer deleteRendererCommand = - MemberCommandType::New(); - - deleteRendererCommand->SetCallbackFunction( - this, &ImageVtkMapper2D::DeleteRendererCallback ); - - unsigned long observerID = renderer->AddObserver( - BaseRenderer::RendererResetEvent(), deleteRendererCommand ); - - // Initialize RendererInfo - rendererInfo.Initialize( ImageVtkMapper2D::numRenderer++, renderer, observerID ); - } - - return rendererInfo; - } - - void DeleteRendererCallback( itk::Object *object, const itk::EventObject & ); - bool LineIntersectZero( vtkPoints *points, int p1, int p2, vtkFloatingPointType *bounds ); bool CalculateClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ); - - /** \brief Number of renderers data is stored for - * \todo General concept for keeping data for rendering required - * \todo static? - */ - static int numRenderer; - - protected: - typedef std::map RendererInfoMap; - - /** \brief Map of instances of RendererInfo - * \sa RendererInfo - */ - RendererInfoMap m_RendererInfo; - }; } // namespace mitk #endif /* MITKIMAGEVTKMAPPER2D_H_HEADER_INCLUDED_C10E906E */ diff --git a/Core/Code/Rendering/vtkMitkRenderProp.cpp b/Core/Code/Rendering/vtkMitkRenderProp.cpp index a268f2fe3b..38a935ca9a 100644 --- a/Core/Code/Rendering/vtkMitkRenderProp.cpp +++ b/Core/Code/Rendering/vtkMitkRenderProp.cpp @@ -1,136 +1,140 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2007-08-17 16:41:18 +0200 (Fr, 17 Aug 2007) $ Version: $Revision: 11618 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "vtkMitkRenderProp.h" #include #include #include #if ( ( VTK_MAJOR_VERSION >= 5 ) && ( VTK_MINOR_VERSION>=2) ) #include "mitkVtkMapper3D.h" #include "mitkVtkMapper2D.h" #endif vtkStandardNewMacro(vtkMitkRenderProp); vtkMitkRenderProp::vtkMitkRenderProp() { } vtkMitkRenderProp::~vtkMitkRenderProp() { } double *vtkMitkRenderProp::GetBounds() { return const_cast(m_VtkPropRenderer->GetBounds()); } void vtkMitkRenderProp::SetPropRenderer(mitk::VtkPropRenderer::Pointer propRenderer) { this->m_VtkPropRenderer = propRenderer; } int vtkMitkRenderProp::RenderOpaqueGeometry(vtkViewport* /*viewport*/) { return m_VtkPropRenderer->Render(mitk::VtkPropRenderer::Opaque); } int vtkMitkRenderProp::RenderOverlay(vtkViewport* /*viewport*/) { return m_VtkPropRenderer->Render(mitk::VtkPropRenderer::Overlay); } void vtkMitkRenderProp::ReleaseGraphicsResources(vtkWindow* window) { m_VtkPropRenderer->ReleaseGraphicsResources(window); } void vtkMitkRenderProp::InitPathTraversal() { m_VtkPropRenderer->InitPathTraversal(); } vtkAssemblyPath* vtkMitkRenderProp::GetNextPath() { return m_VtkPropRenderer->GetNextPath(); } //BUG (#1551) added method depth peeling #if ( ( VTK_MAJOR_VERSION >= 5 ) && ( VTK_MINOR_VERSION>=2) ) int vtkMitkRenderProp::HasTranslucentPolygonalGeometry() { typedef std::map MappersMapType; MappersMapType mappersMap = m_VtkPropRenderer->GetMappersMap(); for(MappersMapType::iterator it = mappersMap.begin(); it != mappersMap.end(); it++) { mitk::Mapper * mapper = (*it).second; mitk::VtkMapper3D::Pointer vtkMapper3D = dynamic_cast(mapper); if(vtkMapper3D) { // Due to VTK 5.2 bug, we need to initialize the Paths object in vtkPropAssembly // manually (see issue #8186 committed to VTK's Mantis issue tracker) // --> VTK bug resolved on 2008-12-01 vtkPropAssembly *propAssembly = dynamic_cast< vtkPropAssembly * >( vtkMapper3D->GetVtkProp(m_VtkPropRenderer) ); if ( propAssembly ) { propAssembly->InitPathTraversal(); } if (vtkMapper3D->GetVtkProp(m_VtkPropRenderer)->HasTranslucentPolygonalGeometry()==1) return 1; } //TODO bad solution. mitk::VtkMapper2D::Pointer vtkMapper2D = dynamic_cast(mapper); if(vtkMapper2D) { // Due to VTK 5.2 bug, we need to initialize the Paths object in vtkPropAssembly // manually (see issue #8186 committed to VTK's Mantis issue tracker) // --> VTK bug resolved on 2008-12-01 vtkPropAssembly *propAssembly = dynamic_cast< vtkPropAssembly * >( vtkMapper2D->GetVtkProp(m_VtkPropRenderer) ); if ( propAssembly ) { propAssembly->InitPathTraversal(); //TODO why is this called here??? } - if (vtkMapper2D->GetVtkProp(m_VtkPropRenderer)->HasTranslucentPolygonalGeometry()==1) + if (vtkMapper2D->GetVtkProp(m_VtkPropRenderer)->HasTranslucentPolygonalGeometry()==1) { + MITK_INFO << "1"; return 1; + }else{ + MITK_INFO << "0"; + } } } return 0; } int vtkMitkRenderProp::RenderTranslucentPolygonalGeometry( vtkViewport * ) { return m_VtkPropRenderer->Render(mitk::VtkPropRenderer::Translucent); } int vtkMitkRenderProp::RenderVolumetricGeometry( vtkViewport * ) { return m_VtkPropRenderer->Render(mitk::VtkPropRenderer::Volumetric); } #else int vtkMitkRenderProp::RenderTranslucentGeometry(vtkViewport* /*viewport*/) { return m_VtkPropRenderer->Render(mitk::VtkPropRenderer::Translucent); } #endif