diff --git a/Modules/Core/include/mitkBaseData.h b/Modules/Core/include/mitkBaseData.h index 539a9e35fd..c43122796f 100644 --- a/Modules/Core/include/mitkBaseData.h +++ b/Modules/Core/include/mitkBaseData.h @@ -1,422 +1,388 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef BASEDATA_H_HEADER_INCLUDED_C1EBB6FA #define BASEDATA_H_HEADER_INCLUDED_C1EBB6FA #include #include "mitkBaseProcess.h" #include "mitkIdentifiable.h" #include "mitkIPropertyOwner.h" #include "mitkOperationActor.h" #include "mitkPropertyList.h" #include "mitkTimeGeometry.h" #include namespace mitk { // class BaseProcess; //##Documentation //## @brief Base of all data objects //## //## Base of all data objects, e.g., images, contours, surfaces etc. Inherits //## from itk::DataObject and thus can be included in a pipeline. //## Inherits also from OperationActor and can be used as a destination for Undo //## @remark Some derived classes may support the persistence of the Identifiable UID. //** but it is no guaranteed feature and also depends on the format the data is stored in //** as not all formats support storing of meta information. Please check the documentation //** of the IFileReader and IFileWriter classes to see if the ID-persistance is supported. //** MITK SceneIO supports the UID persistance for all BaseData derived classes. //## @ingroup Data class MITKCORE_EXPORT BaseData : public itk::DataObject, public OperationActor, public Identifiable, public IPropertyOwner { public: mitkClassMacroItkParent(BaseData, itk::DataObject); // IPropertyProvider BaseProperty::ConstPointer GetConstProperty(const std::string &propertyKey, const std::string &contextName = "", bool fallBackOnDefaultContext = true) const override; std::vector GetPropertyKeys(const std::string &contextName = "", bool includeDefaultContext = false) const override; std::vector GetPropertyContextNames() const override; // IPropertyOwner BaseProperty * GetNonConstProperty(const std::string &propertyKey, const std::string &contextName = "", bool fallBackOnDefaultContext = true) override; void SetProperty(const std::string &propertyKey, BaseProperty *property, const std::string &contextName = "", bool fallBackOnDefaultContext = false) override; void RemoveProperty(const std::string &propertyKey, const std::string &contextName = "", bool fallBackOnDefaultContext = false) override; /** * \brief Return the TimeGeometry of the data as const pointer. * * \warning No update will be called. Use GetUpdatedGeometry() if you cannot * be sure that the geometry is up-to-date. * * Normally used in GenerateOutputInformation of subclasses of BaseProcess. */ const mitk::TimeGeometry *GetTimeGeometry() const { return m_TimeGeometry.GetPointer(); } - /** - * \brief Return the TimeGeometry of the data as const pointer. - * - * \warning No update will be called. Use GetUpdatedGeometry() if you cannot - * be sure that the geometry is up-to-date. - * - * Normally used in GenerateOutputInformation of subclasses of BaseProcess. - * \deprecatedSince{2013_09} Please use GetTimeGeometry instead: For additional information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(const mitk::TimeGeometry *GetTimeSlicedGeometry() const) { return GetTimeGeometry(); } /** * @brief Return the TimeGeometry of the data as pointer. * * \warning No update will be called. Use GetUpdatedGeometry() if you cannot * be sure that the geometry is up-to-date. * * Normally used in GenerateOutputInformation of subclasses of BaseProcess. */ mitk::TimeGeometry *GetTimeGeometry() { return m_TimeGeometry.GetPointer(); } /** * @brief Return the TimeGeometry of the data. * * The method does not simply return the value of the m_TimeGeometry * member. Before doing this, it makes sure that the TimeGeometry * is up-to-date (by setting the update extent to largest possible and * calling UpdateOutputInformation). */ const mitk::TimeGeometry *GetUpdatedTimeGeometry(); - /** - * @brief Return the TimeGeometry of the data. - * - * The method does not simply return the value of the m_TimeGeometry - * member. Before doing this, it makes sure that the TimeGeometry - * is up-to-date (by setting the update extent to largest possible and - * calling UpdateOutputInformation). - * \deprecatedSince{2013_09} Please use GetUpdatedTimeGeometry instead: For additional information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(const mitk::TimeGeometry *GetUpdatedTimeSliceGeometry()) { return GetUpdatedTimeGeometry(); } /** * \brief Expands the TimeGeometry to a number of TimeSteps. * * The method expands the TimeGeometry to the given number of TimeSteps, * filling newly created elements with empty geometries. Sub-classes should override * this method to handle the elongation of their data vectors, too. * Note that a shrinking is neither possible nor intended. */ virtual void Expand(unsigned int timeSteps); /** * \brief Return the BaseGeometry of the data at time \a t. * * The method does not simply return * m_TimeGeometry->GetGeometry(t). * Before doing this, it makes sure that the BaseGeometry is up-to-date * (by setting the update extent appropriately and calling * UpdateOutputInformation). * * @todo Appropriate setting of the update extent is missing. */ const mitk::BaseGeometry *GetUpdatedGeometry(int t = 0); //##Documentation //## @brief Return the geometry, which is a TimeGeometry, of the data //## as non-const pointer. //## //## \warning No update will be called. Use GetUpdatedGeometry() if you cannot //## be sure that the geometry is up-to-date. //## //## Normally used in GenerateOutputInformation of subclasses of BaseProcess. mitk::BaseGeometry *GetGeometry(int t = 0) const { if (m_TimeGeometry.IsNull()) return nullptr; return m_TimeGeometry->GetGeometryForTimeStep(t); } //##Documentation //## @brief Update the information for this BaseData (the geometry in particular) //## so that it can be used as an output of a BaseProcess. //## //## This method is used in the pipeline mechanism to propagate information and //## initialize the meta data associated with a BaseData. Any implementation //## of this method in a derived class is assumed to call its source's //## BaseProcess::UpdateOutputInformation() which determines modified //## times, LargestPossibleRegions, and any extra meta data like spacing, //## origin, etc. Default implementation simply call's it's source's //## UpdateOutputInformation(). //## \note Implementations of this methods in derived classes must take care //## that the geometry is updated by calling //## GetTimeGeometry()->UpdateInformation() //## \em after calling its source's BaseProcess::UpdateOutputInformation(). void UpdateOutputInformation() override; //##Documentation //## @brief Set the RequestedRegion to the LargestPossibleRegion. //## //## This forces a filter to produce all of the output in one execution //## (i.e. not streaming) on the next call to Update(). void SetRequestedRegionToLargestPossibleRegion() override = 0; //##Documentation //## @brief Determine whether the RequestedRegion is outside of the BufferedRegion. //## //## This method returns true if the RequestedRegion //## is outside the BufferedRegion (true if at least one pixel is //## outside). This is used by the pipeline mechanism to determine //## whether a filter needs to re-execute in order to satisfy the //## current request. If the current RequestedRegion is already //## inside the BufferedRegion from the previous execution (and the //## current filter is up to date), then a given filter does not need //## to re-execute bool RequestedRegionIsOutsideOfTheBufferedRegion() override = 0; //##Documentation //## @brief Verify that the RequestedRegion is within the LargestPossibleRegion. //## //## If the RequestedRegion is not within the LargestPossibleRegion, //## then the filter cannot possibly satisfy the request. This method //## returns true if the request can be satisfied (even if it will be //## necessary to process the entire LargestPossibleRegion) and //## returns false otherwise. This method is used by //## PropagateRequestedRegion(). PropagateRequestedRegion() throws a //## InvalidRequestedRegionError exception if the requested region is //## not within the LargestPossibleRegion. bool VerifyRequestedRegion() override = 0; //##Documentation //## @brief Copy information from the specified data set. //## //## This method is part of the pipeline execution model. By default, a //## BaseProcess will copy meta-data from the first input to all of its //## outputs. See ProcessObject::GenerateOutputInformation(). Each //## subclass of DataObject is responsible for being able to copy //## whatever meta-data it needs from another DataObject. //## The default implementation of this method copies the time sliced geometry //## and the property list of an object. If a subclass overrides this //## method, it should always call its superclass' version. void CopyInformation(const itk::DataObject *data) override; //##Documentation //## @brief Check whether the data has been initialized, i.e., //## at least the Geometry and other header data has been set //## //## \warning Set to \a true by default for compatibility reasons. //## Set m_Initialized=false in constructors of sub-classes that //## support distinction between initialized and uninitialized state. virtual bool IsInitialized() const; //##Documentation //## @brief Calls ClearData() and InitializeEmpty(); //## \warning Only use in subclasses that reimplemented these methods. //## Just calling Clear from BaseData will reset an object to a not initialized, //## invalid state. virtual void Clear(); //##Documentation //## @brief Check whether object contains data (at //## a specified time), e.g., a set of points may be empty //## //## \warning Returns IsInitialized()==false by default for //## compatibility reasons. Override in sub-classes that //## support distinction between empty/non-empty state. virtual bool IsEmptyTimeStep(unsigned int t) const; //##Documentation //## @brief Check whether object contains data (at //## least at one point in time), e.g., a set of points //## may be empty //## //## \warning Returns IsInitialized()==false by default for //## compatibility reasons. Override in sub-classes that //## support distinction between empty/non-empty state. virtual bool IsEmpty() const; //##Documentation //## @brief Set the requested region from this data object to match the requested //## region of the data object passed in as a parameter. //## //## This method is implemented in the concrete subclasses of BaseData. void SetRequestedRegion(const itk::DataObject *data) override = 0; //##Documentation //##@brief overwrite if the Data can be called by an Interactor (StateMachine). //## //## Empty by default. Overwrite and implement all the necessary operations here //## and get the necessary information from the parameter operation. void ExecuteOperation(Operation *operation) override; /** * \brief Set the BaseGeometry of the data, which will be referenced (not copied!). * Assumes the data object has only 1 time step ( is a 3D object ) and creates a * new TimeGeometry which saves the given BaseGeometry. If an TimeGeometry has already * been set for the object, it will be replaced after calling this function. * * @warning This method will normally be called internally by the sub-class of BaseData * during initialization. * \sa SetClonedGeometry */ virtual void SetGeometry(BaseGeometry *aGeometry3D); /** * \brief Set the TimeGeometry of the data, which will be referenced (not copied!). * * @warning This method will normally be called internally by the sub-class of BaseData * during initialization. * \sa SetClonedTimeGeometry */ virtual void SetTimeGeometry(TimeGeometry *geometry); /** * \brief Set a clone of the provided Geometry as Geometry of the data. * Assumes the data object has only 1 time step ( is a 3D object ) and * creates a new TimeGeometry. If an TimeGeometry has already * been set for the object, it will be replaced after calling this function. * * \sa SetGeometry */ virtual void SetClonedGeometry(const BaseGeometry *aGeometry3D); /** * \brief Set a clone of the provided TimeGeometry as TimeGeometry of the data. * * \sa SetGeometry */ virtual void SetClonedTimeGeometry(const TimeGeometry *geometry); //##Documentation //## @brief Set a clone of the provided geometry as BaseGeometry of a given time step. //## //## \sa SetGeometry virtual void SetClonedGeometry(const BaseGeometry *aGeometry3D, unsigned int time); //##Documentation //## @brief Get the data's property list //## @sa GetProperty //## @sa m_PropertyList mitk::PropertyList::Pointer GetPropertyList() const; //##Documentation //## @brief Set the data's property list //## @sa SetProperty //## @sa m_PropertyList void SetPropertyList(PropertyList *propertyList); //##Documentation //## @brief Get the property (instance of BaseProperty) with key @a propertyKey from the PropertyList, //## and set it to this, respectively; //## @sa GetPropertyList //## @sa m_PropertyList //## @sa m_MapOfPropertyLists mitk::BaseProperty::Pointer GetProperty(const char *propertyKey) const; void SetProperty(const char *propertyKey, BaseProperty *property); //##Documentation //## @brief Convenience method for setting the origin of //## the BaseGeometry instances of all time steps //## //## \warning Geometries contained in the BaseGeometry will //## \em not be changed, e.g. in case the BaseGeometry is a //## SlicedGeometry3D the origin will \em not be propagated //## to the contained slices. The sub-class SlicedData //## does this for the case that the SlicedGeometry3D is //## evenly spaced. virtual void SetOrigin(const Point3D &origin); /** \brief Get the process object that generated this data object. * * If there is no process object, then the data object has * been disconnected from the pipeline, or the data object * was created manually. (Note: we cannot use the GetObjectMacro() * defined in itkMacro because the mutual dependency of * DataObject and ProcessObject causes compile problems. Also, * a forward reference smart pointer is returned, not a smart pointer, * because of the circular dependency between the process and data object.) * * GetSource() returns a SmartPointer and not a WeakPointer * because it is assumed the code calling GetSource() wants to hold a * long term reference to the source. */ itk::SmartPointer GetSource() const; //##Documentation //## @brief Get the number of time steps from the TimeGeometry //## As the base data has not a data vector given by itself, the number //## of time steps is defined over the time sliced geometry. In sub classes, //## a better implementation could be over the length of the data vector. unsigned int GetTimeSteps() const { return m_TimeGeometry->CountTimeSteps(); } //##Documentation //## @brief Get the modified time of the last change of the contents //## this data object or its geometry. unsigned long GetMTime() const override; /** * \sa itk::ProcessObject::Graft */ void Graft(const DataObject *) override; protected: BaseData(); BaseData(const BaseData &other); ~BaseData() override; //##Documentation //## \brief Initialize the TimeGeometry for a number of time steps. //## The TimeGeometry is initialized empty and evenly timed. //## In many cases it will be necessary to overwrite this in sub-classes. virtual void InitializeTimeGeometry(unsigned int timeSteps = 1); - /** - * \brief Initialize the TimeGeometry for a number of time steps. - * The TimeGeometry is initialized empty and evenly timed. - * In many cases it will be necessary to overwrite this in sub-classes. - * \deprecatedSince{2013_09} Please use GetUpdatedTimeGeometry instead: For additional information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(virtual void InitializeTimeSlicedGeometry(unsigned int timeSteps = 1)) - { - InitializeTimeGeometry(timeSteps); - } - //##Documentation //## @brief reset to non-initialized state, release memory virtual void ClearData(); //##Documentation //## @brief Pure virtual; Must be used in subclasses to get a data object to a //## valid state. Should at least create one empty object and call //## Superclass::InitializeTimeGeometry() to ensure an existing valid geometry virtual void InitializeEmpty() {} void PrintSelf(std::ostream &os, itk::Indent indent) const override; bool m_LastRequestedRegionWasOutsideOfTheBufferedRegion; mutable unsigned int m_SourceOutputIndexDuplicate; bool m_Initialized; private: //##Documentation //## @brief PropertyList, f.e. to hold pic-tags, tracking-data,.. //## PropertyList::Pointer m_PropertyList; TimeGeometry::Pointer m_TimeGeometry; }; } // namespace mitk #endif /* BASEDATA_H_HEADER_INCLUDED_C1EBB6FA */ diff --git a/Modules/Core/include/mitkImage.h b/Modules/Core/include/mitkImage.h index fe8e646ebc..359b536d87 100644 --- a/Modules/Core/include/mitkImage.h +++ b/Modules/Core/include/mitkImage.h @@ -1,799 +1,644 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MITKIMAGE_H_HEADER_INCLUDED_C1C2FCD2 #define MITKIMAGE_H_HEADER_INCLUDED_C1C2FCD2 #include "mitkBaseData.h" #include "mitkImageAccessorBase.h" #include "mitkImageDataItem.h" #include "mitkImageDescriptor.h" #include "mitkImageVtkAccessor.h" #include "mitkLevelWindow.h" #include "mitkPlaneGeometry.h" #include "mitkSlicedData.h" #include #include -// DEPRECATED -#include - #ifndef __itkHistogram_h #include #endif class vtkImageData; namespace itk { template class MutexLockHolder; } namespace mitk { class SubImageSelector; class ImageTimeSelector; class ImageStatisticsHolder; /** * @brief Image class for storing images * * Can be asked for header information, the data vector, * the mitkIpPicDescriptor struct or vtkImageData objects. If not the complete * data is required, the appropriate SubImageSelector class should be used * for access. * Image organizes sets of slices (s x 2D), volumes (t x 3D) and channels (n * x ND). Channels are for different kind of data, e.g., morphology in * channel 0, velocities in channel 1. All channels must have the same Geometry! In * particular, the dimensions of all channels are the same, only the pixel-type * may differ between channels. * * For importing ITK images use of mitk::ITKImageImport is recommended, see * \ref Adaptor. * * For ITK v3.8 and older: Converting coordinates from the ITK physical * coordinate system (which does not support rotated images) to the MITK world * coordinate system should be performed via the BaseGeometry of the Image, see * BaseGeometry::WorldToItkPhysicalPoint. * * For more information, see \ref MitkImagePage . * @ingroup Data */ class MITKCORE_EXPORT Image : public SlicedData { friend class SubImageSelector; friend class ImageAccessorBase; friend class ImageVtkAccessor; friend class ImageVtkReadAccessor; friend class ImageVtkWriteAccessor; friend class ImageReadAccessor; friend class ImageWriteAccessor; public: mitkClassMacro(Image, SlicedData); itkFactorylessNewMacro(Self); itkCloneMacro(Self); /** Smart Pointer type to a ImageDataItem. */ typedef itk::SmartPointer ImageDataItemPointer; typedef itk::Statistics::Histogram HistogramType; typedef mitk::ImageStatisticsHolder *StatisticsHolderPointer; /** This enum is evaluated when setting new data to an image. */ enum ImportMemoryManagementType { CopyMemory, /**< Data to be set is copied and assigned to a new memory block. Data memory block will be freed on deletion of mitk::Image. */ ManageMemory, /**< Data to be set will be referenced, and Data memory block will be freed on deletion of mitk::Image. */ ReferenceMemory, /**< Data to be set will be referenced, but Data memory block will not be freed on deletion of mitk::Image. */ DontManageMemory = ReferenceMemory }; /** * @brief Vector container of SmartPointers to ImageDataItems; * Class is only for internal usage to allow convenient access to all slices over iterators; * See documentation of ImageDataItem for details. */ typedef std::vector ImageDataItemPointerArray; public: /** * @brief Returns the PixelType of channel @a n. */ const mitk::PixelType GetPixelType(int n = 0) const; /** * @brief Get dimension of the image */ unsigned int GetDimension() const; /** * @brief Get the size of dimension @a i (e.g., i=0 results in the number of pixels in x-direction). * * @sa GetDimensions() */ unsigned int GetDimension(int i) const; - /** @brief Get the data vector of the complete image, i.e., of all channels linked together. - - If you only want to access a slice, volume at a specific time or single channel - use one of the SubImageSelector classes. - \deprecatedSince{2012_09} Please use image accessors instead: See Doxygen/Related-Pages/Concepts/Image. This method - can be replaced by ImageWriteAccessor::GetData() or ImageReadAccessor::GetData() */ - DEPRECATED(virtual void *GetData()); - public: - /** @brief Get the pixel value at one specific index position. - - The pixel type is always being converted to double. - \deprecatedSince{2012_09} Please use image accessors instead: See Doxygen/Related-Pages/Concepts/Image. This method - can be replaced by a method from ImagePixelWriteAccessor or ImagePixelReadAccessor */ - DEPRECATED(double GetPixelValueByIndex(const itk::Index<3> &position, - unsigned int timestep = 0, - unsigned int component = 0)); - - /** @brief Get the pixel value at one specific world position. - - The pixel type is always being converted to double. - Please consider using image accessors instead: See Doxygen/Related-Pages/Concepts/Image. This method - can be replaced by a templated method from ImagePixelWriteAccessor or ImagePixelReadAccessor */ - double GetPixelValueByWorldCoordinate(const mitk::Point3D &position, - unsigned int timestep = 0, - unsigned int component = 0); - /** * @brief Get a volume at a specific time @a t of channel @a n as a vtkImageData. */ virtual vtkImageData *GetVtkImageData(int t = 0, int n = 0); virtual const vtkImageData *GetVtkImageData(int t = 0, int n = 0) const; /** * @brief Check whether slice @a s at time @a t in channel @a n is set */ bool IsSliceSet(int s = 0, int t = 0, int n = 0) const override; /** * @brief Check whether volume at time @a t in channel @a n is set */ bool IsVolumeSet(int t = 0, int n = 0) const override; /** * @brief Check whether the channel @a n is set */ bool IsChannelSet(int n = 0) const override; /** * @brief Set @a data as slice @a s at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a slice (at least is not smaller than a slice), since there is * no chance to check this. * * The data is copied to an array managed by the image. If the image shall * reference the data, use SetImportSlice with ImportMemoryManagementType * set to ReferenceMemory. For importing ITK images use of mitk:: * ITKImageImport is recommended. * @sa SetPicSlice, SetImportSlice, SetImportVolume */ virtual bool SetSlice(const void *data, int s = 0, int t = 0, int n = 0); /** * @brief Set @a data as volume at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a volume (at least is not smaller than a volume), since there is * no chance to check this. * * The data is copied to an array managed by the image. If the image shall * reference the data, use SetImportVolume with ImportMemoryManagementType * set to ReferenceMemory. For importing ITK images use of mitk:: * ITKImageImport is recommended. * @sa SetPicVolume, SetImportVolume */ virtual bool SetVolume(const void *data, int t = 0, int n = 0); /** * @brief Set @a data in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a channel (at least is not smaller than a channel), since there is * no chance to check this. * * The data is copied to an array managed by the image. If the image shall * reference the data, use SetImportChannel with ImportMemoryManagementType * set to ReferenceMemory. For importing ITK images use of mitk:: * ITKImageImport is recommended. * @sa SetPicChannel, SetImportChannel */ virtual bool SetChannel(const void *data, int n = 0); /** * @brief Set @a data as slice @a s at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a slice (at least is not smaller than a slice), since there is * no chance to check this. * * The data is managed according to the parameter \a importMemoryManagement. * @sa SetPicSlice */ virtual bool SetImportSlice( void *data, int s = 0, int t = 0, int n = 0, ImportMemoryManagementType importMemoryManagement = CopyMemory); /** * @brief Set @a data as volume at time @a t in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a volume (at least is not smaller than a volume), since there is * no chance to check this. * * The data is managed according to the parameter \a importMemoryManagement. * @sa SetPicVolume */ virtual bool SetImportVolume(void *data, int t = 0, int n = 0, ImportMemoryManagementType importMemoryManagement = CopyMemory); virtual bool SetImportVolume(const void *const_data, int t = 0, int n = 0); /** * @brief Set @a data in channel @a n. It is in * the responsibility of the caller to ensure that the data vector @a data * is really a channel (at least is not smaller than a channel), since there is * no chance to check this. * * The data is managed according to the parameter \a importMemoryManagement. * @sa SetPicChannel */ virtual bool SetImportChannel(void *data, int n = 0, ImportMemoryManagementType importMemoryManagement = CopyMemory); /** * initialize new (or re-initialize) image information * @warning Initialize() by pic assumes a plane, evenly spaced geometry starting at (0,0,0). */ virtual void Initialize(const mitk::PixelType &type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels = 1); /** * initialize new (or re-initialize) image information by a BaseGeometry * * \param type * \param geometry * \param channels * @param tDim defines the number of time steps for which the Image should be initialized */ virtual void Initialize(const mitk::PixelType &type, const mitk::BaseGeometry &geometry, unsigned int channels = 1, int tDim = 1); - /** - * initialize new (or re-initialize) image information by a TimeGeometry - * - * \deprecatedSince{2013_09} Please use TimeGeometry instead of TimeSlicedGeometry. For more information see - * http://www.mitk.org/Development/Refactoring%20of%20the%20Geometry%20Classes%20-%20Part%201 - */ - DEPRECATED(virtual void Initialize(const mitk::PixelType & /*type*/, - const mitk::TimeSlicedGeometry * /*geometry*/, - unsigned int /*channels = 1*/, - int /*tDim=1*/)) - { - } - /** * \brief Initialize new (or re-initialize) image information by a TimeGeometry * * \param type * \param geometry * \param channels * \param tDim override time dimension if the value is bigger than 0 (Default -1) */ virtual void Initialize(const mitk::PixelType &type, const mitk::TimeGeometry &geometry, unsigned int channels = 1, int tDim = -1); /** * initialize new (or re-initialize) image information by a PlaneGeometry and number of slices * * Initializes the bounding box according to the width/height of the * PlaneGeometry and @a sDim via SlicedGeometry3D::InitializeEvenlySpaced. * The spacing is calculated from the PlaneGeometry. * \sa SlicedGeometry3D::InitializeEvenlySpaced - * \deprecatedSince{2016_11} Use a left-handed or right-handed PlaneGeometry to define the - * direction of the image stack instead of the flipped parameter */ - DEPRECATED(virtual void Initialize(const mitk::PixelType &type, - int sDim, - const mitk::PlaneGeometry &geometry2d, - bool flipped, - unsigned int channels = 1, - int tDim = 1)); - virtual void Initialize(const mitk::PixelType &type, int sDim, const mitk::PlaneGeometry &geometry2d, unsigned int channels = 1, int tDim = 1); /** * initialize new (or re-initialize) image information by another * mitk-image. * Only the header is used, not the data vector! */ virtual void Initialize(const mitk::Image *image); virtual void Initialize(const mitk::ImageDescriptor::Pointer inDesc); /** * initialize new (or re-initialize) image information by @a vtkimagedata, * a vtk-image. * Only the header is used, not the data vector! Use * SetVolume(vtkimage->GetScalarPointer()) to set the data vector. * * @param vtkimagedata * @param channels * @param tDim override time dimension in @a vtkimagedata (if >0 and <) * @param sDim override z-space dimension in @a vtkimagedata (if >0 and <) * @param pDim override y-space dimension in @a vtkimagedata (if >0 and <) */ virtual void Initialize(vtkImageData *vtkimagedata, int channels = 1, int tDim = -1, int sDim = -1, int pDim = -1); /** * initialize new (or re-initialize) image information by @a itkimage, * a templated itk-image. * Only the header is used, not the data vector! Use * SetVolume(itkimage->GetBufferPointer()) to set the data vector. * * @param itkimage * @param channels * @param tDim override time dimension in @a itkimage (if >0 and <) * @param sDim override z-space dimension in @a itkimage (if >0 and <) */ template void InitializeByItk(const itkImageType *itkimage, int channels = 1, int tDim = -1, int sDim = -1) { if (itkimage == nullptr) return; MITK_DEBUG << "Initializing MITK image from ITK image."; // build array with dimensions in each direction with at least 4 entries m_Dimension = itkimage->GetImageDimension(); unsigned int i, *tmpDimensions = new unsigned int[m_Dimension > 4 ? m_Dimension : 4]; for (i = 0; i < m_Dimension; ++i) tmpDimensions[i] = itkimage->GetLargestPossibleRegion().GetSize().GetSize()[i]; if (m_Dimension < 4) { unsigned int *p; for (i = 0, p = tmpDimensions + m_Dimension; i < 4 - m_Dimension; ++i, ++p) *p = 1; } // overwrite number of slices if sDim is set if ((m_Dimension > 2) && (sDim >= 0)) tmpDimensions[2] = sDim; // overwrite number of time points if tDim is set if ((m_Dimension > 3) && (tDim >= 0)) tmpDimensions[3] = tDim; // rough initialization of Image // mitk::PixelType importType = ImportItkPixelType( itkimage::PixelType ); Initialize( MakePixelType(itkimage->GetNumberOfComponentsPerPixel()), m_Dimension, tmpDimensions, channels); const typename itkImageType::SpacingType &itkspacing = itkimage->GetSpacing(); MITK_DEBUG << "ITK spacing " << itkspacing; // access spacing of itk::Image Vector3D spacing; FillVector3D(spacing, itkspacing[0], 1.0, 1.0); if (m_Dimension >= 2) spacing[1] = itkspacing[1]; if (m_Dimension >= 3) spacing[2] = itkspacing[2]; // access origin of itk::Image Point3D origin; const typename itkImageType::PointType &itkorigin = itkimage->GetOrigin(); MITK_DEBUG << "ITK origin " << itkorigin; FillVector3D(origin, itkorigin[0], 0.0, 0.0); if (m_Dimension >= 2) origin[1] = itkorigin[1]; if (m_Dimension >= 3) origin[2] = itkorigin[2]; // access direction of itk::Imagm_PixelType = new mitk::PixelType(type);e and include spacing const typename itkImageType::DirectionType &itkdirection = itkimage->GetDirection(); MITK_DEBUG << "ITK direction " << itkdirection; mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (m_Dimension >= 3 ? 3 : m_Dimension); // check if spacing has no zero entry and itkdirection has no zero columns bool itkdirectionOk = true; mitk::ScalarType columnSum; for (j = 0; j < itkDimMax3; ++j) { columnSum = 0.0; for (i = 0; i < itkDimMax3; ++i) { columnSum += fabs(itkdirection[i][j]); } if (columnSum < mitk::eps) { itkdirectionOk = false; } if ((spacing[j] < -mitk::eps) // (normally sized) negative value && (j == 2) && (m_Dimensions[2] == 1)) { // Negative spacings can occur when reading single DICOM slices with ITK via GDCMIO // In these cases spacing is not determind by ITK correctly (because it distinguishes correctly // between slice thickness and inter slice distance -- slice distance is meaningless for // single slices). // I experienced that ITK produced something meaningful nonetheless because is is // evaluating the tag "(0018,0088) Spacing between slices" as a fallback. This tag is not // reliable (http://www.itk.org/pipermail/insight-users/2005-September/014711.html) // but gives at least a hint. // In real world cases I experienced that this tag contained the correct inter slice distance // with a negative sign, so we just invert such negative spacings. MITK_WARN << "Illegal value of itk::Image::GetSpacing()[" << j << "]=" << spacing[j] << ". Using inverted value " << -spacing[j]; spacing[j] = -spacing[j]; } else if (spacing[j] < mitk::eps) // value near zero { MITK_ERROR << "Illegal value of itk::Image::GetSpacing()[" << j << "]=" << spacing[j] << ". Using 1.0 instead."; spacing[j] = 1.0; } } if (itkdirectionOk == false) { MITK_ERROR << "Illegal matrix returned by itk::Image::GetDirection():" << itkdirection << " Using identity instead."; for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) if (i == j) matrix[i][j] = spacing[j]; else matrix[i][j] = 0.0; } else { for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) matrix[i][j] = itkdirection[i][j] * spacing[j]; } // re-initialize PlaneGeometry with origin and direction PlaneGeometry *planeGeometry = static_cast(GetSlicedGeometry(0)->GetPlaneGeometry(0)); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D *slicedGeometry = GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, m_Dimensions[2]); slicedGeometry->SetSpacing(spacing); // re-initialize TimeGeometry ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); // clean-up delete[] tmpDimensions; this->Initialize(); } /** * @brief Check whether slice @a s at time @a t in channel @a n is valid, i.e., * is (or can be) inside of the image */ virtual bool IsValidSlice(int s = 0, int t = 0, int n = 0) const; /** * @brief Check whether volume at time @a t in channel @a n is valid, i.e., * is (or can be) inside of the image */ virtual bool IsValidVolume(int t = 0, int n = 0) const; /** * @brief Check whether the channel @a n is valid, i.e., * is (or can be) inside of the image */ virtual bool IsValidChannel(int n = 0) const; /** * @brief Returns true if an image is rotated, i.e. its geometry's * transformation matrix has nonzero elements besides the diagonal. * Non-diagonal elements are checked if larger then 1/1000 of the matrix' trace. */ bool IsRotated() const; /** * @brief Get the sizes of all dimensions as an integer-array. * * @sa GetDimension(int i); */ unsigned int *GetDimensions() const; ImageDescriptor::Pointer GetImageDescriptor() const { return m_ImageDescriptor; } ChannelDescriptor GetChannelDescriptor(int id = 0) const { return m_ImageDescriptor->GetChannelDescriptor(id); } /** \brief Sets a geometry to an image. */ void SetGeometry(BaseGeometry *aGeometry3D) override; /** * @warning for internal use only */ virtual ImageDataItemPointer GetSliceData(int s = 0, int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; /** * @warning for internal use only */ virtual ImageDataItemPointer GetVolumeData(int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; /** * @warning for internal use only */ virtual ImageDataItemPointer GetChannelData(int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; - /** - \brief (DEPRECATED) Get the minimum for scalar images - */ - DEPRECATED(ScalarType GetScalarValueMin(int t = 0) const); - - /** - \brief (DEPRECATED) Get the maximum for scalar images - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValueMax(int t = 0) const); - - /** - \brief (DEPRECATED) Get the second smallest value for scalar images - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMin(int t = 0) const); - - /** - \brief (DEPRECATED) Get the smallest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValueMinNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the second smallest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMinNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the second largest value for scalar images - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMax(int t = 0) const); - - /** - \brief (DEPRECATED) Get the largest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValueMaxNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the second largest value for scalar images, but do not recompute it first - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetScalarValue2ndMaxNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the smallest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetCountOfMinValuedVoxels(int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the largest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(ScalarType GetCountOfMaxValuedVoxels(int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the largest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(unsigned int GetCountOfMaxValuedVoxelsNoRecompute(unsigned int t = 0) const); - - /** - \brief (DEPRECATED) Get the count of voxels with the smallest scalar value in the dataset - - \warning This method is deprecated and will not be available in the future. Use the \a GetStatistics instead - */ - DEPRECATED(unsigned int GetCountOfMinValuedVoxelsNoRecompute(unsigned int t = 0) const); - /** \brief Returns a pointer to the ImageStatisticsHolder object that holds all statistics information for the image. All Get-methods for statistics properties formerly accessible directly from an Image object are now moved to the new \a ImageStatisticsHolder object. */ StatisticsHolderPointer GetStatistics() const { return m_ImageStatistics; } + protected: mitkCloneMacro(Self); typedef itk::MutexLockHolder MutexHolder; int GetSliceIndex(int s = 0, int t = 0, int n = 0) const; int GetVolumeIndex(int t = 0, int n = 0) const; void ComputeOffsetTable(); virtual bool IsValidTimeStep(int t) const; void Expand(unsigned int timeSteps) override; virtual ImageDataItemPointer AllocateSliceData( int s = 0, int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; virtual ImageDataItemPointer AllocateVolumeData( int t = 0, int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; virtual ImageDataItemPointer AllocateChannelData( int n = 0, void *data = nullptr, ImportMemoryManagementType importMemoryManagement = CopyMemory) const; Image(); Image(const Image &other); ~Image() override; void Clear() override; /** @warning Has to be called by every Initialize method! */ void Initialize() override; void PrintSelf(std::ostream &os, itk::Indent indent) const override; mutable ImageDataItemPointerArray m_Channels; mutable ImageDataItemPointerArray m_Volumes; mutable ImageDataItemPointerArray m_Slices; mutable itk::SimpleFastMutexLock m_ImageDataArraysLock; unsigned int m_Dimension; unsigned int *m_Dimensions; ImageDescriptor::Pointer m_ImageDescriptor; size_t *m_OffsetTable; ImageDataItemPointer m_CompleteData; // Image statistics Holder replaces the former implementation directly inside this class friend class ImageStatisticsHolder; StatisticsHolderPointer m_ImageStatistics; private: ImageDataItemPointer GetSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer GetVolumeData_unlocked(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer GetChannelData_unlocked(int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer AllocateSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer AllocateVolumeData_unlocked(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const; ImageDataItemPointer AllocateChannelData_unlocked(int n, void *data, ImportMemoryManagementType importMemoryManagement) const; bool IsSliceSet_unlocked(int s, int t, int n) const; bool IsVolumeSet_unlocked(int t, int n) const; bool IsChannelSet_unlocked(int n) const; /** Stores all existing ImageReadAccessors */ mutable std::vector m_Readers; /** Stores all existing ImageWriteAccessors */ mutable std::vector m_Writers; /** Stores all existing ImageVtkAccessors */ mutable std::vector m_VtkReaders; /** A mutex, which needs to be locked to manage m_Readers and m_Writers */ itk::SimpleFastMutexLock m_ReadWriteLock; /** A mutex, which needs to be locked to manage m_VtkReaders */ itk::SimpleFastMutexLock m_VtkReadersLock; }; - /** - * @brief Equal A function comparing two images for beeing equal in meta- and imagedata - * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const - * mitk::Image& i1, const mitk::Image& i2) instead. - * - * @ingroup MITKTestingAPI - * - * Following aspects are tested for equality: - * - dimension of the images - * - size of the images - * - pixel type - * - pixel values : pixel values are expected to be identical at each position ( for other options see - * mitk::CompareImageFilter ) - * - * @param rightHandSide An image to be compared - * @param leftHandSide An image to be compared - * @param eps Tolarence for comparison. You can use mitk::eps in most cases. - * @param verbose Flag indicating if the user wants detailed console output or not. - * @return true, if all subsequent comparisons are true, false otherwise - */ - DEPRECATED(MITKCORE_EXPORT bool Equal( - const mitk::Image *leftHandSide, const mitk::Image *rightHandSide, ScalarType eps, bool verbose)); - /** * @brief Equal A function comparing two images for beeing equal in meta- and imagedata * * @ingroup MITKTestingAPI * * Following aspects are tested for equality: * - dimension of the images * - size of the images * - pixel type * - pixel values : pixel values are expected to be identical at each position ( for other options see * mitk::CompareImageFilter ) * * @param rightHandSide An image to be compared * @param leftHandSide An image to be compared * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return true, if all subsequent comparisons are true, false otherwise */ MITKCORE_EXPORT bool Equal(const mitk::Image &leftHandSide, const mitk::Image &rightHandSide, ScalarType eps, bool verbose); } // namespace mitk #endif /* MITKIMAGE_H_HEADER_INCLUDED_C1C2FCD2 */ diff --git a/Modules/Core/src/DataManagement/mitkImage.cpp b/Modules/Core/src/DataManagement/mitkImage.cpp index 4ed855b751..251e1ca36f 100644 --- a/Modules/Core/src/DataManagement/mitkImage.cpp +++ b/Modules/Core/src/DataManagement/mitkImage.cpp @@ -1,1547 +1,1369 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include "mitkImage.h" #include "mitkCompareImageDataFilter.h" #include "mitkImageStatisticsHolder.h" #include "mitkImageVtkReadAccessor.h" #include "mitkImageVtkWriteAccessor.h" #include "mitkPixelTypeMultiplex.h" #include // VTK #include // ITK #include // Other #include #define FILL_C_ARRAY(_arr, _size, _value) \ for (unsigned int i = 0u; i < _size; i++) \ \ { \ _arr[i] = _value; \ } mitk::Image::Image() : m_Dimension(0), m_Dimensions(nullptr), m_ImageDescriptor(nullptr), m_OffsetTable(nullptr), m_CompleteData(nullptr), m_ImageStatistics(nullptr) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY(m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); m_Initialized = false; } mitk::Image::Image(const Image &other) : SlicedData(other), m_Dimension(0), m_Dimensions(nullptr), m_ImageDescriptor(nullptr), m_OffsetTable(nullptr), m_CompleteData(nullptr), m_ImageStatistics(nullptr) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY(m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); this->Initialize(other.GetPixelType(), other.GetDimension(), other.GetDimensions()); // Since the above called "Initialize" method doesn't take the geometry into account we need to set it // here manually TimeGeometry::Pointer cloned = other.GetTimeGeometry()->Clone(); this->SetTimeGeometry(cloned.GetPointer()); if (this->GetDimension() > 3) { const unsigned int time_steps = this->GetDimension(3); for (unsigned int i = 0u; i < time_steps; ++i) { ImageDataItemPointer volume = other.GetVolumeData(i); this->SetVolume(volume->GetData(), i); } } else { ImageDataItemPointer volume = other.GetVolumeData(0); this->SetVolume(volume->GetData(), 0); } } mitk::Image::~Image() { this->Clear(); m_ReferenceCount = 3; m_ReferenceCount = 0; delete[] m_OffsetTable; delete m_ImageStatistics; } const mitk::PixelType mitk::Image::GetPixelType(int n) const { return this->m_ImageDescriptor->GetChannelTypeById(n); } unsigned int mitk::Image::GetDimension() const { return m_Dimension; } unsigned int mitk::Image::GetDimension(int i) const { if ((i >= 0) && (i < (int)m_Dimension)) return m_Dimensions[i]; return 1; } -void *mitk::Image::GetData() -{ - if (m_Initialized == false) - { - if (GetSource().IsNull()) - return nullptr; - if (GetSource()->Updating() == false) - GetSource()->UpdateOutputInformation(); - } - m_CompleteData = GetChannelData(); - - // update channel's data - // if data was not available at creation point, the m_Data of channel descriptor is nullptr - // if data present, it won't be overwritten - m_ImageDescriptor->GetChannelDescriptor(0).SetData(m_CompleteData->GetData()); - - return m_CompleteData->GetData(); -} - template void AccessPixel(const mitk::PixelType ptype, void *data, const unsigned int offset, double &value) { value = 0.0; if (data == nullptr) return; if (ptype.GetBpe() != 24) { value = (double)(((T *)data)[offset]); } else { const unsigned int rgboffset = offset; double returnvalue = (((T *)data)[rgboffset]); returnvalue += (((T *)data)[rgboffset + 1]); returnvalue += (((T *)data)[rgboffset + 2]); value = returnvalue; } } -double mitk::Image::GetPixelValueByIndex(const itk::Index<3> &position, unsigned int timestep, unsigned int component) -{ - double value = 0; - if (this->GetTimeSteps() < timestep) - { - timestep = this->GetTimeSteps(); - } - - value = 0.0; - - const unsigned int *imageDims = this->m_ImageDescriptor->GetDimensions(); - const mitk::PixelType ptype = this->m_ImageDescriptor->GetChannelTypeById(0); - - // Comparison ?>=0 not needed since all position[i] and timestep are unsigned int - // (position[0]>=0 && position[1] >=0 && position[2]>=0 && timestep>=0) - // bug-11978 : we still need to catch index with negative values - if (position[0] < 0 || position[1] < 0 || position[2] < 0) - { - MITK_WARN << "Given position (" << position << ") is out of image range, returning 0."; - } - // check if the given position is inside the index range of the image, the 3rd dimension needs to be compared only if - // the dimension is not 0 - else if ((unsigned int)position[0] >= imageDims[0] || (unsigned int)position[1] >= imageDims[1] || - (imageDims[2] && (unsigned int)position[2] >= imageDims[2])) - { - MITK_WARN << "Given position (" << position << ") is out of image range, returning 0."; - } - else - { - const unsigned int offset = component + - ptype.GetNumberOfComponents() * (position[0] + position[1] * imageDims[0] + - position[2] * imageDims[0] * imageDims[1] + - timestep * imageDims[0] * imageDims[1] * imageDims[2]); - - mitkPixelTypeMultiplex3(AccessPixel, ptype, this->GetData(), offset, value); - } - - return value; -} - -double mitk::Image::GetPixelValueByWorldCoordinate(const mitk::Point3D &position, - unsigned int timestep, - unsigned int component) -{ - double value = 0.0; - if (this->GetTimeSteps() < timestep) - { - timestep = this->GetTimeSteps(); - } - - itk::Index<3> itkIndex; - this->GetGeometry()->WorldToIndex(position, itkIndex); - - value = this->GetPixelValueByIndex(itkIndex, timestep, component); - - return value; -} - vtkImageData *mitk::Image::GetVtkImageData(int t, int n) { if (m_Initialized == false) { if (GetSource().IsNull()) return nullptr; if (GetSource()->Updating() == false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume = GetVolumeData(t, n); return volume.GetPointer() == nullptr ? nullptr : volume->GetVtkImageAccessor(this)->GetVtkImageData(); } const vtkImageData *mitk::Image::GetVtkImageData(int t, int n) const { if (m_Initialized == false) { if (GetSource().IsNull()) return nullptr; if (GetSource()->Updating() == false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume = GetVolumeData(t, n); return volume.GetPointer() == nullptr ? nullptr : volume->GetVtkImageAccessor(this)->GetVtkImageData(); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return GetSliceData_unlocked(s, t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { if (IsValidSlice(s, t, n) == false) return nullptr; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // slice directly available? int pos = GetSliceIndex(s, t, n); if (m_Slices[pos].GetPointer() != nullptr) { return m_Slices[pos]; } // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol = m_Volumes[GetVolumeIndex(t, n)]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) { sl = new ImageDataItem(*vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * m_OffsetTable[2] * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // is slice available as part of a channel that is available? ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) { sl = new ImageDataItem(*ch, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, (((size_t)s) * m_OffsetTable[2] + ((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // slice is unavailable. Can we calculate it? if ((GetSource().IsNotNull()) && (GetSource()->Updating() == false)) { // ... wir mussen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, s); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, 1); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized = true; GetSource()->Update(); if (IsSliceSet_unlocked(s, t, n)) // yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetSliceData_unlocked(s, t, n, data, importMemoryManagement); else return nullptr; } else { ImageDataItemPointer item = AllocateSliceData_unlocked(s, t, n, data, importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return GetVolumeData_unlocked(t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData_unlocked( int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { if (IsValidVolume(t, n) == false) return nullptr; ImageDataItemPointer ch, vol; // volume directly available? int pos = GetVolumeIndex(t, n); vol = m_Volumes[pos]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) return vol; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) { vol = new ImageDataItem(*ch, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory, (((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); vol->SetComplete(true); return m_Volumes[pos] = vol; } // let's see if all slices of the volume are set, so that we can (could) combine them to a volume bool complete = true; unsigned int s; for (s = 0; s < m_Dimensions[2]; ++s) { if (m_Slices[GetSliceIndex(s, t, n)].GetPointer() == nullptr) { complete = false; break; } } if (complete) { // if there is only single slice we do not need to combine anything if (m_Dimensions[2] <= 1) { ImageDataItemPointer sl; sl = GetSliceData_unlocked(0, t, n, data, importMemoryManagement); vol = new ImageDataItem(*sl, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory); vol->SetComplete(true); } else { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); vol = m_Volumes[pos]; // ok, let's combine the slices! if (vol.GetPointer() == nullptr) { vol = new ImageDataItem(chPixelType, t, 3, m_Dimensions, nullptr, true); } vol->SetComplete(true); size_t size = m_OffsetTable[2] * (ptypeSize); for (s = 0; s < m_Dimensions[2]; ++s) { int posSl; ImageDataItemPointer sl; posSl = GetSliceIndex(s, t, n); sl = m_Slices[posSl]; if (sl->GetParent() != vol) { // copy data of slices in volume size_t offset = ((size_t)s) * size; std::memcpy(static_cast(vol->GetData()) + offset, sl->GetData(), size); // FIXME mitkIpPicDescriptor * pic = sl->GetPicDescriptor(); // replace old slice with reference to volume sl = new ImageDataItem( *vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * size); sl->SetComplete(true); // mitkIpFuncCopyTags(sl->GetPicDescriptor(), pic); m_Slices[posSl] = sl; } } // if(vol->GetPicDescriptor()->info->tags_head==nullptr) // mitkIpFuncCopyTags(vol->GetPicDescriptor(), m_Slices[GetSliceIndex(0,t,n)]->GetPicDescriptor()); } return m_Volumes[pos] = vol; } // volume is unavailable. Can we calculate it? if ((GetSource().IsNotNull()) && (GetSource()->Updating() == false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized = true; GetSource()->Update(); if (IsVolumeSet_unlocked(t, n)) // yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetVolumeData_unlocked(t, n, data, importMemoryManagement); else return nullptr; } else { ImageDataItemPointer item = AllocateVolumeData_unlocked(t, n, data, importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return GetChannelData_unlocked(n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData_unlocked( int n, void *data, ImportMemoryManagementType importMemoryManagement) const { if (IsValidChannel(n) == false) return nullptr; ImageDataItemPointer ch, vol; ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) return ch; // let's see if all volumes are set, so that we can (could) combine them to a channel if (IsChannelSet_unlocked(n)) { // if there is only one time frame we do not need to combine anything if (m_Dimensions[3] <= 1) { vol = GetVolumeData_unlocked(0, n, data, importMemoryManagement); ch = new ImageDataItem(*vol, m_ImageDescriptor, 0, m_ImageDescriptor->GetNumberOfDimensions(), data, importMemoryManagement == ManageMemory); ch->SetComplete(true); } else { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch = m_Channels[n]; // ok, let's combine the volumes! if (ch.GetPointer() == nullptr) ch = new ImageDataItem(this->m_ImageDescriptor, -1, nullptr, true); ch->SetComplete(true); size_t size = m_OffsetTable[m_Dimension - 1] * (ptypeSize); unsigned int t; auto slicesIt = m_Slices.begin() + n * m_Dimensions[2] * m_Dimensions[3]; for (t = 0; t < m_Dimensions[3]; ++t) { int posVol; ImageDataItemPointer vol; posVol = GetVolumeIndex(t, n); vol = GetVolumeData_unlocked(t, n, data, importMemoryManagement); if (vol->GetParent() != ch) { // copy data of volume in channel size_t offset = ((size_t)t) * m_OffsetTable[3] * (ptypeSize); std::memcpy(static_cast(ch->GetData()) + offset, vol->GetData(), size); // REVEIW FIX mitkIpPicDescriptor * pic = vol->GetPicDescriptor(); // replace old volume with reference to channel vol = new ImageDataItem(*ch, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory, offset); vol->SetComplete(true); // mitkIpFuncCopyTags(vol->GetPicDescriptor(), pic); m_Volumes[posVol] = vol; // get rid of slices - they may point to old volume ImageDataItemPointer dnull = nullptr; for (unsigned int i = 0; i < m_Dimensions[2]; ++i, ++slicesIt) { assert(slicesIt != m_Slices.end()); *slicesIt = dnull; } } } // REVIEW FIX // if(ch->GetPicDescriptor()->info->tags_head==nullptr) // mitkIpFuncCopyTags(ch->GetPicDescriptor(), m_Volumes[GetVolumeIndex(0,n)]->GetPicDescriptor()); } return m_Channels[n] = ch; } // channel is unavailable. Can we calculate it? if ((GetSource().IsNotNull()) && (GetSource()->Updating() == false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, 0); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, m_Dimensions[3]); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized = true; GetSource()->Update(); // did it work? if (IsChannelSet_unlocked(n)) // yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetChannelData_unlocked(n, data, importMemoryManagement); else return nullptr; } else { ImageDataItemPointer item = AllocateChannelData_unlocked(n, data, importMemoryManagement); item->SetComplete(true); return item; } } bool mitk::Image::IsSliceSet(int s, int t, int n) const { MutexHolder lock(m_ImageDataArraysLock); return IsSliceSet_unlocked(s, t, n); } bool mitk::Image::IsSliceSet_unlocked(int s, int t, int n) const { if (IsValidSlice(s, t, n) == false) return false; if (m_Slices[GetSliceIndex(s, t, n)].GetPointer() != nullptr) { return true; } ImageDataItemPointer ch, vol; vol = m_Volumes[GetVolumeIndex(t, n)]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) { return true; } ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) { return true; } return false; } bool mitk::Image::IsVolumeSet(int t, int n) const { MutexHolder lock(m_ImageDataArraysLock); return IsVolumeSet_unlocked(t, n); } bool mitk::Image::IsVolumeSet_unlocked(int t, int n) const { if (IsValidVolume(t, n) == false) return false; ImageDataItemPointer ch, vol; // volume directly available? vol = m_Volumes[GetVolumeIndex(t, n)]; if ((vol.GetPointer() != nullptr) && (vol->IsComplete())) return true; // is volume available as part of a channel that is available? ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) return true; // let's see if all slices of the volume are set, so that we can (could) combine them to a volume unsigned int s; for (s = 0; s < m_Dimensions[2]; ++s) { if (m_Slices[GetSliceIndex(s, t, n)].GetPointer() == nullptr) { return false; } } return true; } bool mitk::Image::IsChannelSet(int n) const { MutexHolder lock(m_ImageDataArraysLock); return IsChannelSet_unlocked(n); } bool mitk::Image::IsChannelSet_unlocked(int n) const { if (IsValidChannel(n) == false) return false; ImageDataItemPointer ch, vol; ch = m_Channels[n]; if ((ch.GetPointer() != nullptr) && (ch->IsComplete())) return true; // let's see if all volumes are set, so that we can (could) combine them to a channel unsigned int t; for (t = 0; t < m_Dimensions[3]; ++t) { if (IsVolumeSet_unlocked(t, n) == false) { return false; } } return true; } bool mitk::Image::SetSlice(const void *data, int s, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportSlice(const_cast(data), s, t, n, CopyMemory); } bool mitk::Image::SetVolume(const void *data, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportVolume(const_cast(data), t, n, CopyMemory); } bool mitk::Image::SetChannel(const void *data, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportChannel(const_cast(data), n, CopyMemory); } bool mitk::Image::SetImportSlice(void *data, int s, int t, int n, ImportMemoryManagementType importMemoryManagement) { if (IsValidSlice(s, t, n) == false) return false; ImageDataItemPointer sl; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); if (IsSliceSet(s, t, n)) { sl = GetSliceData(s, t, n, data, importMemoryManagement); if (sl->GetManageMemory() == false) { sl = AllocateSliceData(s, t, n, data, importMemoryManagement); if (sl.GetPointer() == nullptr) return false; } if (sl->GetData() != data) std::memcpy(sl->GetData(), data, m_OffsetTable[2] * (ptypeSize)); sl->Modified(); // we have changed the data: call Modified()! Modified(); } else { sl = AllocateSliceData(s, t, n, data, importMemoryManagement); if (sl.GetPointer() == nullptr) return false; if (sl->GetData() != data) std::memcpy(sl->GetData(), data, m_OffsetTable[2] * (ptypeSize)); // we just added a missing slice, which is not regarded as modification. // Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(void *data, int t, int n, ImportMemoryManagementType importMemoryManagement) { if (IsValidVolume(t, n) == false) return false; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer vol; if (IsVolumeSet(t, n)) { vol = GetVolumeData(t, n, data, importMemoryManagement); if (vol->GetManageMemory() == false) { vol = AllocateVolumeData(t, n, data, importMemoryManagement); if (vol.GetPointer() == nullptr) return false; } if (vol->GetData() != data) std::memcpy(vol->GetData(), data, m_OffsetTable[3] * (ptypeSize)); vol->Modified(); vol->SetComplete(true); // we have changed the data: call Modified()! Modified(); } else { vol = AllocateVolumeData(t, n, data, importMemoryManagement); if (vol.GetPointer() == nullptr) return false; if (vol->GetData() != data) { std::memcpy(vol->GetData(), data, m_OffsetTable[3] * (ptypeSize)); } vol->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData(vol->GetData()); // we just added a missing Volume, which is not regarded as modification. // Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(const void *const_data, int t, int n) { return this->SetImportVolume(const_cast(const_data), t, n, CopyMemory); } bool mitk::Image::SetImportChannel(void *data, int n, ImportMemoryManagementType importMemoryManagement) { if (IsValidChannel(n) == false) return false; // channel descriptor const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer ch; if (IsChannelSet(n)) { ch = GetChannelData(n, data, importMemoryManagement); if (ch->GetManageMemory() == false) { ch = AllocateChannelData(n, data, importMemoryManagement); if (ch.GetPointer() == nullptr) return false; } if (ch->GetData() != data) std::memcpy(ch->GetData(), data, m_OffsetTable[4] * (ptypeSize)); ch->Modified(); ch->SetComplete(true); // we have changed the data: call Modified()! Modified(); } else { ch = AllocateChannelData(n, data, importMemoryManagement); if (ch.GetPointer() == nullptr) return false; if (ch->GetData() != data) std::memcpy(ch->GetData(), data, m_OffsetTable[4] * (ptypeSize)); ch->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData(ch->GetData()); // we just added a missing Channel, which is not regarded as modification. // Therefore, we do not call Modified()! } return true; } void mitk::Image::Initialize() { ImageDataItemPointerArray::iterator it, end; for (it = m_Slices.begin(), end = m_Slices.end(); it != end; ++it) { (*it) = nullptr; } for (it = m_Volumes.begin(), end = m_Volumes.end(); it != end; ++it) { (*it) = nullptr; } for (it = m_Channels.begin(), end = m_Channels.end(); it != end; ++it) { (*it) = nullptr; } m_CompleteData = nullptr; if (m_ImageStatistics == nullptr) { m_ImageStatistics = new mitk::ImageStatisticsHolder(this); } SetRequestedRegionToLargestPossibleRegion(); } void mitk::Image::Initialize(const mitk::ImageDescriptor::Pointer inDesc) { // store the descriptor this->m_ImageDescriptor = inDesc; // initialize image this->Initialize( inDesc->GetChannelDescriptor(0).GetPixelType(), inDesc->GetNumberOfDimensions(), inDesc->GetDimensions(), 1); } void mitk::Image::Initialize(const mitk::PixelType &type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels) { Clear(); m_Dimension = dimension; if (!dimensions) itkExceptionMacro(<< "invalid zero dimension image"); unsigned int i; for (i = 0; i < dimension; ++i) { if (dimensions[i] < 1) itkExceptionMacro(<< "invalid dimension[" << i << "]: " << dimensions[i]); } // create new array since the old was deleted m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; // initialize the first four dimensions to 1, the remaining 4 to 0 FILL_C_ARRAY(m_Dimensions, 4, 1u); FILL_C_ARRAY((m_Dimensions + 4), 4, 0u); // copy in the passed dimension information std::memcpy(m_Dimensions, dimensions, sizeof(unsigned int) * m_Dimension); this->m_ImageDescriptor = mitk::ImageDescriptor::New(); this->m_ImageDescriptor->Initialize(this->m_Dimensions, this->m_Dimension); for (i = 0; i < 4; ++i) { m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, m_Dimensions[i]); } m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, channels); if (m_LargestPossibleRegion.GetNumberOfPixels() == 0) { delete[] m_Dimensions; m_Dimensions = nullptr; return; } for (unsigned int i = 0u; i < channels; i++) { this->m_ImageDescriptor->AddNewChannel(type); } PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(m_Dimensions[0], m_Dimensions[1]); SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(planegeometry, m_Dimensions[2]); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); for (TimeStepType step = 0; step < timeGeometry->CountTimeSteps(); ++step) { timeGeometry->GetGeometryForTimeStep(step)->ImageGeometryOn(); } SetTimeGeometry(timeGeometry); ImageDataItemPointer dnull = nullptr; m_Channels.assign(GetNumberOfChannels(), dnull); m_Volumes.assign(GetNumberOfChannels() * m_Dimensions[3], dnull); m_Slices.assign(GetNumberOfChannels() * m_Dimensions[3] * m_Dimensions[2], dnull); ComputeOffsetTable(); Initialize(); m_Initialized = true; } void mitk::Image::Initialize(const mitk::PixelType &type, const mitk::BaseGeometry &geometry, unsigned int channels, int tDim) { mitk::ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry.Clone(), tDim); this->Initialize(type, *timeGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::PixelType &type, const mitk::TimeGeometry &geometry, unsigned int channels, int tDim) { unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(0) + 0.5); dimensions[1] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(1) + 0.5); dimensions[2] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(2) + 0.5); dimensions[3] = (tDim > 0) ? tDim : geometry.CountTimeSteps(); dimensions[4] = 0; unsigned int dimension = 2; if (dimensions[2] > 1) dimension = 3; if (dimensions[3] > 1) dimension = 4; Initialize(type, dimension, dimensions, channels); if (geometry.CountTimeSteps() > 1) { TimeGeometry::Pointer cloned = geometry.Clone(); SetTimeGeometry(cloned.GetPointer()); // make sure the image geometry flag is properly set for all time steps for (TimeStepType step = 0; step < cloned->CountTimeSteps(); ++step) { if (!cloned->GetGeometryCloneForTimeStep(step)->GetImageGeometry()) { MITK_WARN("Image.3DnT.Initialize") << " Attempt to initialize an image with a non-image geometry. " "Re-interpretting the initialization geometry for timestep " << step << " as image geometry, the original geometry remains unchanged."; cloned->GetGeometryForTimeStep(step)->ImageGeometryOn(); } } } else { // make sure the image geometry coming from outside has proper value of the image geometry flag BaseGeometry::Pointer cloned = geometry.GetGeometryCloneForTimeStep(0)->Clone(); if (!cloned->GetImageGeometry()) { MITK_WARN("Image.Initialize") << " Attempt to initialize an image with a non-image geometry. Re-interpretting " "the initialization geometry as image geometry, the original geometry remains " "unchanged."; cloned->ImageGeometryOn(); } Superclass::SetGeometry(cloned); } - /* //Old //TODO_GOETZ Really necessary? - mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBoxInWorld()->GetBounds(); - if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) - { - SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); - - mitk::Point3D origin; origin.Fill(0.0); - slicedGeometry->IndexToWorld(origin, origin); - - bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; - bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; - this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); - slicedGeometry->SetBounds(bounds); - slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.GetVnlVector().data_block()); - - ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); - timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); - SetTimeGeometry(timeGeometry); - }*/ -} - -void mitk::Image::Initialize(const mitk::PixelType &, - int, - const mitk::PlaneGeometry &, - bool, - unsigned int, - int) -{ - mitkThrow() << "Use this method without the flipped parameter (direction is specified by the handedness of the PlaneGeometry instead)."; } void mitk::Image::Initialize(const mitk::PixelType &type, int sDim, const mitk::PlaneGeometry &geometry2d, unsigned int channels, int tDim) { SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(geometry2d.Clone(), sDim); Initialize(type, *slicedGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::Image *image) { Initialize(image->GetPixelType(), *image->GetTimeGeometry()); } void mitk::Image::Initialize(vtkImageData *vtkimagedata, int channels, int tDim, int sDim, int pDim) { if (vtkimagedata == nullptr) return; m_Dimension = vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions = new unsigned int[m_Dimension > 4 ? m_Dimension : 4]; for (i = 0; i < m_Dimension; ++i) tmpDimensions[i] = vtkimagedata->GetDimensions()[i]; if (m_Dimension < 4) { unsigned int *p; for (i = 0, p = tmpDimensions + m_Dimension; i < 4 - m_Dimension; ++i, ++p) *p = 1; } if (pDim >= 0) { tmpDimensions[1] = pDim; if (m_Dimension < 2) m_Dimension = 2; } if (sDim >= 0) { tmpDimensions[2] = sDim; if (m_Dimension < 3) m_Dimension = 3; } if (tDim >= 0) { tmpDimensions[3] = tDim; if (m_Dimension < 4) m_Dimension = 4; } mitk::PixelType pixelType(MakePixelType(vtkimagedata)); Initialize(pixelType, m_Dimension, tmpDimensions, channels); const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if (m_Dimension >= 2) spacing[1] = spacinglist[1]; if (m_Dimension >= 3) spacing[2] = spacinglist[2]; // access origin of vtkImage Point3D origin; double vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if (m_Dimension >= 2) origin[1] = vtkorigin[1]; if (m_Dimension >= 3) origin[2] = vtkorigin[2]; SlicedGeometry3D *slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction auto *planeGeometry = static_cast(slicedGeometry->GetPlaneGeometry(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); delete[] tmpDimensions; } bool mitk::Image::IsValidSlice(int s, int t, int n) const { if (m_Initialized) return ((s >= 0) && (s < (int)m_Dimensions[2]) && (t >= 0) && (t < (int)m_Dimensions[3]) && (n >= 0) && (n < (int)GetNumberOfChannels())); else return false; } bool mitk::Image::IsValidVolume(int t, int n) const { if (m_Initialized) return IsValidSlice(0, t, n); else return false; } bool mitk::Image::IsValidChannel(int n) const { if (m_Initialized) return IsValidSlice(0, 0, n); else return false; } void mitk::Image::ComputeOffsetTable() { if (m_OffsetTable != nullptr) delete[] m_OffsetTable; m_OffsetTable = new size_t[m_Dimension > 4 ? m_Dimension + 1 : 4 + 1]; unsigned int i; size_t num = 1; m_OffsetTable[0] = 1; for (i = 0; i < m_Dimension; ++i) { num *= m_Dimensions[i]; m_OffsetTable[i + 1] = num; } for (; i < 4; ++i) m_OffsetTable[i + 1] = num; } bool mitk::Image::IsValidTimeStep(int t) const { return ((m_Dimension >= 4 && t <= (int)m_Dimensions[3] && t > 0) || (t == 0)); } void mitk::Image::Expand(unsigned int timeSteps) { if (timeSteps < 1) itkExceptionMacro(<< "Invalid timestep in Image!"); Superclass::Expand(timeSteps); } int mitk::Image::GetSliceIndex(int s, int t, int n) const { if (IsValidSlice(s, t, n) == false) return false; return ((size_t)s) + ((size_t)t) * m_Dimensions[2] + ((size_t)n) * m_Dimensions[3] * m_Dimensions[2]; //?? } int mitk::Image::GetVolumeIndex(int t, int n) const { if (IsValidVolume(t, n) == false) return false; return ((size_t)t) + ((size_t)n) * m_Dimensions[3]; //?? } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return AllocateSliceData_unlocked(s, t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData_unlocked( int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { int pos; pos = GetSliceIndex(s, t, n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol = m_Volumes[GetVolumeIndex(t, n)]; if (vol.GetPointer() != nullptr) { sl = new ImageDataItem(*vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * m_OffsetTable[2] * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // is slice available as part of a channel that is available? ch = m_Channels[n]; if (ch.GetPointer() != nullptr) { sl = new ImageDataItem(*ch, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, (((size_t)s) * m_OffsetTable[2] + ((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; } // allocate new volume (instead of a single slice to keep data together!) m_Volumes[GetVolumeIndex(t, n)] = vol = AllocateVolumeData_unlocked(t, n, nullptr, importMemoryManagement); sl = new ImageDataItem(*vol, m_ImageDescriptor, t, 2, data, importMemoryManagement == ManageMemory, ((size_t)s) * m_OffsetTable[2] * (ptypeSize)); sl->SetComplete(true); return m_Slices[pos] = sl; ////ALTERNATIVE: //// allocate new slice // sl=new ImageDataItem(*m_PixelType, 2, m_Dimensions); // m_Slices[pos]=sl; // return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData( int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return AllocateVolumeData_unlocked(t, n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData_unlocked( int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) const { int pos; pos = GetVolumeIndex(t, n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ImageDataItemPointer ch, vol; ch = m_Channels[n]; if (ch.GetPointer() != nullptr) { vol = new ImageDataItem(*ch, m_ImageDescriptor, t, 3, data, importMemoryManagement == ManageMemory, (((size_t)t) * m_OffsetTable[3]) * (ptypeSize)); return m_Volumes[pos] = vol; } mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); // allocate new volume if (importMemoryManagement == CopyMemory) { vol = new ImageDataItem(chPixelType, t, 3, m_Dimensions, nullptr, true); if (data != nullptr) std::memcpy(vol->GetData(), data, m_OffsetTable[3] * (ptypeSize)); } else { vol = new ImageDataItem(chPixelType, t, 3, m_Dimensions, data, importMemoryManagement == ManageMemory); } m_Volumes[pos] = vol; return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData( int n, void *data, ImportMemoryManagementType importMemoryManagement) const { MutexHolder lock(m_ImageDataArraysLock); return AllocateChannelData_unlocked(n, data, importMemoryManagement); } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData_unlocked( int n, void *data, ImportMemoryManagementType importMemoryManagement) const { ImageDataItemPointer ch; // allocate new channel if (importMemoryManagement == CopyMemory) { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch = new ImageDataItem(this->m_ImageDescriptor, -1, nullptr, true); if (data != nullptr) std::memcpy(ch->GetData(), data, m_OffsetTable[4] * (ptypeSize)); } else { ch = new ImageDataItem(this->m_ImageDescriptor, -1, data, importMemoryManagement == ManageMemory); } m_Channels[n] = ch; return ch; } unsigned int *mitk::Image::GetDimensions() const { return m_Dimensions; } void mitk::Image::Clear() { Superclass::Clear(); delete[] m_Dimensions; m_Dimensions = nullptr; } void mitk::Image::SetGeometry(BaseGeometry *aGeometry3D) { // Please be aware of the 0.5 offset/pixel-center issue! See Geometry documentation for further information if (aGeometry3D->GetImageGeometry() == false) { MITK_INFO << "WARNING: Applied a non-image geometry onto an image. Please be SURE that this geometry is " "pixel-center-based! If it is not, you need to call " "Geometry3D->ChangeImageGeometryConsideringOriginOffset(true) before calling image->setGeometry(..)\n"; } Superclass::SetGeometry(aGeometry3D); for (TimeStepType step = 0; step < GetTimeGeometry()->CountTimeSteps(); ++step) GetTimeGeometry()->GetGeometryForTimeStep(step)->ImageGeometryOn(); } void mitk::Image::PrintSelf(std::ostream &os, itk::Indent indent) const { if (m_Initialized) { unsigned char i; os << indent << " Dimension: " << m_Dimension << std::endl; os << indent << " Dimensions: "; for (i = 0; i < m_Dimension; ++i) os << GetDimension(i) << " "; os << std::endl; for (unsigned int ch = 0; ch < this->m_ImageDescriptor->GetNumberOfChannels(); ch++) { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(ch); os << indent << " Channel: " << this->m_ImageDescriptor->GetChannelName(ch) << std::endl; os << indent << " PixelType: " << chPixelType.GetPixelTypeAsString() << std::endl; os << indent << " BytesPerElement: " << chPixelType.GetSize() << std::endl; os << indent << " ComponentType: " << chPixelType.GetComponentTypeAsString() << std::endl; os << indent << " NumberOfComponents: " << chPixelType.GetNumberOfComponents() << std::endl; os << indent << " BitsPerComponent: " << chPixelType.GetBitsPerComponent() << std::endl; } } else { os << indent << " Image not initialized: m_Initialized: false" << std::endl; } Superclass::PrintSelf(os, indent); } bool mitk::Image::IsRotated() const { const mitk::BaseGeometry *geo = this->GetGeometry(); bool ret = false; if (geo) { const vnl_matrix_fixed &mx = geo->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::ScalarType ref = 0; for (short k = 0; k < 3; ++k) ref += mx[k][k]; ref /= 1000; // Arbitrary value; if a non-diagonal (nd) element is bigger then this, matrix is considered nd. for (short i = 0; i < 3; ++i) { for (short j = 0; j < 3; ++j) { if (i != j) { if (std::abs(mx[i][j]) > ref) // matrix is nd ret = true; } } } } return ret; } -mitk::ScalarType mitk::Image::GetScalarValueMin(int t) const -{ - return m_ImageStatistics->GetScalarValueMin(t); -} - -//## \brief Get the maximum for scalar images -mitk::ScalarType mitk::Image::GetScalarValueMax(int t) const -{ - return m_ImageStatistics->GetScalarValueMax(t); -} - -//## \brief Get the second smallest value for scalar images -mitk::ScalarType mitk::Image::GetScalarValue2ndMin(int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMin(t); -} - -mitk::ScalarType mitk::Image::GetScalarValueMinNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValueMinNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetScalarValue2ndMinNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMinNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetScalarValue2ndMax(int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMax(t); -} - -mitk::ScalarType mitk::Image::GetScalarValueMaxNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValueMaxNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetScalarValue2ndMaxNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetScalarValue2ndMaxNoRecompute(t); -} - -mitk::ScalarType mitk::Image::GetCountOfMinValuedVoxels(int t) const -{ - return m_ImageStatistics->GetCountOfMinValuedVoxels(t); -} - -mitk::ScalarType mitk::Image::GetCountOfMaxValuedVoxels(int t) const -{ - return m_ImageStatistics->GetCountOfMaxValuedVoxels(t); -} - -unsigned int mitk::Image::GetCountOfMaxValuedVoxelsNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetCountOfMaxValuedVoxelsNoRecompute(t); -} - -unsigned int mitk::Image::GetCountOfMinValuedVoxelsNoRecompute(unsigned int t) const -{ - return m_ImageStatistics->GetCountOfMinValuedVoxelsNoRecompute(t); -} - -bool mitk::Equal(const mitk::Image *leftHandSide, const mitk::Image *rightHandSide, ScalarType eps, bool verbose) -{ - if ((leftHandSide == nullptr) || (rightHandSide == nullptr)) - { - MITK_ERROR << "mitk::Equal(const mitk::Image* leftHandSide, const mitk::Image* rightHandSide, ScalarType eps, bool " - "verbose) does not work with nullptr pointer input."; - return false; - } - return mitk::Equal(*leftHandSide, *rightHandSide, eps, verbose); -} bool mitk::Equal(const mitk::Image &leftHandSide, const mitk::Image &rightHandSide, ScalarType eps, bool verbose) { bool returnValue = true; // Dimensionality if (rightHandSide.GetDimension() != leftHandSide.GetDimension()) { if (verbose) { MITK_INFO << "[( Image )] Dimensionality differs."; MITK_INFO << "leftHandSide is " << leftHandSide.GetDimension() << "rightHandSide is " << rightHandSide.GetDimension(); } returnValue = false; } // Pair-wise dimension (size) comparison unsigned int minDimensionality = std::min(rightHandSide.GetDimension(), leftHandSide.GetDimension()); for (unsigned int i = 0; i < minDimensionality; ++i) { if (rightHandSide.GetDimension(i) != leftHandSide.GetDimension(i)) { returnValue = false; if (verbose) { MITK_INFO << "[( Image )] dimension differs."; MITK_INFO << "leftHandSide->GetDimension(" << i << ") is " << leftHandSide.GetDimension(i) << "rightHandSide->GetDimension(" << i << ") is " << rightHandSide.GetDimension(i); } } } // Pixeltype mitk::PixelType pixelTypeRightHandSide = rightHandSide.GetPixelType(); mitk::PixelType pixelTypeLeftHandSide = leftHandSide.GetPixelType(); if (!(pixelTypeRightHandSide == pixelTypeLeftHandSide)) { if (verbose) { MITK_INFO << "[( Image )] PixelType differs."; MITK_INFO << "leftHandSide is " << pixelTypeLeftHandSide.GetTypeAsString() << "rightHandSide is " << pixelTypeRightHandSide.GetTypeAsString(); } returnValue = false; } // Geometries if (!mitk::Equal(*leftHandSide.GetGeometry(), *rightHandSide.GetGeometry(), eps, verbose)) { if (verbose) { MITK_INFO << "[( Image )] Geometries differ."; } returnValue = false; } // Pixel values - default mode [ 0 threshold in difference ] // compare only if all previous checks were successfull, otherwise the ITK filter will throw an exception if (returnValue) { mitk::CompareImageDataFilter::Pointer compareFilter = mitk::CompareImageDataFilter::New(); compareFilter->SetInput(0, &rightHandSide); compareFilter->SetInput(1, &leftHandSide); compareFilter->SetTolerance(eps); compareFilter->Update(); if ((!compareFilter->GetResult())) { returnValue = false; if (verbose) { MITK_INFO << "[(Image)] Pixel values differ: "; compareFilter->GetCompareResults().PrintSelf(); } } } return returnValue; } diff --git a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp index 64df08bc8b..63c827db0c 100644 --- a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp +++ b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp @@ -1,204 +1,205 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include "mitkAutoMLSegmentationWithPreviewTool.h" #include "mitkImageAccessByItk.h" #include "mitkToolManager.h" #include #include #include #include #include #include +#include // ITK #include #include mitk::AutoMLSegmentationWithPreviewTool::AutoMLSegmentationWithPreviewTool() : AutoSegmentationWithPreviewTool(true) { } void mitk::AutoMLSegmentationWithPreviewTool::SetSelectedLabels(const SelectedLabelVectorType& regions) { if (m_SelectedLabels != regions) { m_SelectedLabels = regions; //Note: we do not call this->Modified() on puprose. Reason: changing the //selected regions should not force to run otsu filter in DoUpdatePreview due to changed MTime. } } const mitk::LabelSetImage* mitk::AutoMLSegmentationWithPreviewTool::GetMLPreview() const { if (m_MLPreviewNode.IsNotNull()) { const auto mlPreviewImage = dynamic_cast(this->m_MLPreviewNode->GetData()); return mlPreviewImage; } return nullptr; } mitk::AutoMLSegmentationWithPreviewTool::SelectedLabelVectorType mitk::AutoMLSegmentationWithPreviewTool::GetSelectedLabels() const { return this->m_SelectedLabels; } void mitk::AutoMLSegmentationWithPreviewTool::Activated() { Superclass::Activated(); m_SelectedLabels = {}; m_MLPreviewNode = mitk::DataNode::New(); m_MLPreviewNode->SetProperty("name", StringProperty::New(std::string(this->GetName()) + "ML preview")); m_MLPreviewNode->SetProperty("helper object", BoolProperty::New(true)); m_MLPreviewNode->SetVisibility(true); m_MLPreviewNode->SetOpacity(1.0); this->GetToolManager()->GetDataStorage()->Add(m_MLPreviewNode); } void mitk::AutoMLSegmentationWithPreviewTool::Deactivated() { this->GetToolManager()->GetDataStorage()->Remove(m_MLPreviewNode); m_MLPreviewNode = nullptr; Superclass::Deactivated(); } void mitk::AutoMLSegmentationWithPreviewTool::UpdateCleanUp() { if (m_MLPreviewNode.IsNotNull()) m_MLPreviewNode->SetVisibility(m_SelectedLabels.empty()); if (nullptr != this->GetPreviewSegmentationNode()) this->GetPreviewSegmentationNode()->SetVisibility(!m_SelectedLabels.empty()); if (m_SelectedLabels.empty()) { this->ResetPreviewNode(); } } void mitk::AutoMLSegmentationWithPreviewTool::DoUpdatePreview(const Image* inputAtTimeStep, const Image* /*oldSegAtTimeStep*/, Image* previewImage, TimeStepType timeStep) { const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); if (nullptr == m_MLPreviewNode->GetData() || this->GetMTime() > m_MLPreviewNode->GetData()->GetMTime() || this->m_LastMLTimeStep != timeStep //this covers the case where dynamic //segmentations have to compute a preview //for all time steps on confirmation || this->GetLastTimePointOfUpdate() != timePoint //this ensures that static seg //previews work with dynamic images //with avoiding unnecessary other computations ) { if (nullptr == inputAtTimeStep) { MITK_WARN << "Cannot run segementation. Currently selected input image is not set."; return; } this->m_LastMLTimeStep = timeStep; auto newMLPreview = ComputeMLPreview(inputAtTimeStep, timeStep); if (newMLPreview.IsNotNull()) { this->m_MLPreviewNode->SetData(newMLPreview); this->m_MLPreviewNode->SetProperty("binary", mitk::BoolProperty::New(false)); mitk::RenderingModeProperty::Pointer renderingMode = mitk::RenderingModeProperty::New(); renderingMode->SetValue(mitk::RenderingModeProperty::LOOKUPTABLE_LEVELWINDOW_COLOR); this->m_MLPreviewNode->SetProperty("Image Rendering.Mode", renderingMode); mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); mitk::LookupTableProperty::Pointer prop = mitk::LookupTableProperty::New(lut); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetHueRange(1.0, 0.0); lookupTable->SetSaturationRange(1.0, 1.0); lookupTable->SetValueRange(1.0, 1.0); lookupTable->SetTableRange(-1.0, 1.0); lookupTable->Build(); lut->SetVtkLookupTable(lookupTable); prop->SetLookupTable(lut); this->m_MLPreviewNode->SetProperty("LookupTable", prop); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); mitk::LevelWindow levelwindow; - levelwindow.SetRangeMinMax(0, newMLPreview->GetScalarValueMax()); + levelwindow.SetRangeMinMax(0, newMLPreview->GetStatistics()->GetScalarValueMax()); levWinProp->SetLevelWindow(levelwindow); this->m_MLPreviewNode->SetProperty("levelwindow", levWinProp); } } if (!m_SelectedLabels.empty()) { const auto mlPreviewImage = this->GetMLPreview(); if (nullptr != mlPreviewImage) { AccessByItk_n(mlPreviewImage, CalculateMergedSimplePreview, (previewImage, timeStep)); } } } template void mitk::AutoMLSegmentationWithPreviewTool::CalculateMergedSimplePreview(const itk::Image* itkImage, mitk::Image* segmentation, unsigned int timeStep) { typedef itk::Image InputImageType; typedef itk::Image OutputImageType; typedef itk::BinaryThresholdImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); // InputImageType::Pointer itkImage; typename OutputImageType::Pointer itkBinaryResultImage; filter->SetInput(itkImage); filter->SetLowerThreshold(m_SelectedLabels[0]); filter->SetUpperThreshold(m_SelectedLabels[0]); filter->SetInsideValue(1); filter->SetOutsideValue(0); filter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); filter->Update(); itkBinaryResultImage = filter->GetOutput(); itkBinaryResultImage->DisconnectPipeline(); // if more than one region id is used compute the union of all given binary regions for (const auto labelID : m_SelectedLabels) { if (labelID != m_SelectedLabels[0]) { filter->SetLowerThreshold(labelID); filter->SetUpperThreshold(labelID); filter->SetInsideValue(1); filter->SetOutsideValue(0); filter->Update(); typename OutputImageType::Pointer tempImage = filter->GetOutput(); typename itk::OrImageFilter::Pointer orFilter = itk::OrImageFilter::New(); orFilter->SetInput1(tempImage); orFilter->SetInput2(itkBinaryResultImage); orFilter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); orFilter->UpdateLargestPossibleRegion(); itkBinaryResultImage = orFilter->GetOutput(); } } //---------------------------------------------------------------------------------------------------- segmentation->SetVolume((void*)(itkBinaryResultImage->GetPixelContainer()->GetBufferPointer()), timeStep); } diff --git a/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp b/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp index 1b67d32f1f..165b46850f 100644 --- a/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp +++ b/Modules/Segmentation/Interactions/mitkSegmentationInteractor.cpp @@ -1,63 +1,66 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSegmentationInteractor.h" #include "mitkInteractionPositionEvent.h" #include "mitkLabelSetImage.h" #include "mitkToolManager.h" #include "mitkToolManagerProvider.h" #include #include void mitk::SegmentationInteractor::ConnectActionsAndFunctions() { Superclass::ConnectActionsAndFunctions(); // CONNECT_FUNCTION("change_active_label", ChangeActiveLabel); } bool mitk::SegmentationInteractor::ChangeActiveLabel(StateMachineAction *, InteractionEvent *interactionEvent) { BaseRenderer::Pointer sender = interactionEvent->GetSender(); auto *positionEvent = static_cast(interactionEvent); // MLI TODO // m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; // m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); auto *toolManager = mitk::ToolManagerProvider::GetInstance()->GetToolManager( mitk::ToolManagerProvider::MULTILABEL_SEGMENTATION); assert(toolManager); DataNode *workingNode(toolManager->GetWorkingData(0)); if (workingNode) { auto *workingImage = dynamic_cast(workingNode->GetData()); assert(workingImage); const auto timestep = positionEvent->GetSender()->GetTimeStep(workingImage); - int pixelValue = static_cast(workingImage->GetPixelValueByWorldCoordinate(positionEvent->GetPositionInWorld(), timestep)); - workingImage->GetActiveLabelSet()->SetActiveLabel(pixelValue); // can be the background + //TODO + throw "TODO. Was forgot to refactor in context of T28524. The new class will has a dedicated function for that"; + //int pixelValue = static_cast(workingImage->GetPixelValueByWorldCoordinate(positionEvent->GetPositionInWorld(), timestep)); + //workingImage->GetActiveLabelSet()->SetActiveLabel(pixelValue); // can be the background + //TODO END Refactor with T28524 // Call Events // workingImage->ActiveLabelEvent.Send(pixelValue); // MLI TODO // toolManager->WorkingDataModified.Send(); } RenderingManager::GetInstance()->RequestUpdateAll(); return true; }