diff --git a/Examples/Tutorial/Step3.cpp b/Examples/Tutorial/Step3.cpp index 98aedaa4d1..e512e06f12 100644 --- a/Examples/Tutorial/Step3.cpp +++ b/Examples/Tutorial/Step3.cpp @@ -1,171 +1,174 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkRegisterClasses.h" #include "QmitkRenderWindow.h" #include #include #include #include #include #include +#include "mitkCoreExtObjectFactory.h" #include #include //##Documentation //## @brief Change the type of display to 3D //## //## As in Step2, load one or more data sets (many image, surface //## and other formats), but display it in a 3D view. //## The QmitkRenderWindow is now used for displaying a 3D view, by //## setting the used mapper-slot to Standard3D. //## Since volume-rendering is a (rather) slow procedure, the default //## is that images are not displayed in the 3D view. For this example, //## we want volume-rendering, thus we switch it on by setting //## the Boolean-property "volumerendering" to "true". int main(int argc, char* argv[]) { QApplication qtapplication( argc, argv ); if(argc<2) { fprintf( stderr, "Usage: %s [filename1] [filename2] ...\n\n", itksys::SystemTools::GetFilenameName(argv[0]).c_str() ); return 1; } + // Register MitkExt Factory to use new volumerendering + RegisterCoreExtObjectFactory(); // Register Qmitk-dependent global instances QmitkRegisterClasses(); //************************************************************************* // Part I: Basic initialization //************************************************************************* // Create a DataStorage mitk::StandaloneDataStorage::Pointer ds = mitk::StandaloneDataStorage::New(); //************************************************************************* // Part II: Create some data by reading files //************************************************************************* int i; for(i=1; iSetFileName(filename); nodeReader->Update(); //********************************************************************* // Part III: Put the data into the datastorage //********************************************************************* // Since the DataNodeFactory directly creates a node, // use the datastorage to add the read node mitk::DataNode::Pointer node = nodeReader->GetOutput(); ds->Add(node); // ********************************************************* // ****************** START OF NEW PART 1 ****************** // ********************************************************* //********************************************************************* // Part IV: We want all images to be volume-rendered //********************************************************************* // Check if the data is an image by dynamic_cast-ing the data // contained in the node. Warning: dynamic_cast's are rather slow, // do not use it too often! mitk::Image::Pointer image = dynamic_cast(node->GetData()); if(image.IsNotNull()) { // Set the property "volumerendering" to the Boolean value "true" node->SetProperty("volumerendering", mitk::BoolProperty::New(true)); // Create a transfer function to assign optical properties (color and opacity) to grey-values of the data mitk::TransferFunction::Pointer tf = mitk::TransferFunction::New(); tf->InitializeByMitkImage ( image ); // Set the color transfer function AddRGBPoint(double x, double r, double g, double b) tf->GetColorTransferFunction()->AddRGBPoint ( tf->GetColorTransferFunction()->GetRange() [0], 1.0, 0.0, 0.0 ); tf->GetColorTransferFunction()->AddRGBPoint ( tf->GetColorTransferFunction()->GetRange() [1], 1.0, 1.0, 0.0 ); // Set the piecewise opacity transfer function AddPoint(double x, double y) tf->GetScalarOpacityFunction()->AddPoint ( 0, 0 ); tf->GetScalarOpacityFunction()->AddPoint ( tf->GetColorTransferFunction()->GetRange() [1], 1 ); node->SetProperty ( "TransferFunction", mitk::TransferFunctionProperty::New ( tf.GetPointer() ) ); } // ********************************************************* // ******************* END OF NEW PART 1 ******************* // ********************************************************* } catch(...) { fprintf( stderr, "Could not open file %s \n\n", filename ); exit(2); } } //************************************************************************* // Part V: Create window and pass the tree to it //************************************************************************* // Create a renderwindow QmitkRenderWindow renderWindow; // Tell the renderwindow which (part of) the datastorage to render renderWindow.GetRenderer()->SetDataStorage(ds); // ********************************************************* // ****************** START OF NEW PART 2 ****************** // ********************************************************* // Use it as a 3D view! renderWindow.GetRenderer()->SetMapperID(mitk::BaseRenderer::Standard3D); // ********************************************************* // ******************* END OF NEW PART 2 ******************* // ********************************************************* //************************************************************************* // Part VI: Qt-specific initialization //************************************************************************* renderWindow.show(); renderWindow.resize( 256, 256 ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); // for testing #include "QtTesting.h" if(strcmp(argv[argc-1], "-testing")!=0) return qtapplication.exec(); else return QtTesting(); } /** \example Step3.cpp */