diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp index 6cccb352e4..2ea7115a97 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp @@ -1,1060 +1,1060 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #define __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #include "mitkSphericalHarmonicsFunctions.h" #include "itkPointShell.h" #include namespace itk { #define QBALL_ANAL_RECON_PI M_PI template< class T, class TG, class TO, int L, int NODF> DiffusionMultiShellQballReconstructionImageFilter ::DiffusionMultiShellQballReconstructionImageFilter() : m_GradientDirectionContainer(NULL), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(1.0), m_Lambda(0.0), m_IsHemisphericalArrangementOfGradientDirections(false), m_IsArithmeticProgession(false), m_ReconstructionType(Standard1Shell) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> typename itk::DiffusionMultiShellQballReconstructionImageFilter< TReferenceImagePixelType,TGradientImagePixelType,TOdfPixelType, NOrderL,NrOdfDirections>::OdfPixelType itk::DiffusionMultiShellQballReconstructionImageFilter ::Normalize( OdfPixelType odf, typename NumericTraits::AccumulateType b0 ) { for(int i=0; i0) odf /= sum; return odf; } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Threshold(vnl_vector & vec, float sigma) { for(int i = 0; i < vec.size(); i++) { if(vec[i] < 0) { vec[i] = sigma / 2 ; } if(0 <= vec[i] && vec[i] < sigma ) { vec[i] = sigma / 2 + (vec[i] * vec[i]) / 2 * sigma; } if( 1 - sigma <= vec[i] && vec[i] < 1 ) { vec[i] = 1-(sigma/2) - (( 1 - vec[i] * vec[i] ) / 2 * sigma ); } if( 1 <= vec[i] ) { vec[i] = 1 - (sigma / 2); } } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Threshold(vnl_matrix & mat, float sigma) { for(int i = 0; i < mat.rows(); i++) { for( int j = 0; j < mat.cols(); j++ ){ if(mat(i,j) < 0) { mat(i,j) = sigma / 2 ; } if(0 <= mat(i,j) && mat(i,j) < sigma ) { mat(i,j) = sigma / 2 + (mat(i,j) * mat(i,j)) / 2 * sigma; } if( 1 - sigma <= mat(i,j) && mat(i,j) < 1 ) { mat(i,j) = 1-(sigma/2) - (( 1 - mat(i,j) * mat(i,j) ) / 2 * sigma ); } if( 1 <= mat(i,j) ) { mat(i,j) = 1 - (sigma / 2); } } } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Projection1( vnl_matrix & E, float delta ) { double sF = sqrt(5.0); vnl_vector vOnes(E.rows()); vOnes.fill(1.0); vnl_matrix T0(E.rows(), E.cols()); - vnl_matrix C(E.rows(), 7); - vnl_matrix A(E.rows(), 7); - vnl_matrix B(E.rows(), 7); + vnl_matrix C(E.rows(), 7); + vnl_matrix A(E.rows(), 7); + vnl_matrix B(E.rows(), 7); vnl_vector s0(E.rows()); vnl_vector a0(E.rows()); vnl_vector b0(E.rows()); vnl_vector ta(E.rows()); vnl_vector tb(E.rows()); vnl_vector e(E.rows()); vnl_vector m(E.rows()); vnl_vector a(E.rows()); vnl_vector b(E.rows()); // logarithmierung aller werte in E for(int i = 0 ; i < E.rows(); i++) { for(int j = 0 ; j < E.cols(); j++) { T0(i,j) = -log(E(i,j)); } } // Summeiere Zeilenweise über alle Shells sum = E1+E2+E3 for(int i = 0 ; i < E.rows(); i++) { s0[i] = T0(i,0) + T0(i,1) + T0(i,2); } for(int i = 0; i < E.rows(); i ++) { // Alle Signal-Werte auf der Ersten shell E(N,0) normiert auf s0 a0 = E(i,0) / s0[i]; // Alle Signal-Werte auf der Zweiten shell E(N,1) normiert auf s0 b0 = E(i,1) / s0[i]; } - ta = 3*a0; - tb = 3*b0; - e = tb - (2*ta); - m = (2*tb) + ta; + ta = a0 * 3.0; + tb = b0 * 3.0; + e = tb - (ta * 2.0); + m = (tb * 2.0 ) + ta; for(int i = 0; i < E.rows(); i++) { C(i,0) = tb[i] < 1+3*delta && 0.5+1.5*(sF+1)*delta < ta[i] && ta[i] < 1-3* (sF+2) *delta; C(i,1) = e[i] <= -1 +3*(2*sF+5)* delta && ta[i] >= 1-3*(sF+2)*delta; - C(i,2) = m[i] > 3 -3*sF*delta && -1+3*(2*sF+5)*d < e[i] && e<-3*sF*d; - C(i,3) = m[i] >= 3-3*sF*d && e >= -3 *sF * delta; - C(i,4) = 2.5 + 1.5*(5+sF)*delta < m[i] && m < 3-3*sF*delta && e> -3*sF*delta; - C(i,5) = ta[i] <= 0.5+1.5 *delta(sF+1)*delta && m[i] <= 2.5 + 1.5 *(5+sF) * delta; + C(i,2) = m[i] > 3 -3*sF*delta && -1+3*(2*sF+5)*delta < e[i] && e[i]<-3*sF*delta; + C(i,3) = m[i] >= 3-3*sF*delta && e[i] >= -3 *sF * delta; + C(i,4) = 2.5 + 1.5*(5+sF)*delta < m[i] && m[i] < 3-3*sF*delta && e[i] > -3*sF*delta; + C(i,5) = ta[i] <= 0.5+1.5 *delta*(sF+1)*delta && m[i] <= 2.5 + 1.5 *(5+sF) * delta; C(i,6) = !( C(i,0) || C(i,1) || C(i,2) || C(i,3) || C(i,4) || C(i,5) ); // ~ANY(C(i,[0-5] ),2) } A.set_column(0, a0); - A.set_column(1, (1/3 - (sF+2) * delta ) * vOnes); - A.set_column(2, 0.2+0.8 * a0 - 0.4 * b0 -d/sF); - A.set_column(3, (0.2 + delta /sF)*vOnes); - A.set_column(4, 0.2 * a0 + 0.4 * b0 + 2*d/sF); - A.set_column(5, (1/6+0.5*(sF+1)*delat) * vOnes); + A.set_column(1, vOnes * (1/3 - (sF+2) * delta )); + A.set_column(2, (a0*0.8)+ 0.2 - (b0 * 0.4) -delta/sF); + A.set_column(3, vOnes * (0.2 + delta /sF)); + A.set_column(4, a0 * 0.2 + (b0 * 0.4) + 2*delta/sF); + A.set_column(5, vOnes * (1/6+0.5*(sF+1)*delta)); A.set_column(6, a0); B.set_column(0, (1/3 +delta) * vOnes ); B.set_column(1, (1/3 +delta) * vOnes ); - B.set_column(2, 0.4 * 0.4 * a0 + 0.2 * b0 - 2*d/sF ); - B.set_column(3, (0.4 - 3* delta / sF) * vOnes ); - B.set_column(4, 0.4 * a0 + 0.8 * b0 - delta /sF); - B.set_column(5, (1/3+d) * vOnes); + B.set_column(2, (-(a0 * 0.4)) + 0.4 + ((b0 * 0.2) - 2*delta/sF) ); //FLAG + B.set_column(3, vOnes * (0.4 - 3* delta / sF)); + B.set_column(4, a0 * 0.4 + (b0 * 0.8) - delta /sF); + B.set_column(5, vOnes * (1/3+delta)); B.set_column(6, b0 ); for(int i = 0 ; i < E.rows(); i++) { double sumA = 0; double sumB = 0; for(int j = 0 ; j < 7; j++) { if(C(i,j)) { sumA += A(i,j); sumB += B(i,j); } } a[i] = sumA; b[i] = sumB; } for(int i = 0; i < E.rows(); i++) { E(i,0) = exp(-(a[i]*s0[i])); E(i,1) = exp(-(b[i]*s0[i])); E(i,2) = exp(-((1-a[i]-b[i])*s0[i])); } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::S_S0Normalization( vnl_vector & vec, typename NumericTraits::AccumulateType b0 ) { double b0f = (double)b0; for(int i = 0; i < vec.size(); i++) { if (b0f==0) b0f = 0.01; //if(vec[i] >= b0f) // vec[i] = b0f - 0.001; vec[i] /= b0f; } } template void itk::DiffusionMultiShellQballReconstructionImageFilter -::S_S0Normalization( vnl_matrix & mat, typename NumericTraits::AccumulateType b0 = 0 ) +::S_S0Normalization( vnl_matrix & mat, typename NumericTraits::AccumulateType b0 ) { double b0f = (double)b0; for(int i = 0; i < mat.rows(); i++) { for( int j = 0; j < mat.cols(); j++ ){ if (b0f==0) b0f = 0.01; //if(mat(i,j) >= b0f) // mat(i,j) = b0f - 0.001; mat(i,j) /= b0f; } } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::DoubleLogarithm(vnl_vector & vec) { for(int i = 0; i < vec.size(); i++) { vec[i] = log(-log(vec[i])); } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { this->m_GradientDirectionContainer = gradientDirection; this->m_NumberOfBaselineImages = 0; for(GradientDirectionContainerType::Iterator it = gradientDirection->Begin(); it != gradientDirection->End(); it++) { if( it.Value().one_norm() <= 0.0 ) this->m_NumberOfBaselineImages ++; else it.Value() = it.Value() / it.Value().two_norm(); } this->m_NumberOfGradientDirections = gradientDirection->Size() - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::BeforeThreadedGenerateData() { if( m_NumberOfGradientDirections < (((L+1)*(L+2))/2) /* && m_NumberOfGradientDirections < 6 */ ) { itkExceptionMacro( << "At least " << ((L+1)*(L+2))/2 << " gradient directions are required" ); } // Input must be an itk::VectorImage. std::string gradientImageClassName(this->ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. But its of type: " << gradientImageClassName ); m_BZeroImage = BZeroImageType::New(); typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); // if no GradientIndexMap is set take all Gradients to GradientIndicies-Vector and add this to GradientIndexMap[ALL] // add All Bzero if(m_GradientIndexMap.size() == 0){ // split for all gradient directions the image in baseline-indicies and gradient-indicies for a fast access GradientDirectionContainerType::ConstIterator gdcit; for( gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() <= 0.0) // if vector length at current position is 0, it is a basline signal { m_GradientIndexMap[0].push_back(gdcit.Index()); }else{ // it is a gradient signal of length != 0 m_GradientIndexMap[1].push_back(gdcit.Index()); } } m_ReconstructionType = Standard1Shell; }else if(m_GradientIndexMap.size() == 4){ GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; int b1 = (*it).first; it++; int b2 = (*it).first; it++; int b3 = (*it).first; if(b2 - b1 == b1 && b3 - b2 == b1 ) { m_ReconstructionType = Analytical3Shells; }else { m_ReconstructionType = NumericalNShells; } }else if(m_GradientIndexMap.size() > 2) { m_ReconstructionType = NumericalNShells; } switch(m_ReconstructionType) { case Analytical3Shells: { GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; this->ComputeReconstructionMatrix((*it).second); break; } case NumericalNShells: this->ComputeReconstructionMatrix(m_GradientIndexMap[1]); break; case Standard1Shell: this->ComputeReconstructionMatrix(m_GradientIndexMap[1]); break; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // Get output image pointer typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); // ImageRegionIterator for the output image ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); // ImageRegionIterator for the BZero (output) image ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); IndiciesVector BZeroIndicies = m_GradientIndexMap[0]; IndiciesVector SignalIndicies = m_GradientIndexMap[1]; // if the gradient directiosn aragement is hemispherical, duplicate all gradient directions // alone, interested in the value, the direction can be neglected if(m_IsHemisphericalArrangementOfGradientDirections){ int NumbersOfGradientIndicies = SignalIndicies.size(); for (int i = 0 ; i < NumbersOfGradientIndicies; i++) SignalIndicies.push_back(SignalIndicies[i]); } // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); typedef typename GradientImagesType::PixelType GradientVectorType; // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { GradientVectorType b = git.Get(); // compute the average bzero signal typename NumericTraits::AccumulateType b0 = NumericTraits::Zero; for(unsigned int i = 0; i < BZeroIndicies.size(); ++i) { b0 += b[BZeroIndicies[i]]; } b0 /= this->m_NumberOfBaselineImages; // ODF Vector OdfPixelType odf(0.0); // Create the Signal Vector vnl_vector SignalVector(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for( unsigned int i = 0; i< SignalIndicies.size(); i++ ) { SignalVector[i] = static_cast(b[SignalIndicies[i]]); } // apply threashold an generate ln(-ln(E)) signal // Replace SignalVector with PreNormalized SignalVector S_S0Normalization(SignalVector, b0); DoubleLogarithm(SignalVector); // ODF coeffs-vector vnl_vector coeffs(m_NumberCoefficients); // approximate ODF coeffs coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = ( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); } // set ODF to ODF-Image oit.Set( odf ); ++oit; // set b0(average) to b0-Image oit2.Set( b0 ); ++oit2; ++git; } MITK_INFO << "One Thread finished reconstruction"; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread) { int wrongODF = 0; typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); IndiciesVector BZeroIndicies = m_GradientIndexMap[0]; GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; IndiciesVector Shell1Indiecies = (*it).second; it++; IndiciesVector Shell2Indiecies = (*it).second; it++; IndiciesVector Shell3Indiecies = (*it).second; //assert(Shell1Indiecies.size() == Shell2Indiecies.size() && Shell1Indiecies.size() == Shell3Indiecies.size()); if(m_IsHemisphericalArrangementOfGradientDirections){ int NumbersOfGradientIndicies = Shell1Indiecies.size(); for (int i = 0 ; i < NumbersOfGradientIndicies; i++){ Shell1Indiecies.push_back(Shell1Indiecies[i]); Shell2Indiecies.push_back(Shell2Indiecies[i]); Shell3Indiecies.push_back(Shell3Indiecies[i]); } } // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); typedef typename GradientImagesType::PixelType GradientVectorType; //------------------------- Preperations Zone ------------------------------------ vnl_matrix SHBasis(m_SHBasisMatrix->rows(),m_SHBasisMatrix->cols()); SHBasis.fill(0.0); for(int i=0; i ReconstructionMatrix(m_SignalReonstructionMatrix->rows(),m_SignalReonstructionMatrix->cols()); ReconstructionMatrix.fill(0.0); for(int i=0; i < ReconstructionMatrix.rows(); i++) for(unsigned int j=0; j < ReconstructionMatrix.cols(); j++) ReconstructionMatrix(i,j) = (TO)(*m_SignalReonstructionMatrix)(i,j); // N x 3 // x E1 , E2 , E3 // // N : : : // : : : // vnl_matrix< TO > E(Shell1Indiecies.size(), 3); vnl_vector< TO > Shell1OriginalSignal(Shell1Indiecies.size()); //E1 vnl_vector< TO > Shell2OriginalSignal(Shell1Indiecies.size()); //E2 vnl_vector< TO > Shell3OriginalSignal(Shell1Indiecies.size()); //E3 vnl_vector< TO > Shell2Coefficients(Shell1Indiecies.size()); vnl_vector< TO > Shell3Coefficients(Shell1Indiecies.size()); vnl_vector< TO > SHApproximatedSignal2(Shell1Indiecies.size()); vnl_vector< TO > SHApproximatedSignal3(Shell1Indiecies.size()); //------------------------- Preperations Zone END --------------------------------- // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { Shell1OriginalSignal.fill(0.0); Shell2OriginalSignal.fill(0.0); Shell3OriginalSignal.fill(0.0); SHApproximatedSignal3.fill(0.0); SHApproximatedSignal2.fill(0.0); Shell2Coefficients.fill(0.0); Shell3Coefficients.fill(0.0); GradientVectorType b = git.Get(); // compute the average bzero signal typename NumericTraits::AccumulateType b0 = NumericTraits::Zero; for(unsigned int i = 0; i < BZeroIndicies.size(); ++i) { b0 += b[BZeroIndicies[i]]; } b0 /= this->m_NumberOfBaselineImages; // ODF Vector OdfPixelType odf(0.0); // Create the Signal Vector //vnl_vector SignalVector(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for(int i = 0 ; i < Shell2Indiecies.size(); i++) { Shell1OriginalSignal[i] = static_cast(b[Shell1Indiecies[i]]); Shell2OriginalSignal[i] = static_cast(b[Shell2Indiecies[i]]); Shell3OriginalSignal[i] = static_cast(b[Shell3Indiecies[i]]); } Shell2Coefficients = ReconstructionMatrix * Shell2OriginalSignal; Shell3Coefficients = ReconstructionMatrix * Shell3OriginalSignal; SHApproximatedSignal2 = SHBasis * Shell2Coefficients; SHApproximatedSignal3 = SHBasis * Shell3Coefficients; E.set_column(0,Shell1OriginalSignal); E.set_column(1,SHApproximatedSignal2); E.set_column(2,SHApproximatedSignal3); // Si/S0 S_S0Normalization(E,b0); //Implements Eq. [19] and Fig. 4. Threshold(E, m_Threshold); //inqualities [31]. Taking the lograithm of th first tree inqualities //convert the quadratic inqualities to linear ones. Projection1(E, m_Threshold); vnl_vector AlphaValues(Shell1Indiecies.size()); vnl_vector BetaValues(Shell1Indiecies.size()); vnl_vector LAValues(Shell1Indiecies.size()); bool notCompliedWithConditions = false; for( unsigned int i = 0; i< Shell1Indiecies.size(); i++ ) { float E1 = Shell1OriginalSignal[i]; float E2 = SHApproximatedSignal2[i]; float E3 = SHApproximatedSignal3[i]; if(!(0 < E3) || (!(E3 < E2)) || (!(E2 < E1)) || (!(E1 < 1)) || (!(E1 * E1 < E2)) || (!(E2 * E2 < E1 * E3)) || (!(E3-E1*E2 < E2 - E1*E1 + E1*E3 -E2*E2))) { notCompliedWithConditions = true; break; } float A = (E3 -E1*E2) / (2*(E2-E1*E1)) ; float B = sqrt( A * A - ((E1*E3 - E2 * E2) / (E2-E1*E1)) ); //MITK_INFO << A << " " << B; AlphaValues[i] = A + B; BetaValues[i] = A - B; LAValues[i] = 0.5 + ((E1 - A)/(2*B)); if(A != A || B != B || LAValues[i] != LAValues[i]) { // MITK_INFO << A << " " << B << " " << LAValues[i]; } } if(!notCompliedWithConditions){ Threshold(AlphaValues); Threshold(BetaValues); DoubleLogarithm(AlphaValues); DoubleLogarithm(BetaValues); vnl_vector SignalVector(Shell1Indiecies.size()); for( unsigned int i = 0; i< AlphaValues.size(); i++ ) { SignalVector = LAValues[i] * AlphaValues + LAValues[i] * BetaValues; } vnl_vector coeffs(m_NumberCoefficients); coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = ( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); }else{ odf.Fill(1/252); wrongODF ++; } } // set ODF to ODF-Image oit.Set( odf ); ++oit; // MITK_INFO << odf; // set b0(average) to b0-Image oit2.Set( b0 ); ++oit2; ++git; } MITK_INFO << "THREAD FINISHED with " << wrongODF << " WrongODFs"; } template< class T, class TG, class TO, int L, int NODF> vnl_vector DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellParameterEstimation(const IndiciesVector * shell1Indicies,const IndiciesVector * shell2Indicies ,const IndiciesVector * shell3Indicies, vnl_vector) { } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, int NumberOfThreads) { switch(m_ReconstructionType) { case Standard1Shell: StandardOneShellReconstruction(outputRegionForThread); break; case Analytical3Shells: AnalyticalThreeShellReconstruction(outputRegionForThread); break; case NumericalNShells: break; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter:: ComputeSphericalHarmonicsBasis(vnl_matrix * QBallReference, vnl_matrix *SHBasisOutput, vnl_matrix* LaplaciaBaltramiOutput, vnl_vector* SHOrderAssociation, vnl_matrix* SHEigenvalues ) { for(unsigned int i=0; i< (*SHBasisOutput).rows(); i++) { for(int k = 0; k <= L; k += 2) { for(int m =- k; m <= k; m++) { int j = ( k * k + k + 2 ) / 2 + m - 1; // Compute SHBasisFunctions double phi = (*QBallReference)(0,i); double th = (*QBallReference)(1,i); (*SHBasisOutput)(i,j) = mitk::ShericalHarmonicsFunctions::Yj(m,k,th,phi); // Laplacian Baltrami Order Association if(LaplaciaBaltramiOutput) (*LaplaciaBaltramiOutput)(j,j) = k*k*(k + 1)*(k+1); // SHEigenvalues with order Accosiation kj if(SHEigenvalues) (*SHEigenvalues)(j,j) = -k* (k+1); // Order Association if(SHOrderAssociation) (*SHOrderAssociation)[j] = k; } } } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeFunkRadonTransformationMatrix(vnl_vector* SHOrderAssociationReference, vnl_matrix* FRTMatrixOutput ) { for(int i=0; i bool DiffusionMultiShellQballReconstructionImageFilter ::CheckHemisphericalArrangementOfGradientDirections() { // handle acquisition schemes where only half of the spherical // shell is sampled by the gradient directions. In this case, // each gradient direction is duplicated in negative direction. vnl_vector centerMass(3); centerMass.fill(0.0); int count = 0; GradientDirectionContainerType::ConstIterator gdcit1; for( gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { if(gdcit1.Value().one_norm() > 0.0) { centerMass += gdcit1.Value(); count ++; } } centerMass /= count; if(centerMass.two_norm() > 0.1) { return false; } return true; } template< class T, class TG, class TO, int L, int NOdfDirections> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeReconstructionMatrix(std::vector< unsigned int > gradientIndiciesVector) { typedef std::auto_ptr< vnl_matrix< double> > MatrixDoublePtr; typedef std::auto_ptr< vnl_vector< int > > VectorIntPtr; typedef std::auto_ptr< vnl_matrix_inverse< double > > InverseMatrixDoublePtr; int numberOfGradientDirections = gradientIndiciesVector.size(); if( numberOfGradientDirections < (((L+1)*(L+2))/2) || numberOfGradientDirections < 6 ) { itkExceptionMacro( << "At least (L+1)(L+2)/2 gradient directions are required" ); } CheckDuplicateDiffusionGradients(); // check if gradient directions are arrangement as a hemisphere(true) or sphere(false) m_IsHemisphericalArrangementOfGradientDirections = CheckHemisphericalArrangementOfGradientDirections(); if(m_IsHemisphericalArrangementOfGradientDirections) numberOfGradientDirections *= 2; MatrixDoublePtr Q(new vnl_matrix(3, numberOfGradientDirections)); Q->fill(0.0); // Cartesian to spherical coordinates { int j = 0; for(int i = 0; i < gradientIndiciesVector.size(); i++) { double x = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(0); double y = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(1); double z = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(2); double cart[3]; mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); (*Q)(0,j) = cart[0]; (*Q)(1,j) = cart[1]; (*Q)(2,j++) = cart[2]; } if(m_IsHemisphericalArrangementOfGradientDirections) { for(int i = 0; i < gradientIndiciesVector.size(); i++) { double x = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(0); double y = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(1); double z = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(2); double cart[3]; mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); (*Q)(0,j) = cart[0]; (*Q)(1,j) = cart[1]; (*Q)(2,j++) = cart[2]; } } } int LOrder = L; m_NumberCoefficients = (int)(LOrder*LOrder + LOrder + 2.0)/2.0 + LOrder; m_SHBasisMatrix = new vnl_matrix(numberOfGradientDirections,m_NumberCoefficients); m_SHBasisMatrix->fill(0.0); VectorIntPtr SHOrderAssociation(new vnl_vector(m_NumberCoefficients)); SHOrderAssociation->fill(0.0); MatrixDoublePtr LaplacianBaltrami(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); LaplacianBaltrami->fill(0.0); MatrixDoublePtr FRTMatrix(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); FRTMatrix->fill(0.0); MatrixDoublePtr SHEigenvalues(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); SHEigenvalues->fill(0.0); // SHBasis-Matrix + LaplacianBaltrami-Matrix + SHOrderAssociationVector ComputeSphericalHarmonicsBasis(Q.get() ,m_SHBasisMatrix, LaplacianBaltrami.get(), SHOrderAssociation.get(), SHEigenvalues.get()); // Compute FunkRadon Transformation Matrix Associated to SHBasis Order lj ComputeFunkRadonTransformationMatrix(SHOrderAssociation.get() ,FRTMatrix.get()); MatrixDoublePtr temp(new vnl_matrix(((m_SHBasisMatrix->transpose()) * (*m_SHBasisMatrix)) + (m_Lambda * (*LaplacianBaltrami)))); InverseMatrixDoublePtr pseudo_inv(new vnl_matrix_inverse((*temp))); MatrixDoublePtr inverse(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); inverse->fill(0.0); (*inverse) = pseudo_inv->inverse(); // ODF Factor ( missing 1/4PI ?? ) double factor = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); m_SignalReonstructionMatrix = new vnl_matrix(); m_SignalReonstructionMatrix->fill(0.0); (*m_SignalReonstructionMatrix) = (*inverse) * (m_SHBasisMatrix->transpose()); MatrixDoublePtr TransformationMatrix(new vnl_matrix( factor * ((*FRTMatrix) * ((*SHEigenvalues) * (*m_SignalReonstructionMatrix))) ) ); m_CoeffReconstructionMatrix = new vnl_matrix(m_NumberCoefficients,numberOfGradientDirections); // Cast double to float for(int i=0; iodfs later vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); m_ODFSphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,m_NumberCoefficients); for(int i=0; i((*m_ODFSphericalHarmonicBasisMatrix) * (*m_CoeffReconstructionMatrix)); } template< class T, class TG, class TO, int L, int NODF> template< class VNLType > void DiffusionMultiShellQballReconstructionImageFilter ::printMatrix( VNLType * mat ) { std::stringstream stream; for(int i = 0 ; i < mat->rows(); i++) { stream.str(""); for(int j = 0; j < mat->cols(); j++) { stream << (*mat)(i,j) << " "; } } MITK_INFO << stream.str(); } template< class T, class TG, class TO, int L, int NODF> bool DiffusionMultiShellQballReconstructionImageFilter ::CheckDuplicateDiffusionGradients() { GradientDirectionContainerType::ConstIterator gdcit1; GradientDirectionContainerType::ConstIterator gdcit2; for(gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { for(gdcit2 = this->m_GradientDirectionContainer->Begin(); gdcit2 != this->m_GradientDirectionContainer->End(); ++gdcit2) { if(gdcit1.Value() == gdcit2.Value() && gdcit1.Index() != gdcit2.Index()) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); return true; } } } return false; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) { os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; } else { os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; } os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkDiffusionMultiShellQballReconstructionImageFilter_cpp diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h index b50477affc..521cbd8cea 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h @@ -1,236 +1,236 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_h_ #define __itkDiffusionMultiShellQballReconstructionImageFilter_h_ #include "itkImageToImageFilter.h" #include "vnl/vnl_vector_fixed.h" #include "vnl/vnl_matrix.h" #include "vnl/algo/vnl_svd.h" #include "itkVectorContainer.h" #include "itkVectorImage.h" #include namespace itk{ /** \class DiffusionMultiShellQballReconstructionImageFilter Aganj_2010 */ template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> class DiffusionMultiShellQballReconstructionImageFilter : public ImageToImageFilter< Image< TReferenceImagePixelType, 3 >, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > { public: typedef DiffusionMultiShellQballReconstructionImageFilter Self; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; typedef ImageToImageFilter< Image< TReferenceImagePixelType, 3>, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > Superclass; typedef TReferenceImagePixelType ReferencePixelType; typedef TGradientImagePixelType GradientPixelType; typedef Vector< TOdfPixelType, NrOdfDirections > OdfPixelType; typedef typename Superclass::InputImageType ReferenceImageType; typedef Image< OdfPixelType, 3 > OdfImageType; typedef OdfImageType OutputImageType; typedef TOdfPixelType BZeroPixelType; typedef Image< BZeroPixelType, 3 > BZeroImageType; typedef typename Superclass::OutputImageRegionType OutputImageRegionType; /** Typedef defining one (of the many) gradient images. */ typedef Image< GradientPixelType, 3 > GradientImageType; /** An alternative typedef defining one (of the many) gradient images. * It will be assumed that the vectorImage has the same dimension as the * Reference image and a vector length parameter of \c n (number of * gradient directions)*/ typedef VectorImage< GradientPixelType, 3 > GradientImagesType; /** Holds the ODF reconstruction matrix */ typedef vnl_matrix< TOdfPixelType >* OdfReconstructionMatrixType; typedef vnl_matrix< double > * CoefficientMatrixType; /** Holds each magnetic field gradient used to acquire one DWImage */ typedef vnl_vector_fixed< double, 3 > GradientDirectionType; /** Container to hold gradient directions of the 'n' DW measurements */ typedef VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; typedef std::map > GradientIndexMap; typedef std::map >::iterator GradientIndexMapIteraotr; typedef std::vector IndiciesVector; // --------------------------------------------------------------------------------------------// /** Method for creation through the object factory. */ itkNewMacro(Self); /** Runtime information support. */ itkTypeMacro(DiffusionMultiShellQballReconstructionImageFilter, ImageToImageFilter); /** set method to add gradient directions and its corresponding * image. The image here is a VectorImage. The user is expected to pass the * gradient directions in a container. The ith element of the container * corresponds to the gradient direction of the ith component image the * VectorImage. For the baseline image, a vector of all zeros * should be set.*/ void SetGradientImage( GradientDirectionContainerType *, const GradientImagesType *image); void SetGradientIndexMap(GradientIndexMap gradientIdexMap) { m_GradientIndexMap = gradientIdexMap; /* std::stringstream s1, s2, s3; for(int i = 0; i < m_GradientIndexMap[1000].size() ; i++){ s1 << m_GradientIndexMap[1000][i] << " "; s2 << m_GradientIndexMap[2000][i] << " "; s3 << m_GradientIndexMap[3000][i] << " "; } MITK_INFO << "1 SHELL " << std::endl << s1.str(); MITK_INFO << "2 SHELL " << std::endl << s2.str(); MITK_INFO << "3 SHELL " << std::endl << s3.str(); */ } /** Get reference image */ virtual ReferenceImageType * GetReferenceImage() { return ( static_cast< ReferenceImageType *>(this->ProcessObject::GetInput(0)) ); } /** Return the gradient direction. idx is 0 based */ virtual GradientDirectionType GetGradientDirection( unsigned int idx) const { if( idx >= m_GradientDirectionContainer->Size() ) { itkExceptionMacro( << "Gradient direction " << idx << "does not exist" ); } return m_GradientDirectionContainer->ElementAt( idx+1 ); } OdfPixelType Normalize(OdfPixelType odf, typename NumericTraits::AccumulateType b0 ); void S_S0Normalization( vnl_vector & vec, typename NumericTraits::AccumulateType b0 = 0 ); void S_S0Normalization( vnl_matrix & mat, typename NumericTraits::AccumulateType b0 = 0 ); void DoubleLogarithm(vnl_vector & vec); void Threshold(vnl_vector & vec, float sigma = 0.0001); void Threshold(vnl_matrix & mat, float sigma = 0.0001); - void Projection1( vnl_matrix & mat, float sigma = 0.0001); + void Projection1( vnl_matrix & mat, float delta = 0.0001); /** Threshold on the reference image data. The output ODF will be a null * pdf for pixels in the reference image that have a value less than this * threshold. */ itkSetMacro( Threshold, ReferencePixelType ); itkGetMacro( Threshold, ReferencePixelType ); itkGetMacro( BZeroImage, typename BZeroImageType::Pointer); //itkGetMacro( ODFSumImage, typename BlaImage::Pointer); itkSetMacro( BValue, TOdfPixelType); itkSetMacro( Lambda, double ); itkGetMacro( Lambda, double ); itkGetConstReferenceMacro( BValue, TOdfPixelType); protected: DiffusionMultiShellQballReconstructionImageFilter(); ~DiffusionMultiShellQballReconstructionImageFilter() {}; void PrintSelf(std::ostream& os, Indent indent) const; void ComputeReconstructionMatrix(std::vector< unsigned int > gradientIndiciesVector); bool CheckDuplicateDiffusionGradients(); void ComputeSphericalHarmonicsBasis(vnl_matrix* QBallReference, vnl_matrix* SHBasisOutput, vnl_matrix* LaplaciaBaltramiOutput, vnl_vector* SHOrderAssociation , vnl_matrix * SHEigenvalues); void ComputeFunkRadonTransformationMatrix(vnl_vector* SHOrderAssociationReference, vnl_matrix* FRTMatrixOutput ); bool CheckHemisphericalArrangementOfGradientDirections(); void BeforeThreadedGenerateData(); void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, int NumberOfThreads ); vnl_vector AnalyticalThreeShellParameterEstimation(const IndiciesVector * shell1, const IndiciesVector * shell2, const IndiciesVector * shell3, vnl_vector b); void StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread); void AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread); private: enum ReconstructionType { Analytical3Shells, NumericalNShells, Standard1Shell }; OdfReconstructionMatrixType m_ReconstructionMatrix; OdfReconstructionMatrixType m_CoeffReconstructionMatrix; OdfReconstructionMatrixType m_ODFSphericalHarmonicBasisMatrix; CoefficientMatrixType m_SignalReonstructionMatrix; CoefficientMatrixType m_SHBasisMatrix; /** container to hold gradient directions */ GradientDirectionContainerType::Pointer m_GradientDirectionContainer; /** Number of gradient measurements */ unsigned int m_NumberOfGradientDirections; /** Number of baseline images */ unsigned int m_NumberOfBaselineImages; /** Threshold on the reference image data */ ReferencePixelType m_Threshold; /** LeBihan's b-value for normalizing tensors */ TOdfPixelType m_BValue; typename BZeroImageType::Pointer m_BZeroImage; GradientIndexMap m_GradientIndexMap; double m_Lambda; bool m_IsHemisphericalArrangementOfGradientDirections; bool m_IsArithmeticProgession; int m_NumberCoefficients; ReconstructionType m_ReconstructionType; template< class VNLType > void printMatrix( VNLType * mat ); }; } #ifndef ITK_MANUAL_INSTANTIATION #include "itkDiffusionMultiShellQballReconstructionImageFilter.cpp" #endif #endif //__itkDiffusionMultiShellQballReconstructionImageFilter_h_