diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp index 5d1d1de52d..230788c36c 100755 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp @@ -1,1434 +1,1434 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractsToDWIImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace itk { template< class PixelType > TractsToDWIImageFilter< PixelType >::TractsToDWIImageFilter() : m_FiberBundle(NULL) , m_StatusText("") , m_UseConstantRandSeed(false) , m_RandGen(itk::Statistics::MersenneTwisterRandomVariateGenerator::New()) { m_RandGen->SetSeed(); } template< class PixelType > TractsToDWIImageFilter< PixelType >::~TractsToDWIImageFilter() { } template< class PixelType > TractsToDWIImageFilter< PixelType >::DoubleDwiType::Pointer TractsToDWIImageFilter< PixelType >::DoKspaceStuff( std::vector< DoubleDwiType::Pointer >& images ) { int numFiberCompartments = m_Parameters.m_FiberModelList.size(); // create slice object ImageRegion<2> sliceRegion; sliceRegion.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); sliceRegion.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); Vector< double, 2 > sliceSpacing; sliceSpacing[0] = m_UpsampledSpacing[0]; sliceSpacing[1] = m_UpsampledSpacing[1]; // frequency map slice SliceType::Pointer fMapSlice = NULL; if (m_Parameters.m_SignalGen.m_FrequencyMap.IsNotNull()) { fMapSlice = SliceType::New(); ImageRegion<2> region; region.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); region.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); fMapSlice->SetLargestPossibleRegion( region ); fMapSlice->SetBufferedRegion( region ); fMapSlice->SetRequestedRegion( region ); fMapSlice->Allocate(); fMapSlice->FillBuffer(0.0); } DoubleDwiType::Pointer newImage = DoubleDwiType::New(); newImage->SetSpacing( m_Parameters.m_SignalGen.m_ImageSpacing ); newImage->SetOrigin( m_Parameters.m_SignalGen.m_ImageOrigin ); newImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); newImage->SetLargestPossibleRegion( m_Parameters.m_SignalGen.m_ImageRegion ); newImage->SetBufferedRegion( m_Parameters.m_SignalGen.m_ImageRegion ); newImage->SetRequestedRegion( m_Parameters.m_SignalGen.m_ImageRegion ); newImage->SetVectorLength( images.at(0)->GetVectorLength() ); newImage->Allocate(); std::vector< unsigned int > spikeVolume; for (unsigned int i=0; iGetIntegerVariate()%images.at(0)->GetVectorLength()); + spikeVolume.push_back(m_RandGen->GetIntegerVariate()%(images.at(0)->GetVectorLength()-1)+1); std::sort (spikeVolume.begin(), spikeVolume.end()); std::reverse (spikeVolume.begin(), spikeVolume.end()); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; unsigned long lastTick = 0; boost::progress_display disp(2*images.at(0)->GetVectorLength()*images.at(0)->GetLargestPossibleRegion().GetSize(2)); for (unsigned int g=0; gGetVectorLength(); g++) { std::vector< unsigned int > spikeSlice; while (!spikeVolume.empty() && spikeVolume.back()==g) { spikeSlice.push_back(m_RandGen->GetIntegerVariate()%images.at(0)->GetLargestPossibleRegion().GetSize(2)); spikeVolume.pop_back(); } std::sort (spikeSlice.begin(), spikeSlice.end()); std::reverse (spikeSlice.begin(), spikeSlice.end()); for (unsigned int z=0; zGetLargestPossibleRegion().GetSize(2); z++) { std::vector< SliceType::Pointer > compartmentSlices; std::vector< double > t2Vector; for (unsigned int i=0; i* signalModel; if (iSetLargestPossibleRegion( sliceRegion ); slice->SetBufferedRegion( sliceRegion ); slice->SetRequestedRegion( sliceRegion ); slice->SetSpacing(sliceSpacing); slice->Allocate(); slice->FillBuffer(0.0); // extract slice from channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; slice->SetPixel(index2D, images.at(i)->GetPixel(index3D)[g]); if (fMapSlice.IsNotNull() && i==0) fMapSlice->SetPixel(index2D, m_Parameters.m_SignalGen.m_FrequencyMap->GetPixel(index3D)); } compartmentSlices.push_back(slice); t2Vector.push_back(signalModel->GetT2()); } if (this->GetAbortGenerateData()) return NULL; // create k-sapce (inverse fourier transform slices) itk::Size<2> outSize; outSize.SetElement(0, m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)); outSize.SetElement(1, m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)); itk::KspaceImageFilter< SliceType::PixelType >::Pointer idft = itk::KspaceImageFilter< SliceType::PixelType >::New(); idft->SetCompartmentImages(compartmentSlices); idft->SetT2(t2Vector); idft->SetUseConstantRandSeed(m_UseConstantRandSeed); idft->SetParameters(m_Parameters); idft->SetZ((double)z-(double)images.at(0)->GetLargestPossibleRegion().GetSize(2)/2.0); idft->SetDiffusionGradientDirection(m_Parameters.m_SignalGen.GetGradientDirection(g)); idft->SetFrequencyMapSlice(fMapSlice); idft->SetOutSize(outSize); int numSpikes = 0; while (!spikeSlice.empty() && spikeSlice.back()==z) { numSpikes++; spikeSlice.pop_back(); } idft->SetSpikesPerSlice(numSpikes); idft->Update(); ComplexSliceType::Pointer fSlice; fSlice = idft->GetOutput(); ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; // fourier transform slice SliceType::Pointer newSlice; itk::DftImageFilter< SliceType::PixelType >::Pointer dft = itk::DftImageFilter< SliceType::PixelType >::New(); dft->SetInput(fSlice); dft->Update(); newSlice = dft->GetOutput(); // put slice back into channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::PixelType pix3D = newImage->GetPixel(index3D); pix3D[g] = newSlice->GetPixel(index2D); newImage->SetPixel(index3D, pix3D); } ++disp; newTick = 50*disp.count()/disp.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; } } m_StatusText += "\n\n"; return newImage; } template< class PixelType > void TractsToDWIImageFilter< PixelType >::GenerateData() { m_TimeProbe.Start(); m_StatusText = "Starting simulation\n"; // check input data if (m_FiberBundle.IsNull()) itkExceptionMacro("Input fiber bundle is NULL!"); if (m_Parameters.m_FiberModelList.empty()) itkExceptionMacro("No diffusion model for fiber compartments defined!"); if (m_Parameters.m_NonFiberModelList.empty()) itkExceptionMacro("No diffusion model for non-fiber compartments defined!"); int baselineIndex = m_Parameters.m_SignalGen.GetFirstBaselineIndex(); if (baselineIndex<0) itkExceptionMacro("No baseline index found!"); if (!m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition) m_Parameters.m_SignalGen.m_DoAddGibbsRinging = false; if (m_UseConstantRandSeed) // always generate the same random numbers? m_RandGen->SetSeed(0); else m_RandGen->SetSeed(); // initialize output dwi image ImageRegion<3> croppedRegion = m_Parameters.m_SignalGen.m_ImageRegion; croppedRegion.SetSize(1, croppedRegion.GetSize(1)*m_Parameters.m_SignalGen.m_CroppingFactor); itk::Point shiftedOrigin = m_Parameters.m_SignalGen.m_ImageOrigin; shiftedOrigin[1] += (m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)-croppedRegion.GetSize(1))*m_Parameters.m_SignalGen.m_ImageSpacing[1]/2; typename OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Parameters.m_SignalGen.m_ImageSpacing ); outImage->SetOrigin( shiftedOrigin ); outImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); outImage->SetLargestPossibleRegion( croppedRegion ); outImage->SetBufferedRegion( croppedRegion ); outImage->SetRequestedRegion( croppedRegion ); outImage->SetVectorLength( m_Parameters.m_SignalGen.GetNumVolumes() ); outImage->Allocate(); typename OutputImageType::PixelType temp; temp.SetSize(m_Parameters.m_SignalGen.GetNumVolumes()); temp.Fill(0.0); outImage->FillBuffer(temp); // ADJUST GEOMETRY FOR FURTHER PROCESSING // is input slize size a power of two? unsigned int x=m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0); unsigned int y=m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1); ItkDoubleImgType::SizeType pad; pad[0]=x%2; pad[1]=y%2; pad[2]=0; m_Parameters.m_SignalGen.m_ImageRegion.SetSize(0, x+pad[0]); m_Parameters.m_SignalGen.m_ImageRegion.SetSize(1, y+pad[1]); if (m_Parameters.m_SignalGen.m_FrequencyMap.IsNotNull() && (pad[0]>0 || pad[1]>0)) { itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_SignalGen.m_FrequencyMap); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_SignalGen.m_FrequencyMap = zeroPadder->GetOutput(); } if (m_Parameters.m_SignalGen.m_MaskImage.IsNotNull() && (pad[0]>0 || pad[1]>0)) { itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_SignalGen.m_MaskImage); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_SignalGen.m_MaskImage = zeroPadder->GetOutput(); } // Apply in-plane upsampling for Gibbs ringing artifact double upsampling = 1; if (m_Parameters.m_SignalGen.m_DoAddGibbsRinging) upsampling = 2; m_UpsampledSpacing = m_Parameters.m_SignalGen.m_ImageSpacing; m_UpsampledSpacing[0] /= upsampling; m_UpsampledSpacing[1] /= upsampling; m_UpsampledImageRegion = m_Parameters.m_SignalGen.m_ImageRegion; m_UpsampledImageRegion.SetSize(0, m_Parameters.m_SignalGen.m_ImageRegion.GetSize()[0]*upsampling); m_UpsampledImageRegion.SetSize(1, m_Parameters.m_SignalGen.m_ImageRegion.GetSize()[1]*upsampling); m_UpsampledOrigin = m_Parameters.m_SignalGen.m_ImageOrigin; m_UpsampledOrigin[0] -= m_Parameters.m_SignalGen.m_ImageSpacing[0]/2; m_UpsampledOrigin[0] += m_UpsampledSpacing[0]/2; m_UpsampledOrigin[1] -= m_Parameters.m_SignalGen.m_ImageSpacing[1]/2; m_UpsampledOrigin[1] += m_UpsampledSpacing[1]/2; m_UpsampledOrigin[2] -= m_Parameters.m_SignalGen.m_ImageSpacing[2]/2; m_UpsampledOrigin[2] += m_UpsampledSpacing[2]/2; // generate double images to store the individual compartment signals m_CompartmentImages.clear(); int numFiberCompartments = m_Parameters.m_FiberModelList.size(); int numNonFiberCompartments = m_Parameters.m_NonFiberModelList.size(); for (int i=0; iSetSpacing( m_UpsampledSpacing ); doubleDwi->SetOrigin( m_UpsampledOrigin ); doubleDwi->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); doubleDwi->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleDwi->SetBufferedRegion( m_UpsampledImageRegion ); doubleDwi->SetRequestedRegion( m_UpsampledImageRegion ); doubleDwi->SetVectorLength( m_Parameters.m_SignalGen.GetNumVolumes() ); doubleDwi->Allocate(); DoubleDwiType::PixelType pix; pix.SetSize(m_Parameters.m_SignalGen.GetNumVolumes()); pix.Fill(0.0); doubleDwi->FillBuffer(pix); m_CompartmentImages.push_back(doubleDwi); } // initialize output volume fraction images m_VolumeFractions.clear(); for (int i=0; iSetSpacing( m_UpsampledSpacing ); doubleImg->SetOrigin( m_UpsampledOrigin ); doubleImg->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); doubleImg->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleImg->SetBufferedRegion( m_UpsampledImageRegion ); doubleImg->SetRequestedRegion( m_UpsampledImageRegion ); doubleImg->Allocate(); doubleImg->FillBuffer(0); m_VolumeFractions.push_back(doubleImg); } // get volume fraction images ItkDoubleImgType::Pointer sumImage = ItkDoubleImgType::New(); bool foundVolumeFractionImage = false; for (int i=0; iGetVolumeFractionImage().IsNotNull()) { foundVolumeFractionImage = true; itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_NonFiberModelList[i]->SetVolumeFractionImage(zeroPadder->GetOutput()); sumImage->SetSpacing( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetSpacing() ); sumImage->SetOrigin( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetOrigin() ); sumImage->SetDirection( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetDirection() ); sumImage->SetLargestPossibleRegion( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion() ); sumImage->SetBufferedRegion( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion() ); sumImage->SetRequestedRegion( m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion() ); sumImage->Allocate(); sumImage->FillBuffer(0); break; } } if (!foundVolumeFractionImage) { sumImage->SetSpacing( m_UpsampledSpacing ); sumImage->SetOrigin( m_UpsampledOrigin ); sumImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); sumImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); sumImage->SetBufferedRegion( m_UpsampledImageRegion ); sumImage->SetRequestedRegion( m_UpsampledImageRegion ); sumImage->Allocate(); sumImage->FillBuffer(0.0); } for (int i=0; iGetVolumeFractionImage().IsNull()) { ItkDoubleImgType::Pointer doubleImg = ItkDoubleImgType::New(); doubleImg->SetSpacing( sumImage->GetSpacing() ); doubleImg->SetOrigin( sumImage->GetOrigin() ); doubleImg->SetDirection( sumImage->GetDirection() ); doubleImg->SetLargestPossibleRegion( sumImage->GetLargestPossibleRegion() ); doubleImg->SetBufferedRegion( sumImage->GetLargestPossibleRegion() ); doubleImg->SetRequestedRegion( sumImage->GetLargestPossibleRegion() ); doubleImg->Allocate(); doubleImg->FillBuffer(1.0/numNonFiberCompartments); m_Parameters.m_NonFiberModelList[i]->SetVolumeFractionImage(doubleImg); } ImageRegionIterator it(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage(), m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { sumImage->SetPixel(it.GetIndex(), sumImage->GetPixel(it.GetIndex())+it.Get()); ++it; } } for (int i=0; i it(m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage(), m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { if (sumImage->GetPixel(it.GetIndex())>0) it.Set(it.Get()/sumImage->GetPixel(it.GetIndex())); ++it; } } // resample mask image and frequency map to fit upsampled geometry if (m_Parameters.m_SignalGen.m_DoAddGibbsRinging) { if (m_Parameters.m_SignalGen.m_MaskImage.IsNotNull()) { // rescale mask image (otherwise there are problems with the resampling) itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0,m_Parameters.m_SignalGen.m_MaskImage); rescaler->SetOutputMaximum(100); rescaler->SetOutputMinimum(0); rescaler->Update(); // resample mask image itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(rescaler->GetOutput()); resampler->SetOutputParametersFromImage(m_Parameters.m_SignalGen.m_MaskImage); resampler->SetSize(m_UpsampledImageRegion.GetSize()); resampler->SetOutputSpacing(m_UpsampledSpacing); resampler->SetOutputOrigin(m_UpsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(nn_interpolator); resampler->Update(); m_Parameters.m_SignalGen.m_MaskImage = resampler->GetOutput(); itk::ImageFileWriter::Pointer w = itk::ImageFileWriter::New(); w->SetFileName("/local/mask_ups.nrrd"); w->SetInput(m_Parameters.m_SignalGen.m_MaskImage); w->Update(); } // resample frequency map if (m_Parameters.m_SignalGen.m_FrequencyMap.IsNotNull()) { itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(m_Parameters.m_SignalGen.m_FrequencyMap); resampler->SetOutputParametersFromImage(m_Parameters.m_SignalGen.m_FrequencyMap); resampler->SetSize(m_UpsampledImageRegion.GetSize()); resampler->SetOutputSpacing(m_UpsampledSpacing); resampler->SetOutputOrigin(m_UpsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); resampler->SetInterpolator(nn_interpolator); resampler->Update(); m_Parameters.m_SignalGen.m_FrequencyMap = resampler->GetOutput(); } } // no input tissue mask is set -> create default m_MaskImageSet = true; if (m_Parameters.m_SignalGen.m_MaskImage.IsNull()) { m_StatusText += "No tissue mask set\n"; MITK_INFO << "No tissue mask set"; m_Parameters.m_SignalGen.m_MaskImage = ItkUcharImgType::New(); m_Parameters.m_SignalGen.m_MaskImage->SetSpacing( m_UpsampledSpacing ); m_Parameters.m_SignalGen.m_MaskImage->SetOrigin( m_UpsampledOrigin ); m_Parameters.m_SignalGen.m_MaskImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); m_Parameters.m_SignalGen.m_MaskImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); m_Parameters.m_SignalGen.m_MaskImage->SetBufferedRegion( m_UpsampledImageRegion ); m_Parameters.m_SignalGen.m_MaskImage->SetRequestedRegion( m_UpsampledImageRegion ); m_Parameters.m_SignalGen.m_MaskImage->Allocate(); m_Parameters.m_SignalGen.m_MaskImage->FillBuffer(1); m_MaskImageSet = false; } else { m_StatusText += "Using tissue mask\n"; MITK_INFO << "Using tissue mask"; } m_Parameters.m_SignalGen.m_ImageRegion = croppedRegion; x=m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0); y=m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1); if ( x%2 == 1 ) m_Parameters.m_SignalGen.m_ImageRegion.SetSize(0, x+1); if ( y%2 == 1 ) m_Parameters.m_SignalGen.m_ImageRegion.SetSize(1, y+1); // resample fiber bundle for sufficient voxel coverage m_StatusText += "\n"+this->GetTime()+" > Resampling fibers ...\n"; double segmentVolume = 0.0001; float minSpacing = 1; if(m_UpsampledSpacing[0]GetDeepCopy(); double volumeAccuracy = 10; m_FiberBundleWorkingCopy->ResampleSpline(minSpacing/volumeAccuracy); double mmRadius = m_Parameters.m_SignalGen.m_AxonRadius/1000; if (mmRadius>0) segmentVolume = M_PI*mmRadius*mmRadius*minSpacing/volumeAccuracy; double maxVolume = 0; m_VoxelVolume = m_UpsampledSpacing[0]*m_UpsampledSpacing[1]*m_UpsampledSpacing[2]; if (m_Parameters.m_SignalGen.m_DoAddMotion) { std::string fileName = "fiberfox_motion_0.log"; std::string filePath = mitk::IOUtil::GetTempPath(); if (m_Parameters.m_Misc.m_OutputPath.size()>0) filePath = m_Parameters.m_Misc.m_OutputPath; int c = 1; while (itksys::SystemTools::FileExists((filePath+fileName).c_str())) { fileName = "fiberfox_motion_"; fileName += boost::lexical_cast(c); fileName += ".log"; c++; } m_Logfile.open((filePath+fileName).c_str()); m_Logfile << "0 rotation: 0,0,0; translation: 0,0,0\n"; if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) { m_StatusText += "Adding random motion artifacts:\n"; m_StatusText += "Maximum rotation: +/-" + boost::lexical_cast(m_Parameters.m_SignalGen.m_Rotation) + "°\n"; m_StatusText += "Maximum translation: +/-" + boost::lexical_cast(m_Parameters.m_SignalGen.m_Translation) + "mm\n"; } else { m_StatusText += "Adding linear motion artifacts:\n"; m_StatusText += "Maximum rotation: " + boost::lexical_cast(m_Parameters.m_SignalGen.m_Rotation) + "°\n"; m_StatusText += "Maximum translation: " + boost::lexical_cast(m_Parameters.m_SignalGen.m_Translation) + "mm\n"; } m_StatusText += "Motion logfile: " + (filePath+fileName) + "\n"; MITK_INFO << "Adding motion artifacts"; MITK_INFO << "Maximum rotation: " << m_Parameters.m_SignalGen.m_Rotation; MITK_INFO << "Maxmimum translation: " << m_Parameters.m_SignalGen.m_Translation; } maxVolume = 0; m_StatusText += "\n"+this->GetTime()+" > Generating " + boost::lexical_cast(numFiberCompartments+numNonFiberCompartments) + "-compartment diffusion-weighted signal.\n"; MITK_INFO << "Generating " << numFiberCompartments+numNonFiberCompartments << "-compartment diffusion-weighted signal."; int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers*m_Parameters.m_SignalGen.GetNumVolumes()); // get transform for motion artifacts m_FiberBundleTransformed = m_FiberBundleWorkingCopy; m_Rotation = m_Parameters.m_SignalGen.m_Rotation/m_Parameters.m_SignalGen.GetNumVolumes(); m_Translation = m_Parameters.m_SignalGen.m_Translation/m_Parameters.m_SignalGen.GetNumVolumes(); // creat image to hold transformed mask (motion artifact) m_MaskImage = ItkUcharImgType::New(); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(m_Parameters.m_SignalGen.m_MaskImage); duplicator->Update(); m_MaskImage = duplicator->GetOutput(); // second upsampling needed for motion artifacts ImageRegion<3> upsampledImageRegion = m_UpsampledImageRegion; DoubleVectorType upsampledSpacing = m_UpsampledSpacing; upsampledSpacing[0] /= 4; upsampledSpacing[1] /= 4; upsampledSpacing[2] /= 4; upsampledImageRegion.SetSize(0, m_UpsampledImageRegion.GetSize()[0]*4); upsampledImageRegion.SetSize(1, m_UpsampledImageRegion.GetSize()[1]*4); upsampledImageRegion.SetSize(2, m_UpsampledImageRegion.GetSize()[2]*4); itk::Point upsampledOrigin = m_UpsampledOrigin; upsampledOrigin[0] -= m_UpsampledSpacing[0]/2; upsampledOrigin[0] += upsampledSpacing[0]/2; upsampledOrigin[1] -= m_UpsampledSpacing[1]/2; upsampledOrigin[1] += upsampledSpacing[1]/2; upsampledOrigin[2] -= m_UpsampledSpacing[2]/2; upsampledOrigin[2] += upsampledSpacing[2]/2; m_UpsampledMaskImage = ItkUcharImgType::New(); itk::ResampleImageFilter::Pointer upsampler = itk::ResampleImageFilter::New(); upsampler->SetInput(m_Parameters.m_SignalGen.m_MaskImage); upsampler->SetOutputParametersFromImage(m_Parameters.m_SignalGen.m_MaskImage); upsampler->SetSize(upsampledImageRegion.GetSize()); upsampler->SetOutputSpacing(upsampledSpacing); upsampler->SetOutputOrigin(upsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); upsampler->SetInterpolator(nn_interpolator); upsampler->Update(); m_UpsampledMaskImage = upsampler->GetOutput(); if (m_HelperTdi.IsNotNull()) { itk::ResampleImageFilter::Pointer upsampler = itk::ResampleImageFilter::New(); upsampler->SetInput(m_HelperTdi); upsampler->SetOutputParametersFromImage(m_HelperTdi); upsampler->SetSize(upsampledImageRegion.GetSize()); upsampler->SetOutputSpacing(upsampledSpacing); upsampler->SetOutputOrigin(upsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); upsampler->SetInterpolator(nn_interpolator); upsampler->Update(); m_HelperTdiUpsampled = upsampler->GetOutput(); m_HelperTdiTransformed = ItkFloatImgType::New(); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(m_HelperTdi); duplicator->Update(); m_HelperTdiTransformed = duplicator->GetOutput(); m_HelperTdiCounter = ItkUcharImgType::New(); itk::ImageDuplicator::Pointer duplicator2 = itk::ImageDuplicator::New(); duplicator2->SetInputImage(m_MaskImage); duplicator2->Update(); m_HelperTdiCounter = duplicator2->GetOutput(); } unsigned long lastTick = 0; int signalModelSeed = m_RandGen->GetIntegerVariate(); switch (m_Parameters.m_SignalGen.m_DiffusionDirectionMode) { case(SignalGenerationParameters::FIBER_TANGENT_DIRECTIONS): // use fiber tangent directions to determine diffusion direction { m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; for (unsigned int g=0; gSetSeed(signalModelSeed); for (int i=0; iSetSeed(signalModelSeed); ItkDoubleImgType::Pointer intraAxonalVolumeImage = ItkDoubleImgType::New(); intraAxonalVolumeImage->SetSpacing( m_UpsampledSpacing ); intraAxonalVolumeImage->SetOrigin( m_UpsampledOrigin ); intraAxonalVolumeImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); intraAxonalVolumeImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->SetBufferedRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->SetRequestedRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->Allocate(); intraAxonalVolumeImage->FillBuffer(0); vtkPolyData* fiberPolyData = m_FiberBundleTransformed->GetFiberPolyData(); // GET TDI ItkDoubleImgType::Pointer TDI = ItkDoubleImgType::New(); TDI->SetSpacing( m_UpsampledSpacing ); TDI->SetOrigin( m_UpsampledOrigin ); TDI->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); TDI->SetLargestPossibleRegion( m_UpsampledImageRegion ); TDI->SetBufferedRegion( m_UpsampledImageRegion ); TDI->SetRequestedRegion( m_UpsampledImageRegion ); TDI->Allocate(); TDI->FillBuffer(0); itk::TractDensityImageFilter< ItkDoubleImgType >::Pointer tdiFilter = itk::TractDensityImageFilter< ItkDoubleImgType >::New(); tdiFilter->SetFiberBundle(m_FiberBundleTransformed); tdiFilter->SetBinaryOutput(false); tdiFilter->SetOutputAbsoluteValues(false); tdiFilter->SetInputImage(TDI); tdiFilter->SetUseImageGeometry(true); tdiFilter->SetDoFiberResampling(false); tdiFilter->Update(); TDI = tdiFilter->GetOutput(); // generate fiber signal (if there are any fiber models present) if (!m_Parameters.m_FiberModelList.empty()) for( int i=0; iGetFiberWeight(i); vtkCell* cell = fiberPolyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (numPoints<2) continue; for( int j=0; jGetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } double* temp = points->GetPoint(j); itk::Point vertex = GetItkPoint(temp); itk::Vector v = GetItkVector(temp); itk::Vector dir(3); if (jGetPoint(j+1))-v; else dir = v-GetItkVector(points->GetPoint(j-1)); if (dir.GetSquaredNorm()<0.0001 || dir[0]!=dir[0] || dir[1]!=dir[1] || dir[2]!=dir[2]) continue; itk::Index<3> idx; itk::ContinuousIndex contIndex; m_MaskImage->TransformPhysicalPointToIndex(vertex, idx); m_MaskImage->TransformPhysicalPointToContinuousIndex(vertex, contIndex); if (!m_MaskImage->GetLargestPossibleRegion().IsInside(idx) || m_MaskImage->GetPixel(idx)<=0) continue; double TdCorrectionFactor = 1; if (m_HelperTdiTransformed.IsNotNull()) { double TD = TDI->GetPixel(idx); itk::Index<3> idx2; m_HelperTdiTransformed->TransformPhysicalPointToIndex(vertex, idx2); double HTD = m_HelperTdiTransformed->GetPixel(idx2); if (TD>0) TdCorrectionFactor = HTD/TD; } // generate signal for each fiber compartment for (int k=0; kSetFiberDirection(dir); DoubleDwiType::PixelType pix = m_CompartmentImages.at(k)->GetPixel(idx); pix[g] += TdCorrectionFactor*fiberWeight*segmentVolume*m_Parameters.m_FiberModelList[k]->SimulateMeasurement(g); m_CompartmentImages.at(k)->SetPixel(idx, pix); } // update fiber volume image double vol = intraAxonalVolumeImage->GetPixel(idx) + segmentVolume*fiberWeight*TdCorrectionFactor; intraAxonalVolumeImage->SetPixel(idx, vol); if (g==0 && vol>maxVolume) maxVolume = vol; } // progress report ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned int tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; } // generate non-fiber signal ImageRegionIterator it3(m_MaskImage, m_MaskImage->GetLargestPossibleRegion()); double fact = 1; if (m_Parameters.m_SignalGen.m_AxonRadius<0.0001 || maxVolume>m_VoxelVolume) fact = m_VoxelVolume/maxVolume; while(!it3.IsAtEnd()) { if (it3.Get()>0) { DoubleDwiType::IndexType index = it3.GetIndex(); // adjust intra-axonal signal to abtain an only-fiber voxel if (fabs(fact-1.0)>0.0001) { for (int i=0; iGetPixel(index); pix[g] *= fact; m_CompartmentImages.at(i)->SetPixel(index, pix); } } // double w = 1; // double intraAxonalVolume = intraAxonalVolumeImage->GetPixel(index)*fact; // if (intraAxonalVolume>0.0001 && intraAxonalVolume<0.3) // only fiber in voxel // { // w = (m_VoxelVolume*0.3)/intraAxonalVolume; // for (int i=0; iGetPixel(index); // pix[g] *= w; // m_CompartmentImages.at(i)->SetPixel(index, pix); // } // m_VolumeFractions.at(0)->SetPixel(index, 1); // } // simulate other compartments SimulateNonFiberSignal(index, intraAxonalVolumeImage->GetPixel(index)*fact, g); } ++it3; } // move fibers SimulateMotion(g); } break; } case (SignalGenerationParameters::MAIN_FIBER_DIRECTIONS): // use main fiber directions to determine voxel-wise diffusion directions { typedef itk::Image< itk::Vector< float, 3>, 3 > ItkDirectionImage3DType; typedef itk::VectorContainer< unsigned int, ItkDirectionImage3DType::Pointer > ItkDirectionImageContainerType; // calculate main fiber directions itk::TractsToVectorImageFilter::Pointer fOdfFilter = itk::TractsToVectorImageFilter::New(); fOdfFilter->SetFiberBundle(m_FiberBundleTransformed); fOdfFilter->SetMaskImage(m_MaskImage); fOdfFilter->SetAngularThreshold(cos(m_Parameters.m_SignalGen.m_FiberSeparationThreshold*M_PI/180.0)); fOdfFilter->SetNormalizeVectors(false); fOdfFilter->SetUseWorkingCopy(true); fOdfFilter->SetSizeThreshold(0); fOdfFilter->SetMaxNumDirections(3); fOdfFilter->Update(); ItkDirectionImageContainerType::Pointer directionImageContainer = fOdfFilter->GetDirectionImageContainer(); // allocate image storing intra-axonal volume fraction information ItkDoubleImgType::Pointer intraAxonalVolumeImage = ItkDoubleImgType::New(); intraAxonalVolumeImage->SetSpacing( m_UpsampledSpacing ); intraAxonalVolumeImage->SetOrigin( m_UpsampledOrigin ); intraAxonalVolumeImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); intraAxonalVolumeImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->SetBufferedRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->SetRequestedRegion( m_UpsampledImageRegion ); intraAxonalVolumeImage->Allocate(); intraAxonalVolumeImage->FillBuffer(0); // determine intra-axonal volume fraction using the tract density itk::TractDensityImageFilter< ItkDoubleImgType >::Pointer tdiFilter = itk::TractDensityImageFilter< ItkDoubleImgType >::New(); tdiFilter->SetFiberBundle(m_FiberBundleTransformed); tdiFilter->SetBinaryOutput(false); tdiFilter->SetOutputAbsoluteValues(false); tdiFilter->SetInputImage(intraAxonalVolumeImage); tdiFilter->SetUseImageGeometry(true); tdiFilter->Update(); intraAxonalVolumeImage = tdiFilter->GetOutput(); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; boost::progress_display disp(m_MaskImage->GetLargestPossibleRegion().GetNumberOfPixels()*m_Parameters.m_SignalGen.GetNumVolumes()); for (unsigned int g=0; gSetSeed(signalModelSeed); for (int i=0; iSetSeed(signalModelSeed); if (m_Parameters.m_SignalGen.m_DoAddMotion && g>0) // if fibers have moved we need a new TDI and new directions { fOdfFilter->SetFiberBundle(m_FiberBundleTransformed); fOdfFilter->SetMaskImage(m_MaskImage); fOdfFilter->Update(); directionImageContainer = fOdfFilter->GetDirectionImageContainer(); tdiFilter->SetFiberBundle(m_FiberBundleTransformed); tdiFilter->Update(); intraAxonalVolumeImage = tdiFilter->GetOutput(); } ImageRegionIterator< ItkUcharImgType > it(m_MaskImage, m_MaskImage->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned int tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } if (it.Get()>0) { // generate fiber signal for (int c=0; cGetPixel(it.GetIndex()); for (unsigned int i=0; iSize(); i++) { itk::Vector< double, 3> dir; dir.CastFrom(directionImageContainer->GetElement(i)->GetPixel(it.GetIndex())); double norm = dir.GetNorm(); if (norm>0.0001) { m_Parameters.m_FiberModelList.at(c)->SetFiberDirection(dir); pix[g] += m_Parameters.m_FiberModelList.at(c)->SimulateMeasurement(g)*norm; count++; } } if (count>0) pix[g] /= count; pix[g] *= intraAxonalVolumeImage->GetPixel(it.GetIndex())*m_VoxelVolume; m_CompartmentImages.at(c)->SetPixel(it.GetIndex(), pix); } // simulate other compartments SimulateNonFiberSignal(it.GetIndex(), intraAxonalVolumeImage->GetPixel(it.GetIndex())*m_VoxelVolume, g); } ++it; } SimulateMotion(g); } itk::ImageFileWriter< ItkUcharImgType >::Pointer wr = itk::ImageFileWriter< ItkUcharImgType >::New(); wr->SetInput(fOdfFilter->GetNumDirectionsImage()); wr->SetFileName(mitk::IOUtil::GetTempPath()+"/NumDirections_MainFiberDirections.nrrd"); wr->Update(); break; } case (SignalGenerationParameters::RANDOM_DIRECTIONS): { ItkUcharImgType::Pointer numDirectionsImage = ItkUcharImgType::New(); numDirectionsImage->SetSpacing( m_UpsampledSpacing ); numDirectionsImage->SetOrigin( m_UpsampledOrigin ); numDirectionsImage->SetDirection( m_Parameters.m_SignalGen.m_ImageDirection ); numDirectionsImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); numDirectionsImage->SetBufferedRegion( m_UpsampledImageRegion ); numDirectionsImage->SetRequestedRegion( m_UpsampledImageRegion ); numDirectionsImage->Allocate(); numDirectionsImage->FillBuffer(0); double sepAngle = cos(m_Parameters.m_SignalGen.m_FiberSeparationThreshold*M_PI/180.0); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; boost::progress_display disp(m_MaskImage->GetLargestPossibleRegion().GetNumberOfPixels()); ImageRegionIterator it(m_MaskImage, m_MaskImage->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned int tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } if (it.Get()>0) { int numFibs = m_RandGen->GetIntegerVariate(2)+1; DoubleDwiType::PixelType pix = m_CompartmentImages.at(0)->GetPixel(it.GetIndex()); double volume = m_RandGen->GetVariateWithClosedRange(0.3); // double sum = 0; std::vector< double > fractions; for (int i=0; iGetVariateWithClosedRange(0.5)); // sum += fractions.at(i); } // for (int i=0; i > directions; for (int i=0; iGetVariateWithClosedRange(2)-1.0; fib[1] = m_RandGen->GetVariateWithClosedRange(2)-1.0; fib[2] = m_RandGen->GetVariateWithClosedRange(2)-1.0; fib.Normalize(); double min = 0; for (unsigned int d=0; dmin) min = angle; } if (minSetFiberDirection(fib); pix += m_Parameters.m_FiberModelList.at(0)->SimulateMeasurement()*fractions[i]; directions.push_back(fib); } else i--; } pix *= (1-volume); m_CompartmentImages.at(0)->SetPixel(it.GetIndex(), pix); // CSF/GM { pix += volume*m_Parameters.m_NonFiberModelList.at(0)->SimulateMeasurement(); } numDirectionsImage->SetPixel(it.GetIndex(), numFibs); } ++it; } itk::ImageFileWriter< ItkUcharImgType >::Pointer wr = itk::ImageFileWriter< ItkUcharImgType >::New(); wr->SetInput(numDirectionsImage); wr->SetFileName(mitk::IOUtil::GetTempPath()+"/NumDirections_RandomDirections.nrrd"); wr->Update(); } } if (m_Logfile.is_open()) { m_Logfile << "DONE"; m_Logfile.close(); } m_StatusText += "\n\n"; if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } DoubleDwiType::Pointer doubleOutImage; if ( m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition ) // do k-space stuff { m_StatusText += this->GetTime()+" > Adjusting complex signal\n"; MITK_INFO << "Adjusting complex signal:"; if (m_Parameters.m_SignalGen.m_DoSimulateRelaxation) m_StatusText += "Simulating signal relaxation\n"; if (m_Parameters.m_SignalGen.m_FrequencyMap.IsNotNull()) m_StatusText += "Simulating distortions\n"; if (m_Parameters.m_SignalGen.m_DoAddGibbsRinging) m_StatusText += "Simulating ringing artifacts\n"; if (m_Parameters.m_SignalGen.m_EddyStrength>0) m_StatusText += "Simulating eddy currents\n"; if (m_Parameters.m_SignalGen.m_Spikes>0) m_StatusText += "Simulating spikes\n"; if (m_Parameters.m_SignalGen.m_CroppingFactor<1.0) m_StatusText += "Simulating aliasing artifacts\n"; if (m_Parameters.m_SignalGen.m_KspaceLineOffset>0) m_StatusText += "Simulating ghosts\n"; doubleOutImage = DoKspaceStuff(m_CompartmentImages); m_Parameters.m_SignalGen.m_SignalScale = 1; // already scaled in DoKspaceStuff } else // don't do k-space stuff, just sum compartments { m_StatusText += this->GetTime()+" > Summing compartments\n"; MITK_INFO << "Summing compartments"; doubleOutImage = m_CompartmentImages.at(0); for (unsigned int i=1; i::Pointer adder = itk::AddImageFilter< DoubleDwiType, DoubleDwiType, DoubleDwiType>::New(); adder->SetInput1(doubleOutImage); adder->SetInput2(m_CompartmentImages.at(i)); adder->Update(); doubleOutImage = adder->GetOutput(); } } if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } m_StatusText += this->GetTime()+" > Finalizing image\n"; MITK_INFO << "Finalizing image"; if (m_Parameters.m_SignalGen.m_SignalScale>1) m_StatusText += " Scaling signal\n"; if (m_Parameters.m_NoiseModel!=NULL) m_StatusText += " Adding noise\n"; unsigned int window = 0; unsigned int min = itk::NumericTraits::max(); ImageRegionIterator it4 (outImage, outImage->GetLargestPossibleRegion()); DoubleDwiType::PixelType signal; signal.SetSize(m_Parameters.m_SignalGen.GetNumVolumes()); boost::progress_display disp2(outImage->GetLargestPossibleRegion().GetNumberOfPixels()); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; lastTick = 0; while(!it4.IsAtEnd()) { if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } ++disp2; unsigned long newTick = 50*disp2.count()/disp2.expected_count(); for (unsigned long tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; typename OutputImageType::IndexType index = it4.GetIndex(); signal = doubleOutImage->GetPixel(index)*m_Parameters.m_SignalGen.m_SignalScale; if (m_Parameters.m_NoiseModel!=NULL) m_Parameters.m_NoiseModel->AddNoise(signal); for (unsigned int i=0; i0) signal[i] = floor(signal[i]+0.5); else signal[i] = ceil(signal[i]-0.5); if ( (!m_Parameters.m_SignalGen.IsBaselineIndex(i) || signal.Size()==1) && signal[i]>window) window = signal[i]; if ( (!m_Parameters.m_SignalGen.IsBaselineIndex(i) || signal.Size()==1) && signal[i]SetNthOutput(0, outImage); m_StatusText += "\n\n"; m_StatusText += "Finished simulation\n"; m_StatusText += "Simulation time: "+GetTime(); m_TimeProbe.Stop(); } template< class PixelType > void TractsToDWIImageFilter< PixelType >::SimulateMotion(int g) { if (m_Parameters.m_SignalGen.m_DoAddMotion && gGetDeepCopy(); m_Rotation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Rotation[0]*2)-m_Parameters.m_SignalGen.m_Rotation[0]; m_Rotation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Rotation[1]*2)-m_Parameters.m_SignalGen.m_Rotation[1]; m_Rotation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Rotation[2]*2)-m_Parameters.m_SignalGen.m_Rotation[2]; m_Translation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Translation[0]*2)-m_Parameters.m_SignalGen.m_Translation[0]; m_Translation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Translation[1]*2)-m_Parameters.m_SignalGen.m_Translation[1]; m_Translation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_SignalGen.m_Translation[2]*2)-m_Parameters.m_SignalGen.m_Translation[2]; } // rotate mask image if (m_MaskImageSet) { ImageRegionIterator maskIt(m_UpsampledMaskImage, m_UpsampledMaskImage->GetLargestPossibleRegion()); m_MaskImage->FillBuffer(0); while(!maskIt.IsAtEnd()) { if (maskIt.Get()<=0) { ++maskIt; continue; } DoubleDwiType::IndexType index = maskIt.GetIndex(); itk::Point point; m_UpsampledMaskImage->TransformIndexToPhysicalPoint(index, point); if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), m_Rotation[0],m_Rotation[1],m_Rotation[2],m_Translation[0],m_Translation[1],m_Translation[2]); else point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), m_Rotation[0]*(g+1),m_Rotation[1]*(g+1),m_Rotation[2]*(g+1),m_Translation[0]*(g+1),m_Translation[1]*(g+1),m_Translation[2]*(g+1)); m_MaskImage->TransformPhysicalPointToIndex(point, index); if (m_MaskImage->GetLargestPossibleRegion().IsInside(index)) m_MaskImage->SetPixel(index,100); ++maskIt; } // itk::ImageFileWriter::Pointer wr = itk::ImageFileWriter::New(); // wr->SetInput(m_MaskImage); // wr->SetFileName("/local/MASK_transformed.nrrd"); // wr->Update(); } if (m_HelperTdiUpsampled.IsNotNull()) { ImageRegionIterator maskIt(m_HelperTdiUpsampled, m_HelperTdiUpsampled->GetLargestPossibleRegion()); m_HelperTdiTransformed->FillBuffer(0); m_HelperTdiCounter->FillBuffer(0); while(!maskIt.IsAtEnd()) { DoubleDwiType::IndexType index = maskIt.GetIndex(); itk::Point point; m_HelperTdiUpsampled->TransformIndexToPhysicalPoint(index, point); if (m_Parameters.m_SignalGen.m_DoRandomizeMotion) point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), m_Rotation[0],m_Rotation[1],m_Rotation[2],m_Translation[0],m_Translation[1],m_Translation[2]); else point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), m_Rotation[0]*(g+1),m_Rotation[1]*(g+1),m_Rotation[2]*(g+1),m_Translation[0]*(g+1),m_Translation[1]*(g+1),m_Translation[2]*(g+1)); m_HelperTdiTransformed->TransformPhysicalPointToIndex(point, index); if (m_HelperTdiTransformed->GetLargestPossibleRegion().IsInside(index) && m_MaskImage->GetPixel(index)>0) { m_HelperTdiTransformed->SetPixel(index, m_HelperTdiTransformed->GetPixel(index)+maskIt.Get()); m_HelperTdiCounter->SetPixel(index, m_HelperTdiCounter->GetPixel(index)+1); } ++maskIt; } ImageRegionIterator maskIt2(m_HelperTdiTransformed, m_HelperTdiTransformed->GetLargestPossibleRegion()); while(!maskIt2.IsAtEnd()) { DoubleDwiType::IndexType index = maskIt2.GetIndex(); if (m_HelperTdiCounter->GetPixel(index)>0) { m_HelperTdiTransformed->SetPixel(index, maskIt2.Get()/m_HelperTdiCounter->GetPixel(index)); } ++maskIt2; } // itk::ImageFileWriter::Pointer wr = itk::ImageFileWriter::New(); // wr->SetInput(m_HelperTdiTransformed); // wr->SetFileName("/local/TDI_transformed.nrrd"); // wr->Update(); } // rotate fibers if (m_Logfile.is_open()) { m_Logfile << g+1 << " rotation: " << m_Rotation[0] << "," << m_Rotation[1] << "," << m_Rotation[2] << ";"; m_Logfile << " translation: " << m_Translation[0] << "," << m_Translation[1] << "," << m_Translation[2] << "\n"; } m_FiberBundleTransformed->TransformFibers(m_Rotation[0],m_Rotation[1],m_Rotation[2],m_Translation[0],m_Translation[1],m_Translation[2]); } } template< class PixelType > void TractsToDWIImageFilter< PixelType >::SimulateNonFiberSignal(ItkUcharImgType::IndexType index, double intraAxonalVolume, int g) { int numFiberCompartments = m_Parameters.m_FiberModelList.size(); int numNonFiberCompartments = m_Parameters.m_NonFiberModelList.size(); if (intraAxonalVolume>0.0001 && m_Parameters.m_SignalGen.m_DoDisablePartialVolume) // only fiber in voxel { DoubleDwiType::PixelType pix = m_CompartmentImages.at(0)->GetPixel(index); if (g>=0) pix[g] *= m_VoxelVolume/intraAxonalVolume; else pix *= m_VoxelVolume/intraAxonalVolume; m_CompartmentImages.at(0)->SetPixel(index, pix); m_VolumeFractions.at(0)->SetPixel(index, 1); for (int i=1; iGetPixel(index); if (g>=0) pix[g] = 0.0; else pix.Fill(0.0); m_CompartmentImages.at(i)->SetPixel(index, pix); } } else { m_VolumeFractions.at(0)->SetPixel(index, intraAxonalVolume/m_VoxelVolume); itk::Point point; m_MaskImage->TransformIndexToPhysicalPoint(index, point); if (m_Parameters.m_SignalGen.m_DoAddMotion) { if (m_Parameters.m_SignalGen.m_DoRandomizeMotion && g>0) point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), -m_Rotation[0],-m_Rotation[1],-m_Rotation[2],-m_Translation[0],-m_Translation[1],-m_Translation[2]); else if (g>=0) point = m_FiberBundleWorkingCopy->TransformPoint(point.GetVnlVector(), -m_Rotation[0]*g,-m_Rotation[1]*g,-m_Rotation[2]*g,-m_Translation[0]*g,-m_Translation[1]*g,-m_Translation[2]*g); } if (m_Parameters.m_SignalGen.m_DoDisablePartialVolume) { int maxVolumeIndex = 0; double maxWeight = 0; for (int i=0; i1) { ItkUcharImgType::IndexType maskIndex; m_UpsampledMaskImage->TransformPhysicalPointToIndex(point, maskIndex); if (!m_UpsampledMaskImage->GetLargestPossibleRegion().IsInside(maskIndex) || m_UpsampledMaskImage->GetPixel(maskIndex)==0) continue; DoubleDwiType::IndexType newIndex; m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->TransformPhysicalPointToIndex(point, newIndex); if (!m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion().IsInside(newIndex)) continue; weight = m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetPixel(newIndex); } if (weight>maxWeight) { maxWeight = weight; maxVolumeIndex = i; } } DoubleDwiType::Pointer doubleDwi = m_CompartmentImages.at(maxVolumeIndex+numFiberCompartments); DoubleDwiType::PixelType pix = doubleDwi->GetPixel(index); if (g>=0) pix[g] += m_Parameters.m_NonFiberModelList[maxVolumeIndex]->SimulateMeasurement(g); else pix += m_Parameters.m_NonFiberModelList[maxVolumeIndex]->SimulateMeasurement(); doubleDwi->SetPixel(index, pix); m_VolumeFractions.at(maxVolumeIndex+numFiberCompartments)->SetPixel(index, 1); } else { double extraAxonalVolume = m_VoxelVolume-intraAxonalVolume; // non-fiber volume double interAxonalVolume = 0; if (numFiberCompartments>1) interAxonalVolume = extraAxonalVolume * intraAxonalVolume/m_VoxelVolume; // inter-axonal fraction of non fiber compartment scales linearly with f double other = extraAxonalVolume - interAxonalVolume; // rest of compartment double singleinter = interAxonalVolume/(numFiberCompartments-1); // adjust non-fiber and intra-axonal signal for (int i=1; iGetPixel(index); if (intraAxonalVolume>0) // remove scaling by intra-axonal volume from inter-axonal compartment { if (g>=0) pix[g] /= intraAxonalVolume; else pix /= intraAxonalVolume; } if (g>=0) pix[g] *= singleinter; else pix *= singleinter; m_CompartmentImages.at(i)->SetPixel(index, pix); m_VolumeFractions.at(i)->SetPixel(index, singleinter/m_VoxelVolume); } for (int i=0; i1) { ItkUcharImgType::IndexType maskIndex; m_UpsampledMaskImage->TransformPhysicalPointToIndex(point, maskIndex); if (!m_UpsampledMaskImage->GetLargestPossibleRegion().IsInside(maskIndex) || m_UpsampledMaskImage->GetPixel(maskIndex)==0) continue; DoubleDwiType::IndexType newIndex; m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->TransformPhysicalPointToIndex(point, newIndex); if (!m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetLargestPossibleRegion().IsInside(newIndex)) continue; weight = m_Parameters.m_NonFiberModelList[i]->GetVolumeFractionImage()->GetPixel(newIndex); } DoubleDwiType::Pointer doubleDwi = m_CompartmentImages.at(i+numFiberCompartments); DoubleDwiType::PixelType pix = doubleDwi->GetPixel(index); if (g>=0) pix[g] += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement(g)*other*weight; else pix += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement()*other*weight; doubleDwi->SetPixel(index, pix); m_VolumeFractions.at(i+numFiberCompartments)->SetPixel(index, other/m_VoxelVolume*weight); } } } } template< class PixelType > itk::Point TractsToDWIImageFilter< PixelType >::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class PixelType > itk::Vector TractsToDWIImageFilter< PixelType >::GetItkVector(double point[3]) { itk::Vector itkVector; itkVector[0] = point[0]; itkVector[1] = point[1]; itkVector[2] = point[2]; return itkVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(double point[3]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(Vector& vector) { vnl_vector_fixed vnlVector; vnlVector[0] = vector[0]; vnlVector[1] = vector[1]; vnlVector[2] = vector[2]; return vnlVector; } template< class PixelType > double TractsToDWIImageFilter< PixelType >::RoundToNearest(double num) { return (num > 0.0) ? floor(num + 0.5) : ceil(num - 0.5); } template< class PixelType > std::string TractsToDWIImageFilter< PixelType >::GetTime() { m_TimeProbe.Stop(); unsigned long total = RoundToNearest(m_TimeProbe.GetTotal()); unsigned long hours = total/3600; unsigned long minutes = (total%3600)/60; unsigned long seconds = total%60; std::string out = ""; out.append(boost::lexical_cast(hours)); out.append(":"); out.append(boost::lexical_cast(minutes)); out.append(":"); out.append(boost::lexical_cast(seconds)); m_TimeProbe.Start(); return out; } }