diff --git a/Core/Code/Controllers/mitkSliceNavigationController.cpp b/Core/Code/Controllers/mitkSliceNavigationController.cpp index 3e91b3e586..e735b3b610 100644 --- a/Core/Code/Controllers/mitkSliceNavigationController.cpp +++ b/Core/Code/Controllers/mitkSliceNavigationController.cpp @@ -1,772 +1,800 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSliceNavigationController.h" #include "mitkBaseRenderer.h" #include "mitkSlicedGeometry3D.h" #include "mitkPlaneGeometry.h" #include "mitkOperation.h" #include "mitkOperationActor.h" #include "mitkStateEvent.h" #include "mitkCrosshairPositionEvent.h" #include "mitkPositionEvent.h" #include "mitkInteractionConst.h" #include "mitkAction.h" #include "mitkGlobalInteraction.h" #include "mitkEventMapper.h" #include "mitkFocusManager.h" #include "mitkVtkPropRenderer.h" #include "mitkRenderingManager.h" #include "mitkInteractionConst.h" #include "mitkPointOperation.h" #include "mitkPlaneOperation.h" #include "mitkUndoController.h" #include "mitkOperationEvent.h" #include "mitkNodePredicateDataType.h" #include "mitkStatusBar.h" #include "mitkMemoryUtilities.h" #include namespace mitk { SliceNavigationController::SliceNavigationController( const char *type ) : BaseController( type ), m_InputWorldGeometry( NULL ), m_CreatedWorldGeometry( NULL ), m_ViewDirection( Axial ), m_DefaultViewDirection( Axial ), m_RenderingManager( NULL ), m_Renderer( NULL ), m_Top( false ), m_FrontSide( false ), m_Rotated( false ), m_BlockUpdate( false ), m_SliceLocked( false ), m_SliceRotationLocked( false ), m_OldPos(0) { typedef itk::SimpleMemberCommand< SliceNavigationController > SNCCommandType; SNCCommandType::Pointer sliceStepperChangedCommand, timeStepperChangedCommand; sliceStepperChangedCommand = SNCCommandType::New(); timeStepperChangedCommand = SNCCommandType::New(); sliceStepperChangedCommand->SetCallbackFunction( this, &SliceNavigationController::SendSlice ); timeStepperChangedCommand->SetCallbackFunction( this, &SliceNavigationController::SendTime ); m_Slice->AddObserver( itk::ModifiedEvent(), sliceStepperChangedCommand ); m_Time->AddObserver( itk::ModifiedEvent(), timeStepperChangedCommand ); m_Slice->SetUnitName( "mm" ); m_Time->SetUnitName( "ms" ); m_Top = false; m_FrontSide = false; m_Rotated = false; } SliceNavigationController::~SliceNavigationController() { } void SliceNavigationController::SetInputWorldGeometry( const Geometry3D *geometry ) { if ( geometry != NULL ) { if ( const_cast< BoundingBox * >( geometry->GetBoundingBox()) ->GetDiagonalLength2() < eps ) { itkWarningMacro( "setting an empty bounding-box" ); geometry = NULL; } } if ( m_InputWorldGeometry != geometry ) { m_InputWorldGeometry = geometry; this->Modified(); } } RenderingManager * SliceNavigationController::GetRenderingManager() const { mitk::RenderingManager* renderingManager = m_RenderingManager.GetPointer(); if (renderingManager != NULL) return renderingManager; if ( m_Renderer != NULL ) { renderingManager = m_Renderer->GetRenderingManager(); if (renderingManager != NULL) return renderingManager; } return mitk::RenderingManager::GetInstance(); } void SliceNavigationController::SetViewDirectionToDefault() { m_ViewDirection = m_DefaultViewDirection; } +const char* SliceNavigationController::GetViewDirection() +{ + const char* viewDirectionString; + switch(m_ViewDirection) + { + case 0: + viewDirectionString = "Axial"; + break; + + case 1: + viewDirectionString = "Sagittal"; + break; + + case 2: + viewDirectionString = "Frontal"; + break; + + case 3: + viewDirectionString = "Orginal"; + break; + + default: + viewDirectionString = "No View Direction Available"; + break; + } + return viewDirectionString; +} + void SliceNavigationController::Update() { if ( !m_BlockUpdate ) { if ( m_ViewDirection == Axial ) { this->Update( Axial, false, false, true ); } else { this->Update( m_ViewDirection ); } } } void SliceNavigationController::Update( SliceNavigationController::ViewDirection viewDirection, bool top, bool frontside, bool rotated ) { const TimeSlicedGeometry* worldTimeSlicedGeometry = dynamic_cast< const TimeSlicedGeometry * >( m_InputWorldGeometry.GetPointer() ); if( m_BlockUpdate || m_InputWorldGeometry.IsNull() || ( (worldTimeSlicedGeometry != NULL) && (worldTimeSlicedGeometry->GetTimeSteps() == 0) ) ) { return; } m_BlockUpdate = true; if ( m_LastUpdateTime < m_InputWorldGeometry->GetMTime() ) { Modified(); } this->SetViewDirection( viewDirection ); this->SetTop( top ); this->SetFrontSide( frontside ); this->SetRotated( rotated ); if ( m_LastUpdateTime < GetMTime() ) { m_LastUpdateTime = GetMTime(); // initialize the viewplane SlicedGeometry3D::Pointer slicedWorldGeometry = NULL; m_CreatedWorldGeometry = NULL; switch ( viewDirection ) { case Original: if ( worldTimeSlicedGeometry != NULL ) { m_CreatedWorldGeometry = static_cast< TimeSlicedGeometry * >( m_InputWorldGeometry->Clone().GetPointer() ); worldTimeSlicedGeometry = m_CreatedWorldGeometry.GetPointer(); slicedWorldGeometry = dynamic_cast< SlicedGeometry3D * >( m_CreatedWorldGeometry->GetGeometry3D( this->GetTime()->GetPos() ) ); if ( slicedWorldGeometry.IsNotNull() ) { break; } } else { const SlicedGeometry3D *worldSlicedGeometry = dynamic_cast< const SlicedGeometry3D * >( m_InputWorldGeometry.GetPointer()); if ( worldSlicedGeometry != NULL ) { slicedWorldGeometry = static_cast< SlicedGeometry3D * >( m_InputWorldGeometry->Clone().GetPointer()); break; } } //else: use Axial: no "break" here!! case Axial: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes( m_InputWorldGeometry, PlaneGeometry::Axial, top, frontside, rotated ); slicedWorldGeometry->SetSliceNavigationController( this ); break; case Frontal: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes( m_InputWorldGeometry, PlaneGeometry::Frontal, top, frontside, rotated ); slicedWorldGeometry->SetSliceNavigationController( this ); break; case Sagittal: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes( m_InputWorldGeometry, PlaneGeometry::Sagittal, top, frontside, rotated ); slicedWorldGeometry->SetSliceNavigationController( this ); break; default: itkExceptionMacro("unknown ViewDirection"); } m_Slice->SetPos( 0 ); m_Slice->SetSteps( (int)slicedWorldGeometry->GetSlices() ); if ( m_CreatedWorldGeometry.IsNull() ) { // initialize TimeSlicedGeometry m_CreatedWorldGeometry = TimeSlicedGeometry::New(); } if ( worldTimeSlicedGeometry == NULL ) { m_CreatedWorldGeometry->InitializeEvenlyTimed( slicedWorldGeometry, 1 ); m_Time->SetSteps( 0 ); m_Time->SetPos( 0 ); m_Time->InvalidateRange(); } else { m_BlockUpdate = true; m_Time->SetSteps( worldTimeSlicedGeometry->GetTimeSteps() ); m_Time->SetPos( 0 ); const TimeBounds &timeBounds = worldTimeSlicedGeometry->GetTimeBounds(); m_Time->SetRange( timeBounds[0], timeBounds[1] ); m_BlockUpdate = false; assert( worldTimeSlicedGeometry->GetGeometry3D( this->GetTime()->GetPos() ) != NULL ); slicedWorldGeometry->SetTimeBounds( worldTimeSlicedGeometry->GetGeometry3D( this->GetTime()->GetPos() )->GetTimeBounds() ); //@todo implement for non-evenly-timed geometry! m_CreatedWorldGeometry->InitializeEvenlyTimed( slicedWorldGeometry, worldTimeSlicedGeometry->GetTimeSteps() ); } } // unblock update; we may do this now, because if m_BlockUpdate was already // true before this method was entered, then we will never come here. m_BlockUpdate = false; // Send the geometry. Do this even if nothing was changed, because maybe // Update() was only called to re-send the old geometry and time/slice data. this->SendCreatedWorldGeometry(); this->SendSlice(); this->SendTime(); // Adjust the stepper range of slice stepper according to geometry this->AdjustSliceStepperRange(); } void SliceNavigationController::SendCreatedWorldGeometry() { // Send the geometry. Do this even if nothing was changed, because maybe // Update() was only called to re-send the old geometry. if ( !m_BlockUpdate ) { this->InvokeEvent( GeometrySendEvent(m_CreatedWorldGeometry, 0) ); } } void SliceNavigationController::SendCreatedWorldGeometryUpdate() { if ( !m_BlockUpdate ) { this->InvokeEvent( GeometryUpdateEvent(m_CreatedWorldGeometry, m_Slice->GetPos()) ); } } void SliceNavigationController::SendSlice() { if ( !m_BlockUpdate ) { if ( m_CreatedWorldGeometry.IsNotNull() ) { this->InvokeEvent( GeometrySliceEvent(m_CreatedWorldGeometry, m_Slice->GetPos()) ); // send crosshair event crosshairPositionEvent.Send(); // Request rendering update for all views this->GetRenderingManager()->RequestUpdateAll(); } } } void SliceNavigationController::SendTime() { if ( !m_BlockUpdate ) { if ( m_CreatedWorldGeometry.IsNotNull() ) { this->InvokeEvent( GeometryTimeEvent(m_CreatedWorldGeometry, m_Time->GetPos()) ); // Request rendering update for all views this->GetRenderingManager()->RequestUpdateAll(); } } } void SliceNavigationController::SetGeometry( const itk::EventObject & ) { } void SliceNavigationController ::SetGeometryTime( const itk::EventObject &geometryTimeEvent ) { const SliceNavigationController::GeometryTimeEvent *timeEvent = dynamic_cast< const SliceNavigationController::GeometryTimeEvent * >( &geometryTimeEvent); assert( timeEvent != NULL ); TimeSlicedGeometry *timeSlicedGeometry = timeEvent->GetTimeSlicedGeometry(); assert( timeSlicedGeometry != NULL ); if ( m_CreatedWorldGeometry.IsNotNull() ) { int timeStep = (int) timeEvent->GetPos(); ScalarType timeInMS; timeInMS = timeSlicedGeometry->TimeStepToMS( timeStep ); timeStep = m_CreatedWorldGeometry->MSToTimeStep( timeInMS ); this->GetTime()->SetPos( timeStep ); } } void SliceNavigationController ::SetGeometrySlice(const itk::EventObject & geometrySliceEvent) { const SliceNavigationController::GeometrySliceEvent* sliceEvent = dynamic_cast( &geometrySliceEvent); assert(sliceEvent!=NULL); this->GetSlice()->SetPos(sliceEvent->GetPos()); } void SliceNavigationController::SelectSliceByPoint( const Point3D &point ) { //@todo add time to PositionEvent and use here!! SlicedGeometry3D* slicedWorldGeometry = dynamic_cast< SlicedGeometry3D * >( m_CreatedWorldGeometry->GetGeometry3D( this->GetTime()->GetPos() ) ); if ( slicedWorldGeometry ) { int bestSlice = -1; double bestDistance = itk::NumericTraits::max(); int s, slices; slices = slicedWorldGeometry->GetSlices(); if ( slicedWorldGeometry->GetEvenlySpaced() ) { mitk::Geometry2D *plane = slicedWorldGeometry->GetGeometry2D( 0 ); const Vector3D &direction = slicedWorldGeometry->GetDirectionVector(); Point3D projectedPoint; plane->Project( point, projectedPoint ); // Check whether the point is somewhere within the slice stack volume; // otherwise, the defualt slice (0) will be selected if ( direction[0] * (point[0] - projectedPoint[0]) + direction[1] * (point[1] - projectedPoint[1]) + direction[2] * (point[2] - projectedPoint[2]) >= 0 ) { bestSlice = (int)(plane->Distance( point ) / slicedWorldGeometry->GetSpacing()[2] + 0.5); } } else { Point3D projectedPoint; for ( s = 0; s < slices; ++s ) { slicedWorldGeometry->GetGeometry2D( s )->Project( point, projectedPoint ); Vector3D distance = projectedPoint - point; ScalarType currentDistance = distance.GetSquaredNorm(); if ( currentDistance < bestDistance ) { bestDistance = currentDistance; bestSlice = s; } } } if ( bestSlice >= 0 ) { this->GetSlice()->SetPos( bestSlice ); } else { this->GetSlice()->SetPos( 0 ); } this->SendCreatedWorldGeometryUpdate(); } } void SliceNavigationController::ReorientSlices( const Point3D &point, const Vector3D &normal ) { PlaneOperation op( OpORIENT, point, normal ); m_CreatedWorldGeometry->ExecuteOperation( &op ); this->SendCreatedWorldGeometryUpdate(); } void SliceNavigationController::ReorientSlices(const mitk::Point3D &point, const mitk::Vector3D &axisVec0, const mitk::Vector3D &axisVec1 ) { PlaneOperation op( OpORIENT, point, axisVec0, axisVec1 ); m_CreatedWorldGeometry->ExecuteOperation( &op ); this->SendCreatedWorldGeometryUpdate(); } const mitk::TimeSlicedGeometry * SliceNavigationController::GetCreatedWorldGeometry() { return m_CreatedWorldGeometry; } const mitk::Geometry3D * SliceNavigationController::GetCurrentGeometry3D() { if ( m_CreatedWorldGeometry.IsNotNull() ) { return m_CreatedWorldGeometry->GetGeometry3D( this->GetTime()->GetPos() ); } else { return NULL; } } const mitk::PlaneGeometry * SliceNavigationController::GetCurrentPlaneGeometry() { const mitk::SlicedGeometry3D *slicedGeometry = dynamic_cast< const mitk::SlicedGeometry3D * > ( this->GetCurrentGeometry3D() ); if ( slicedGeometry ) { const mitk::PlaneGeometry *planeGeometry = dynamic_cast< mitk::PlaneGeometry * > ( slicedGeometry->GetGeometry2D(this->GetSlice()->GetPos()) ); return planeGeometry; } else { return NULL; } } void SliceNavigationController::SetRenderer( BaseRenderer *renderer ) { m_Renderer = renderer; } BaseRenderer * SliceNavigationController::GetRenderer() const { return m_Renderer; } void SliceNavigationController::AdjustSliceStepperRange() { const mitk::SlicedGeometry3D *slicedGeometry = dynamic_cast< const mitk::SlicedGeometry3D * > ( this->GetCurrentGeometry3D() ); const Vector3D &direction = slicedGeometry->GetDirectionVector(); int c = 0; int i, k = 0; for ( i = 0; i < 3; ++i ) { if ( fabs( (float) direction[i] ) < 0.000000001 ) { ++c; } else { k = i; } } if ( c == 2 ) { ScalarType min = m_InputWorldGeometry->GetOrigin()[k]; ScalarType max = min + m_InputWorldGeometry->GetExtentInMM( k ); m_Slice->SetRange( min, max ); } else { m_Slice->InvalidateRange(); } } void SliceNavigationController::ExecuteOperation( Operation *operation ) { // switch on type // - select best slice for a given point // - rotate created world geometry according to Operation->SomeInfo() if ( !operation ) { return; } switch ( operation->GetOperationType() ) { case OpMOVE: // should be a point operation { if ( !m_SliceLocked ) //do not move the cross position { // select a slice PointOperation *po = dynamic_cast< PointOperation * >( operation ); if ( po && po->GetIndex() == -1 ) { this->SelectSliceByPoint( po->GetPoint() ); } else if ( po && po->GetIndex() != -1 ) // undo case because index != -1, index holds the old position of this slice { this->GetSlice()->SetPos( po->GetIndex() ); } } break; } case OpRESTOREPLANEPOSITION: { m_CreatedWorldGeometry->ExecuteOperation( operation ); this->SendCreatedWorldGeometryUpdate(); break; } default: { // do nothing break; } } } mitk::DataNode::Pointer SliceNavigationController::GetTopLayerNode(mitk::DataStorage::SetOfObjects::ConstPointer nodes,mitk::Point3D worldposition) { mitk::DataNode::Pointer node; int maxlayer = -32768; bool isHelper (false); if(nodes.IsNotNull()) { for (unsigned int x = 0; x < nodes->size(); x++) { nodes->at(x)->GetBoolProperty("helper object", isHelper); if(nodes->at(x)->GetData()->GetGeometry()->IsInside(worldposition) && isHelper == false) { int layer = 0; if(!(nodes->at(x)->GetIntProperty("layer", layer))) continue; if(layer > maxlayer) { if(static_cast(nodes->at(x))->IsVisible(m_Renderer)) { node = nodes->at(x); maxlayer = layer; } } } } } return node; } // Relict from the old times, when automous decisions were accepted // behavior. Remains in here, because some RenderWindows do exist outside // of StdMultiWidgets. bool SliceNavigationController ::ExecuteAction( Action* action, StateEvent const* stateEvent ) { bool ok = false; const PositionEvent* posEvent = dynamic_cast< const PositionEvent * >( stateEvent->GetEvent() ); if ( posEvent != NULL ) { if ( m_CreatedWorldGeometry.IsNull() ) { return true; } switch (action->GetActionId()) { case AcMOVE: { BaseRenderer *baseRenderer = posEvent->GetSender(); if ( !baseRenderer ) { baseRenderer = const_cast( GlobalInteraction::GetInstance()->GetFocus() ); } if ( baseRenderer ) if ( baseRenderer->GetMapperID() == 1 ) { PointOperation doOp(OpMOVE, posEvent->GetWorldPosition()); this->ExecuteOperation( &doOp ); // If click was performed in this render window than we have to update the status bar information about position and pixel value. if(baseRenderer == m_Renderer) { { std::string statusText; TNodePredicateDataType::Pointer isImageData = TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer nodes = baseRenderer->GetDataStorage()->GetSubset(isImageData).GetPointer(); mitk::Point3D worldposition = posEvent->GetWorldPosition(); //int maxlayer = -32768; mitk::Image::Pointer image3D; mitk::DataNode::Pointer node; mitk::DataNode::Pointer topSourceNode; bool isBinary (false); node = this->GetTopLayerNode(nodes,worldposition); if(node.IsNotNull()) { node->GetBoolProperty("binary", isBinary); if(isBinary) { mitk::DataStorage::SetOfObjects::ConstPointer sourcenodes = baseRenderer->GetDataStorage()->GetSources(node, NULL, true); if(!sourcenodes->empty()) { topSourceNode = this->GetTopLayerNode(sourcenodes,worldposition); } if(topSourceNode.IsNotNull()) { image3D = dynamic_cast(topSourceNode->GetData()); } else { image3D = dynamic_cast(node->GetData()); } } else { image3D = dynamic_cast(node->GetData()); } } std::stringstream stream; stream.imbue(std::locale::classic()); // get the position and gray value from the image and build up status bar text if(image3D.IsNotNull()) { Index3D p; image3D->GetGeometry()->WorldToIndex(worldposition, p); stream.precision(2); stream<<"Position: <" << std::fixed < mm"; stream<<"; Index: <"< "; mitk::ScalarType pixelValue = image3D->GetPixelValueByIndex(p, baseRenderer->GetTimeStep()); if (fabs(pixelValue)>1000000 || fabs(pixelValue) < 0.01) { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: " << std::scientific<< pixelValue <<" "; } else { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: "<< pixelValue <<" "; } } else { stream << "No image information at this position!"; } statusText = stream.str(); mitk::StatusBar::GetInstance()->DisplayGreyValueText(statusText.c_str()); } } ok = true; break; } } default: ok = true; break; } return ok; } const DisplayPositionEvent *displPosEvent = dynamic_cast< const DisplayPositionEvent * >( stateEvent->GetEvent() ); if ( displPosEvent != NULL ) { return true; } return false; } } // namespace diff --git a/Core/Code/Controllers/mitkSliceNavigationController.h b/Core/Code/Controllers/mitkSliceNavigationController.h index 13dc103ed5..d39dba5211 100644 --- a/Core/Code/Controllers/mitkSliceNavigationController.h +++ b/Core/Code/Controllers/mitkSliceNavigationController.h @@ -1,558 +1,561 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef SLICENAVIGATIONCONTROLLER_H_HEADER_INCLUDED_C1C55A2F #define SLICENAVIGATIONCONTROLLER_H_HEADER_INCLUDED_C1C55A2F #include #include "mitkBaseController.h" #include "mitkRenderingManager.h" #include "mitkTimeSlicedGeometry.h" #include "mitkMessage.h" #pragma GCC visibility push(default) #include #pragma GCC visibility pop #include #include #include "mitkRestorePlanePositionOperation.h" #include "mitkDataStorage.h" namespace mitk { #define mitkTimeSlicedGeometryEventMacro( classname , super ) \ class MITK_CORE_EXPORT classname : public super { \ public: \ typedef classname Self; \ typedef super Superclass; \ classname(TimeSlicedGeometry* aTimeSlicedGeometry, unsigned int aPos) \ : Superclass(aTimeSlicedGeometry, aPos) {} \ virtual ~classname() {} \ virtual const char * GetEventName() const { return #classname; } \ virtual bool CheckEvent(const ::itk::EventObject* e) const \ { return dynamic_cast(e); } \ virtual ::itk::EventObject* MakeObject() const \ { return new Self(GetTimeSlicedGeometry(), GetPos()); } \ private: \ void operator=(const Self&); \ } class PlaneGeometry; class Geometry3D; class BaseRenderer; /** * \brief Controls the selection of the slice the associated BaseRenderer * will display * * A SliceNavigationController takes a Geometry3D as input world geometry * (TODO what are the exact requirements?) and generates a TimeSlicedGeometry * as output. The TimeSlicedGeometry holds a number of SlicedGeometry3Ds and * these in turn hold a series of Geometry2Ds. One of these Geometry2Ds is * selected as world geometry for the BaseRenderers associated to 2D views. * * The SliceNavigationController holds has Steppers (one for the slice, a * second for the time step), which control the selection of a single * Geometry2D from the TimeSlicedGeometry. SliceNavigationController generates * ITK events to tell observers, like a BaseRenderer, when the selected slice * or timestep changes. * * SliceNavigationControllers are registered as listeners to GlobalInteraction * by the QmitkStdMultiWidget. In ExecuteAction, the controllers react to * PositionEvents by setting the steppers to the slice which is nearest to the * point of the PositionEvent. * * Example: * \code * // Initialization * sliceCtrl = mitk::SliceNavigationController::New(); * * // Tell the navigator the geometry to be sliced (with geometry a * // Geometry3D::ConstPointer) * sliceCtrl->SetInputWorldGeometry(geometry.GetPointer()); * * // Tell the navigator in which direction it shall slice the data * sliceCtrl->SetViewDirection(mitk::SliceNavigationController::Axial); * * // Connect one or more BaseRenderer to this navigator, i.e.: events sent * // by the navigator when stepping through the slices (e.g. by * // sliceCtrl->GetSlice()->Next()) will be received by the BaseRenderer * // (in this example only slice-changes, see also ConnectGeometryTimeEvent * // and ConnectGeometryEvents.) * sliceCtrl->ConnectGeometrySliceEvent(renderer.GetPointer()); * * //create a world geometry and send the information to the connected renderer(s) * sliceCtrl->Update(); * \endcode * * * You can connect visible navigators to a SliceNavigationController, e.g., a * QmitkSliderNavigator (for Qt): * * \code * // Create the visible navigator (a slider with a spin-box) * QmitkSliderNavigator* navigator = * new QmitkSliderNavigator(parent, "slidernavigator"); * * // Connect the navigator to the slice-stepper of the * // SliceNavigationController. For initialization (position, mininal and * // maximal values) the values of the SliceNavigationController are used. * // Thus, accessing methods of a navigator is normally not necessary, since * // everything can be set via the (Qt-independent) SliceNavigationController. * // The QmitkStepperAdapter converts the Qt-signals to Qt-independent * // itk-events. * new QmitkStepperAdapter(navigator, sliceCtrl->GetSlice(), "navigatoradaptor"); * \endcode * * If you do not want that all renderwindows are updated when a new slice is * selected, you can use a specific RenderingManager, which updates only those * renderwindows that should be updated. This is sometimes useful when a 3D view * does not need to be updated when the slices in some 2D views are changed. * QmitkSliderNavigator (for Qt): * * \code * // create a specific RenderingManager * mitk::RenderingManager::Pointer myManager = mitk::RenderingManager::New(); * * // tell the RenderingManager to update only renderwindow1 and renderwindow2 * myManager->AddRenderWindow(renderwindow1); * myManager->AddRenderWindow(renderwindow2); * * // tell the SliceNavigationController of renderwindow1 and renderwindow2 * // to use the specific RenderingManager instead of the global one * renderwindow1->GetSliceNavigationController()->SetRenderingManager(myManager); * renderwindow2->GetSliceNavigationController()->SetRenderingManager(myManager); * \endcode * * \todo implement for non-evenly-timed geometry! * \ingroup NavigationControl */ class MITK_CORE_EXPORT SliceNavigationController : public BaseController { public: mitkClassMacro(SliceNavigationController,BaseController); itkNewMacro(Self); mitkNewMacro1Param(Self, const char *); /** * \brief Possible view directions, \a Original will uses * the Geometry2D instances in a SlicedGeometry3D provided * as input world geometry (by SetInputWorldGeometry). */ enum ViewDirection { #ifdef _MSC_VER Transversal, // deprecated #endif Axial = 0, - Sagittal, - Frontal, + Sagittal = 1, + Frontal = 2, Original }; #ifdef __GNUC__ __attribute__ ((deprecated)) static const ViewDirection Transversal = ViewDirection(Axial); #endif /** * \brief Set the input world geometry out of which the * geometries for slicing will be created. */ void SetInputWorldGeometry(const mitk::Geometry3D* geometry); itkGetConstObjectMacro(InputWorldGeometry, mitk::Geometry3D); /** * \brief Access the created geometry */ itkGetConstObjectMacro(CreatedWorldGeometry, mitk::Geometry3D); /** * \brief Set the desired view directions * * \sa ViewDirection * \sa Update(ViewDirection viewDirection, bool top = true, * bool frontside = true, bool rotated = false) */ itkSetEnumMacro(ViewDirection, ViewDirection); itkGetEnumMacro(ViewDirection, ViewDirection); /** * \brief Set the default view direction * * This is used to re-initialize the view direction of the SNC to the * default value with SetViewDirectionToDefault() * * \sa ViewDirection * \sa Update(ViewDirection viewDirection, bool top = true, * bool frontside = true, bool rotated = false) */ itkSetEnumMacro(DefaultViewDirection, ViewDirection); itkGetEnumMacro(DefaultViewDirection, ViewDirection); + + const char* GetViewDirection(); + virtual void SetViewDirectionToDefault(); /** * \brief Do the actual creation and send it to the connected * observers (renderers) * */ virtual void Update(); /** * \brief Extended version of Update, additionally allowing to * specify the direction/orientation of the created geometry. * */ virtual void Update(ViewDirection viewDirection, bool top = true, bool frontside = true, bool rotated = false); /** * \brief Send the created geometry to the connected * observers (renderers) * * Called by Update(). */ virtual void SendCreatedWorldGeometry(); /** * \brief Tell observers to re-read the currently selected 2D geometry * * Called by mitk::SlicesRotator during rotation. */ virtual void SendCreatedWorldGeometryUpdate(); /** * \brief Send the currently selected slice to the connected * observers (renderers) * * Called by Update(). */ virtual void SendSlice(); /** * \brief Send the currently selected time to the connected * observers (renderers) * * Called by Update(). */ virtual void SendTime(); /** * \brief Set the RenderingManager to be used * * If \a NULL, the default RenderingManager will be used. */ itkSetObjectMacro(RenderingManager, RenderingManager); mitk::RenderingManager* GetRenderingManager() const; #pragma GCC visibility push(default) itkEventMacro( UpdateEvent, itk::AnyEvent ); #pragma GCC visibility pop class MITK_CORE_EXPORT TimeSlicedGeometryEvent : public itk::AnyEvent { public: typedef TimeSlicedGeometryEvent Self; typedef itk::AnyEvent Superclass; TimeSlicedGeometryEvent( TimeSlicedGeometry* aTimeSlicedGeometry, unsigned int aPos) : m_TimeSlicedGeometry(aTimeSlicedGeometry), m_Pos(aPos) {} virtual ~TimeSlicedGeometryEvent() {} virtual const char * GetEventName() const { return "TimeSlicedGeometryEvent"; } virtual bool CheckEvent(const ::itk::EventObject* e) const { return dynamic_cast(e); } virtual ::itk::EventObject* MakeObject() const { return new Self(m_TimeSlicedGeometry, m_Pos); } TimeSlicedGeometry* GetTimeSlicedGeometry() const { return m_TimeSlicedGeometry; } unsigned int GetPos() const { return m_Pos; } private: TimeSlicedGeometry::Pointer m_TimeSlicedGeometry; unsigned int m_Pos; // TimeSlicedGeometryEvent(const Self&); void operator=(const Self&); //just hide }; mitkTimeSlicedGeometryEventMacro( GeometrySendEvent,TimeSlicedGeometryEvent ); mitkTimeSlicedGeometryEventMacro( GeometryUpdateEvent, TimeSlicedGeometryEvent ); mitkTimeSlicedGeometryEventMacro( GeometryTimeEvent, TimeSlicedGeometryEvent ); mitkTimeSlicedGeometryEventMacro( GeometrySliceEvent, TimeSlicedGeometryEvent ); template void ConnectGeometrySendEvent(T* receiver) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometry); unsigned long tag = AddObserver(GeometrySendEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometryUpdateEvent(T* receiver) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::UpdateGeometry); unsigned long tag = AddObserver(GeometryUpdateEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometrySliceEvent(T* receiver, bool connectSendEvent=true) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometrySlice); unsigned long tag = AddObserver(GeometrySliceEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); if(connectSendEvent) ConnectGeometrySendEvent(receiver); } template void ConnectGeometryTimeEvent(T* receiver, bool connectSendEvent=true) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometryTime); unsigned long tag = AddObserver(GeometryTimeEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); if(connectSendEvent) ConnectGeometrySendEvent(receiver); } template void ConnectGeometryEvents(T* receiver) { //connect sendEvent only once ConnectGeometrySliceEvent(receiver, false); ConnectGeometryTimeEvent(receiver); } // use a templated method to get the right offset when casting to void* template void Disconnect(T* receiver) { ObserverTagsMapType::iterator i = m_ReceiverToObserverTagsMap.find(static_cast(receiver)); if (i == m_ReceiverToObserverTagsMap.end()) return; const std::list& tags = i->second; for (std::list::const_iterator tagIter = tags.begin(); tagIter != tags.end(); ++tagIter) { RemoveObserver(*tagIter); } m_ReceiverToObserverTagsMap.erase(i); } Message<> crosshairPositionEvent; /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface * \warning not implemented */ virtual void SetGeometry(const itk::EventObject & geometrySliceEvent); /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface */ virtual void SetGeometrySlice(const itk::EventObject & geometrySliceEvent); /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface */ virtual void SetGeometryTime(const itk::EventObject & geometryTimeEvent); /** \brief Positions the SNC according to the specified point */ void SelectSliceByPoint( const mitk::Point3D &point ); /** \brief Returns the TimeSlicedGeometry created by the SNC. */ const mitk::TimeSlicedGeometry *GetCreatedWorldGeometry(); /** \brief Returns the Geometry3D of the currently selected time step. */ const mitk::Geometry3D *GetCurrentGeometry3D(); /** \brief Returns the currently selected Plane in the current * Geometry3D (if existent). */ const mitk::PlaneGeometry *GetCurrentPlaneGeometry(); /** \brief Sets the BaseRenderer associated with this SNC (if any). While * the BaseRenderer is not directly used by SNC, this is a convenience * method to enable BaseRenderer access via the SNC. */ void SetRenderer( BaseRenderer *renderer ); /** \brief Gets the BaseRenderer associated with this SNC (if any). While * the BaseRenderer is not directly used by SNC, this is a convenience * method to enable BaseRenderer access via the SNC. Returns NULL if no * BaseRenderer has been specified*/ BaseRenderer *GetRenderer() const; /** \brief Re-orients the slice stack. All slices will be oriented to the given normal vector. The given point (world coordinates) defines the selected slice. Careful: The resulting axis vectors are not clearly defined this way. If you want to define them clearly, use ReorientSlices (const mitk::Point3D &point, const mitk::Vector3D &axisVec0, const mitk::Vector3D &axisVec1). */ void ReorientSlices( const mitk::Point3D &point, const mitk::Vector3D &normal ); /** \brief Re-orients the slice stack so that all planes are oriented according to the * given axis vectors. The given Point eventually defines selected slice. */ void ReorientSlices( const mitk::Point3D &point, const mitk::Vector3D &axisVec0, const mitk::Vector3D &axisVec1 ); virtual bool ExecuteAction( Action* action, mitk::StateEvent const* stateEvent); void ExecuteOperation(Operation* operation); /** * \brief Feature option to lock planes during mouse interaction. * This option flag disables the mouse event which causes the center * cross to move near by. */ itkSetMacro(SliceLocked, bool); itkGetMacro(SliceLocked, bool); itkBooleanMacro(SliceLocked); /** * \brief Feature option to lock slice rotation. * * This option flag disables separately the rotation of a slice which is * implemented in mitkSliceRotator. */ itkSetMacro(SliceRotationLocked, bool); itkGetMacro(SliceRotationLocked, bool); itkBooleanMacro(SliceRotationLocked); /** * \brief Adjusts the numerical range of the slice stepper according to * the current geometry orientation of this SNC's SlicedGeometry. */ void AdjustSliceStepperRange(); protected: SliceNavigationController(const char * type = NULL); virtual ~SliceNavigationController(); mitk::DataNode::Pointer GetTopLayerNode(mitk::DataStorage::SetOfObjects::ConstPointer nodes,mitk::Point3D worldposition); /* template static void buildstring( mitkIpPicDescriptor *pic, itk::Point p, std::string &s, T = 0) { std::string value; std::stringstream stream; stream.imbue(std::locale::classic()); stream<=0 && p[1] >=0 && p[2]>=0) && (unsigned int)p[0] < pic->n[0] && (unsigned int)p[1] < pic->n[1] && (unsigned int)p[2] < pic->n[2] ) { if(pic->bpe!=24) { stream<<(((T*) pic->data)[ p[0] + p[1]*pic->n[0] + p[2]*pic->n[0]*pic->n[1] ]); } else { stream<<(((T*) pic->data)[p[0]*3 + 0 + p[1]*pic->n[0]*3 + p[2]*pic->n[0]*pic->n[1]*3 ]); stream<<(((T*) pic->data)[p[0]*3 + 1 + p[1]*pic->n[0]*3 + p[2]*pic->n[0]*pic->n[1]*3 ]); stream<<(((T*) pic->data)[p[0]*3 + 2 + p[1]*pic->n[0]*3 + p[2]*pic->n[0]*pic->n[1]*3 ]); } s = stream.str(); } else { s+= "point out of data"; } }; */ mitk::Geometry3D::ConstPointer m_InputWorldGeometry; mitk::Geometry3D::Pointer m_ExtendedInputWorldGeometry; mitk::TimeSlicedGeometry::Pointer m_CreatedWorldGeometry; ViewDirection m_ViewDirection; ViewDirection m_DefaultViewDirection; mitk::RenderingManager::Pointer m_RenderingManager; mitk::BaseRenderer *m_Renderer; itkSetMacro(Top, bool); itkGetMacro(Top, bool); itkBooleanMacro(Top); itkSetMacro(FrontSide, bool); itkGetMacro(FrontSide, bool); itkBooleanMacro(FrontSide); itkSetMacro(Rotated, bool); itkGetMacro(Rotated, bool); itkBooleanMacro(Rotated); bool m_Top; bool m_FrontSide; bool m_Rotated; bool m_BlockUpdate; bool m_SliceLocked; bool m_SliceRotationLocked; unsigned int m_OldPos; typedef std::map > ObserverTagsMapType; ObserverTagsMapType m_ReceiverToObserverTagsMap; }; } // namespace mitk #endif /* SLICENAVIGATIONCONTROLLER_H_HEADER_INCLUDED_C1C55A2F */ diff --git a/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp b/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp index d96ade3cf7..c65a5a470b 100644 --- a/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp +++ b/Modules/SegmentationUI/Qmitk/QmitkSlicesInterpolator.cpp @@ -1,1060 +1,1060 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkSlicesInterpolator.h" #include "QmitkStdMultiWidget.h" #include "QmitkSelectableGLWidget.h" #include "mitkToolManager.h" #include "mitkDataNodeFactory.h" #include "mitkLevelWindowProperty.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkProgressBar.h" #include "mitkGlobalInteraction.h" #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include "mitkInteractionConst.h" #include "mitkApplyDiffImageOperation.h" #include "mitkDiffImageApplier.h" #include "mitkSegTool2D.h" #include "mitkCoreObjectFactory.h" #include "mitkSurfaceToImageFilter.h" #include "mitkSliceNavigationController.h" #include #include #include #include #include #include #include #include #include #include //#define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) const std::map QmitkSlicesInterpolator::createActionToSliceDimension() { std::map actionToSliceDimension; foreach(mitk::SliceNavigationController* slicer, m_ControllerToDeleteObserverTag.keys()) { - actionToSliceDimension[new QAction(QString::fromStdString(slicer->GetRenderer()->GetName()),0)] = slicer; + actionToSliceDimension[new QAction(QString::fromStdString(slicer->GetViewDirection()),0)] = slicer; } return actionToSliceDimension; } QmitkSlicesInterpolator::QmitkSlicesInterpolator(QWidget* parent, const char* /*name*/) :QWidget(parent), // ACTION_TO_SLICEDIMENSION( createActionToSliceDimension() ), m_Interpolator( mitk::SegmentationInterpolationController::New() ), m_SurfaceInterpolator(mitk::SurfaceInterpolationController::GetInstance()), m_ToolManager(NULL), m_Initialized(false), m_LastSNC(0), m_LastSliceIndex(0), m_2DInterpolationEnabled(false), m_3DInterpolationEnabled(false) { m_GroupBoxEnableExclusiveInterpolationMode = new QGroupBox("Interpolation", this); QVBoxLayout* vboxLayout = new QVBoxLayout(m_GroupBoxEnableExclusiveInterpolationMode); m_CmbInterpolation = new QComboBox(m_GroupBoxEnableExclusiveInterpolationMode); m_CmbInterpolation->addItem("Disabled"); m_CmbInterpolation->addItem("2-Dimensional"); m_CmbInterpolation->addItem("3-Dimensional"); vboxLayout->addWidget(m_CmbInterpolation); m_BtnApply2D = new QPushButton("Confirm Interpolation", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApply2D); m_BtnApplyForAllSlices2D = new QPushButton("Confirm For All Slices", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApplyForAllSlices2D); m_BtnApply3D = new QPushButton("Confirm Interpolation", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_BtnApply3D); m_ChkShowPositionNodes = new QCheckBox("Show Position Nodes", m_GroupBoxEnableExclusiveInterpolationMode); vboxLayout->addWidget(m_ChkShowPositionNodes); this->HideAllInterpolationControls(); connect(m_CmbInterpolation, SIGNAL(currentIndexChanged(int)), this, SLOT(OnInterpolationMethodChanged(int))); connect(m_BtnApply2D, SIGNAL(clicked()), this, SLOT(OnAcceptInterpolationClicked())); connect(m_BtnApplyForAllSlices2D, SIGNAL(clicked()), this, SLOT(OnAcceptAllInterpolationsClicked())); connect(m_BtnApply3D, SIGNAL(clicked()), this, SLOT(OnAccept3DInterpolationClicked())); connect(m_ChkShowPositionNodes, SIGNAL(toggled(bool)), this, SLOT(OnShowMarkers(bool))); connect(m_ChkShowPositionNodes, SIGNAL(toggled(bool)), this, SIGNAL(SignalShowMarkerNodes(bool))); QHBoxLayout* layout = new QHBoxLayout(this); layout->addWidget(m_GroupBoxEnableExclusiveInterpolationMode); this->setLayout(layout); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnInterpolationInfoChanged ); InterpolationInfoChangedObserverTag = m_Interpolator->AddObserver( itk::ModifiedEvent(), command ); itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged ); SurfaceInterpolationInfoChangedObserverTag = m_SurfaceInterpolator->AddObserver( itk::ModifiedEvent(), command2 ); // feedback node and its visualization properties m_FeedbackNode = mitk::DataNode::New(); mitk::CoreObjectFactory::GetInstance()->SetDefaultProperties( m_FeedbackNode ); m_FeedbackNode->SetProperty( "binary", mitk::BoolProperty::New(true) ); m_FeedbackNode->SetProperty( "outline binary", mitk::BoolProperty::New(true) ); m_FeedbackNode->SetProperty( "color", mitk::ColorProperty::New(255.0, 255.0, 0.0) ); m_FeedbackNode->SetProperty( "texture interpolation", mitk::BoolProperty::New(false) ); m_FeedbackNode->SetProperty( "layer", mitk::IntProperty::New( 20 ) ); m_FeedbackNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( mitk::LevelWindow(0, 1) ) ); m_FeedbackNode->SetProperty( "name", mitk::StringProperty::New("Interpolation feedback") ); m_FeedbackNode->SetProperty( "opacity", mitk::FloatProperty::New(0.8) ); m_FeedbackNode->SetProperty( "helper object", mitk::BoolProperty::New(true) ); m_InterpolatedSurfaceNode = mitk::DataNode::New(); m_InterpolatedSurfaceNode->SetProperty( "color", mitk::ColorProperty::New(255.0,255.0,0.0) ); m_InterpolatedSurfaceNode->SetProperty( "name", mitk::StringProperty::New("Surface Interpolation feedback") ); m_InterpolatedSurfaceNode->SetProperty( "opacity", mitk::FloatProperty::New(0.5) ); m_InterpolatedSurfaceNode->SetProperty( "includeInBoundingBox", mitk::BoolProperty::New(false)); m_InterpolatedSurfaceNode->SetProperty( "helper object", mitk::BoolProperty::New(true) ); m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode = mitk::DataNode::New(); m_3DContourNode->SetProperty( "color", mitk::ColorProperty::New(0.0, 0.0, 0.0) ); m_3DContourNode->SetProperty("helper object", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty( "name", mitk::StringProperty::New("Drawn Contours") ); m_3DContourNode->SetProperty("material.representation", mitk::VtkRepresentationProperty::New(VTK_WIREFRAME)); m_3DContourNode->SetProperty("material.wireframeLineWidth", mitk::FloatProperty::New(2.0f)); m_3DContourNode->SetProperty("3DContourContainer", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty( "includeInBoundingBox", mitk::BoolProperty::New(false)); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget2"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); QWidget::setContentsMargins(0, 0, 0, 0); if ( QWidget::layout() != NULL ) { QWidget::layout()->setContentsMargins(0, 0, 0, 0); } //For running 3D Interpolation in background // create a QFuture and a QFutureWatcher connect(&m_Watcher, SIGNAL(started()), this, SLOT(StartUpdateInterpolationTimer())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(OnSurfaceInterpolationFinished())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(StopUpdateInterpolationTimer())); m_Timer = new QTimer(this); connect(m_Timer, SIGNAL(timeout()), this, SLOT(ChangeSurfaceColor())); } void QmitkSlicesInterpolator::SetDataStorage( mitk::DataStorage::Pointer storage ) { m_DataStorage = storage; m_SurfaceInterpolator->SetDataStorage(storage); } mitk::DataStorage* QmitkSlicesInterpolator::GetDataStorage() { if ( m_DataStorage.IsNotNull() ) { return m_DataStorage; } else { return NULL; } } void QmitkSlicesInterpolator::Initialize(mitk::ToolManager* toolManager, const QList &controllers) { Q_ASSERT(!controllers.empty()); if (m_Initialized) { // remove old observers Uninitialize(); } m_ToolManager = toolManager; if (m_ToolManager) { // set enabled only if a segmentation is selected mitk::DataNode* node = m_ToolManager->GetWorkingData(0); QWidget::setEnabled( node != NULL ); // react whenever the set of selected segmentation changes m_ToolManager->WorkingDataChanged += mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified ); m_ToolManager->ReferenceDataChanged += mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified ); // connect to the slice navigation controller. after each change, call the interpolator foreach(mitk::SliceNavigationController* slicer, controllers) { //Has to be initialized m_LastSNC = slicer; m_TimeStep.insert(slicer, slicer->GetTime()->GetPos()); itk::MemberCommand::Pointer deleteCommand = itk::MemberCommand::New(); deleteCommand->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSliceNavigationControllerDeleted); m_ControllerToDeleteObserverTag.insert(slicer, slicer->AddObserver(itk::DeleteEvent(), deleteCommand)); itk::MemberCommand::Pointer timeChangedCommand = itk::MemberCommand::New(); timeChangedCommand->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnTimeChanged); m_ControllerToTimeObserverTag.insert(slicer, slicer->AddObserver(mitk::SliceNavigationController::TimeSlicedGeometryEvent(NULL,0), timeChangedCommand)); itk::MemberCommand::Pointer sliceChangedCommand = itk::MemberCommand::New(); sliceChangedCommand->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSliceChanged); m_ControllerToSliceObserverTag.insert(slicer, slicer->AddObserver(mitk::SliceNavigationController::GeometrySliceEvent(NULL,0), sliceChangedCommand)); } ACTION_TO_SLICEDIMENSION = createActionToSliceDimension(); } m_Initialized = true; } void QmitkSlicesInterpolator::Uninitialize() { if (m_ToolManager.IsNotNull()) { m_ToolManager->WorkingDataChanged -= mitk::MessageDelegate(this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified); m_ToolManager->ReferenceDataChanged -= mitk::MessageDelegate(this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified); } foreach(mitk::SliceNavigationController* slicer, m_ControllerToSliceObserverTag.keys()) { slicer->RemoveObserver(m_ControllerToDeleteObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToTimeObserverTag.take(slicer)); slicer->RemoveObserver(m_ControllerToSliceObserverTag.take(slicer)); } ACTION_TO_SLICEDIMENSION.clear(); m_ToolManager = NULL; m_Initialized = false; } QmitkSlicesInterpolator::~QmitkSlicesInterpolator() { if (m_Initialized) { // remove old observers Uninitialize(); } if(m_DataStorage->Exists(m_3DContourNode)) m_DataStorage->Remove(m_3DContourNode); if(m_DataStorage->Exists(m_InterpolatedSurfaceNode)) m_DataStorage->Remove(m_InterpolatedSurfaceNode); // remove observer m_Interpolator->RemoveObserver( InterpolationInfoChangedObserverTag ); m_SurfaceInterpolator->RemoveObserver( SurfaceInterpolationInfoChangedObserverTag ); delete m_Timer; } /** External enableization... */ void QmitkSlicesInterpolator::setEnabled( bool enable ) { QWidget::setEnabled(enable); //Set the gui elements of the different interpolation modi enabled if (enable) { if (m_2DInterpolationEnabled) { this->Show2DInterpolationControls(true); m_Interpolator->Activate2DInterpolation(true); } else if (m_3DInterpolationEnabled) { this->Show3DInterpolationControls(true); this->Show3DInterpolationResult(true); } } //Set all gui elements of the interpolation disabled else { this->HideAllInterpolationControls(); this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::On2DInterpolationEnabled(bool status) { OnInterpolationActivated(status); m_Interpolator->Activate2DInterpolation(status); } void QmitkSlicesInterpolator::On3DInterpolationEnabled(bool status) { On3DInterpolationActivated(status); } void QmitkSlicesInterpolator::OnInterpolationDisabled(bool status) { if (status) { OnInterpolationActivated(!status); On3DInterpolationActivated(!status); this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::HideAllInterpolationControls() { this->Show2DInterpolationControls(false); this->Show3DInterpolationControls(false); } void QmitkSlicesInterpolator::Show2DInterpolationControls(bool show) { m_BtnApply2D->setVisible(show); m_BtnApplyForAllSlices2D->setVisible(show); } void QmitkSlicesInterpolator::Show3DInterpolationControls(bool show) { m_BtnApply3D->setVisible(show); m_ChkShowPositionNodes->setVisible(show); } void QmitkSlicesInterpolator::OnInterpolationMethodChanged(int index) { switch(index) { case 0: // Disabled m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation"); this->HideAllInterpolationControls(); this->OnInterpolationActivated(false); this->On3DInterpolationActivated(false); this->Show3DInterpolationResult(false); break; case 1: // 2D m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation (Enabled)"); this->HideAllInterpolationControls(); this->Show2DInterpolationControls(true); this->OnInterpolationActivated(true); this->On3DInterpolationActivated(false); m_Interpolator->Activate2DInterpolation(true); break; case 2: // 3D m_GroupBoxEnableExclusiveInterpolationMode->setTitle("Interpolation (Enabled)"); this->HideAllInterpolationControls(); this->Show3DInterpolationControls(true); this->OnInterpolationActivated(false); this->On3DInterpolationActivated(true); break; default: MITK_ERROR << "Unknown interpolation method!"; m_CmbInterpolation->setCurrentIndex(0); break; } } void QmitkSlicesInterpolator::OnShowMarkers(bool state) { mitk::DataStorage::SetOfObjects::ConstPointer allContourMarkers = m_DataStorage->GetSubset(mitk::NodePredicateProperty::New("isContourMarker" , mitk::BoolProperty::New(true))); for (mitk::DataStorage::SetOfObjects::ConstIterator it = allContourMarkers->Begin(); it != allContourMarkers->End(); ++it) { it->Value()->SetProperty("helper object", mitk::BoolProperty::New(!state)); } } void QmitkSlicesInterpolator::OnToolManagerWorkingDataModified() { if (m_ToolManager->GetWorkingData(0) != 0) { m_Segmentation = dynamic_cast(m_ToolManager->GetWorkingData(0)->GetData()); } //Updating the current selected segmentation for the 3D interpolation SetCurrentContourListID(); if (m_2DInterpolationEnabled) { OnInterpolationActivated( true ); // re-initialize if needed } } void QmitkSlicesInterpolator::OnToolManagerReferenceDataModified() { if (m_2DInterpolationEnabled) { OnInterpolationActivated( true ); // re-initialize if needed } if (m_3DInterpolationEnabled) { this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::OnTimeChanged(itk::Object* sender, const itk::EventObject& e) { //Check if we really have a GeometryTimeEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController* slicer = dynamic_cast(sender); Q_ASSERT(slicer); m_TimeStep[slicer]/* = event.GetPos()*/; //TODO Macht das hier wirklich Sinn???? if (m_LastSNC == slicer) { slicer->SendSlice();//will trigger a new interpolation } } void QmitkSlicesInterpolator::OnSliceChanged(itk::Object *sender, const itk::EventObject &e) { //Check whether we really have a GeometrySliceEvent if (!dynamic_cast(&e)) return; mitk::SliceNavigationController* slicer = dynamic_cast(sender); if (TranslateAndInterpolateChangedSlice(e, slicer)) { slicer->GetRenderer()->RequestUpdate(); } } bool QmitkSlicesInterpolator::TranslateAndInterpolateChangedSlice(const itk::EventObject& e, mitk::SliceNavigationController* slicer) { if (!m_2DInterpolationEnabled) return false; try { const mitk::SliceNavigationController::GeometrySliceEvent& event = dynamic_cast(e); mitk::TimeSlicedGeometry* tsg = event.GetTimeSlicedGeometry(); if (tsg && m_TimeStep.contains(slicer)) { mitk::SlicedGeometry3D* slicedGeometry = dynamic_cast(tsg->GetGeometry3D(m_TimeStep[slicer])); if (slicedGeometry) { m_LastSNC = slicer; mitk::PlaneGeometry* plane = dynamic_cast(slicedGeometry->GetGeometry2D( event.GetPos() )); if (plane) Interpolate( plane, m_TimeStep[slicer], slicer ); return true; } } } catch(std::bad_cast) { return false; // so what } return false; } void QmitkSlicesInterpolator::Interpolate( mitk::PlaneGeometry* plane, unsigned int timeStep, mitk::SliceNavigationController* slicer ) { if (m_ToolManager) { mitk::DataNode* node = m_ToolManager->GetWorkingData(0); if (node) { m_Segmentation = dynamic_cast(node->GetData()); if (m_Segmentation) { int clickedSliceDimension(-1); int clickedSliceIndex(-1); // calculate real slice position, i.e. slice of the image and not slice of the TimeSlicedGeometry mitk::SegTool2D::DetermineAffectedImageSlice( m_Segmentation, plane, clickedSliceDimension, clickedSliceIndex ); mitk::Image::Pointer interpolation = m_Interpolator->Interpolate( clickedSliceDimension, clickedSliceIndex, plane, timeStep ); m_FeedbackNode->SetData( interpolation ); m_LastSNC = slicer; m_LastSliceIndex = clickedSliceIndex; } } } } void QmitkSlicesInterpolator::OnSurfaceInterpolationFinished() { mitk::Surface::Pointer interpolatedSurface = m_SurfaceInterpolator->GetInterpolationResult(); mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); if(interpolatedSurface.IsNotNull() && workingNode && workingNode->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3")))) { m_BtnApply3D->setEnabled(true); m_InterpolatedSurfaceNode->SetData(interpolatedSurface); m_3DContourNode->SetData(m_SurfaceInterpolator->GetContoursAsSurface()); this->Show3DInterpolationResult(true); if( !m_DataStorage->Exists(m_InterpolatedSurfaceNode) && !m_DataStorage->Exists(m_3DContourNode)) { m_DataStorage->Add(m_3DContourNode); m_DataStorage->Add(m_InterpolatedSurfaceNode); } } else if (interpolatedSurface.IsNull()) { m_BtnApply3D->setEnabled(false); if (m_DataStorage->Exists(m_InterpolatedSurfaceNode)) { this->Show3DInterpolationResult(false); } } foreach (mitk::SliceNavigationController* slicer, m_ControllerToTimeObserverTag.keys()) { slicer->GetRenderer()->RequestUpdate(); } } void QmitkSlicesInterpolator::OnAcceptInterpolationClicked() { if (m_Segmentation && m_FeedbackNode->GetData()) { //making interpolation separately undoable mitk::UndoStackItem::IncCurrObjectEventId(); mitk::UndoStackItem::IncCurrGroupEventId(); mitk::UndoStackItem::ExecuteIncrement(); //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // Set slice as input mitk::Image::Pointer slice = dynamic_cast(m_FeedbackNode->GetData()); reslice->SetInputSlice(slice->GetSliceData()->GetVtkImageData(slice)); //set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( m_Segmentation ); unsigned int timestep = m_LastSNC->GetTime()->GetPos(); extractor->SetTimeStep( timestep ); extractor->SetWorldGeometry( m_LastSNC->GetCurrentPlaneGeometry() ); extractor->SetVtkOutputRequest(true); extractor->SetResliceTransformByGeometry( m_Segmentation->GetTimeSlicedGeometry()->GetGeometry3D( timestep ) ); extractor->Modified(); extractor->Update(); //the image was modified within the pipeline, but not marked so m_Segmentation->Modified(); m_Segmentation->GetVtkImageData()->Modified(); m_FeedbackNode->SetData(NULL); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::AcceptAllInterpolations(mitk::SliceNavigationController* slicer) { /* * What exactly is done here: * 1. We create an empty diff image for the current segmentation * 2. All interpolated slices are written into the diff image * 3. Then the diffimage is applied to the original segmentation */ if (m_Segmentation) { //making interpolation separately undoable mitk::UndoStackItem::IncCurrObjectEventId(); mitk::UndoStackItem::IncCurrGroupEventId(); mitk::UndoStackItem::ExecuteIncrement(); mitk::Image::Pointer image3D = m_Segmentation; unsigned int timeStep( slicer->GetTime()->GetPos() ); if (m_Segmentation->GetDimension() == 4) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput( m_Segmentation ); timeSelector->SetTimeNr( timeStep ); timeSelector->Update(); image3D = timeSelector->GetOutput(); } // create a empty diff image for the undo operation mitk::Image::Pointer diffImage = mitk::Image::New(); diffImage->Initialize( image3D ); // Set all pixels to zero mitk::PixelType pixelType( mitk::MakeScalarPixelType() ); memset( diffImage->GetData(), 0, (pixelType.GetBpe() >> 3) * diffImage->GetDimension(0) * diffImage->GetDimension(1) * diffImage->GetDimension(2) ); // Since we need to shift the plane it must be clone so that the original plane isn't altered mitk::PlaneGeometry::Pointer reslicePlane = slicer->GetCurrentPlaneGeometry()->Clone(); int sliceDimension(-1); int sliceIndex(-1); mitk::SegTool2D::DetermineAffectedImageSlice( m_Segmentation, reslicePlane, sliceDimension, sliceIndex ); unsigned int zslices = m_Segmentation->GetDimension( sliceDimension ); mitk::ProgressBar::GetInstance()->AddStepsToDo(zslices); mitk::Point3D origin = reslicePlane->GetOrigin(); unsigned int totalChangedSlices(0); for (unsigned int sliceIndex = 0; sliceIndex < zslices; ++sliceIndex) { // Transforming the current origin of the reslice plane // so that it matches the one of the next slice m_Segmentation->GetSlicedGeometry()->WorldToIndex(origin, origin); origin[sliceDimension] = sliceIndex; m_Segmentation->GetSlicedGeometry()->IndexToWorld(origin, origin); reslicePlane->SetOrigin(origin); //Set the slice as 'input' mitk::Image::Pointer interpolation = m_Interpolator->Interpolate( sliceDimension, sliceIndex, reslicePlane, timeStep ); if (interpolation.IsNotNull()) // we don't check if interpolation is necessary/sensible - but m_Interpolator does { //Setting up the reslicing pipeline which allows us to write the interpolation results back into //the image volume vtkSmartPointer reslice = vtkSmartPointer::New(); //set overwrite mode to true to write back to the image volume reslice->SetInputSlice(interpolation->GetSliceData()->GetVtkImageData(interpolation)); reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer diffslicewriter = mitk::ExtractSliceFilter::New(reslice); diffslicewriter->SetInput( diffImage ); diffslicewriter->SetTimeStep( timeStep ); diffslicewriter->SetWorldGeometry(reslicePlane); diffslicewriter->SetVtkOutputRequest(true); diffslicewriter->SetResliceTransformByGeometry( diffImage->GetTimeSlicedGeometry()->GetGeometry3D( timeStep ) ); diffslicewriter->Modified(); diffslicewriter->Update(); ++totalChangedSlices; } mitk::ProgressBar::GetInstance()->Progress(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (totalChangedSlices > 0) { // store undo stack items if ( true ) { // create do/undo operations mitk::ApplyDiffImageOperation* doOp = new mitk::ApplyDiffImageOperation( mitk::OpTEST, m_Segmentation, diffImage, timeStep ); mitk::ApplyDiffImageOperation* undoOp = new mitk::ApplyDiffImageOperation( mitk::OpTEST, m_Segmentation, diffImage, timeStep ); undoOp->SetFactor( -1.0 ); std::stringstream comment; comment << "Confirm all interpolations (" << totalChangedSlices << ")"; mitk::OperationEvent* undoStackItem = new mitk::OperationEvent( mitk::DiffImageApplier::GetInstanceForUndo(), doOp, undoOp, comment.str() ); mitk::UndoController::GetCurrentUndoModel()->SetOperationEvent( undoStackItem ); // acutally apply the changes here to the original image mitk::DiffImageApplier::GetInstanceForUndo()->ExecuteOperation( doOp ); } } m_FeedbackNode->SetData(NULL); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::FinishInterpolation(mitk::SliceNavigationController* slicer) { //this redirect is for calling from outside if (slicer == NULL) OnAcceptAllInterpolationsClicked(); else AcceptAllInterpolations( slicer ); } void QmitkSlicesInterpolator::OnAcceptAllInterpolationsClicked() { QMenu orientationPopup(this); std::map::const_iterator it; for(it = ACTION_TO_SLICEDIMENSION.begin(); it != ACTION_TO_SLICEDIMENSION.end(); it++) orientationPopup.addAction(it->first); connect( &orientationPopup, SIGNAL(triggered(QAction*)), this, SLOT(OnAcceptAllPopupActivated(QAction*)) ); orientationPopup.exec( QCursor::pos() ); } void QmitkSlicesInterpolator::OnAccept3DInterpolationClicked() { if (m_InterpolatedSurfaceNode.IsNotNull() && m_InterpolatedSurfaceNode->GetData()) { mitk::SurfaceToImageFilter::Pointer s2iFilter = mitk::SurfaceToImageFilter::New(); s2iFilter->MakeOutputBinaryOn(); s2iFilter->SetInput(dynamic_cast(m_InterpolatedSurfaceNode->GetData())); // check if ToolManager holds valid ReferenceData if (m_ToolManager->GetReferenceData(0) == NULL || m_ToolManager->GetWorkingData(0) == NULL) { return; } s2iFilter->SetImage(dynamic_cast(m_ToolManager->GetReferenceData(0)->GetData())); s2iFilter->Update(); mitk::DataNode* segmentationNode = m_ToolManager->GetWorkingData(0); segmentationNode->SetData(s2iFilter->GetOutput()); m_CmbInterpolation->setCurrentIndex(0); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->Show3DInterpolationResult(false); } } void QmitkSlicesInterpolator::OnAcceptAllPopupActivated(QAction* action) { try { std::map::const_iterator iter = ACTION_TO_SLICEDIMENSION.find( action ); if (iter != ACTION_TO_SLICEDIMENSION.end()) { mitk::SliceNavigationController* slicer = iter->second; AcceptAllInterpolations( slicer ); } } catch(...) { /* Showing message box with possible memory error */ QMessageBox errorInfo; errorInfo.setWindowTitle("Interpolation Process"); errorInfo.setIcon(QMessageBox::Critical); errorInfo.setText("An error occurred during interpolation. Possible cause: Not enough memory!"); errorInfo.exec(); //additional error message on std::cerr std::cerr << "Ill construction in " __FILE__ " l. " << __LINE__ << std::endl; } } void QmitkSlicesInterpolator::OnInterpolationActivated(bool on) { m_2DInterpolationEnabled = on; try { if ( m_DataStorage.IsNotNull() ) { if (on && !m_DataStorage->Exists(m_FeedbackNode)) { m_DataStorage->Add( m_FeedbackNode ); } } } catch(...) { // don't care (double add/remove) } if (m_ToolManager) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); mitk::DataNode* referenceNode = m_ToolManager->GetReferenceData(0); QWidget::setEnabled( workingNode != NULL ); m_BtnApply2D->setEnabled( on ); m_FeedbackNode->SetVisibility( on ); if (!on) { mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return; } if (workingNode) { mitk::Image* segmentation = dynamic_cast(workingNode->GetData()); if (segmentation) { m_Interpolator->SetSegmentationVolume( segmentation ); if (referenceNode) { mitk::Image* referenceImage = dynamic_cast(referenceNode->GetData()); m_Interpolator->SetReferenceVolume( referenceImage ); // may be NULL } } } } UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::Run3DInterpolation() { m_SurfaceInterpolator->Interpolate(); } void QmitkSlicesInterpolator::StartUpdateInterpolationTimer() { m_Timer->start(500); } void QmitkSlicesInterpolator::StopUpdateInterpolationTimer() { m_Timer->stop(); m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(255.0,255.0,0.0)); mitk::RenderingManager::GetInstance()->RequestUpdate(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))->GetRenderWindow()); } void QmitkSlicesInterpolator::ChangeSurfaceColor() { float currentColor[3]; m_InterpolatedSurfaceNode->GetColor(currentColor); float yellow[3] = {255.0,255.0,0.0}; if( currentColor[2] == yellow[2]) { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(255.0,255.0,255.0)); } else { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(yellow)); } m_InterpolatedSurfaceNode->Update(); mitk::RenderingManager::GetInstance()->RequestUpdate(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))->GetRenderWindow()); } void QmitkSlicesInterpolator::On3DInterpolationActivated(bool on) { m_3DInterpolationEnabled = on; try { if ( m_DataStorage.IsNotNull() && m_ToolManager && m_3DInterpolationEnabled) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); if (workingNode) { bool isInterpolationResult(false); workingNode->GetBoolProperty("3DInterpolationResult",isInterpolationResult); if ((workingNode->IsSelected() && workingNode->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3")))) && !isInterpolationResult && m_3DInterpolationEnabled) { int ret = QMessageBox::Yes; if (m_SurfaceInterpolator->EstimatePortionOfNeededMemory() > 0.5) { QMessageBox msgBox; msgBox.setText("Due to short handed system memory the 3D interpolation may be very slow!"); msgBox.setInformativeText("Are you sure you want to activate the 3D interpolation?"); msgBox.setStandardButtons(QMessageBox::No | QMessageBox::Yes); ret = msgBox.exec(); } if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); if (ret == QMessageBox::Yes) { m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } else { m_CmbInterpolation->setCurrentIndex(0); } } else if (!m_3DInterpolationEnabled) { this->Show3DInterpolationResult(false); m_BtnApply3D->setEnabled(m_3DInterpolationEnabled); } } else { QWidget::setEnabled( false ); m_ChkShowPositionNodes->setEnabled(m_3DInterpolationEnabled); } } if (!m_3DInterpolationEnabled) { this->Show3DInterpolationResult(false); m_BtnApply3D->setEnabled(m_3DInterpolationEnabled); } } catch(...) { MITK_ERROR<<"Error with 3D surface interpolation!"; } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::EnableInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated OnInterpolationActivated(on); } void QmitkSlicesInterpolator::Enable3DInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated On3DInterpolationActivated(on); } void QmitkSlicesInterpolator::UpdateVisibleSuggestion() { if (m_2DInterpolationEnabled && m_LastSNC) { // determine which one is the current view, try to do an initial interpolation mitk::BaseRenderer* renderer = m_LastSNC->GetRenderer(); if (renderer && renderer->GetMapperID() == mitk::BaseRenderer::Standard2D) { const mitk::TimeSlicedGeometry* timeSlicedGeometry = dynamic_cast( renderer->GetWorldGeometry() ); if (timeSlicedGeometry) { mitk::SliceNavigationController::GeometrySliceEvent event( const_cast(timeSlicedGeometry), renderer->GetSlice() ); TranslateAndInterpolateChangedSlice(event, m_LastSNC); } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::OnInterpolationInfoChanged(const itk::EventObject& /*e*/) { // something (e.g. undo) changed the interpolation info, we should refresh our display UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged(const itk::EventObject& /*e*/) { if(m_3DInterpolationEnabled) { if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } } void QmitkSlicesInterpolator:: SetCurrentContourListID() { // New ContourList = hide current interpolation Show3DInterpolationResult(false); if ( m_DataStorage.IsNotNull() && m_ToolManager && m_LastSNC ) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); if (workingNode) { bool isInterpolationResult(false); workingNode->GetBoolProperty("3DInterpolationResult",isInterpolationResult); bool isVisible (workingNode->IsVisible(m_LastSNC->GetRenderer())); if (isVisible && !isInterpolationResult) { QWidget::setEnabled( true ); //TODO Aufruf hier pruefen! mitk::Vector3D spacing = workingNode->GetData()->GetGeometry( m_LastSNC->GetTime()->GetPos() )->GetSpacing(); double minSpacing (100); double maxSpacing (0); for (int i =0; i < 3; i++) { if (spacing[i] < minSpacing) { minSpacing = spacing[i]; } else if (spacing[i] > maxSpacing) { maxSpacing = spacing[i]; } } m_SurfaceInterpolator->SetSegmentationImage(dynamic_cast(workingNode->GetData())); m_SurfaceInterpolator->SetMaxSpacing(maxSpacing); m_SurfaceInterpolator->SetMinSpacing(minSpacing); m_SurfaceInterpolator->SetDistanceImageVolume(50000); m_SurfaceInterpolator->SetCurrentSegmentationInterpolationList(dynamic_cast(workingNode->GetData())); if (m_3DInterpolationEnabled) { if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } } } else { QWidget::setEnabled(false); } } } void QmitkSlicesInterpolator::Show3DInterpolationResult(bool status) { if (m_InterpolatedSurfaceNode.IsNotNull()) m_InterpolatedSurfaceNode->SetVisibility(status); if (m_3DContourNode.IsNotNull()) m_3DContourNode->SetVisibility(status, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::OnSliceNavigationControllerDeleted(const itk::Object *sender, const itk::EventObject& /*e*/) { //Don't know how to avoid const_cast here?! mitk::SliceNavigationController* slicer = dynamic_cast(const_cast(sender)); if (slicer) { m_ControllerToTimeObserverTag.remove(slicer); m_ControllerToSliceObserverTag.remove(slicer); m_ControllerToDeleteObserverTag.remove(slicer); } }