diff --git a/Core/Code/Testing/mitkExtractSliceFilterTest.cpp b/Core/Code/Testing/mitkExtractSliceFilterTest.cpp index 557ed83f04..4ad3a0a71e 100644 --- a/Core/Code/Testing/mitkExtractSliceFilterTest.cpp +++ b/Core/Code/Testing/mitkExtractSliceFilterTest.cpp @@ -1,1170 +1,1169 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //use this to create the test volume on the fly #define CREATE_VOLUME //use this to save the created volume //#define SAVE_VOLUME //use this to calculate the error from the sphere mathematical model to our pixel based one //#define CALC_TESTFAILURE_DEVIATION //use this to render an oblique slice through a specified image //#define SHOW_SLICE_IN_RENDER_WINDOW //use this to have infos printed in mbilog //#define EXTRACTOR_DEBUG /*these are the deviations calculated by the function CalcTestFailureDeviation (see for details)*/ #define Testfailure_Deviation_Mean_128 0.853842 #define Testfailure_Deviation_Volume_128 0.145184 #define Testfailure_Deviation_Diameter_128 1.5625 #define Testfailure_Deviation_Mean_256 0.397693 #define Testfailure_Deviation_Volume_256 0.0141357 #define Testfailure_Deviation_Diameter_256 0.78125 #define Testfailure_Deviation_Mean_512 0.205277 #define Testfailure_Deviation_Volume_512 0.01993 #define Testfailure_Deviation_Diameter_512 0.390625 class mitkExtractSliceFilterTestClass{ public: static void TestSlice(mitk::PlaneGeometry* planeGeometry, std::string testname) { TestPlane = planeGeometry; TestName = testname; mitk::ScalarType centerCoordValue = TestvolumeSize / 2.0; mitk::ScalarType center[3] = {centerCoordValue, centerCoordValue, centerCoordValue}; mitk::Point3D centerIndex(center); double radius = TestvolumeSize / 4.0; if(TestPlane->Distance(centerIndex) >= radius ) return;//outside sphere //feed ExtractSliceFilter mitk::ExtractSliceFilter::Pointer slicer = mitk::ExtractSliceFilter::New(); slicer->SetInput(TestVolume); slicer->SetWorldGeometry(TestPlane); slicer->Update(); MITK_TEST_CONDITION_REQUIRED(slicer->GetOutput() != NULL, "Extractor returned a slice"); mitk::Image::Pointer reslicedImage = slicer->GetOutput(); AccessFixedDimensionByItk(reslicedImage, TestSphereRadiusByItk, 2); AccessFixedDimensionByItk(reslicedImage, TestSphereAreaByItk, 2); /* double devArea, devDiameter; if(TestvolumeSize == 128.0){ devArea = Testfailure_Deviation_Volume_128; devDiameter = Testfailure_Deviation_Diameter_128; } else if(TestvolumeSize == 256.0){devArea = Testfailure_Deviation_Volume_256; devDiameter = Testfailure_Deviation_Diameter_256;} else if (TestvolumeSize == 512.0){devArea = Testfailure_Deviation_Volume_512; devDiameter = Testfailure_Deviation_Diameter_512;} else{devArea = Testfailure_Deviation_Volume_128; devDiameter = Testfailure_Deviation_Diameter_128;} */ std::string areatestName = TestName.append(" area"); std::string diametertestName = TestName.append(" testing diameter"); //TODO think about the deviation, 1% makes no sense at all MITK_TEST_CONDITION(std::abs(100 - testResults.percentageAreaCalcToPixel) < 1, areatestName ); MITK_TEST_CONDITION(std::abs(100 - testResults.percentageRadiusToPixel) < 1, diametertestName ); #ifdef EXTRACTOR_DEBUG MITK_INFO << TestName << " >>> " << "planeDistanceToSphereCenter: " << testResults.planeDistanceToSphereCenter; MITK_INFO << "area in pixels: " << testResults.areaInPixel << " <-> area in mm: " << testResults.areaCalculated << " = " << testResults.percentageAreaCalcToPixel << "%"; MITK_INFO << "calculated diameter: " << testResults.diameterCalculated << " <-> diameter in mm: " << testResults.diameterInMM << " <-> diameter in pixel: " << testResults.diameterInPixel << " = " << testResults.percentageRadiusToPixel << "%"; #endif } /* * get the radius of the slice of a sphere based on pixel distance from edge to edge of the circle. */ template static void TestSphereRadiusByItk (itk::Image* inputImage) { typedef itk::Image InputImageType; //set the index to the middle of the image's edge at x and y axis typename InputImageType::IndexType currentIndexX; currentIndexX[0] = (int)(TestvolumeSize / 2.0); currentIndexX[1] = 0; typename InputImageType::IndexType currentIndexY; currentIndexY[0] = 0; currentIndexY[1] = (int)(TestvolumeSize / 2.0); //remember the last pixel value double lastValueX = inputImage->GetPixel(currentIndexX); double lastValueY = inputImage->GetPixel(currentIndexY); //storage for the index marks std::vector indicesX; std::vector indicesY; /*Get four indices on the edge of the circle*/ while(currentIndexX[1] < TestvolumeSize && currentIndexX[0] < TestvolumeSize) { //move x direction currentIndexX[1] += 1; //move y direction currentIndexY[0] += 1; if(inputImage->GetPixel(currentIndexX) > lastValueX) { //mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexX[0]; markIndex[1] = currentIndexX[1]; indicesX.push_back(markIndex); } else if( inputImage->GetPixel(currentIndexX) < lastValueX) { //mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexX[0]; markIndex[1] = currentIndexX[1] - 1;//value inside the sphere indicesX.push_back(markIndex); } if(inputImage->GetPixel(currentIndexY) > lastValueY) { //mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexY[0]; markIndex[1] = currentIndexY[1]; indicesY.push_back(markIndex); } else if( inputImage->GetPixel(currentIndexY) < lastValueY) { //mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexY[0]; markIndex[1] = currentIndexY[1] - 1;//value inside the sphere indicesY.push_back(markIndex); } //found both marks? if(indicesX.size() == 2 && indicesY.size() == 2) break; //the new 'last' values lastValueX = inputImage->GetPixel(currentIndexX); lastValueY = inputImage->GetPixel(currentIndexY); } /* *If we are here we found the four marks on the edge of the circle. *For the case our plane is rotated and shifted, we have to calculate the center of the circle, *else the center is the intersection of both straight lines between the marks. *When we have the center, the diameter of the circle will be checked to the reference value(math!). */ //each distance from the first mark of each direction to the center of the straight line between the marks double distanceToCenterX = std::abs(indicesX[0][1] - indicesX[1][1]) / 2.0; //double distanceToCenterY = std::abs(indicesY[0][0] - indicesY[1][0]) / 2.0; //the center of the straight lines typename InputImageType::IndexType centerX; //typename InputImageType::IndexType centerY; centerX[0] = indicesX[0][0]; centerX[1] = indicesX[0][1] + distanceToCenterX; //TODO think about implicit cast to int. this is not the real center of the image, which could be between two pixels //centerY[0] = indicesY[0][0] + distanceToCenterY; //centerY[1] = inidcesY[0][1]; typename InputImageType::IndexType currentIndex(centerX); lastValueX = inputImage->GetPixel(currentIndex); long sumpixels = 0; std::vector diameterIndices; //move up while(currentIndex[1] < TestvolumeSize) { currentIndex[1] += 1; if( inputImage->GetPixel(currentIndex) != lastValueX) { typename InputImageType::IndexType markIndex; markIndex[0] = currentIndex[0]; markIndex[1] = currentIndex[1] - 1; diameterIndices.push_back(markIndex); break; } sumpixels++; lastValueX = inputImage->GetPixel(currentIndex); } currentIndex[1] -= sumpixels; //move back to center to go in the other direction lastValueX = inputImage->GetPixel(currentIndex); //move down while(currentIndex[1] >= 0) { currentIndex[1] -= 1; if( inputImage->GetPixel(currentIndex) != lastValueX) { typename InputImageType::IndexType markIndex; markIndex[0] = currentIndex[0]; markIndex[1] = currentIndex[1];//outside sphere because we want to calculate the distance from edge to edge diameterIndices.push_back(markIndex); break; } sumpixels++; lastValueX = inputImage->GetPixel(currentIndex); } /* *Now sumpixels should be the apromximate diameter of the circle. This is checked with the calculated diameter from the plane transformation(math). */ mitk::Point3D volumeCenter; volumeCenter[0] = volumeCenter[1] = volumeCenter[2] = TestvolumeSize / 2.0; double planeDistanceToSphereCenter = TestPlane->Distance(volumeCenter); double sphereRadius = TestvolumeSize/4.0; //calculate the radius of the circle cut from the sphere by the plane double diameter = 2.0 * std::sqrt(std::pow(sphereRadius, 2) - std::pow( planeDistanceToSphereCenter , 2)); double percentageRadiusToPixel = 100 / diameter * sumpixels; /* *calculate the radius in mm by the both marks of the center line by using the world coordinates */ //get the points as 3D coordinates mitk::Vector3D diameterPointRight, diameterPointLeft; diameterPointRight[2] = diameterPointLeft[2] = 0.0; diameterPointLeft[0] = diameterIndices[0][0]; diameterPointLeft[1] = diameterIndices[0][1]; diameterPointRight[0] = diameterIndices[1][0]; diameterPointRight[1] = diameterIndices[1][1]; //transform to worldcoordinates TestVolume->GetGeometry()->IndexToWorld(diameterPointLeft, diameterPointLeft); TestVolume->GetGeometry()->IndexToWorld(diameterPointRight, diameterPointRight); //euklidian distance double diameterInMM = ( (diameterPointLeft * -1.0) + diameterPointRight).GetNorm(); testResults.diameterInMM = diameterInMM; testResults.diameterCalculated = diameter; testResults.diameterInPixel = sumpixels; testResults.percentageRadiusToPixel = percentageRadiusToPixel; testResults.planeDistanceToSphereCenter = planeDistanceToSphereCenter; } /*brute force the area pixel by pixel*/ template static void TestSphereAreaByItk (itk::Image* inputImage) { typedef itk::Image InputImageType; typedef itk::ImageRegionConstIterator< InputImageType > ImageIterator; ImageIterator imageIterator( inputImage, inputImage->GetLargestPossibleRegion() ); imageIterator.GoToBegin(); int sumPixelsInArea = 0; while( !imageIterator.IsAtEnd() ) { if(inputImage->GetPixel(imageIterator.GetIndex()) == pixelValueSet) sumPixelsInArea++; ++imageIterator; } mitk::Point3D volumeCenter; volumeCenter[0] = volumeCenter[1] = volumeCenter[2] = TestvolumeSize / 2.0; double planeDistanceToSphereCenter = TestPlane->Distance(volumeCenter); double sphereRadius = TestvolumeSize/4.0; //calculate the radius of the circle cut from the sphere by the plane double radius = std::sqrt(std::pow(sphereRadius, 2) - std::pow( planeDistanceToSphereCenter , 2)); double areaInMM = 3.14159265358979 * std::pow(radius, 2); testResults.areaCalculated = areaInMM; testResults.areaInPixel = sumPixelsInArea; testResults.percentageAreaCalcToPixel = 100 / areaInMM * sumPixelsInArea; } /* * random a voxel. define plane through this voxel. reslice at the plane. compare the pixel vaues of the voxel * in the volume with the pixel value in the resliced image. * there are some indice shifting problems which causes the test to fail for oblique planes. seems like the chosen * worldcoordinate is not corrresponding to the index in the 2D image. and so the pixel values are not the same as * expected. */ static void PixelvalueBasedTest() { /* setup itk image */ typedef itk::Image ImageType; typedef itk::ImageRegionConstIterator< ImageType > ImageIterator; ImageType::Pointer image = ImageType::New(); ImageType::IndexType start; start[0] = start[1] = start[2] = 0; ImageType::SizeType size; size[0] = size[1] = size[2] = 32; ImageType::RegionType imgRegion; imgRegion.SetSize(size); imgRegion.SetIndex(start); image->SetRegions(imgRegion); image->SetSpacing(1.0); image->Allocate(); ImageIterator imageIterator( image, image->GetLargestPossibleRegion() ); imageIterator.GoToBegin(); unsigned short pixelValue = 0; //fill the image with distinct values while ( !imageIterator.IsAtEnd() ) { image->SetPixel(imageIterator.GetIndex(), pixelValue); ++imageIterator; ++pixelValue; } /* end setup itk image */ mitk::Image::Pointer imageInMitk; CastToMitkImage(image, imageInMitk); /*mitk::ImageWriter::Pointer writer = mitk::ImageWriter::New(); writer->SetInput(imageInMitk); std::string file = "C:\\Users\\schroedt\\Desktop\\cube.nrrd"; writer->SetFileName(file); writer->Update();*/ PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Frontal); PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Sagittal); PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Axial); } static void PixelvalueBasedTestByPlane(mitk::Image* imageInMitk, mitk::PlaneGeometry::PlaneOrientation orientation){ typedef itk::Image ImageType; //set the seed of the rand function srand((unsigned)time(0)); /* setup a random orthogonal plane */ int sliceindex = 17;//rand() % 32; bool isFrontside = true; bool isRotated = false; if( orientation == mitk::PlaneGeometry::Axial) { /*isFrontside = false; isRotated = true;*/ } mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); plane->InitializeStandardPlane(imageInMitk->GetGeometry(), orientation, sliceindex, isFrontside, isRotated); mitk::Point3D origin = plane->GetOrigin(); mitk::Vector3D normal; normal = plane->GetNormal(); normal.Normalize(); origin += normal * 0.5;//pixelspacing is 1, so half the spacing is 0.5 plane->SetOrigin(origin); //we dont need this any more, because we are only testing orthogonal planes /*mitk::Vector3D rotationVector; rotationVector[0] = randFloat(); rotationVector[1] = randFloat(); rotationVector[2] = randFloat(); float degree = randFloat() * 180.0; mitk::RotationOperation* op = new mitk::RotationOperation(mitk::OpROTATE, plane->GetCenter(), rotationVector, degree); plane->ExecuteOperation(op); delete op;*/ /* end setup plane */ /* define a point in the 3D volume. * add the two axis vectors of the plane (each multiplied with a * random number) to the origin. now the two random numbers * become our index coordinates in the 2D image, because the * length of the axis vectors is 1. */ mitk::Point3D planeOrigin = plane->GetOrigin(); mitk::Vector3D axis0, axis1; axis0 = plane->GetAxisVector(0); axis1 = plane->GetAxisVector(1); axis0.Normalize(); axis1.Normalize(); unsigned char n1 = 7;// rand() % 32; unsigned char n2 = 13;// rand() % 32; mitk::Point3D testPoint3DInWorld; testPoint3DInWorld = planeOrigin + (axis0 * n1) + (axis1 * n2); //get the index of the point in the 3D volume ImageType::IndexType testPoint3DInIndex; imageInMitk->GetGeometry()->WorldToIndex(testPoint3DInWorld, testPoint3DInIndex); mitk::Index3D testPoint2DInIndex; /* end define a point in the 3D volume.*/ //do reslicing at the plane mitk::ExtractSliceFilter::Pointer slicer = mitk::ExtractSliceFilter::New(); slicer->SetInput(imageInMitk); slicer->SetWorldGeometry(plane); slicer->Update(); mitk::Image::Pointer slice = slicer->GetOutput(); // Get TestPoiont3D as Index in Slice slice->GetGeometry()->WorldToIndex(testPoint3DInWorld,testPoint2DInIndex); mitk::Point3D p, sliceIndexToWorld, imageIndexToWorld; p[0] = testPoint2DInIndex[0]; p[1] = testPoint2DInIndex[1]; p[2] = testPoint2DInIndex[2]; slice->GetGeometry()->IndexToWorld(p, sliceIndexToWorld); p[0] = testPoint3DInIndex[0]; p[1] = testPoint3DInIndex[1]; p[2] = testPoint3DInIndex[2]; imageInMitk->GetGeometry()->IndexToWorld(p, imageIndexToWorld); itk::Index<2> testPoint2DIn2DIndex; testPoint2DIn2DIndex[0] = testPoint2DInIndex[0]; testPoint2DIn2DIndex[1] = testPoint2DInIndex[1]; typedef mitk::ImagePixelReadAccessor< unsigned short, 3 > VolumeReadAccessorType; typedef mitk::ImagePixelReadAccessor< unsigned short, 2 > SliceReadAccessorType; VolumeReadAccessorType VolumeReadAccessor( imageInMitk ); SliceReadAccessorType SliceReadAccessor( slice ); //compare the pixelvalues of the defined point in the 3D volume with the value of the resliced image unsigned short valueAt3DVolume = VolumeReadAccessor.GetPixelByIndex( testPoint3DInIndex ); - //unsigned short valueAt3DVolumeByWorld = imageInMitk->GetPixelValueByWorldCoordinate(testPoint3DInWorld); unsigned short valueAtSlice = SliceReadAccessor.GetPixelByIndex( testPoint2DIn2DIndex ); //valueAt3DVolume == valueAtSlice is not always working. because of rounding errors //indices are shifted MITK_TEST_CONDITION(valueAt3DVolume == valueAtSlice, "comparing pixelvalues for orthogonal plane"); vtkSmartPointer imageInVtk = vtkSmartPointer::New(); imageInVtk = imageInMitk->GetVtkImageData(); vtkSmartPointer sliceInVtk = vtkSmartPointer::New(); sliceInVtk = slice->GetVtkImageData(); double PixelvalueByMitkOutput = sliceInVtk->GetScalarComponentAsDouble(n1, n2, 0, 0); //double valueVTKinImage = imageInVtk->GetScalarComponentAsDouble(testPoint3DInIndex[0], testPoint3DInIndex[1], testPoint3DInIndex[2], 0); /* Test that everything is working equally if vtkoutput is used instead of the default output * from mitk ImageToImageFilter */ mitk::ExtractSliceFilter::Pointer slicerWithVtkOutput = mitk::ExtractSliceFilter::New(); slicerWithVtkOutput->SetInput(imageInMitk); slicerWithVtkOutput->SetWorldGeometry(plane); slicerWithVtkOutput->SetVtkOutputRequest(true); slicerWithVtkOutput->Update(); vtkSmartPointer vtkImageByVtkOutput = vtkSmartPointer::New(); vtkImageByVtkOutput = slicerWithVtkOutput->GetVtkOutput(); double PixelvalueByVtkOutput = vtkImageByVtkOutput->GetScalarComponentAsDouble(n1, n2, 0, 0); MITK_TEST_CONDITION(PixelvalueByMitkOutput == PixelvalueByVtkOutput, "testing convertion of image output vtk->mitk by reslicer"); /*================ mbilog outputs ===========================*/ #ifdef EXTRACTOR_DEBUG MITK_INFO << "\n" << "TESTINFO index: " << sliceindex << " orientation: " << orientation << " frontside: " << isFrontside << " rotated: " << isRotated; MITK_INFO << "\n" << "slice index to world: " << sliceIndexToWorld; MITK_INFO << "\n" << "image index to world: " << imageIndexToWorld; MITK_INFO << "\n" << "vtk: slice: " << PixelvalueByMitkOutput << ", image: "<< valueVTKinImage; MITK_INFO << "\n" << "testPoint3D InWorld" << testPoint3DInWorld << " is " << testPoint2DInIndex << " in 2D"; MITK_INFO << "\n" << "randoms: " << ((int)n1) << ", " << ((int)n2); MITK_INFO << "\n" << "point is inside plane: " << plane->IsInside(testPoint3DInWorld) << " and volume: " << imageInMitk->GetGeometry()->IsInside(testPoint3DInWorld); MITK_INFO << "\n" << "volume idx: " << testPoint3DInIndex << " = " << valueAt3DVolume ; MITK_INFO << "\n" << "volume world: " << testPoint3DInWorld << " = " << valueAt3DVolumeByWorld ; MITK_INFO << "\n" << "slice idx: " << testPoint2DInIndex << " = " << valueAtSlice ; mitk::Index3D curr; curr[0] = curr[1] = curr[2] = 0; for( int i = 0; i < 32 ; ++i){ for( int j = 0; j < 32; ++j){ ++curr[1]; if(SliceReadAccessor.GetPixelByIndex( curr ) == valueAt3DVolume){ MITK_INFO << "\n" << valueAt3DVolume << " MATCHED mitk " << curr; } } curr[1] = 0; ++curr[0]; } typedef itk::Image Image2DType; Image2DType::Pointer img = Image2DType::New(); CastToItkImage(slice, img); typedef itk::ImageRegionConstIterator< Image2DType > Iterator2D; Iterator2D iter(img, img->GetLargestPossibleRegion()); iter.GoToBegin(); while( !iter.IsAtEnd() ){ if(img->GetPixel(iter.GetIndex()) == valueAt3DVolume) MITK_INFO << "\n" << valueAt3DVolume << " MATCHED itk " << iter.GetIndex(); ++iter; } #endif //EXTRACTOR_DEBUG } /* random a float value */ static float randFloat(){ return (((float)rand()+1.0) / ((float)RAND_MAX + 1.0)) + (((float)rand()+1.0) / ((float)RAND_MAX + 1.0)) / ((float)RAND_MAX + 1.0);} /* create a sphere with the size of the given testVolumeSize*/ static void InitializeTestVolume() { #ifdef CREATE_VOLUME //do sphere creation ItkVolumeGeneration(); #ifdef SAVE_VOLUME //save in file mitk::ImageWriter::Pointer writer = mitk::ImageWriter::New(); writer->SetInput(TestVolume); std::string file; std::ostringstream filename; filename << "C:\\home\\schroedt\\MITK\\Modules\\ImageExtraction\\Testing\\Data\\sphere_"; filename << TestvolumeSize; filename << ".nrrd"; file = filename.str(); writer->SetFileName(file); writer->Update(); #endif//SAVE_VOLUME #endif #ifndef CREATE_VOLUME //read from file mitk::StandardFileLocations::Pointer locator = mitk::StandardFileLocations::GetInstance(); std::string filename = locator->FindFile("sphere_512.nrrd.mhd", "Modules/ImageExtraction/Testing/Data"); mitk::ItkImageFileReader::Pointer reader = mitk::ItkImageFileReader::New(); reader->SetFileName(filename); reader->Update(); TestVolume = reader->GetOutput(); #endif #ifdef CALC_TESTFAILURE_DEVIATION //get the TestFailureDeviation in % AccessFixedDimensionByItk(TestVolume, CalcTestFailureDeviation, 3); #endif } //the test result of the sphere reslice struct SliceProperties{ double planeDistanceToSphereCenter; double diameterInMM; double diameterInPixel; double diameterCalculated; double percentageRadiusToPixel; double areaCalculated; double areaInPixel; double percentageAreaCalcToPixel; }; static mitk::Image::Pointer TestVolume; static double TestvolumeSize; static mitk::PlaneGeometry::Pointer TestPlane; static std::string TestName; static unsigned char pixelValueSet; static SliceProperties testResults; static double TestFailureDeviation; private: /* * Generate a sphere with a radius of TestvolumeSize / 4.0 */ static void ItkVolumeGeneration () { typedef itk::Image TestVolumeType; typedef itk::ImageRegionConstIterator< TestVolumeType > ImageIterator; TestVolumeType::Pointer sphereImage = TestVolumeType::New(); TestVolumeType::IndexType start; start[0] = start[1] = start[2] = 0; TestVolumeType::SizeType size; size[0] = size[1] = size[2] = TestvolumeSize; TestVolumeType::RegionType imgRegion; imgRegion.SetSize(size); imgRegion.SetIndex(start); sphereImage->SetRegions(imgRegion); sphereImage->SetSpacing(1.0); sphereImage->Allocate(); sphereImage->FillBuffer(0); mitk::Vector3D center; center[0] = center[1] = center[2] = TestvolumeSize / 2.0; double radius = TestvolumeSize / 4.0; double pixelValue = pixelValueSet; double distanceToCenter = 0.0; ImageIterator imageIterator( sphereImage, sphereImage->GetLargestPossibleRegion() ); imageIterator.GoToBegin(); mitk::Vector3D currentVoxelInIndex; while ( !imageIterator.IsAtEnd() ) { currentVoxelInIndex[0] = imageIterator.GetIndex()[0]; currentVoxelInIndex[1] = imageIterator.GetIndex()[1]; currentVoxelInIndex[2] = imageIterator.GetIndex()[2]; distanceToCenter = (center + ( currentVoxelInIndex * -1.0 )).GetNorm(); //if distance to center is smaller then the radius of the sphere if( distanceToCenter < radius) { sphereImage->SetPixel(imageIterator.GetIndex(), pixelValue); } ++imageIterator; } CastToMitkImage(sphereImage, TestVolume); } /* calculate the devation of the voxel object to the mathematical sphere object. * this is use to make a statement about the accuracy of the resliced image, eg. the circle's diameter or area. */ template static void CalcTestFailureDeviation (itk::Image* inputImage) { typedef itk::Image InputImageType; typedef itk::ImageRegionConstIterator< InputImageType > ImageIterator; ImageIterator iterator(inputImage, inputImage->GetLargestPossibleRegion()); iterator.GoToBegin(); int volumeInPixel = 0; while( !iterator.IsAtEnd() ) { if(inputImage->GetPixel(iterator.GetIndex()) == pixelValueSet) volumeInPixel++; ++iterator; } double diameter = TestvolumeSize / 2.0; double volumeCalculated = (1.0 / 6.0) * 3.14159265358979 * std::pow(diameter, 3); double volumeDeviation = std::abs( 100 - (100 / volumeCalculated * volumeInPixel) ); typename InputImageType::IndexType index; index[0] = index[1] = TestvolumeSize / 2.0; index[2] = 0; int sumpixels = 0; while (index[2] < TestvolumeSize ) { if(inputImage->GetPixel(index) == pixelValueSet) sumpixels++; index[2] += 1; } double diameterDeviation = std::abs( 100 - (100 / diameter * sumpixels) ); #ifdef DEBUG MITK_INFO << "volume deviation: " << volumeDeviation << " diameter deviation:" << diameterDeviation; #endif mitkExtractSliceFilterTestClass::TestFailureDeviation = (volumeDeviation + diameterDeviation) / 2.0; } }; /*================ #END class ================*/ /*================#BEGIN Instanciation of members ================*/ mitk::Image::Pointer mitkExtractSliceFilterTestClass::TestVolume = mitk::Image::New(); double mitkExtractSliceFilterTestClass::TestvolumeSize = 256.0; mitk::PlaneGeometry::Pointer mitkExtractSliceFilterTestClass::TestPlane = mitk::PlaneGeometry::New(); std::string mitkExtractSliceFilterTestClass::TestName = ""; unsigned char mitkExtractSliceFilterTestClass::pixelValueSet = 255; mitkExtractSliceFilterTestClass::SliceProperties mitkExtractSliceFilterTestClass::testResults = {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0}; double mitkExtractSliceFilterTestClass::TestFailureDeviation = 0.0; /*================ #END Instanciation of members ================*/ /*================ #BEGIN test main ================*/ int mitkExtractSliceFilterTest(int argc, char* argv[]) { MITK_TEST_BEGIN("mitkExtractSliceFilterTest") //pixelvalue based testing mitkExtractSliceFilterTestClass::PixelvalueBasedTest(); //initialize sphere test volume mitkExtractSliceFilterTestClass::InitializeTestVolume(); mitk::Vector3D spacing = mitkExtractSliceFilterTestClass::TestVolume->GetGeometry()->GetSpacing(); //the center of the sphere = center of image double sphereCenter = mitkExtractSliceFilterTestClass::TestvolumeSize / 2.0; double planeSize = mitkExtractSliceFilterTestClass::TestvolumeSize; /* axial plane */ mitk::PlaneGeometry::Pointer geometryAxial = mitk::PlaneGeometry::New(); geometryAxial->InitializeStandardPlane(planeSize, planeSize, spacing, mitk::PlaneGeometry::Axial, sphereCenter, false, true); geometryAxial->ChangeImageGeometryConsideringOriginOffset(true); mitk::Point3D origin = geometryAxial->GetOrigin(); mitk::Vector3D normal; normal = geometryAxial->GetNormal(); normal.Normalize(); origin += normal * 0.5;//pixelspacing is 1, so half the spacing is 0.5 //geometryAxial->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometryAxial, "Testing axial plane"); /* end axial plane */ /* sagittal plane */ mitk::PlaneGeometry::Pointer geometrySagital = mitk::PlaneGeometry::New(); geometrySagital->InitializeStandardPlane(planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, sphereCenter, true, false); geometrySagital->ChangeImageGeometryConsideringOriginOffset(true); origin = geometrySagital->GetOrigin(); normal = geometrySagital->GetNormal(); normal.Normalize(); origin += normal * 0.5;//pixelspacing is 1, so half the spacing is 0.5 //geometrySagital->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometrySagital, "Testing sagittal plane"); /* sagittal plane */ /* sagittal shifted plane */ mitk::PlaneGeometry::Pointer geometrySagitalShifted = mitk::PlaneGeometry::New(); geometrySagitalShifted->InitializeStandardPlane(planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, (sphereCenter - 14), true, false); geometrySagitalShifted->ChangeImageGeometryConsideringOriginOffset(true); origin = geometrySagitalShifted->GetOrigin(); normal = geometrySagitalShifted->GetNormal(); normal.Normalize(); origin += normal * 0.5;//pixelspacing is 1, so half the spacing is 0.5 //geometrySagitalShifted->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometrySagitalShifted, "Testing sagittal plane shifted"); /* end sagittal shifted plane */ /* coronal plane */ mitk::PlaneGeometry::Pointer geometryCoronal = mitk::PlaneGeometry::New(); geometryCoronal->InitializeStandardPlane(planeSize, planeSize, spacing, mitk::PlaneGeometry::Frontal, sphereCenter, true, false); geometryCoronal->ChangeImageGeometryConsideringOriginOffset(true); origin = geometryCoronal->GetOrigin(); normal = geometryCoronal->GetNormal(); normal.Normalize(); origin += normal * 0.5;//pixelspacing is 1, so half the spacing is 0.5 //geometryCoronal->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometryCoronal, "Testing coronal plane"); /* end coronal plane */ /* oblique plane */ mitk::PlaneGeometry::Pointer obliquePlane = mitk::PlaneGeometry::New(); obliquePlane->InitializeStandardPlane(planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, sphereCenter, true, false); obliquePlane->ChangeImageGeometryConsideringOriginOffset(true); origin = obliquePlane->GetOrigin(); normal = obliquePlane->GetNormal(); normal.Normalize(); origin += normal * 0.5;//pixelspacing is 1, so half the spacing is 0.5 //obliquePlane->SetOrigin(origin); mitk::Vector3D rotationVector; rotationVector[0] = 0.2; rotationVector[1] = 0.4; rotationVector[2] = 0.62; float degree = 37.0; mitk::RotationOperation* op = new mitk::RotationOperation(mitk::OpROTATE, obliquePlane->GetCenter(), rotationVector, degree); obliquePlane->ExecuteOperation(op); delete op; mitkExtractSliceFilterTestClass::TestSlice(obliquePlane, "Testing oblique plane"); /* end oblique plane */ #ifdef SHOW_SLICE_IN_RENDER_WINDOW /*================ #BEGIN vtk render code ================*/ //set reslicer for renderwindow mitk::ItkImageFileReader::Pointer reader = mitk::ItkImageFileReader::New(); std::string filename = "C:\\home\\Pics\\Pic3D.nrrd"; reader->SetFileName(filename); reader->Update(); mitk::Image::Pointer pic = reader->GetOutput(); vtkSmartPointer slicer = vtkSmartPointer::New(); slicer->SetInput(pic->GetVtkImageData()); mitk::PlaneGeometry::Pointer obliquePl = mitk::PlaneGeometry::New(); obliquePl->InitializeStandardPlane(pic->GetGeometry(), mitk::PlaneGeometry::Sagittal, pic->GetGeometry()->GetCenter()[0], true, false); obliquePl->ChangeImageGeometryConsideringOriginOffset(true); mitk::Point3D origin2 = obliquePl->GetOrigin(); mitk::Vector3D n; n = obliquePl->GetNormal(); n.Normalize(); origin2 += n * 0.5;//pixelspacing is 1, so half the spacing is 0.5 obliquePl->SetOrigin(origin2); mitk::Vector3D rotation; rotation[0] = 0.534307; rotation[1] = 0.000439605; rotation[2] = 0.423017; MITK_INFO << rotation; float rotateDegree = 70; mitk::RotationOperation* operation = new mitk::RotationOperation(mitk::OpROTATE, obliquePl->GetCenter(), rotationVector, degree); obliquePl->ExecuteOperation(operation); delete operation; double origin[3]; origin[0] = obliquePl->GetOrigin()[0]; origin[1] = obliquePl->GetOrigin()[1]; origin[2] = obliquePl->GetOrigin()[2]; slicer->SetResliceAxesOrigin(origin); mitk::Vector3D right, bottom, normal; right = obliquePl->GetAxisVector( 0 ); bottom = obliquePl->GetAxisVector( 1 ); normal = obliquePl->GetNormal(); right.Normalize(); bottom.Normalize(); normal.Normalize(); double cosines[9]; mitk::vnl2vtk(right.GetVnlVector(), cosines);//x mitk::vnl2vtk(bottom.GetVnlVector(), cosines + 3);//y mitk::vnl2vtk(normal.GetVnlVector(), cosines + 6);//n slicer->SetResliceAxesDirectionCosines(cosines); slicer->SetOutputDimensionality(2); slicer->Update(); //set vtk renderwindow vtkSmartPointer vtkPlane = vtkSmartPointer::New(); vtkPlane->SetOrigin(0.0, 0.0, 0.0); //These two points define the axes of the plane in combination with the origin. //Point 1 is the x-axis and point 2 the y-axis. //Each plane is transformed according to the view (axial, coronal and saggital) afterwards. vtkPlane->SetPoint1(1.0, 0.0, 0.0); //P1: (xMax, yMin, depth) vtkPlane->SetPoint2(0.0, 1.0, 0.0); //P2: (xMin, yMax, depth) //these are not the correct values for all slices, only a square plane by now vtkSmartPointer imageMapper = vtkSmartPointer::New(); imageMapper->SetInputConnection(vtkPlane->GetOutputPort()); vtkSmartPointer lookupTable = vtkSmartPointer::New(); //built a default lookuptable lookupTable->SetRampToLinear(); lookupTable->SetSaturationRange( 0.0, 0.0 ); lookupTable->SetHueRange( 0.0, 0.0 ); lookupTable->SetValueRange( 0.0, 1.0 ); lookupTable->Build(); //map all black values to transparent lookupTable->SetTableValue(0, 0.0, 0.0, 0.0, 0.0); lookupTable->SetRange(-255.0, 255.0); //lookupTable->SetRange(-1022.0, 1184.0);//pic3D range vtkSmartPointer texture = vtkSmartPointer::New(); texture->SetInput(slicer->GetOutput()); texture->SetLookupTable(lookupTable); texture->SetMapColorScalarsThroughLookupTable(true); vtkSmartPointer imageActor = vtkSmartPointer::New(); imageActor->SetMapper(imageMapper); imageActor->SetTexture(texture); // Setup renderers vtkSmartPointer renderer = vtkSmartPointer::New(); renderer->AddActor(imageActor); // Setup render window vtkSmartPointer renderWindow = vtkSmartPointer::New(); renderWindow->AddRenderer(renderer); // Setup render window interactor vtkSmartPointer renderWindowInteractor = vtkSmartPointer::New(); vtkSmartPointer style = vtkSmartPointer::New(); renderWindowInteractor->SetInteractorStyle(style); // Render and start interaction renderWindowInteractor->SetRenderWindow(renderWindow); //renderer->AddViewProp(imageActor); renderWindow->Render(); renderWindowInteractor->Start(); // always end with this! /*================ #END vtk render code ================*/ #endif //SHOW_SLICE_IN_RENDER_WINDOW MITK_TEST_END() } diff --git a/Core/Code/Testing/mitkImageTest.cpp b/Core/Code/Testing/mitkImageTest.cpp index 3340ec70aa..fc23413ce9 100644 --- a/Core/Code/Testing/mitkImageTest.cpp +++ b/Core/Code/Testing/mitkImageTest.cpp @@ -1,495 +1,514 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // mitk includes #include #include #include #include "mitkItkImageFileReader.h" #include #include #include "mitkImageGenerator.h" #include "mitkImageReadAccessor.h" #include "mitkException.h" +#include "mitkPixelTypeMultiplex.h" +#include "mitkImagePixelReadAccessor.h" #include "mitkImageSliceSelector.h" // itk includes #include #include // stl includes #include // vtk includes #include // Checks if reference count is correct after using GetVtkImageData() bool ImageVtkDataReferenceCheck(const char* fname) { const std::string filename = std::string(fname); mitk::ItkImageFileReader::Pointer imageReader = mitk::ItkImageFileReader::New(); try { imageReader->SetFileName(filename); imageReader->Update(); } catch(...) { MITK_TEST_FAILED_MSG(<< "Could not read file for testing: " << filename); return false; } { mitk::Image::Pointer image = imageReader->GetOutput(); vtkImageData* vtk = image->GetVtkImageData(); if(vtk == NULL) return false; } return true; } +template +void TestRandomPixelAccess( const mitk::PixelType ptype, mitk::Image::Pointer image, mitk::Point3D & point, mitk::ScalarType & value ) +{ + // generate a random point in world coordinates + mitk::Point3D xMax, yMax, zMax, xMaxIndex, yMaxIndex, zMaxIndex; + xMaxIndex.Fill(0.0f); + yMaxIndex.Fill(0.0f); + zMaxIndex.Fill(0.0f); + xMaxIndex[0] = image->GetLargestPossibleRegion().GetSize()[0]; + yMaxIndex[1] = image->GetLargestPossibleRegion().GetSize()[1]; + zMaxIndex[2] = image->GetLargestPossibleRegion().GetSize()[2]; + image->GetGeometry()->IndexToWorld(xMaxIndex, xMax); + image->GetGeometry()->IndexToWorld(yMaxIndex, yMax); + image->GetGeometry()->IndexToWorld(zMaxIndex, zMax); + MITK_INFO << "Origin " << image->GetGeometry()->GetOrigin()[0] << " "<< image->GetGeometry()->GetOrigin()[1] << " "<< image->GetGeometry()->GetOrigin()[2] << ""; + MITK_INFO << "MaxExtend " << xMax[0] << " "<< yMax[1] << " "<< zMax[2] << ""; + + itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randomGenerator = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); + randomGenerator->Initialize( std::rand() ); // initialize with random value, to get sensible random points for the image + point[0] = randomGenerator->GetUniformVariate( image->GetGeometry()->GetOrigin()[0], xMax[0]); + point[1] = randomGenerator->GetUniformVariate( image->GetGeometry()->GetOrigin()[1], yMax[1]); + point[2] = randomGenerator->GetUniformVariate( image->GetGeometry()->GetOrigin()[2], zMax[2]); + MITK_INFO << "RandomPoint " << point[0] << " "<< point[1] << " "<< point[2] << ""; + + // test values and max/min + mitk::ScalarType imageMin = image->GetStatistics()->GetScalarValueMin(); + mitk::ScalarType imageMax = image->GetStatistics()->GetScalarValueMax(); + + // test accessing PixelValue with coordinate leading to a negative index + const mitk::Point3D geom_origin = image->GetGeometry()->GetOrigin(); + const mitk::Point3D geom_center = image->GetGeometry()->GetCenter(); + + // shift position from origin outside of the image ( in the opposite direction to [center-origin] vector which points in the inside) + mitk::Point3D position = geom_origin + (geom_origin - geom_center); + + MITK_INFO << "Testing access outside of the image"; + unsigned int dim = image->GetDimension(); + if(dim == 3 || dim == 4){ + mitk::ImagePixelReadAccessor imAccess3(image,image->GetVolumeData(0)); + value = static_cast(imAccess3.GetPixelByWorldCoordinates(point)); + mitk::Index3D itkIndex; + image->GetGeometry()->WorldToIndex(position, itkIndex); + MITK_TEST_FOR_EXCEPTION_BEGIN(mitk::Exception) + imAccess3.GetPixelByIndexSafe(itkIndex); + MITK_TEST_FOR_EXCEPTION_END(mitk::Exception); + } + MITK_INFO << imageMin << " "<< imageMax << " "<< value << ""; + MITK_TEST_CONDITION( (value >= imageMin && value <= imageMax), "Value returned is between max/min"); + +} + class mitkImageTestClass { public: void SetClonedGeometry_None_ClonedEqualInput() { mitk::Image::Pointer image = mitk::ImageGenerator::GenerateRandomImage(100, 100, 100, 1, 0.2, 0.3, 0.4); //----------------- // geometry information for image mitk::Point3D origin; mitk::Vector3D right, bottom; mitk::Vector3D spacing; mitk::FillVector3D(origin, 17.0, 19.92, 7.83); mitk::FillVector3D(right, 1.0, 2.0, 3.0); mitk::FillVector3D(bottom, 0.0, -3.0, 2.0); mitk::FillVector3D(spacing, 0.78, 0.91, 2.23); //InitializeStandardPlane(rightVector, downVector, spacing) mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); planegeometry->InitializeStandardPlane(100, 100, right, bottom, &spacing); planegeometry->SetOrigin(origin); planegeometry->ChangeImageGeometryConsideringOriginOffset(true); image->SetClonedGeometry(planegeometry); mitk::Geometry3D::Pointer imageGeometry = image->GetGeometry(); itk::ScalableAffineTransform* frameNew = imageGeometry->GetIndexToWorldTransform(); itk::ScalableAffineTransform* frameOld = planegeometry->GetIndexToWorldTransform(); bool matrixEqual = true; for (int i = 0; i < 16; ++i) { double valueNew = *(frameNew->GetMatrix()[i]); double valueOld = *(frameOld->GetMatrix()[i]); //MITK_INFO << "Index: " << i << " Old: " << valueOld << " New: " << valueNew << " Difference:" << valueOld-valueNew<< std::endl; matrixEqual = matrixEqual && mitk::Equal(valueNew, valueOld, mitk::eps); } // Disabled because this test fails on the dashboard. Does not fail on my machine. // See Bug 6505 // MITK_TEST_CONDITION(matrixEqual, "Matrix elements of cloned matrix equal original matrix"); } }; int mitkImageTest(int argc, char* argv[]) { MITK_TEST_BEGIN(mitkImageTest); mitkImageTestClass tester; tester.SetClonedGeometry_None_ClonedEqualInput(); //Create Image out of nowhere mitk::Image::Pointer imgMem = mitk::Image::New(); mitk::PixelType pt = mitk::MakeScalarPixelType(); unsigned int dim[]={100,100,20}; MITK_TEST_CONDITION_REQUIRED( imgMem.IsNotNull(), "An image was created. "); // Initialize image imgMem->Initialize( pt, 3, dim); MITK_TEST_CONDITION_REQUIRED( imgMem->IsInitialized(), "Image::IsInitialized() ?"); MITK_TEST_CONDITION_REQUIRED( imgMem->GetPixelType() == pt, "PixelType was set correctly."); int *p; int *p2; try { mitk::ImageReadAccessor imgMemAcc(imgMem); p = (int*)imgMemAcc.GetData(); } catch (mitk::Exception& e) { MITK_ERROR << e.what(); } MITK_TEST_CONDITION( p != NULL, "GetData() returned not-NULL pointer."); // filling image const unsigned int size = dim[0]*dim[1]*dim[2]; for(unsigned int i=0; iGetSliceData(dim[2]/2)); p2 = (int*)imgMemAcc.GetData(); } catch (mitk::Exception& e) { MITK_ERROR << e.what(); } MITK_TEST_CONDITION_REQUIRED( p2 != NULL, "Valid slice data returned"); unsigned int xy_size = dim[0]*dim[1]; unsigned int start_mid_slice = (dim[2]/2)*xy_size; isEqual = true; for(unsigned int i=0; i(); imgMem->Initialize( pType , 3, dim); MITK_TEST_CONDITION_REQUIRED(imgMem->GetDimension()== 3, "Testing initialization parameter dimension!"); MITK_TEST_CONDITION_REQUIRED(imgMem->GetPixelType() == pType, "Testing initialization parameter pixeltype!"); MITK_TEST_CONDITION_REQUIRED(imgMem->GetDimension(0) == dim[0] && imgMem->GetDimension(1)== dim[1] && imgMem->GetDimension(2)== dim[2], "Testing initialization of dimensions!"); MITK_TEST_CONDITION( imgMem->IsInitialized(), "Image is initialized."); // Setting volume again: try { mitk::ImageReadAccessor imgMemAcc(imgMem); imgMem->SetVolume(imgMemAcc.GetData()); } catch (mitk::Exception& e) { MITK_ERROR << e.what(); } //----------------- // geometry information for image mitk::Point3D origin; mitk::Vector3D right, bottom; mitk::Vector3D spacing; mitk::FillVector3D(origin, 17.0, 19.92, 7.83); mitk::FillVector3D(right, 1.0, 2.0, 3.0); mitk::FillVector3D(bottom, 0.0, -3.0, 2.0); mitk::FillVector3D(spacing, 0.78, 0.91, 2.23); //InitializeStandardPlane(rightVector, downVector, spacing) mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); planegeometry->InitializeStandardPlane(100, 100, right, bottom, &spacing); planegeometry->SetOrigin(origin); // Testing Initialize(const mitk::PixelType& type, const mitk::Geometry3D& geometry, unsigned int slices) with PlaneGeometry and GetData(): "; imgMem->Initialize( mitk::MakePixelType(), *planegeometry); MITK_TEST_CONDITION_REQUIRED( imgMem->GetGeometry()->GetOrigin() == static_cast(planegeometry)->GetOrigin(), "Testing correct setting of geometry via initialize!"); try { mitk::ImageReadAccessor imgMemAcc(imgMem); p = (int*)imgMemAcc.GetData(); } catch (mitk::Exception& e) { MITK_ERROR << e.what(); } MITK_TEST_CONDITION_REQUIRED( p!=NULL, "GetData() returned valid pointer."); // Testing Initialize(const mitk::PixelType& type, int sDim, const mitk::PlaneGeometry& geometry) and GetData(): "; imgMem->Initialize( mitk::MakePixelType() , 40, *planegeometry); try { mitk::ImageReadAccessor imgMemAcc(imgMem); p = (int*)imgMemAcc.GetData(); } catch (mitk::Exception& e) { MITK_ERROR << e.what(); } MITK_TEST_CONDITION_REQUIRED( p != NULL, "GetData() returned valid pointer."); //----------------- // testing origin information and methods MITK_TEST_CONDITION_REQUIRED( mitk::Equal(imgMem->GetGeometry()->GetOrigin(), origin), "Testing correctness of origin via GetGeometry()->GetOrigin(): "); // Setting origin via SetOrigin(origin): "; mitk::FillVector3D(origin, 37.0, 17.92, 27.83); imgMem->SetOrigin(origin); // Test origin MITK_TEST_CONDITION_REQUIRED( mitk::Equal(imgMem->GetGeometry()->GetOrigin(), origin), "Testing correctness of changed origin via GetGeometry()->GetOrigin(): "); MITK_TEST_CONDITION_REQUIRED( mitk::Equal(imgMem->GetSlicedGeometry()->GetGeometry2D(0)->GetOrigin(), origin), "Testing correctness of changed origin via GetSlicedGeometry()->GetGeometry2D(0)->GetOrigin(): "); //----------------- // testing spacing information and methodsunsigned int dim[]={100,100,20}; MITK_TEST_CONDITION_REQUIRED(mitk::Equal(imgMem->GetGeometry()->GetSpacing(), spacing), "Testing correct spacing from Geometry3D!"); mitk::FillVector3D(spacing, 7.0, 0.92, 1.83); imgMem->SetSpacing(spacing); MITK_TEST_CONDITION_REQUIRED( mitk::Equal(imgMem->GetGeometry()->GetSpacing(), spacing), "Testing correctness of changed spacing via GetGeometry()->GetSpacing(): "); MITK_TEST_CONDITION_REQUIRED( mitk::Equal(imgMem->GetSlicedGeometry()->GetGeometry2D(0)->GetSpacing(), spacing), "Testing correctness of changed spacing via GetSlicedGeometry()->GetGeometry2D(0)->GetSpacing(): "); mitk::Image::Pointer vecImg = mitk::Image::New(); try { mitk::ImageReadAccessor imgMemAcc(imgMem); vecImg->Initialize( imgMem->GetPixelType(), *imgMem->GetGeometry(), 2 /* #channels */, 0 /*tDim*/ ); vecImg->SetImportChannel(const_cast(imgMemAcc.GetData()), 0, mitk::Image::CopyMemory ); vecImg->SetImportChannel(const_cast(imgMemAcc.GetData()), 1, mitk::Image::CopyMemory ); mitk::ImageReadAccessor vecImgAcc(vecImg); mitk::ImageReadAccessor vecImgAcc0(vecImg, vecImg->GetChannelData(0)); mitk::ImageReadAccessor vecImgAcc1(vecImg, vecImg->GetChannelData(1)); MITK_TEST_CONDITION_REQUIRED(vecImgAcc0.GetData() != NULL && vecImgAcc1.GetData() != NULL, "Testing set and return of channel data!"); MITK_TEST_CONDITION_REQUIRED( vecImg->IsValidSlice(0,0,1) , ""); MITK_TEST_OUTPUT(<< " Testing whether CopyMemory worked"); MITK_TEST_CONDITION_REQUIRED(imgMemAcc.GetData() != vecImgAcc.GetData(), ""); MITK_TEST_OUTPUT(<< " Testing destruction after SetImportChannel"); vecImg = NULL; MITK_TEST_CONDITION_REQUIRED(vecImg.IsNull() , "testing destruction!"); } catch (mitk::Exception& e) { MITK_ERROR << e.what(); } //----------------- MITK_TEST_OUTPUT(<< "Testing initialization via vtkImageData"); MITK_TEST_OUTPUT(<< " Setting up vtkImageData"); vtkImageData* vtkimage = vtkImageData::New(); vtkimage->Initialize(); vtkimage->SetDimensions( 2, 3, 4); double vtkorigin[] = {-350,-358.203, -1363.5}; vtkimage->SetOrigin(vtkorigin); mitk::Point3D vtkoriginAsMitkPoint; mitk::vtk2itk(vtkorigin, vtkoriginAsMitkPoint); double vtkspacing[] = {1.367, 1.367, 2}; vtkimage->SetSpacing(vtkspacing); vtkimage->AllocateScalars(VTK_SHORT,1); std::cout<<"[PASSED]"<Initialize(vtkimage); MITK_TEST_CONDITION_REQUIRED(mitkByVtkImage->IsInitialized(), ""); vtkimage->Delete(); MITK_TEST_OUTPUT(<< " Testing whether spacing has been correctly initialized from vtkImageData"); mitk::Vector3D spacing2 = mitkByVtkImage->GetGeometry()->GetSpacing(); mitk::Vector3D vtkspacingAsMitkVector; mitk::vtk2itk(vtkspacing, vtkspacingAsMitkVector); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(spacing2,vtkspacingAsMitkVector), ""); MITK_TEST_OUTPUT(<< " Testing whether GetSlicedGeometry(0)->GetOrigin() has been correctly initialized from vtkImageData"); mitk::Point3D origin2 = mitkByVtkImage->GetSlicedGeometry(0)->GetOrigin(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(origin2,vtkoriginAsMitkPoint), ""); MITK_TEST_OUTPUT(<< " Testing whether GetGeometry()->GetOrigin() has been correctly initialized from vtkImageData"); origin2 = mitkByVtkImage->GetGeometry()->GetOrigin(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(origin2,vtkoriginAsMitkPoint), ""); // TODO test the following initializers on channel-incorporation // void mitk::Image::Initialize(const mitk::PixelType& type, unsigned int dimension, unsigned int *dimensions, unsigned int channels) // void mitk::Image::Initialize(const mitk::PixelType& type, int sDim, const mitk::Geometry2D& geometry2d, bool flipped, unsigned int channels, int tDim ) // void mitk::Image::Initialize(const mitk::Image* image) // void mitk::Image::Initialize(const mitkIpPicDescriptor* pic, int channels, int tDim, int sDim) //mitk::Image::Pointer vecImg = mitk::Image::New(); //vecImg->Initialize(PixelType(typeid(float), 6, itk::ImageIOBase::SYMMETRICSECONDRANKTENSOR), *imgMem->GetGeometry(), 2 /* #channels */, 0 /*tDim*/, false /*shiftBoundingBoxMinimumToZero*/ ); //vecImg->Initialize(PixelType(typeid(itk::Vector)), *imgMem->GetGeometry(), 2 /* #channels */, 0 /*tDim*/, false /*shiftBoundingBoxMinimumToZero*/ ); // testing access by index coordinates and by world coordinates MITK_TEST_CONDITION_REQUIRED(argc == 2, "Check if test image is accessible!"); const std::string filename = std::string(argv[1]); mitk::ItkImageFileReader::Pointer imageReader = mitk::ItkImageFileReader::New(); try { imageReader->SetFileName(filename); imageReader->Update(); } catch(...) { MITK_TEST_FAILED_MSG(<< "Could not read file for testing: " << filename); return 0; } mitk::Image::Pointer image = imageReader->GetOutput(); - - // generate a random point in world coordinates - mitk::Point3D xMax, yMax, zMax, xMaxIndex, yMaxIndex, zMaxIndex; - xMaxIndex.Fill(0.0f); - yMaxIndex.Fill(0.0f); - zMaxIndex.Fill(0.0f); - xMaxIndex[0] = image->GetLargestPossibleRegion().GetSize()[0]; - yMaxIndex[1] = image->GetLargestPossibleRegion().GetSize()[1]; - zMaxIndex[2] = image->GetLargestPossibleRegion().GetSize()[2]; - image->GetGeometry()->IndexToWorld(xMaxIndex, xMax); - image->GetGeometry()->IndexToWorld(yMaxIndex, yMax); - image->GetGeometry()->IndexToWorld(zMaxIndex, zMax); - MITK_INFO << "Origin " << image->GetGeometry()->GetOrigin()[0] << " "<< image->GetGeometry()->GetOrigin()[1] << " "<< image->GetGeometry()->GetOrigin()[2] << ""; - MITK_INFO << "MaxExtend " << xMax[0] << " "<< yMax[1] << " "<< zMax[2] << ""; mitk::Point3D point; + mitk::ScalarType value = -1; - itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randomGenerator = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); - randomGenerator->Initialize( std::rand() ); // initialize with random value, to get sensible random points for the image - point[0] = randomGenerator->GetUniformVariate( image->GetGeometry()->GetOrigin()[0], xMax[0]); - point[1] = randomGenerator->GetUniformVariate( image->GetGeometry()->GetOrigin()[1], yMax[1]); - point[2] = randomGenerator->GetUniformVariate( image->GetGeometry()->GetOrigin()[2], zMax[2]); - MITK_INFO << "RandomPoint " << point[0] << " "<< point[1] << " "<< point[2] << ""; - - // test values and max/min - mitk::ScalarType imageMin = image->GetStatistics()->GetScalarValueMin(); - mitk::ScalarType imageMax = image->GetStatistics()->GetScalarValueMax(); - mitk::ScalarType value = image->GetPixelValueByWorldCoordinate(point); - MITK_INFO << imageMin << " "<< imageMax << " "<< value << ""; - MITK_TEST_CONDITION( (value >= imageMin && value <= imageMax), "Value returned is between max/min"); - - // test accessing PixelValue with coordinate leading to a negative index - const mitk::Point3D geom_origin = image->GetGeometry()->GetOrigin(); - const mitk::Point3D geom_center = image->GetGeometry()->GetCenter(); - const unsigned int timestep = 0; - - // shift position from origin outside of the image ( in the opposite direction to [center-origin] vector which points in the inside) - mitk::Point3D position = geom_origin + (geom_origin - geom_center); - MITK_TEST_CONDITION_REQUIRED( image->GetPixelValueByWorldCoordinate(position, timestep) == 0, "Test access to the outside of the image") + mitkPixelTypeMultiplex3(TestRandomPixelAccess,image->GetImageDescriptor()->GetChannelTypeById(0),image,point,value) { // testing the clone method of mitk::Image mitk::Image::Pointer cloneImage = image->Clone(); MITK_TEST_CONDITION_REQUIRED(cloneImage->GetDimension() == image->GetDimension(), "Clone (testing dimension)"); MITK_TEST_CONDITION_REQUIRED(cloneImage->GetPixelType() == image->GetPixelType(), "Clone (testing pixel type)"); // After cloning an image the geometry of both images should be equal too MITK_TEST_CONDITION_REQUIRED(cloneImage->GetGeometry()->GetOrigin() == image->GetGeometry()->GetOrigin(), "Clone (testing origin)"); MITK_TEST_CONDITION_REQUIRED(cloneImage->GetGeometry()->GetSpacing() == image->GetGeometry()->GetSpacing(), "Clone (testing spacing)"); MITK_TEST_CONDITION_REQUIRED(mitk::MatrixEqualElementWise(cloneImage->GetGeometry()->GetIndexToWorldTransform()->GetMatrix(), image->GetGeometry()->GetIndexToWorldTransform()->GetMatrix()), "Clone (testing transformation matrix)"); MITK_TEST_CONDITION_REQUIRED(mitk::MatrixEqualElementWise(cloneImage->GetTimeGeometry()->GetGeometryForTimeStep(cloneImage->GetDimension(3)-1)->GetIndexToWorldTransform()->GetMatrix(), cloneImage->GetTimeGeometry()->GetGeometryForTimeStep(image->GetDimension(3)-1)->GetIndexToWorldTransform()->GetMatrix()), "Clone(testing time sliced geometry)"); for (unsigned int i = 0u; i < cloneImage->GetDimension(); ++i) { MITK_TEST_CONDITION_REQUIRED(cloneImage->GetDimension(i) == image->GetDimension(i), "Clone (testing dimension " << i << ")"); } } //access via itk if(image->GetDimension()> 3) // CastToItk only works with 3d images so we need to check for 4d images { mitk::ImageTimeSelector::Pointer selector = mitk::ImageTimeSelector::New(); selector->SetTimeNr(0); selector->SetInput(image); selector->Update(); image = selector->GetOutput(); } if(image->GetDimension()==3) { typedef itk::Image ItkFloatImage3D; ItkFloatImage3D::Pointer itkimage; try { mitk::CastToItkImage(image, itkimage); MITK_TEST_CONDITION_REQUIRED(itkimage.IsNotNull(), "Test conversion to itk::Image!"); } catch (std::exception& e) { MITK_INFO << e.what(); } mitk::Point3D itkPhysicalPoint; image->GetGeometry()->WorldToItkPhysicalPoint(point, itkPhysicalPoint); MITK_INFO << "ITKPoint " << itkPhysicalPoint[0] << " "<< itkPhysicalPoint[1] << " "<< itkPhysicalPoint[2] << ""; mitk::Point3D backTransformedPoint; image->GetGeometry()->ItkPhysicalPointToWorld(itkPhysicalPoint, backTransformedPoint); MITK_TEST_CONDITION_REQUIRED( mitk::Equal(point,backTransformedPoint), "Testing world->itk-physical->world consistency"); itk::Index<3> idx; bool status = itkimage->TransformPhysicalPointToIndex(itkPhysicalPoint, idx); MITK_INFO << "ITK Index " << idx[0] << " "<< idx[1] << " "<< idx[2] << ""; if(status) { float valByItk = itkimage->GetPixel(idx); MITK_TEST_CONDITION_REQUIRED( mitk::Equal(valByItk, value), "Compare value of pixel returned by mitk in comparison to itk"); } else { MITK_WARN<< "Index is out buffered region!"; } } else { MITK_INFO << "Image does not contain three dimensions, some test cases are skipped!"; } // clone generated 3D image with one slice in z direction (cf. bug 11058) unsigned int* threeDdim = new unsigned int[3]; threeDdim[0] = 100; threeDdim[1] = 200; threeDdim[2] = 1; mitk::Image::Pointer threeDImage = mitk::Image::New(); threeDImage->Initialize(mitk::MakeScalarPixelType(), 3, threeDdim); mitk::Image::Pointer cloneThreeDImage = threeDImage->Clone(); // check that the clone image has the same dimensionality as the source image MITK_TEST_CONDITION_REQUIRED( cloneThreeDImage->GetDimension() == 3, "Testing if the clone image initializes with 3D!"); MITK_TEST_CONDITION_REQUIRED( ImageVtkDataReferenceCheck(argv[1]), "Checking reference count of Image after using GetVtkImageData()"); MITK_TEST_END(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.cpp index 7ecd28be54..056ca49bc5 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.cpp @@ -1,963 +1,967 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkTbssRoiAnalysisWidget.h" +#include "mitkImagePixelReadAccessor.h" +#include "mitkPixelTypeMultiplex.h" #include #include #include #include QmitkTbssRoiAnalysisWidget::QmitkTbssRoiAnalysisWidget( QWidget * parent ) : QmitkPlotWidget(parent) { m_PlotPicker = new QwtPlotPicker(m_Plot->canvas()); m_PlotPicker->setStateMachine(new QwtPickerDragPointMachine()); m_PlotPicker->setTrackerMode(QwtPicker::ActiveOnly); m_PlottingFiberBundle = false; } void QmitkTbssRoiAnalysisWidget::DoPlotFiberBundles(mitk::FiberBundleX *fib, mitk::Image* img, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi, bool avg, int number) { TractContainerType tracts = CreateTracts(fib, startRoi, endRoi); TractContainerType resampledTracts = ParameterizeTracts(tracts, number); // Now we have the resampled tracts. Next we should use these points to read out the values - PlotFiberBundles(resampledTracts, img, avg); + mitkPixelTypeMultiplex3(PlotFiberBundles,img->GetImageDescriptor()->GetChannelTypeById(0),resampledTracts, img, avg); m_CurrentTracts = resampledTracts; } TractContainerType QmitkTbssRoiAnalysisWidget::CreateTracts(mitk::FiberBundleX *fib, mitk::PlanarFigure *startRoi, mitk::PlanarFigure *endRoi) { mitk::PlaneGeometry* startGeometry2D = dynamic_cast( const_cast(startRoi->GetGeometry2D()) ); mitk::PlaneGeometry* endGeometry2D = dynamic_cast( const_cast(endRoi->GetGeometry2D()) ); mitk::Point3D startCenter = startRoi->GetWorldControlPoint(0); //center Point of start roi mitk::Point3D endCenter = endRoi->GetWorldControlPoint(0); //center Point of end roi mitk::FiberBundleX::Pointer inStart = fib->ExtractFiberSubset(startRoi); mitk::FiberBundleX::Pointer inBoth = inStart->ExtractFiberSubset(endRoi); int num = inBoth->GetNumFibers(); TractContainerType tracts; vtkSmartPointer fiberPolyData = inBoth->GetFiberPolyData(); vtkCellArray* lines = fiberPolyData->GetLines(); lines->InitTraversal(); // Now find out for each fiber which ROI is encountered first. If this is the startRoi, the direction is ok // Otherwise the plot should be in the reverse direction for( int fiberID( 0 ); fiberID < num; fiberID++ ) { vtkIdType numPointsInCell(0); vtkIdType* pointsInCell(NULL); lines->GetNextCell ( numPointsInCell, pointsInCell ); int startId = 0; int endId = 0; mitk::ScalarType minDistStart = std::numeric_limits::max(); mitk::ScalarType minDistEnd = std::numeric_limits::max(); for( int pointInCellID( 0 ); pointInCellID < numPointsInCell ; pointInCellID++) { mitk::ScalarType *p = fiberPolyData->GetPoint( pointsInCell[ pointInCellID ] ); mitk::Point3D point; point[0] = p[0]; point[1] = p[1]; point[2] = p[2]; mitk::ScalarType distanceToStart = point.EuclideanDistanceTo(startCenter); mitk::ScalarType distanceToEnd = point.EuclideanDistanceTo(endCenter); if(distanceToStart < minDistStart) { minDistStart = distanceToStart; startId = pointInCellID; } if(distanceToEnd < minDistEnd) { minDistEnd = distanceToEnd; endId = pointInCellID; } } /* We found the start and end points of of the part that should be plottet for the current fiber. now we need to plot them. If the endId is smaller than the startId the plot order must be reversed*/ TractType singleTract; PointType point; if(startId < endId) { // Calculate the intersection of the ROI with the startRoi and decide if the startId is part of the roi or must be cut of mitk::ScalarType *p = fiberPolyData->GetPoint( pointsInCell[ startId ] ); mitk::Vector3D p0; p0[0] = p[0]; p0[1] = p[1]; p0[2] = p[2]; p = fiberPolyData->GetPoint( pointsInCell[ startId+1 ] ); mitk::Vector3D p1; p1[0] = p[0]; p1[1] = p[1]; p1[2] = p[2]; // Check if p and p2 are both on the same side of the plane mitk::Vector3D normal = startGeometry2D->GetNormal(); mitk::Point3D pStart; pStart[0] = p0[0]; pStart[1] = p0[1]; pStart[2] = p0[2]; mitk::Point3D pSecond; pSecond[0] = p1[0]; pSecond[1] = p1[1]; pSecond[2] = p1[2]; bool startOnPositive = startGeometry2D->IsAbove(pStart); bool secondOnPositive = startGeometry2D->IsAbove(pSecond); mitk::Vector3D onPlane; onPlane[0] = startCenter[0]; onPlane[1] = startCenter[1]; onPlane[2] = startCenter[2]; if(! (secondOnPositive ^ startOnPositive) ) { /* startId and startId+1 lie on the same side of the plane, so we need need startId-1 to calculate the intersection with the planar figure*/ p = fiberPolyData->GetPoint( pointsInCell[ startId-1 ] ); p1[0] = p[0]; p1[1] = p[1]; p1[2] = p[2]; } mitk::ScalarType d = ( (onPlane-p0)*normal) / ( (p0-p1) * normal ); mitk::Vector3D newPoint = (p0-p1); point[0] = d*newPoint[0] + p0[0]; point[1] = d*newPoint[1] + p0[1]; point[2] = d*newPoint[2] + p0[2]; singleTract.push_back(point); if(! (secondOnPositive ^ startOnPositive) ) { /* StartId and startId+1 lie on the same side of the plane so startId is also part of the ROI*/ mitk::ScalarType *start = fiberPolyData->GetPoint( pointsInCell[startId] ); point[0] = start[0]; point[1] = start[1]; point[2] = start[2]; singleTract.push_back(point); } for( int pointInCellID( startId+1 ); pointInCellID < endId ; pointInCellID++) { // push back point mitk::ScalarType *p = fiberPolyData->GetPoint( pointsInCell[ pointInCellID ] ); point[0] = p[0]; point[1] = p[1]; point[2] = p[2]; singleTract.push_back( point ); } /* endId must be included if endId and endId-1 lie on the same side of the plane defined by endRoi*/ p = fiberPolyData->GetPoint( pointsInCell[ endId ] ); p0[0] = p[0]; p0[1] = p[1]; p0[2] = p[2]; p = fiberPolyData->GetPoint( pointsInCell[ endId-1 ] ); p1[0] = p[0]; p1[1] = p[1]; p1[2] = p[2]; mitk::Point3D pLast; pLast[0] = p0[0]; pLast[1] = p0[1]; pLast[2] = p0[2]; mitk::Point3D pBeforeLast; pBeforeLast[0] = p1[0]; pBeforeLast[1] = p1[1]; pBeforeLast[2] = p1[2]; normal = endGeometry2D->GetNormal(); bool lastOnPositive = endGeometry2D->IsAbove(pLast); bool secondLastOnPositive = endGeometry2D->IsAbove(pBeforeLast); onPlane[0] = endCenter[0]; onPlane[1] = endCenter[1]; onPlane[2] = endCenter[2]; if(! (lastOnPositive ^ secondLastOnPositive) ) { /* endId and endId-1 lie on the same side of the plane, so we need need endId+1 to calculate the intersection with the planar figure. this should exist since we know that the fiber crosses the planar figure endId is also part of the tract and can be inserted here */ p = fiberPolyData->GetPoint( pointsInCell[ endId ] ); point[0] = p[0]; point[1] = p[1]; point[2] = p[2]; singleTract.push_back( point ); p = fiberPolyData->GetPoint( pointsInCell[ endId+1 ] ); } d = ( (onPlane-p0)*normal) / ( (p0-p1) * normal ); newPoint = (p0-p1); point[0] = d*newPoint[0] + p0[0]; point[1] = d*newPoint[1] + p0[1]; point[2] = d*newPoint[2] + p0[2]; singleTract.push_back(point); } else{ // Calculate the intersection of the ROI with the startRoi and decide if the startId is part of the roi or must be cut of mitk::ScalarType *p = fiberPolyData->GetPoint( pointsInCell[ startId ] ); mitk::Vector3D p0; p0[0] = p[0]; p0[1] = p[1]; p0[2] = p[2]; p = fiberPolyData->GetPoint( pointsInCell[ startId-1 ] ); mitk::Vector3D p1; p1[0] = p[0]; p1[1] = p[1]; p1[2] = p[2]; // Check if p and p2 are both on the same side of the plane mitk::Vector3D normal = startGeometry2D->GetNormal(); mitk::Point3D pStart; pStart[0] = p0[0]; pStart[1] = p0[1]; pStart[2] = p0[2]; mitk::Point3D pSecond; pSecond[0] = p1[0]; pSecond[1] = p1[1]; pSecond[2] = p1[2]; bool startOnPositive = startGeometry2D->IsAbove(pStart); bool secondOnPositive = startGeometry2D->IsAbove(pSecond); mitk::Vector3D onPlane; onPlane[0] = startCenter[0]; onPlane[1] = startCenter[1]; onPlane[2] = startCenter[2]; if(! (secondOnPositive ^ startOnPositive) ) { /* startId and startId+1 lie on the same side of the plane, so we need need startId-1 to calculate the intersection with the planar figure*/ p = fiberPolyData->GetPoint( pointsInCell[ startId-1 ] ); p1[0] = p[0]; p1[1] = p[1]; p1[2] = p[2]; } mitk::ScalarType d = ( (onPlane-p0)*normal) / ( (p0-p1) * normal ); mitk::Vector3D newPoint = (p0-p1); point[0] = d*newPoint[0] + p0[0]; point[1] = d*newPoint[1] + p0[1]; point[2] = d*newPoint[2] + p0[2]; singleTract.push_back(point); if(! (secondOnPositive ^ startOnPositive) ) { /* StartId and startId+1 lie on the same side of the plane so startId is also part of the ROI*/ mitk::ScalarType *start = fiberPolyData->GetPoint( pointsInCell[startId] ); point[0] = start[0]; point[1] = start[1]; point[2] = start[2]; singleTract.push_back(point); } for( int pointInCellID( startId-1 ); pointInCellID > endId ; pointInCellID--) { // push back point mitk::ScalarType *p = fiberPolyData->GetPoint( pointsInCell[ pointInCellID ] ); point[0] = p[0]; point[1] = p[1]; point[2] = p[2]; singleTract.push_back( point ); } /* endId must be included if endId and endI+1 lie on the same side of the plane defined by endRoi*/ p = fiberPolyData->GetPoint( pointsInCell[ endId ] ); p0[0] = p[0]; p0[1] = p[1]; p0[2] = p[2]; p = fiberPolyData->GetPoint( pointsInCell[ endId+1 ] ); p1[0] = p[0]; p1[1] = p[1]; p1[2] = p[2]; mitk::Point3D pLast; pLast[0] = p0[0]; pLast[1] = p0[1]; pLast[2] = p0[2]; mitk::Point3D pBeforeLast; pBeforeLast[0] = p1[0]; pBeforeLast[1] = p1[1]; pBeforeLast[2] = p1[2]; bool lastOnPositive = endGeometry2D->IsAbove(pLast); bool secondLastOnPositive = endGeometry2D->IsAbove(pBeforeLast); normal = endGeometry2D->GetNormal(); onPlane[0] = endCenter[0]; onPlane[1] = endCenter[1]; onPlane[2] = endCenter[2]; if(! (lastOnPositive ^ secondLastOnPositive) ) { /* endId and endId+1 lie on the same side of the plane, so we need need endId-1 to calculate the intersection with the planar figure. this should exist since we know that the fiber crosses the planar figure endId is also part of the tract and can be inserted here */ p = fiberPolyData->GetPoint( pointsInCell[ endId ] ); point[0] = p[0]; point[1] = p[1]; point[2] = p[2]; singleTract.push_back( point ); p = fiberPolyData->GetPoint( pointsInCell[ endId-1 ] ); } d = ( (onPlane-p0)*normal) / ( (p0-p1) * normal ); newPoint = (p0-p1); point[0] = d*newPoint[0] + p0[0]; point[1] = d*newPoint[1] + p0[1]; point[2] = d*newPoint[2] + p0[2]; singleTract.push_back(point); } tracts.push_back(singleTract); } return tracts; } void QmitkTbssRoiAnalysisWidget::PlotFiberBetweenRois(mitk::FiberBundleX *fib, mitk::Image* img, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi, bool avg, int number) { if(fib == NULL || img == NULL || startRoi == NULL || endRoi == NULL) return; m_Fib = fib; m_CurrentImage = img; m_CurrentStartRoi = startRoi; m_CurrentEndRoi = endRoi; DoPlotFiberBundles(fib, img, startRoi, endRoi, avg, number); } void QmitkTbssRoiAnalysisWidget::ModifyPlot(int number, bool avg) { if(m_Fib == NULL || m_CurrentTbssImage == NULL || m_CurrentStartRoi == NULL || m_CurrentEndRoi == NULL) return; if(m_PlottingFiberBundle) { DoPlotFiberBundles(m_Fib, m_CurrentImage, m_CurrentStartRoi, m_CurrentEndRoi, avg, number); } else { PlotFiber4D(m_CurrentTbssImage, m_Fib, m_CurrentStartRoi, m_CurrentEndRoi, number); } } TractContainerType QmitkTbssRoiAnalysisWidget::ParameterizeTracts(TractContainerType tracts, int number) { TractContainerType resampledTracts; for(TractContainerType::iterator it = tracts.begin(); it != tracts.end(); ++it) { TractType resampledTract; TractType tract = *it; // Calculate the total length mitk::ScalarType totalLength = 0; if(tract.size() < 2) continue; PointType p0 = tract.at(0); for(int i = 1; i distance+0.001) { if(tractCounter == tract.size()) std::cout << "problem"; // Determine by what distance we are no on the next segment locationBetween = locationBetween - distance; p0 = p1; p1 = tract.at(tractCounter); tractCounter++; distance = p0.EuclideanDistanceTo(p1); } // Direction PointType::VectorType direction = p1-p0; direction.Normalize(); PointType newSample = p0 + direction*locationBetween; resampledTract.push_back(newSample); locationBetween += stepSize; } resampledTracts.push_back(resampledTract); } return resampledTracts; } mitk::Point3D QmitkTbssRoiAnalysisWidget::GetPositionInWorld(int index) { mitk::ScalarType xSum = 0.0; mitk::ScalarType ySum = 0.0; mitk::ScalarType zSum = 0.0; for(TractContainerType::iterator it = m_CurrentTracts.begin(); it!=m_CurrentTracts.end(); ++it) { TractType tract = *it; PointType p = tract.at(index); xSum += p[0]; ySum += p[1]; zSum += p[2]; } int number = m_CurrentTracts.size(); mitk::ScalarType xPos = xSum / number; mitk::ScalarType yPos = ySum / number; mitk::ScalarType zPos = zSum / number; mitk::Point3D pos; pos[0] = xPos; pos[1] = yPos; pos[2] = zPos; return pos; } std::vector< std::vector > QmitkTbssRoiAnalysisWidget::CalculateGroupProfiles() { MITK_INFO << "make profiles!"; std::vector< std::vector > profiles; int size = m_Projections->GetVectorLength(); for(int s=0; s profile; RoiType::iterator it; it = m_Roi.begin(); while(it != m_Roi.end()) { itk::Index<3> ix = *it; profile.push_back(m_Projections->GetPixel(ix).GetElement(s)); it++; } profiles.push_back(profile); } m_IndividualProfiles = profiles; // Calculate the averages // Here a check could be build in to check whether all profiles have // the same length, but this should normally be the case if the input // data were corrected with the TBSS Module. std::vector< std::vector > groupProfiles; std::vector< std::pair >::iterator it; it = m_Groups.begin(); int c = 0; //the current profile number while(it != m_Groups.end() && profiles.size() > 0) { std::pair p = *it; int size = p.second; //initialize a vector of the right length with zeroes std::vector averageProfile; for(int i=0; i > groupProfiles = CalculateGroupProfiles(); Plot(groupProfiles); } void QmitkTbssRoiAnalysisWidget::Plot(std::vector > groupProfiles) { this->Clear(); m_Vals.clear(); std::vector v1; std::vector xAxis; for(int i=0; iSetPlotTitle( title.c_str() ); QPen pen( Qt::SolidLine ); pen.setWidth(2); std::vector< std::pair >::iterator it; it = m_Groups.begin(); int c = 0; //the current profile number QColor colors[4] = {Qt::green, Qt::blue, Qt::yellow, Qt::red}; while(it != m_Groups.end() && groupProfiles.size() > 0) { std::pair< std::string, int > group = *it; pen.setColor(colors[c]); int curveId = this->InsertCurve( group.first.c_str() ); this->SetCurveData( curveId, xAxis, groupProfiles.at(c) ); this->SetCurvePen( curveId, pen ); c++; it++; } QwtLegend *legend = new QwtLegend; this->SetLegend(legend, QwtPlot::RightLegend, 0.5); std::cout << m_Measure << std::endl; this->m_Plot->setAxisTitle(0, m_Measure.c_str()); this->m_Plot->setAxisTitle(3, "Position"); this->Replot(); } std::vector< std::vector > QmitkTbssRoiAnalysisWidget::CalculateGroupProfilesFibers(mitk::TbssImage::Pointer tbssImage, mitk::FiberBundleX *fib, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi, int number) { TractContainerType tracts = CreateTracts(fib, startRoi, endRoi); TractContainerType resampledTracts = ParameterizeTracts(tracts, number); int nTracts = resampledTracts.size(); this->Clear(); // For every group we have m fibers * n subjects of profiles to fill std::vector< std::vector > profiles; // calculate individual profiles by going through all n subjects int size = m_Projections->GetVectorLength(); for(int s=0; s profile; TractType::iterator it = resampledTracts[t].begin(); while(it != resampledTracts[t].end()) { PointType p = *it; PointType index; tbssImage->GetGeometry()->WorldToIndex(p, index); itk::Index<3> ix; ix[0] = index[0]; ix[1] = index[1]; ix[2] = index[2]; // Get value from image profile.push_back(m_Projections->GetPixel(ix).GetElement(s)); it++; } profiles.push_back(profile); } } m_IndividualProfiles = profiles; // Now create the group averages (every group contains m fibers * n_i group members std::vector< std::pair >::iterator it; it = m_Groups.begin(); int c = 0; //the current profile number // Calculate the group averages std::vector< std::vector > groupProfiles; while(it != m_Groups.end() && profiles.size() > 0) { std::pair p = *it; int size = p.second; //initialize a vector of the right length with zeroes std::vector averageProfile; for(int i=0; i > groupProfiles = CalculateGroupProfilesFibers(tbssImage, fib, startRoi, endRoi, number); Plot(groupProfiles); } - -void QmitkTbssRoiAnalysisWidget::PlotFiberBundles(TractContainerType tracts, mitk::Image *img, bool avg) +template +void QmitkTbssRoiAnalysisWidget::PlotFiberBundles(const mitk::PixelType ptype, TractContainerType tracts, mitk::Image *img, bool avg) { m_PlottingFiberBundle = true; this->Clear(); std::vector::iterator it = tracts.begin(); std::vector< std::vector > profiles; + mitk::ImagePixelReadAccessor imAccess(img,img->GetVolumeData(0)); + it = tracts.begin(); while(it != tracts.end()) { TractType tract = *it; TractType::iterator tractIt = tract.begin(); std::vector profile; while(tractIt != tract.end()) { PointType p = *tractIt; // Get value from image - profile.push_back( (mitk::ScalarType)img->GetPixelValueByWorldCoordinate(p) ); + profile.push_back( (mitk::ScalarType) imAccess.GetPixelByWorldCoordinates(p) ); ++tractIt; } profiles.push_back(profile); std::cout << std::endl; ++it; } if(profiles.size() == 0) return; m_IndividualProfiles = profiles; std::string title = "Fiber bundle plot"; this->SetPlotTitle( title.c_str() ); // initialize average profile std::vector averageProfile; std::vector profile = profiles.at(0); // can do this because we checked the size of profiles before for(int i=0; i >::iterator profit = profiles.begin(); int id=0; while(profit != profiles.end()) { std::vector profile = *profit; std::vector xAxis; for(int i=0; iInsertCurve( "" ); this->SetCurveData( curveId, xAxis, profile ); ++profit; id++; } m_Average = averageProfile; if(avg) { // Draw the average profile std::vector xAxis; for(int i=0; iInsertCurve( "" ); this->SetCurveData( curveId, xAxis, averageProfile ); QPen pen( Qt::SolidLine ); pen.setWidth(3); pen.setColor(Qt::red); this->SetCurvePen( curveId, pen ); id++; } this->Replot(); } void QmitkTbssRoiAnalysisWidget::drawBar(int x) { m_Plot->detachItems(QwtPlotItem::Rtti_PlotMarker, true); QwtPlotMarker *mX = new QwtPlotMarker(); //mX->setLabel(QString::fromLatin1("selected point")); mX->setLabelAlignment(Qt::AlignLeft | Qt::AlignBottom); mX->setLabelOrientation(Qt::Vertical); mX->setLineStyle(QwtPlotMarker::VLine); mX->setLinePen(QPen(Qt::black, 0, Qt::SolidLine)); mX->setXValue(x); mX->attach(m_Plot); this->Replot(); } QmitkTbssRoiAnalysisWidget::~QmitkTbssRoiAnalysisWidget() { delete m_PlotPicker; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.h b/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.h index af9127a808..162ce829d8 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/QmitkTbssRoiAnalysisWidget.h @@ -1,229 +1,230 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkTbssRoiAnalysisWidget_H_ #define QmitkTbssRoiAnalysisWidget_H_ #include "QmitkPlotWidget.h" #include #include #include #include typedef itk::VectorImage VectorImageType; typedef std::vector< itk::Index<3> > RoiType; typedef mitk::Point3D PointType; typedef std::vector< PointType> TractType; typedef std::vector< TractType > TractContainerType; class QwtPlotPicker; /** * \brief Plot widget for TBSS Data * This widget can plot regions of interest on TBSS projection data. The projection data is created by importing FSL TBSS subject data and * completing it with patient data using the QmitkTractbasedSpatialStatisticsView. * The region of interest is a vector of indices from which data for plotting should be obtained. */ class DIFFUSIONIMAGING_EXPORT QmitkTbssRoiAnalysisWidget : public QmitkPlotWidget { Q_OBJECT public: QmitkTbssRoiAnalysisWidget( QWidget * parent); virtual ~QmitkTbssRoiAnalysisWidget(); /* \brief Set group information as a vector of pairs of group name and number of group members */ void SetGroups(std::vector< std::pair > groups) { m_Groups = groups; } /* \brief Draws the group averaged profiles */ void DrawProfiles(); void PlotFiber4D(mitk::TbssImage::Pointer tbssImage, mitk::FiberBundleX *fib, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi, int number); - void PlotFiberBundles(TractContainerType tracts, mitk::Image* img, bool avg=false); + template + void PlotFiberBundles(const mitk::PixelType, TractContainerType tracts, mitk::Image* img, bool avg=false); /* \brief Sets the projections of the individual subjects */ void SetProjections(VectorImageType::Pointer projections) { m_Projections = projections; } /* \brief Set the region of interest*/ void SetRoi(RoiType roi) { m_Roi = roi; } /* \brief Set structure information to display in the plot */ void SetStructure(std::string structure) { m_Structure = structure; } /* \brief Set measurement type for display in the plot */ void SetMeasure(std::string measure) { m_Measure = measure; } /* \brief Draws a bar to indicate were the user clicked in the plot */ void drawBar(int x); /* \brief Returns the values of the group averaged profiles */ std::vector > GetVals() { return m_Vals; } /* \brief Returns the values of the individual subjects profiles */ std::vector > GetIndividualProfiles() { return m_IndividualProfiles; } std::vector GetAverageProfile() { return m_Average; } void SetPlottingFiber(bool b) { m_PlottingFiberBundle = b; } bool IsPlottingFiber() { return m_PlottingFiberBundle; } void PlotFiberBetweenRois(mitk::FiberBundleX *fib, mitk::Image* img, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi, bool avg=-1, int number=25); // Takes an index which is an x coordinate from the plot and finds the corresponding position in world space mitk::Point3D GetPositionInWorld(int index); void ModifyPlot(int number, bool avg); QwtPlotPicker* m_PlotPicker; protected: mitk::FiberBundleX* m_Fib; std::vector< std::vector > m_Vals; std::vector< std::vector > m_IndividualProfiles; std::vector< double > m_Average; std::vector< std::vector > CalculateGroupProfiles(); std::vector< std::vector > CalculateGroupProfilesFibers(mitk::TbssImage::Pointer tbssImage, mitk::FiberBundleX *fib, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi, int number); void Plot(std::vector > groupProfiles); void Tokenize(const std::string& str, std::vector& tokens, const std::string& delimiters = " ") { // Skip delimiters at beginning. std::string::size_type lastPos = str.find_first_not_of(delimiters, 0); // Find first "non-delimiter". std::string::size_type pos = str.find_first_of(delimiters, lastPos); while (std::string::npos != pos || std::string::npos != lastPos) { // Found a token, add it to the vector. tokens.push_back(str.substr(lastPos, pos - lastPos)); // Skip delimiters. Note the "not_of" lastPos = str.find_first_not_of(delimiters, pos); // Find next "non-delimiter" pos = str.find_first_of(delimiters, lastPos); } } std::vector< std::pair > m_Groups; VectorImageType::Pointer m_Projections; RoiType m_Roi; std::string m_Structure; std::string m_Measure; bool m_PlottingFiberBundle; // true when the plot results from a fiber tracking result (vtk .fib file) // Resample a collection of tracts so that every tract contains #number equidistant samples TractContainerType ParameterizeTracts(TractContainerType tracts, int number); TractContainerType m_CurrentTracts; mitk::Image* m_CurrentImage; mitk::TbssImage* m_CurrentTbssImage; mitk::PlanarFigure* m_CurrentStartRoi; mitk::PlanarFigure* m_CurrentEndRoi; void DoPlotFiberBundles(mitk::FiberBundleX *fib, mitk::Image* img, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi, bool avg=false, int number=25); /* \brief Creates tracts from a mitk::FiberBundleX and two planar figures indicating the start end end point */ TractContainerType CreateTracts(mitk::FiberBundleX *fib, mitk::PlanarFigure* startRoi, mitk::PlanarFigure* endRoi); }; #endif