diff --git a/Core/Code/Controllers/mitkLimitedLinearUndo.cpp b/Core/Code/Controllers/mitkLimitedLinearUndo.cpp index 7ac276d8ec..a0c141d519 100644 --- a/Core/Code/Controllers/mitkLimitedLinearUndo.cpp +++ b/Core/Code/Controllers/mitkLimitedLinearUndo.cpp @@ -1,212 +1,214 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkLimitedLinearUndo.h" #include mitk::LimitedLinearUndo::LimitedLinearUndo() { // nothing to do } mitk::LimitedLinearUndo::~LimitedLinearUndo() { //delete undo and redo list this->ClearList(&m_UndoList); this->ClearList(&m_RedoList); } void mitk::LimitedLinearUndo::ClearList(UndoContainer* list) { while(!list->empty()) { UndoStackItem* item = list->back(); list->pop_back(); delete item; } } bool mitk::LimitedLinearUndo::SetOperationEvent(UndoStackItem* stackItem) { OperationEvent* operationEvent = dynamic_cast(stackItem); if (!operationEvent) return false; // clear the redolist, if a new operation is saved if (!m_RedoList.empty()) { this->ClearList(&m_RedoList); InvokeEvent( RedoEmptyEvent() ); } m_UndoList.push_back(operationEvent); InvokeEvent( UndoNotEmptyEvent() ); return true; } bool mitk::LimitedLinearUndo::Undo(bool fine) { if (fine) { // undo one object event ID return Undo(); } else { // undo one group event ID int oeid = FirstObjectEventIdOfCurrentGroup(m_UndoList); // get the Object Event ID of the first item with a differnt Group ID (as seen from the end of stack) return Undo(oeid); } } bool mitk::LimitedLinearUndo::Undo() { if(m_UndoList.empty()) return false; int undoObjectEventId = m_UndoList.back()->GetObjectEventId(); return Undo( undoObjectEventId ); } bool mitk::LimitedLinearUndo::Undo(int oeid) { if(m_UndoList.empty()) return false; + bool rc = true; do { m_UndoList.back()->ReverseAndExecute(); m_RedoList.push_back(m_UndoList.back()); // move to redo stack m_UndoList.pop_back(); InvokeEvent( RedoNotEmptyEvent() ); if (m_UndoList.empty()) { InvokeEvent( UndoEmptyEvent() ); - return false; + rc = false; + break; } } while ( m_UndoList.back()->GetObjectEventId() >= oeid ); //Update. Check Rendering Mechanism where to request updates mitk::RenderingManager::GetInstance()->RequestUpdateAll(); - return true; + return rc; } bool mitk::LimitedLinearUndo::Redo(bool) { return Redo(); } bool mitk::LimitedLinearUndo::Redo() { if (m_RedoList.empty()) return false; int redoObjectEventId = m_RedoList.back()->GetObjectEventId(); return Redo( redoObjectEventId ); } bool mitk::LimitedLinearUndo::Redo(int oeid) { if (m_RedoList.empty()) return false; do { m_RedoList.back()->ReverseAndExecute(); m_UndoList.push_back(m_RedoList.back()); m_RedoList.pop_back(); InvokeEvent( UndoNotEmptyEvent() ); if (m_RedoList.empty()) { InvokeEvent( RedoEmptyEvent() ); break; } } while ( m_RedoList.back()->GetObjectEventId() <= oeid ); //Update. This should belong into the ExecuteOperation() of OperationActors, but it seems not to be used everywhere mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return true; } void mitk::LimitedLinearUndo::Clear() { this->ClearList(&m_UndoList); InvokeEvent( UndoEmptyEvent() ); this->ClearList(&m_RedoList); InvokeEvent( RedoEmptyEvent() ); } void mitk::LimitedLinearUndo::ClearRedoList() { this->ClearList(&m_RedoList); InvokeEvent( RedoEmptyEvent() ); } bool mitk::LimitedLinearUndo::RedoListEmpty() { return m_RedoList.empty(); } int mitk::LimitedLinearUndo::GetLastObjectEventIdInList() { return m_UndoList.back()->GetObjectEventId(); } int mitk::LimitedLinearUndo::GetLastGroupEventIdInList() { return m_UndoList.back()->GetGroupEventId(); } mitk::OperationEvent* mitk::LimitedLinearUndo::GetLastOfType(OperationActor* destination, OperationType opType) { // When/where is this function needed? In CoordinateSupplier... for ( UndoContainerRevIter iter = m_UndoList.rbegin(); iter != m_UndoList.rend(); ++iter ) { OperationEvent* opEvent = dynamic_cast(*iter); if (!opEvent) continue; if ( opEvent->GetOperation() != NULL && opEvent->GetOperation()->GetOperationType() == opType && opEvent->IsValid() && opEvent->GetDestination() == destination ) return opEvent; } return NULL; } int mitk::LimitedLinearUndo::FirstObjectEventIdOfCurrentGroup(mitk::LimitedLinearUndo::UndoContainer& stack) { int currentGroupEventId = stack.back()->GetGroupEventId(); int firstObjectEventId = -1; for ( UndoContainerRevIter iter = stack.rbegin(); iter != stack.rend(); ++iter ) { if ( (*iter)->GetGroupEventId() == currentGroupEventId ) { firstObjectEventId = (*iter)->GetObjectEventId(); } else break; } return firstObjectEventId; } diff --git a/Core/Code/Controllers/mitkSliceNavigationController.cpp b/Core/Code/Controllers/mitkSliceNavigationController.cpp index b4ad225341..95f74095a1 100644 --- a/Core/Code/Controllers/mitkSliceNavigationController.cpp +++ b/Core/Code/Controllers/mitkSliceNavigationController.cpp @@ -1,840 +1,836 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSliceNavigationController.h" #include "mitkBaseRenderer.h" #include "mitkSlicedGeometry3D.h" #include "mitkPlaneGeometry.h" #include "mitkOperation.h" #include "mitkOperationActor.h" #include "mitkStateEvent.h" #include "mitkCrosshairPositionEvent.h" #include "mitkPositionEvent.h" #include "mitkProportionalTimeGeometry.h" #include "mitkInteractionConst.h" #include "mitkAction.h" #include "mitkGlobalInteraction.h" #include "mitkEventMapper.h" #include "mitkFocusManager.h" #include "mitkVtkPropRenderer.h" #include "mitkRenderingManager.h" #include "mitkInteractionConst.h" #include "mitkPointOperation.h" #include "mitkPlaneOperation.h" #include "mitkUndoController.h" #include "mitkOperationEvent.h" #include "mitkNodePredicateDataType.h" #include "mitkStatusBar.h" #include "mitkApplyTransformMatrixOperation.h" #include "mitkMemoryUtilities.h" #include namespace mitk { - SliceNavigationController::SliceNavigationController( const char *type ) : BaseController( type ), m_InputWorldGeometry3D( NULL ), m_InputWorldTimeGeometry( NULL ), m_CreatedWorldGeometry( NULL ), m_ViewDirection( Axial ), m_DefaultViewDirection( Axial ), m_RenderingManager( NULL ), m_Renderer( NULL ), m_Top( false ), m_FrontSide( false ), m_Rotated( false ), m_BlockUpdate( false ), m_SliceLocked( false ), m_SliceRotationLocked( false ), m_OldPos(0) { typedef itk::SimpleMemberCommand< SliceNavigationController > SNCCommandType; SNCCommandType::Pointer sliceStepperChangedCommand, timeStepperChangedCommand; sliceStepperChangedCommand = SNCCommandType::New(); timeStepperChangedCommand = SNCCommandType::New(); sliceStepperChangedCommand->SetCallbackFunction( this, &SliceNavigationController::SendSlice ); timeStepperChangedCommand->SetCallbackFunction( this, &SliceNavigationController::SendTime ); m_Slice->AddObserver( itk::ModifiedEvent(), sliceStepperChangedCommand ); m_Time->AddObserver( itk::ModifiedEvent(), timeStepperChangedCommand ); m_Slice->SetUnitName( "mm" ); m_Time->SetUnitName( "ms" ); m_Top = false; m_FrontSide = false; m_Rotated = false; } SliceNavigationController::~SliceNavigationController() { } void SliceNavigationController::SetInputWorldGeometry3D( const BaseGeometry *geometry ) { if ( geometry != NULL ) { if ( const_cast< BoundingBox * >( geometry->GetBoundingBox()) ->GetDiagonalLength2() < eps ) { itkWarningMacro( "setting an empty bounding-box" ); geometry = NULL; } } if ( m_InputWorldGeometry3D != geometry ) { m_InputWorldGeometry3D = geometry; m_InputWorldTimeGeometry = NULL; this->Modified(); } } void SliceNavigationController::SetInputWorldTimeGeometry( const TimeGeometry *geometry ) { if ( geometry != NULL ) { if ( const_cast< BoundingBox * >( geometry->GetBoundingBoxInWorld()) ->GetDiagonalLength2() < eps ) { itkWarningMacro( "setting an empty bounding-box" ); geometry = NULL; } } if ( m_InputWorldTimeGeometry != geometry ) { m_InputWorldTimeGeometry = geometry; m_InputWorldGeometry3D = NULL; this->Modified(); } } RenderingManager * SliceNavigationController::GetRenderingManager() const { mitk::RenderingManager* renderingManager = m_RenderingManager.GetPointer(); if (renderingManager != NULL) return renderingManager; if ( m_Renderer != NULL ) { renderingManager = m_Renderer->GetRenderingManager(); if (renderingManager != NULL) return renderingManager; } return mitk::RenderingManager::GetInstance(); } void SliceNavigationController::SetViewDirectionToDefault() { m_ViewDirection = m_DefaultViewDirection; } const char* SliceNavigationController::GetViewDirectionAsString() { const char* viewDirectionString; switch(m_ViewDirection) { case 0: viewDirectionString = "Axial"; break; case 1: viewDirectionString = "Sagittal"; break; case 2: viewDirectionString = "Frontal"; break; case 3: viewDirectionString = "Original"; break; default: viewDirectionString = "No View Direction Available"; break; } return viewDirectionString; } void SliceNavigationController::Update() { if ( !m_BlockUpdate ) { if ( m_ViewDirection == Axial ) { this->Update( Axial, false, false, true ); } else { this->Update( m_ViewDirection ); } } } void SliceNavigationController::Update( SliceNavigationController::ViewDirection viewDirection, bool top, bool frontside, bool rotated ) { TimeGeometry::ConstPointer worldTimeGeometry = m_InputWorldTimeGeometry; if( m_BlockUpdate || ( m_InputWorldTimeGeometry.IsNull() && m_InputWorldGeometry3D.IsNull() ) || ( (worldTimeGeometry.IsNotNull()) && (worldTimeGeometry->CountTimeSteps() == 0) ) ) { return; } m_BlockUpdate = true; if ( m_InputWorldTimeGeometry.IsNotNull() && m_LastUpdateTime < m_InputWorldTimeGeometry->GetMTime() ) { Modified(); } if ( m_InputWorldGeometry3D.IsNotNull() && m_LastUpdateTime < m_InputWorldGeometry3D->GetMTime() ) { Modified(); } this->SetViewDirection( viewDirection ); this->SetTop( top ); this->SetFrontSide( frontside ); this->SetRotated( rotated ); if ( m_LastUpdateTime < GetMTime() ) { m_LastUpdateTime = GetMTime(); // initialize the viewplane SlicedGeometry3D::Pointer slicedWorldGeometry = NULL; BaseGeometry::ConstPointer currentGeometry = NULL; if (m_InputWorldTimeGeometry.IsNotNull()) if (m_InputWorldTimeGeometry->IsValidTimeStep(GetTime()->GetPos())) currentGeometry = m_InputWorldTimeGeometry->GetGeometryForTimeStep(GetTime()->GetPos()); else currentGeometry = m_InputWorldTimeGeometry->GetGeometryForTimeStep(0); else currentGeometry = m_InputWorldGeometry3D; m_CreatedWorldGeometry = NULL; switch ( viewDirection ) { case Original: if ( worldTimeGeometry.IsNotNull()) { m_CreatedWorldGeometry = worldTimeGeometry->Clone(); worldTimeGeometry = m_CreatedWorldGeometry.GetPointer(); slicedWorldGeometry = dynamic_cast< SlicedGeometry3D * >( m_CreatedWorldGeometry->GetGeometryForTimeStep( this->GetTime()->GetPos() ).GetPointer() ); if ( slicedWorldGeometry.IsNotNull() ) { break; } } else { const SlicedGeometry3D *worldSlicedGeometry = dynamic_cast< const SlicedGeometry3D * >( currentGeometry.GetPointer()); if ( worldSlicedGeometry != NULL ) { slicedWorldGeometry = static_cast< SlicedGeometry3D * >( currentGeometry->Clone().GetPointer()); break; } } //else: use Axial: no "break" here!! case Axial: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes( currentGeometry, PlaneGeometry::Axial, top, frontside, rotated ); slicedWorldGeometry->SetSliceNavigationController( this ); break; case Frontal: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes( currentGeometry, PlaneGeometry::Frontal, top, frontside, rotated ); slicedWorldGeometry->SetSliceNavigationController( this ); break; case Sagittal: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes( currentGeometry, PlaneGeometry::Sagittal, top, frontside, rotated ); slicedWorldGeometry->SetSliceNavigationController( this ); break; default: itkExceptionMacro("unknown ViewDirection"); } m_Slice->SetPos( 0 ); m_Slice->SetSteps( (int)slicedWorldGeometry->GetSlices() ); if ( m_CreatedWorldGeometry.IsNull() ) { // initialize TimeGeometry m_CreatedWorldGeometry = ProportionalTimeGeometry::New(); } if ( worldTimeGeometry.IsNull()) { m_CreatedWorldGeometry = ProportionalTimeGeometry::New(); dynamic_cast(m_CreatedWorldGeometry.GetPointer())->Initialize(slicedWorldGeometry, 1); m_Time->SetSteps( 0 ); m_Time->SetPos( 0 ); m_Time->InvalidateRange(); } else { m_BlockUpdate = true; m_Time->SetSteps( worldTimeGeometry->CountTimeSteps() ); m_Time->SetPos( 0 ); const TimeBounds &timeBounds = worldTimeGeometry->GetTimeBounds(); m_Time->SetRange( timeBounds[0], timeBounds[1] ); m_BlockUpdate = false; assert( worldTimeGeometry->GetGeometryForTimeStep( this->GetTime()->GetPos() ).IsNotNull() ); - slicedWorldGeometry->SetTimeBounds( - worldTimeGeometry->GetGeometryForTimeStep( this->GetTime()->GetPos() )->GetTimeBounds() ); + TimePointType minimumTimePoint = worldTimeGeometry->TimeStepToTimePoint(this->GetTime()->GetPos()); + TimePointType stepDuration = worldTimeGeometry->TimeStepToTimePoint(this->GetTime()->GetPos()+1)-worldTimeGeometry->TimeStepToTimePoint(this->GetTime()->GetPos()); //@todo implement for non-evenly-timed geometry! m_CreatedWorldGeometry = ProportionalTimeGeometry::New(); dynamic_cast(m_CreatedWorldGeometry.GetPointer())->Initialize(slicedWorldGeometry, worldTimeGeometry->CountTimeSteps()); + dynamic_cast(m_CreatedWorldGeometry.GetPointer())->GetMinimumTimePoint(minimumTimePoint); + dynamic_cast(m_CreatedWorldGeometry.GetPointer())->SetStepDuration(stepDuration); } } // unblock update; we may do this now, because if m_BlockUpdate was already // true before this method was entered, then we will never come here. m_BlockUpdate = false; // Send the geometry. Do this even if nothing was changed, because maybe // Update() was only called to re-send the old geometry and time/slice data. this->SendCreatedWorldGeometry(); this->SendSlice(); this->SendTime(); // Adjust the stepper range of slice stepper according to geometry this->AdjustSliceStepperRange(); } void SliceNavigationController::SendCreatedWorldGeometry() { // Send the geometry. Do this even if nothing was changed, because maybe // Update() was only called to re-send the old geometry. if ( !m_BlockUpdate ) { this->InvokeEvent( GeometrySendEvent(m_CreatedWorldGeometry, 0) ); } } void SliceNavigationController::SendCreatedWorldGeometryUpdate() { if ( !m_BlockUpdate ) { this->InvokeEvent( GeometryUpdateEvent(m_CreatedWorldGeometry, m_Slice->GetPos()) ); } } void SliceNavigationController::SendSlice() { if ( !m_BlockUpdate ) { if ( m_CreatedWorldGeometry.IsNotNull() ) { this->InvokeEvent( GeometrySliceEvent(m_CreatedWorldGeometry, m_Slice->GetPos()) ); // send crosshair event crosshairPositionEvent.Send(); // Request rendering update for all views this->GetRenderingManager()->RequestUpdateAll(); } } } void SliceNavigationController::SendTime() { if ( !m_BlockUpdate ) { if ( m_CreatedWorldGeometry.IsNotNull() ) { this->InvokeEvent( GeometryTimeEvent(m_CreatedWorldGeometry, m_Time->GetPos()) ); // Request rendering update for all views this->GetRenderingManager()->RequestUpdateAll(); } } } void SliceNavigationController::SetGeometry( const itk::EventObject & ) { } void SliceNavigationController ::SetGeometryTime( const itk::EventObject &geometryTimeEvent ) { const SliceNavigationController::GeometryTimeEvent *timeEvent = dynamic_cast< const SliceNavigationController::GeometryTimeEvent * >( &geometryTimeEvent); assert( timeEvent != NULL ); TimeGeometry *timeGeometry = timeEvent->GetTimeGeometry(); assert( timeGeometry != NULL ); if ( m_CreatedWorldGeometry.IsNotNull() ) { int timeStep = (int) timeEvent->GetPos(); ScalarType timeInMS; timeInMS = timeGeometry->TimeStepToTimePoint( timeStep ); timeStep = m_CreatedWorldGeometry->TimePointToTimeStep( timeInMS ); this->GetTime()->SetPos( timeStep ); } } void SliceNavigationController ::SetGeometrySlice(const itk::EventObject & geometrySliceEvent) { const SliceNavigationController::GeometrySliceEvent* sliceEvent = dynamic_cast( &geometrySliceEvent); assert(sliceEvent!=NULL); this->GetSlice()->SetPos(sliceEvent->GetPos()); } void SliceNavigationController::SelectSliceByPoint( const Point3D &point ) { //@todo add time to PositionEvent and use here!! SlicedGeometry3D* slicedWorldGeometry = dynamic_cast< SlicedGeometry3D * >( m_CreatedWorldGeometry->GetGeometryForTimeStep( this->GetTime()->GetPos() ).GetPointer() ); if ( slicedWorldGeometry ) { int bestSlice = -1; double bestDistance = itk::NumericTraits::max(); int s, slices; slices = slicedWorldGeometry->GetSlices(); if ( slicedWorldGeometry->GetEvenlySpaced() ) { mitk::PlaneGeometry *plane = slicedWorldGeometry->GetPlaneGeometry( 0 ); const Vector3D &direction = slicedWorldGeometry->GetDirectionVector(); Point3D projectedPoint; plane->Project( point, projectedPoint ); // Check whether the point is somewhere within the slice stack volume; // otherwise, the defualt slice (0) will be selected if ( direction[0] * (point[0] - projectedPoint[0]) + direction[1] * (point[1] - projectedPoint[1]) + direction[2] * (point[2] - projectedPoint[2]) >= 0 ) { bestSlice = (int)(plane->Distance( point ) / slicedWorldGeometry->GetSpacing()[2] + 0.5); } } else { Point3D projectedPoint; for ( s = 0; s < slices; ++s ) { slicedWorldGeometry->GetPlaneGeometry( s )->Project( point, projectedPoint ); Vector3D distance = projectedPoint - point; ScalarType currentDistance = distance.GetSquaredNorm(); if ( currentDistance < bestDistance ) { bestDistance = currentDistance; bestSlice = s; } } } if ( bestSlice >= 0 ) { this->GetSlice()->SetPos( bestSlice ); } else { this->GetSlice()->SetPos( 0 ); } this->SendCreatedWorldGeometryUpdate(); } } void SliceNavigationController::ReorientSlices( const Point3D &point, const Vector3D &normal ) { PlaneOperation op( OpORIENT, point, normal ); m_CreatedWorldGeometry->ExecuteOperation( &op ); this->SendCreatedWorldGeometryUpdate(); } void SliceNavigationController::ReorientSlices(const mitk::Point3D &point, const mitk::Vector3D &axisVec0, const mitk::Vector3D &axisVec1 ) { PlaneOperation op( OpORIENT, point, axisVec0, axisVec1 ); m_CreatedWorldGeometry->ExecuteOperation( &op ); this->SendCreatedWorldGeometryUpdate(); } mitk::TimeGeometry * SliceNavigationController::GetCreatedWorldGeometry() { return m_CreatedWorldGeometry; } const mitk::BaseGeometry * SliceNavigationController::GetCurrentGeometry3D() { if ( m_CreatedWorldGeometry.IsNotNull() ) { return m_CreatedWorldGeometry->GetGeometryForTimeStep( this->GetTime()->GetPos() ); } else { return NULL; } } const mitk::PlaneGeometry * SliceNavigationController::GetCurrentPlaneGeometry() { const mitk::SlicedGeometry3D *slicedGeometry = dynamic_cast< const mitk::SlicedGeometry3D * > ( this->GetCurrentGeometry3D() ); if ( slicedGeometry ) { const mitk::PlaneGeometry *planeGeometry = dynamic_cast< mitk::PlaneGeometry * > ( slicedGeometry->GetPlaneGeometry(this->GetSlice()->GetPos()) ); return planeGeometry; } else { return NULL; } } void SliceNavigationController::SetRenderer( BaseRenderer *renderer ) { m_Renderer = renderer; } BaseRenderer * SliceNavigationController::GetRenderer() const { return m_Renderer; } void SliceNavigationController::AdjustSliceStepperRange() { const mitk::SlicedGeometry3D *slicedGeometry = dynamic_cast< const mitk::SlicedGeometry3D * > ( this->GetCurrentGeometry3D() ); const Vector3D &direction = slicedGeometry->GetDirectionVector(); int c = 0; int i, k = 0; for ( i = 0; i < 3; ++i ) { if ( fabs(direction[i]) < 0.000000001 ) { ++c; } else { k = i; } } if ( c == 2 ) { ScalarType min = slicedGeometry->GetOrigin()[k]; ScalarType max = min + slicedGeometry->GetExtentInMM( k ); m_Slice->SetRange( min, max ); } else { m_Slice->InvalidateRange(); } - } void SliceNavigationController::ExecuteOperation( Operation *operation ) { // switch on type // - select best slice for a given point // - rotate created world geometry according to Operation->SomeInfo() if ( !operation ) { return; } switch ( operation->GetOperationType() ) { case OpMOVE: // should be a point operation { if ( !m_SliceLocked ) //do not move the cross position { // select a slice PointOperation *po = dynamic_cast< PointOperation * >( operation ); if ( po && po->GetIndex() == -1 ) { this->SelectSliceByPoint( po->GetPoint() ); } else if ( po && po->GetIndex() != -1 ) // undo case because index != -1, index holds the old position of this slice { this->GetSlice()->SetPos( po->GetIndex() ); } } break; } case OpRESTOREPLANEPOSITION: { m_CreatedWorldGeometry->ExecuteOperation( operation ); this->SendCreatedWorldGeometryUpdate(); break; } case OpAPPLYTRANSFORMMATRIX: { m_CreatedWorldGeometry->ExecuteOperation( operation ); this->SendCreatedWorldGeometryUpdate(); break; } default: { // do nothing break; } } } mitk::DataNode::Pointer SliceNavigationController::GetTopLayerNode(mitk::DataStorage::SetOfObjects::ConstPointer nodes,mitk::Point3D worldposition) { mitk::DataNode::Pointer node; int maxlayer = -32768; bool isHelper (false); if(nodes.IsNotNull()) { for (unsigned int x = 0; x < nodes->size(); x++) { nodes->at(x)->GetBoolProperty("helper object", isHelper); if(nodes->at(x)->GetData()->GetGeometry()->IsInside(worldposition) && isHelper == false) { int layer = 0; if(!(nodes->at(x)->GetIntProperty("layer", layer))) continue; if(layer > maxlayer) { if(static_cast(nodes->at(x))->IsVisible(m_Renderer)) { node = nodes->at(x); maxlayer = layer; } } } } } return node; } // Relict from the old times, when automous decisions were accepted // behavior. Remains in here, because some RenderWindows do exist outside // of StdMultiWidgets. bool SliceNavigationController ::ExecuteAction( Action* action, StateEvent const* stateEvent ) { bool ok = false; const PositionEvent* posEvent = dynamic_cast< const PositionEvent * >( stateEvent->GetEvent() ); if ( posEvent != NULL ) { if ( m_CreatedWorldGeometry.IsNull() ) { return true; } switch (action->GetActionId()) { case AcMOVE: { BaseRenderer *baseRenderer = posEvent->GetSender(); if ( !baseRenderer ) { baseRenderer = const_cast( GlobalInteraction::GetInstance()->GetFocus() ); } if ( baseRenderer ) if ( baseRenderer->GetMapperID() == 1 ) { PointOperation doOp(OpMOVE, posEvent->GetWorldPosition()); this->ExecuteOperation( &doOp ); // If click was performed in this render window than we have to update the status bar information about position and pixel value. if(baseRenderer == m_Renderer) { { std::string statusText; TNodePredicateDataType::Pointer isImageData = TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer nodes = baseRenderer->GetDataStorage()->GetSubset(isImageData).GetPointer(); mitk::Point3D worldposition = posEvent->GetWorldPosition(); //int maxlayer = -32768; mitk::Image::Pointer image3D; mitk::DataNode::Pointer node; mitk::DataNode::Pointer topSourceNode; bool isBinary (false); node = this->GetTopLayerNode(nodes,worldposition); if(node.IsNotNull()) { node->GetBoolProperty("binary", isBinary); if(isBinary) { mitk::DataStorage::SetOfObjects::ConstPointer sourcenodes = baseRenderer->GetDataStorage()->GetSources(node, NULL, true); if(!sourcenodes->empty()) { topSourceNode = this->GetTopLayerNode(sourcenodes,worldposition); } if(topSourceNode.IsNotNull()) { image3D = dynamic_cast(topSourceNode->GetData()); } else { image3D = dynamic_cast(node->GetData()); } } else { image3D = dynamic_cast(node->GetData()); } } std::stringstream stream; stream.imbue(std::locale::classic()); // get the position and gray value from the image and build up status bar text if(image3D.IsNotNull()) { Index3D p; image3D->GetGeometry()->WorldToIndex(worldposition, p); stream.precision(2); stream<<"Position: <" << std::fixed < mm"; stream<<"; Index: <"< "; mitk::ScalarType pixelValue = image3D->GetPixelValueByIndex(p, baseRenderer->GetTimeStep()); if (fabs(pixelValue)>1000000 || fabs(pixelValue) < 0.01) { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: " << std::scientific<< pixelValue <<" "; } else { stream<<"; Time: " << baseRenderer->GetTime() << " ms; Pixelvalue: "<< pixelValue <<" "; } } else { stream << "No image information at this position!"; } statusText = stream.str(); mitk::StatusBar::GetInstance()->DisplayGreyValueText(statusText.c_str()); - } - } ok = true; break; } } default: ok = true; break; } return ok; } const DisplayPositionEvent *displPosEvent = dynamic_cast< const DisplayPositionEvent * >( stateEvent->GetEvent() ); if ( displPosEvent != NULL ) { return true; } return false; } - } // namespace - diff --git a/Core/Code/DataManagement/mitkBaseData.cpp b/Core/Code/DataManagement/mitkBaseData.cpp index e2a7530b25..7504bdb97c 100644 --- a/Core/Code/DataManagement/mitkBaseData.cpp +++ b/Core/Code/DataManagement/mitkBaseData.cpp @@ -1,298 +1,292 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkBaseData.h" #include #include #include #include mitk::BaseData::BaseData() : m_RequestedRegionInitialized(false), m_SourceOutputIndexDuplicate(0), m_Initialized(true) { m_TimeGeometry = mitk::ProportionalTimeGeometry::New(); m_PropertyList = PropertyList::New(); } mitk::BaseData::BaseData( const BaseData &other ): itk::DataObject(), mitk::OperationActor(), m_RequestedRegionInitialized(other.m_RequestedRegionInitialized), m_SourceOutputIndexDuplicate(other.m_SourceOutputIndexDuplicate), m_Initialized(other.m_Initialized) { m_TimeGeometry = dynamic_cast(other.m_TimeGeometry->Clone().GetPointer()); m_PropertyList = other.m_PropertyList->Clone(); } mitk::BaseData::~BaseData() { } void mitk::BaseData::InitializeTimeGeometry(unsigned int timeSteps) { mitk::Geometry3D::Pointer geo3D = mitk::Geometry3D::New(); mitk::BaseGeometry::Pointer baseGeo = dynamic_cast(geo3D.GetPointer()); baseGeo->Initialize(); - if ( timeSteps > 1 ) - { - mitk::ScalarType timeBounds[] = {0.0, 1.0}; - baseGeo->SetTimeBounds( timeBounds ); - } - // The geometry is propagated automatically to the other items, // if EvenlyTimed is true... //Old timeGeometry->InitializeEvenlyTimed( g3d.GetPointer(), timeSteps ); TimeGeometry::Pointer timeGeometry = this->GetTimeGeometry(); timeGeometry->Initialize(); timeGeometry->Expand(timeSteps); for (TimeStepType step = 0; step < timeSteps; ++step) { timeGeometry->SetTimeStepGeometry(baseGeo.GetPointer(),step); } } void mitk::BaseData::UpdateOutputInformation() { if ( this->GetSource() ) { this->GetSource()->UpdateOutputInformation(); } if (m_TimeGeometry.IsNotNull()) { m_TimeGeometry->UpdateBoundingBox(); } } const mitk::TimeGeometry* mitk::BaseData::GetUpdatedTimeGeometry() { SetRequestedRegionToLargestPossibleRegion(); UpdateOutputInformation(); return GetTimeGeometry(); } void mitk::BaseData::Expand( unsigned int timeSteps ) { if (m_TimeGeometry.IsNotNull() ) { ProportionalTimeGeometry * propTimeGeometry = dynamic_cast (m_TimeGeometry.GetPointer()); if (propTimeGeometry) { propTimeGeometry->Expand(timeSteps); return; } mitkThrow() << "TimeGeometry is of an unkown Type. Could not expand it. "; } else { this->InitializeTimeGeometry(timeSteps); } } const mitk::BaseGeometry* mitk::BaseData::GetUpdatedGeometry(int t) { SetRequestedRegionToLargestPossibleRegion(); UpdateOutputInformation(); return GetGeometry(t); } void mitk::BaseData::SetGeometry(BaseGeometry* geometry) { ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); if(geometry!=NULL) { timeGeometry->Initialize(geometry, 1); } SetTimeGeometry(timeGeometry); return; } void mitk::BaseData::SetTimeGeometry(TimeGeometry* geometry) { m_TimeGeometry = geometry; this->Modified(); } void mitk::BaseData::SetClonedGeometry(const BaseGeometry* aGeometry3D) { SetGeometry(static_cast(aGeometry3D->Clone().GetPointer())); } void mitk::BaseData::SetClonedTimeGeometry(const TimeGeometry* geometry) { TimeGeometry::Pointer clonedGeometry = geometry->Clone(); SetTimeGeometry(clonedGeometry.GetPointer()); } void mitk::BaseData::SetClonedGeometry(const BaseGeometry* aGeometry3D, unsigned int time) { if (m_TimeGeometry) { m_TimeGeometry->SetTimeStepGeometry(static_cast(aGeometry3D->Clone().GetPointer()),time); } } bool mitk::BaseData::IsEmptyTimeStep(unsigned int) const { return IsInitialized() == false; } bool mitk::BaseData::IsEmpty() const { if(IsInitialized() == false) return true; const TimeGeometry* timeGeometry = const_cast(this)->GetUpdatedTimeGeometry(); if(timeGeometry == NULL) return true; unsigned int timeSteps = timeGeometry->CountTimeSteps(); for ( unsigned int t = 0 ; t < timeSteps ; ++t ) { if(IsEmptyTimeStep(t) == false) return false; } return true; } itk::SmartPointer mitk::BaseData::GetSource() const { return static_cast(Superclass::GetSource().GetPointer()); } mitk::PropertyList::Pointer mitk::BaseData::GetPropertyList() const { return m_PropertyList; } mitk::BaseProperty::Pointer mitk::BaseData::GetProperty(const char *propertyKey) const { return m_PropertyList->GetProperty(propertyKey); } void mitk::BaseData::SetProperty(const char *propertyKey, BaseProperty* propertyValue) { m_PropertyList->SetProperty(propertyKey, propertyValue); } void mitk::BaseData::SetPropertyList(PropertyList *pList) { m_PropertyList = pList; } void mitk::BaseData::SetOrigin(const mitk::Point3D& origin) { TimeGeometry* timeGeom = GetTimeGeometry(); assert (timeGeom != NULL); BaseGeometry* geometry; TimeStepType steps = timeGeom->CountTimeSteps(); for (TimeStepType timestep = 0; timestep < steps; ++timestep) { geometry = GetGeometry(timestep); if (geometry != NULL) { geometry->SetOrigin(origin); } } } unsigned long mitk::BaseData::GetMTime() const { unsigned long time = Superclass::GetMTime(); if(m_TimeGeometry.IsNotNull()) { if((time < m_TimeGeometry->GetMTime())) { Modified(); return Superclass::GetMTime(); } } return time; } void mitk::BaseData::Graft(const itk::DataObject*) { itkExceptionMacro(<< "Graft not implemented for mitk::BaseData subclass " << this->GetNameOfClass()) } void mitk::BaseData::CopyInformation( const itk::DataObject* data ) { const Self* bd = dynamic_cast(data); if (bd != NULL) { m_PropertyList = bd->GetPropertyList()->Clone(); if (bd->GetTimeGeometry()!=NULL) { m_TimeGeometry = bd->GetTimeGeometry()->Clone(); } } else { // pointer could not be cast back down; this can be the case if your filters input // and output objects differ in type; then you have to write your own GenerateOutputInformation method itkExceptionMacro(<< "mitk::BaseData::CopyInformation() cannot cast " << typeid(data).name() << " to " << typeid(Self*).name() ); } } bool mitk::BaseData::IsInitialized() const { return m_Initialized; } void mitk::BaseData::Clear() { this->ClearData(); this->InitializeEmpty(); } void mitk::BaseData::ClearData() { if(m_Initialized) { ReleaseData(); m_Initialized = false; } } void mitk::BaseData::ExecuteOperation(mitk::Operation* /*operation*/) { //empty by default. override if needed! } void mitk::BaseData::PrintSelf(std::ostream& os, itk::Indent indent) const { os << std::endl; os << indent << " TimeGeometry: "; if(GetTimeGeometry() == NULL) os << "NULL" << std::endl; else GetTimeGeometry()->Print(os, indent); } diff --git a/Core/Code/DataManagement/mitkDataStorage.cpp b/Core/Code/DataManagement/mitkDataStorage.cpp index 25d1fe3a0c..2da5168ca6 100644 --- a/Core/Code/DataManagement/mitkDataStorage.cpp +++ b/Core/Code/DataManagement/mitkDataStorage.cpp @@ -1,504 +1,502 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDataStorage.h" #include "mitkDataNode.h" #include "mitkProperties.h" #include "mitkNodePredicateBase.h" #include "mitkNodePredicateProperty.h" #include "mitkGroupTagProperty.h" #include "itkMutexLockHolder.h" #include "itkCommand.h" mitk::DataStorage::DataStorage() : itk::Object() , m_BlockNodeModifiedEvents(false) { } mitk::DataStorage::~DataStorage() { ///// we can not call GetAll() in destructor, because it is implemented in a subclass //SetOfObjects::ConstPointer all = this->GetAll(); //for (SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) // this->RemoveListeners(it->Value()); //m_NodeModifiedObserverTags.clear(); //m_NodeDeleteObserverTags.clear(); } void mitk::DataStorage::Add(mitk::DataNode* node, mitk::DataNode* parent) { mitk::DataStorage::SetOfObjects::Pointer parents = mitk::DataStorage::SetOfObjects::New(); if (parent != NULL) //< Return empty set if parent is null parents->InsertElement(0, parent); this->Add(node, parents); } void mitk::DataStorage::Remove(const mitk::DataStorage::SetOfObjects* nodes) { if (nodes == NULL) return; for (mitk::DataStorage::SetOfObjects::ConstIterator it = nodes->Begin(); it != nodes->End(); it++) this->Remove(it.Value()); } mitk::DataStorage::SetOfObjects::ConstPointer mitk::DataStorage::GetSubset(const NodePredicateBase* condition) const { mitk::DataStorage::SetOfObjects::ConstPointer result = this->FilterSetOfObjects(this->GetAll(), condition); return result; } mitk::DataNode* mitk::DataStorage::GetNamedNode(const char* name) const { if (name == NULL) return NULL; mitk::StringProperty::Pointer s(mitk::StringProperty::New(name)); mitk::NodePredicateProperty::Pointer p = mitk::NodePredicateProperty::New("name", s); mitk::DataStorage::SetOfObjects::ConstPointer rs = this->GetSubset(p); if (rs->Size() >= 1) return rs->GetElement(0); else return NULL; } mitk::DataNode* mitk::DataStorage::GetNode(const NodePredicateBase* condition) const { if (condition == NULL) return NULL; mitk::DataStorage::SetOfObjects::ConstPointer rs = this->GetSubset(condition); if (rs->Size() >= 1) return rs->GetElement(0); else return NULL; } mitk::DataNode* mitk::DataStorage::GetNamedDerivedNode(const char* name, const mitk::DataNode* sourceNode, bool onlyDirectDerivations) const { if (name == NULL) return NULL; mitk::StringProperty::Pointer s(mitk::StringProperty::New(name)); mitk::NodePredicateProperty::Pointer p = mitk::NodePredicateProperty::New("name", s); mitk::DataStorage::SetOfObjects::ConstPointer rs = this->GetDerivations(sourceNode, p, onlyDirectDerivations); if (rs->Size() >= 1) return rs->GetElement(0); else return NULL; } void mitk::DataStorage::PrintSelf(std::ostream& os, itk::Indent indent) const { //Superclass::PrintSelf(os, indent); mitk::DataStorage::SetOfObjects::ConstPointer all = this->GetAll(); os << indent << "DataStorage " << this << " is managing " << all->Size() << " objects. List of objects:" << std::endl; for (mitk::DataStorage::SetOfObjects::ConstIterator allIt = all->Begin(); allIt != all->End(); allIt++) { std::string name; allIt.Value()->GetName(name); std::string datatype; if (allIt.Value()->GetData() != NULL) datatype = allIt.Value()->GetData()->GetNameOfClass(); os << indent << " " << allIt.Value().GetPointer() << "<" << datatype << ">: " << name << std::endl; mitk::DataStorage::SetOfObjects::ConstPointer parents = this->GetSources(allIt.Value()); if (parents->Size() > 0) { os << indent << " Direct sources: "; for (mitk::DataStorage::SetOfObjects::ConstIterator parentIt = parents->Begin(); parentIt != parents->End(); parentIt++) os << parentIt.Value().GetPointer() << ", "; os << std::endl; } mitk::DataStorage::SetOfObjects::ConstPointer derivations = this->GetDerivations(allIt.Value()); if (derivations->Size() > 0) { os << indent << " Direct derivations: "; for (mitk::DataStorage::SetOfObjects::ConstIterator derivationIt = derivations->Begin(); derivationIt != derivations->End(); derivationIt++) os << derivationIt.Value().GetPointer() << ", "; os << std::endl; } } os << std::endl; } mitk::DataStorage::SetOfObjects::ConstPointer mitk::DataStorage::FilterSetOfObjects(const SetOfObjects* set, const NodePredicateBase* condition) const { if (set == NULL) return NULL; mitk::DataStorage::SetOfObjects::Pointer result = mitk::DataStorage::SetOfObjects::New(); for (mitk::DataStorage::SetOfObjects::ConstIterator it = set->Begin(); it != set->End(); it++) if (condition == NULL || condition->CheckNode(it.Value()) == true) //alway copy the set, otherwise the iterator in mitk::DataStorage::Remove() will crash result->InsertElement(result->Size(), it.Value()); return mitk::DataStorage::SetOfObjects::ConstPointer(result); } const mitk::DataNode::GroupTagList mitk::DataStorage::GetGroupTags() const { DataNode::GroupTagList result; SetOfObjects::ConstPointer all = this->GetAll(); if (all.IsNull()) return result; for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = all->Begin(); nodeIt != all->End(); nodeIt++) // for each node { mitk::PropertyList* pl = nodeIt.Value()->GetPropertyList(); for (mitk::PropertyList::PropertyMap::const_iterator propIt = pl->GetMap()->begin(); propIt != pl->GetMap()->end(); propIt++) if (dynamic_cast(propIt->second.GetPointer()) != NULL) result.insert(propIt->first); } return result; } void mitk::DataStorage::EmitAddNodeEvent(const mitk::DataNode* node) { AddNodeEvent.Send(node); } void mitk::DataStorage::EmitRemoveNodeEvent(const mitk::DataNode* node) { RemoveNodeEvent.Send(node); } void mitk::DataStorage::OnNodeInteractorChanged( itk::Object *caller, const itk::EventObject& ) { const mitk::DataNode* _Node = dynamic_cast(caller); if(_Node) { InteractorChangedNodeEvent.Send( _Node ); } } void mitk::DataStorage::OnNodeModifiedOrDeleted( const itk::Object *caller, const itk::EventObject &event ) { if( m_BlockNodeModifiedEvents ) return; const mitk::DataNode* _Node = dynamic_cast(caller); if(_Node) { const itk::ModifiedEvent* modEvent = dynamic_cast(&event); if(modEvent) ChangedNodeEvent.Send(_Node); else DeleteNodeEvent.Send(_Node); } } void mitk::DataStorage::AddListeners( const mitk::DataNode* _Node ) { itk::MutexLockHolder locked(m_MutexOne); // node must not be 0 and must not be yet registered mitk::DataNode* NonConstNode = const_cast(_Node); if(_Node && m_NodeModifiedObserverTags .find(NonConstNode) == m_NodeModifiedObserverTags.end()) { itk::MemberCommand::Pointer nodeModifiedCommand = itk::MemberCommand::New(); nodeModifiedCommand->SetCallbackFunction(this , &mitk::DataStorage::OnNodeModifiedOrDeleted); m_NodeModifiedObserverTags[NonConstNode] = NonConstNode->AddObserver(itk::ModifiedEvent(), nodeModifiedCommand); itk::MemberCommand::Pointer interactorChangedCommand = itk::MemberCommand::New(); interactorChangedCommand->SetCallbackFunction(this, &mitk::DataStorage::OnNodeInteractorChanged); m_NodeInteractorChangedObserverTags[NonConstNode] = NonConstNode->AddObserver( mitk::DataNode::InteractorChangedEvent(), interactorChangedCommand); // add itk delete listener on datastorage itk::MemberCommand::Pointer deleteCommand = itk::MemberCommand::New(); deleteCommand->SetCallbackFunction(this, &mitk::DataStorage::OnNodeModifiedOrDeleted); // add observer m_NodeDeleteObserverTags[NonConstNode] = NonConstNode->AddObserver(itk::DeleteEvent(), deleteCommand); } } void mitk::DataStorage::RemoveListeners( const mitk::DataNode* _Node ) { itk::MutexLockHolder locked(m_MutexOne) ; // node must not be 0 and must be registered mitk::DataNode* NonConstNode = const_cast(_Node); if(_Node && m_NodeModifiedObserverTags .find(NonConstNode) != m_NodeModifiedObserverTags.end()) { // const cast is bad! but sometimes it is necessary. removing an observer does not really // touch the internal state NonConstNode->RemoveObserver(m_NodeModifiedObserverTags .find(NonConstNode)->second); NonConstNode->RemoveObserver(m_NodeDeleteObserverTags .find(NonConstNode)->second); NonConstNode->RemoveObserver(m_NodeInteractorChangedObserverTags .find(NonConstNode)->second); m_NodeModifiedObserverTags.erase(NonConstNode); m_NodeDeleteObserverTags.erase(NonConstNode); m_NodeInteractorChangedObserverTags.erase(NonConstNode); } } mitk::TimeGeometry::Pointer mitk::DataStorage::ComputeBoundingGeometry3D( const SetOfObjects* input, const char* boolPropertyKey, mitk::BaseRenderer* renderer, const char* boolPropertyKey2) const { if (input == NULL) throw std::invalid_argument("DataStorage: input is invalid"); BoundingBox::PointsContainer::Pointer pointscontainer=BoundingBox::PointsContainer::New(); BoundingBox::PointIdentifier pointid=0; Point3D point; Vector3D minSpacing; minSpacing.Fill(ScalarTypeNumericTraits::max()); ScalarType stmin, stmax; stmin= ScalarTypeNumericTraits::NonpositiveMin(); stmax= ScalarTypeNumericTraits::max(); ScalarType minimalIntervallSize = stmax; ScalarType minimalTime = stmax; ScalarType maximalTime = 0; // Needed for check of zero bounding boxes mitk::ScalarType nullpoint[]={0,0,0,0,0,0}; BoundingBox::BoundsArrayType itkBoundsZero(nullpoint); for (SetOfObjects::ConstIterator it = input->Begin(); it != input->End(); ++it) { DataNode::Pointer node = it->Value(); if((node.IsNotNull()) && (node->GetData() != NULL) && (node->GetData()->IsEmpty()==false) && node->IsOn(boolPropertyKey, renderer) && node->IsOn(boolPropertyKey2, renderer) ) { const TimeGeometry* timeGeometry = node->GetData()->GetUpdatedTimeGeometry(); if (timeGeometry != NULL ) { // bounding box (only if non-zero) BoundingBox::BoundsArrayType itkBounds = timeGeometry->GetBoundingBoxInWorld()->GetBounds(); if (itkBounds == itkBoundsZero) { continue; } unsigned char i; for(i=0; i<8; ++i) { point = timeGeometry->GetCornerPointInWorld(i); if(point[0]*point[0]+point[1]*point[1]+point[2]*point[2] < large) pointscontainer->InsertElement( pointid++, point); else { itkGenericOutputMacro( << "Unrealistically distant corner point encountered. Ignored. Node: " << node ); } } try { // time bounds // iterate over all time steps // Attention: Objects with zero bounding box are not respected in time bound calculation for (TimeStepType i=0; iCountTimeSteps(); i++) { Vector3D spacing = node->GetData()->GetGeometry(i)->GetSpacing(); for (int axis = 0; axis < 3; ++ axis) { if (spacing[axis] < minSpacing[axis]) minSpacing[axis] = spacing[axis]; } - const TimeBounds & curTimeBounds = node->GetData()->GetGeometry(i)->GetTimeBounds(); + const TimeBounds & curTimeBounds = node->GetData()->GetTimeGeometry()->GetTimeBounds(i); // get the minimal time of all objects in the DataStorage if ((curTimeBounds[0]stmin)) { minimalTime=curTimeBounds[0]; } // get the maximal time of all objects in the DataStorage if ((curTimeBounds[1]>maximalTime)&&(curTimeBounds[1]SetPoints(pointscontainer); result->ComputeBoundingBox(); - // minimal time bounds of a single time step for all geometries - TimeBounds minTimeBounds; - minTimeBounds[0] = 0; - minTimeBounds[1] = 1; // compute the number of time steps unsigned int numberOfTimeSteps = 1; - if (maximalTime!=0) // make sure that there is at least one time sliced geometry in the data storage + if (maximalTime==0) // make sure that there is at least one time sliced geometry in the data storage { - minTimeBounds[0] = minimalTime; - minTimeBounds[1] = minimalTime + minimalIntervallSize; - numberOfTimeSteps = static_cast((maximalTime-minimalTime)/minimalIntervallSize); + minimalTime = 0; + maximalTime = 1; + minimalIntervallSize = 1; } + numberOfTimeSteps = static_cast((maximalTime-minimalTime)/minimalIntervallSize); TimeGeometry::Pointer timeGeometry = NULL; if ( result->GetPoints()->Size()>0 ) { // Initialize a geometry of a single time step Geometry3D::Pointer geometry = Geometry3D::New(); geometry->Initialize(); // correct bounding-box (is now in mm, should be in index-coordinates) // according to spacing BoundingBox::BoundsArrayType bounds = result->GetBounds(); int i; for(i = 0; i < 6; ++i) { bounds[i] /= minSpacing[i/2]; } geometry->SetBounds(bounds); geometry->SetSpacing(minSpacing); - geometry->SetTimeBounds(minTimeBounds); // Initialize the time sliced geometry timeGeometry = ProportionalTimeGeometry::New(); dynamic_cast(timeGeometry.GetPointer())->Initialize(geometry,numberOfTimeSteps); + dynamic_cast(timeGeometry.GetPointer())->SetFirstTimePoint(minimalTime); + dynamic_cast(timeGeometry.GetPointer())->SetStepDuration(minimalIntervallSize); } return timeGeometry; } mitk::TimeGeometry::Pointer mitk::DataStorage::ComputeBoundingGeometry3D( const char* boolPropertyKey, mitk::BaseRenderer* renderer, const char* boolPropertyKey2) const { return this->ComputeBoundingGeometry3D(this->GetAll(), boolPropertyKey, renderer, boolPropertyKey2); } mitk::TimeGeometry::Pointer mitk::DataStorage::ComputeVisibleBoundingGeometry3D( mitk::BaseRenderer* renderer, const char* boolPropertyKey ) { return ComputeBoundingGeometry3D( "visible", renderer, boolPropertyKey ); } mitk::BoundingBox::Pointer mitk::DataStorage::ComputeBoundingBox( const char* boolPropertyKey, mitk::BaseRenderer* renderer, const char* boolPropertyKey2) { BoundingBox::PointsContainer::Pointer pointscontainer=BoundingBox::PointsContainer::New(); BoundingBox::PointIdentifier pointid=0; Point3D point; // Needed for check of zero bounding boxes mitk::ScalarType nullpoint[]={0,0,0,0,0,0}; BoundingBox::BoundsArrayType itkBoundsZero(nullpoint); SetOfObjects::ConstPointer all = this->GetAll(); for (SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) { DataNode::Pointer node = it->Value(); if((node.IsNotNull()) && (node->GetData() != NULL) && (node->GetData()->IsEmpty()==false) && node->IsOn(boolPropertyKey, renderer) && node->IsOn(boolPropertyKey2, renderer) ) { const TimeGeometry* geometry = node->GetData()->GetUpdatedTimeGeometry(); if (geometry != NULL ) { // bounding box (only if non-zero) BoundingBox::BoundsArrayType itkBounds = geometry->GetBoundingBoxInWorld()->GetBounds(); if (itkBounds == itkBoundsZero) { continue; } unsigned char i; for(i=0; i<8; ++i) { point = geometry->GetCornerPointInWorld(i); if(point[0]*point[0]+point[1]*point[1]+point[2]*point[2] < large) pointscontainer->InsertElement( pointid++, point); else { itkGenericOutputMacro( << "Unrealistically distant corner point encountered. Ignored. Node: " << node ); } } } } } BoundingBox::Pointer result = BoundingBox::New(); result->SetPoints(pointscontainer); result->ComputeBoundingBox(); return result; } mitk::TimeBounds mitk::DataStorage::ComputeTimeBounds( const char* boolPropertyKey, mitk::BaseRenderer* renderer, const char* boolPropertyKey2) { TimeBounds timeBounds; ScalarType stmin, stmax, cur; stmin= ScalarTypeNumericTraits::NonpositiveMin(); stmax= ScalarTypeNumericTraits::max(); timeBounds[0]=stmax; timeBounds[1]=stmin; SetOfObjects::ConstPointer all = this->GetAll(); for (SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) { DataNode::Pointer node = it->Value(); if((node.IsNotNull()) && (node->GetData() != NULL) && (node->GetData()->IsEmpty()==false) && node->IsOn(boolPropertyKey, renderer) && node->IsOn(boolPropertyKey2, renderer) ) { const TimeGeometry* geometry = node->GetData()->GetUpdatedTimeGeometry(); if (geometry != NULL ) { const TimeBounds & curTimeBounds = geometry->GetTimeBounds(); cur=curTimeBounds[0]; //is it after -infinity, but before everything else that we found until now? if((cur > stmin) && (cur < timeBounds[0])) timeBounds[0] = cur; cur=curTimeBounds[1]; //is it before infinity, but after everything else that we found until now? if((cur < stmax) && (cur > timeBounds[1])) timeBounds[1] = cur; } } } if(!(timeBounds[0] < stmax)) { timeBounds[0] = stmin; timeBounds[1] = stmax; } return timeBounds; } void mitk::DataStorage::BlockNodeModifiedEvents( bool block ) { m_BlockNodeModifiedEvents = block; } diff --git a/Core/Code/DataManagement/mitkDisplayGeometry.cpp b/Core/Code/DataManagement/mitkDisplayGeometry.cpp index 141fb19c1c..da1dc11ebb 100644 --- a/Core/Code/DataManagement/mitkDisplayGeometry.cpp +++ b/Core/Code/DataManagement/mitkDisplayGeometry.cpp @@ -1,613 +1,613 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDisplayGeometry.h" itk::LightObject::Pointer mitk::DisplayGeometry::InternalClone() const { // itkExceptionMacro(<<"calling mitk::DisplayGeometry::Clone does not make much sense."); DisplayGeometry* returnValue = const_cast(this); return returnValue; } bool mitk::DisplayGeometry::IsValid() const { return m_WorldGeometry.IsNotNull() && m_WorldGeometry->IsValid(); } unsigned long mitk::DisplayGeometry::GetMTime() const { if((m_WorldGeometry.IsNotNull()) && (PlaneGeometry::GetMTime() < m_WorldGeometry->GetMTime())) { Modified(); } return PlaneGeometry::GetMTime(); } -const mitk::TimeBounds& mitk::DisplayGeometry::GetTimeBounds() const -{ - if(m_WorldGeometry.IsNull()) - { - return this->GetTimeBounds(); - } - - return m_WorldGeometry->GetTimeBounds(); -} +//const mitk::TimeBounds& mitk::DisplayGeometry::GetTimeBounds() const +//{ +// if(m_WorldGeometry.IsNull()) +// { +// return m_TimeBounds; +// } +// +// return m_WorldGeometry->GetTimeBounds(); +//} // size definition methods void mitk::DisplayGeometry::SetWorldGeometry(const PlaneGeometry* aWorldGeometry) { m_WorldGeometry = aWorldGeometry; Modified(); } bool mitk::DisplayGeometry::SetOriginInMM(const Vector2D& origin_mm) { m_OriginInMM = origin_mm; WorldToDisplay(m_OriginInMM, m_OriginInDisplayUnits); Modified(); return !this->RefitVisibleRect(); } mitk::Vector2D mitk::DisplayGeometry::GetOriginInMM() const { return m_OriginInMM; } mitk::Vector2D mitk::DisplayGeometry::GetOriginInDisplayUnits() const { return m_OriginInDisplayUnits; } void mitk::DisplayGeometry::SetSizeInDisplayUnits(unsigned int width, unsigned int height, bool keepDisplayedRegion) { Vector2D oldSizeInMM( m_SizeInMM ); Point2D oldCenterInMM; if(keepDisplayedRegion) { Point2D centerInDisplayUnits; centerInDisplayUnits[0] = m_SizeInDisplayUnits[0]*0.5; centerInDisplayUnits[1] = m_SizeInDisplayUnits[1]*0.5; DisplayToWorld(centerInDisplayUnits, oldCenterInMM); } m_SizeInDisplayUnits[0]=width; m_SizeInDisplayUnits[1]=height; if(m_SizeInDisplayUnits[0] <= 0) m_SizeInDisplayUnits[0] = 1; if(m_SizeInDisplayUnits[1] <= 0) m_SizeInDisplayUnits[1] = 1; DisplayToWorld(m_SizeInDisplayUnits, m_SizeInMM); if(keepDisplayedRegion) { Point2D positionOfOldCenterInCurrentDisplayUnits; WorldToDisplay(oldCenterInMM, positionOfOldCenterInCurrentDisplayUnits); Point2D currentNewCenterInDisplayUnits; currentNewCenterInDisplayUnits[0] = m_SizeInDisplayUnits[0]*0.5; currentNewCenterInDisplayUnits[1] = m_SizeInDisplayUnits[1]*0.5; Vector2D shift; shift=positionOfOldCenterInCurrentDisplayUnits.GetVectorFromOrigin()-currentNewCenterInDisplayUnits; MoveBy(shift); Zoom(m_SizeInMM.GetNorm()/oldSizeInMM.GetNorm(), currentNewCenterInDisplayUnits); } Modified(); } mitk::Vector2D mitk::DisplayGeometry::GetSizeInDisplayUnits() const { return m_SizeInDisplayUnits; } mitk::Vector2D mitk::DisplayGeometry::GetSizeInMM() const { return m_SizeInMM; } unsigned int mitk::DisplayGeometry::GetDisplayWidth() const { assert(m_SizeInDisplayUnits[0] >= 0); return (unsigned int)m_SizeInDisplayUnits[0]; } unsigned int mitk::DisplayGeometry::GetDisplayHeight() const { assert(m_SizeInDisplayUnits[1] >= 0); return (unsigned int)m_SizeInDisplayUnits[1]; } // zooming, panning, restriction of both void mitk::DisplayGeometry::SetConstrainZoomingAndPanning(bool constrain) { m_ConstrainZoomingAndPanning = constrain; if (m_ConstrainZoomingAndPanning) { this->RefitVisibleRect(); } } bool mitk::DisplayGeometry::GetConstrainZommingAndPanning() const { return m_ConstrainZoomingAndPanning; } bool mitk::DisplayGeometry::SetScaleFactor(ScalarType mmPerDisplayUnit) { if(mmPerDisplayUnit<0.0001) { mmPerDisplayUnit=0.0001; } m_ScaleFactorMMPerDisplayUnit = mmPerDisplayUnit; assert(m_ScaleFactorMMPerDisplayUnit < ScalarTypeNumericTraits::infinity()); DisplayToWorld(m_SizeInDisplayUnits, m_SizeInMM); return !this->RefitVisibleRect(); } mitk::ScalarType mitk::DisplayGeometry::GetScaleFactorMMPerDisplayUnit() const { return m_ScaleFactorMMPerDisplayUnit; } // Zooms with a factor (1.0=identity) around the specified center in display units bool mitk::DisplayGeometry::Zoom(ScalarType factor, const Point2D& centerInDisplayUnits) { assert(factor > 0); if ( SetScaleFactor(m_ScaleFactorMMPerDisplayUnit/factor) ) { return SetOriginInMM(m_OriginInMM-centerInDisplayUnits.GetVectorFromOrigin()*(1-factor)*m_ScaleFactorMMPerDisplayUnit); } else { return false; } } // Zooms with a factor (1.0=identity) around the specified center, but tries (if its within view contraints) to match the center in display units with the center in world coordinates. bool mitk::DisplayGeometry::ZoomWithFixedWorldCoordinates(ScalarType factor, const Point2D& focusDisplayUnits, const Point2D& focusUnitsInMM ) { assert(factor > 0); SetScaleFactor(m_ScaleFactorMMPerDisplayUnit/factor); SetOriginInMM(focusUnitsInMM.GetVectorFromOrigin()-focusDisplayUnits.GetVectorFromOrigin()*m_ScaleFactorMMPerDisplayUnit); return true; } bool mitk::DisplayGeometry::MoveBy(const Vector2D& shiftInDisplayUnits) { SetOriginInMM(m_OriginInMM+shiftInDisplayUnits*m_ScaleFactorMMPerDisplayUnit); Modified(); return !this->RefitVisibleRect(); } void mitk::DisplayGeometry::Fit() { if((m_WorldGeometry.IsNull()) || (m_WorldGeometry->IsValid() == false)) return; /// \FIXME: try to remove all the casts int width=(int)m_SizeInDisplayUnits[0]; int height=(int)m_SizeInDisplayUnits[1]; ScalarType w = width; ScalarType h = height; const ScalarType& widthInMM = m_WorldGeometry->GetExtentInMM(0); const ScalarType& heightInMM = m_WorldGeometry->GetExtentInMM(1); ScalarType aspRatio=((ScalarType)widthInMM)/heightInMM; ScalarType x = (ScalarType)w/widthInMM; ScalarType y = (ScalarType)h/heightInMM; if (x > y) { w = (int) (aspRatio*h); } else { h = (int) (w/aspRatio); } if(w>0) { SetScaleFactor(widthInMM/w); } Vector2D origin_display; origin_display[0]=-(width-w)/2.0; origin_display[1]=-(height-h)/2.0; SetOriginInMM(origin_display*m_ScaleFactorMMPerDisplayUnit); this->RefitVisibleRect(); Modified(); } // conversion methods void mitk::DisplayGeometry::DisplayToWorld(const Point2D &pt_display, Point2D &pt_mm) const { pt_mm[0]=m_ScaleFactorMMPerDisplayUnit*pt_display[0]+m_OriginInMM[0]; pt_mm[1]=m_ScaleFactorMMPerDisplayUnit*pt_display[1]+m_OriginInMM[1]; } void mitk::DisplayGeometry::WorldToDisplay(const Point2D &pt_mm, Point2D &pt_display) const { pt_display[0]=(pt_mm[0]-m_OriginInMM[0])*(1.0/m_ScaleFactorMMPerDisplayUnit); pt_display[1]=(pt_mm[1]-m_OriginInMM[1])*(1.0/m_ScaleFactorMMPerDisplayUnit); } void mitk::DisplayGeometry::DisplayToWorld(const Vector2D &vec_display, Vector2D &vec_mm) const { vec_mm=vec_display*m_ScaleFactorMMPerDisplayUnit; } void mitk::DisplayGeometry::WorldToDisplay(const Vector2D &vec_mm, Vector2D &vec_display) const { vec_display=vec_mm*(1.0/m_ScaleFactorMMPerDisplayUnit); } void mitk::DisplayGeometry::ULDisplayToMM(const Point2D &pt_ULdisplay, Point2D &pt_mm) const { ULDisplayToDisplay(pt_ULdisplay, pt_mm); DisplayToWorld(pt_mm, pt_mm); } void mitk::DisplayGeometry::MMToULDisplay(const Point2D &pt_mm, Point2D &pt_ULdisplay) const { WorldToDisplay(pt_mm, pt_ULdisplay); DisplayToULDisplay(pt_ULdisplay, pt_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToMM(const Vector2D &vec_ULdisplay, Vector2D &vec_mm) const { ULDisplayToDisplay(vec_ULdisplay, vec_mm); DisplayToWorld(vec_mm, vec_mm); } void mitk::DisplayGeometry::MMToULDisplay(const Vector2D &vec_mm, Vector2D &vec_ULdisplay) const { WorldToDisplay(vec_mm, vec_ULdisplay); DisplayToULDisplay(vec_ULdisplay, vec_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToDisplay(const Point2D &pt_ULdisplay, Point2D &pt_display) const { pt_display[0]=pt_ULdisplay[0]; pt_display[1]=GetDisplayHeight()-pt_ULdisplay[1]; } void mitk::DisplayGeometry::DisplayToULDisplay(const Point2D &pt_display, Point2D &pt_ULdisplay) const { ULDisplayToDisplay(pt_display, pt_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToDisplay(const Vector2D &vec_ULdisplay, Vector2D &vec_display) const { vec_display[0]= vec_ULdisplay[0]; vec_display[1]=-vec_ULdisplay[1]; } void mitk::DisplayGeometry::DisplayToULDisplay(const Vector2D &vec_display, Vector2D &vec_ULdisplay) const { ULDisplayToDisplay(vec_display, vec_ULdisplay); } bool mitk::DisplayGeometry::Project(const Point3D &pt3d_mm, Point3D &projectedPt3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(pt3d_mm, projectedPt3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Project(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(atPt3d_mm, vec3d_mm, projectedVec3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Project(const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(vec3d_mm, projectedVec3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Map(const Point3D &pt3d_mm, Point2D &pt2d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Map(pt3d_mm, pt2d_mm); } else { return false; } } void mitk::DisplayGeometry::Map(const Point2D &pt2d_mm, Point3D &pt3d_mm) const { if(m_WorldGeometry.IsNull()) return; m_WorldGeometry->Map(pt2d_mm, pt3d_mm); } bool mitk::DisplayGeometry::Map(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector2D &vec2d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Map(atPt3d_mm, vec3d_mm, vec2d_mm); } else { return false; } } void mitk::DisplayGeometry::Map(const Point2D & atPt2d_mm, const Vector2D &vec2d_mm, Vector3D &vec3d_mm) const { if(m_WorldGeometry.IsNull()) return; m_WorldGeometry->Map(atPt2d_mm, vec2d_mm, vec3d_mm); } // protected methods mitk::DisplayGeometry::DisplayGeometry() :m_ScaleFactorMMPerDisplayUnit(1.0) ,m_WorldGeometry(NULL) ,m_ConstrainZoomingAndPanning(true) ,m_MaxWorldViewPercentage(1.0) ,m_MinWorldViewPercentage(0.1) { m_OriginInMM.Fill(0.0); m_OriginInDisplayUnits.Fill(0.0); m_SizeInMM.Fill(1.0); m_SizeInDisplayUnits.Fill(10.0); } mitk::DisplayGeometry::~DisplayGeometry() { } bool mitk::DisplayGeometry::RefitVisibleRect() { // do nothing if not asked to if (!m_ConstrainZoomingAndPanning) return false; // don't allow recursion (need to be fixed, singleton) static bool inRecalculate = false; if (inRecalculate) return false; inRecalculate = true; // rename some basic measures of the current viewport and world geometry (MM = milimeters Px = Pixels = display units) float displayXMM = m_OriginInMM[0]; float displayYMM = m_OriginInMM[1]; float displayWidthPx = m_SizeInDisplayUnits[0]; float displayHeightPx = m_SizeInDisplayUnits[1]; float displayWidthMM = m_SizeInDisplayUnits[0] * m_ScaleFactorMMPerDisplayUnit; float displayHeightMM = m_SizeInDisplayUnits[1] * m_ScaleFactorMMPerDisplayUnit; float worldWidthMM = m_WorldGeometry->GetExtentInMM(0); float worldHeightMM = m_WorldGeometry->GetExtentInMM(1); // reserve variables for the correction logic to save a corrected origin and zoom factor Vector2D newOrigin = m_OriginInMM; bool correctPanning = false; float newScaleFactor = m_ScaleFactorMMPerDisplayUnit; bool correctZooming = false; // start of the correction logic // zoom to big means: // at a given percentage of the world's width/height should be visible. Otherwise // the whole screen could show only one pixel // // zoom to small means: // zooming out should be limited at the point where the smaller of the world's sides is completely visible bool zoomXtooSmall = displayWidthPx * m_ScaleFactorMMPerDisplayUnit > m_MaxWorldViewPercentage * worldWidthMM; bool zoomXtooBig = displayWidthPx * m_ScaleFactorMMPerDisplayUnit < m_MinWorldViewPercentage * worldWidthMM; bool zoomYtooSmall = displayHeightPx * m_ScaleFactorMMPerDisplayUnit > m_MaxWorldViewPercentage * worldHeightMM; bool zoomYtooBig = displayHeightPx * m_ScaleFactorMMPerDisplayUnit < m_MinWorldViewPercentage * worldHeightMM; // constrain zooming in both direction if ( zoomXtooBig && zoomYtooBig) { double fx = worldWidthMM * m_MinWorldViewPercentage / displayWidthPx; double fy = worldHeightMM * m_MinWorldViewPercentage / displayHeightPx; newScaleFactor = fx < fy ? fx : fy; correctZooming = true; } // constrain zooming in x direction else if ( zoomXtooBig ) { newScaleFactor = worldWidthMM * m_MinWorldViewPercentage / displayWidthPx; correctZooming = true; } // constrain zooming in y direction else if ( zoomYtooBig ) { newScaleFactor = worldHeightMM * m_MinWorldViewPercentage / displayHeightPx; correctZooming = true; } // constrain zooming out // we stop zooming out at these situations: // // *** display // --- image // // ********************** // * * x side maxed out // * * // *--------------------* // *| |* // *| |* // *--------------------* // * * // * * // * * // ********************** // // ********************** // * |------| * y side maxed out // * | | * // * | | * // * | | * // * | | * // * | | * // * | | * // * | | * // * |------| * // ********************** // // In both situations we center the not-maxed out direction // if ( zoomXtooSmall && zoomYtooSmall ) { // determine and set the bigger scale factor float fx = worldWidthMM * m_MaxWorldViewPercentage / displayWidthPx; float fy = worldHeightMM * m_MaxWorldViewPercentage / displayHeightPx; newScaleFactor = fx > fy ? fx : fy; correctZooming = true; } // actually execute correction if (correctZooming) { SetScaleFactor(newScaleFactor); } displayWidthMM = m_SizeInDisplayUnits[0] * m_ScaleFactorMMPerDisplayUnit; displayHeightMM = m_SizeInDisplayUnits[1] * m_ScaleFactorMMPerDisplayUnit; // constrain panning if(worldWidthMM center x newOrigin[0] = (worldWidthMM - displayWidthMM) / 2.0; correctPanning = true; } else { // make sure left display border inside our world if (displayXMM < 0) { newOrigin[0] = 0; correctPanning = true; } // make sure right display border inside our world else if (displayXMM + displayWidthMM > worldWidthMM) { newOrigin[0] = worldWidthMM - displayWidthMM; correctPanning = true; } } if (worldHeightMM center y newOrigin[1] = (worldHeightMM - displayHeightMM) / 2.0; correctPanning = true; } else { // make sure top display border inside our world if (displayYMM + displayHeightMM > worldHeightMM) { newOrigin[1] = worldHeightMM - displayHeightMM; correctPanning = true; } // make sure bottom display border inside our world else if (displayYMM < 0) { newOrigin[1] = 0; correctPanning = true; } } if (correctPanning) { SetOriginInMM( newOrigin ); } inRecalculate = false; if ( correctPanning || correctZooming ) { Modified(); } // return true if any correction has been made return correctPanning || correctZooming; } void mitk::DisplayGeometry::PrintSelf(std::ostream& os, itk::Indent indent) const { if(m_WorldGeometry.IsNull()) { os << indent << " WorldGeometry: " << "NULL" << std::endl; } else { m_WorldGeometry->Print(os, indent); os << indent << " OriginInMM: " << m_OriginInMM << std::endl; os << indent << " OriginInDisplayUnits: " << m_OriginInDisplayUnits << std::endl; os << indent << " SizeInMM: " << m_SizeInMM << std::endl; os << indent << " SizeInDisplayUnits: " << m_SizeInDisplayUnits << std::endl; os << indent << " ScaleFactorMMPerDisplayUni: " << m_ScaleFactorMMPerDisplayUnit << std::endl; } Superclass::PrintSelf(os,indent); } diff --git a/Core/Code/DataManagement/mitkDisplayGeometry.h b/Core/Code/DataManagement/mitkDisplayGeometry.h index 613e1dd9d2..b05e6b61fd 100644 --- a/Core/Code/DataManagement/mitkDisplayGeometry.h +++ b/Core/Code/DataManagement/mitkDisplayGeometry.h @@ -1,230 +1,230 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkDisplayGeometry_h #define mitkDisplayGeometry_h #include "mitkPlaneGeometry.h" namespace mitk { /** \brief Describes the geometry on the display/screen for 2D display. The main purpose of this class is to convert between display coordinates (in display-units) and world coordinates (in mm). DisplayGeometry depends on the size of the display area (widget width and height, m_SizeInDisplayUnits) and on a PlaneGeometry (m_WoldGeometry). It represents a recangular view on this world-geometry. E.g., you can tell the DisplayGeometry to fit the world-geometry in the display area by calling Fit(). Provides methods for zooming and panning. Zooming and panning can be restricted within reasonable bounds by setting the ConstrainZoomingAndPanning flag. In these cases you can re-define what bounds you accept as "reasonable" by calling \warning \em Units refers to the units of the underlying world-geometry. Take care, whether these are really the units you want to convert to. E.g., when you want to convert a point \a pt_display (which is 2D) given in display coordinates into a point in units of a BaseData-object @a datum (the requested point is 3D!), use \code displaygeometry->DisplayToWorld(pt_display, pt2d_mm); displaygeometry->Map(pt2d_mm, pt3d_mm); datum->GetGeometry()->WorldToIndex(pt3d_mm, pt3d_datum_units); \endcode Even, if you want to convert the 2D point \a pt_display into a 2D point in units on a certain 2D geometry \a certaingeometry, it is safer to use \code displaygeometry->DisplayToWorld(pt_display, pt_mm); certaingeometry->WorldToIndex(pt_mm, pt_certain_geometry_units); \endcode unless you can be sure that the underlying geometry of \a displaygeometry is really the \a certaingeometry. \ingroup Geometry */ class MITK_CORE_EXPORT DisplayGeometry : public PlaneGeometry { public: mitkClassMacro(DisplayGeometry,PlaneGeometry); /// Method for creation through the object factory. itkFactorylessNewMacro(Self) itkCloneMacro(Self) /// \brief duplicates the geometry, NOT useful for this sub-class virtual itk::LightObject::Pointer InternalClone() const; /// \return this objects modified time. virtual unsigned long GetMTime() const; - virtual const TimeBounds& GetTimeBounds() const; + //virtual const TimeBounds& GetTimeBounds() const; // size definition methods virtual void SetWorldGeometry(const PlaneGeometry* aWorldGeometry); itkGetConstObjectMacro(WorldGeometry, PlaneGeometry); /// \return if new origin was within accepted limits virtual bool SetOriginInMM(const Vector2D& origin_mm); virtual Vector2D GetOriginInMM() const; virtual Vector2D GetOriginInDisplayUnits() const; /** \brief Set the size of the display in display units. This method must be called every time the display is resized (normally, the GUI-toolkit informs about resizing). \param keepDisplayedRegion: if \a true (the default), the displayed contents is zoomed/shrinked so that the displayed region is (approximately) the same as before: The point at the center will be kept at the center and the length of the diagonal of the displayed region \em in \em units will also be kept. When the aspect ration changes, the displayed region includes the old displayed region, but cannot be exaclty the same. */ virtual void SetSizeInDisplayUnits(unsigned int width, unsigned int height, bool keepDisplayedRegion=true); virtual Vector2D GetSizeInDisplayUnits() const; virtual Vector2D GetSizeInMM() const; unsigned int GetDisplayWidth() const; unsigned int GetDisplayHeight() const; // zooming, panning, restriction of both virtual void SetConstrainZoomingAndPanning(bool constrain); virtual bool GetConstrainZommingAndPanning() const; /// what percentage of the world should be visible at maximum zoom out (default 1.0, i.e. 100% of width or height) itkGetMacro(MaxWorldViewPercentage, float); itkSetMacro(MaxWorldViewPercentage, float); /// what percentage of the world should be visible at maximum zoom in (default 0.1, i.e. 10% of width or height) itkGetMacro(MinWorldViewPercentage, float); itkSetMacro(MinWorldViewPercentage, float); virtual bool SetScaleFactor(ScalarType mmPerDisplayUnit); ScalarType GetScaleFactorMMPerDisplayUnit() const; /** * \brief Zooms with a factor (1.0=identity) to/from the specified center in display units * \return true if zoom request was within accepted limits */ virtual bool Zoom(ScalarType factor, const Point2D& centerInDisplayUnits); /** * \brief Zooms with a factor (1.0=identity) to/from the specified center, trying to preserve the center of zoom in world coordiantes * * Same zoom as mentioned above but tries (if it's within view contraints) to match the center in display units with the center in world coordinates. * * \return true if zoom request was within accepted limits */ virtual bool ZoomWithFixedWorldCoordinates(ScalarType factor, const Point2D& focusDisplayUnits, const Point2D& focusUnitsInMM ); // \return true if move request was within accepted limits virtual bool MoveBy(const Vector2D& shiftInDisplayUnits); // \brief align display with world, make world completely visible virtual void Fit(); // conversion methods virtual void DisplayToWorld(const Point2D &pt_display, Point2D &pt_mm) const; virtual void WorldToDisplay(const Point2D &pt_mm, Point2D &pt_display) const; virtual void DisplayToWorld(const Vector2D &vec_display, Vector2D &vec_mm) const; virtual void WorldToDisplay(const Vector2D &vec_mm, Vector2D &vec_display) const; virtual void ULDisplayToMM(const Point2D &pt_ULdisplay, Point2D &pt_mm) const; virtual void MMToULDisplay(const Point2D &pt_mm, Point2D &pt_ULdisplay) const; virtual void ULDisplayToMM(const Vector2D &vec_ULdisplay, Vector2D &vec_mm) const; virtual void MMToULDisplay(const Vector2D &vec_mm, Vector2D &vec_ULdisplay) const; virtual void ULDisplayToDisplay(const Point2D &pt_ULdisplay, Point2D &pt_display) const; virtual void DisplayToULDisplay(const Point2D &pt_display, Point2D &pt_ULdisplay) const; virtual void ULDisplayToDisplay(const Vector2D &vec_ULdisplay, Vector2D &vec_display) const; virtual void DisplayToULDisplay(const Vector2D &vec_display, Vector2D &vec_ULdisplay) const; /** * \brief projects the given point onto current 2D world geometry plane */ virtual bool Project(const Point3D &pt3d_mm, Point3D &projectedPt3d_mm) const; /** * \brief projects the given vector onto current 2D world geometry plane. * \warning DEPRECATED, please use Project(const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) instead */ virtual bool Project(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const; /** * \brief projects the given vector onto current 2D world geometry plane */ virtual bool Project(const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const; virtual bool Map(const Point3D &pt3d_mm, Point2D &pt2d_mm) const; virtual void Map(const Point2D &pt2d_mm, Point3D &pt3d_mm) const; virtual bool Map(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector2D &vec2d_mm) const; virtual void Map(const Point2D & atPt2d_mm, const Vector2D &vec2d_mm, Vector3D &vec3d_mm) const; virtual bool IsValid() const; virtual bool IsAbove( const Point3D &pt3d_mm , bool considerBoundingBox=false) const { return Superclass::IsAbove(pt3d_mm, true);}; protected: DisplayGeometry(); virtual ~DisplayGeometry(); /** \brief Called after zooming/panning to restrict these operations to sensible measures. \return true if a correction in either zooming or panning was made Enforces a couple of constraints on the relation of the current viewport and the current world geometry. The basic logic in this lengthy method is:
  1. Make display region big enough (in case of too large zoom factors)
  2. Make display region small enough (so that the image cannot be scaled into a single screen pixel
  3. Correct panning for each border (left, right, bottom, top)
The little more complicated implementation is illustrated in the code itself. */ virtual bool RefitVisibleRect(); virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; Vector2D m_OriginInMM; Vector2D m_OriginInDisplayUnits; ScalarType m_ScaleFactorMMPerDisplayUnit; Vector2D m_SizeInMM; Vector2D m_SizeInDisplayUnits; PlaneGeometry::ConstPointer m_WorldGeometry; bool m_ConstrainZoomingAndPanning; float m_MaxWorldViewPercentage; float m_MinWorldViewPercentage; }; } // namespace #endif // include guard diff --git a/Core/Code/DataManagement/mitkGeometry3D.h b/Core/Code/DataManagement/mitkGeometry3D.h index 642c4ce62e..8d25585968 100644 --- a/Core/Code/DataManagement/mitkGeometry3D.h +++ b/Core/Code/DataManagement/mitkGeometry3D.h @@ -1,69 +1,72 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef GEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #define GEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #include #include #include "itkScalableAffineTransform.h" #include #include "mitkBaseGeometry.h" class vtkLinearTransform; namespace mitk { //##Documentation //## @brief Standard implementation of BaseGeometry. //## //## @ingroup Geometry class MITK_CORE_EXPORT Geometry3D : public BaseGeometry { public: mitkClassMacro(Geometry3D, mitk::BaseGeometry); typedef itk::QuaternionRigidTransform< ScalarType > QuaternionTransformType; typedef QuaternionTransformType::VnlQuaternionType VnlQuaternionType; /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self) mitkNewMacro1Param(Self,Self); itkCloneMacro(Self) + //itkGetConstReferenceMacro(TimeBounds, TimeBounds); + + //virtual void SetTimeBounds(const TimeBounds& timebounds); protected: Geometry3D(); Geometry3D(const Geometry3D& other); //##Documentation //## @brief clones the geometry //## //## Overwrite in all sub-classes. //## Normally looks like: //## \code //## Self::Pointer newGeometry = new Self(*this); //## newGeometry->UnRegister(); //## return newGeometry.GetPointer(); //## \endcode virtual itk::LightObject::Pointer InternalClone() const; virtual ~Geometry3D(); }; } // namespace mitk #endif /* GEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD */ diff --git a/Core/Code/DataManagement/mitkImage.cpp b/Core/Code/DataManagement/mitkImage.cpp index 5761913f8a..1c69b60898 100644 --- a/Core/Code/DataManagement/mitkImage.cpp +++ b/Core/Code/DataManagement/mitkImage.cpp @@ -1,1383 +1,1372 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //MITK #include "mitkImage.h" #include "mitkImageStatisticsHolder.h" #include "mitkPixelTypeMultiplex.h" #include #include "mitkCompareImageDataFilter.h" //VTK #include //Other #include #define FILL_C_ARRAY( _arr, _size, _value) for(unsigned int i=0u; i<_size; i++) \ { _arr[i] = _value; } mitk::Image::Image() : m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); m_Initialized = false; } mitk::Image::Image(const Image &other) : SlicedData(other), m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); this->Initialize( other.GetPixelType(), other.GetDimension(), other.GetDimensions()); //Since the above called "Initialize" method doesn't take the geometry into account we need to set it //here manually TimeGeometry::Pointer cloned = other.GetTimeGeometry()->Clone(); this->SetTimeGeometry(cloned.GetPointer()); if (this->GetDimension() > 3) { const unsigned int time_steps = this->GetDimension(3); for (unsigned int i = 0u; i < time_steps; ++i) { ImageDataItemPointer volume = const_cast(other).GetVolumeData(i); this->SetVolume(volume->GetData(), i); } } else { ImageDataItemPointer volume = const_cast(other).GetVolumeData(0); this->SetVolume(volume->GetData(), 0); } } mitk::Image::~Image() { Clear(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 3; m_ReferenceCountLock.Unlock(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 0; m_ReferenceCountLock.Unlock(); if(m_OffsetTable != NULL) delete [] m_OffsetTable; if(m_ImageStatistics != NULL) delete m_ImageStatistics; } const mitk::PixelType mitk::Image::GetPixelType(int n) const { return this->m_ImageDescriptor->GetChannelTypeById(n); } unsigned int mitk::Image::GetDimension() const { return m_Dimension; } unsigned int mitk::Image::GetDimension(int i) const { if((i>=0) && (i<(int)m_Dimension)) return m_Dimensions[i]; return 1; } void* mitk::Image::GetData() { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } m_CompleteData=GetChannelData(); // update channel's data // if data was not available at creation point, the m_Data of channel descriptor is NULL // if data present, it won't be overwritten m_ImageDescriptor->GetChannelDescriptor(0).SetData(m_CompleteData->GetData()); return m_CompleteData->GetData(); } template void AccessPixel( const mitk::PixelType ptype, void* data, const unsigned int offset, double& value ) { value = 0.0; if( data == NULL ) return; if(ptype.GetBpe() != 24) { value = (double) (((T*) data)[ offset ]); } else { const unsigned int rgboffset = 3 * offset; double returnvalue = (((T*) data)[rgboffset ]); returnvalue += (((T*) data)[rgboffset + 1]); returnvalue += (((T*) data)[rgboffset + 2]); value = returnvalue; } - } double mitk::Image::GetPixelValueByIndex(const mitk::Index3D &position, unsigned int timestep) { double value = 0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } value = 0.0; const unsigned int* imageDims = this->m_ImageDescriptor->GetDimensions(); const mitk::PixelType ptype = this->m_ImageDescriptor->GetChannelTypeById(0); // Comparison ?>=0 not needed since all position[i] and timestep are unsigned int // (position[0]>=0 && position[1] >=0 && position[2]>=0 && timestep>=0) // bug-11978 : we still need to catch index with negative values if ( position[0] < 0 || position[1] < 0 || position[2] < 0 ) { MITK_WARN << "Given position ("<< position << ") is out of image range, returning 0." ; } // check if the given position is inside the index range of the image, the 3rd dimension needs to be compared only if the dimension is not 0 else if ( (unsigned int)position[0] >= imageDims[0] || (unsigned int)position[1] >= imageDims[1] || ( imageDims[2] && (unsigned int)position[2] >= imageDims[2] )) { MITK_WARN << "Given position ("<< position << ") is out of image range, returning 0." ; } else { const unsigned int offset = position[0] + position[1]*imageDims[0] + position[2]*imageDims[0]*imageDims[1] + timestep*imageDims[0]*imageDims[1]*imageDims[2]; mitkPixelTypeMultiplex3( AccessPixel, ptype, this->GetData(), offset, value ); } return value; } double mitk::Image::GetPixelValueByWorldCoordinate(const mitk::Point3D& position, unsigned int timestep) { double value = 0.0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } Index3D itkIndex; this->GetGeometry()->WorldToIndex(position, itkIndex); value = this->GetPixelValueByIndex( itkIndex, timestep); return value; } mitk::ImageVtkAccessor* mitk::Image::GetVtkImageData(int t, int n) { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume=GetVolumeData(t, n); if(volume.GetPointer()==NULL || volume->GetVtkImageData(this) == NULL) return NULL; SlicedGeometry3D* geom3d = GetSlicedGeometry(t); const mitk::Vector3D vspacing = (geom3d->GetSpacing()); double dspacing[3] = {vspacing[0],vspacing[1],vspacing[2]}; volume->GetVtkImageData(this)->SetSpacing( dspacing ); return volume->GetVtkImageData(this); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return NULL; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // slice directly available? int pos=GetSliceIndex(s,t,n); if(m_Slices[pos].GetPointer()!=NULL) return m_Slices[pos]; // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // slice is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir mussen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, s); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, 1); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsSliceSet(s,t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetSliceData(s,t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateSliceData(s,t,n,data,importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return NULL; ImageDataItemPointer ch, vol; // volume directly available? int pos=GetVolumeIndex(t,n); vol=m_Volumes[pos]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return vol; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); vol->SetComplete(true); return m_Volumes[pos]=vol; } // let's see if all slices of the volume are set, so that we can (could) combine them to a volume bool complete=true; unsigned int s; for(s=0;sSetComplete(true); } else { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); vol=m_Volumes[pos]; // ok, let's combine the slices! if(vol.GetPointer()==NULL) vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); vol->SetComplete(true); size_t size=m_OffsetTable[2]*(ptypeSize); for(s=0;sGetParent()!=vol) { // copy data of slices in volume size_t offset = ((size_t) s)*size; std::memcpy(static_cast(vol->GetData())+offset, sl->GetData(), size); // FIXME mitkIpPicDescriptor * pic = sl->GetPicDescriptor(); // replace old slice with reference to volume sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*size); sl->SetComplete(true); //mitkIpFuncCopyTags(sl->GetPicDescriptor(), pic); m_Slices[posSl]=sl; } } //if(vol->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(vol->GetPicDescriptor(), m_Slices[GetSliceIndex(0,t,n)]->GetPicDescriptor()); } return m_Volumes[pos]=vol; } // volume is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsVolumeSet(t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetVolumeData(t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateVolumeData(t,n,data,importMemoryManagement); item->SetComplete(true); return item; } - } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return NULL; ImageDataItemPointer ch, vol; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return ch; // let's see if all volumes are set, so that we can (could) combine them to a channel if(IsChannelSet(n)) { // if there is only one time frame we do not need to combine anything if(m_Dimensions[3]<=1) { vol=GetVolumeData(0,n,data,importMemoryManagement); ch=new ImageDataItem(*vol, m_ImageDescriptor, m_ImageDescriptor->GetNumberOfDimensions(), data, importMemoryManagement == ManageMemory); ch->SetComplete(true); } else { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=m_Channels[n]; // ok, let's combine the volumes! if(ch.GetPointer()==NULL) ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); ch->SetComplete(true); size_t size=m_OffsetTable[m_Dimension-1]*(ptypeSize); unsigned int t; ImageDataItemPointerArray::iterator slicesIt = m_Slices.begin()+n*m_Dimensions[2]*m_Dimensions[3]; for(t=0;tGetParent()!=ch) { // copy data of volume in channel size_t offset = ((size_t) t)*m_OffsetTable[3]*(ptypeSize); std::memcpy(static_cast(ch->GetData())+offset, vol->GetData(), size); // REVEIW FIX mitkIpPicDescriptor * pic = vol->GetPicDescriptor(); // replace old volume with reference to channel vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, offset); vol->SetComplete(true); //mitkIpFuncCopyTags(vol->GetPicDescriptor(), pic); m_Volumes[posVol]=vol; // get rid of slices - they may point to old volume ImageDataItemPointer dnull=NULL; for(unsigned int i = 0; i < m_Dimensions[2]; ++i, ++slicesIt) { assert(slicesIt != m_Slices.end()); *slicesIt = dnull; } } } // REVIEW FIX // if(ch->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(ch->GetPicDescriptor(), m_Volumes[GetVolumeIndex(0,n)]->GetPicDescriptor()); } return m_Channels[n]=ch; } // channel is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, 0); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, m_Dimensions[3]); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); // did it work? if(IsChannelSet(n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetChannelData(n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateChannelData(n,data,importMemoryManagement); item->SetComplete(true); return item; } } bool mitk::Image::IsSliceSet(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; if(m_Slices[GetSliceIndex(s,t,n)].GetPointer()!=NULL) return true; ImageDataItemPointer ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; return false; } bool mitk::Image::IsVolumeSet(int t, int n) const { if(IsValidVolume(t,n)==false) return false; ImageDataItemPointer ch, vol; // volume directly available? vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; // let's see if all slices of the volume are set, so that we can (could) combine them to a volume unsigned int s; for(s=0;sIsComplete())) return true; // let's see if all volumes are set, so that we can (could) combine them to a channel unsigned int t; for(t=0;t(data), s, t, n, CopyMemory); } bool mitk::Image::SetVolume(const void *data, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportVolume(const_cast(data), t, n, CopyMemory); } bool mitk::Image::SetChannel(const void *data, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportChannel(const_cast(data), n, CopyMemory); } bool mitk::Image::SetImportSlice(void *data, int s, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return false; ImageDataItemPointer sl; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); if(IsSliceSet(s,t,n)) { sl=GetSliceData(s,t,n,data,importMemoryManagement); if(sl->GetManageMemory()==false) { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; } if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); sl->Modified(); //we have changed the data: call Modified()! Modified(); } else { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); //we just added a missing slice, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(void *data, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return false; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer vol; if(IsVolumeSet(t,n)) { vol=GetVolumeData(t,n,data,importMemoryManagement); if(vol->GetManageMemory()==false) { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; } if ( vol->GetData() != data ) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); vol->Modified(); vol->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; if ( vol->GetData() != data ) { std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } vol->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( vol->GetData() ); //we just added a missing Volume, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportChannel(void *data, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return false; // channel descriptor const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer ch; if(IsChannelSet(n)) { ch=GetChannelData(n,data,importMemoryManagement); if(ch->GetManageMemory()==false) { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; } if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->Modified(); ch->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( ch->GetData() ); //we just added a missing Channel, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } void mitk::Image::Initialize() { ImageDataItemPointerArray::iterator it, end; for( it=m_Slices.begin(), end=m_Slices.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Volumes.begin(), end=m_Volumes.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Channels.begin(), end=m_Channels.end(); it!=end; ++it ) { (*it)=NULL; } m_CompleteData = NULL; if( m_ImageStatistics == NULL) { m_ImageStatistics = new mitk::ImageStatisticsHolder( this ); } SetRequestedRegionToLargestPossibleRegion(); } void mitk::Image::Initialize(const mitk::ImageDescriptor::Pointer inDesc) { // store the descriptor this->m_ImageDescriptor = inDesc; // initialize image this->Initialize( inDesc->GetChannelDescriptor(0).GetPixelType(), inDesc->GetNumberOfDimensions(), inDesc->GetDimensions(), 1 ); } void mitk::Image::Initialize(const mitk::PixelType& type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels) { Clear(); m_Dimension=dimension; if(!dimensions) itkExceptionMacro(<< "invalid zero dimension image"); unsigned int i; for(i=0;im_ImageDescriptor = mitk::ImageDescriptor::New(); this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); for(i=0;i<4;++i) { m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize (i, m_Dimensions[i]); } m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, channels); if(m_LargestPossibleRegion.GetNumberOfPixels()==0) { delete [] m_Dimensions; m_Dimensions = NULL; return; } for( unsigned int i=0u; im_ImageDescriptor->AddNewChannel( type ); } PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(m_Dimensions[0], m_Dimensions[1]); SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(planegeometry, m_Dimensions[2]); - if(dimension>=4) - { - TimeBounds timebounds; - timebounds[0] = 0.0; - timebounds[1] = 1.0; - slicedGeometry->SetTimeBounds(timebounds); - } - ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); for (TimeStepType step = 0; step < timeGeometry->CountTimeSteps(); ++step) { timeGeometry->GetGeometryForTimeStep(step)->ImageGeometryOn(); } SetTimeGeometry(timeGeometry); ImageDataItemPointer dnull=NULL; m_Channels.assign(GetNumberOfChannels(), dnull); m_Volumes.assign(GetNumberOfChannels()*m_Dimensions[3], dnull); m_Slices.assign(GetNumberOfChannels()*m_Dimensions[3]*m_Dimensions[2], dnull); ComputeOffsetTable(); Initialize(); m_Initialized = true; } void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::BaseGeometry& geometry, unsigned int channels, int tDim ) { mitk::ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); itk::LightObject::Pointer lopointer = geometry.Clone(); timeGeometry->Initialize(dynamic_cast(lopointer.GetPointer()), tDim); this->Initialize(type, *timeGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::TimeGeometry& geometry, unsigned int channels, int tDim ) { unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(0)+0.5); dimensions[1] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(1)+0.5); dimensions[2] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(2)+0.5); dimensions[3] = (tDim > 0) ? tDim : geometry.CountTimeSteps(); dimensions[4] = 0; unsigned int dimension = 2; if ( dimensions[2] > 1 ) dimension = 3; if ( dimensions[3] > 1 ) dimension = 4; Initialize( type, dimension, dimensions, channels ); if (geometry.CountTimeSteps() > 1) { TimeGeometry::Pointer cloned = geometry.Clone(); SetTimeGeometry(cloned.GetPointer()); } else Superclass::SetGeometry(geometry.GetGeometryForTimeStep(0)); /* //Old //TODO_GOETZ Really necessary? mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBoxInWorld()->GetBounds(); if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) { SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); mitk::Point3D origin; origin.Fill(0.0); slicedGeometry->IndexToWorld(origin, origin); bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); slicedGeometry->SetBounds(bounds); slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.GetVnlVector().data_block()); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); }*/ } void mitk::Image::Initialize(const mitk::PixelType& type, int sDim, const mitk::PlaneGeometry& geometry2d, bool flipped, unsigned int channels, int tDim ) { SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(static_cast(geometry2d.Clone().GetPointer()), sDim, flipped); Initialize(type, *slicedGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::Image* image) { Initialize(image->GetPixelType(), *image->GetTimeGeometry()); } void mitk::Image::Initialize(vtkImageData* vtkimagedata, int channels, int tDim, int sDim, int pDim) { if(vtkimagedata==NULL) return; m_Dimension=vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions=new unsigned int[m_Dimension>4?m_Dimension:4]; for(i=0;iGetDimensions()[i]; if(m_Dimension<4) { unsigned int *p; for(i=0,p=tmpDimensions+m_Dimension;i<4-m_Dimension;++i, ++p) *p=1; } if(pDim>=0) { tmpDimensions[1]=pDim; if(m_Dimension < 2) m_Dimension = 2; } if(sDim>=0) { tmpDimensions[2]=sDim; if(m_Dimension < 3) m_Dimension = 3; } if(tDim>=0) { tmpDimensions[3]=tDim; if(m_Dimension < 4) m_Dimension = 4; } switch ( vtkimagedata->GetScalarType() ) { case VTK_BIT: case VTK_CHAR: //pixelType.Initialize(typeid(char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_CHAR: //pixelType.Initialize(typeid(unsigned char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_SHORT: //pixelType.Initialize(typeid(short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_SHORT: //pixelType.Initialize(typeid(unsigned short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_INT: //pixelType.Initialize(typeid(int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_INT: //pixelType.Initialize(typeid(unsigned int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_LONG: //pixelType.Initialize(typeid(long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_LONG: //pixelType.Initialize(typeid(unsigned long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_FLOAT: //pixelType.Initialize(typeid(float), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_DOUBLE: //pixelType.Initialize(typeid(double), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; default: break; } /* Initialize(pixelType, m_Dimension, tmpDimensions, channels); */ const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if(m_Dimension>=2) spacing[1]=spacinglist[1]; if(m_Dimension>=3) spacing[2]=spacinglist[2]; // access origin of vtkImage Point3D origin; double vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if(m_Dimension>=2) origin[1]=vtkorigin[1]; if(m_Dimension>=3) origin[2]=vtkorigin[2]; SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = static_cast(slicedGeometry->GetPlaneGeometry(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); delete [] tmpDimensions; } bool mitk::Image::IsValidSlice(int s, int t, int n) const { if(m_Initialized) return ((s>=0) && (s<(int)m_Dimensions[2]) && (t>=0) && (t< (int) m_Dimensions[3]) && (n>=0) && (n< (int)GetNumberOfChannels())); else return false; } bool mitk::Image::IsValidVolume(int t, int n) const { if(m_Initialized) return IsValidSlice(0, t, n); else return false; } bool mitk::Image::IsValidChannel(int n) const { if(m_Initialized) return IsValidSlice(0, 0, n); else return false; } void mitk::Image::ComputeOffsetTable() { if(m_OffsetTable!=NULL) delete [] m_OffsetTable; m_OffsetTable=new size_t[m_Dimension>4 ? m_Dimension+1 : 4+1]; unsigned int i; size_t num=1; m_OffsetTable[0] = 1; for (i=0; i < m_Dimension; ++i) { num *= m_Dimensions[i]; m_OffsetTable[i+1] = num; } for (;i < 4; ++i) m_OffsetTable[i+1] = num; } bool mitk::Image::IsValidTimeStep(int t) const { return ( ( m_Dimension >= 4 && t <= (int)m_Dimensions[3] && t > 0 ) || (t == 0) ); } void mitk::Image::Expand(unsigned int timeSteps) { if(timeSteps < 1) itkExceptionMacro(<< "Invalid timestep in Image!"); Superclass::Expand(timeSteps); } int mitk::Image::GetSliceIndex(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; return ((size_t)s)+((size_t) t)*m_Dimensions[2]+((size_t) n)*m_Dimensions[3]*m_Dimensions[2]; //?? } int mitk::Image::GetVolumeIndex(int t, int n) const { if(IsValidVolume(t,n)==false) return false; return ((size_t)t)+((size_t) n)*m_Dimensions[3]; //?? } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetSliceIndex(s,t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if(vol.GetPointer()!=NULL) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // allocate new volume (instead of a single slice to keep data together!) m_Volumes[GetVolumeIndex(t,n)]=vol=AllocateVolumeData(t,n,NULL,importMemoryManagement); sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; ////ALTERNATIVE: //// allocate new slice //sl=new ImageDataItem(*m_PixelType, 2, m_Dimensions); //m_Slices[pos]=sl; //return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetVolumeIndex(t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ImageDataItemPointer ch, vol; ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data,importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); return m_Volumes[pos]=vol; } mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); // allocate new volume if(importMemoryManagement == CopyMemory) { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); if(data != NULL) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } else { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, data, importMemoryManagement == ManageMemory); } m_Volumes[pos]=vol; return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { ImageDataItemPointer ch; // allocate new channel if(importMemoryManagement == CopyMemory) { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); if(data != NULL) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); } else { ch=new ImageDataItem(this->m_ImageDescriptor, data, importMemoryManagement == ManageMemory); } m_Channels[n]=ch; return ch; } unsigned int* mitk::Image::GetDimensions() const { return m_Dimensions; } void mitk::Image::Clear() { Superclass::Clear(); delete [] m_Dimensions; m_Dimensions = NULL; } void mitk::Image::SetGeometry(BaseGeometry* aGeometry3D) { // Please be aware of the 0.5 offset/pixel-center issue! See Geometry documentation for further information if(aGeometry3D->GetImageGeometry()==false) { MITK_INFO << "WARNING: Applied a non-image geometry onto an image. Please be SURE that this geometry is pixel-center-based! If it is not, you need to call Geometry3D->ChangeImageGeometryConsideringOriginOffset(true) before calling image->setGeometry(..)\n"; } Superclass::SetGeometry(aGeometry3D); for (TimeStepType step = 0; step < GetTimeGeometry()->CountTimeSteps(); ++step) GetTimeGeometry()->GetGeometryForTimeStep(step)->ImageGeometryOn(); } void mitk::Image::PrintSelf(std::ostream& os, itk::Indent indent) const { unsigned char i; if(m_Initialized) { os << indent << " Dimension: " << m_Dimension << std::endl; os << indent << " Dimensions: "; for(i=0; i < m_Dimension; ++i) os << GetDimension(i) << " "; os << std::endl; for(unsigned int ch=0; ch < this->m_ImageDescriptor->GetNumberOfChannels(); ch++) { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(ch); os << indent << " Channel: " << this->m_ImageDescriptor->GetChannelName(ch) << std::endl; os << indent << " PixelType: " << chPixelType.GetPixelTypeAsString() << std::endl; os << indent << " BytesPerElement: " << chPixelType.GetSize() << std::endl; os << indent << " ComponentType: " << chPixelType.GetComponentTypeAsString() << std::endl; os << indent << " NumberOfComponents: " << chPixelType.GetNumberOfComponents() << std::endl; os << indent << " BitsPerComponent: " << chPixelType.GetBitsPerComponent() << std::endl; } - } else { os << indent << " Image not initialized: m_Initialized: false" << std::endl; } Superclass::PrintSelf(os,indent); } bool mitk::Image::IsRotated() const { const mitk::BaseGeometry* geo = this->GetGeometry(); bool ret = false; if(geo) { const vnl_matrix_fixed & mx = geo->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::ScalarType ref = 0; for(short k = 0; k < 3; ++k) ref += mx[k][k]; ref/=1000; // Arbitrary value; if a non-diagonal (nd) element is bigger then this, matrix is considered nd. for(short i = 0; i < 3; ++i) { for(short j = 0; j < 3; ++j) { if(i != j) { if(std::abs(mx[i][j]) > ref) // matrix is nd ret = true; } } } } return ret; } mitk::ScalarType mitk::Image::GetScalarValueMin(int t) const { return m_ImageStatistics->GetScalarValueMin(t); } //## \brief Get the maximum for scalar images mitk::ScalarType mitk::Image::GetScalarValueMax(int t) const { return m_ImageStatistics->GetScalarValueMax(t); } //## \brief Get the second smallest value for scalar images mitk::ScalarType mitk::Image::GetScalarValue2ndMin(int t) const { return m_ImageStatistics->GetScalarValue2ndMin(t); } mitk::ScalarType mitk::Image::GetScalarValueMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValueMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMax(int t) const { return m_ImageStatistics->GetScalarValue2ndMax(t); } mitk::ScalarType mitk::Image::GetScalarValueMaxNoRecompute( unsigned int t) const { return m_ImageStatistics->GetScalarValueMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMaxNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetCountOfMinValuedVoxels(int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxels(t); } mitk::ScalarType mitk::Image::GetCountOfMaxValuedVoxels(int t) const { return m_ImageStatistics->GetCountOfMaxValuedVoxels(t); } unsigned int mitk::Image::GetCountOfMaxValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMaxValuedVoxelsNoRecompute(t); } unsigned int mitk::Image::GetCountOfMinValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxelsNoRecompute(t); } bool mitk::Equal(const mitk::Image* leftHandSide, const mitk::Image* rightHandSide, ScalarType eps, bool verbose) { if((leftHandSide == NULL) || (rightHandSide == NULL)) { MITK_ERROR << "mitk::Equal(const mitk::Image* leftHandSide, const mitk::Image* rightHandSide, ScalarType eps, bool verbose) does not work with NULL pointer input."; return false; } return mitk::Equal( *leftHandSide, *rightHandSide, eps, verbose); } bool mitk::Equal(const mitk::Image& leftHandSide, const mitk::Image& rightHandSide, ScalarType eps, bool verbose) { bool returnValue = true; // Dimensionality if( rightHandSide.GetDimension() != leftHandSide.GetDimension() ) { if(verbose) { MITK_INFO << "[( Image )] Dimensionality differs."; MITK_INFO << "leftHandSide is " << leftHandSide.GetDimension() << "rightHandSide is " << rightHandSide.GetDimension(); } returnValue = false; } // Pair-wise dimension (size) comparison unsigned int minDimensionality = std::min(rightHandSide.GetDimension(),leftHandSide.GetDimension()); for( unsigned int i=0; i< minDimensionality; ++i) { if( rightHandSide.GetDimension(i) != leftHandSide.GetDimension(i) ) { returnValue = false; if(verbose) { MITK_INFO << "[( Image )] dimension differs."; MITK_INFO << "leftHandSide->GetDimension("<GetDimension("<SetInput(0, &rightHandSide); compareFilter->SetInput(1, &leftHandSide); compareFilter->SetTolerance(eps); compareFilter->Update(); if(( !compareFilter->GetResult() ) ) { returnValue = false; if(verbose) { MITK_INFO << "[(Image)] Pixel values differ: "; compareFilter->GetCompareResults().PrintSelf(); } } } return returnValue; } diff --git a/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp b/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp index 4f6a5ccd3c..93ca960056 100644 --- a/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp +++ b/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp @@ -1,241 +1,265 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include mitk::ProportionalTimeGeometry::ProportionalTimeGeometry() : m_FirstTimePoint(0.0), m_StepDuration(1.0) { } mitk::ProportionalTimeGeometry::~ProportionalTimeGeometry() { } void mitk::ProportionalTimeGeometry::Initialize() { m_FirstTimePoint = 0.0; m_StepDuration = 1.0; m_GeometryVector.resize(1); } mitk::TimeStepType mitk::ProportionalTimeGeometry::CountTimeSteps () const { return static_cast(m_GeometryVector.size() ); } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMinimumTimePoint () const { return m_FirstTimePoint; } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMaximumTimePoint () const { TimePointType timePoint = m_FirstTimePoint + m_StepDuration * CountTimeSteps(); if (timePoint >std::numeric_limits().max()) timePoint = std::numeric_limits().max(); return timePoint; } mitk::TimeBounds mitk::ProportionalTimeGeometry::GetTimeBounds () const { TimeBounds bounds; bounds[0] = this->GetMinimumTimePoint(); bounds[1] = this->GetMaximumTimePoint(); return bounds; } +mitk::TimePointType mitk::ProportionalTimeGeometry::GetMinimumTimePoint(TimeStepType step) const +{ + TimePointType timePoint; + if (step == 0) + { + timePoint = m_FirstTimePoint; + } + else + { + timePoint = m_FirstTimePoint + m_StepDuration * step; + } + if (timePoint >std::numeric_limits().max()) + timePoint = std::numeric_limits().max(); + return timePoint; +} + +mitk::TimePointType mitk::ProportionalTimeGeometry::GetMaximumTimePoint(TimeStepType step) const +{ + TimePointType timePoint = m_FirstTimePoint + m_StepDuration * (step + 1); + if (timePoint >std::numeric_limits().max()) + timePoint = std::numeric_limits().max(); + return timePoint; +} + + +mitk::TimeBounds mitk::ProportionalTimeGeometry::GetTimeBounds(TimeStepType step) const +{ + TimeBounds bounds; + bounds[0] = this->GetMinimumTimePoint(step); + bounds[1] = this->GetMaximumTimePoint(step); + return bounds; +} + bool mitk::ProportionalTimeGeometry::IsValidTimePoint (TimePointType timePoint) const { return this->GetMinimumTimePoint() <= timePoint && timePoint < this->GetMaximumTimePoint(); } bool mitk::ProportionalTimeGeometry::IsValidTimeStep (TimeStepType timeStep) const { return timeStep < this->CountTimeSteps(); } mitk::TimePointType mitk::ProportionalTimeGeometry::TimeStepToTimePoint( TimeStepType timeStep) const { if (m_FirstTimePoint <= itk::NumericTraits::NonpositiveMin() || m_FirstTimePoint >= itk::NumericTraits::max() || m_StepDuration <= itk::NumericTraits::min() || m_StepDuration >= itk::NumericTraits::max()) { return static_cast(timeStep); } return m_FirstTimePoint + timeStep * m_StepDuration; } mitk::TimeStepType mitk::ProportionalTimeGeometry::TimePointToTimeStep( TimePointType timePoint) const { if (m_FirstTimePoint <= timePoint) return static_cast((timePoint -m_FirstTimePoint) / m_StepDuration); else return 0; } mitk::BaseGeometry::Pointer mitk::ProportionalTimeGeometry::GetGeometryForTimeStep( TimeStepType timeStep) const { if (IsValidTimeStep(timeStep)) { return dynamic_cast(m_GeometryVector[timeStep].GetPointer()); } else { return 0; } } mitk::BaseGeometry::Pointer mitk::ProportionalTimeGeometry::GetGeometryForTimePoint(TimePointType timePoint) const { if (this->IsValidTimePoint(timePoint)) { TimeStepType timeStep = this->TimePointToTimeStep(timePoint); return this->GetGeometryForTimeStep(timeStep); } else { return 0; } } mitk::BaseGeometry::Pointer mitk::ProportionalTimeGeometry::GetGeometryCloneForTimeStep( TimeStepType timeStep) const { if (timeStep > m_GeometryVector.size()) return 0; itk::LightObject::Pointer lopointer = m_GeometryVector[timeStep]->Clone(); return dynamic_cast(lopointer.GetPointer()); } bool mitk::ProportionalTimeGeometry::IsValid() const { bool isValid = true; isValid &= m_GeometryVector.size() > 0; isValid &= m_StepDuration > 0; return isValid; } void mitk::ProportionalTimeGeometry::ClearAllGeometries() { m_GeometryVector.clear(); } void mitk::ProportionalTimeGeometry::ReserveSpaceForGeometries(TimeStepType numberOfGeometries) { m_GeometryVector.reserve(numberOfGeometries); } void mitk::ProportionalTimeGeometry::Expand(mitk::TimeStepType size) { m_GeometryVector.reserve(size); while (m_GeometryVector.size() < size) { Geometry3D::Pointer geo3D = Geometry3D::New(); m_GeometryVector.push_back(dynamic_cast(geo3D.GetPointer())); } } void mitk::ProportionalTimeGeometry::SetTimeStepGeometry(BaseGeometry* geometry, TimeStepType timeStep) { assert(timeStep<=m_GeometryVector.size()); if (timeStep == m_GeometryVector.size()) m_GeometryVector.push_back(geometry); m_GeometryVector[timeStep] = geometry; } itk::LightObject::Pointer mitk::ProportionalTimeGeometry::InternalClone() const { itk::LightObject::Pointer parent = Superclass::InternalClone(); ProportionalTimeGeometry::Pointer newTimeGeometry = dynamic_cast (parent.GetPointer()); newTimeGeometry->m_FirstTimePoint = this->m_FirstTimePoint; newTimeGeometry->m_StepDuration = this->m_StepDuration; newTimeGeometry->m_GeometryVector.clear(); newTimeGeometry->Expand(this->CountTimeSteps()); for (TimeStepType i =0; i < CountTimeSteps(); ++i) { itk::LightObject::Pointer lopointer=GetGeometryForTimeStep(i)->Clone(); BaseGeometry::Pointer tempGeometry = dynamic_cast(lopointer.GetPointer()); newTimeGeometry->SetTimeStepGeometry(tempGeometry.GetPointer(),i); } return parent; } void mitk::ProportionalTimeGeometry::Initialize (BaseGeometry* geometry, TimeStepType timeSteps) { timeSteps = (timeSteps > 0) ? timeSteps : 1; - m_FirstTimePoint = geometry->GetTimeBounds()[0]; - m_StepDuration = geometry->GetTimeBounds()[1] - geometry->GetTimeBounds()[0]; + m_FirstTimePoint = 0.0; + m_StepDuration = 1.0; + if (timeSteps < 2) + { + m_FirstTimePoint = -std::numeric_limits::max(); + m_StepDuration = std::numeric_limits().infinity(); + } + this->ReserveSpaceForGeometries(timeSteps); try{ for (TimeStepType currentStep = 0; currentStep < timeSteps; ++currentStep) { - mitk::TimeBounds timeBounds; - if (timeSteps > 1) - { - timeBounds[0] = m_FirstTimePoint + currentStep * m_StepDuration; - timeBounds[1] = m_FirstTimePoint + (currentStep+1) * m_StepDuration; - } - else - { - timeBounds = geometry->GetTimeBounds(); - } itk::LightObject::Pointer lopointer=geometry->Clone(); BaseGeometry::Pointer clonedGeometry = dynamic_cast(lopointer.GetPointer()); this->SetTimeStepGeometry(clonedGeometry.GetPointer(), currentStep); - GetGeometryForTimeStep(currentStep)->SetTimeBounds(timeBounds); } } catch (...) { MITK_INFO << "Cloning of geometry produced an error!"; } Update(); } void mitk::ProportionalTimeGeometry::Initialize (TimeStepType timeSteps) { mitk::Geometry3D::Pointer geo3D = Geometry3D::New(); mitk::BaseGeometry::Pointer geometry = dynamic_cast(geo3D.GetPointer()); geometry->Initialize(); - if ( timeSteps > 1 ) - { - mitk::ScalarType timeBounds[] = {0.0, 1.0}; - geometry->SetTimeBounds( timeBounds ); - } this->Initialize(geometry.GetPointer(), timeSteps); } void mitk::ProportionalTimeGeometry::PrintSelf(std::ostream& os, itk::Indent indent) const { os << indent << " TimeSteps: " << this->CountTimeSteps() << std::endl; os << indent << " FirstTimePoint: " << this->GetFirstTimePoint() << std::endl; os << indent << " StepDuration: " << this->GetStepDuration() << " ms" << std::endl; + os << indent << " Time Bounds: " << this->GetTimeBounds()[0] << " - " << this->GetTimeBounds()[1] << std::endl; os << std::endl; os << indent << " GetGeometryForTimeStep(0): "; if(GetGeometryForTimeStep(0).IsNull()) os << "NULL" << std::endl; else GetGeometryForTimeStep(0)->Print(os, indent); } diff --git a/Core/Code/DataManagement/mitkProportionalTimeGeometry.h b/Core/Code/DataManagement/mitkProportionalTimeGeometry.h index 4f27763f19..1fb7478c55 100644 --- a/Core/Code/DataManagement/mitkProportionalTimeGeometry.h +++ b/Core/Code/DataManagement/mitkProportionalTimeGeometry.h @@ -1,208 +1,225 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef ProportionalTimeGeometry_h #define ProportionalTimeGeometry_h //MITK #include #include #include #include namespace mitk { - /** * \brief Organizes geometries over proportional time steps * * For this TimeGeometry implementation it is assumed that * the durations of the time steps are equidistant, e.g. * the durations of the time steps in one ProportionalTimeGeometry * are the same. The geometries of the time steps are independent, * and not linked to each other. Since the timeBounds of the * geometries are different for each time step it is not possible * to set the same geometry to different time steps. Instead * copies should be used. * * \addtogroup geometry */ class MITK_CORE_EXPORT ProportionalTimeGeometry : public TimeGeometry { public: mitkClassMacro(ProportionalTimeGeometry, TimeGeometry); ProportionalTimeGeometry(); typedef ProportionalTimeGeometry self; itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** * \brief Returns the number of time steps. * * Returns the number of time steps for which * geometries are saved. The number of time steps * is also the upper bound of the time steps. The * minimum time steps is always 0. */ virtual TimeStepType CountTimeSteps() const; /** * \brief Returns the first time point for which the object is valid. * * Returns the first valid time point for this geometry. If only one * time steps available it usually goes from -max to +max. The time point * is given in ms. */ virtual TimePointType GetMinimumTimePoint () const; /** * \brief Returns the last time point for which the object is valid * * Gives the last time point for which a valid geometrie is saved in * this time geometry. The time point is given in ms. */ virtual TimePointType GetMaximumTimePoint () const; + /** + * \brief Returns the first time point for which the object is valid. + * + * Returns the first valid time point for the given TimeStep. The time point + * is given in ms. + */ + virtual TimePointType GetMinimumTimePoint(TimeStepType step) const; + /** + * \brief Returns the last time point for which the object is valid + * + * Gives the last time point for the Geometry specified by the given TimeStep. The time point is given in ms. + */ + virtual TimePointType GetMaximumTimePoint(TimeStepType step) const; + /** * \brief Get the time bounds (in ms) */ virtual TimeBounds GetTimeBounds( ) const; + + /** + * \brief Get the time bounds for the given TimeStep (in ms) + */ + virtual TimeBounds GetTimeBounds(TimeStepType step) const; + /** * \brief Tests if a given time point is covered by this object * * Returns true if a geometry can be returned for the given time * point and falls if not. The time point must be given in ms. */ virtual bool IsValidTimePoint (TimePointType timePoint) const; /** * \brief Test for the given time step if a geometry is availible * * Returns true if a geometry is defined for the given time step. * Otherwise false is returned. * The time step is defined as positiv number. */ virtual bool IsValidTimeStep (TimeStepType timeStep) const; /** * \brief Converts a time step to a time point * * Converts a time step to a time point in a way that * the new time point indicates the same geometry as the time step. * If the original time steps does not point to a valid geometry, * a time point is calculated that also does not point to a valid * geometry, but no exception is raised. */ virtual TimePointType TimeStepToTimePoint (TimeStepType timeStep) const; /** * \brief Converts a time point to the corresponding time step * * Converts a time point to a time step in a way that * the new time step indicates the same geometry as the time point. * If a negativ invalid time point is given always time step 0 is * returned. If an positiv invalid time step is given an invalid * time step will be returned. */ virtual TimeStepType TimePointToTimeStep (TimePointType timePoint) const; /** * \brief Returns the geometry which corresponds to the given time step * * Returns a clone of the geometry which defines the given time step. If * the given time step is invalid an null-pointer is returned. */ virtual BaseGeometry::Pointer GetGeometryCloneForTimeStep( TimeStepType timeStep) const; /** * \brief Returns the geometry which corresponds to the given time point * * Returns the geometry which defines the given time point. If * the given time point is invalid an null-pointer is returned. * * If the returned geometry is changed this will affect the saved * geometry. */ virtual BaseGeometry::Pointer GetGeometryForTimePoint ( TimePointType timePoint) const; /** * \brief Returns the geometry which corresponds to the given time step * * Returns the geometry which defines the given time step. If * the given time step is invalid an null-pointer is returned. * * If the returned geometry is changed this will affect the saved * geometry. */ virtual BaseGeometry::Pointer GetGeometryForTimeStep ( TimeStepType timeStep) const; /** * \brief Tests if all necessary informations are set and the object is valid */ virtual bool IsValid () const; /** * \brief Initilizes a new object with one time steps which contains an empty geometry. */ virtual void Initialize(); /** * \brief Expands the time geometry to the given number of time steps. * * Initializes the new time steps with empty geometries. * Shrinking is not supported. */ virtual void Expand(TimeStepType size); /** * \brief Sets the geometry for the given time step * * This method does not afflict other time steps, since the geometry for * each time step is saved individually. */ virtual void SetTimeStepGeometry(BaseGeometry* geometry, TimeStepType timeStep); /** * \brief Makes a deep copy of the current object */ virtual itk::LightObject::Pointer InternalClone () const; itkGetConstMacro(FirstTimePoint, TimePointType); itkSetMacro(FirstTimePoint, TimePointType); itkGetConstMacro(StepDuration, TimePointType); itkSetMacro(StepDuration, TimePointType); // void SetGeometryForTimeStep(TimeStepType timeStep, BaseGeometry& geometry); void ClearAllGeometries (); // void AddGeometry(BaseGeometry geometry); void ReserveSpaceForGeometries (TimeStepType numberOfGeometries); /** * \brief Initializes the TimeGeometry with equally time Step geometries * * Saves a copy for each time step. */ void Initialize (BaseGeometry* geometry, TimeStepType timeSteps); /** * \brief Initialize the TimeGeometry with empty BaseGeometry */ void Initialize (TimeStepType timeSteps); virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; protected: virtual ~ProportionalTimeGeometry(); std::vector m_GeometryVector; TimePointType m_FirstTimePoint; TimePointType m_StepDuration; - }; // end class ProportialTimeGeometry - } // end namespace MITK #endif // ProportionalTimeGeometry_h diff --git a/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp b/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp index 82edae4a94..1f223b2437 100644 --- a/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp +++ b/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp @@ -1,1031 +1,1035 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSlicedGeometry3D.h" #include "mitkPlaneGeometry.h" #include "mitkRotationOperation.h" #include "mitkPlaneOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkApplyTransformMatrixOperation.h" #include "mitkInteractionConst.h" #include "mitkSliceNavigationController.h" const mitk::ScalarType PI = 3.14159265359; mitk::SlicedGeometry3D::SlicedGeometry3D() : m_EvenlySpaced( true ), m_Slices( 0 ), m_ReferenceGeometry( NULL ), m_SliceNavigationController( NULL ) { m_DirectionVector.Fill(0); this->InitializeSlicedGeometry( m_Slices ); } mitk::SlicedGeometry3D::SlicedGeometry3D(const SlicedGeometry3D& other) : Superclass(other), m_EvenlySpaced( other.m_EvenlySpaced ), m_Slices( other.m_Slices ), m_ReferenceGeometry( other.m_ReferenceGeometry ), m_SliceNavigationController( other.m_SliceNavigationController ) { m_DirectionVector.Fill(0); SetSpacing( other.GetSpacing() ); SetDirectionVector( other.GetDirectionVector() ); if ( m_EvenlySpaced ) { PlaneGeometry::Pointer geometry = other.m_PlaneGeometries[0]->Clone(); PlaneGeometry* geometry2D = dynamic_cast(geometry.GetPointer()); assert(geometry2D!=NULL); SetPlaneGeometry(geometry2D, 0); } else { unsigned int s; for ( s = 0; s < other.m_Slices; ++s ) { if ( other.m_PlaneGeometries[s].IsNull() ) { assert(other.m_EvenlySpaced); m_PlaneGeometries[s] = NULL; } else { PlaneGeometry* geometry2D = other.m_PlaneGeometries[s]->Clone(); assert(geometry2D!=NULL); SetPlaneGeometry(geometry2D, s); } } } } mitk::SlicedGeometry3D::~SlicedGeometry3D() { } mitk::PlaneGeometry * mitk::SlicedGeometry3D::GetPlaneGeometry( int s ) const { mitk::PlaneGeometry::Pointer geometry2D = NULL; if ( this->IsValidSlice(s) ) { geometry2D = m_PlaneGeometries[s]; // If (a) m_EvenlySpaced==true, (b) we don't have a PlaneGeometry stored // for the requested slice, and (c) the first slice (s=0) // is a PlaneGeometry instance, then we calculate the geometry of the // requested as the plane of the first slice shifted by m_Spacing[2]*s // in the direction of m_DirectionVector. if ( (m_EvenlySpaced) && (geometry2D.IsNull()) ) { PlaneGeometry *firstSlice = dynamic_cast< PlaneGeometry * > ( m_PlaneGeometries[0].GetPointer() ); if ( firstSlice != NULL ) { if ( (m_DirectionVector[0] == 0.0) && (m_DirectionVector[1] == 0.0) && (m_DirectionVector[2] == 0.0) ) { m_DirectionVector = firstSlice->GetNormal(); m_DirectionVector.Normalize(); } Vector3D direction; direction = m_DirectionVector * this->GetSpacing()[2]; mitk::PlaneGeometry::Pointer requestedslice; requestedslice = static_cast< mitk::PlaneGeometry * >( firstSlice->Clone().GetPointer() ); requestedslice->SetOrigin( requestedslice->GetOrigin() + direction * s ); geometry2D = requestedslice; m_PlaneGeometries[s] = geometry2D; } } return geometry2D; } else { return NULL; } } const mitk::BoundingBox * mitk::SlicedGeometry3D::GetBoundingBox() const { assert(this->IsBoundingBoxNull()==false); return Superclass::GetBoundingBox(); } bool mitk::SlicedGeometry3D::SetPlaneGeometry( mitk::PlaneGeometry *geometry2D, int s ) { if ( this->IsValidSlice(s) ) { m_PlaneGeometries[s] = geometry2D; m_PlaneGeometries[s]->SetReferenceGeometry( m_ReferenceGeometry ); return true; } return false; } void mitk::SlicedGeometry3D::InitializeSlicedGeometry( unsigned int slices ) { Superclass::Initialize(); m_Slices = slices; PlaneGeometry::Pointer gnull = NULL; m_PlaneGeometries.assign( m_Slices, gnull ); Vector3D spacing; spacing.Fill( 1.0 ); this->SetSpacing( spacing ); m_DirectionVector.Fill( 0 ); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced( mitk::PlaneGeometry* geometry2D, unsigned int slices, bool flipped ) { assert( geometry2D != NULL ); this->InitializeEvenlySpaced( geometry2D, geometry2D->GetExtentInMM(2)/geometry2D->GetExtent(2), slices, flipped ); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced( mitk::PlaneGeometry* geometry2D, mitk::ScalarType zSpacing, unsigned int slices, bool flipped ) { assert( geometry2D != NULL ); assert( geometry2D->GetExtent(0) > 0 ); assert( geometry2D->GetExtent(1) > 0 ); geometry2D->Register(); Superclass::Initialize(); m_Slices = slices; BoundingBox::BoundsArrayType bounds = geometry2D->GetBounds(); bounds[4] = 0; bounds[5] = slices; // clear and reserve PlaneGeometry::Pointer gnull = NULL; m_PlaneGeometries.assign( m_Slices, gnull ); Vector3D directionVector = geometry2D->GetAxisVector(2); directionVector.Normalize(); directionVector *= zSpacing; if ( flipped == false ) { // Normally we should use the following four lines to create a copy of // the transform contrained in geometry2D, because it may not be changed // by us. But we know that SetSpacing creates a new transform without // changing the old (coming from geometry2D), so we can use the fifth // line instead. We check this at (**). // // AffineTransform3D::Pointer transform = AffineTransform3D::New(); // transform->SetMatrix(geometry2D->GetIndexToWorldTransform()->GetMatrix()); // transform->SetOffset(geometry2D->GetIndexToWorldTransform()->GetOffset()); // SetIndexToWorldTransform(transform); this->SetIndexToWorldTransform( const_cast< AffineTransform3D * >( geometry2D->GetIndexToWorldTransform() )); } else { directionVector *= -1.0; this->SetIndexToWorldTransform( AffineTransform3D::New()); this->GetIndexToWorldTransform()->SetMatrix( geometry2D->GetIndexToWorldTransform()->GetMatrix() ); AffineTransform3D::OutputVectorType scaleVector; FillVector3D(scaleVector, 1.0, 1.0, -1.0); this->GetIndexToWorldTransform()->Scale(scaleVector, true); this->GetIndexToWorldTransform()->SetOffset( geometry2D->GetIndexToWorldTransform()->GetOffset() ); } mitk::Vector3D spacing; FillVector3D( spacing, geometry2D->GetExtentInMM(0) / bounds[1], geometry2D->GetExtentInMM(1) / bounds[3], zSpacing ); this->SetDirectionVector( directionVector ); this->SetBounds( bounds ); this->SetPlaneGeometry( geometry2D, 0 ); this->SetSpacing( spacing ,true); this->SetEvenlySpaced(); - this->SetTimeBounds( geometry2D->GetTimeBounds() ); + + //this->SetTimeBounds( geometry2D->GetTimeBounds() ); assert(this->GetIndexToWorldTransform() != geometry2D->GetIndexToWorldTransform()); // (**) see above. this->SetFrameOfReferenceID( geometry2D->GetFrameOfReferenceID() ); this->SetImageGeometry( geometry2D->GetImageGeometry() ); geometry2D->UnRegister(); } void mitk::SlicedGeometry3D::InitializePlanes( const mitk::BaseGeometry *geometry3D, mitk::PlaneGeometry::PlaneOrientation planeorientation, bool top, bool frontside, bool rotated ) { m_ReferenceGeometry = const_cast< BaseGeometry * >( geometry3D ); PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( geometry3D, top, planeorientation, frontside, rotated ); ScalarType viewSpacing = 1; unsigned int slices = 1; switch ( planeorientation ) { case PlaneGeometry::Axial: viewSpacing = geometry3D->GetSpacing()[2]; slices = (unsigned int) geometry3D->GetExtent( 2 ); break; case PlaneGeometry::Frontal: viewSpacing = geometry3D->GetSpacing()[1]; slices = (unsigned int) geometry3D->GetExtent( 1 ); break; case PlaneGeometry::Sagittal: viewSpacing = geometry3D->GetSpacing()[0]; slices = (unsigned int) geometry3D->GetExtent( 0 ); break; default: itkExceptionMacro("unknown PlaneOrientation"); } mitk::Vector3D normal = this->AdjustNormal( planeGeometry->GetNormal() ); ScalarType directedExtent = std::abs( m_ReferenceGeometry->GetExtentInMM( 0 ) * normal[0] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 1 ) * normal[1] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 2 ) * normal[2] ); if ( directedExtent >= viewSpacing ) { slices = static_cast< int >(directedExtent / viewSpacing + 0.5); } else { slices = 1; } bool flipped = (top == false); if ( frontside == false ) { flipped = !flipped; } if ( planeorientation == PlaneGeometry::Frontal ) { flipped = !flipped; } this->InitializeEvenlySpaced( planeGeometry, viewSpacing, slices, flipped ); } void mitk::SlicedGeometry3D ::ReinitializePlanes( const Point3D ¢er, const Point3D &referencePoint ) { // Need a reference frame to align the rotated planes if ( !m_ReferenceGeometry ) { return; } // Get first plane of plane stack PlaneGeometry *firstPlane = dynamic_cast< PlaneGeometry * >( m_PlaneGeometries[0].GetPointer() ); // If plane stack is empty, exit if ( firstPlane == NULL ) { return; } // Calculate the "directed" spacing when taking the plane (defined by its axes // vectors and normal) as the reference coordinate frame. // // This is done by calculating the radius of the ellipsoid defined by the // original volume spacing axes, in the direction of the respective axis of the // reference frame. mitk::Vector3D axis0 = firstPlane->GetAxisVector(0); mitk::Vector3D axis1 = firstPlane->GetAxisVector(1); mitk::Vector3D normal = firstPlane->GetNormal(); normal.Normalize(); Vector3D spacing; spacing[0] = this->CalculateSpacing( axis0 ); spacing[1] = this->CalculateSpacing( axis1 ); spacing[2] = this->CalculateSpacing( normal ); Superclass::SetSpacing( spacing ); // Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above. ScalarType directedExtent = std::abs( m_ReferenceGeometry->GetExtentInMM( 0 ) * normal[0] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 1 ) * normal[1] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 2 ) * normal[2] ); if ( directedExtent >= spacing[2] ) { m_Slices = static_cast< unsigned int >(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } // The origin of our "first plane" needs to be adapted to this new extent. // To achieve this, we first calculate the current distance to the volume's // center, and then shift the origin in the direction of the normal by the // difference between this distance and half of the new extent. double centerOfRotationDistance = firstPlane->SignedDistanceFromPlane( center ); if ( centerOfRotationDistance > 0 ) { firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * (centerOfRotationDistance - directedExtent / 2.0) ); m_DirectionVector = normal; } else { firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * (directedExtent / 2.0 + centerOfRotationDistance) ); m_DirectionVector = -normal; } // Now we adjust this distance according with respect to the given reference // point: we need to make sure that the point is touched by one slice of the // new slice stack. double referencePointDistance = firstPlane->SignedDistanceFromPlane( referencePoint ); int referencePointSlice = static_cast< int >( referencePointDistance / spacing[2]); double alignmentValue = referencePointDistance / spacing[2] - referencePointSlice; firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * alignmentValue * spacing[2] ); // Finally, we can clear the previous geometry stack and initialize it with // our re-initialized "first plane". m_PlaneGeometries.assign( m_Slices, PlaneGeometry::Pointer( NULL ) ); if ( m_Slices > 0 ) { m_PlaneGeometries[0] = firstPlane; } // Reinitialize SNC with new number of slices m_SliceNavigationController->GetSlice()->SetSteps( m_Slices ); this->Modified(); } double mitk::SlicedGeometry3D::CalculateSpacing( const mitk::Vector3D &d ) const { // Need the spacing of the underlying dataset / geometry if ( !m_ReferenceGeometry ) { return 1.0; } const mitk::Vector3D &spacing = m_ReferenceGeometry->GetSpacing(); return SlicedGeometry3D::CalculateSpacing( spacing, d ); } double mitk::SlicedGeometry3D::CalculateSpacing( const mitk::Vector3D spacing, const mitk::Vector3D &d ) { // The following can be derived from the ellipsoid equation // // 1 = x^2/a^2 + y^2/b^2 + z^2/c^2 // // where (a,b,c) = spacing of original volume (ellipsoid radii) // and (x,y,z) = scaled coordinates of vector d (according to ellipsoid) // double scaling = d[0]*d[0] / (spacing[0] * spacing[0]) + d[1]*d[1] / (spacing[1] * spacing[1]) + d[2]*d[2] / (spacing[2] * spacing[2]); scaling = sqrt( scaling ); return ( sqrt( d[0]*d[0] + d[1]*d[1] + d[2]*d[2] ) / scaling ); } mitk::Vector3D mitk::SlicedGeometry3D::AdjustNormal( const mitk::Vector3D &normal ) const { TransformType::Pointer inverse = TransformType::New(); m_ReferenceGeometry->GetIndexToWorldTransform()->GetInverse( inverse ); Vector3D transformedNormal = inverse->TransformVector( normal ); transformedNormal.Normalize(); return transformedNormal; } void mitk::SlicedGeometry3D::SetImageGeometry( const bool isAnImageGeometry ) { Superclass::SetImageGeometry( isAnImageGeometry ); mitk::BaseGeometry* geometry; unsigned int s; for ( s = 0; s < m_Slices; ++s ) { geometry = m_PlaneGeometries[s]; if ( geometry!=NULL ) { geometry->SetImageGeometry( isAnImageGeometry ); } } } void mitk::SlicedGeometry3D::ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ) { mitk::BaseGeometry* geometry; unsigned int s; for ( s = 0; s < m_Slices; ++s ) { geometry = m_PlaneGeometries[s]; if ( geometry!=NULL ) { geometry->ChangeImageGeometryConsideringOriginOffset( isAnImageGeometry ); } } Superclass::ChangeImageGeometryConsideringOriginOffset( isAnImageGeometry ); } bool mitk::SlicedGeometry3D::IsValidSlice( int s ) const { return ((s >= 0) && (s < (int)m_Slices)); } void mitk::SlicedGeometry3D::SetReferenceGeometry( BaseGeometry *referenceGeometry ) { m_ReferenceGeometry = referenceGeometry; std::vector::iterator it; for ( it = m_PlaneGeometries.begin(); it != m_PlaneGeometries.end(); ++it ) { (*it)->SetReferenceGeometry( referenceGeometry ); } } void mitk::SlicedGeometry3D::PreSetSpacing( const mitk::Vector3D &aSpacing ) { bool hasEvenlySpacedPlaneGeometry = false; mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; BoundingBox::BoundsArrayType bounds; assert(aSpacing[0]>0 && aSpacing[1]>0 && aSpacing[2]>0); // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if ((m_EvenlySpaced) && (m_PlaneGeometries.size() > 0)) { mitk::PlaneGeometry::ConstPointer firstGeometry = m_PlaneGeometries[0].GetPointer(); const PlaneGeometry *planeGeometry = dynamic_cast< const PlaneGeometry * >( firstGeometry.GetPointer() ); if (planeGeometry != NULL ) { this->WorldToIndex( planeGeometry->GetOrigin(), origin ); this->WorldToIndex( planeGeometry->GetAxisVector(0), rightDV ); this->WorldToIndex( planeGeometry->GetAxisVector(1), bottomDV ); bounds = planeGeometry->GetBounds(); hasEvenlySpacedPlaneGeometry = true; } } _SetSpacing(aSpacing); mitk::PlaneGeometry::Pointer firstGeometry; // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if ( hasEvenlySpacedPlaneGeometry ) { //create planeGeometry according to new spacing this->IndexToWorld( origin, origin ); this->IndexToWorld( rightDV, rightDV ); this->IndexToWorld( bottomDV, bottomDV ); mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->SetImageGeometry( this->GetImageGeometry() ); planeGeometry->SetReferenceGeometry( m_ReferenceGeometry ); //Store spacing, as Initialize... needs a pointer mitk::Vector3D lokalSpacing = this->GetSpacing(); planeGeometry->InitializeStandardPlane( rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &lokalSpacing ); planeGeometry->SetOrigin(origin); planeGeometry->SetBounds(bounds); firstGeometry = planeGeometry; } else if ( (m_EvenlySpaced) && (m_PlaneGeometries.size() > 0) ) { firstGeometry = m_PlaneGeometries[0].GetPointer(); } //clear and reserve PlaneGeometry::Pointer gnull=NULL; m_PlaneGeometries.assign(m_Slices, gnull); if ( m_Slices > 0 ) { m_PlaneGeometries[0] = firstGeometry; } this->Modified(); } void mitk::SlicedGeometry3D ::SetSliceNavigationController( SliceNavigationController *snc ) { m_SliceNavigationController = snc; } mitk::SliceNavigationController * mitk::SlicedGeometry3D::GetSliceNavigationController() { return m_SliceNavigationController; } void mitk::SlicedGeometry3D::SetEvenlySpaced(bool on) { if(m_EvenlySpaced!=on) { m_EvenlySpaced=on; this->Modified(); } } void mitk::SlicedGeometry3D ::SetDirectionVector( const mitk::Vector3D& directionVector ) { Vector3D newDir = directionVector; newDir.Normalize(); if ( newDir != m_DirectionVector ) { m_DirectionVector = newDir; this->Modified(); } } -void - mitk::SlicedGeometry3D::PostSetTimeBounds( const mitk::TimeBounds& timebounds ) -{ - unsigned int s; - for ( s = 0; s < m_Slices; ++s ) - { - if(m_PlaneGeometries[s].IsNotNull()) - { - m_PlaneGeometries[s]->SetTimeBounds( timebounds ); - } - } -} +//void +//mitk::SlicedGeometry3D::SetTimeBounds( const mitk::TimeBounds& timebounds ) +//{ +// Superclass::SetTimeBounds( timebounds ); +// +// unsigned int s; +// for ( s = 0; s < m_Slices; ++s ) +// { +// if(m_Geometry2Ds[s].IsNotNull()) +// { +// m_Geometry2Ds[s]->SetTimeBounds( timebounds ); +// } +// } +// m_TimeBounds = timebounds; +//} itk::LightObject::Pointer mitk::SlicedGeometry3D::InternalClone() const { Self::Pointer newGeometry = new SlicedGeometry3D(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::SlicedGeometry3D::PrintSelf( std::ostream& os, itk::Indent indent ) const { Superclass::PrintSelf(os,indent); os << indent << " EvenlySpaced: " << m_EvenlySpaced << std::endl; if ( m_EvenlySpaced ) { os << indent << " DirectionVector: " << m_DirectionVector << std::endl; } os << indent << " Slices: " << m_Slices << std::endl; os << std::endl; os << indent << " GetPlaneGeometry(0): "; if ( this->GetPlaneGeometry(0) == NULL ) { os << "NULL" << std::endl; } else { this->GetPlaneGeometry(0)->Print(os, indent); } } void mitk::SlicedGeometry3D::ExecuteOperation(Operation* operation) { switch ( operation->GetOperationType() ) { case OpNOTHING: break; case OpROTATE: if ( m_EvenlySpaced ) { // Need a reference frame to align the rotation if ( m_ReferenceGeometry ) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Save first slice PlaneGeometry::Pointer geometry2D = m_PlaneGeometries[0]; RotationOperation *rotOp = dynamic_cast< RotationOperation * >( operation ); // Generate a RotationOperation using the dataset center instead of // the supplied rotation center. This is necessary so that the rotated // zero-plane does not shift away. The supplied center is instead used // to adjust the slice stack afterwards. Point3D center = m_ReferenceGeometry->GetCenter(); RotationOperation centeredRotation( rotOp->GetOperationType(), center, rotOp->GetVectorOfRotation(), rotOp->GetAngleOfRotation() ); // Rotate first slice geometry2D->ExecuteOperation( ¢eredRotation ); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes( center, rotOp->GetCenterOfRotation() ); geometry2D->SetSpacing(this->GetSpacing()); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( rotOp->GetCenterOfRotation() ); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation( ¢eredRotation ); } else { // we also have to consider the case, that there is no reference geometry available. if ( m_PlaneGeometries.size() > 0 ) { // Reach through to all slices in my container for (std::vector::iterator iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { // Test for empty slices, which can happen if evenly spaced geometry if ((*iter).IsNotNull()) { (*iter)->ExecuteOperation(operation); } } // rotate overall geometry RotationOperation *rotOp = dynamic_cast< RotationOperation * >( operation ); BaseGeometry::ExecuteOperation( rotOp); } } } else { // Reach through to all slices for (std::vector::iterator iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpORIENT: if ( m_EvenlySpaced ) { // get operation data PlaneOperation *planeOp = dynamic_cast< PlaneOperation * >( operation ); // Get first slice PlaneGeometry::Pointer geometry2D = m_PlaneGeometries[0]; PlaneGeometry *planeGeometry = dynamic_cast< PlaneGeometry * >( geometry2D.GetPointer() ); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation. If not all avaialble, stop here if ( !m_ReferenceGeometry || !planeGeometry || !planeOp ) { break; } // General Behavior: // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // // 1st Step: Reorient Normal Vector of first plane // Point3D center = planeOp->GetPoint(); //m_ReferenceGeometry->GetCenter(); mitk::Vector3D currentNormal = planeGeometry->GetNormal(); mitk::Vector3D newNormal; if (planeOp->AreAxisDefined()) { // If planeOp was defined by one centerpoint and two axis vectors newNormal = CrossProduct(planeOp->GetAxisVec0(), planeOp->GetAxisVec1()); } else { // If planeOp was defined by one centerpoint and one normal vector newNormal = planeOp->GetNormal(); } // Get Rotation axis und angle currentNormal.Normalize(); newNormal.Normalize(); ScalarType rotationAngle = angle(currentNormal.GetVnlVector(),newNormal.GetVnlVector()); rotationAngle *= 180.0 / vnl_math::pi; // from rad to deg Vector3D rotationAxis = itk::CrossProduct( currentNormal, newNormal ); if (std::abs(rotationAngle-180) < mitk::eps ) { // current Normal and desired normal are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis should be ANY vector that is 90� to current Normal mitk::Vector3D helpNormal; helpNormal = currentNormal; helpNormal[0] += 1; helpNormal[1] -= 1; helpNormal[2] += 1; helpNormal.Normalize(); rotationAxis = itk::CrossProduct( helpNormal, currentNormal ); } RotationOperation centeredRotation( mitk::OpROTATE, center, rotationAxis, rotationAngle ); // Rotate first slice geometry2D->ExecuteOperation( ¢eredRotation ); // Reinitialize planes and select slice, if my rotations are all done. if (!planeOp->AreAxisDefined()) { // Clear the slice stack and adjust it according to the center of // rotation and plane position (see documentation of ReinitializePlanes) this->ReinitializePlanes( center, planeOp->GetPoint() ); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( planeOp->GetPoint() ); m_SliceNavigationController->AdjustSliceStepperRange(); } } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation( ¢eredRotation ); // // 2nd step. If axis vectors were defined, rotate the plane around its normal to fit these // if (planeOp->AreAxisDefined()) { mitk::Vector3D vecAxixNew = planeOp->GetAxisVec0(); vecAxixNew.Normalize(); mitk::Vector3D VecAxisCurr = geometry2D->GetAxisVector(0); VecAxisCurr.Normalize(); ScalarType rotationAngle = angle(VecAxisCurr.GetVnlVector(),vecAxixNew.GetVnlVector()); rotationAngle = rotationAngle * 180 / PI; // Rad to Deg // we rotate around the normal of the plane, but we do not know, if we need to rotate clockwise // or anti-clockwise. So we rotate around the crossproduct of old and new Axisvector. // Since both axis vectors lie in the plane, the crossproduct is the planes normal or the negative planes normal rotationAxis = itk::CrossProduct( VecAxisCurr, vecAxixNew ); if (std::abs(rotationAngle-180) < mitk::eps ) { // current axisVec and desired axisVec are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis can be just plane Normal. (have to rotate by 180�) rotationAxis = newNormal; } // Perfom Rotation mitk::RotationOperation op(mitk::OpROTATE, center, rotationAxis, rotationAngle); geometry2D->ExecuteOperation( &op ); // Apply changes on first slice to whole slice stack this->ReinitializePlanes( center, planeOp->GetPoint() ); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( planeOp->GetPoint() ); m_SliceNavigationController->AdjustSliceStepperRange(); } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation( &op ); } } else { // Reach through to all slices for (std::vector::iterator iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpRESTOREPLANEPOSITION: if ( m_EvenlySpaced ) { // Save first slice PlaneGeometry::Pointer geometry2D = m_PlaneGeometries[0]; PlaneGeometry* planeGeometry = dynamic_cast< PlaneGeometry * >( geometry2D.GetPointer() ); RestorePlanePositionOperation *restorePlaneOp = dynamic_cast< RestorePlanePositionOperation* >( operation ); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation if ( m_ReferenceGeometry && planeGeometry && restorePlaneOp ) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Rotate first slice geometry2D->ExecuteOperation( restorePlaneOp ); m_DirectionVector = restorePlaneOp->GetDirectionVector(); double centerOfRotationDistance = planeGeometry->SignedDistanceFromPlane( m_ReferenceGeometry->GetCenter() ); if ( centerOfRotationDistance > 0 ) { m_DirectionVector = m_DirectionVector; } else { m_DirectionVector = -m_DirectionVector; } Vector3D spacing = restorePlaneOp->GetSpacing(); Superclass::SetSpacing( spacing ); // /*Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above.*/ ScalarType directedExtent = std::abs( m_ReferenceGeometry->GetExtentInMM( 0 ) * m_DirectionVector[0] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 1 ) * m_DirectionVector[1] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 2 ) * m_DirectionVector[2] ); if ( directedExtent >= spacing[2] ) { m_Slices = static_cast< unsigned int >(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } m_PlaneGeometries.assign( m_Slices, PlaneGeometry::Pointer( NULL ) ); if ( m_Slices > 0 ) { m_PlaneGeometries[0] = geometry2D; } m_SliceNavigationController->GetSlice()->SetSteps( m_Slices ); this->Modified(); //End Reinitialization if ( m_SliceNavigationController ) { m_SliceNavigationController->GetSlice()->SetPos( restorePlaneOp->GetPos() ); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation(restorePlaneOp); } } else { // Reach through to all slices for (std::vector::iterator iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpAPPLYTRANSFORMMATRIX: // Clear all generated geometries and then transform only the first slice. // The other slices will be re-generated on demand // Save first slice PlaneGeometry::Pointer geometry2D = m_PlaneGeometries[0]; ApplyTransformMatrixOperation *applyMatrixOp = dynamic_cast< ApplyTransformMatrixOperation* >( operation ); // Apply transformation to first plane geometry2D->ExecuteOperation( applyMatrixOp ); // Generate a ApplyTransformMatrixOperation using the dataset center instead of // the supplied rotation center. The supplied center is instead used to adjust the // slice stack afterwards (see OpROTATE). Point3D center = m_ReferenceGeometry->GetCenter(); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes( center, applyMatrixOp->GetReferencePoint() ); BaseGeometry::ExecuteOperation( applyMatrixOp ); break; } this->Modified(); } diff --git a/Core/Code/DataManagement/mitkSlicedGeometry3D.h b/Core/Code/DataManagement/mitkSlicedGeometry3D.h index cd7d0b2d9d..029392ef81 100644 --- a/Core/Code/DataManagement/mitkSlicedGeometry3D.h +++ b/Core/Code/DataManagement/mitkSlicedGeometry3D.h @@ -1,322 +1,321 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKSLICEDGEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #define MITKSLICEDGEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #include "mitkBaseGeometry.h" #include "mitkPlaneGeometry.h" namespace mitk { class SliceNavigationController; class NavigationController; /** \brief Describes the geometry of a data object consisting of slices. * * A PlaneGeometry can be requested for each slice. In the case of * \em evenly-spaced, \em plane geometries (m_EvenlySpaced==true), * only the 2D-geometry of the first slice has to be set (to an instance of * PlaneGeometry). The 2D geometries of the other slices are calculated * by shifting the first slice in the direction m_DirectionVector by * m_Spacing.z * sliceNumber. The m_Spacing member (which is only * relevant in the case m_EvenlySpaced==true) descibes the size of a voxel * (in mm), i.e., m_Spacing.x is the voxel width in the x-direction of the * plane. It is derived from the reference geometry of this SlicedGeometry3D, * which usually would be the global geometry describing how datasets are to * be resliced. * * By default, slices are oriented in the direction of one of the main axes * (x, y, z). However, by means of rotation, it is possible to realign the * slices in any possible direction. In case of an inclined plane, the spacing * is derived as a product of the (regular) geometry spacing and the direction * vector of the plane. * * SlicedGeometry3D and the associated PlaneGeometries have to be initialized in * the method GenerateOutputInformation() of BaseProcess (or CopyInformation / * UpdateOutputInformation of BaseData, if possible, e.g., by analyzing pic * tags in Image) subclasses. See also * * \sa itk::ProcessObject::GenerateOutputInformation(), * \sa itk::DataObject::CopyInformation() and * \a itk::DataObject::UpdateOutputInformation(). * * Rule: everything is in mm (or ms for temporal information) if not * stated otherwise. * * \warning The hull (i.e., transform, bounding-box and * time-bounds) is only guaranteed to be up-to-date after calling * UpdateInformation(). * * \ingroup Geometry */ class MITK_CORE_EXPORT SlicedGeometry3D : public mitk::BaseGeometry { public: mitkClassMacro(SlicedGeometry3D, BaseGeometry); /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** * \brief Returns the PlaneGeometry of the slice (\a s). * * If (a) m_EvenlySpaced==true, (b) we don't have a PlaneGeometry stored * for the requested slice, and (c) the first slice (s=0) * is a PlaneGeometry instance, then we calculate the geometry of the * requested as the plane of the first slice shifted by m_Spacing[3]*s * in the direction of m_DirectionVector. * * \warning The PlaneGeometries are not necessarily up-to-date and not even * initialized. * * The PlaneGeometries have to be initialized in the method * GenerateOutputInformation() of BaseProcess (or CopyInformation / * UpdateOutputInformation of BaseData, if possible, e.g., by analyzing * pic tags in Image) subclasses. See also * * \sa itk::ProcessObject::GenerateOutputInformation(), * \sa itk::DataObject::CopyInformation() and * \sa itk::DataObject::UpdateOutputInformation(). */ virtual mitk::PlaneGeometry* GetPlaneGeometry( int s ) const; /** * \deprecatedSince{2014_06} Please use GetPlaneGeometry */ DEPRECATED(const PlaneGeometry* GetGeometry2D(int s){return GetPlaneGeometry(s);};) /** * \brief Set PlaneGeometry of slice \a s. */ virtual bool SetPlaneGeometry( mitk::PlaneGeometry *geometry2D, int s ); /** * \deprecatedSince{2014_06} Please use SetPlaneGeometry */ DEPRECATED(void SetGeometry2D(PlaneGeometry* geo, int s){SetPlaneGeometry(geo, s);};) //##Documentation //## @brief When switching from an Image Geometry to a normal Geometry (and the other way around), you have to change the origin as well (See Geometry Documentation)! This function will change the "isImageGeometry" bool flag and changes the origin respectively. virtual void ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ); + //virtual void SetTimeBounds( const mitk::TimeBounds& timebounds ); virtual const mitk::BoundingBox* GetBoundingBox() const; /** * \brief Get the number of slices */ itkGetConstMacro( Slices, unsigned int ); /** * \brief Check whether a slice exists */ virtual bool IsValidSlice( int s = 0 ) const; virtual void SetReferenceGeometry( BaseGeometry *referenceGeometry ); /** * \brief Set the SliceNavigationController corresponding to this sliced * geometry. * * The SNC needs to be informed when the number of slices in the geometry * changes, which can occur whenthe slices are re-oriented by rotation. */ virtual void SetSliceNavigationController( mitk::SliceNavigationController *snc ); mitk::SliceNavigationController *GetSliceNavigationController(); /** * \brief Set/Get whether the SlicedGeometry3D is evenly-spaced * (m_EvenlySpaced) * * If (a) m_EvenlySpaced==true, (b) we don't have a PlaneGeometry stored for * the requested slice, and (c) the first slice (s=0) is a PlaneGeometry * instance, then we calculate the geometry of the requested as the plane * of the first slice shifted by m_Spacing.z * s in the direction of * m_DirectionVector. * * \sa GetPlaneGeometry */ itkGetConstMacro(EvenlySpaced, bool); virtual void SetEvenlySpaced(bool on = true); /** * \brief Set/Get the vector between slices for the evenly-spaced case * (m_EvenlySpaced==true). * * If the direction-vector is (0,0,0) (the default) and the first * 2D geometry is a PlaneGeometry, then the direction-vector will be * calculated from the plane normal. * * \sa m_DirectionVector */ virtual void SetDirectionVector(const mitk::Vector3D& directionVector); itkGetConstMacro(DirectionVector, const mitk::Vector3D&); virtual itk::LightObject::Pointer InternalClone() const; static const std::string SLICES; const static std::string DIRECTION_VECTOR; const static std::string EVENLY_SPACED; /** * \brief Tell this instance how many PlaneGeometries it shall manage. Bounding * box and the PlaneGeometries must be set additionally by calling the respective * methods! * * \warning Bounding box and the 2D-geometries must be set additionally: use * SetBounds(), SetGeometry(). */ virtual void InitializeSlicedGeometry( unsigned int slices ); /** * \brief Completely initialize this instance as evenly-spaced with slices * parallel to the provided PlaneGeometry that is used as the first slice and * for spacing calculation. * * Initializes the bounding box according to the width/height of the * PlaneGeometry and \a slices. The spacing is calculated from the PlaneGeometry. */ virtual void InitializeEvenlySpaced( mitk::PlaneGeometry *geometry2D, unsigned int slices, bool flipped=false ); /** * \brief Completely initialize this instance as evenly-spaced with slices * parallel to the provided PlaneGeometry that is used as the first slice and * for spacing calculation (except z-spacing). * * Initializes the bounding box according to the width/height of the * PlaneGeometry and \a slices. The x-/y-spacing is calculated from the * PlaneGeometry. */ virtual void InitializeEvenlySpaced( mitk::PlaneGeometry *geometry2D, mitk::ScalarType zSpacing, unsigned int slices, bool flipped=false ); /** * \brief Completely initialize this instance as evenly-spaced plane slices * parallel to a side of the provided BaseGeometry and using its spacing * information. * * Initializes the bounding box according to the width/height of the * BaseGeometry and the number of slices according to * BaseGeometry::GetExtent(2). * * \param planeorientation side parallel to which the slices will be oriented * \param top if \a true, create plane at top, otherwise at bottom * (for PlaneOrientation Axial, for other plane locations respectively) * \param frontside defines the side of the plane (the definition of * front/back is somewhat arbitrary) * * \param rotate rotates the plane by 180 degree around its normal (the * definition of rotated vs not rotated is somewhat arbitrary) */ virtual void InitializePlanes( const mitk::BaseGeometry *geometry3D, mitk::PlaneGeometry::PlaneOrientation planeorientation, bool top=true, bool frontside=true, bool rotated=false ); virtual void SetImageGeometry(const bool isAnImageGeometry); virtual void ExecuteOperation(Operation* operation); static double CalculateSpacing( const mitk::Vector3D spacing, const mitk::Vector3D &d ); protected: SlicedGeometry3D(); SlicedGeometry3D(const SlicedGeometry3D& other); virtual ~SlicedGeometry3D(); /** * Reinitialize plane stack after rotation. More precisely, the first plane * of the stack needs to spatially aligned, in two respects: * * 1. Re-alignment with respect to the dataset center; this is necessary * since the distance from the first plane to the center could otherwise * continuously decrease or increase. * 2. Re-alignment with respect to a given reference point; the reference * point is a location which the user wants to be exactly touched by one * plane of the plane stack. The first plane is minimally shifted to * ensure this touching. Usually, the reference point would be the * point around which the geometry is rotated. */ virtual void ReinitializePlanes( const Point3D ¢er, const Point3D &referencePoint ); ScalarType GetLargestExtent( const BaseGeometry *geometry ); void PrintSelf(std::ostream& os, itk::Indent indent) const; /** Calculate "directed spacing", i.e. the spacing in directions * non-orthogonal to the coordinate axes. This is done via the * ellipsoid equation. */ double CalculateSpacing( const mitk::Vector3D &direction ) const; /** The extent of the slice stack, i.e. the number of slices, depends on the * plane normal. For rotated geometries, the geometry's transform needs to * be accounted in this calculation. */ mitk::Vector3D AdjustNormal( const mitk::Vector3D &normal ) const; /** * Container for the 2D-geometries contained within this SliceGeometry3D. */ mutable std::vector m_PlaneGeometries; /** * If (a) m_EvenlySpaced==true, (b) we don't have a PlaneGeometry stored * for the requested slice, and (c) the first slice (s=0) * is a PlaneGeometry instance, then we calculate the geometry of the * requested as the plane of the first slice shifted by m_Spacing.z*s * in the direction of m_DirectionVector. * * \sa GetPlaneGeometry */ bool m_EvenlySpaced; /** * Vector between slices for the evenly-spaced case (m_EvenlySpaced==true). * If the direction-vector is (0,0,0) (the default) and the first * 2D geometry is a PlaneGeometry, then the direction-vector will be * calculated from the plane normal. */ mutable mitk::Vector3D m_DirectionVector; /** Number of slices this SliceGeometry3D is descibing. */ unsigned int m_Slices; /** Underlying BaseGeometry for this SlicedGeometry */ mitk::BaseGeometry *m_ReferenceGeometry; /** SNC correcsponding to this geometry; used to reflect changes in the * number of slices due to rotation. */ //mitk::NavigationController *m_NavigationController; mitk::SliceNavigationController *m_SliceNavigationController; private: virtual void PreSetBounds(const BoundsArrayType& bounds){}; - virtual void PostSetTimeBounds( const mitk::TimeBounds& timebounds ); - /** * \brief Set the spacing (m_Spacing), in direction of the plane normal. * */ virtual void PreSetSpacing( const mitk::Vector3D &aSpacing ); }; } // namespace mitk #endif /* MITKSLICEDGEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD */ diff --git a/Core/Code/DataManagement/mitkTimeGeometry.h b/Core/Code/DataManagement/mitkTimeGeometry.h index d96f6321f0..375dbb543b 100644 --- a/Core/Code/DataManagement/mitkTimeGeometry.h +++ b/Core/Code/DataManagement/mitkTimeGeometry.h @@ -1,288 +1,305 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef TimeGeometry_h #define TimeGeometry_h //ITK #include //MITK #include #include #include "mitkOperationActor.h" #include namespace mitk { - /** * \deprecatedSince{2013_09} GlobalInteraction is deprecated. It is replaced by mitk::Dispatcher. * Please use the new implementation described in \see DataInteractionPage . */ typedef mitk::ScalarType TimePointType; typedef std::size_t TimeStepType; /** * \brief Manages the geometries of a data object for each time step * * This class is an abstract class. The concrete implementation * depends on the way the different time steps are managed. * * The time is defined either by a time step or a time point. Time steps * are non-negativ integers starting from 0. A time point is is a ScalarType value * which gives the passed time since start in ms. Be aware that the starting * point is not fixed so it is possible that the same time point defines two * different time depending on the start time of the used time geometry. * * \addtogroup geometry */ class MITK_CORE_EXPORT TimeGeometry : public itk::Object, public OperationActor { protected: TimeGeometry(); virtual ~TimeGeometry(); /** * \brief Contains a bounding box which includes all time steps */ BoundingBox::Pointer m_BoundingBox; /** * \brief Makes a deep copy of the current object */ virtual LightObject::Pointer InternalClone() const; public: mitkClassMacro(TimeGeometry, itk::Object) itkCloneMacro(Self) itkCreateAnotherMacro(Self) + /** * \brief Returns the number of time steps. * * Returns the number of time steps for which * geometries are saved. The number of time steps * is also the upper bound of the time steps. The * minimum time steps is always 0. */ virtual TimeStepType CountTimeSteps() const = 0; /** * \brief Returns the first time point for which the object is valid. * * Returns the first valid time point for this geometry. If only one * time steps available it usually goes from -max to +max. The time point * is given in ms. */ - virtual TimePointType GetMinimumTimePoint () const = 0; + virtual TimePointType GetMinimumTimePoint() const = 0; /** * \brief Returns the last time point for which the object is valid * * Gives the last time point for which a valid geometrie is saved in * this time geometry. The time point is given in ms. */ - virtual TimePointType GetMaximumTimePoint () const = 0; + virtual TimePointType GetMaximumTimePoint() const = 0; + + /** + * \brief Returns the first time point for which the object is valid. + * + * Returns the first valid time point for the given TimeStep. The time point + * is given in ms. + */ + virtual TimePointType GetMinimumTimePoint(TimeStepType step) const = 0; + /** + * \brief Returns the last time point for which the object is valid + * + * Gives the last time point for the Geometry specified by the given TimeStep. The time point is given in ms. + */ + virtual TimePointType GetMaximumTimePoint(TimeStepType step) const = 0; /** * \brief Get the time bounds (in ms) */ - virtual TimeBounds GetTimeBounds( ) const = 0; + virtual TimeBounds GetTimeBounds() const = 0; + + /** + * \brief Get the time bounds for the given TimeStep (in ms) + */ + virtual TimeBounds GetTimeBounds(TimeStepType step) const = 0; /** * \brief Tests if a given time point is covered by this object * * Returns true if a geometry can be returned for the given time * point and falls if not. The time point must be given in ms. */ virtual bool IsValidTimePoint (TimePointType timePoint) const = 0; /** * \brief Test for the given time step if a geometry is availible * * Returns true if a geometry is defined for the given time step. * Otherwise false is returned. * The time step is defined as positiv number. */ virtual bool IsValidTimeStep (TimeStepType timeStep) const = 0; /** * \brief Converts a time step to a time point * * Converts a time step to a time point in a way that * the new time point indicates the same geometry as the time step. * If the original time steps does not point to a valid geometry, * a time point is calculated that also does not point to a valid * geometry, but no exception is raised. */ virtual TimePointType TimeStepToTimePoint (TimeStepType timeStep) const = 0; /** * \brief Converts a time point to the corresponding time step * * Converts a time point to a time step in a way that * the new time step indicates the same geometry as the time point. * If a negativ invalid time point is given always time step 0 is * returned. If an positiv invalid time step is given an invalid * time step will be returned. */ virtual TimeStepType TimePointToTimeStep (TimePointType timePoint) const = 0; /** * \brief Returns the geometry of a specific time point * * Returns the geometry which defines the given time point. If * the given time point is invalid an null-pointer is returned. * * The pointer to the returned geometry may point to the saved * geometry but this is not necessarily the case. So a change to * the returned geometry may or may not afflict the geometry for the * time point or all time points depending on the used implementation * of TimeGeometry. */ virtual BaseGeometry::Pointer GetGeometryForTimePoint ( TimePointType timePoint) const = 0; /** * \brief Returns the geometry which corresponds to the given time step * * Returns the geometry which defines the given time step. If * the given time step is invalid an null-pointer is returned. * * The pointer to the returned geometry may point to the saved * geometry but this is not necessarily the case. So a change to * the returned geometry may or may not afflict the geometry for the * time step or all time steps depending on the used implementation * of TimeGeometry. */ virtual BaseGeometry::Pointer GetGeometryForTimeStep ( TimeStepType timeStep) const = 0; /** * \brief Returns a clone of the geometry of a specific time point * * If an invalid time step is given (e.g. no geometry is defined for this time step) * a null-pointer will be returned. */ virtual BaseGeometry::Pointer GetGeometryCloneForTimeStep( TimeStepType timeStep) const = 0; /** * \brief Sets the geometry for a given time step * * Sets the geometry for the given time steps. This may also afflects other * time steps, depending on the implementation of TimeGeometry. */ virtual void SetTimeStepGeometry(BaseGeometry* geometry, TimeStepType timeStep) = 0; /** * \brief Expands to the given number of time steps * * Expands to the given number of time steps. Each new created time * step is filled with an empty geometry. * Shrinking is not supported! */ virtual void Expand(TimeStepType size) = 0; /** * \brief Tests if all necessary informations are set and the object is valid */ virtual bool IsValid () const = 0; /** * \brief Get the position of the corner number \a id (in world coordinates) * * See SetImageGeometry for how a corner is defined on images. */ Point3D GetCornerPointInWorld(int id) const; /** * \brief Get the position of a corner (in world coordinates) * * See SetImageGeometry for how a corner is defined on images. */ Point3D GetCornerPointInWorld(bool xFront=true, bool yFront=true, bool zFront=true) const; /** * \brief Get the center of the bounding-box in mm */ Point3D GetCenterInWorld() const; /** * \brief Get the squared length of the diagonal of the bounding-box in mm */ double GetDiagonalLength2InWorld() const; /** * \brief Get the length of the diagonal of the bounding-box in mm */ double GetDiagonalLengthInWorld() const; /** * \brief Test whether the point \a p (world coordinates in mm) is inside the bounding box */ bool IsWorldPointInside(const mitk::Point3D& p) const; /** * \brief Updates the bounding box to cover the area used in all time steps * * The bounding box is updated by this method. The new bounding box * covers an area which includes all bounding boxes during * all times steps. */ void UpdateBoundingBox(); /** * \brief Returns a bounding box that covers all time steps */ BoundingBox* GetBoundingBoxInWorld() const { return m_BoundingBox; } /** * \brief Returns the world bounds of the object that cover all time steps */ BoundingBox::BoundsArrayType GetBoundsInWorld() const { return m_BoundingBox->GetBounds(); } /** * \brief Returns the Extend of the bounding in the given direction */ ScalarType GetExtentInWorld (unsigned int direction) const; /** * \brief Initializes the TimeGeometry */ virtual void Initialize(); /** * \brief Updates the geometry */ void Update(); /** * \brief Updates everything except the Bounding box * * This class should be overwritten by child classes. * The method is called when Update() is required. */ virtual void UpdateWithoutBoundingBox() {}; /** * \brief Executes the given operation on all time steps */ virtual void ExecuteOperation(Operation *op); virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; - }; // end class TimeGeometry - } // end namespace MITK #endif // TimeGeometry_h diff --git a/Core/Code/IO/mitkImageWriter.cpp b/Core/Code/IO/mitkImageWriter.cpp index e6e5a66c15..a4ce6ab7df 100644 --- a/Core/Code/IO/mitkImageWriter.cpp +++ b/Core/Code/IO/mitkImageWriter.cpp @@ -1,490 +1,490 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageWriter.h" #include "mitkItkPictureWrite.h" #include "mitkImage.h" #include "mitkImageTimeSelector.h" #include "mitkImageAccessByItk.h" #include "mitkImageReadAccessor.h" #include #include mitk::ImageWriter::ImageWriter() { this->SetNumberOfRequiredInputs( 1 ); m_MimeType = ""; SetDefaultExtension(); } mitk::ImageWriter::~ImageWriter() { } void mitk::ImageWriter::SetFileName(const char* fileName) { if ( fileName && ( fileName == this->m_FileName ) ) { return; } if ( fileName ) { this->m_FileName = fileName; this->m_FileNameWithoutExtension = this->m_FileName; this->m_Extension.clear(); std::size_t pos = this->m_FileName.find_last_of("/\\"); if (pos != std::string::npos) { std::size_t ppos = this->m_FileName.find_first_of('.', pos); if (ppos != std::string::npos) { this->m_FileNameWithoutExtension = this->m_FileName.substr(0, ppos); this->m_Extension = this->m_FileName.substr(ppos); } } } else { this->m_FileName.clear(); this->m_FileNameWithoutExtension.clear(); this->m_Extension.clear(); } this->Modified(); } void mitk::ImageWriter::SetFileName(const std::string & fileName) { this->SetFileName( fileName.c_str() ); } void mitk::ImageWriter::SetExtension(const char* extension) { if ( extension && ( extension == this->m_Extension ) ) { return; } if ( extension ) { this->m_Extension = extension; this->m_FileName = this->m_FileNameWithoutExtension + this->m_Extension; } else { this->m_Extension.clear(); this->m_FileName = this->m_FileNameWithoutExtension; } this->Modified(); } void mitk::ImageWriter::SetExtension(const std::string & extension) { this->SetFileName( extension.c_str() ); } void mitk::ImageWriter::SetDefaultExtension() { this->m_Extension = ".mhd"; this->m_FileName = this->m_FileNameWithoutExtension + this->m_Extension; this->Modified(); } #include #include #include static void writeVti(const char * filename, mitk::Image* image, int t=0) { vtkXMLImageDataWriter * vtkwriter = vtkXMLImageDataWriter::New(); vtkwriter->SetFileName( filename ); vtkwriter->SetInputData(image->GetVtkImageData(t)); vtkwriter->Write(); vtkwriter->Delete(); } #include void mitk::ImageWriter::WriteByITK(mitk::Image* image, const std::string& fileName) { MITK_INFO << "Writing image: " << fileName << std::endl; // Pictures and picture series like .png are written via a different mechanism then volume images. // So, they are still multiplexed and thus not support vector images. if (fileName.find(".png") != std::string::npos || fileName.find(".tif") != std::string::npos || fileName.find(".jpg") != std::string::npos || fileName.find(".bmp") != std::string::npos) { try { // switch processing of single/multi-component images if( image->GetPixelType(0).GetNumberOfComponents() == 1) { AccessByItk_1( image, _mitkItkPictureWrite, fileName ); } else { AccessFixedPixelTypeByItk_1( image, _mitkItkPictureWriteComposite, MITK_ACCESSBYITK_PIXEL_TYPES_SEQ MITK_ACCESSBYITK_COMPOSITE_PIXEL_TYPES_SEQ , fileName); } } catch(itk::ExceptionObject &e) { std::cerr << "Caught " << e.what() << std::endl; } catch(std::exception &e) { std::cerr << "Caught std::exception " << e.what() << std::endl; } return; } // Implementation of writer using itkImageIO directly. This skips the use // of templated itkImageFileWriter, which saves the multiplexing on MITK side. unsigned int dimension = image->GetDimension(); unsigned int* dimensions = image->GetDimensions(); mitk::PixelType pixelType = image->GetPixelType(); mitk::Vector3D mitkSpacing = image->GetGeometry()->GetSpacing(); mitk::Point3D mitkOrigin = image->GetGeometry()->GetOrigin(); // Due to templating in itk, we are forced to save a 4D spacing and 4D Origin, though they are not supported in MITK itk::Vector spacing4D; spacing4D[0] = mitkSpacing[0]; spacing4D[1] = mitkSpacing[1]; spacing4D[2] = mitkSpacing[2]; spacing4D[3] = 1; // There is no support for a 4D spacing. However, we should have an valid value here itk::Vector origin4D; origin4D[0] = mitkOrigin[0]; origin4D[1] = mitkOrigin[1]; origin4D[2] = mitkOrigin[2]; origin4D[3] = 0; // There is no support for a 4D origin. However, we should have an valid value here itk::ImageIOBase::Pointer imageIO = itk::ImageIOFactory::CreateImageIO( fileName.c_str(), itk::ImageIOFactory::WriteMode ); if(imageIO.IsNull()) { itkExceptionMacro(<< "Error: Could not create itkImageIO via factory for file " << fileName); } // Set the necessary information for imageIO imageIO->SetNumberOfDimensions(dimension); imageIO->SetPixelType( pixelType.GetPixelType() ); imageIO->SetComponentType( pixelType.GetComponentType() < PixelComponentUserType ? static_cast(pixelType.GetComponentType()) : itk::ImageIOBase::UNKNOWNCOMPONENTTYPE); imageIO->SetNumberOfComponents( pixelType.GetNumberOfComponents() ); itk::ImageIORegion ioRegion( dimension ); for(unsigned int i=0; iSetDimensions(i,dimensions[i]); imageIO->SetSpacing(i,spacing4D[i]); imageIO->SetOrigin(i,origin4D[i]); mitk::Vector3D mitkDirection; mitkDirection.SetVnlVector(image->GetGeometry()->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(i)); itk::Vector direction4D; direction4D[0] = mitkDirection[0]; direction4D[1] = mitkDirection[1]; direction4D[2] = mitkDirection[2]; // MITK only supports a 3x3 direction matrix. Due to templating in itk, however, we must // save a 4x4 matrix for 4D images. in this case, add an homogneous component to the matrix. if (i == 3) direction4D[3] = 1; // homogenous component else direction4D[3] = 0; vnl_vector< double > axisDirection(dimension); for(unsigned int j=0; jSetDirection( i, axisDirection ); ioRegion.SetSize(i, image->GetLargestPossibleRegion().GetSize(i) ); ioRegion.SetIndex(i, image->GetLargestPossibleRegion().GetIndex(i) ); } //use compression if available imageIO->UseCompressionOn(); imageIO->SetIORegion(ioRegion); imageIO->SetFileName(fileName); ImageReadAccessor imageAccess(image); imageIO->Write(imageAccess.GetData()); } void mitk::ImageWriter::GenerateData() { const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } if ( m_FileName == "" ) { itkWarningMacro( << "Sorry, filename has not been set!" ); return ; } FILE* tempFile = fopen(m_FileName.c_str(),"w"); if (tempFile==NULL) { itkExceptionMacro(<<"File location not writeable"); return; } fclose(tempFile); remove(m_FileName.c_str()); // Creating clone of input image, since i might change the geometry mitk::Image::Pointer input = const_cast(this->GetInput())->Clone(); // Check if geometry information will be lost if (input->GetDimension() == 2) { if (!input->GetGeometry()->Is2DConvertable()) { MITK_WARN << "Saving a 2D image with 3D geometry information. Geometry information will be lost! You might consider using Convert2Dto3DImageFilter before saving."; // set matrix to identity mitk::AffineTransform3D::Pointer affTrans = mitk::AffineTransform3D::New(); affTrans->SetIdentity(); mitk::Vector3D spacing = input->GetGeometry()->GetSpacing(); mitk::Point3D origin = input->GetGeometry()->GetOrigin(); input->GetGeometry()->SetIndexToWorldTransform(affTrans); input->GetGeometry()->SetSpacing(spacing); input->GetGeometry()->SetOrigin(origin); } } bool vti = (m_Extension.find(".vti") != std::string::npos); // If the extension is NOT .pic and NOT .nrrd and NOT .nii and NOT .nii.gz the following block is entered if ( m_Extension.find(".pic") == std::string::npos && m_Extension.find(".nrrd") == std::string::npos && m_Extension.find(".nii") == std::string::npos && m_Extension.find(".nii.gz") == std::string::npos ) { if(input->GetDimension() > 3) { int t, timesteps; timesteps = input->GetDimension(3); ImageTimeSelector::Pointer timeSelector = ImageTimeSelector::New(); timeSelector->SetInput(input); mitk::Image::Pointer image = timeSelector->GetOutput(); for(t = 0; t < timesteps; ++t) { std::ostringstream filename; timeSelector->SetTimeNr(t); timeSelector->Update(); if(input->GetTimeGeometry()->IsValidTimeStep(t)) { - const mitk::TimeBounds& timebounds = input->GetTimeGeometry()->GetGeometryForTimeStep(t)->GetTimeBounds(); + const mitk::TimeBounds& timebounds = input->GetTimeGeometry()->GetTimeBounds(t); filename << m_FileNameWithoutExtension << "_S" << std::setprecision(0) << timebounds[0] << "_E" << std::setprecision(0) << timebounds[1] << "_T" << t << m_Extension; } else { itkWarningMacro(<<"Error on write: TimeGeometry invalid of image " << filename.str() << "."); filename << m_FileNameWithoutExtension << "_T" << t << m_Extension; } if ( vti ) { writeVti(filename.str().c_str(), input, t); } else { WriteByITK(image, filename.str()); } } } else if ( vti ) { writeVti(m_FileName.c_str(), input); } else { WriteByITK(input, m_FileName); } } else { // use the PicFileWriter for the .pic data type if( m_Extension.find(".pic") != std::string::npos ) { /* PicFileWriter::Pointer picWriter = PicFileWriter::New(); size_t found; found = m_FileName.find( m_Extension ); // !!! HAS to be at the very end of the filename (not somewhere in the middle) if( m_FileName.length() > 3 && found != m_FileName.length() - 4 ) { //if Extension not in Filename std::ostringstream filename; filename << m_FileName.c_str() << m_Extension; picWriter->SetFileName( filename.str().c_str() ); } else { picWriter->SetFileName( m_FileName.c_str() ); } picWriter->SetInputImage( input ); picWriter->Write(); */ } // use the ITK .nrrd Image writer if( m_Extension.find(".nrrd") != std::string::npos || m_Extension.find(".nii") != std::string::npos || m_Extension.find(".nii.gz") != std::string::npos ) { WriteByITK(input, this->m_FileName); } } m_MimeType = "application/MITK.Pic"; try { setlocale(LC_ALL, currLocale.c_str()); } catch(...) { MITK_INFO << "Could not reset locale " << currLocale; } } bool mitk::ImageWriter::CanWriteDataType( DataNode* input ) { if ( input ) { return this->CanWriteBaseDataType(input->GetData()); } return false; } void mitk::ImageWriter::SetInput( DataNode* input ) { if( input && CanWriteDataType( input ) ) this->ProcessObject::SetNthInput( 0, dynamic_cast( input->GetData() ) ); } std::string mitk::ImageWriter::GetWritenMIMEType() { return m_MimeType; } std::vector mitk::ImageWriter::GetPossibleFileExtensions() { std::vector possibleFileExtensions; possibleFileExtensions.push_back(".pic"); possibleFileExtensions.push_back(".pic.gz"); possibleFileExtensions.push_back(".bmp"); possibleFileExtensions.push_back(".dcm"); possibleFileExtensions.push_back(".DCM"); possibleFileExtensions.push_back(".dicom"); possibleFileExtensions.push_back(".DICOM"); possibleFileExtensions.push_back(".gipl"); possibleFileExtensions.push_back(".gipl.gz"); possibleFileExtensions.push_back(".mha"); possibleFileExtensions.push_back(".nii"); possibleFileExtensions.push_back(".nii.gz"); possibleFileExtensions.push_back(".nrrd"); possibleFileExtensions.push_back(".nhdr"); possibleFileExtensions.push_back(".png"); possibleFileExtensions.push_back(".PNG"); possibleFileExtensions.push_back(".spr"); possibleFileExtensions.push_back(".mhd"); possibleFileExtensions.push_back(".vtk"); possibleFileExtensions.push_back(".vti"); possibleFileExtensions.push_back(".hdr"); possibleFileExtensions.push_back(".img"); possibleFileExtensions.push_back(".img.gz"); possibleFileExtensions.push_back(".png"); possibleFileExtensions.push_back(".tif"); possibleFileExtensions.push_back(".jpg"); return possibleFileExtensions; } std::string mitk::ImageWriter::GetFileExtension() { return m_Extension; } void mitk::ImageWriter::SetInput( mitk::Image* image ) { this->ProcessObject::SetNthInput( 0, image ); } const mitk::Image* mitk::ImageWriter::GetInput() { if ( this->GetNumberOfInputs() < 1 ) { return NULL; } else { return static_cast< const mitk::Image * >( this->ProcessObject::GetInput( 0 ) ); } } const char* mitk::ImageWriter::GetDefaultFilename() { return "Image.nrrd"; } const char* mitk::ImageWriter::GetFileDialogPattern() { return "Nearly Raw Raster Data (*.nrrd);;" "NIfTI format (*.nii *.nii.gz);;" "VTK Image Data Files (*.vti);;" "NRRD with detached header (*.nhdr);;" "Analyze Format (*.hdr);;" "MetaImage (*.mhd);;" "Sets of 2D slices (*.png *.tiff *.jpg *.jpeg *.bmp);;" "DICOM (*.dcm *.DCM *.dicom *.DICOM);;" "UMDS GIPL Format Files (*.gipl *.gipl.gz)"; } const char *mitk::ImageWriter::GetDefaultExtension() { return ".nrrd"; } bool mitk::ImageWriter::CanWriteBaseDataType(BaseData::Pointer data) { return dynamic_cast( data.GetPointer() ); } void mitk::ImageWriter::DoWrite(BaseData::Pointer data) { if (this->CanWriteBaseDataType(data)) { this->SetInput(dynamic_cast(data.GetPointer())); this->Update(); } } \ No newline at end of file diff --git a/Core/Code/IO/mitkSurfaceVtkWriter.txx b/Core/Code/IO/mitkSurfaceVtkWriter.txx index ff0fa31722..8705d8dbdc 100644 --- a/Core/Code/IO/mitkSurfaceVtkWriter.txx +++ b/Core/Code/IO/mitkSurfaceVtkWriter.txx @@ -1,173 +1,173 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSurfaceVtkWriter.h" #include #include #include #include #include #include #include #include #include template mitk::SurfaceVtkWriter::SurfaceVtkWriter() : m_WriterWriteHasReturnValue( false ) { this->SetNumberOfRequiredInputs( 1 ); m_VtkWriter = vtkSmartPointer::New(); //enable to write ascii-formatted-file //m_VtkWriter->SetFileTypeToASCII(); SetDefaultExtension(); // and information about the Writer's Write() method } template mitk::SurfaceVtkWriter::~SurfaceVtkWriter() { } template void mitk::SurfaceVtkWriter::SetDefaultExtension() { m_Extension = ".vtk"; } template void mitk::SurfaceVtkWriter::ExecuteWrite( VtkWriterType* vtkWriter ) { if ( vtkWriter->Write() == 0 || vtkWriter->GetErrorCode() != 0 ) { itkExceptionMacro(<<"Error during surface writing: " << vtkErrorCode::GetStringFromErrorCode(vtkWriter->GetErrorCode()) ); } } template void mitk::SurfaceVtkWriter::GenerateData() { if ( m_FileName == "" ) { itkWarningMacro( << "Sorry, filename has not been set!" ); return ; } mitk::Surface::Pointer input = const_cast(this->GetInput()); vtkSmartPointer transformPolyData = vtkSmartPointer::New(); vtkPolyData * polyData; BaseGeometry* geometry; unsigned int t, timesteps = input->GetTimeGeometry()->CountTimeSteps(); for(t = 0; t < timesteps; ++t) { // surfaces do not have to exist in all timeteps; therefor, only write valid surfaces if( input->GetVtkPolyData(t) == NULL ) continue; std::ostringstream filename; filename.imbue(::std::locale::classic()); geometry = input->GetGeometry(t); if ( timesteps > 1 ) { if(input->GetTimeGeometry()->IsValidTimeStep(t)) { - const TimeBounds& timebounds = geometry->GetTimeBounds(); + const TimeBounds& timebounds = input->GetTimeGeometry()->GetTimeBounds(t); filename << m_FileName.c_str() << "_S" << std::setprecision(0) << timebounds[0] << "_E" << std::setprecision(0) << timebounds[1] << "_T" << t << m_Extension; } else { itkWarningMacro(<<"Error on write: TimeGeometry invalid of surface " << filename.str() << "."); filename << m_FileName.c_str() << "_T" << t << m_Extension; } m_VtkWriter->SetFileName(filename.str().c_str()); } else m_VtkWriter->SetFileName(m_FileName.c_str()); transformPolyData->SetInputData(input->GetVtkPolyData(t)); transformPolyData->SetTransform(geometry->GetVtkTransform()); transformPolyData->UpdateWholeExtent(); polyData = transformPolyData->GetOutput(); m_VtkWriter->SetInputData(polyData); ExecuteWrite( m_VtkWriter ); } m_MimeType = "application/MITK.Surface"; } template void mitk::SurfaceVtkWriter::SetInput( mitk::Surface* surface ) { this->ProcessObject::SetNthInput( 0, surface ); } template const mitk::Surface* mitk::SurfaceVtkWriter::GetInput() { if ( this->GetNumberOfInputs() < 1 ) { return NULL; } else { return static_cast< const Surface * >( this->ProcessObject::GetInput( 0 ) ); } } template bool mitk::SurfaceVtkWriter::CanWriteDataType( DataNode* input ) { if ( input ) { BaseData* data = input->GetData(); if ( data ) { Surface::Pointer surface = dynamic_cast( data ); if( surface.IsNotNull() ) { SetDefaultExtension(); return true; } } } return false; } template void mitk::SurfaceVtkWriter::SetInput( DataNode* input ) { if( input && CanWriteDataType( input ) ) SetInput( dynamic_cast( input->GetData() ) ); } template std::string mitk::SurfaceVtkWriter::GetWritenMIMEType() { return m_MimeType; } template std::string mitk::SurfaceVtkWriter::GetFileExtension() { return m_Extension; } diff --git a/Core/Code/Interactions/mitkCoordinateSupplier.cpp b/Core/Code/Interactions/mitkCoordinateSupplier.cpp index 2b69a4372c..551ac8eadc 100755 --- a/Core/Code/Interactions/mitkCoordinateSupplier.cpp +++ b/Core/Code/Interactions/mitkCoordinateSupplier.cpp @@ -1,169 +1,166 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDisplayCoordinateOperation.h" //has to be on top, otherwise compiler error! #include "mitkCoordinateSupplier.h" #include "mitkOperation.h" #include "mitkOperationActor.h" #include "mitkPointOperation.h" #include "mitkPositionEvent.h" #include "mitkStateEvent.h" #include "mitkUndoController.h" //and not here! #include #include "mitkInteractionConst.h" #include "mitkAction.h" mitk::CoordinateSupplier::CoordinateSupplier(const char * type, mitk::OperationActor* operationActor) : mitk::StateMachine(type), m_Destination(operationActor) { m_CurrentPoint.Fill(0); } mitk::CoordinateSupplier::~CoordinateSupplier() { - } bool mitk::CoordinateSupplier::ExecuteAction(Action* action, mitk::StateEvent const* stateEvent) { bool ok = false; const PositionEvent* posEvent = dynamic_cast(stateEvent->GetEvent()); PointOperation* doOp=NULL; if(posEvent!=NULL) { ScalarType timeInMS = 0; if(stateEvent->GetEvent()->GetSender()!=NULL) { - const PlaneGeometry* worldGeometry = stateEvent->GetEvent()->GetSender()->GetCurrentWorldPlaneGeometry(); - assert( worldGeometry != NULL ); - timeInMS = worldGeometry->GetTimeBounds()[ 0 ]; + timeInMS = stateEvent->GetEvent()->GetSender()->GetTime(); } else { itkWarningMacro(<<"StateEvent::GetSender()==NULL - setting timeInMS to 0"); } switch (action->GetActionId()) { case AcNEWPOINT: { if (m_Destination == NULL) return false; m_OldPoint = posEvent->GetWorldPosition(); doOp = new mitk::PointOperation(OpADD, timeInMS, m_OldPoint, 0); //Undo if (m_UndoEnabled) { PointOperation* undoOp = new PointOperation(OpDELETE, m_OldPoint, 0); OperationEvent *operationEvent = new OperationEvent( m_Destination, doOp, undoOp ); m_UndoController->SetOperationEvent(operationEvent); } //execute the Operation m_Destination->ExecuteOperation(doOp); if (!m_UndoEnabled) delete doOp; ok = true; break; } case AcINITMOVEMENT: { if (m_Destination == NULL) return false; //move the point to the coordinate //not used, cause same to MovePoint... check xml-file mitk::Point3D movePoint = posEvent->GetWorldPosition(); mitk::PointOperation doPointOp(OpMOVE, timeInMS, movePoint, 0); //execute the Operation m_Destination->ExecuteOperation(&doPointOp); ok = true; break; } case AcMOVEPOINT: case AcMOVE: { mitk::Point3D movePoint = posEvent->GetWorldPosition(); m_CurrentPoint = movePoint; if (m_Destination == NULL) return false; mitk::PointOperation doPointOp(OpMOVE, timeInMS, movePoint, 0); //execute the Operation m_Destination->ExecuteOperation(&doPointOp); ok = true; break; } case AcFINISHMOVEMENT: { if (m_Destination == NULL) return false; /*finishes a Movement from the coordinate supplier: gets the lastpoint from the undolist and writes an undo-operation so that the movement of the coordinatesupplier is undoable.*/ mitk::Point3D movePoint = posEvent->GetWorldPosition(); mitk::Point3D oldMovePoint; oldMovePoint.Fill(0); doOp = new mitk::PointOperation(OpMOVE, timeInMS, movePoint, 0); PointOperation finishOp(OpTERMINATE, movePoint, 0); if (m_UndoEnabled ) { //get the last Position from the UndoList OperationEvent *lastOperationEvent = m_UndoController->GetLastOfType(m_Destination, OpMOVE); if (lastOperationEvent != NULL) { PointOperation* lastOp = dynamic_cast(lastOperationEvent->GetOperation()); if (lastOp != NULL) { oldMovePoint = lastOp->GetPoint(); } } PointOperation* undoOp = new PointOperation(OpMOVE, timeInMS, oldMovePoint, 0, "Move slices"); OperationEvent *operationEvent = new OperationEvent(m_Destination, doOp, undoOp, "Move slices"); m_UndoController->SetOperationEvent(operationEvent); } //execute the Operation m_Destination->ExecuteOperation(doOp); if (!m_UndoEnabled) delete doOp; m_Destination->ExecuteOperation(&finishOp); ok = true; break; } default: ok = false; break; } return ok; } const mitk::DisplayPositionEvent* displPosEvent = dynamic_cast(stateEvent->GetEvent()); if(displPosEvent!=NULL) { return true; } return false; } diff --git a/Core/Code/Rendering/mitkPointSetGLMapper2D.cpp b/Core/Code/Rendering/mitkPointSetGLMapper2D.cpp index 337becb949..968099664a 100644 --- a/Core/Code/Rendering/mitkPointSetGLMapper2D.cpp +++ b/Core/Code/Rendering/mitkPointSetGLMapper2D.cpp @@ -1,524 +1,521 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPointSetGLMapper2D.h" #include "mitkPointSet.h" #include "mitkPlaneGeometry.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "vtkLinearTransform.h" #include "mitkStringProperty.h" #include "mitkPointSet.h" #include "mitkVtkPropRenderer.h" #include "mitkGL.h" //const float selectedColor[]={1.0,0.0,0.6}; //for selected! mitk::PointSetGLMapper2D::PointSetGLMapper2D() : m_Polygon(false), m_ShowPoints(true), m_ShowDistances(false), m_DistancesDecimalDigits(1), m_ShowAngles(false), m_ShowDistantLines(true), m_LineWidth(1) { } mitk::PointSetGLMapper2D::~PointSetGLMapper2D() { } const mitk::PointSet *mitk::PointSetGLMapper2D::GetInput(void) { return static_cast ( GetDataNode()->GetData() ); } void mitk::PointSetGLMapper2D::ApplyAllProperties(mitk::BaseRenderer* renderer) { GLMapper::ApplyColorAndOpacityProperties( renderer ); const mitk::DataNode* node=GetDataNode(); if( node == NULL ) return; node->GetBoolProperty("show contour", m_Polygon); node->GetBoolProperty("close contour", m_PolygonClosed); node->GetBoolProperty("show points", m_ShowPoints); node->GetBoolProperty("show distances", m_ShowDistances); node->GetIntProperty("distance decimal digits", m_DistancesDecimalDigits); node->GetBoolProperty("show angles", m_ShowAngles); node->GetBoolProperty("show distant lines", m_ShowDistantLines); node->GetIntProperty("line width", m_LineWidth); node->GetIntProperty("point line width", m_PointLineWidth); node->GetIntProperty("point 2D size", m_Point2DSize); } static bool makePerpendicularVector2D(const mitk::Vector2D& in, mitk::Vector2D& out) { if((fabs(in[0])>0) && ( (fabs(in[0])>fabs(in[1])) || (in[1] == 0) ) ) { out[0]=-in[1]/in[0]; out[1]=1; out.Normalize(); return true; } else if(fabs(in[1])>0) { out[0]=1; out[1]=-in[0]/in[1]; out.Normalize(); return true; } else return false; } void mitk::PointSetGLMapper2D::Paint( mitk::BaseRenderer *renderer ) { - const mitk::DataNode* node=GetDataNode(); if( node == NULL ) return; const int text2dDistance = 10; bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible) return; // @FIXME: Logik fuer update bool updateNeccesary=true; if (updateNeccesary) { // ok, das ist aus GenerateData kopiert mitk::PointSet::Pointer input = const_cast(this->GetInput()); // Get the TimeGeometry of the input object const TimeGeometry* inputTimeGeometry = input->GetTimeGeometry(); if (( inputTimeGeometry == NULL ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) { return; } // // get the world time // - const PlaneGeometry* worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); - assert( worldGeometry != NULL ); - ScalarType time = worldGeometry->GetTimeBounds()[ 0 ]; + ScalarType time = renderer->GetTime(); // // convert the world time in time steps of the input object // int timeStep=0; if ( time > ScalarTypeNumericTraits::NonpositiveMin() ) timeStep = inputTimeGeometry->TimePointToTimeStep( time ); if ( inputTimeGeometry->IsValidTimeStep( timeStep ) == false ) { return; } mitk::PointSet::DataType::Pointer itkPointSet = input->GetPointSet( timeStep ); if ( itkPointSet.GetPointer() == NULL) { return; } mitk::DisplayGeometry::Pointer displayGeometry = renderer->GetDisplayGeometry(); assert(displayGeometry.IsNotNull()); //apply color and opacity read from the PropertyList this->ApplyAllProperties(renderer); vtkLinearTransform* transform = GetDataNode()->GetVtkTransform(); //List of the Points PointSet::DataType::PointsContainerConstIterator it, end; it = itkPointSet->GetPoints()->Begin(); end = itkPointSet->GetPoints()->End(); //iterator on the additional data of each point PointSet::DataType::PointDataContainerIterator selIt, selEnd; bool pointDataBroken = (itkPointSet->GetPointData()->Size() != itkPointSet->GetPoints()->Size()); selIt = itkPointSet->GetPointData()->Begin(); selEnd = itkPointSet->GetPointData()->End(); int counter = 0; //for writing text int j = 0; //for switching back to old color after using selected color float recallColor[4]; glGetFloatv(GL_CURRENT_COLOR,recallColor); //get the properties for coloring the points float unselectedColor[4] = {1.0, 1.0, 0.0, 1.0};//yellow //check if there is an unselected property if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("unselectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("unselectedcolor"))->GetValue(); unselectedColor[0] = tmpColor[0]; unselectedColor[1] = tmpColor[1]; unselectedColor[2] = tmpColor[2]; unselectedColor[3] = 1.0f; //!!define a new ColorProp to be able to pass alpha value } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("unselectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("unselectedcolor"))->GetValue(); unselectedColor[0] = tmpColor[0]; unselectedColor[1] = tmpColor[1]; unselectedColor[2] = tmpColor[2]; unselectedColor[3] = 1.0f; //!!define a new ColorProp to be able to pass alpha value } else { //get the color from the dataNode node->GetColor(unselectedColor, NULL); } //get selected property float selectedColor[4] = {1.0, 0.0, 0.6, 1.0}; if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("selectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("selectedcolor"))->GetValue(); selectedColor[0] = tmpColor[0]; selectedColor[1] = tmpColor[1]; selectedColor[2] = tmpColor[2]; selectedColor[3] = 1.0f; } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("selectedcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("selectedcolor"))->GetValue(); selectedColor[0] = tmpColor[0]; selectedColor[1] = tmpColor[1]; selectedColor[2] = tmpColor[2]; selectedColor[3] = 1.0f; } //check if there is an pointLineWidth property if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("point line width")) != NULL) { m_PointLineWidth = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("point line width"))->GetValue(); } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("point line width")) != NULL) { m_PointLineWidth = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("point line width"))->GetValue(); } //check if there is an point 2D size property if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("point 2D size")) != NULL) { m_Point2DSize = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("point 2D size"))->GetValue(); } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("point 2D size")) != NULL) { m_Point2DSize = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("point 2D size"))->GetValue(); } Point3D p; // currently visited point Point3D lastP; // last visited point Vector3D vec; // p - lastP Vector3D lastVec; // lastP - point before lastP vec.Fill(0); mitk::Point3D projected_p; // p projected on viewplane Point2D pt2d; // projected_p in display coordinates Point2D lastPt2d; // last projected_p in display coordinates Point2D preLastPt2d;// projected_p in display coordinates before lastPt2d Point2D lastPt2DInPointSet; // The last point in the pointset in display coordinates mitk::PointSet::DataType::PointType plob; plob.Fill(0); itkPointSet->GetPoint( itkPointSet->GetNumberOfPoints()-1, &plob); //map lastPt2DInPointSet to display coordinates float vtkp[3]; itk2vtk(plob, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); displayGeometry->Map(projected_p, lastPt2DInPointSet); displayGeometry->WorldToDisplay(lastPt2DInPointSet, lastPt2DInPointSet); while(it!=end) // iterate over all points { lastP = p; // valid only for counter > 0 lastVec = vec; // valid only for counter > 1 preLastPt2d = lastPt2d; // valid only for counter > 1 lastPt2d = pt2d; // valid only for counter > 0 itk2vtk(it->Value(), vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); vec = p-lastP; // valid only for counter > 0 displayGeometry->Project(p, projected_p); Vector3D diff=p-projected_p; ScalarType scalardiff = diff.GetSquaredNorm(); //MouseOrientation bool isInputDevice=false; bool isRendererSlice = scalardiff < 0.00001; //cause roundoff error if(this->GetDataNode()->GetBoolProperty("inputdevice",isInputDevice) && isInputDevice && !isRendererSlice ) { displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); //Point size depending of distance to slice /*float p_size = (1/scalardiff)*10*m_Point2DSize; if(p_size < m_Point2DSize * 0.6 ) p_size = m_Point2DSize * 0.6 ; else if ( p_size > m_Point2DSize ) p_size = m_Point2DSize;*/ float p_size = (1/scalardiff)*100.0; if(p_size < 6.0 ) p_size = 6.0 ; else if ( p_size > 10.0 ) p_size = 10.0; //draw Point float opacity = (p_size<8)?0.3:1.0;//don't get the opacity from the node? Feature not a bug! Otehrwise the 2D cross is hardly seen. glColor4f(unselectedColor[0],unselectedColor[1],unselectedColor[2],opacity); glPointSize(p_size); //glShadeModel(GL_FLAT); glBegin (GL_POINTS); glVertex2dv(&pt2d[0]); glEnd (); } //for point set if(!isInputDevice && ( (scalardiff<4.0) || (m_Polygon))) { Point2D tmp; displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); Vector2D horz,vert; horz[0]=(float)m_Point2DSize-scalardiff*2; horz[1]=0; vert[0]=0; vert[1]=(float)m_Point2DSize-scalardiff*2; // now paint text if available if (dynamic_cast(this->GetDataNode() ->GetProperty("label")) != NULL) { const char * pointLabel = dynamic_cast( this->GetDataNode()->GetProperty("label"))->GetValue(); std::string l = pointLabel; if (input->GetSize()>1) { // char buffer[20]; // sprintf(buffer,"%d",it->Index()); std::stringstream ss; ss << it->Index(); l.append(ss.str()); } if (unselectedColor != NULL) { mitk::VtkPropRenderer* OpenGLrenderer = dynamic_cast( renderer ); float rgb[3];//yellow rgb[0] = unselectedColor[0]; rgb[1] = unselectedColor[1]; rgb[2] = unselectedColor[2]; OpenGLrenderer->WriteSimpleText(l, pt2d[0] + text2dDistance, pt2d[1] + text2dDistance,rgb[0], rgb[1],rgb[2]); } else { mitk::VtkPropRenderer* OpenGLrenderer = dynamic_cast( renderer ); OpenGLrenderer->WriteSimpleText(l, pt2d[0] + text2dDistance, pt2d[1] + text2dDistance,0.0,1.0,0.0); } } if((m_ShowPoints) && (scalardiff<4.0)) { //check if the point is to be marked as selected if(selIt != selEnd || pointDataBroken) { bool addAsSelected = false; if (pointDataBroken) addAsSelected = false; else if (selIt->Value().selected) addAsSelected = true; else addAsSelected = false; if (addAsSelected) { horz[0]=(float)m_Point2DSize; vert[1]=(float)m_Point2DSize; glColor3f(selectedColor[0],selectedColor[1],selectedColor[2]); glLineWidth(m_PointLineWidth); //a diamond around the point with the selected color glBegin (GL_LINE_LOOP); tmp=pt2d-horz; glVertex2dv(&tmp[0]); tmp=pt2d+vert; glVertex2dv(&tmp[0]); tmp=pt2d+horz; glVertex2dv(&tmp[0]); tmp=pt2d-vert; glVertex2dv(&tmp[0]); glEnd (); glLineWidth(1); //the actual point in the specified color to see the usual color of the point glColor3f(unselectedColor[0],unselectedColor[1],unselectedColor[2]); glPointSize(1); glBegin (GL_POINTS); tmp=pt2d; glVertex2dv(&tmp[0]); glEnd (); } else //if not selected { glColor3f(unselectedColor[0],unselectedColor[1],unselectedColor[2]); glLineWidth(m_PointLineWidth); //drawing crosses glBegin (GL_LINES); tmp=pt2d-horz; glVertex2dv(&tmp[0]); tmp=pt2d+horz; glVertex2dv(&tmp[0]); tmp=pt2d-vert; glVertex2dv(&tmp[0]); tmp=pt2d+vert; glVertex2dv(&tmp[0]); glEnd (); glLineWidth(1); } } } bool drawLinesEtc = true; if (!m_ShowDistantLines && counter > 0) // check, whether this line should be drawn { ScalarType currentDistance = displayGeometry->GetWorldGeometry()->SignedDistance(p); ScalarType lastDistance = displayGeometry->GetWorldGeometry()->SignedDistance(lastP); if ( currentDistance * lastDistance > 0.5 ) // points on same side of plane drawLinesEtc = false; } // draw a line if ((m_Polygon && counter>0 && drawLinesEtc) || (m_Polygon && m_PolygonClosed && drawLinesEtc)) { if ((counter == 0) && ( m_PolygonClosed)) { lastPt2d = lastPt2DInPointSet; } //get contour color property float contourColor[4] = {unselectedColor[0], unselectedColor[1], unselectedColor[2], unselectedColor[3]};//so if no property set, then use unselected color if (dynamic_cast(node->GetPropertyList(renderer)->GetProperty("contourcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(renderer)->GetProperty("contourcolor"))->GetValue(); contourColor[0] = tmpColor[0]; contourColor[1] = tmpColor[1]; contourColor[2] = tmpColor[2]; contourColor[3] = 1.0f; } else if (dynamic_cast(node->GetPropertyList(NULL)->GetProperty("contourcolor")) != NULL) { mitk::Color tmpColor = dynamic_cast(this->GetDataNode()->GetPropertyList(NULL)->GetProperty("contourcolor"))->GetValue(); contourColor[0] = tmpColor[0]; contourColor[1] = tmpColor[1]; contourColor[2] = tmpColor[2]; contourColor[3] = 1.0f; } //set this color glColor3f(contourColor[0],contourColor[1],contourColor[2]); glLineWidth( m_LineWidth ); glBegin (GL_LINES); glVertex2dv(&pt2d[0]); glVertex2dv(&lastPt2d[0]); glEnd (); glLineWidth(1.0); if(m_ShowDistances) // calculate and print a distance { std::stringstream buffer; float distance = vec.GetNorm(); buffer<( renderer ); OpenGLrenderer->WriteSimpleText(buffer.str(), pos2d[0], pos2d[1]); //this->WriteTextXY(pos2d[0], pos2d[1], buffer.str(),renderer); } if(m_ShowAngles && counter > 1 ) // calculate and print the angle btw. two lines { std::stringstream buffer; //buffer << angle(vec.Get_vnl_vector(), -lastVec.Get_vnl_vector())*180/vnl_math::pi << "�"; buffer << angle(vec.GetVnlVector(), -lastVec.GetVnlVector())*180/vnl_math::pi << (char)176; Vector2D vec2d = pt2d-lastPt2d; vec2d.Normalize(); Vector2D lastVec2d = lastPt2d-preLastPt2d; lastVec2d.Normalize(); vec2d=vec2d-lastVec2d; vec2d.Normalize(); Vector2D pos2d = lastPt2d.GetVectorFromOrigin()+vec2d*text2dDistance*text2dDistance; mitk::VtkPropRenderer* OpenGLrenderer = dynamic_cast( renderer ); OpenGLrenderer->WriteSimpleText(buffer.str(), pos2d[0], pos2d[1]); //this->WriteTextXY(pos2d[0], pos2d[1], buffer.str(),renderer); } } counter++; } ++it; if(selIt != selEnd && !pointDataBroken) ++selIt; j++; } //recall the color to the same color before this drawing glColor3f(recallColor[0],recallColor[1],recallColor[2]); } } void mitk::PointSetGLMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "line width", mitk::IntProperty::New(2), renderer, overwrite ); // width of the line from one point to another node->AddProperty( "point line width", mitk::IntProperty::New(1), renderer, overwrite ); //width of the cross marking a point node->AddProperty( "point 2D size", mitk::IntProperty::New(8), renderer, overwrite ); // length of the cross marking a point // length of an edge of the box marking a point node->AddProperty( "show contour", mitk::BoolProperty::New(false), renderer, overwrite ); // contour of the line between points node->AddProperty( "close contour", mitk::BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "show points", mitk::BoolProperty::New(true), renderer, overwrite ); //show or hide points node->AddProperty( "show distances", mitk::BoolProperty::New(false), renderer, overwrite ); //show or hide distance measure (not always available) node->AddProperty( "distance decimal digits", mitk::IntProperty::New(2), renderer, overwrite ); //set the number of decimal digits to be shown node->AddProperty( "show angles", mitk::BoolProperty::New(false), renderer, overwrite ); //show or hide angle measurement (not always available) node->AddProperty( "show distant lines", mitk::BoolProperty::New(false), renderer, overwrite ); //show the line between to points from a distant view (equals "always on top" option) node->AddProperty( "layer", mitk::IntProperty::New(1), renderer, overwrite ); // default to draw pointset above images (they have a default layer of 0) Superclass::SetDefaultProperties(node, renderer, overwrite); } diff --git a/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp b/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp index 54908d40a8..804dde617d 100644 --- a/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp +++ b/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp @@ -1,544 +1,541 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkSurfaceGLMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkSurface.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkVtkScalarModeProperty.h" #include "mitkAbstractTransformGeometry.h" #include "mitkLookupTableProperty.h" #include #include #include #include #include #include #include #include #include #include #include #include #include mitk::SurfaceGLMapper2D::SurfaceGLMapper2D() : m_Plane( vtkPlane::New() ), m_Cutter( vtkCutter::New() ), m_LUT( vtkLookupTable::New() ), m_PointLocator( vtkPKdTree::New() ), m_Stripper( vtkStripper::New() ), m_DrawNormals(false), m_FrontNormalLengthInPixels(10.0), m_BackNormalLengthInPixels(10.0) { // default for normals on front side = green m_FrontSideColor[0] = 0.0; m_FrontSideColor[1] = 1.0; m_FrontSideColor[2] = 0.0; m_FrontSideColor[3] = 1.0; // default for normals on back side = red m_BackSideColor[0] = 1.0; m_BackSideColor[1] = 0.0; m_BackSideColor[2] = 0.0; m_BackSideColor[3] = 1.0; // default for line color = yellow m_LineColor[0] = 1.0; m_LineColor[1] = 1.0; m_LineColor[2] = 0.0; m_LineColor[3] = 1.0; m_Cutter->SetCutFunction(m_Plane); m_Cutter->GenerateValues(1,0,1); m_LUT->SetTableRange(0,255); m_LUT->SetNumberOfColors(255); m_LUT->SetRampToLinear(); m_LUT->Build(); } mitk::SurfaceGLMapper2D::~SurfaceGLMapper2D() { m_Plane->Delete(); m_Cutter->Delete(); m_LUT->Delete(); m_PointLocator->Delete(); m_Stripper->Delete(); } const mitk::Surface *mitk::SurfaceGLMapper2D::GetInput(void) { if(m_Surface.IsNotNull()) return m_Surface; return static_cast ( GetDataNode()->GetData() ); } void mitk::SurfaceGLMapper2D::SetDataNode( mitk::DataNode* node ) { Superclass::SetDataNode( node ); bool useCellData; if (dynamic_cast(node->GetProperty("deprecated useCellDataForColouring")) == NULL) useCellData = false; else useCellData = dynamic_cast(node->GetProperty("deprecated useCellDataForColouring"))->GetValue(); if (!useCellData) { // search min/max point scalars over all time steps double dataRange[2] = {0,0}; double range[2]; Surface::Pointer input = const_cast< Surface* >(dynamic_cast( this->GetDataNode()->GetData() )); if(input.IsNull()) return; const TimeGeometry::Pointer inputTimeGeometry = input->GetTimeGeometry(); if(( inputTimeGeometry.IsNull() ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) return; for (unsigned int timestep=0; timestepCountTimeSteps(); timestep++) { vtkPolyData * vtkpolydata = input->GetVtkPolyData( timestep ); if((vtkpolydata==NULL) || (vtkpolydata->GetNumberOfPoints() < 1 )) continue; vtkDataArray *vpointscalars = vtkpolydata->GetPointData()->GetScalars(); if (vpointscalars) { vpointscalars->GetRange( range, 0 ); if (dataRange[0]==0 && dataRange[1]==0) { dataRange[0] = range[0]; dataRange[1] = range[1]; } else { if (range[0] < dataRange[0]) dataRange[0] = range[0]; if (range[1] > dataRange[1]) dataRange[1] = range[1]; } } } if (dataRange[1] - dataRange[0] > 0) { m_LUT->SetTableRange( dataRange ); m_LUT->Build(); } } } void mitk::SurfaceGLMapper2D::Paint(mitk::BaseRenderer * renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if(!visible) return; Surface::Pointer input = const_cast(this->GetInput()); if(input.IsNull()) return; // // get the TimeGeometry of the input object // const TimeGeometry* inputTimeGeometry = input->GetTimeGeometry(); if(( inputTimeGeometry == NULL ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) return; if (dynamic_cast(this->GetDataNode()->GetProperty("line width")) == NULL) m_LineWidth = 1; else m_LineWidth = dynamic_cast(this->GetDataNode()->GetProperty("line width"))->GetValue(); // // get the world time // - PlaneGeometry::ConstPointer worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); - assert( worldGeometry.IsNotNull() ); - - ScalarType time = worldGeometry->GetTimeBounds()[ 0 ]; + ScalarType time =renderer->GetTime(); int timestep=0; if( time > ScalarTypeNumericTraits::NonpositiveMin() ) timestep = inputTimeGeometry->TimePointToTimeStep( time ); // int timestep = this->GetTimestep(); if( inputTimeGeometry->IsValidTimeStep( timestep ) == false ) return; vtkPolyData * vtkpolydata = input->GetVtkPolyData( timestep ); if((vtkpolydata==NULL) || (vtkpolydata->GetNumberOfPoints() < 1 )) return; + Geometry3D::Pointer worldGeometry = renderer->GetWorldGeometry(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast(worldGeometry.GetPointer()); //apply color and opacity read from the PropertyList this->ApplyAllProperties(renderer); if (m_DrawNormals) { m_PointLocator->SetDataSet( vtkpolydata ); m_PointLocator->BuildLocatorFromPoints( vtkpolydata->GetPoints() ); } if(vtkpolydata!=NULL) { Point3D point; Vector3D normal; //Check if Lookup-Table is already given, else use standard one. double* scalarLimits = m_LUT->GetTableRange(); double scalarsMin = scalarLimits[0], scalarsMax = scalarLimits[1]; vtkLookupTable *lut; LookupTableProperty::Pointer lookupTableProp; this->GetDataNode()->GetProperty(lookupTableProp, "LookupTable", renderer); if (lookupTableProp.IsNotNull() ) { lut = lookupTableProp->GetLookupTable()->GetVtkLookupTable(); if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum")) != NULL) scalarsMin = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum"))->GetValue(); if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum")) != NULL) scalarsMax = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum"))->GetValue(); // check if the scalar range has been changed, e.g. manually, for the data tree node, and rebuild the LUT if necessary. double* oldRange = lut->GetTableRange(); if( oldRange[0] != scalarsMin || oldRange[1] != scalarsMax ) { lut->SetTableRange(scalarsMin, scalarsMax); lut->Build(); } } else { lut = m_LUT; } vtkLinearTransform * vtktransform = GetDataNode()->GetVtkTransform(timestep); + Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); + assert( worldGeometry.IsNotNull() ); if(worldPlaneGeometry.IsNotNull()) { // set up vtkPlane according to worldGeometry point=worldPlaneGeometry->GetOrigin(); normal=worldPlaneGeometry->GetNormal(); normal.Normalize(); m_Plane->SetTransform((vtkAbstractTransform*)NULL); } else { AbstractTransformGeometry::ConstPointer worldAbstractGeometry = dynamic_cast(renderer->GetCurrentWorldPlaneGeometry()); if(worldAbstractGeometry.IsNotNull()) { AbstractTransformGeometry::ConstPointer surfaceAbstractGeometry = dynamic_cast(input->GetTimeGeometry()->GetGeometryForTimeStep(0).GetPointer()); if(surfaceAbstractGeometry.IsNotNull()) //@todo substitude by operator== after implementation, see bug id 28 { PaintCells(renderer, vtkpolydata, worldGeometry, renderer->GetDisplayGeometry(), vtktransform, lut); return; } else { //@FIXME: does not work correctly. Does m_Plane->SetTransform really transforms a "flat plane" into a "curved plane"? return; // set up vtkPlane according to worldGeometry point=const_cast(worldAbstractGeometry->GetParametricBoundingBox())->GetMinimum(); FillVector3D(normal, 0, 0, 1); m_Plane->SetTransform(worldAbstractGeometry->GetVtkAbstractTransform()->GetInverse()); } } else return; } double vp[3], vnormal[3]; vnl2vtk(point.GetVnlVector(), vp); vnl2vtk(normal.GetVnlVector(), vnormal); //normally, we would need to transform the surface and cut the transformed surface with the cutter. //This might be quite slow. Thus, the idea is, to perform an inverse transform of the plane instead. //@todo It probably does not work for scaling operations yet:scaling operations have to be //dealed with after the cut is performed by scaling the contour. vtkLinearTransform * inversetransform = vtktransform->GetLinearInverse(); inversetransform->TransformPoint(vp, vp); inversetransform->TransformNormalAtPoint(vp, vnormal, vnormal); m_Plane->SetOrigin(vp); m_Plane->SetNormal(vnormal); //set data into cutter m_Cutter->SetInputData(vtkpolydata); m_Cutter->Update(); // m_Cutter->GenerateCutScalarsOff(); // m_Cutter->SetSortByToSortByCell(); if (m_DrawNormals) { m_Stripper->SetInputData( m_Cutter->GetOutput() ); // calculate the cut m_Stripper->Update(); PaintCells(renderer, m_Stripper->GetOutput(), worldGeometry, renderer->GetDisplayGeometry(), vtktransform, lut, vtkpolydata); } else { PaintCells(renderer, m_Cutter->GetOutput(), worldGeometry, renderer->GetDisplayGeometry(), vtktransform, lut, vtkpolydata); } } } void mitk::SurfaceGLMapper2D::PaintCells(mitk::BaseRenderer* renderer, vtkPolyData* contour, const PlaneGeometry* worldGeometry, const DisplayGeometry* displayGeometry, vtkLinearTransform * vtktransform, vtkLookupTable *lut, vtkPolyData* original3DObject) { // deprecated settings bool usePointData = false; bool useCellData = false; this->GetDataNode()->GetBoolProperty("deprecated useCellDataForColouring", useCellData); bool scalarVisibility = false; this->GetDataNode()->GetBoolProperty("scalar visibility", scalarVisibility); if(scalarVisibility) { VtkScalarModeProperty* scalarMode; if(this->GetDataNode()->GetProperty(scalarMode, "scalar mode", renderer)) { if( (scalarMode->GetVtkScalarMode() == VTK_SCALAR_MODE_USE_POINT_DATA) || (scalarMode->GetVtkScalarMode() == VTK_SCALAR_MODE_DEFAULT) ) { usePointData = true; } if(scalarMode->GetVtkScalarMode() == VTK_SCALAR_MODE_USE_CELL_DATA) { useCellData = true; } } else { usePointData = true; } } vtkPoints *vpoints = contour->GetPoints(); vtkDataArray *vpointscalars = contour->GetPointData()->GetScalars(); vtkCellArray *vlines = contour->GetLines(); vtkDataArray* vcellscalars = contour->GetCellData()->GetScalars(); Point3D p; Point2D p2d, last; int i, j; int numberOfLines = vlines->GetNumberOfCells(); glLineWidth( m_LineWidth ); glBegin (GL_LINES); glColor4fv(m_LineColor); double distanceSinceLastNormal(0.0); vlines->InitTraversal(); for(i=0;iGetNextCell(cellSize, cell); vpoints->GetPoint(cell[0], vp); //take transformation via vtktransform into account vtktransform->TransformPoint(vp, vp); vtk2itk(vp, p); //convert 3D point (in mm) to 2D point on slice (also in mm) worldGeometry->Map(p, p2d); //convert point (until now mm and in world coordinates) to display coordinates (units ) displayGeometry->WorldToDisplay(p2d, p2d); last=p2d; for(j=1; jGetPoint(cell[j], vp); Point3D originalPoint; vtk2itk(vp, originalPoint); //take transformation via vtktransform into account vtktransform->TransformPoint(vp, vp); vtk2itk(vp, p); //convert 3D point (in mm) to 2D point on slice (also in mm) worldGeometry->Map(p, p2d); //convert point (until now mm and in world coordinates) to display coordinates (units ) displayGeometry->WorldToDisplay(p2d, p2d); double color[3]; if (useCellData && vcellscalars != NULL ) { // color each cell according to cell data lut->GetColor( vcellscalars->GetComponent(i,0),color); glColor3f(color[0],color[1],color[2]); glVertex2f(last[0], last[1]); glVertex2f(p2d[0], p2d[1]); } else if (usePointData && vpointscalars != NULL ) { lut->GetColor( vpointscalars->GetComponent(cell[j-1],0),color); glColor3f(color[0],color[1],color[2]); glVertex2f(last[0], last[1]); lut->GetColor( vpointscalars->GetComponent(cell[j],0),color); glColor3f(color[0],color[1],color[2]); glVertex2f(p2d[0], p2d[1]); } else { glVertex2f(last[0], last[1]); glVertex2f(p2d[0], p2d[1]); // draw normals ? if (m_DrawNormals && original3DObject) { distanceSinceLastNormal += sqrt((p2d[0]-last[0])*(p2d[0]-last[0]) + (p2d[1]-last[1])*(p2d[1]-last[1])); if (distanceSinceLastNormal >= 5.0) { distanceSinceLastNormal = 0.0; vtkPointData* pointData = original3DObject->GetPointData(); if (!pointData) break; vtkDataArray* normalsArray = pointData->GetNormals(); if (!normalsArray) break; // find 3D point closest to the currently drawn point double distance(0.0); vtkIdType closestPointId = m_PointLocator->FindClosestPoint(originalPoint[0], originalPoint[1], originalPoint[2], distance); if (closestPointId >= 0) { // find normal of 3D object at this 3D point double* normal = normalsArray->GetTuple3(closestPointId); double transformedNormal[3]; vtktransform->TransformNormal(normal, transformedNormal); Vector3D normalITK; vtk2itk(transformedNormal, normalITK); normalITK.Normalize(); // calculate a point (point from the cut 3D object) + (normal vector of closest point) Point3D tip3D = p + normalITK; // map this point into our 2D coordinate system Point2D tip2D; worldGeometry->Map(tip3D, tip2D); displayGeometry->WorldToDisplay(tip2D, tip2D); // calculate 2D vector from point to point+normal, normalize it to standard length Vector2D tipVectorGLFront = tip2D - p2d; tipVectorGLFront.Normalize(); tipVectorGLFront *= m_FrontNormalLengthInPixels; Vector2D tipVectorGLBack = p2d - tip2D; tipVectorGLBack.Normalize(); tipVectorGLBack *= m_BackNormalLengthInPixels; Point2D tipPoint2D = p2d + tipVectorGLFront; Point2D backTipPoint2D = p2d + tipVectorGLBack; // draw normalized mapped normal vector glColor4f(m_BackSideColor[0], m_BackSideColor[1], m_BackSideColor[2], m_BackSideColor[3]); // red backside glVertex2f(p2d[0], p2d[1]); glVertex2f(tipPoint2D[0], tipPoint2D[1]); glColor4f(m_FrontSideColor[0], m_FrontSideColor[1], m_FrontSideColor[2], m_FrontSideColor[3]); // green backside glVertex2f(p2d[0], p2d[1]); glVertex2f(backTipPoint2D[0], backTipPoint2D[1]); glColor4fv(m_LineColor); // back to line color } } } } last=p2d; } } glEnd(); glLineWidth(1.0); } void mitk::SurfaceGLMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "line width", IntProperty::New(2), renderer, overwrite ); node->AddProperty( "scalar mode", VtkScalarModeProperty::New(), renderer, overwrite ); node->AddProperty( "draw normals 2D", BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "invert normals", BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "front color", ColorProperty::New(0.0, 1.0, 0.0), renderer, overwrite ); node->AddProperty( "back color", ColorProperty::New(1.0, 0.0, 0.0), renderer, overwrite ); node->AddProperty( "front normal lenth (px)", FloatProperty::New(10.0), renderer, overwrite ); node->AddProperty( "back normal lenth (px)", FloatProperty::New(10.0), renderer, overwrite ); node->AddProperty( "layer", mitk::IntProperty::New(100), renderer, overwrite); Superclass::SetDefaultProperties(node, renderer, overwrite); } void mitk::SurfaceGLMapper2D::ApplyAllProperties(mitk::BaseRenderer* renderer) { ApplyColorAndOpacityProperties(renderer); DataNode * node = GetDataNode(); if(node == NULL) { return; } node->GetBoolProperty("draw normals 2D", m_DrawNormals, renderer); // check for color and opacity properties, use it for rendering if they exists node->GetColor(m_LineColor, renderer, "color"); node->GetOpacity(m_LineColor[3], renderer, "opacity"); bool invertNormals(false); node->GetBoolProperty("invert normals", invertNormals, renderer); if (!invertNormals) { node->GetColor(m_FrontSideColor, renderer, "front color"); node->GetOpacity(m_FrontSideColor[3], renderer, "opacity"); node->GetColor(m_BackSideColor, renderer, "back color"); node->GetOpacity(m_BackSideColor[3], renderer, "opacity"); node->GetFloatProperty( "front normal lenth (px)", m_FrontNormalLengthInPixels, renderer ); node->GetFloatProperty( "back normal lenth (px)", m_BackNormalLengthInPixels, renderer ); - } else { node->GetColor(m_FrontSideColor, renderer, "back color"); node->GetOpacity(m_FrontSideColor[3], renderer, "opacity"); node->GetColor(m_BackSideColor, renderer, "front color"); node->GetOpacity(m_BackSideColor[3], renderer, "opacity"); node->GetFloatProperty( "back normal lenth (px)", m_FrontNormalLengthInPixels, renderer ); node->GetFloatProperty( "front normal lenth (px)", m_BackNormalLengthInPixels, renderer ); - } } - diff --git a/Core/Code/Testing/DICOMTesting/mitkTestDICOMLoading.cpp b/Core/Code/Testing/DICOMTesting/mitkTestDICOMLoading.cpp index bd9256db26..a9dd843445 100644 --- a/Core/Code/Testing/DICOMTesting/mitkTestDICOMLoading.cpp +++ b/Core/Code/Testing/DICOMTesting/mitkTestDICOMLoading.cpp @@ -1,449 +1,444 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //#define MBILOG_ENABLE_DEBUG #include #include "mitkTestDICOMLoading.h" #include mitk::TestDICOMLoading::TestDICOMLoading() :m_PreviousCLocale(NULL) { } void mitk::TestDICOMLoading::SetDefaultLocale() { // remember old locale only once if (m_PreviousCLocale == NULL) { m_PreviousCLocale = setlocale(LC_NUMERIC, NULL); // set to "C" setlocale(LC_NUMERIC, "C"); m_PreviousCppLocale = std::cin.getloc(); std::locale l( "C" ); std::cin.imbue(l); std::cout.imbue(l); } } void mitk::TestDICOMLoading::ResetUserLocale() { if (m_PreviousCLocale) { setlocale(LC_NUMERIC, m_PreviousCLocale); std::cin.imbue(m_PreviousCppLocale); std::cout.imbue(m_PreviousCppLocale); m_PreviousCLocale = NULL; } } mitk::TestDICOMLoading::ImageList mitk::TestDICOMLoading::LoadFiles( const StringContainer& files, Image::Pointer preLoadedVolume ) { for (StringContainer::const_iterator iter = files.begin(); iter != files.end(); ++iter) { MITK_DEBUG << "File " << *iter; } ImageList result; DicomSeriesReader::FileNamesGrouping seriesInFiles = DicomSeriesReader::GetSeries( files, true ); // TODO sort series UIDs, implementation of map iterator might differ on different platforms (or verify this is a standard topic??) for (DicomSeriesReader::FileNamesGrouping::const_iterator seriesIter = seriesInFiles.begin(); seriesIter != seriesInFiles.end(); ++seriesIter) { StringContainer files = seriesIter->second.GetFilenames(); DataNode::Pointer node = DicomSeriesReader::LoadDicomSeries( files, true, true, true, 0, preLoadedVolume ); // true, true, true ist just a copy of the default values if (node.IsNotNull()) { Image::Pointer image = dynamic_cast( node->GetData() ); result.push_back( image ); } else { } } return result; } std::string mitk::TestDICOMLoading::ComponentTypeToString(int type) { if (type == itk::ImageIOBase::UCHAR) return "UCHAR"; else if (type == itk::ImageIOBase::CHAR) return "CHAR"; else if (type == itk::ImageIOBase::USHORT) return "USHORT"; else if (type == itk::ImageIOBase::SHORT) return "SHORT"; else if (type == itk::ImageIOBase::UINT) return "UINT"; else if (type == itk::ImageIOBase::INT) return "INT"; else if (type == itk::ImageIOBase::ULONG) return "ULONG"; else if (type == itk::ImageIOBase::LONG) return "LONG"; else if (type == itk::ImageIOBase::FLOAT) return "FLOAT"; else if (type == itk::ImageIOBase::DOUBLE) return "DOUBLE"; else return "UNKNOWN"; } // add a line to stringstream result (see DumpImageInformation #define DumpLine(field, data) DumpILine(0, field, data) // add an indented(!) line to stringstream result (see DumpImageInformation #define DumpILine(indent, field, data) \ { \ std::string DumpLine_INDENT; DumpLine_INDENT.resize(indent, ' ' ); \ result << DumpLine_INDENT << field << ": " << data << "\n"; \ } std::string mitk::TestDICOMLoading::DumpImageInformation( const Image* image ) { - std::stringstream result; if (image == NULL) return result.str(); SetDefaultLocale(); // basic image data DumpLine( "Pixeltype", ComponentTypeToString(image->GetPixelType().GetComponentType()) ); DumpLine( "BitsPerPixel", image->GetPixelType().GetBpe() ); DumpLine( "Dimension", image->GetDimension() ); result << "Dimensions: "; for (unsigned int dim = 0; dim < image->GetDimension(); ++dim) result << image->GetDimension(dim) << " "; result << "\n"; // geometry data result << "Geometry: \n"; BaseGeometry* geometry = image->GetGeometry(); if (geometry) { AffineTransform3D* transform = geometry->GetIndexToWorldTransform(); if (transform) { result << " " << "Matrix: "; const AffineTransform3D::MatrixType& matrix = transform->GetMatrix(); for (unsigned int i = 0; i < 3; ++i) for (unsigned int j = 0; j < 3; ++j) result << matrix[i][j] << " "; result << "\n"; result << " " << "Offset: "; const AffineTransform3D::OutputVectorType& offset = transform->GetOffset(); for (unsigned int i = 0; i < 3; ++i) result << offset[i] << " "; result << "\n"; result << " " << "Center: "; const AffineTransform3D::InputPointType& center = transform->GetCenter(); for (unsigned int i = 0; i < 3; ++i) result << center[i] << " "; result << "\n"; result << " " << "Translation: "; const AffineTransform3D::OutputVectorType& translation = transform->GetTranslation(); for (unsigned int i = 0; i < 3; ++i) result << translation[i] << " "; result << "\n"; result << " " << "Scale: "; const double* scale = transform->GetScale(); for (unsigned int i = 0; i < 3; ++i) result << scale[i] << " "; result << "\n"; result << " " << "Origin: "; const Point3D& origin = geometry->GetOrigin(); for (unsigned int i = 0; i < 3; ++i) result << origin[i] << " "; result << "\n"; result << " " << "Spacing: "; const Vector3D& spacing = geometry->GetSpacing(); for (unsigned int i = 0; i < 3; ++i) result << spacing[i] << " "; result << "\n"; result << " " << "TimeBounds: "; - const TimeBounds timeBounds = geometry->GetTimeBounds(); + const TimeBounds timeBounds = image->GetTimeGeometry()->GetTimeBounds(0); for (unsigned int i = 0; i < 2; ++i) result << timeBounds[i] << " "; result << "\n"; - - } } ResetUserLocale(); return result.str(); } std::string mitk::TestDICOMLoading::trim(const std::string& pString, const std::string& pWhitespace) { const size_t beginStr = pString.find_first_not_of(pWhitespace); if (beginStr == std::string::npos) { // no content return ""; } const size_t endStr = pString.find_last_not_of(pWhitespace); const size_t range = endStr - beginStr + 1; return pString.substr(beginStr, range); } std::string mitk::TestDICOMLoading::reduce(const std::string& pString, const std::string& pFill, const std::string& pWhitespace) { // trim first std::string result(trim(pString, pWhitespace)); // replace sub ranges size_t beginSpace = result.find_first_of(pWhitespace); while (beginSpace != std::string::npos) { const size_t endSpace = result.find_first_not_of(pWhitespace, beginSpace); const size_t range = endSpace - beginSpace; result.replace(beginSpace, range, pFill); const size_t newStart = beginSpace + pFill.length(); beginSpace = result.find_first_of(pWhitespace, newStart); } return result; } bool mitk::TestDICOMLoading::CompareSpacedValueFields( const std::string& reference, const std::string& test, double /*eps*/ ) { - bool result(true); // tokenize string, compare each token, if possible by float comparison std::stringstream referenceStream(reduce(reference)); std::stringstream testStream(reduce(test)); std::string refToken; std::string testToken; while ( std::getline( referenceStream, refToken, ' ' ) && std::getline ( testStream, testToken, ' ' ) ) { float refNumber; float testNumber; if ( this->StringToNumber(refToken, refNumber) ) { if ( this->StringToNumber(testToken, testNumber) ) { // print-out compared tokens if DEBUG output allowed MITK_DEBUG << "Reference Token '" << refToken << "'" << " value " << refNumber << ", test Token '" << testToken << "'" << " value " << testNumber; bool old_result = result; result &= ( fabs(refNumber - testNumber) < 0.0001 /*mitk::eps*/ ); // log the token/number which causes the test to fail if( old_result != result) { MITK_ERROR << std::setprecision(16) << "Reference Token '" << refToken << "'" << " value " << refNumber << ", test Token '" << testToken << "'" << " value " << testNumber; MITK_ERROR << "[FALSE] - difference: " << std::setprecision(16) << fabs(refNumber - testNumber) << " EPS: " << 0.0001;// mitk::eps; } } else { MITK_ERROR << refNumber << " cannot be compared to '" << testToken << "'"; } } else { MITK_DEBUG << "Token '" << refToken << "'" << " handled as string"; result &= refToken == testToken; } } if ( std::getline( referenceStream, refToken, ' ' ) ) { MITK_ERROR << "Reference string still had values when test string was already parsed: ref '" << reference << "', test '" << test << "'"; result = false; } else if ( std::getline( testStream, testToken, ' ' ) ) { MITK_ERROR << "Test string still had values when reference string was already parsed: ref '" << reference << "', test '" << test << "'"; result = false; } return result; } bool mitk::TestDICOMLoading::CompareImageInformationDumps( const std::string& referenceDump, const std::string& testDump ) { KeyValueMap reference = ParseDump(referenceDump); KeyValueMap test = ParseDump(testDump); bool testResult(true); // verify all expected values for (KeyValueMap::const_iterator refIter = reference.begin(); refIter != reference.end(); ++refIter) { const std::string& refKey = refIter->first; const std::string& refValue = refIter->second; if ( test.find(refKey) != test.end() ) { const std::string& testValue = test[refKey]; bool thisTestResult = CompareSpacedValueFields( refValue, testValue ); testResult &= thisTestResult; MITK_DEBUG << refKey << ": '" << refValue << "' == '" << testValue << "' ? " << (thisTestResult?"YES":"NO"); } else { MITK_ERROR << "Reference dump contains a key'" << refKey << "' (value '" << refValue << "')." ; MITK_ERROR << "This key is expected to be generated for tests (but was not). Most probably you need to update your test data."; return false; } } // now check test dump does not contain any additional keys for (KeyValueMap::const_iterator testIter = test.begin(); testIter != test.end(); ++testIter) { const std::string& key = testIter->first; const std::string& value = testIter->second; if ( reference.find(key) == reference.end() ) { MITK_ERROR << "Test dump contains an unexpected key'" << key << "' (value '" << value << "')." ; MITK_ERROR << "This key is not expected. Most probably you need to update your test data."; return false; } } return testResult; } mitk::TestDICOMLoading::KeyValueMap mitk::TestDICOMLoading::ParseDump( const std::string& dump ) { KeyValueMap parsedResult; std::string shredder(dump); std::stack surroundingKeys; std::stack expectedIndents; expectedIndents.push(0); while (true) { std::string::size_type newLinePos = shredder.find( '\n' ); if (newLinePos == std::string::npos || newLinePos == 0) break; std::string line = shredder.substr( 0, newLinePos ); shredder = shredder.erase( 0, newLinePos+1 ); std::string::size_type keyPosition = line.find_first_not_of( ' ' ); std::string::size_type colonPosition = line.find( ':' ); std::string key = line.substr(keyPosition, colonPosition - keyPosition); std::string::size_type firstSpacePosition = key.find_first_of(" "); if (firstSpacePosition != std::string::npos) { key.erase(firstSpacePosition); } if ( keyPosition > expectedIndents.top() ) { // more indent than before expectedIndents.push(keyPosition); } else if (keyPosition == expectedIndents.top() ) { if (!surroundingKeys.empty()) { surroundingKeys.pop(); // last of same length } } else { // less indent than before do expectedIndents.pop(); while (expectedIndents.top() != keyPosition); // unwind until current indent is found } if (!surroundingKeys.empty()) { key = surroundingKeys.top() + "." + key; // construct current key name } surroundingKeys.push(key); // this is the new embracing key std::string value = line.substr(colonPosition+1); MITK_DEBUG << " Key: '" << key << "' value '" << value << "'" ; parsedResult[key] = value; // store parsing result } return parsedResult; } - diff --git a/Core/Code/Testing/mitkDataStorageTest.cpp b/Core/Code/Testing/mitkDataStorageTest.cpp index 139e05d796..d67be2fbee 100644 --- a/Core/Code/Testing/mitkDataStorageTest.cpp +++ b/Core/Code/Testing/mitkDataStorageTest.cpp @@ -1,876 +1,872 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include "mitkImage.h" #include "mitkSurface.h" #include "mitkStringProperty.h" #include "mitkColorProperty.h" #include "mitkGroupTagProperty.h" #include "mitkDataNode.h" #include "mitkReferenceCountWatcher.h" #include "mitkDataStorage.h" #include "mitkStandaloneDataStorage.h" #include "mitkNodePredicateProperty.h" #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateDimension.h" #include "mitkNodePredicateData.h" #include "mitkNodePredicateNot.h" #include "mitkNodePredicateAnd.h" #include "mitkNodePredicateOr.h" #include "mitkNodePredicateSource.h" #include "mitkMessage.h" //#include "mitkPicFileReader.h" #include "mitkTestingMacros.h" #include "mitkItkImageFileReader.h" void TestDataStorage(mitk::DataStorage* ds, std::string filename); namespace mitk { class TestStandaloneDataStorage: public StandaloneDataStorage { public: mitkClassMacro(TestStandaloneDataStorage, mitk::DataStorage); itkFactorylessNewMacro(Self) itkCloneMacro(Self) std::map GetModifiedObserverTags() const {return m_NodeModifiedObserverTags;} std::map GetDeletedObserverTags() const { return m_NodeDeleteObserverTags; } protected: TestStandaloneDataStorage() {} }; } class DSEventReceiver // Helper class for event testing { public: const mitk::DataNode* m_NodeAdded; const mitk::DataNode* m_NodeRemoved; DSEventReceiver() : m_NodeAdded(NULL), m_NodeRemoved(NULL) { } void OnAdd(const mitk::DataNode* node) { m_NodeAdded = node; } void OnRemove(const mitk::DataNode* node) { m_NodeRemoved = node; } }; /// /// \brief a class for checking if the datastorage is really thread safe /// /// Therefore it listens to a node contained in the datastorage. when this node /// gets removed and deleted, this class gets informed by calling OnObjectDelete(). /// in OnObjectDelete() an empty node gets added. this must not cause a deadlock /// struct ItkDeleteEventListener { ItkDeleteEventListener( mitk::DataStorage* ds ) : m_Node(0), m_DataStorage(ds), m_DeleteObserverTag(0) { } void SetNode( mitk::DataNode* _Node ) { if(m_Node) return; m_Node = _Node; itk::MemberCommand::Pointer onObjectDelete = itk::MemberCommand::New(); onObjectDelete->SetCallbackFunction(this, &ItkDeleteEventListener::OnObjectDelete); m_DeleteObserverTag = m_Node->AddObserver(itk::DeleteEvent(), onObjectDelete); } void OnObjectDelete( const itk::Object* /*caller*/, const itk::EventObject & ) { mitk::DataNode::Pointer node = mitk::DataNode::New(); m_DataStorage->Add( node ); // SHOULD NOT CAUSE A DEADLOCK! m_DataStorage->Remove( node ); // tidy up: remove the empty node again m_Node = 0; } protected: mitk::DataNode* m_Node; mitk::DataStorage::Pointer m_DataStorage; unsigned int m_DeleteObserverTag; }; //## Documentation //## main testing method //## NOTE: the current Singleton implementation of DataTreeStorage will lead to crashes if a testcase fails //## and therefore mitk::DataStorage::ShutdownSingleton() is not called. int mitkDataStorageTest(int argc, char* argv[]) { MITK_TEST_BEGIN("DataStorageTest"); // muellerm: test observer tag remove mitk::TestStandaloneDataStorage::Pointer testDS = mitk::TestStandaloneDataStorage::New(); mitk::DataNode::Pointer n1 = mitk::DataNode::New(); testDS->Add(n1); MITK_TEST_CONDITION_REQUIRED( testDS->GetModifiedObserverTags().size()==1, "Testing if modified" " observer was added."); MITK_TEST_CONDITION_REQUIRED( testDS->GetDeletedObserverTags().size()==1, "Testing if delete" " observer was added."); testDS->Remove(n1); MITK_TEST_CONDITION_REQUIRED( testDS->GetModifiedObserverTags().size()==0, "Testing if modified" " observer was removed."); MITK_TEST_CONDITION_REQUIRED( testDS->GetDeletedObserverTags().size()==0, "Testing if delete" " observer was removed."); /* Create StandaloneDataStorage */ MITK_TEST_OUTPUT( << "Create StandaloneDataStorage : "); mitk::StandaloneDataStorage::Pointer sds; try { sds = mitk::StandaloneDataStorage::New(); MITK_TEST_CONDITION_REQUIRED(sds.IsNotNull(), "Testing Instatiation"); } catch (...) { MITK_TEST_FAILED_MSG( << "Exception during creation of StandaloneDataStorage"); } MITK_TEST_OUTPUT( << "Testing StandaloneDataStorage: "); MITK_TEST_CONDITION_REQUIRED(argc>1, "Testing correct test invocation"); TestDataStorage(sds,argv[1]); // TODO: Add specific StandaloneDataStorage Tests here sds = NULL; MITK_TEST_END(); } //##Documentation //## @brief Test for the DataStorage class and its associated classes (e.g. the predicate classes) //## This method will be called once for each subclass of DataStorage void TestDataStorage( mitk::DataStorage* ds, std::string filename ) { /* DataStorage valid? */ MITK_TEST_CONDITION_REQUIRED(ds != NULL, "DataStorage valid?"); // Take the ItkImageFile Reader for the .nrrd data format. // (was previously pic which is now deprecated format) mitk::ItkImageFileReader::Pointer reader = mitk::ItkImageFileReader::New(); reader -> SetFileName(filename.c_str()); reader -> Update(); mitk::Image::Pointer image = reader->GetOutput(); // create some DataNodes to fill the ds mitk::DataNode::Pointer n1 = mitk::DataNode::New(); // node with image and name property // mitk::Image::Pointer image = mitk::Image::New(); // unsigned int imageDimensions[] = { 10, 10, 10, 10 }; // mitk::PixelType pt(typeid(int)); // image->Initialize( pt, 4, imageDimensions ); n1->SetData(image); n1->SetProperty("name", mitk::StringProperty::New("Node 1 - Image Node")); mitk::DataStorage::SetOfObjects::Pointer parents1 = mitk::DataStorage::SetOfObjects::New(); mitk::DataNode::Pointer n2 = mitk::DataNode::New(); // node with surface and name and color properties mitk::Surface::Pointer surface = mitk::Surface::New(); n2->SetData(surface); n2->SetProperty("name", mitk::StringProperty::New("Node 2 - Surface Node")); mitk::Color color; color.Set(1.0f, 1.0f, 0.0f); n2->SetColor(color); n2->SetProperty("Resection Proposal 1", mitk::GroupTagProperty::New()); mitk::DataStorage::SetOfObjects::Pointer parents2 = mitk::DataStorage::SetOfObjects::New(); parents2->InsertElement(0, n1); // n1 (image node) is source of n2 (surface node) mitk::DataNode::Pointer n3 = mitk::DataNode::New(); // node without data but with name property n3->SetProperty("name", mitk::StringProperty::New("Node 3 - Empty Node")); n3->SetProperty("Resection Proposal 1", mitk::GroupTagProperty::New()); n3->SetProperty("Resection Proposal 2", mitk::GroupTagProperty::New()); mitk::DataStorage::SetOfObjects::Pointer parents3 = mitk::DataStorage::SetOfObjects::New(); parents3->InsertElement(0, n2); // n2 is source of n3 mitk::DataNode::Pointer n4 = mitk::DataNode::New(); // node without data but with color property n4->SetColor(color); n4->SetProperty("Resection Proposal 2", mitk::GroupTagProperty::New()); mitk::DataStorage::SetOfObjects::Pointer parents4 = mitk::DataStorage::SetOfObjects::New(); parents4->InsertElement(0, n2); parents4->InsertElement(1, n3); // n2 and n3 are sources of n4 mitk::DataNode::Pointer n5 = mitk::DataNode::New(); // extra node n5->SetProperty("name", mitk::StringProperty::New("Node 5")); try /* adding objects */ { /* Add an object */ ds->Add(n1, parents1); MITK_TEST_CONDITION_REQUIRED((ds->GetAll()->Size() == 1) && (ds->GetAll()->GetElement(0) == n1), "Testing Adding a new object"); /* Check exception on adding the same object again */ MITK_TEST_OUTPUT( << "Check exception on adding the same object again: "); MITK_TEST_FOR_EXCEPTION(..., ds->Add(n1, parents1)); MITK_TEST_CONDITION(ds->GetAll()->Size() == 1, "Test if object count is correct after exception"); /* Add an object that has a source object */ ds->Add(n2, parents2); MITK_TEST_CONDITION_REQUIRED(ds->GetAll()->Size() == 2, "Testing Adding an object that has a source object"); /* Add some more objects needed for further tests */ ds->Add(n3, parents3); // n3 object that has name property and one parent ds->Add(n4, parents4); // n4 object that has color property ds->Add(n5); // n5 has no parents MITK_TEST_CONDITION_REQUIRED(ds->GetAll()->Size() == 5, "Adding some more objects needed for further tests"); } catch(...) { MITK_TEST_FAILED_MSG( << "Exeption during object creation"); } try /* object retrieval methods */ { /* Requesting all Objects */ { const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetAll(); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (stlAll.size() == 5) // check if all tree nodes are in resultset && (std::find(stlAll.begin(), stlAll.end(), n1) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n4) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n5) != stlAll.end()), "Testing GetAll()" ); } /* Requesting a named object */ { mitk::NodePredicateProperty::Pointer predicate(mitk::NodePredicateProperty::New("name", mitk::StringProperty::New("Node 2 - Surface Node"))); mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); MITK_TEST_CONDITION((all->Size() == 1) && (all->GetElement(0) == n2), "Requesting a named object"); } /* Requesting objects of specific data type */ { mitk::NodePredicateDataType::Pointer predicate(mitk::NodePredicateDataType::New("Image")); mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); MITK_TEST_CONDITION((all->Size() == 1) && (all->GetElement(0) == n1), "Requesting objects of specific data type") } /* Requesting objects of specific dimension */ { mitk::NodePredicateDimension::Pointer predicate(mitk::NodePredicateDimension::New( 4 )); mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); MITK_TEST_CONDITION((all->Size() == 1) && (all->GetElement(0) == n1), "Requesting objects of specific dimension") } /* Requesting objects with specific data object */ { mitk::NodePredicateData::Pointer predicate(mitk::NodePredicateData::New(image)); mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); MITK_TEST_CONDITION((all->Size() == 1) && (all->GetElement(0) == n1), "Requesting objects with specific data object") } /* Requesting objects with NULL data */ { mitk::NodePredicateData::Pointer predicate(mitk::NodePredicateData::New(NULL)); mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); MITK_TEST_CONDITION( (all->Size() == 3) && (std::find(all->begin(), all->end(), n3) != all->end()) && (std::find(all->begin(), all->end(), n4) != all->end()) && (std::find(all->begin(), all->end(), n5) != all->end()) , "Requesting objects with NULL data"); } /* Requesting objects that meet a conjunction criteria */ { mitk::NodePredicateDataType::Pointer p1 = mitk::NodePredicateDataType::New("Surface"); mitk::NodePredicateProperty::Pointer p2 = mitk::NodePredicateProperty::New("color", mitk::ColorProperty::New(color)); mitk::NodePredicateAnd::Pointer predicate = mitk::NodePredicateAnd::New(); predicate->AddPredicate(p1); predicate->AddPredicate(p2); // objects must be of datatype "Surface" and have red color (= n2) const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); MITK_TEST_CONDITION((all->Size() == 1) && (all->GetElement(0) == n2), "Requesting objects that meet a conjunction criteria"); } /* Requesting objects that meet a disjunction criteria */ { mitk::NodePredicateDataType::Pointer p1(mitk::NodePredicateDataType::New("Image")); mitk::NodePredicateProperty::Pointer p2(mitk::NodePredicateProperty::New("color", mitk::ColorProperty::New(color))); mitk::NodePredicateOr::Pointer predicate = mitk::NodePredicateOr::New(); predicate->AddPredicate(p1); predicate->AddPredicate(p2); // objects must be of datatype "Surface" or have red color (= n1, n2, n4) const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); MITK_TEST_CONDITION( (all->Size() == 3) && (std::find(all->begin(), all->end(), n1) != all->end()) && (std::find(all->begin(), all->end(), n2) != all->end()) && (std::find(all->begin(), all->end(), n4) != all->end()), "Requesting objects that meet a disjunction criteria"); } /* Requesting objects that do not meet a criteria */ { mitk::ColorProperty::Pointer cp = mitk::ColorProperty::New(color); mitk::NodePredicateProperty::Pointer proppred(mitk::NodePredicateProperty::New("color", cp)); mitk::NodePredicateNot::Pointer predicate(mitk::NodePredicateNot::New(proppred)); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(predicate); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 3) // check if correct objects are in resultset && (std::find(stlAll.begin(), stlAll.end(), n1) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n5) != stlAll.end()), "Requesting objects that do not meet a criteria"); } /* Requesting *direct* source objects */ { const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSources(n3, NULL, true); // Get direct parents of n3 (=n2) std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 1) && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()), "Requesting *direct* source objects"); } /* Requesting *all* source objects */ { const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSources(n3, NULL, false); // Get all parents of n3 (= n1 + n2) std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 2) && (std::find(stlAll.begin(), stlAll.end(), n1) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()), "Requesting *all* source objects"); // check if n1 and n2 are the resultset } /* Requesting *all* sources of object with multiple parents */ { const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSources(n4, NULL, false); // Get all parents of n4 (= n1 + n2 + n3) std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 3) && (std::find(stlAll.begin(), stlAll.end(), n1) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) // check if n1 and n2 and n3 are the resultset , "Requesting *all* sources of object with multiple parents"); } /* Requesting *direct* derived objects */ { const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetDerivations(n1, NULL, true); // Get direct childs of n1 (=n2) std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 1) && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end())// check if n1 is the resultset , "Requesting *direct* derived objects"); - } ///* Requesting *direct* derived objects with multiple parents/derivations */ { const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetDerivations(n2, NULL, true); // Get direct childs of n2 (=n3 + n4) std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 2) && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) // check if n3 is the resultset && (std::find(stlAll.begin(), stlAll.end(), n4) != stlAll.end()) // check if n4 is the resultset , "Requesting *direct* derived objects with multiple parents/derivations"); } //* Requesting *all* derived objects */ { const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetDerivations(n1, NULL, false); // Get all childs of n1 (=n2, n3, n4) std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 3) && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n4) != stlAll.end()) , "Requesting *all* derived objects"); } /* Checking for circular source relationships */ { parents1->InsertElement(0, n4); // make n1 derived from n4 (which is derived from n2, which is derived from n1) const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSources(n4, NULL, false); // Get all parents of n4 (= n1 + n2 + n3, not n4 itself and not multiple versions of the nodes!) std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 3) && (std::find(stlAll.begin(), stlAll.end(), n1) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) // check if n1 and n2 and n3 are the resultset , "Checking for circular source relationships"); } ///* Checking for circular derivation relationships can not be performed, because the internal derivations datastructure // can not be accessed from the outside. (Therefore it should not be possible to create these circular relations */ //* Checking GroupTagProperty */ { mitk::GroupTagProperty::Pointer tp = mitk::GroupTagProperty::New(); mitk::NodePredicateProperty::Pointer pred(mitk::NodePredicateProperty::New("Resection Proposal 1", tp)); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(pred); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 2) // check if n2 and n3 are in resultset && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) , "Checking GroupTagProperty"); } /* Checking GroupTagProperty 2 */ { mitk::GroupTagProperty::Pointer tp = mitk::GroupTagProperty::New(); mitk::NodePredicateProperty::Pointer pred(mitk::NodePredicateProperty::New("Resection Proposal 2", tp)); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSubset(pred); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 2) // check if n3 and n4 are in resultset && (std::find(stlAll.begin(), stlAll.end(), n3) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n4) != stlAll.end()) , "Checking GroupTagProperty 2"); - } /* Checking direct sources with condition */ { mitk::NodePredicateDataType::Pointer pred = mitk::NodePredicateDataType::New("Surface"); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSources(n4, pred, true); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 1) // check if n2 is in resultset && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) , "checking direct sources with condition"); } /* Checking all sources with condition */ { mitk::NodePredicateDataType::Pointer pred = mitk::NodePredicateDataType::New("Image"); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSources(n4, pred, false); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 1) // check if n1 is in resultset && (std::find(stlAll.begin(), stlAll.end(), n1) != stlAll.end()) , "Checking all sources with condition"); } /* Checking all sources with condition with empty resultset */ { mitk::NodePredicateDataType::Pointer pred = mitk::NodePredicateDataType::New("VesselTree"); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetSources(n4, pred, false); MITK_TEST_CONDITION(all->Size() == 0 , "Checking all sources with condition with empty resultset"); // check if resultset is empty } /* Checking direct derivations with condition */ { mitk::NodePredicateProperty::Pointer pred = mitk::NodePredicateProperty::New("color"); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetDerivations(n1, pred, true); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 1) // check if n2 is in resultset && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) , "Checking direct derivations with condition"); } /* Checking all derivations with condition */ { mitk::NodePredicateProperty::Pointer pred = mitk::NodePredicateProperty::New("color"); const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetDerivations(n1, pred, false); std::vector stlAll = all->CastToSTLConstContainer(); MITK_TEST_CONDITION( (all->Size() == 2) // check if n2 and n4 are in resultset && (std::find(stlAll.begin(), stlAll.end(), n2) != stlAll.end()) && (std::find(stlAll.begin(), stlAll.end(), n4) != stlAll.end()) , "Checking direct derivations with condition"); } /* Checking named node method */ MITK_TEST_CONDITION(ds->GetNamedNode("Node 2 - Surface Node") == n2, "Checking named node method"); MITK_TEST_CONDITION(ds->GetNamedNode(std::string("Node 2 - Surface Node")) == n2, "Checking named node(std::string) method"); /* Checking named node method with wrong name */ MITK_TEST_CONDITION(ds->GetNamedNode("This name does not exist") == NULL, "Checking named node method with wrong name"); /* Checking named object method */ MITK_TEST_CONDITION(ds->GetNamedObject("Node 1 - Image Node") == image, "Checking named object method"); MITK_TEST_CONDITION(ds->GetNamedObject(std::string("Node 1 - Image Node")) == image, "Checking named object(std::string) method"); /* Checking named object method with wrong DataType */ MITK_TEST_CONDITION(ds->GetNamedObject("Node 1 - Image Node") == NULL, "Checking named object method with wrong DataType"); /* Checking named object method with wrong name */ MITK_TEST_CONDITION(ds->GetNamedObject("This name does not exist") == NULL, "Checking named object method with wrong name"); /* Checking GetNamedDerivedNode with valid name and direct derivation only */ MITK_TEST_CONDITION(ds->GetNamedDerivedNode("Node 2 - Surface Node", n1, true) == n2, "Checking GetNamedDerivedNode with valid name & direct derivation only"); /* Checking GetNamedDerivedNode with invalid Name and direct derivation only */ MITK_TEST_CONDITION(ds->GetNamedDerivedNode("wrong name", n1, true) == NULL, "Checking GetNamedDerivedNode with invalid name & direct derivation only"); /* Checking GetNamedDerivedNode with invalid Name and direct derivation only */ MITK_TEST_CONDITION(ds->GetNamedDerivedNode("Node 3 - Empty Node", n1, false) == n3, "Checking GetNamedDerivedNode with invalid name & direct derivation only"); /* Checking GetNamedDerivedNode with valid Name but direct derivation only */ MITK_TEST_CONDITION(ds->GetNamedDerivedNode("Node 3 - Empty Node", n1, true) == NULL, "Checking GetNamedDerivedNode with valid Name but direct derivation only"); /* Checking GetNode with valid predicate */ { mitk::NodePredicateDataType::Pointer p(mitk::NodePredicateDataType::New("Image")); MITK_TEST_CONDITION(ds->GetNode(p) == n1, "Checking GetNode with valid predicate"); } /* Checking GetNode with invalid predicate */ { mitk::NodePredicateDataType::Pointer p(mitk::NodePredicateDataType::New("PointSet")); MITK_TEST_CONDITION(ds->GetNode(p) == NULL, "Checking GetNode with invalid predicate"); } - } // object retrieval methods catch(...) { MITK_TEST_FAILED_MSG( << "Exeption during object retrieval (GetXXX() Methods)"); } try /* object removal methods */ { - /* Checking removal of a node without relations */ { mitk::DataNode::Pointer extra = mitk::DataNode::New(); extra->SetProperty("name", mitk::StringProperty::New("extra")); mitk::ReferenceCountWatcher::Pointer watcher = new mitk::ReferenceCountWatcher(extra); int refCountbeforeDS = watcher->GetReferenceCount(); ds->Add(extra); MITK_TEST_CONDITION(ds->GetNamedNode("extra") == extra, "Adding extra node"); ds->Remove(extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == NULL) && (refCountbeforeDS == watcher->GetReferenceCount()) , "Checking removal of a node without relations"); extra = NULL; } /* Checking removal of a node with a parent */ { mitk::DataNode::Pointer extra = mitk::DataNode::New(); extra->SetProperty("name", mitk::StringProperty::New("extra")); mitk::ReferenceCountWatcher::Pointer watcher = new mitk::ReferenceCountWatcher(extra); int refCountbeforeDS = watcher->GetReferenceCount(); ds->Add(extra, n1); // n1 is parent of extra MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == extra) && (ds->GetDerivations(n1)->Size() == 2) // n2 and extra should be derived from n1 , "Adding extra node"); ds->Remove(extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == NULL) && (refCountbeforeDS == watcher->GetReferenceCount()) && (ds->GetDerivations(n1)->Size() == 1) , "Checking removal of a node with a parent"); extra = NULL; } /* Checking removal of a node with two parents */ { mitk::DataNode::Pointer extra = mitk::DataNode::New(); extra->SetProperty("name", mitk::StringProperty::New("extra")); mitk::ReferenceCountWatcher::Pointer watcher = new mitk::ReferenceCountWatcher(extra); int refCountbeforeDS = watcher->GetReferenceCount(); mitk::DataStorage::SetOfObjects::Pointer p = mitk::DataStorage::SetOfObjects::New(); p->push_back(n1); p->push_back(n2); ds->Add(extra, p); // n1 and n2 are parents of extra MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == extra) && (ds->GetDerivations(n1)->Size() == 2) // n2 and extra should be derived from n1 && (ds->GetDerivations(n2)->Size() == 3) , "add extra node"); ds->Remove(extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == NULL) && (refCountbeforeDS == watcher->GetReferenceCount()) && (ds->GetDerivations(n1)->Size() == 1) // after remove, only n2 should be derived from n1 && (ds->GetDerivations(n2)->Size() == 2) // after remove, only n3 and n4 should be derived from n2 , "Checking removal of a node with two parents"); extra = NULL; } /* Checking removal of a node with two derived nodes */ { mitk::DataNode::Pointer extra = mitk::DataNode::New(); extra->SetProperty("name", mitk::StringProperty::New("extra")); mitk::ReferenceCountWatcher::Pointer watcher = new mitk::ReferenceCountWatcher(extra); int refCountbeforeDS = watcher->GetReferenceCount(); ds->Add(extra); mitk::DataNode::Pointer d1 = mitk::DataNode::New(); d1->SetProperty("name", mitk::StringProperty::New("d1")); ds->Add(d1, extra); mitk::DataNode::Pointer d2 = mitk::DataNode::New(); d2->SetProperty("name", mitk::StringProperty::New("d2")); ds->Add(d2, extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == extra) && (ds->GetNamedNode("d1") == d1) && (ds->GetNamedNode("d2") == d2) && (ds->GetSources(d1)->Size() == 1) // extra should be source of d1 && (ds->GetSources(d2)->Size() == 1) // extra should be source of d2 && (ds->GetDerivations(extra)->Size() == 2) // d1 and d2 should be derived from extra , "add extra node"); ds->Remove(extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == NULL) && (ds->GetNamedNode("d1") == d1) && (ds->GetNamedNode("d2") == d2) && (refCountbeforeDS == watcher->GetReferenceCount()) && (ds->GetSources(d1)->Size() == 0) // after remove, d1 should not have a source anymore && (ds->GetSources(d2)->Size() == 0) // after remove, d2 should not have a source anymore , "Checking removal of a node with two derived nodes"); extra = NULL; } /* Checking removal of a node with two parents and two derived nodes */ { mitk::DataNode::Pointer extra = mitk::DataNode::New(); extra->SetProperty("name", mitk::StringProperty::New("extra")); mitk::ReferenceCountWatcher::Pointer watcher = new mitk::ReferenceCountWatcher(extra); mitk::ReferenceCountWatcher::Pointer n1watcher = new mitk::ReferenceCountWatcher(n1); int refCountbeforeDS = watcher->GetReferenceCount(); mitk::DataStorage::SetOfObjects::Pointer p = mitk::DataStorage::SetOfObjects::New(); p->push_back(n1); p->push_back(n2); ds->Add(extra, p); // n1 and n2 are parents of extra mitk::DataNode::Pointer d1 = mitk::DataNode::New(); d1->SetProperty("name", mitk::StringProperty::New("d1x")); ds->Add(d1, extra); mitk::DataNode::Pointer d2 = mitk::DataNode::New(); d2->SetProperty("name", mitk::StringProperty::New("d2x")); ds->Add(d2, extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == extra) && (ds->GetNamedNode("d1x") == d1) && (ds->GetNamedNode("d2x") == d2) && (ds->GetSources(d1)->Size() == 1) // extra should be source of d1 && (ds->GetSources(d2)->Size() == 1) // extra should be source of d2 && (ds->GetDerivations(n1)->Size() == 2) // n2 and extra should be derived from n1 && (ds->GetDerivations(n2)->Size() == 3) // n3, n4 and extra should be derived from n2 && (ds->GetDerivations(extra)->Size() == 2) // d1 and d2 should be derived from extra , "add extra node"); ds->Remove(extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == NULL) && (ds->GetNamedNode("d1x") == d1) && (ds->GetNamedNode("d2x") == d2) && (refCountbeforeDS == watcher->GetReferenceCount()) && (ds->GetDerivations(n1)->Size() == 1) // after remove, only n2 should be derived from n1 && (ds->GetDerivations(n2)->Size() == 2) // after remove, only n3 and n4 should be derived from n2 && (ds->GetSources(d1)->Size() == 0) // after remove, d1 should not have a source anymore && (ds->GetSources(d2)->Size() == 0) // after remove, d2 should not have a source anymore , "Checking removal of a node with two parents and two derived nodes"); extra = NULL; } } catch(...) { MITK_TEST_FAILED_MSG( << "Exeption during object removal methods"); } /* Checking for node is it's own parent exception */ { MITK_TEST_FOR_EXCEPTION_BEGIN(...); mitk::DataNode::Pointer extra = mitk::DataNode::New(); extra->SetProperty("name", mitk::StringProperty::New("extra")); mitk::DataStorage::SetOfObjects::Pointer p = mitk::DataStorage::SetOfObjects::New(); p->push_back(n1); p->push_back(extra); // extra is parent of extra!!! ds->Add(extra, p); MITK_TEST_FOR_EXCEPTION_END(...); } /* Checking reference count of node after add and remove */ { mitk::DataNode::Pointer extra = mitk::DataNode::New(); mitk::ReferenceCountWatcher::Pointer watcher = new mitk::ReferenceCountWatcher(extra); extra->SetProperty("name", mitk::StringProperty::New("extra")); mitk::DataStorage::SetOfObjects::Pointer p = mitk::DataStorage::SetOfObjects::New(); p->push_back(n1); p->push_back(n3); ds->Add(extra, p); extra = NULL; ds->Remove(ds->GetNamedNode("extra")); MITK_TEST_CONDITION(watcher->GetReferenceCount() == 0, "Checking reference count of node after add and remove"); } /* Checking removal of a node with two derived nodes [ dataStorage->GetDerivations( rootNode )] see bug #3426 */ { mitk::DataNode::Pointer extra = mitk::DataNode::New(); extra->SetProperty("name", mitk::StringProperty::New("extra")); ds->Add(extra); mitk::DataNode::Pointer d1y = mitk::DataNode::New(); d1y->SetProperty("name", mitk::StringProperty::New("d1y")); mitk::ReferenceCountWatcher::Pointer watcherD1y = new mitk::ReferenceCountWatcher(d1y); int refCountbeforeDS = watcherD1y->GetReferenceCount(); ds->Add(d1y, extra); mitk::DataNode::Pointer d2y = mitk::DataNode::New(); d2y->SetProperty("name", mitk::StringProperty::New("d2y")); ds->Add(d2y, extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == extra) && (ds->GetNamedNode("d1y") == d1y) && (ds->GetNamedNode("d2y") == d2y) && (ds->GetSources(d1y)->Size() == 1) // extra should be source of d1y && (ds->GetSources(d2y)->Size() == 1) // extra should be source of d2y && (ds->GetDerivations(extra)->Size() == 2) // d1y and d2y should be derived from extra , "add extra node"); ds->Remove(ds->GetDerivations( extra)); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == extra) && (ds->GetNamedNode("d1y") == NULL) // d1y should be NULL now && (ds->GetNamedNode("d2y") == NULL) // d2y should be NULL now && (refCountbeforeDS == watcherD1y->GetReferenceCount()) , "Checking removal of subset of two derived nodes from one parent node"); ds->Remove(extra); MITK_TEST_CONDITION( (ds->GetNamedNode("extra") == NULL) , "Checking removal of a parent node"); extra = NULL; } /* Checking GetGrouptags() */ { const std::set groupTags = ds->GetGroupTags(); MITK_TEST_CONDITION( (groupTags.size() == 2) && (std::find(groupTags.begin(), groupTags.end(), "Resection Proposal 1") != groupTags.end()) && (std::find(groupTags.begin(), groupTags.end(), "Resection Proposal 2") != groupTags.end()) , "Checking GetGrouptags()"); } /* Checking Event handling */ DSEventReceiver listener; try { ds->AddNodeEvent += mitk::MessageDelegate1(&listener, &DSEventReceiver::OnAdd); ds->RemoveNodeEvent += mitk::MessageDelegate1(&listener, &DSEventReceiver::OnRemove); mitk::DataNode::Pointer extra = mitk::DataNode::New(); mitk::ReferenceCountWatcher::Pointer watcher = new mitk::ReferenceCountWatcher(extra); ds->Add(extra); MITK_TEST_CONDITION(listener.m_NodeAdded == extra.GetPointer(), "Checking AddEvent"); ds->Remove(extra); MITK_TEST_CONDITION(listener.m_NodeRemoved == extra.GetPointer(), "Checking RemoveEvent"); /* RemoveListener */ ds->AddNodeEvent -= mitk::MessageDelegate1(&listener, &DSEventReceiver::OnAdd); ds->RemoveNodeEvent -= mitk::MessageDelegate1(&listener, &DSEventReceiver::OnRemove); listener.m_NodeAdded = NULL; listener.m_NodeRemoved = NULL; ds->Add(extra); ds->Remove(extra); MITK_TEST_CONDITION((listener.m_NodeRemoved == NULL) && (listener.m_NodeAdded == NULL), "Checking RemoveListener"); std::cout << "Pointer handling after event handling: " << std::flush; extra = NULL; // delete reference to the node. its memory should be freed now MITK_TEST_CONDITION(watcher->GetReferenceCount() == 0, "Pointer handling after event handling"); } catch(...) { /* cleanup */ ds->AddNodeEvent -= mitk::MessageDelegate1(&listener, &DSEventReceiver::OnAdd); ds->RemoveNodeEvent -= mitk::MessageDelegate1(&listener, &DSEventReceiver::OnRemove); MITK_TEST_FAILED_MSG( << "Exception during object removal methods"); } //Checking ComputeBoundingGeometry3D method*/ const mitk::DataStorage::SetOfObjects::ConstPointer all = ds->GetAll(); mitk::TimeGeometry::Pointer geometry = ds->ComputeBoundingGeometry3D(); MITK_TEST_CONDITION(geometry->CountTimeSteps()==4, "Test for number or time steps with ComputeBoundingGeometry()"); mitk::TimeBounds timebounds = geometry->GetTimeBounds(); MITK_TEST_CONDITION((timebounds[0]==0)&&(timebounds[1]==4),"Test for timebounds with ComputeBoundingGeometry()"); for (unsigned int i=0; iCountTimeSteps(); i++) { mitk::BaseGeometry::Pointer subGeometry = geometry->GetGeometryForTimeStep(i); - mitk::TimeBounds bounds = subGeometry->GetTimeBounds(); + mitk::TimeBounds bounds = geometry->GetTimeBounds(i); MITK_TEST_CONDITION((bounds[0]==i)&&(bounds[1]==i+1),"Test for timebounds of geometry at different time steps with ComputeBoundingGeometry()"); } geometry = ds->ComputeBoundingGeometry3D(all); MITK_TEST_CONDITION(geometry->CountTimeSteps()==4, "Test for number or time steps with ComputeBoundingGeometry(allNodes)"); timebounds = geometry->GetTimeBounds(); MITK_TEST_CONDITION((timebounds[0]==0)&&(timebounds[1]==4),"Test for timebounds with ComputeBoundingGeometry(allNodes)"); for (unsigned int i=0; iCountTimeSteps(); i++) { mitk::BaseGeometry::Pointer subGeometry = geometry->GetGeometryForTimeStep(i); - mitk::TimeBounds bounds = subGeometry->GetTimeBounds(); + mitk::TimeBounds bounds = geometry->GetTimeBounds(i); MITK_TEST_CONDITION((bounds[0]==i)&&(bounds[1]==i+1),"Test for timebounds of geometry at different time steps with ComputeBoundingGeometry()"); } // test for thread safety of DataStorage try { mitk::StandaloneDataStorage::Pointer standaloneDataStorage = mitk::StandaloneDataStorage::New(); ItkDeleteEventListener listener( standaloneDataStorage ); { mitk::DataNode::Pointer emptyNode = mitk::DataNode::New(); mitk::DataNode* pEmptyNode = emptyNode; listener.SetNode( emptyNode ); standaloneDataStorage->Add( emptyNode ); emptyNode = 0; // emptyNode is still alive because standaloneDataStorage // owns it standaloneDataStorage->Remove( pEmptyNode ); // this should not freeze the whole thing } } catch(...) { MITK_TEST_FAILED_MSG( << "Exception during testing DataStorage thread safe"); } /* Clear DataStorage */ ds->Remove(ds->GetAll()); MITK_TEST_CONDITION(ds->GetAll()->Size() == 0, "Checking Clear DataStorage"); } diff --git a/Core/Code/Testing/mitkTextOverlay3DRendering2DTest.cpp b/Core/Code/Testing/mitkTextOverlay3DRendering2DTest.cpp index d076f25f8c..a7908efb15 100644 --- a/Core/Code/Testing/mitkTextOverlay3DRendering2DTest.cpp +++ b/Core/Code/Testing/mitkTextOverlay3DRendering2DTest.cpp @@ -1,89 +1,89 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //MITK #include "mitkTestingMacros.h" #include "mitkRenderingTestHelper.h" #include //VTK #include #include "mitkTextOverlay3D.h" #include int mitkTextOverlay3DRendering2DTest(int argc, char* argv[]) { // load all arguments into a datastorage, take last argument as reference rendering // setup a renderwindow of fixed size X*Y // render the datastorage // compare rendering to reference image MITK_TEST_BEGIN("mitkTextOverlay3DRendering2DTest") mitk::RenderingTestHelper renderingHelper(640, 480, argc, argv); mitk::BaseRenderer* renderer = mitk::BaseRenderer::GetInstance(renderingHelper.GetVtkRenderWindow()); mitk::OverlayManager::Pointer overlayManager = mitk::OverlayManager::New(); renderer->SetOverlayManager(overlayManager); mitk::PointSet::Pointer pointset = mitk::PointSet::New(); // This vector is used to define an offset for the annotations, in order to show them with a margin to the actual coordinate. mitk::Point3D offset; offset[0] = .5; offset[1] = .5; offset[2] = .5; //Just a loop to create some points for(int i=0 ; i < 5 ; i++){ //To each point, a TextOverlay3D is created mitk::TextOverlay3D::Pointer textOverlay3D = mitk::TextOverlay3D::New(); mitk::Point3D point; point[0] = i*2; point[1] = i*3; point[2] = -i*5; pointset->InsertPoint(i, point); textOverlay3D->SetText("A Point"); // The Position is set to the point coordinate to create an annotation to the point in the PointSet. textOverlay3D->SetPosition3D(point); // move the annotation away from the actual point textOverlay3D->SetOffsetVector(offset); overlayManager->AddOverlay(textOverlay3D.GetPointer()); } // also show the created pointset mitk::DataNode::Pointer datanode = mitk::DataNode::New(); datanode->SetData(pointset); datanode->SetName("pointSet"); renderingHelper.AddNodeToStorage(datanode); renderingHelper.Render(); //use this to generate a reference screenshot or save the file: - bool generateReferenceScreenshot = false; + bool generateReferenceScreenshot = true; if(generateReferenceScreenshot) { - renderingHelper.SaveReferenceScreenShot("/home/christoph/Pictures/RenderingTestData/mitkTextOverlay3DRendering2DTest_ball.png"); + renderingHelper.SaveReferenceScreenShot("d:/tmp/mitkTextOverlay3DRendering2DTest_ball.png"); } //### Usage of CompareRenderWindowAgainstReference: See docu of mitkRrenderingTestHelper MITK_TEST_CONDITION( renderingHelper.CompareRenderWindowAgainstReference(argc, argv) == true, "CompareRenderWindowAgainstReference test result positive?" ); MITK_TEST_END(); } diff --git a/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step05.dox b/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step05.dox index c17e7c0f44..4f22b054e3 100644 --- a/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step05.dox +++ b/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step05.dox @@ -1,34 +1,38 @@ /** - + \page Step05Page MITK Tutorial - Step 5: Interactively add points - + In addition to Step 4 where 3 views were created on the data, we now want to interactively add points. - A node containing a PointSet as data is added to the data tree and a PointSetInteractor is associated with the node, which handles the interaction. + A node containing a PointSet as data is added to the data tree and a PointSetDataInteractor is associated with the node, which handles the interaction. The @em interaction @em pattern is defined in a state-machine, stored in an external XML file. Thus, we need to load a state-machine. - The interaction patterns defines the @em events, on which the interactor reacts (e.g., which mouse buttons are used to set a point), the @em transition to the next state (e.g., the initial - may be "empty point set") and associated @a actions (e.g., add a point at the position where the mouse-click occured). + A state machine describes interaction pattern with different states (states beeing something like "a point is selected") and transitions to these states (e.g. "select a point"). + These transitions are associated with actions. In this way it is possible to model complex interaction schemes. + By what these transitions and actions are triggered is described in a configuration file. It maps user events to identifiers that are used in the state machine patterns. + In this way the user interaction can be changed by simply loading a different configuration file for a state machine, and the user may add points now with a right click instead of + left click + SHIFT, as in our case. + + Therefore after loading the state machine pattern the PointSetDataInteractor is also given a event configuration file. + More information about interaction in MITK can be found \ref InteractionPage "here". - - In order to add a point the shift key has to be pressed simultaneously to highlight the point with the mouse. - - \li \ref Step5.cpp "Step5.cpp"\n + + In order to add a point the shift key has to be pressed while left clicking in a render window. + You can also move points or remove them (left click while pressing ALT). + + \li \ref Step5.cpp "Step5.cpp"\n Contains the code for this step. - - \image html step5_result.png - + \image html step5_result.png \dontinclude Step5.cpp - A PointSet and a node for it have to be created to be able to interactively adding points: - + \skipline mitk::PointSet - \until "pointsetinteractor" - + \until interactor->SetDataNode(pointSetNode) + \ref Step04Page "[Previous step]" \ref Step06Page "[Next step]" \ref TutorialPage "[Main tutorial page]" - + */ - + diff --git a/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step10.dox b/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step10.dox index 64963e686e..7e2c77ce9e 100644 --- a/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step10.dox +++ b/Documentation/Doxygen/DeveloperManual/Starting/GettingToKnow/Tutorial/Step10.dox @@ -1,438 +1,475 @@ /** \page Step10Page MITK Tutorial - Step 10: Adding new Interaction \tableofcontents -\section HowToUseDataInteractor How to use an existing DataInteractor +\section HowToUseDataInteractor Step 01 - How to use an existing DataInteractor in your Module/Plugin/... MITK provides finished DataInteractors for a variety of tasks, they can be found in Code/Core/Interactors. They can be used with state machine patterns and config files located under Resources/Interactions. - A mitk::DataInteractor consists of four parts. The class describing the functionality and two XML files; one describes the state machine pattern, that is the workflow of an interaction and the second describes the user events which trigger an action. Lastly every mitk::DataInteractor works on a mitk::DataNode in which it stores and manipulates data. To use a mitk::DataInteractor these parts have to be brought together. +** TODO add code of mitk::PointSetDataInteractor Plugin .. + This code demonstrates the use of an existing mitk::DataInteractor exemplary for the mitk::PointSetDataInteractor: -First we need a mitk::DataNode that is added to the mitk::DataStorage. +First we need a mitk::DataNode in which the PointSets is stored. It has to be added to the mitk::DataStorage. \code mitk::DataNode::Pointer dataNode = mitk::DataNode::New(); GetDataStorage()->Add(dataNode.GetPointer()); \endcode -Then we create an instance of a mitk::PointSetDataInteractor and load a statemachine pattern as well as a configuration +Then we create an instance of a mitk::PointSetDataInteractor and load a predefined statemachine pattern as well as a configuration for it: \code m_CurrentInteractor = mitk::PointSetDataInteractor::New(); m_CurrentInteractor->LoadStateMachine("PointSet.xml"); m_CurrentInteractor->SetEventConfig("PointSetConfig.xml"); \endcode Lastly the mitk::DataNode is added to the mitk::DataInteractor \code m_CurrentInteractor->SetDataNode(dataNode); \endcode now the mitk::DataInteractor is ready for usage. + + +\section HowToModifyInteraction Step 02 - How to modify the behaviour of a DataInteractor + +The behavior of a mitk::DataInteractor is determined by two aspects. One, the state machine pattern which describes the flow/order of actions +that are performed. Secondly the configuration which determines which user interaction triggers the actions. + + +\subsection ModifyDisplayInteractorBehavior How to modify the display interactor behavior + +Sometimes it may be desirable to change the behaviour of the mitk::DisplayInteractor which controls zooming, panning and scrolling, e.g. when a +Tool is activated that reacts to the same events. Changing the behavior of the DisplayInteractor (or possibly any other EventHandler) can be achieved from anywhere +in the code by requesting the InteractionEventObserver and assigning an alternative configuration to it, as demonstrated in this example: + +\code + +std::ifstream* configStream = new std::ifstream( #path to alternative configuration file# ); +mitk::EventConfig newConfig(configStream); + +// Requesting all registered EventObservers +std::list listEventObserver = GetModuleContext()->GetServiceReferences(); + +for (std::list::iterator it = listEventObserver.begin(); it != listEventObserver.end(); ++it) +{ + DisplayInteractor* displayInteractor = dynamic_cast(GetModuleContext()->GetService(*it)); + // filtering: only adjust the DisplayInteractor + if (displayInteractor != NULL) + { + displayInteractor->SetEventConfig(newConfig); + } +} + +\endcode + + + \section SectionImplementationDataInteractor How to implement a new DataInteractor This second part of the tutorial step goes beyond the activation of an interactor, that modifies data by user interaction) as shown above. It shows what needs to be implemented to add a new way of interaction within your MITK application. Please see \ref DataInteractionPage as an introduction to the MITK interaction mechanism, you may also want to read \ref DataInteractionTechnicalPage. This tutorial is structured as follows: The first section deals with config files, describing all the parameters of events and how to use them in a configuration file. In the second section the basics are described that are needed to write a state machine pattern. The last section deals with brining configuration, state machine pattern and code together and gives an exemplary implementation of a mitk::DataInteractor. \section ConfigFileDescriptionSection How to create a Config-File \subsection EventDescriptionSection Event Description Events are described by their parameters. Each event type has its own set of parameters that can be set in the configuration file. If a parameter is omitted it is set to its default value. All possible parameters are listed and described below. Event parameters are also described in the documentation of the event class itself. Mandatory for each event description is the event class and the event variant. The parameters of an event are set by attribute tags. \note Refer to \ref EventClassSection for the meaning of event class. \b Mouse \b Buttons \n mitk::InteractionEvent::MouseButtons represent the buttons. They can be used for two attributes. First the EventButton attribute which describes the button that triggered the event, this always is a single button. Secondly the ButtonState attribute that describes which buttons were pressed at the moment the event has been generated. For example assume the right mouse button and the middle mouse button are already pressed, now the left mouse button is pressed too and generates a second event, this would be described as follows: \code \endcode Note: Technically the LeftMouseButton is also pressed and should be listed in the ButtonState, but this is taken care of by the mitk::EventFactory . Key Events \n mitk::InteractionKeyEvent represents a pressed key, which key is pressed is provided with the Key attribute like this \code \endcode or \code \endcode \note Key Events do not require an explicit configuration, for all key events there exists a predefined event variant with the name 'Std' + value, that is key a is named 'StdA'. The names for special keys are listed here: \dontinclude mitkInteractionEvent.h \skipline // Special Keys \until // End special keys Modifier Keys \n mitk::InteractionEvent::ModifierKeys represent the combination of pressed modifier keys, several modifier keys pressed at the same time are denoted by listing them all separated by commas. \code \endcode \b ScrollDirection \n This attribute is unique to the mitk::MouseWheelEvent and describes the direction in which the mouse wheel is rotated. In the event description actual only the direction is provided, but the event is generated with the actual value, and this value can be retrieved from the object. \code \endcode \subsection ExamplesSection Examples Examples for key events: \code \endcode Examples for MousePress events: \code \endcode There exists a standard configuration file for the most common events called GlobalConfig.xml that can be used to as a default and can be extended by a specific definition. \subsection ParameterDescriptionSection Parameter Description It is also possible to store parameters in the config file. Those are stored using the param-tag, like this: \code \endcode Within the application these properties can then be access via a mitk::PropertyList like this: \code // sm - state machine loaded with config file example2 mitk::PropertyList::Pointer properties = GetAttributes(); std::string prop1; properties->GetStringProperty("property1",prop1); \endcode \section HowToStateMachine HowTo Write a State Machine A state machine pattern is described in a XML file. \subsection StateSection States States are described using the state-tag. Each state has to have a name. Exactly one state has to be a start state in each state machine to indicate the state in which the state machine is set when it is constructed. So a valid, but rather useless state machine would like like this: \code \endcode Optionally a state can be assigned a special mode that influences the event distribution. These modes are GRAB_INPUT , PREFER_INPUT and REGULAR (where REGULAR is default and does not need to be indicated). See \ref DataInteractionTechnicalPage_DispatcherEventDistSection for a description of these modes. Use the special modes only when necessary as they prevent other DataInteractors to receive events. \code \endcode \subsection TransitionSection Transitions Transitions are part of a state and describe all possible state switches, and are therefore important for modeling an interaction scheme. Transitions consist a part that describes the event which triggers the transition (event class and event variant) and a target which is state to which the state machine switches after executing a transition. An event class describes the event type (see mitk::InteractionEvent for the different classes) and the event variant is a specification thereof and the exact description is taken from a config file. Together they determine which event can trigger this transition. For example this state machine will switch from state A to state B when the StdMousePressPrimaryButton event (left mouse button is pressed) occurs. \subsubsection EventClassSection Event Class The event class description supports the polymorphism of the event classes. Therefore state machine patters should be written in the most general ways possible. So for a given class hierarchy like this: \dot digraph { node [shape=record, fontname=Helvetica, fontsize=10]; a [ label="{InteractionPositionEvent}"]; b [ label="{MousePressEvent}" ]; c [ label="MouseReleaseEvent" ]; d [ label="TouchEvent", style=dotted ]; a -> b; a -> c; a -> d; } \enddot in the state machine pattern the mitk::InteractionPositionEvent can be declared as event class to restrict to the events which hold a position information. The actual implementation is then given in the configuration file. In this case it allows to define events of the classes mitk::InteractionPositionEvent itself, or mitk::MousePressEvent, mitk::MouseReleaseEvent, mitk::TouchEvent. This has the advantage that the patterns remain the same no matter what input devices are used, and the state machine patterns can be configured for newly added event classes as long as they match the class hierarchy (this ensures they hold the necessary properties). \code \endcode \subsection ActionSection Actions Actions can be added to transitions and represent functions in the mitk::DataInteractor that are executed on taking a transition. The following simple state machine will listen for left mouse clicks and execute two actions (and actually never stop). \code \endcode In order to tell the mitk::DataInteractor which function to execute these actions are made known to the mitk::DataInteractor using the CONNECT_FUNCTION macro. This example assumes that there exists an ExampleInteractor which inherits from mitkDataInteractor. This class implements the functions AddPoint and CountClicks. The actions are introduced by implementing the virtual method ConnectActionsAndFunctions(): \code void mitk::ExampleInteractor::ConnectActionsAndFunctions() { CONNECT_FUNCTION("addPoint", AddPoint); CONNECT_FUNCTION("countClicks", CountClicks); } \endcode \section ReferenceToIncludeFiles Integration of the pattern and configuration files See \ref IncludeFiles for a description. \section HowToDataInteractor Implementation of a new mitk::DataInteractor DataInteractors are to inherit from mitk::DataInteractor. Their functionality is implemented in functions that follow this interface: \code bool SomeFunctionality(StateMachineAction* , InteractionEvent*); \endcode Your functions are connected with actions by implementing the function ConnectActionsAndFunctions(), e.g. \code void mitk::ExampleInteractor::ConnectActionsAndFunctions() { CONNECT_FUNCTION("addPoint", AddPoint); CONNECT_FUNCTION("enoughPoints", EnoughPoints); } \endcode Now all that is left is to write a state machine pattern and a config file as is described in the tutorials. \subsection ExampleInternalEvent PointSetDataInteractor To provide a useful example the mitk::PointSetDataInteractor is annotated with comments that describe the important parts for an implementation of a mitk::DataInteractor. This step assumes knowledge of the Interaction concept described in \ref DataInteractionPage and some background of the implementation which is described in \ref DataInteractionPageTechnical. Please refer to these pages before proceeding. DataInteractor are to inherit from mitk::DataInteractor. Their functionality is implemented in functions that follow this interface: \code bool SomeFunctionality(StateMachineAction* , InteractionEvent*); \endcode Your functions are connected with actions by implementing the function ConnectActionsAndFunctions(), e.g. \code void mitk::ExampleInteractor::ConnectActionsAndFunctions() { CONNECT_FUNCTION("addPoint", AddPoint); CONNECT_FUNCTION("enoughPoints", EnoughPoints); } \endcode Now all that is left it to write a state machine pattern and a config file as is described in the tutorials. \subsection ExampleInternalEvent Example Interactor using InternalEvent A useful tool in creating DataInteractors is mitk::InternalEvent which allows the mitk::DataInteractor to send signals on its own. The following will describe how to build a mitk::DataInteractor that allows to add points until a certain number of points is reached. The number of accepted points is provided in the config file as a parameter. So we start by writing a state machine pattern that add points until it receives an mitk::InternalEvent telling it, that enough points have been added. \code <--! dead state, nothing happens any more, once we reached this --> \endcode In our config file we set the number of maximal points to 10, and define AddPointClick as a right mouse click with the ctrl button pressed. \code \endcode The implementation is described in the following. \see Step10.h \see Step10.cpp \dontinclude Step10.h Implementation of protected functions: \skipline protected: \until virtual void ConfigurationChanged(); ConnectActionsAndFunctions - Is inherited from mitk::InteractionStateMachine, here action strings from the xml are connected with functions in the mitk::DataInteractor (as seen above). In our example this looks like this: \dontinclude Step10.cpp \skipline void mitk::ExampleInteractor::ConnectActionsAndFunctions() \until } ConfigurationChanged - Is called whenever a new configuration file is loaded (by the mitk::InteractionEventHandler super class), this function allows to implement initialization code that depends on configuration values. In our example we want to set the limit of allowed points: \dontinclude Step10.cpp \skipline void mitk::ExampleInteractor::ConfigurationChang \until } Next the actual functionality of the DataInteractor is implemented, by providing one function per action, following this prototype: \code bool FUNCTION_NAME (StateMachineAction* , InteractionEvent*); \endcode \dontinclude Step10.h \skipline private: \until bool EnoughPoints(StateMac Each function has to return a boolean value. True if the action has been executed, and false if the action has not been executed. \dontinclude Step10.cpp \skipline bool mitk::ExampleInteractor::AddPoint(StateM \until //- Here we see an internal event used to signal that the point set reached the maximal number of allowed points. The event is created and added to the Dispatchers event queue. \dontinclude Step10.cpp \skipline // create internal \until positionEvent->GetSender( \note Internal events do not need any mapping to event variants. Their signal name is equivalent with the event variant. There are also two documented classes implementing a mitk::DataInteractor and a mitk::InteractionEventObserver which can be looked at for further understanding: \see mitk::PointSetDataInteractor \see mitk::DisplayInteractor Have fun with creating your own interaction and please think about contributing it to MITK! If you meet any difficulties during this step, don't hesitate to ask on the MITK mailing list mitk-users@lists.sourceforge.net! People there are kind and will try to help you. \ref Step09Page "[Previous step]" \ref TutorialPage "[Main tutorial page]" */ diff --git a/Documentation/Doxygen/DeveloperManual/Toolkit/ModuleManuals/InteractionMigration.dox b/Documentation/Doxygen/DeveloperManual/Toolkit/ModuleManuals/InteractionMigration.dox index f52a7ff02c..a00e4c7e93 100644 --- a/Documentation/Doxygen/DeveloperManual/Toolkit/ModuleManuals/InteractionMigration.dox +++ b/Documentation/Doxygen/DeveloperManual/Toolkit/ModuleManuals/InteractionMigration.dox @@ -1,178 +1,152 @@ /** \page InteractionMigration Migration Guide to new Interaction Concept \tableofcontents \section GeneralChanges General Changes \subsection StatemachineDefinitions Previously the statemachine pattern along with the event description has been stored in a single file (StateMachine.xml). Now the pattern and the events are separated from each other. The statemachine pattern describes the workflow and the configuration file describes which specific event triggers an action in the workflow. Every pattern is now put into a single file (for inclusion refer to \ref IncludeFiles ). The pattern description has to be completely rewritten, but is pretty straight forward based on the old one, how to do this is explained here \ref HowToStateMachine . Here an example is shown for a simple state containing a transition and a parameter. \code \endcode Example snippet (old) \code \endcode Example snippet (new) Changes:
  • ID is dropped, states are referenced now by their name
  • transition now longer have names
  • NEXT_STATE_ID becomes target
  • action ids become names, these names are used in the interactor to connect an action with a function
  • parameters are stored in the configuration file
  • EVENT_ID is replaced by event_class and event_variant (see below)
Event_class describes the class of the event (see \ref EventClassSection ) - the event_variant provides a name that is used in the configuration file to give an explicit description of the event (or the globalConfig.xml is loaded as configuration file and standard values are used). Configuration files for state machines are described here: \ref ConfigFileDescriptionSection . \subsection InteractorStruture Structure of an Interactor Actions are now directly connected to functions in the DataInteractors, so the classic switch statement becomes obsolete: \code bool mitk::SomeInteractor::ExecuteAction(Action* action, mitk::StateEvent const* stateEvent) { switch (action->GetActionId()) { case Action1: ... case Action2: ... } } \endcode changes to \code void mitk::ExampleInteractor::ConnectActionsAndFunctions() { CONNECT_FUNCTION("stringOfActionFromXmlFile", Action1); CONNECT_FUNCTION("stringOfActionFromXmlFile2", Action2); ... } bool Action1(StateMachineAction* , InteractionEvent*) { ... } ... \endcode where each action is implemented as a function. See \ref HowToDataInteractor . \subsection GuardStates Guard States Formerly there where so called guard states, which cause a transition only if certain conditions are met. These states have been removed, as a replacement serve the InternalEvents which can be triggered from within a data interactor. An example showing how to use them is given in \ref ExampleInternalEvent . \subsection IncludeFiles Register statemachine patterns and configuration w/o the build system There are different ways to load a statemachine pattern or configuration objects from files. If you are working in a module you can use the resources to easily load patterns and configurations. To use this place your XML file in the 'Resources/Interactions' folder of the respective module, and add the file path to the corresponding files.cmake in the resource section like this: \code set(RESOURCE_FILES Interactions/dummyStatemachine.xml ) \endcode Loading the statemachine pattern can then be done by simply calling \code #include "mitkModule.h" #include Module* module = GetModuleContext()->GetModule(); mitk::PointSetDataInteractor::m_CurrentInteractor = mitk::PointSetDataInteractor::New(); m_CurrentInteractor->LoadStateMachine("dummyStatemachine.xml", module); \endcode here module is optional, if none is provided the core module is assumed. The third possibility is to build up a configuration by vector of mitk::PropertyLists, where each item describes an event configuration. In the following example a configuration is build which defines two event variants using basic properties, for a full list of usable properties see mitkInteractionEventConst.h \code #include "mitkPropertyList.h" #include "mitkEventConfig.h" // First event mitk::PropertyList::Pointer propertyList1 = mitk::PropertyList::New(); // Setting the EventClass property to 'MousePressEvent' propertyList1->SetStringProperty(mitk::InteractionEventConst::xmlParameterEventClass.c_str(), "MousePressEvent"); // Setting the Event variant value to 'MousePressEventVariantÄ propertyList1->SetStringProperty(mitk::InteractionEventConst::xmlParameterEventVariant.c_str(), "MousePressEventVariant"); // set control and alt buttons as modifiers propertyList1->SetStringProperty("Modifiers","CTRL,ALT"); // Second event mitk::PropertyList::Pointer propertyList2 = mitk::PropertyList::New(); propertyList2->SetStringProperty(mitk::InteractionEventConst::xmlParameterEventClass.c_str(), "MouseReleaseEvent"); propertyList2->SetStringProperty(mitk::InteractionEventConst::xmlParameterEventVariant.c_str(), "MouseReleaseEventVariant"); propertyList2->SetStringProperty("Modifiers","SHIFT"); // putting both descriptions in a vector std::vector* configDescription = new std::vector(); configDescription->push_back(propertyList1); configDescription->push_back(propertyList2); // create the config object mitk::EventConfig newConfig(configDescription); \endcode -\section ModifyDisplayInteractorBehavior How to modify the display interactor behavior - -Sometimes it may be desirable to change the behaviour of the mitk::DisplayInteractor which controls zooming, panning and scrolling, e.g. when a -Tool is activated that reacts to the same events. Changing the behavior of the DisplayInteractor (or possibly any other EventHandler) can be achieved from anywhere -in the code by requesting the InteractionEventObserver and assigning an alternative configuration to it, as demonstrated in this example: - -\code - -std::ifstream* configStream = new std::ifstream( #path to alternative configuration file# ); -mitk::EventConfig newConfig(configStream); - -// Requesting all registered EventObservers -std::list listEventObserver = GetModuleContext()->GetServiceReferences(); - -for (std::list::iterator it = listEventObserver.begin(); it != listEventObserver.end(); ++it) -{ - DisplayInteractor* displayInteractor = dynamic_cast(GetModuleContext()->GetService(*it)); - // filtering: only adjust the DisplayInteractor - if (displayInteractor != NULL) - { - displayInteractor->SetEventConfig(newConfig); - } -} - -\endcode - */ diff --git a/Documentation/doxygen.conf.in b/Documentation/doxygen.conf.in index 9ff0ab2a43..886bdaa68c 100644 --- a/Documentation/doxygen.conf.in +++ b/Documentation/doxygen.conf.in @@ -1,1924 +1,1925 @@ # Doxyfile 1.8.0 # This file describes the settings to be used by the documentation system # doxygen (www.doxygen.org) for a project. # # All text after a hash (#) is considered a comment and will be ignored. # The format is: # TAG = value [value, ...] # For lists items can also be appended using: # TAG += value [value, ...] # Values that contain spaces should be placed between quotes (" "). #--------------------------------------------------------------------------- # Project related configuration options #--------------------------------------------------------------------------- # This tag specifies the encoding used for all characters in the config file # that follow. The default is UTF-8 which is also the encoding used for all # text before the first occurrence of this tag. Doxygen uses libiconv (or the # iconv built into libc) for the transcoding. See # http://www.gnu.org/software/libiconv for the list of possible encodings. DOXYFILE_ENCODING = UTF-8 # The PROJECT_NAME tag is a single word (or sequence of words) that should # identify the project. Note that if you do not use Doxywizard you need # to put quotes around the project name if it contains spaces. PROJECT_NAME = MITK # The PROJECT_NUMBER tag can be used to enter a project or revision number. # This could be handy for archiving the generated documentation or # if some version control system is used. PROJECT_NUMBER = @MITK_VERSION_STRING@ # Using the PROJECT_BRIEF tag one can provide an optional one line description # for a project that appears at the top of each page and should give viewer # a quick idea about the purpose of the project. Keep the description short. PROJECT_BRIEF = "Medical Imaging Interaction Toolkit" # With the PROJECT_LOGO tag one can specify an logo or icon that is # included in the documentation. The maximum height of the logo should not # exceed 55 pixels and the maximum width should not exceed 200 pixels. # Doxygen will copy the logo to the output directory. PROJECT_LOGO = # The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) # base path where the generated documentation will be put. # If a relative path is entered, it will be relative to the location # where doxygen was started. If left blank the current directory will be used. OUTPUT_DIRECTORY = @MITK_DOXYGEN_OUTPUT_DIR@ # If the CREATE_SUBDIRS tag is set to YES, then doxygen will create # 4096 sub-directories (in 2 levels) under the output directory of each output # format and will distribute the generated files over these directories. # Enabling this option can be useful when feeding doxygen a huge amount of # source files, where putting all generated files in the same directory would # otherwise cause performance problems for the file system. CREATE_SUBDIRS = NO # The OUTPUT_LANGUAGE tag is used to specify the language in which all # documentation generated by doxygen is written. Doxygen will use this # information to generate all constant output in the proper language. # The default language is English, other supported languages are: # Afrikaans, Arabic, Brazilian, Catalan, Chinese, Chinese-Traditional, # Croatian, Czech, Danish, Dutch, Esperanto, Farsi, Finnish, French, German, # Greek, Hungarian, Italian, Japanese, Japanese-en (Japanese with English # messages), Korean, Korean-en, Lithuanian, Norwegian, Macedonian, Persian, # Polish, Portuguese, Romanian, Russian, Serbian, Serbian-Cyrillic, Slovak, # Slovene, Spanish, Swedish, Ukrainian, and Vietnamese. OUTPUT_LANGUAGE = English # If the BRIEF_MEMBER_DESC tag is set to YES (the default) Doxygen will # include brief member descriptions after the members that are listed in # the file and class documentation (similar to JavaDoc). # Set to NO to disable this. BRIEF_MEMBER_DESC = YES # If the REPEAT_BRIEF tag is set to YES (the default) Doxygen will prepend # the brief description of a member or function before the detailed description. # Note: if both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the # brief descriptions will be completely suppressed. REPEAT_BRIEF = YES # This tag implements a quasi-intelligent brief description abbreviator # that is used to form the text in various listings. Each string # in this list, if found as the leading text of the brief description, will be # stripped from the text and the result after processing the whole list, is # used as the annotated text. Otherwise, the brief description is used as-is. # If left blank, the following values are used ("$name" is automatically # replaced with the name of the entity): "The $name class" "The $name widget" # "The $name file" "is" "provides" "specifies" "contains" # "represents" "a" "an" "the" ABBREVIATE_BRIEF = # If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then # Doxygen will generate a detailed section even if there is only a brief # description. ALWAYS_DETAILED_SEC = NO # If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all # inherited members of a class in the documentation of that class as if those # members were ordinary class members. Constructors, destructors and assignment # operators of the base classes will not be shown. INLINE_INHERITED_MEMB = NO # If the FULL_PATH_NAMES tag is set to YES then Doxygen will prepend the full # path before files name in the file list and in the header files. If set # to NO the shortest path that makes the file name unique will be used. FULL_PATH_NAMES = NO # If the FULL_PATH_NAMES tag is set to YES then the STRIP_FROM_PATH tag # can be used to strip a user-defined part of the path. Stripping is # only done if one of the specified strings matches the left-hand part of # the path. The tag can be used to show relative paths in the file list. # If left blank the directory from which doxygen is run is used as the # path to strip. STRIP_FROM_PATH = # The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of # the path mentioned in the documentation of a class, which tells # the reader which header file to include in order to use a class. # If left blank only the name of the header file containing the class # definition is used. Otherwise one should specify the include paths that # are normally passed to the compiler using the -I flag. STRIP_FROM_INC_PATH = # If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter # (but less readable) file names. This can be useful if your file system # doesn't support long names like on DOS, Mac, or CD-ROM. SHORT_NAMES = NO # If the JAVADOC_AUTOBRIEF tag is set to YES then Doxygen # will interpret the first line (until the first dot) of a JavaDoc-style # comment as the brief description. If set to NO, the JavaDoc # comments will behave just like regular Qt-style comments # (thus requiring an explicit @brief command for a brief description.) JAVADOC_AUTOBRIEF = NO # If the QT_AUTOBRIEF tag is set to YES then Doxygen will # interpret the first line (until the first dot) of a Qt-style # comment as the brief description. If set to NO, the comments # will behave just like regular Qt-style comments (thus requiring # an explicit \brief command for a brief description.) QT_AUTOBRIEF = NO # The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make Doxygen # treat a multi-line C++ special comment block (i.e. a block of //! or /// # comments) as a brief description. This used to be the default behaviour. # The new default is to treat a multi-line C++ comment block as a detailed # description. Set this tag to YES if you prefer the old behaviour instead. MULTILINE_CPP_IS_BRIEF = NO # If the INHERIT_DOCS tag is set to YES (the default) then an undocumented # member inherits the documentation from any documented member that it # re-implements. INHERIT_DOCS = YES # If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce # a new page for each member. If set to NO, the documentation of a member will # be part of the file/class/namespace that contains it. SEPARATE_MEMBER_PAGES = NO # The TAB_SIZE tag can be used to set the number of spaces in a tab. # Doxygen uses this value to replace tabs by spaces in code fragments. TAB_SIZE = 8 # This tag can be used to specify a number of aliases that acts # as commands in the documentation. An alias has the form "name=value". # For example adding "sideeffect=\par Side Effects:\n" will allow you to # put the command \sideeffect (or @sideeffect) in the documentation, which # will result in a user-defined paragraph with heading "Side Effects:". # You can put \n's in the value part of an alias to insert newlines. ALIASES = "FIXME=\par Fix Me's:\n" \ "BlueBerry=\if BLUEBERRY" \ "endBlueBerry=\endif" \ "bundlemainpage{1}=\page \1" \ "embmainpage{1}=\page \1" \ "github{2}=\2" \ "deprecatedSince{1}=\xrefitem deprecatedSince\1 \" Deprecated as of \1\" \"Functions deprecated as of \1\" " \ "minimumCMakeVersion=@CMAKE_MINIMUM_REQUIRED_VERSION@" \ - "minimumQt4Version=@MITK_QT4_MINIMUM_VERSION@" + "minimumQt4Version=@MITK_QT4_MINIMUM_VERSION@" \ + "imageMacro{3}=\image html \1 \2 \n \image latex \1 \2 width=\3cm" # This tag can be used to specify a number of word-keyword mappings (TCL only). # A mapping has the form "name=value". For example adding # "class=itcl::class" will allow you to use the command class in the # itcl::class meaning. TCL_SUBST = # Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C # sources only. Doxygen will then generate output that is more tailored for C. # For instance, some of the names that are used will be different. The list # of all members will be omitted, etc. OPTIMIZE_OUTPUT_FOR_C = NO # Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java # sources only. Doxygen will then generate output that is more tailored for # Java. For instance, namespaces will be presented as packages, qualified # scopes will look different, etc. OPTIMIZE_OUTPUT_JAVA = NO # Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran # sources only. Doxygen will then generate output that is more tailored for # Fortran. OPTIMIZE_FOR_FORTRAN = NO # Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL # sources. Doxygen will then generate output that is tailored for # VHDL. OPTIMIZE_OUTPUT_VHDL = NO # Doxygen selects the parser to use depending on the extension of the files it # parses. With this tag you can assign which parser to use for a given extension. # Doxygen has a built-in mapping, but you can override or extend it using this # tag. The format is ext=language, where ext is a file extension, and language # is one of the parsers supported by doxygen: IDL, Java, Javascript, CSharp, C, # C++, D, PHP, Objective-C, Python, Fortran, VHDL, C, C++. For instance to make # doxygen treat .inc files as Fortran files (default is PHP), and .f files as C # (default is Fortran), use: inc=Fortran f=C. Note that for custom extensions # you also need to set FILE_PATTERNS otherwise the files are not read by doxygen. EXTENSION_MAPPING = # If MARKDOWN_SUPPORT is enabled (the default) then doxygen pre-processes all # comments according to the Markdown format, which allows for more readable # documentation. See http://daringfireball.net/projects/markdown/ for details. # The output of markdown processing is further processed by doxygen, so you # can mix doxygen, HTML, and XML commands with Markdown formatting. # Disable only in case of backward compatibilities issues. MARKDOWN_SUPPORT = YES # If you use STL classes (i.e. std::string, std::vector, etc.) but do not want # to include (a tag file for) the STL sources as input, then you should # set this tag to YES in order to let doxygen match functions declarations and # definitions whose arguments contain STL classes (e.g. func(std::string); v.s. # func(std::string) {}). This also makes the inheritance and collaboration # diagrams that involve STL classes more complete and accurate. BUILTIN_STL_SUPPORT = YES # If you use Microsoft's C++/CLI language, you should set this option to YES to # enable parsing support. CPP_CLI_SUPPORT = NO # Set the SIP_SUPPORT tag to YES if your project consists of sip sources only. # Doxygen will parse them like normal C++ but will assume all classes use public # instead of private inheritance when no explicit protection keyword is present. SIP_SUPPORT = NO # For Microsoft's IDL there are propget and propput attributes to indicate getter # and setter methods for a property. Setting this option to YES (the default) # will make doxygen replace the get and set methods by a property in the # documentation. This will only work if the methods are indeed getting or # setting a simple type. If this is not the case, or you want to show the # methods anyway, you should set this option to NO. IDL_PROPERTY_SUPPORT = YES # If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC # tag is set to YES, then doxygen will reuse the documentation of the first # member in the group (if any) for the other members of the group. By default # all members of a group must be documented explicitly. DISTRIBUTE_GROUP_DOC = YES # Set the SUBGROUPING tag to YES (the default) to allow class member groups of # the same type (for instance a group of public functions) to be put as a # subgroup of that type (e.g. under the Public Functions section). Set it to # NO to prevent subgrouping. Alternatively, this can be done per class using # the \nosubgrouping command. SUBGROUPING = YES # When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and # unions are shown inside the group in which they are included (e.g. using # @ingroup) instead of on a separate page (for HTML and Man pages) or # section (for LaTeX and RTF). INLINE_GROUPED_CLASSES = NO # When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and # unions with only public data fields will be shown inline in the documentation # of the scope in which they are defined (i.e. file, namespace, or group # documentation), provided this scope is documented. If set to NO (the default), # structs, classes, and unions are shown on a separate page (for HTML and Man # pages) or section (for LaTeX and RTF). INLINE_SIMPLE_STRUCTS = NO # When TYPEDEF_HIDES_STRUCT is enabled, a typedef of a struct, union, or enum # is documented as struct, union, or enum with the name of the typedef. So # typedef struct TypeS {} TypeT, will appear in the documentation as a struct # with name TypeT. When disabled the typedef will appear as a member of a file, # namespace, or class. And the struct will be named TypeS. This can typically # be useful for C code in case the coding convention dictates that all compound # types are typedef'ed and only the typedef is referenced, never the tag name. TYPEDEF_HIDES_STRUCT = NO # The SYMBOL_CACHE_SIZE determines the size of the internal cache use to # determine which symbols to keep in memory and which to flush to disk. # When the cache is full, less often used symbols will be written to disk. # For small to medium size projects (<1000 input files) the default value is # probably good enough. For larger projects a too small cache size can cause # doxygen to be busy swapping symbols to and from disk most of the time # causing a significant performance penalty. # If the system has enough physical memory increasing the cache will improve the # performance by keeping more symbols in memory. Note that the value works on # a logarithmic scale so increasing the size by one will roughly double the # memory usage. The cache size is given by this formula: # 2^(16+SYMBOL_CACHE_SIZE). The valid range is 0..9, the default is 0, # corresponding to a cache size of 2^16 = 65536 symbols. SYMBOL_CACHE_SIZE = 0 # Similar to the SYMBOL_CACHE_SIZE the size of the symbol lookup cache can be # set using LOOKUP_CACHE_SIZE. This cache is used to resolve symbols given # their name and scope. Since this can be an expensive process and often the # same symbol appear multiple times in the code, doxygen keeps a cache of # pre-resolved symbols. If the cache is too small doxygen will become slower. # If the cache is too large, memory is wasted. The cache size is given by this # formula: 2^(16+LOOKUP_CACHE_SIZE). The valid range is 0..9, the default is 0, # corresponding to a cache size of 2^16 = 65536 symbols. LOOKUP_CACHE_SIZE = 0 #--------------------------------------------------------------------------- # Build related configuration options #--------------------------------------------------------------------------- # If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in # documentation are documented, even if no documentation was available. # Private class members and static file members will be hidden unless # the EXTRACT_PRIVATE and EXTRACT_STATIC tags are set to YES EXTRACT_ALL = YES # If the EXTRACT_PRIVATE tag is set to YES all private members of a class # will be included in the documentation. EXTRACT_PRIVATE = NO # If the EXTRACT_PACKAGE tag is set to YES all members with package or internal scope will be included in the documentation. EXTRACT_PACKAGE = NO # If the EXTRACT_STATIC tag is set to YES all static members of a file # will be included in the documentation. EXTRACT_STATIC = YES # If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs) # defined locally in source files will be included in the documentation. # If set to NO only classes defined in header files are included. EXTRACT_LOCAL_CLASSES = @MITK_DOXYGEN_INTERNAL_DOCS@ # This flag is only useful for Objective-C code. When set to YES local # methods, which are defined in the implementation section but not in # the interface are included in the documentation. # If set to NO (the default) only methods in the interface are included. EXTRACT_LOCAL_METHODS = NO # If this flag is set to YES, the members of anonymous namespaces will be # extracted and appear in the documentation as a namespace called # 'anonymous_namespace{file}', where file will be replaced with the base # name of the file that contains the anonymous namespace. By default # anonymous namespaces are hidden. EXTRACT_ANON_NSPACES = NO # If the HIDE_UNDOC_MEMBERS tag is set to YES, Doxygen will hide all # undocumented members of documented classes, files or namespaces. # If set to NO (the default) these members will be included in the # various overviews, but no documentation section is generated. # This option has no effect if EXTRACT_ALL is enabled. HIDE_UNDOC_MEMBERS = NO # If the HIDE_UNDOC_CLASSES tag is set to YES, Doxygen will hide all # undocumented classes that are normally visible in the class hierarchy. # If set to NO (the default) these classes will be included in the various # overviews. This option has no effect if EXTRACT_ALL is enabled. HIDE_UNDOC_CLASSES = NO # If the HIDE_FRIEND_COMPOUNDS tag is set to YES, Doxygen will hide all # friend (class|struct|union) declarations. # If set to NO (the default) these declarations will be included in the # documentation. HIDE_FRIEND_COMPOUNDS = @MITK_DOXYGEN_HIDE_FRIEND_COMPOUNDS@ # If the HIDE_IN_BODY_DOCS tag is set to YES, Doxygen will hide any # documentation blocks found inside the body of a function. # If set to NO (the default) these blocks will be appended to the # function's detailed documentation block. HIDE_IN_BODY_DOCS = NO # The INTERNAL_DOCS tag determines if documentation # that is typed after a \internal command is included. If the tag is set # to NO (the default) then the documentation will be excluded. # Set it to YES to include the internal documentation. INTERNAL_DOCS = @MITK_DOXYGEN_INTERNAL_DOCS@ # If the CASE_SENSE_NAMES tag is set to NO then Doxygen will only generate # file names in lower-case letters. If set to YES upper-case letters are also # allowed. This is useful if you have classes or files whose names only differ # in case and if your file system supports case sensitive file names. Windows # and Mac users are advised to set this option to NO. CASE_SENSE_NAMES = YES # If the HIDE_SCOPE_NAMES tag is set to NO (the default) then Doxygen # will show members with their full class and namespace scopes in the # documentation. If set to YES the scope will be hidden. HIDE_SCOPE_NAMES = NO # If the SHOW_INCLUDE_FILES tag is set to YES (the default) then Doxygen # will put a list of the files that are included by a file in the documentation # of that file. SHOW_INCLUDE_FILES = YES # If the FORCE_LOCAL_INCLUDES tag is set to YES then Doxygen # will list include files with double quotes in the documentation # rather than with sharp brackets. FORCE_LOCAL_INCLUDES = NO # If the INLINE_INFO tag is set to YES (the default) then a tag [inline] # is inserted in the documentation for inline members. INLINE_INFO = YES # If the SORT_MEMBER_DOCS tag is set to YES (the default) then doxygen # will sort the (detailed) documentation of file and class members # alphabetically by member name. If set to NO the members will appear in # declaration order. SORT_MEMBER_DOCS = YES # If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the # brief documentation of file, namespace and class members alphabetically # by member name. If set to NO (the default) the members will appear in # declaration order. SORT_BRIEF_DOCS = NO # If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen # will sort the (brief and detailed) documentation of class members so that # constructors and destructors are listed first. If set to NO (the default) # the constructors will appear in the respective orders defined by # SORT_MEMBER_DOCS and SORT_BRIEF_DOCS. # This tag will be ignored for brief docs if SORT_BRIEF_DOCS is set to NO # and ignored for detailed docs if SORT_MEMBER_DOCS is set to NO. SORT_MEMBERS_CTORS_1ST = NO # If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the # hierarchy of group names into alphabetical order. If set to NO (the default) # the group names will appear in their defined order. SORT_GROUP_NAMES = NO # If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be # sorted by fully-qualified names, including namespaces. If set to # NO (the default), the class list will be sorted only by class name, # not including the namespace part. # Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES. # Note: This option applies only to the class list, not to the # alphabetical list. SORT_BY_SCOPE_NAME = YES # If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to # do proper type resolution of all parameters of a function it will reject a # match between the prototype and the implementation of a member function even # if there is only one candidate or it is obvious which candidate to choose # by doing a simple string match. By disabling STRICT_PROTO_MATCHING doxygen # will still accept a match between prototype and implementation in such cases. STRICT_PROTO_MATCHING = NO # The GENERATE_TODOLIST tag can be used to enable (YES) or # disable (NO) the todo list. This list is created by putting \todo # commands in the documentation. GENERATE_TODOLIST = @MITK_DOXYGEN_GENERATE_TODOLIST@ # The GENERATE_TESTLIST tag can be used to enable (YES) or # disable (NO) the test list. This list is created by putting \test # commands in the documentation. GENERATE_TESTLIST = YES # The GENERATE_BUGLIST tag can be used to enable (YES) or # disable (NO) the bug list. This list is created by putting \bug # commands in the documentation. GENERATE_BUGLIST = @MITK_DOXYGEN_GENERATE_BUGLIST@ # The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or # disable (NO) the deprecated list. This list is created by putting # \deprecated commands in the documentation. GENERATE_DEPRECATEDLIST= @MITK_DOXYGEN_GENERATE_DEPRECATEDLIST@ # The ENABLED_SECTIONS tag can be used to enable conditional # documentation sections, marked by \if sectionname ... \endif. ENABLED_SECTIONS = @MITK_DOXYGEN_ENABLED_SECTIONS@ # The MAX_INITIALIZER_LINES tag determines the maximum number of lines # the initial value of a variable or macro consists of for it to appear in # the documentation. If the initializer consists of more lines than specified # here it will be hidden. Use a value of 0 to hide initializers completely. # The appearance of the initializer of individual variables and macros in the # documentation can be controlled using \showinitializer or \hideinitializer # command in the documentation regardless of this setting. MAX_INITIALIZER_LINES = 0 # Set the SHOW_USED_FILES tag to NO to disable the list of files generated # at the bottom of the documentation of classes and structs. If set to YES the # list will mention the files that were used to generate the documentation. SHOW_USED_FILES = YES # If the sources in your project are distributed over multiple directories # then setting the SHOW_DIRECTORIES tag to YES will show the directory hierarchy # in the documentation. The default is NO. SHOW_DIRECTORIES = NO # Set the SHOW_FILES tag to NO to disable the generation of the Files page. # This will remove the Files entry from the Quick Index and from the # Folder Tree View (if specified). The default is YES. SHOW_FILES = YES # Set the SHOW_NAMESPACES tag to NO to disable the generation of the # Namespaces page. # This will remove the Namespaces entry from the Quick Index # and from the Folder Tree View (if specified). The default is YES. SHOW_NAMESPACES = YES # The FILE_VERSION_FILTER tag can be used to specify a program or script that # doxygen should invoke to get the current version for each file (typically from # the version control system). Doxygen will invoke the program by executing (via # popen()) the command , where is the value of # the FILE_VERSION_FILTER tag, and is the name of an input file # provided by doxygen. Whatever the program writes to standard output # is used as the file version. See the manual for examples. FILE_VERSION_FILTER = # The LAYOUT_FILE tag can be used to specify a layout file which will be parsed # by doxygen. The layout file controls the global structure of the generated # output files in an output format independent way. The create the layout file # that represents doxygen's defaults, run doxygen with the -l option. # You can optionally specify a file name after the option, if omitted # DoxygenLayout.xml will be used as the name of the layout file. LAYOUT_FILE = @MITK_SOURCE_DIR@/Documentation/MITKDoxygenLayout.xml # The CITE_BIB_FILES tag can be used to specify one or more bib files # containing the references data. This must be a list of .bib files. The # .bib extension is automatically appended if omitted. Using this command # requires the bibtex tool to be installed. See also # http://en.wikipedia.org/wiki/BibTeX for more info. For LaTeX the style # of the bibliography can be controlled using LATEX_BIB_STYLE. To use this # feature you need bibtex and perl available in the search path. CITE_BIB_FILES = #--------------------------------------------------------------------------- # configuration options related to warning and progress messages #--------------------------------------------------------------------------- # The QUIET tag can be used to turn on/off the messages that are generated # by doxygen. Possible values are YES and NO. If left blank NO is used. QUIET = NO # The WARNINGS tag can be used to turn on/off the warning messages that are # generated by doxygen. Possible values are YES and NO. If left blank # NO is used. WARNINGS = YES # If WARN_IF_UNDOCUMENTED is set to YES, then doxygen will generate warnings # for undocumented members. If EXTRACT_ALL is set to YES then this flag will # automatically be disabled. WARN_IF_UNDOCUMENTED = YES # If WARN_IF_DOC_ERROR is set to YES, doxygen will generate warnings for # potential errors in the documentation, such as not documenting some # parameters in a documented function, or documenting parameters that # don't exist or using markup commands wrongly. WARN_IF_DOC_ERROR = YES # The WARN_NO_PARAMDOC option can be enabled to get warnings for # functions that are documented, but have no documentation for their parameters # or return value. If set to NO (the default) doxygen will only warn about # wrong or incomplete parameter documentation, but not about the absence of # documentation. WARN_NO_PARAMDOC = NO # The WARN_FORMAT tag determines the format of the warning messages that # doxygen can produce. The string should contain the $file, $line, and $text # tags, which will be replaced by the file and line number from which the # warning originated and the warning text. Optionally the format may contain # $version, which will be replaced by the version of the file (if it could # be obtained via FILE_VERSION_FILTER) WARN_FORMAT = "$file:$line: $text" # The WARN_LOGFILE tag can be used to specify a file to which warning # and error messages should be written. If left blank the output is written # to stderr. WARN_LOGFILE = #--------------------------------------------------------------------------- # configuration options related to the input files #--------------------------------------------------------------------------- # The INPUT tag can be used to specify the files and/or directories that contain # documented source files. You may enter file names like "myfile.cpp" or # directories like "/usr/src/myproject". Separate the files or directories # with spaces. INPUT = @MITK_SOURCE_DIR@ \ @MITK_SOURCE_DIR@/README.md \ @MITK_BINARY_DIR@ \ @MITK_DOXYGEN_ADDITIONAL_INPUT_DIRS@ # This tag can be used to specify the character encoding of the source files # that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is # also the default input encoding. Doxygen uses libiconv (or the iconv built # into libc) for the transcoding. See http://www.gnu.org/software/libiconv for # the list of possible encodings. INPUT_ENCODING = UTF-8 # If the value of the INPUT tag contains directories, you can use the # FILE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp # and *.h) to filter out the source-files in the directories. If left # blank the following patterns are tested: # *.c *.cc *.cxx *.cpp *.c++ *.d *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh # *.hxx *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.dox *.py # *.f90 *.f *.for *.vhd *.vhdl FILE_PATTERNS = *.h \ *.cpp \ *.dox \ *.md \ *.txx \ *.tpp \ *.cxx \ *.cmake # The RECURSIVE tag can be used to turn specify whether or not subdirectories # should be searched for input files as well. Possible values are YES and NO. # If left blank NO is used. RECURSIVE = YES # The EXCLUDE tag can be used to specify files and/or directories that should be # excluded from the INPUT source files. This way you can easily exclude a # subdirectory from a directory tree whose root is specified with the INPUT tag. # Note that relative paths are relative to the directory from which doxygen is # run. EXCLUDE = @MITK_SOURCE_DIR@/BlueBerry/Documentation/reference/api/MainPage.dox \ @MITK_SOURCE_DIR@/Utilities/IpFunc/ \ @MITK_SOURCE_DIR@/Utilities/IpSegmentation/ \ @MITK_SOURCE_DIR@/Utilities/KWStyle/ \ @MITK_SOURCE_DIR@/Utilities/Poco/ \ @MITK_SOURCE_DIR@/Utilities/qtsingleapplication/ \ @MITK_SOURCE_DIR@/Applications/PluginGenerator/ \ @MITK_SOURCE_DIR@/Core/CppMicroServices/core/doc/snippets/ \ @MITK_SOURCE_DIR@/Core/CppMicroServices/core/doc/doxygen/standalone/ \ @MITK_SOURCE_DIR@/Core/CppMicroServices/core/test/ \ @MITK_SOURCE_DIR@/Core/CppMicroServices/core/examples/ \ @MITK_SOURCE_DIR@/Core/CppMicroServices/core/src/util/jsoncpp.cpp \ @MITK_SOURCE_DIR@/Deprecated/ \ @MITK_SOURCE_DIR@/Build/ \ @MITK_SOURCE_DIR@/CMake/PackageDepends \ @MITK_SOURCE_DIR@/CMake/QBundleTemplate \ @MITK_SOURCE_DIR@/CMakeExternals \ @MITK_SOURCE_DIR@/Modules/QmitkExt/vtkQtChartHeaders/ \ @MITK_BINARY_DIR@/bin/ \ @MITK_BINARY_DIR@/PT/ \ @MITK_BINARY_DIR@/GP/ \ @MITK_BINARY_DIR@/Core/CppMicroServices/ \ @MITK_BINARY_DIR@/_CPack_Packages/ \ @MITK_DOXYGEN_ADDITIONAL_EXCLUDE_DIRS@ # The EXCLUDE_SYMLINKS tag can be used to select whether or not files or # directories that are symbolic links (a Unix file system feature) are excluded # from the input. EXCLUDE_SYMLINKS = NO # If the value of the INPUT tag contains directories, you can use the # EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude # certain files from those directories. Note that the wildcards are matched # against the file with absolute path, so to exclude all test directories # for example use the pattern */test/* EXCLUDE_PATTERNS = README* \ moc_* \ ui_* \ qrc_* \ wrap_* \ Register* \ */files.cmake \ */.git/* \ *_p.h \ *Private.* \ */Snippets/* \ */snippets/* \ */testing/* \ */Testing/* \ @MITK_BINARY_DIR@/*.cmake \ @MITK_DOXYGEN_EXCLUDE_PATTERNS@ # The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names # (namespaces, classes, functions, etc.) that should be excluded from the # output. The symbol name can be a fully qualified name, a word, or if the # wildcard * is used, a substring. Examples: ANamespace, AClass, # AClass::ANamespace, ANamespace::*Test EXCLUDE_SYMBOLS = # The EXAMPLE_PATH tag can be used to specify one or more files or # directories that contain example code fragments that are included (see # the \include command). EXAMPLE_PATH = @MITK_SOURCE_DIR@/Examples/ \ @MITK_SOURCE_DIR@/Examples/Tutorial/ \ @MITK_SOURCE_DIR@/Examples/Plugins/ \ @MITK_SOURCE_DIR@/Examples/QtFreeRender/ \ @MITK_SOURCE_DIR@/Core/Code/ \ @MITK_SOURCE_DIR@/Core/CppMicroServices/core/doc/snippets/ \ @MITK_SOURCE_DIR@/Core/CppMicroServices/core/examples/ \ @MITK_DOXYGEN_OUTPUT_DIR@/html/extension-points/html/ \ @MITK_SOURCE_DIR@/Documentation/Snippets/ \ @MITK_SOURCE_DIR@/Documentation/Doxygen/ExampleCode/ \ @MITK_SOURCE_DIR@/Modules/OpenCL/Documentation/doxygen/snippets/ \ @MITK_SOURCE_DIR@/Modules/IGT/Tutorial/ # If the value of the EXAMPLE_PATH tag contains directories, you can use the # EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp # and *.h) to filter out the source-files in the directories. If left # blank all files are included. EXAMPLE_PATTERNS = # If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be # searched for input files to be used with the \include or \dontinclude # commands irrespective of the value of the RECURSIVE tag. # Possible values are YES and NO. If left blank NO is used. EXAMPLE_RECURSIVE = YES # The IMAGE_PATH tag can be used to specify one or more files or # directories that contain image that are included in the documentation (see # the \image command). IMAGE_PATH = @MITK_SOURCE_DIR@/Documentation/Doxygen/ \ @MITK_SOURCE_DIR@/Documentation/Doxygen/Modules/ \ @MITK_SOURCE_DIR@/Documentation/Doxygen/Tutorial/ \ @MITK_SOURCE_DIR@ # The INPUT_FILTER tag can be used to specify a program that doxygen should # invoke to filter for each input file. Doxygen will invoke the filter program # by executing (via popen()) the command , where # is the value of the INPUT_FILTER tag, and is the name of an # input file. Doxygen will then use the output that the filter program writes # to standard output. # If FILTER_PATTERNS is specified, this tag will be # ignored. INPUT_FILTER = # The FILTER_PATTERNS tag can be used to specify filters on a per file pattern # basis. # Doxygen will compare the file name with each pattern and apply the # filter if there is a match. # The filters are a list of the form: # pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further # info on how filters are used. If FILTER_PATTERNS is empty or if # non of the patterns match the file name, INPUT_FILTER is applied. FILTER_PATTERNS = *.cmake=@CMakeDoxygenFilter_EXECUTABLE@ # If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using # INPUT_FILTER) will be used to filter the input files when producing source # files to browse (i.e. when SOURCE_BROWSER is set to YES). FILTER_SOURCE_FILES = NO # The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file # pattern. A pattern will override the setting for FILTER_PATTERN (if any) # and it is also possible to disable source filtering for a specific pattern # using *.ext= (so without naming a filter). This option only has effect when # FILTER_SOURCE_FILES is enabled. FILTER_SOURCE_PATTERNS = #--------------------------------------------------------------------------- # configuration options related to source browsing #--------------------------------------------------------------------------- # If the SOURCE_BROWSER tag is set to YES then a list of source files will # be generated. Documented entities will be cross-referenced with these sources. # Note: To get rid of all source code in the generated output, make sure also # VERBATIM_HEADERS is set to NO. SOURCE_BROWSER = YES # Setting the INLINE_SOURCES tag to YES will include the body # of functions and classes directly in the documentation. INLINE_SOURCES = NO # Setting the STRIP_CODE_COMMENTS tag to YES (the default) will instruct # doxygen to hide any special comment blocks from generated source code # fragments. Normal C and C++ comments will always remain visible. STRIP_CODE_COMMENTS = YES # If the REFERENCED_BY_RELATION tag is set to YES # then for each documented function all documented # functions referencing it will be listed. REFERENCED_BY_RELATION = YES # If the REFERENCES_RELATION tag is set to YES # then for each documented function all documented entities # called/used by that function will be listed. REFERENCES_RELATION = YES # If the REFERENCES_LINK_SOURCE tag is set to YES (the default) # and SOURCE_BROWSER tag is set to YES, then the hyperlinks from # functions in REFERENCES_RELATION and REFERENCED_BY_RELATION lists will # link to the source code. # Otherwise they will link to the documentation. REFERENCES_LINK_SOURCE = YES # If the USE_HTAGS tag is set to YES then the references to source code # will point to the HTML generated by the htags(1) tool instead of doxygen # built-in source browser. The htags tool is part of GNU's global source # tagging system (see http://www.gnu.org/software/global/global.html). You # will need version 4.8.6 or higher. USE_HTAGS = NO # If the VERBATIM_HEADERS tag is set to YES (the default) then Doxygen # will generate a verbatim copy of the header file for each class for # which an include is specified. Set to NO to disable this. VERBATIM_HEADERS = YES #--------------------------------------------------------------------------- # configuration options related to the alphabetical class index #--------------------------------------------------------------------------- # If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index # of all compounds will be generated. Enable this if the project # contains a lot of classes, structs, unions or interfaces. ALPHABETICAL_INDEX = YES # If the alphabetical index is enabled (see ALPHABETICAL_INDEX) then # the COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns # in which this list will be split (can be a number in the range [1..20]) COLS_IN_ALPHA_INDEX = 3 # In case all classes in a project start with a common prefix, all # classes will be put under the same header in the alphabetical index. # The IGNORE_PREFIX tag can be used to specify one or more prefixes that # should be ignored while generating the index headers. IGNORE_PREFIX = #--------------------------------------------------------------------------- # configuration options related to the HTML output #--------------------------------------------------------------------------- # If the GENERATE_HTML tag is set to YES (the default) Doxygen will # generate HTML output. GENERATE_HTML = YES # The HTML_OUTPUT tag is used to specify where the HTML docs will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `html' will be used as the default path. HTML_OUTPUT = html # The HTML_FILE_EXTENSION tag can be used to specify the file extension for # each generated HTML page (for example: .htm,.php,.asp). If it is left blank # doxygen will generate files with .html extension. HTML_FILE_EXTENSION = .html # The HTML_HEADER tag can be used to specify a personal HTML header for # each generated HTML page. If it is left blank doxygen will generate a # standard header. Note that when using a custom header you are responsible # for the proper inclusion of any scripts and style sheets that doxygen # needs, which is dependent on the configuration options used. # It is advised to generate a default header using "doxygen -w html # header.html footer.html stylesheet.css YourConfigFile" and then modify # that header. Note that the header is subject to change so you typically # have to redo this when upgrading to a newer version of doxygen or when # changing the value of configuration settings such as GENERATE_TREEVIEW! HTML_HEADER = # The HTML_FOOTER tag can be used to specify a personal HTML footer for # each generated HTML page. If it is left blank doxygen will generate a # standard footer. HTML_FOOTER = # The HTML_STYLESHEET tag can be used to specify a user-defined cascading # style sheet that is used by each HTML page. It can be used to # fine-tune the look of the HTML output. If the tag is left blank doxygen # will generate a default style sheet. Note that doxygen will try to copy # the style sheet file to the HTML output directory, so don't put your own # style sheet in the HTML output directory as well, or it will be erased! HTML_STYLESHEET = @MITK_DOXYGEN_STYLESHEET@ # The HTML_EXTRA_FILES tag can be used to specify one or more extra images or # other source files which should be copied to the HTML output directory. Note # that these files will be copied to the base HTML output directory. Use the # $relpath$ marker in the HTML_HEADER and/or HTML_FOOTER files to load these # files. In the HTML_STYLESHEET file, use the file name only. Also note that # the files will be copied as-is; there are no commands or markers available. HTML_EXTRA_FILES = # The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. # Doxygen will adjust the colors in the style sheet and background images # according to this color. Hue is specified as an angle on a colorwheel, # see http://en.wikipedia.org/wiki/Hue for more information. # For instance the value 0 represents red, 60 is yellow, 120 is green, # 180 is cyan, 240 is blue, 300 purple, and 360 is red again. # The allowed range is 0 to 359. HTML_COLORSTYLE_HUE = 220 # The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of # the colors in the HTML output. For a value of 0 the output will use # grayscales only. A value of 255 will produce the most vivid colors. HTML_COLORSTYLE_SAT = 100 # The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to # the luminance component of the colors in the HTML output. Values below # 100 gradually make the output lighter, whereas values above 100 make # the output darker. The value divided by 100 is the actual gamma applied, # so 80 represents a gamma of 0.8, The value 220 represents a gamma of 2.2, # and 100 does not change the gamma. HTML_COLORSTYLE_GAMMA = 80 # If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML # page will contain the date and time when the page was generated. Setting # this to NO can help when comparing the output of multiple runs. HTML_TIMESTAMP = YES # If the HTML_ALIGN_MEMBERS tag is set to YES, the members of classes, # files or namespaces will be aligned in HTML using tables. If set to # NO a bullet list will be used. HTML_ALIGN_MEMBERS = YES # If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML # documentation will contain sections that can be hidden and shown after the # page has loaded. For this to work a browser that supports # JavaScript and DHTML is required (for instance Mozilla 1.0+, Firefox # Netscape 6.0+, Internet explorer 5.0+, Konqueror, or Safari). HTML_DYNAMIC_SECTIONS = @MITK_DOXYGEN_HTML_DYNAMIC_SECTIONS@ # If the GENERATE_DOCSET tag is set to YES, additional index files # will be generated that can be used as input for Apple's Xcode 3 # integrated development environment, introduced with OSX 10.5 (Leopard). # To create a documentation set, doxygen will generate a Makefile in the # HTML output directory. Running make will produce the docset in that # directory and running "make install" will install the docset in # ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find # it at startup. # See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html # for more information. GENERATE_DOCSET = NO # When GENERATE_DOCSET tag is set to YES, this tag determines the name of the # feed. A documentation feed provides an umbrella under which multiple # documentation sets from a single provider (such as a company or product suite) # can be grouped. DOCSET_FEEDNAME = "Doxygen generated docs" # When GENERATE_DOCSET tag is set to YES, this tag specifies a string that # should uniquely identify the documentation set bundle. This should be a # reverse domain-name style string, e.g. com.mycompany.MyDocSet. Doxygen # will append .docset to the name. DOCSET_BUNDLE_ID = org.doxygen.Project # When GENERATE_PUBLISHER_ID tag specifies a string that should uniquely identify # the documentation publisher. This should be a reverse domain-name style # string, e.g. com.mycompany.MyDocSet.documentation. DOCSET_PUBLISHER_ID = org.doxygen.Publisher # The GENERATE_PUBLISHER_NAME tag identifies the documentation publisher. DOCSET_PUBLISHER_NAME = Publisher # If the GENERATE_HTMLHELP tag is set to YES, additional index files # will be generated that can be used as input for tools like the # Microsoft HTML help workshop to generate a compiled HTML help file (.chm) # of the generated HTML documentation. GENERATE_HTMLHELP = NO # If the GENERATE_HTMLHELP tag is set to YES, the CHM_FILE tag can # be used to specify the file name of the resulting .chm file. You # can add a path in front of the file if the result should not be # written to the html output directory. CHM_FILE = # If the GENERATE_HTMLHELP tag is set to YES, the HHC_LOCATION tag can # be used to specify the location (absolute path including file name) of # the HTML help compiler (hhc.exe). If non-empty doxygen will try to run # the HTML help compiler on the generated index.hhp. HHC_LOCATION = # If the GENERATE_HTMLHELP tag is set to YES, the GENERATE_CHI flag # controls if a separate .chi index file is generated (YES) or that # it should be included in the master .chm file (NO). GENERATE_CHI = NO # If the GENERATE_HTMLHELP tag is set to YES, the CHM_INDEX_ENCODING # is used to encode HtmlHelp index (hhk), content (hhc) and project file # content. CHM_INDEX_ENCODING = # If the GENERATE_HTMLHELP tag is set to YES, the BINARY_TOC flag # controls whether a binary table of contents is generated (YES) or a # normal table of contents (NO) in the .chm file. BINARY_TOC = NO # The TOC_EXPAND flag can be set to YES to add extra items for group members # to the contents of the HTML help documentation and to the tree view. TOC_EXPAND = NO # If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and # QHP_VIRTUAL_FOLDER are set, an additional index file will be generated # that can be used as input for Qt's qhelpgenerator to generate a # Qt Compressed Help (.qch) of the generated HTML documentation. GENERATE_QHP = @MITK_DOXYGEN_GENERATE_QHP@ # If the QHG_LOCATION tag is specified, the QCH_FILE tag can # be used to specify the file name of the resulting .qch file. # The path specified is relative to the HTML output folder. QCH_FILE = @MITK_DOXYGEN_QCH_FILE@ # The QHP_NAMESPACE tag specifies the namespace to use when generating # Qt Help Project output. For more information please see # http://doc.trolltech.com/qthelpproject.html#namespace QHP_NAMESPACE = "org.mitk" # The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating # Qt Help Project output. For more information please see # http://doc.trolltech.com/qthelpproject.html#virtual-folders QHP_VIRTUAL_FOLDER = MITK # If QHP_CUST_FILTER_NAME is set, it specifies the name of a custom filter to # add. For more information please see # http://doc.trolltech.com/qthelpproject.html#custom-filters QHP_CUST_FILTER_NAME = # The QHP_CUST_FILT_ATTRS tag specifies the list of the attributes of the # custom filter to add. For more information please see # # Qt Help Project / Custom Filters. QHP_CUST_FILTER_ATTRS = # The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this # project's # filter section matches. # # Qt Help Project / Filter Attributes. QHP_SECT_FILTER_ATTRS = # If the GENERATE_QHP tag is set to YES, the QHG_LOCATION tag can # be used to specify the location of Qt's qhelpgenerator. # If non-empty doxygen will try to run qhelpgenerator on the generated # .qhp file. QHG_LOCATION = @QT_HELPGENERATOR_EXECUTABLE@ # If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files # will be generated, which together with the HTML files, form an Eclipse help # plugin. To install this plugin and make it available under the help contents # menu in Eclipse, the contents of the directory containing the HTML and XML # files needs to be copied into the plugins directory of eclipse. The name of # the directory within the plugins directory should be the same as # the ECLIPSE_DOC_ID value. After copying Eclipse needs to be restarted before # the help appears. GENERATE_ECLIPSEHELP = NO # A unique identifier for the eclipse help plugin. When installing the plugin # the directory name containing the HTML and XML files should also have # this name. ECLIPSE_DOC_ID = org.doxygen.Project # The DISABLE_INDEX tag can be used to turn on/off the condensed index (tabs) # at top of each HTML page. The value NO (the default) enables the index and # the value YES disables it. Since the tabs have the same information as the # navigation tree you can set this option to NO if you already set # GENERATE_TREEVIEW to YES. DISABLE_INDEX = NO # The GENERATE_TREEVIEW tag is used to specify whether a tree-like index # structure should be generated to display hierarchical information. # If the tag value is set to YES, a side panel will be generated # containing a tree-like index structure (just like the one that # is generated for HTML Help). For this to work a browser that supports # JavaScript, DHTML, CSS and frames is required (i.e. any modern browser). # Windows users are probably better off using the HTML help feature. # Since the tree basically has the same information as the tab index you # could consider to set DISABLE_INDEX to NO when enabling this option. GENERATE_TREEVIEW = YES # The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values # (range [0,1..20]) that doxygen will group on one line in the generated HTML # documentation. Note that a value of 0 will completely suppress the enum # values from appearing in the overview section. ENUM_VALUES_PER_LINE = 4 # By enabling USE_INLINE_TREES, doxygen will generate the Groups, Directories, # and Class Hierarchy pages using a tree view instead of an ordered list. USE_INLINE_TREES = NO # If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be # used to set the initial width (in pixels) of the frame in which the tree # is shown. TREEVIEW_WIDTH = 300 # When the EXT_LINKS_IN_WINDOW option is set to YES doxygen will open # links to external symbols imported via tag files in a separate window. EXT_LINKS_IN_WINDOW = NO # Use this tag to change the font size of Latex formulas included # as images in the HTML documentation. The default is 10. Note that # when you change the font size after a successful doxygen run you need # to manually remove any form_*.png images from the HTML output directory # to force them to be regenerated. FORMULA_FONTSIZE = 10 # Use the FORMULA_TRANPARENT tag to determine whether or not the images # generated for formulas are transparent PNGs. Transparent PNGs are # not supported properly for IE 6.0, but are supported on all modern browsers. # Note that when changing this option you need to delete any form_*.png files # in the HTML output before the changes have effect. FORMULA_TRANSPARENT = YES # Enable the USE_MATHJAX option to render LaTeX formulas using MathJax # (see http://www.mathjax.org) which uses client side Javascript for the # rendering instead of using prerendered bitmaps. Use this if you do not # have LaTeX installed or if you want to formulas look prettier in the HTML # output. When enabled you may also need to install MathJax separately and # configure the path to it using the MATHJAX_RELPATH option. USE_MATHJAX = NO # When MathJax is enabled you need to specify the location relative to the # HTML output directory using the MATHJAX_RELPATH option. The destination # directory should contain the MathJax.js script. For instance, if the mathjax # directory is located at the same level as the HTML output directory, then # MATHJAX_RELPATH should be ../mathjax. The default value points to # the MathJax Content Delivery Network so you can quickly see the result without # installing MathJax. # However, it is strongly recommended to install a local # copy of MathJax from http://www.mathjax.org before deployment. MATHJAX_RELPATH = http://www.mathjax.org/mathjax # The MATHJAX_EXTENSIONS tag can be used to specify one or MathJax extension # names that should be enabled during MathJax rendering. MATHJAX_EXTENSIONS = # When the SEARCHENGINE tag is enabled doxygen will generate a search box # for the HTML output. The underlying search engine uses javascript # and DHTML and should work on any modern browser. Note that when using # HTML help (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets # (GENERATE_DOCSET) there is already a search function so this one should # typically be disabled. For large projects the javascript based search engine # can be slow, then enabling SERVER_BASED_SEARCH may provide a better solution. SEARCHENGINE = YES # When the SERVER_BASED_SEARCH tag is enabled the search engine will be # implemented using a PHP enabled web server instead of at the web client # using Javascript. Doxygen will generate the search PHP script and index # file to put on the web server. The advantage of the server # based approach is that it scales better to large projects and allows # full text search. The disadvantages are that it is more difficult to setup # and does not have live searching capabilities. SERVER_BASED_SEARCH = NO #--------------------------------------------------------------------------- # configuration options related to the LaTeX output #--------------------------------------------------------------------------- # If the GENERATE_LATEX tag is set to YES (the default) Doxygen will # generate Latex output. GENERATE_LATEX = NO # The LATEX_OUTPUT tag is used to specify where the LaTeX docs will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `latex' will be used as the default path. LATEX_OUTPUT = latex # The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be # invoked. If left blank `latex' will be used as the default command name. # Note that when enabling USE_PDFLATEX this option is only used for # generating bitmaps for formulas in the HTML output, but not in the # Makefile that is written to the output directory. LATEX_CMD_NAME = latex # The MAKEINDEX_CMD_NAME tag can be used to specify the command name to # generate index for LaTeX. If left blank `makeindex' will be used as the # default command name. MAKEINDEX_CMD_NAME = makeindex # If the COMPACT_LATEX tag is set to YES Doxygen generates more compact # LaTeX documents. This may be useful for small projects and may help to # save some trees in general. COMPACT_LATEX = NO # The PAPER_TYPE tag can be used to set the paper type that is used # by the printer. Possible values are: a4, letter, legal and # executive. If left blank a4wide will be used. PAPER_TYPE = a4wide # The EXTRA_PACKAGES tag can be to specify one or more names of LaTeX # packages that should be included in the LaTeX output. EXTRA_PACKAGES = amssymb # The LATEX_HEADER tag can be used to specify a personal LaTeX header for # the generated latex document. The header should contain everything until # the first chapter. If it is left blank doxygen will generate a # standard header. Notice: only use this tag if you know what you are doing! LATEX_HEADER = # The LATEX_FOOTER tag can be used to specify a personal LaTeX footer for # the generated latex document. The footer should contain everything after # the last chapter. If it is left blank doxygen will generate a # standard footer. Notice: only use this tag if you know what you are doing! LATEX_FOOTER = # If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated # is prepared for conversion to pdf (using ps2pdf). The pdf file will # contain links (just like the HTML output) instead of page references # This makes the output suitable for online browsing using a pdf viewer. PDF_HYPERLINKS = NO # If the USE_PDFLATEX tag is set to YES, pdflatex will be used instead of # plain latex in the generated Makefile. Set this option to YES to get a # higher quality PDF documentation. USE_PDFLATEX = NO # If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \\batchmode. # command to the generated LaTeX files. This will instruct LaTeX to keep # running if errors occur, instead of asking the user for help. # This option is also used when generating formulas in HTML. LATEX_BATCHMODE = NO # If LATEX_HIDE_INDICES is set to YES then doxygen will not # include the index chapters (such as File Index, Compound Index, etc.) # in the output. LATEX_HIDE_INDICES = NO # If LATEX_SOURCE_CODE is set to YES then doxygen will include # source code with syntax highlighting in the LaTeX output. # Note that which sources are shown also depends on other settings # such as SOURCE_BROWSER. LATEX_SOURCE_CODE = NO # The LATEX_BIB_STYLE tag can be used to specify the style to use for the # bibliography, e.g. plainnat, or ieeetr. The default style is "plain". See # http://en.wikipedia.org/wiki/BibTeX for more info. LATEX_BIB_STYLE = plain #--------------------------------------------------------------------------- # configuration options related to the RTF output #--------------------------------------------------------------------------- # If the GENERATE_RTF tag is set to YES Doxygen will generate RTF output # The RTF output is optimized for Word 97 and may not look very pretty with # other RTF readers or editors. GENERATE_RTF = NO # The RTF_OUTPUT tag is used to specify where the RTF docs will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `rtf' will be used as the default path. RTF_OUTPUT = rtf # If the COMPACT_RTF tag is set to YES Doxygen generates more compact # RTF documents. This may be useful for small projects and may help to # save some trees in general. COMPACT_RTF = NO # If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated # will contain hyperlink fields. The RTF file will # contain links (just like the HTML output) instead of page references. # This makes the output suitable for online browsing using WORD or other # programs which support those fields. # Note: wordpad (write) and others do not support links. RTF_HYPERLINKS = NO # Load style sheet definitions from file. Syntax is similar to doxygen's # config file, i.e. a series of assignments. You only have to provide # replacements, missing definitions are set to their default value. RTF_STYLESHEET_FILE = # Set optional variables used in the generation of an rtf document. # Syntax is similar to doxygen's config file. RTF_EXTENSIONS_FILE = #--------------------------------------------------------------------------- # configuration options related to the man page output #--------------------------------------------------------------------------- # If the GENERATE_MAN tag is set to YES (the default) Doxygen will # generate man pages GENERATE_MAN = NO # The MAN_OUTPUT tag is used to specify where the man pages will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `man' will be used as the default path. MAN_OUTPUT = man # The MAN_EXTENSION tag determines the extension that is added to # the generated man pages (default is the subroutine's section .3) MAN_EXTENSION = .3 # If the MAN_LINKS tag is set to YES and Doxygen generates man output, # then it will generate one additional man file for each entity # documented in the real man page(s). These additional files # only source the real man page, but without them the man command # would be unable to find the correct page. The default is NO. MAN_LINKS = NO #--------------------------------------------------------------------------- # configuration options related to the XML output #--------------------------------------------------------------------------- # If the GENERATE_XML tag is set to YES Doxygen will # generate an XML file that captures the structure of # the code including all documentation. GENERATE_XML = NO # The XML_OUTPUT tag is used to specify where the XML pages will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `xml' will be used as the default path. XML_OUTPUT = xml # The XML_SCHEMA tag can be used to specify an XML schema, # which can be used by a validating XML parser to check the # syntax of the XML files. XML_SCHEMA = # The XML_DTD tag can be used to specify an XML DTD, # which can be used by a validating XML parser to check the # syntax of the XML files. XML_DTD = # If the XML_PROGRAMLISTING tag is set to YES Doxygen will # dump the program listings (including syntax highlighting # and cross-referencing information) to the XML output. Note that # enabling this will significantly increase the size of the XML output. XML_PROGRAMLISTING = YES #--------------------------------------------------------------------------- # configuration options for the AutoGen Definitions output #--------------------------------------------------------------------------- # If the GENERATE_AUTOGEN_DEF tag is set to YES Doxygen will # generate an AutoGen Definitions (see autogen.sf.net) file # that captures the structure of the code including all # documentation. Note that this feature is still experimental # and incomplete at the moment. GENERATE_AUTOGEN_DEF = NO #--------------------------------------------------------------------------- # configuration options related to the Perl module output #--------------------------------------------------------------------------- # If the GENERATE_PERLMOD tag is set to YES Doxygen will # generate a Perl module file that captures the structure of # the code including all documentation. Note that this # feature is still experimental and incomplete at the # moment. GENERATE_PERLMOD = NO # If the PERLMOD_LATEX tag is set to YES Doxygen will generate # the necessary Makefile rules, Perl scripts and LaTeX code to be able # to generate PDF and DVI output from the Perl module output. PERLMOD_LATEX = NO # If the PERLMOD_PRETTY tag is set to YES the Perl module output will be # nicely formatted so it can be parsed by a human reader. # This is useful # if you want to understand what is going on. # On the other hand, if this # tag is set to NO the size of the Perl module output will be much smaller # and Perl will parse it just the same. PERLMOD_PRETTY = YES # The names of the make variables in the generated doxyrules.make file # are prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX. # This is useful so different doxyrules.make files included by the same # Makefile don't overwrite each other's variables. PERLMOD_MAKEVAR_PREFIX = #--------------------------------------------------------------------------- # Configuration options related to the preprocessor #--------------------------------------------------------------------------- # If the ENABLE_PREPROCESSING tag is set to YES (the default) Doxygen will # evaluate all C-preprocessor directives found in the sources and include # files. ENABLE_PREPROCESSING = YES # If the MACRO_EXPANSION tag is set to YES Doxygen will expand all macro # names in the source code. If set to NO (the default) only conditional # compilation will be performed. Macro expansion can be done in a controlled # way by setting EXPAND_ONLY_PREDEF to YES. MACRO_EXPANSION = YES # If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES # then the macro expansion is limited to the macros specified with the # PREDEFINED and EXPAND_AS_DEFINED tags. EXPAND_ONLY_PREDEF = NO # If the SEARCH_INCLUDES tag is set to YES (the default) the includes files # pointed to by INCLUDE_PATH will be searched when a #include is found. SEARCH_INCLUDES = YES # The INCLUDE_PATH tag can be used to specify one or more directories that # contain include files that are not input files but should be processed by # the preprocessor. INCLUDE_PATH = # You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard # patterns (like *.h and *.hpp) to filter out the header-files in the # directories. If left blank, the patterns specified with FILE_PATTERNS will # be used. INCLUDE_FILE_PATTERNS = # The PREDEFINED tag can be used to specify one or more macro names that # are defined before the preprocessor is started (similar to the -D option of # gcc). The argument of the tag is a list of macros of the form: name # or name=definition (no spaces). If the definition and the = are # omitted =1 is assumed. To prevent a macro definition from being # undefined via #undef or recursively expanded use the := operator # instead of the = operator. PREDEFINED = itkNotUsed(x)= \ "itkSetMacro(name,type)= virtual void Set##name (type _arg);" \ "itkGetMacro(name,type)= virtual type Get##name ();" \ "itkGetConstMacro(name,type)= virtual type Get##name () const;" \ "itkSetStringMacro(name)= virtual void Set##name (const char* _arg);" \ "itkGetStringMacro(name)= virtual const char* Get##name () const;" \ "itkSetClampMacro(name,type,min,max)= virtual void Set##name (type _arg);" \ "itkSetObjectMacro(name,type)= virtual void Set##name (type* _arg);" \ "itkGetObjectMacro(name,type)= virtual type* Get##name ();" \ "itkSetConstObjectMacro(name,type)= virtual void Set##name ( const type* _arg);" \ "itkGetConstObjectMacro(name,type)= virtual const type* Get##name ();" \ "itkGetConstReferenceMacro(name,type)= virtual const type& Get##name ();" \ "itkGetConstReferenceObjectMacro(name,type)= virtual const type::Pointer& Get##name () const;" \ "itkBooleanMacro(name)= virtual void name##On (); virtual void name##Off ();" \ "itkSetVector2Macro(name,type)= virtual void Set##name (type _arg1, type _arg2) virtual void Set##name (type _arg[2]);" \ "itkGetVector2Macro(name,type)= virtual type* Get##name () const; virtual void Get##name (type& _arg1, type& _arg2) const; virtual void Get##name (type _arg[2]) const;" \ "itkSetVector3Macro(name,type)= virtual void Set##name (type _arg1, type _arg2, type _arg3) virtual void Set##name (type _arg[3]);" \ "itkGetVector3Macro(name,type)= virtual type* Get##name () const; virtual void Get##name (type& _arg1, type& _arg2, type& _arg3) const; virtual void Get##name (type _arg[3]) const;" \ "itkSetVector4Macro(name,type)= virtual void Set##name (type _arg1, type _arg2, type _arg3, type _arg4) virtual void Set##name (type _arg[4]);" \ "itkGetVector4Macro(name,type)= virtual type* Get##name () const; virtual void Get##name (type& _arg1, type& _arg2, type& _arg3, type& _arg4) const; virtual void Get##name (type _arg[4]) const;" \ "itkSetVector6Macro(name,type)= virtual void Set##name (type _arg1, type _arg2, type _arg3, type _arg4, type _arg5, type _arg6) virtual void Set##name (type _arg[6]);" \ "itkGetVector6Macro(name,type)= virtual type* Get##name () const; virtual void Get##name (type& _arg1, type& _arg2, type& _arg3, type& _arg4, type& _arg5, type& _arg6) const; virtual void Get##name (type _arg[6]) const;" \ "itkSetVectorMacro(name,type,count)= virtual void Set##name(type data[]);" \ "itkGetVectorMacro(name,type,count)= virtual type* Get##name () const;" \ "itkNewMacro(type)= static Pointer New();" \ "itkFactorylessNewMacro(type)= static Pointer New();" \ "itkCloneMacro(type)= Pointer Clone() const;" \ "itkTypeMacro(thisClass,superclass)= virtual const char *GetClassName() const;" \ "itkConceptMacro(name,concept)= enum { name = 0 };" \ "ITK_NUMERIC_LIMITS= std::numeric_limits" \ "ITK_TYPENAME= typename" \ "FEM_ABSTRACT_CLASS(thisClass,parentClass)= public: /** Standard Self typedef.*/ typedef thisClass Self; /** Standard Superclass typedef. */ typedef parentClass Superclass; /** Pointer or SmartPointer to an object. */ typedef Self* Pointer; /** Const pointer or SmartPointer to an object. */ typedef const Self* ConstPointer; private:" \ "FEM_CLASS(thisClass,parentClass)= FEM_ABSTRACT_CLASS(thisClass,parentClass) public: /** Create a new object from the existing one */ virtual Baseclass::Pointer Clone() const; /** Class ID for FEM object factory */ static const int CLID; /** Virtual function to access the class ID */ virtual int ClassID() const { return CLID; } /** Object creation in an itk compatible way */ static Self::Pointer New() { return new Self(); } private:" \ FREEVERSION \ ERROR_CHECKING \ HAS_TIFF \ HAS_JPEG \ HAS_NETLIB \ HAS_PNG \ HAS_ZLIB \ HAS_GLUT \ HAS_QT \ VCL_USE_NATIVE_STL=1 \ VCL_USE_NATIVE_COMPLEX=1 \ VCL_HAS_BOOL=1 \ VXL_BIG_ENDIAN=1 \ VXL_LITTLE_ENDIAN=0 \ VNL_DLL_DATA= \ size_t=vcl_size_t \ "US_PREPEND_NAMESPACE(x)=mitk::x" \ "US_BEGIN_NAMESPACE= namespace mitk {" \ "US_END_NAMESPACE=}" \ "US_BASECLASS_NAME=itk::LightObject" \ US_EXPORT= \ "DEPRECATED(func)=func" # If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then # this tag can be used to specify a list of macro names that should be expanded. # The macro definition that is found in the sources will be used. # Use the PREDEFINED tag if you want to use a different macro definition that # overrules the definition found in the source code. EXPAND_AS_DEFINED = # If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then # doxygen's preprocessor will remove all references to function-like macros # that are alone on a line, have an all uppercase name, and do not end with a # semicolon, because these will confuse the parser if not removed. SKIP_FUNCTION_MACROS = YES #--------------------------------------------------------------------------- # Configuration::additions related to external references #--------------------------------------------------------------------------- # The TAGFILES option can be used to specify one or more tagfiles. For each # tag file the location of the external documentation should be added. The # format of a tag file without this location is as follows: # # TAGFILES = file1 file2 ... # Adding location for the tag files is done as follows: # # TAGFILES = file1=loc1 "file2 = loc2" ... # where "loc1" and "loc2" can be relative or absolute paths # or URLs. Note that each tag file must have a unique name (where the name does # NOT include the path). If a tag file is not located in the directory in which # doxygen is run, you must also specify the path to the tagfile here. TAGFILES = @BLUEBERRY_DOXYGEN_TAGFILE@ # When a file name is specified after GENERATE_TAGFILE, doxygen will create # a tag file that is based on the input files it reads. GENERATE_TAGFILE = @MITK_DOXYGEN_TAGFILE_NAME@ # If the ALLEXTERNALS tag is set to YES all external classes will be listed # in the class index. If set to NO only the inherited external classes # will be listed. ALLEXTERNALS = NO # If the EXTERNAL_GROUPS tag is set to YES all external groups will be listed # in the modules index. If set to NO, only the current project's groups will # be listed. EXTERNAL_GROUPS = NO # The PERL_PATH should be the absolute path and name of the perl script # interpreter (i.e. the result of `which perl'). PERL_PATH = /usr/bin/perl #--------------------------------------------------------------------------- # Configuration options related to the dot tool #--------------------------------------------------------------------------- # If the CLASS_DIAGRAMS tag is set to YES (the default) Doxygen will # generate a inheritance diagram (in HTML, RTF and LaTeX) for classes with base # or super classes. Setting the tag to NO turns the diagrams off. Note that # this option also works with HAVE_DOT disabled, but it is recommended to # install and use dot, since it yields more powerful graphs. CLASS_DIAGRAMS = YES # You can define message sequence charts within doxygen comments using the \msc # command. Doxygen will then run the mscgen tool (see # http://www.mcternan.me.uk/mscgen/) to produce the chart and insert it in the # documentation. The MSCGEN_PATH tag allows you to specify the directory where # the mscgen tool resides. If left empty the tool is assumed to be found in the # default search path. MSCGEN_PATH = # If set to YES, the inheritance and collaboration graphs will hide # inheritance and usage relations if the target is undocumented # or is not a class. HIDE_UNDOC_RELATIONS = YES # If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is # available from the path. This tool is part of Graphviz, a graph visualization # toolkit from AT&T and Lucent Bell Labs. The other options in this section # have no effect if this option is set to NO (the default) HAVE_DOT = @HAVE_DOT@ # The DOT_NUM_THREADS specifies the number of dot invocations doxygen is # allowed to run in parallel. When set to 0 (the default) doxygen will # base this on the number of processors available in the system. You can set it # explicitly to a value larger than 0 to get control over the balance # between CPU load and processing speed. DOT_NUM_THREADS = @MITK_DOXYGEN_DOT_NUM_THREADS@ # By default doxygen will use the Helvetica font for all dot files that # doxygen generates. When you want a differently looking font you can specify # the font name using DOT_FONTNAME. You need to make sure dot is able to find # the font, which can be done by putting it in a standard location or by setting # the DOTFONTPATH environment variable or by setting DOT_FONTPATH to the # directory containing the font. DOT_FONTNAME = FreeSans.ttf # The DOT_FONTSIZE tag can be used to set the size of the font of dot graphs. # The default size is 10pt. DOT_FONTSIZE = 10 # By default doxygen will tell dot to use the Helvetica font. # If you specify a different font using DOT_FONTNAME you can use DOT_FONTPATH to # set the path where dot can find it. DOT_FONTPATH = # If the CLASS_GRAPH and HAVE_DOT tags are set to YES then doxygen # will generate a graph for each documented class showing the direct and # indirect inheritance relations. Setting this tag to YES will force the # CLASS_DIAGRAMS tag to NO. CLASS_GRAPH = YES # If the COLLABORATION_GRAPH and HAVE_DOT tags are set to YES then doxygen # will generate a graph for each documented class showing the direct and # indirect implementation dependencies (inheritance, containment, and # class references variables) of the class with other documented classes. COLLABORATION_GRAPH = YES # If the GROUP_GRAPHS and HAVE_DOT tags are set to YES then doxygen # will generate a graph for groups, showing the direct groups dependencies GROUP_GRAPHS = YES # If the UML_LOOK tag is set to YES doxygen will generate inheritance and # collaboration diagrams in a style similar to the OMG's Unified Modeling # Language. UML_LOOK = @MITK_DOXYGEN_UML_LOOK@ # If the UML_LOOK tag is enabled, the fields and methods are shown inside # the class node. If there are many fields or methods and many nodes the # graph may become too big to be useful. The UML_LIMIT_NUM_FIELDS # threshold limits the number of items for each type to make the size more # managable. Set this to 0 for no limit. Note that the threshold may be # exceeded by 50% before the limit is enforced. UML_LIMIT_NUM_FIELDS = 10 # If set to YES, the inheritance and collaboration graphs will show the # relations between templates and their instances. TEMPLATE_RELATIONS = YES # If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDE_GRAPH, and HAVE_DOT # tags are set to YES then doxygen will generate a graph for each documented # file showing the direct and indirect include dependencies of the file with # other documented files. INCLUDE_GRAPH = NO # If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDED_BY_GRAPH, and # HAVE_DOT tags are set to YES then doxygen will generate a graph for each # documented header file showing the documented files that directly or # indirectly include this file. INCLUDED_BY_GRAPH = NO # If the CALL_GRAPH and HAVE_DOT options are set to YES then # doxygen will generate a call dependency graph for every global function # or class method. Note that enabling this option will significantly increase # the time of a run. So in most cases it will be better to enable call graphs # for selected functions only using the \callgraph command. CALL_GRAPH = NO # If the CALLER_GRAPH and HAVE_DOT tags are set to YES then # doxygen will generate a caller dependency graph for every global function # or class method. Note that enabling this option will significantly increase # the time of a run. So in most cases it will be better to enable caller # graphs for selected functions only using the \callergraph command. CALLER_GRAPH = NO # If the GRAPHICAL_HIERARCHY and HAVE_DOT tags are set to YES then doxygen # will generate a graphical hierarchy of all classes instead of a textual one. GRAPHICAL_HIERARCHY = NO # If the DIRECTORY_GRAPH, SHOW_DIRECTORIES and HAVE_DOT tags are set to YES # then doxygen will show the dependencies a directory has on other directories # in a graphical way. The dependency relations are determined by the #include # relations between the files in the directories. DIRECTORY_GRAPH = YES # The DOT_IMAGE_FORMAT tag can be used to set the image format of the images # generated by dot. Possible values are svg, png, jpg, or gif. # If left blank png will be used. If you choose svg you need to set # HTML_FILE_EXTENSION to xhtml in order to make the SVG files # visible in IE 9+ (other browsers do not have this requirement). DOT_IMAGE_FORMAT = png # If DOT_IMAGE_FORMAT is set to svg, then this option can be set to YES to # enable generation of interactive SVG images that allow zooming and panning. # Note that this requires a modern browser other than Internet Explorer. # Tested and working are Firefox, Chrome, Safari, and Opera. For IE 9+ you # need to set HTML_FILE_EXTENSION to xhtml in order to make the SVG files # visible. Older versions of IE do not have SVG support. INTERACTIVE_SVG = NO # The tag DOT_PATH can be used to specify the path where the dot tool can be # found. If left blank, it is assumed the dot tool can be found in the path. DOT_PATH = @DOXYGEN_DOT_PATH@ # The DOTFILE_DIRS tag can be used to specify one or more directories that # contain dot files that are included in the documentation (see the # \dotfile command). DOTFILE_DIRS = # The MSCFILE_DIRS tag can be used to specify one or more directories that # contain msc files that are included in the documentation (see the # \mscfile command). MSCFILE_DIRS = # The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of # nodes that will be shown in the graph. If the number of nodes in a graph # becomes larger than this value, doxygen will truncate the graph, which is # visualized by representing a node as a red box. Note that doxygen if the # number of direct children of the root node in a graph is already larger than # DOT_GRAPH_MAX_NODES then the graph will not be shown at all. Also note # that the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH. DOT_GRAPH_MAX_NODES = 50 # The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the # graphs generated by dot. A depth value of 3 means that only nodes reachable # from the root by following a path via at most 3 edges will be shown. Nodes # that lay further from the root node will be omitted. Note that setting this # option to 1 or 2 may greatly reduce the computation time needed for large # code bases. Also note that the size of a graph can be further restricted by # DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction. MAX_DOT_GRAPH_DEPTH = 0 # Set the DOT_TRANSPARENT tag to YES to generate images with a transparent # background. This is disabled by default, because dot on Windows does not # seem to support this out of the box. Warning: Depending on the platform used, # enabling this option may lead to badly anti-aliased labels on the edges of # a graph (i.e. they become hard to read). DOT_TRANSPARENT = NO # Set the DOT_MULTI_TARGETS tag to YES allow dot to generate multiple output # files in one run (i.e. multiple -o and -T options on the command line). This # makes dot run faster, but since only newer versions of dot (>1.8.10) # support this, this feature is disabled by default. DOT_MULTI_TARGETS = NO # If the GENERATE_LEGEND tag is set to YES (the default) Doxygen will # generate a legend page explaining the meaning of the various boxes and # arrows in the dot generated graphs. GENERATE_LEGEND = YES # If the DOT_CLEANUP tag is set to YES (the default) Doxygen will # remove the intermediate dot files that are used to generate # the various graphs. DOT_CLEANUP = YES diff --git a/Examples/Tutorial/Step5/Step5.cpp b/Examples/Tutorial/Step5/Step5.cpp index 494fdc05e1..9d0fd14e36 100644 --- a/Examples/Tutorial/Step5/Step5.cpp +++ b/Examples/Tutorial/Step5/Step5.cpp @@ -1,203 +1,219 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkRegisterClasses.h" #include "QmitkRenderWindow.h" #include "QmitkSliceWidget.h" #include "mitkDataNodeFactory.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkStandaloneDataStorage.h" -#include "mitkGlobalInteraction.h" #include "mitkPointSet.h" -#include "mitkPointSetInteractor.h" +// NEW INCLUDE +#include "mitkPointSetDataInteractor.h" #include #include #include //##Documentation //## @brief Interactively add points //## //## As in Step4, load one or more data sets (many image, //## surface and other formats) and create 3 views on the data. //## Additionally, we want to interactively add points. A node containing -//## a PointSet as data is added to the data tree and a PointSetInteractor +//## a PointSet as data is added to the data tree and a PointSetDataInteractor //## is associated with the node, which handles the interaction. The //## @em interaction @em pattern is defined in a state-machine, stored in an //## external XML file. Thus, we need to load a state-machine //## The interaction patterns defines the @em events, //## on which the interactor reacts (e.g., which mouse buttons are used to //## set a point), the @em transition to the next state (e.g., the initial //## may be "empty point set") and associated @a actions (e.g., add a point //## at the position where the mouse-click occured). int main(int argc, char* argv[]) { QApplication qtapplication( argc, argv ); if(argc<2) { fprintf( stderr, "Usage: %s [filename1] [filename2] ...\n\n", itksys::SystemTools::GetFilenameName(argv[0]).c_str() ); return 1; } // Register Qmitk-dependent global instances QmitkRegisterClasses(); //************************************************************************* // Part I: Basic initialization //************************************************************************* // Create a DataStorage mitk::StandaloneDataStorage::Pointer ds = mitk::StandaloneDataStorage::New(); //************************************************************************* // Part II: Create some data by reading files //************************************************************************* int i; for(i=1; iSetFileName(filename); nodeReader->Update(); //********************************************************************* // Part III: Put the data into the datastorage //********************************************************************* // Since the DataNodeFactory directly creates a node, // use the iterator to add the read node to the tree mitk::DataNode::Pointer node = nodeReader->GetOutput(); ds->Add(node); } catch(...) { fprintf( stderr, "Could not open file %s \n\n", filename ); exit(2); } } - // ******************************************************* - // ****************** START OF NEW PART ****************** - // ******************************************************* - - //************************************************************************* - // Part VI: For allowing to interactively add points ... - //************************************************************************* - - // Create PointSet and a node for it - mitk::PointSet::Pointer pointSet = mitk::PointSet::New(); - mitk::DataNode::Pointer pointSetNode = mitk::DataNode::New(); - pointSetNode->SetData(pointSet); - - // Add the node to the tree - ds->Add(pointSetNode); - - // Create PointSetInteractor, associate to pointSetNode and add as - // interactor to GlobalInteraction - mitk::GlobalInteraction::GetInstance()->AddInteractor( - mitk::PointSetInteractor::New("pointsetinteractor", pointSetNode) - ); - - // ******************************************************* - // ******************* END OF NEW PART ******************* - // ******************************************************* - //************************************************************************* // Part V: Create windows and pass the tree to it //************************************************************************* // Create toplevel widget with horizontal layout QWidget toplevelWidget; QHBoxLayout layout; layout.setSpacing(2); layout.setMargin(0); toplevelWidget.setLayout(&layout); //************************************************************************* // Part Va: 3D view //************************************************************************* // Create a renderwindow QmitkRenderWindow renderWindow(&toplevelWidget); layout.addWidget(&renderWindow); // Tell the renderwindow which (part of) the tree to render + renderWindow.GetRenderer()->SetDataStorage(ds); // Use it as a 3D view renderWindow.GetRenderer()->SetMapperID(mitk::BaseRenderer::Standard3D); //************************************************************************* // Part Vb: 2D view for slicing axially //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget view2(&toplevelWidget); layout.addWidget(&view2); // Tell the QmitkSliceWidget which (part of) the tree to render. // By default, it slices the data axially view2.SetDataStorage(ds); mitk::DataStorage::SetOfObjects::ConstPointer rs = ds->GetAll(); view2.SetData(rs->Begin(), mitk::SliceNavigationController::Axial); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! ds->Add(view2.GetRenderer()->GetCurrentWorldGeometry2DNode()); //************************************************************************* // Part Vc: 2D view for slicing sagitally //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget view3(&toplevelWidget); layout.addWidget(&view3); // Tell the QmitkSliceWidget which (part of) the tree to render // and to slice sagitall view3.SetDataStorage(ds); view3.SetData(rs->Begin(), mitk::SliceNavigationController::Sagittal); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! ds->Add(view3.GetRenderer()->GetCurrentWorldGeometry2DNode()); + // ******************************************************* + // ****************** START OF NEW PART ****************** + // ******************************************************* + + //************************************************************************* + // Part VI: For allowing to interactively add points ... + //************************************************************************* + + + // ATTENTION: It is very important that the renderer already know their DataStorage, + // because registerig DataInteractors with the render windows is done automatically + // and only works if the BaseRenderer and the DataStorage know each other. + + // Create PointSet and a node for it + mitk::PointSet::Pointer pointSet = mitk::PointSet::New(); + mitk::DataNode::Pointer pointSetNode = mitk::DataNode::New(); + // Store the point set in the DataNode + pointSetNode->SetData(pointSet); + + // Add the node to the tree + ds->Add(pointSetNode); + + // Create PointSetDataInteractor + mitk::PointSetDataInteractor::Pointer interactor = mitk::PointSetDataInteractor::New(); + // Set the StateMachine pattern that describes the flow of the interactions + interactor->LoadStateMachine("PointSet.xml"); + // Set the configuration file, which describes the user interactions that trigger actions + // in this file SHIFT + LeftClick triggers add Point, but by modifying this file, + // it could as well be changes to any other user interaction. + interactor->SetEventConfig("PointSetConfig.xml"); + + // Assign the pointSetNode to the interactor, + // alternatively one could also add the DataInteractor to the pointSetNode using the SetDataInteractor() method. + interactor->SetDataNode(pointSetNode); + + // ******************************************************* + // ******************* END OF NEW PART ******************* + // ******************************************************* + + + //************************************************************************* //Part VII: Qt-specific initialization //************************************************************************* toplevelWidget.show(); // For testing #include "QtTesting.h" if(strcmp(argv[argc-1], "-testing")!=0) return qtapplication.exec(); else return QtTesting(); } /** \example Step5.cpp */ diff --git a/Examples/Tutorial/Step6/Step6.cpp b/Examples/Tutorial/Step6/Step6.cpp index 815b4b286f..0e8c17ea86 100644 --- a/Examples/Tutorial/Step6/Step6.cpp +++ b/Examples/Tutorial/Step6/Step6.cpp @@ -1,247 +1,251 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "Step6.h" #include "QmitkRenderWindow.h" #include "QmitkSliceWidget.h" #include "mitkDataNodeFactory.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" -#include "mitkGlobalInteraction.h" #include "mitkPointSet.h" -#include "mitkPointSetInteractor.h" +#include "mitkPointSetDataInteractor.h" #include "mitkImageAccessByItk.h" #include "mitkRenderingManager.h" #include #include #include #include #include #include //##Documentation //## @brief Start region-grower at interactively added points Step6::Step6(int argc, char* argv[], QWidget *parent) : QWidget(parent) { // load data as in the previous steps; a reference to the first loaded // image is kept in the member m_FirstImage and used as input for the // region growing Load(argc, argv); } void Step6::Initialize() { // setup the widgets as in the previous steps, but with an additional // QVBox for a button to start the segmentation this->SetupWidgets(); // Create controlsParent widget with horizontal layout QWidget *controlsParent = new QWidget(this); this->layout()->addWidget(controlsParent); QHBoxLayout* hlayout = new QHBoxLayout(controlsParent); hlayout->setSpacing(2); QLabel *labelThresholdMin = new QLabel("Lower Threshold:", controlsParent); hlayout->addWidget(labelThresholdMin); m_LineEditThresholdMin = new QLineEdit("-1000", controlsParent); hlayout->addWidget(m_LineEditThresholdMin); QLabel *labelThresholdMax = new QLabel("Upper Threshold:", controlsParent); hlayout->addWidget(labelThresholdMax); m_LineEditThresholdMax = new QLineEdit("-400", controlsParent); hlayout->addWidget(m_LineEditThresholdMax); // create button to start the segmentation and connect its clicked() // signal to method StartRegionGrowing QPushButton* startButton = new QPushButton("start region growing", controlsParent); hlayout->addWidget(startButton); connect(startButton, SIGNAL(clicked()), this, SLOT(StartRegionGrowing())); if (m_FirstImage.IsNull()) startButton->setEnabled(false); // as in Step5, create PointSet (now as a member m_Seeds) and // associate a interactor to it + m_Seeds = mitk::PointSet::New(); mitk::DataNode::Pointer pointSetNode = mitk::DataNode::New(); pointSetNode->SetData(m_Seeds); pointSetNode->SetProperty("layer", mitk::IntProperty::New(2)); m_DataStorage->Add(pointSetNode); - mitk::GlobalInteraction::GetInstance()->AddInteractor( - mitk::PointSetInteractor::New("pointsetinteractor", pointSetNode)); + + // Create PointSetDataInteractor + mitk::PointSetDataInteractor::Pointer interactor = mitk::PointSetDataInteractor::New(); + interactor->LoadStateMachine("PointSet.xml"); + interactor->SetEventConfig("PointSetConfig.xml"); + interactor->SetDataNode(pointSetNode); } int Step6::GetThresholdMin() { return m_LineEditThresholdMin->text().toInt(); } int Step6::GetThresholdMax() { return m_LineEditThresholdMax->text().toInt(); } void Step6::StartRegionGrowing() { AccessByItk_1(m_FirstImage, RegionGrowing, this); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void Step6::Load(int argc, char* argv[]) { //************************************************************************* // Part I: Basic initialization //************************************************************************* m_DataStorage = mitk::StandaloneDataStorage::New(); //************************************************************************* // Part II: Create some data by reading files //************************************************************************* int i; for (i = 1; i < argc; ++i) { // For testing if (strcmp(argv[i], "-testing") == 0) continue; // Create a DataNodeFactory to read a data format supported // by the DataNodeFactory (many image formats, surface formats, etc.) mitk::DataNodeFactory::Pointer nodeReader = mitk::DataNodeFactory::New(); const char * filename = argv[i]; try { nodeReader->SetFileName(filename); nodeReader->Update(); //********************************************************************* // Part III: Put the data into the datastorage //********************************************************************* // Since the DataNodeFactory directly creates a node, // use the iterator to add the read node to the tree mitk::DataNode::Pointer node = nodeReader->GetOutput(); m_DataStorage->Add(node); mitk::Image::Pointer image = dynamic_cast (node->GetData()); if ((m_FirstImage.IsNull()) && (image.IsNotNull())) m_FirstImage = image; } catch (...) { fprintf(stderr, "Could not open file %s \n\n", filename); exit(2); } } } void Step6::SetupWidgets() { //************************************************************************* // Part I: Create windows and pass the datastorage to it //************************************************************************* // Create toplevel widget with vertical layout QVBoxLayout* vlayout = new QVBoxLayout(this); vlayout->setMargin(0); vlayout->setSpacing(2); // Create viewParent widget with horizontal layout QWidget* viewParent = new QWidget(this); vlayout->addWidget(viewParent); QHBoxLayout* hlayout = new QHBoxLayout(viewParent); hlayout->setMargin(0); hlayout->setSpacing(2); //************************************************************************* // Part Ia: 3D view //************************************************************************* // Create a renderwindow QmitkRenderWindow* renderWindow = new QmitkRenderWindow(viewParent); hlayout->addWidget(renderWindow); // Tell the renderwindow which (part of) the tree to render renderWindow->GetRenderer()->SetDataStorage(m_DataStorage); // Use it as a 3D view renderWindow->GetRenderer()->SetMapperID(mitk::BaseRenderer::Standard3D); //************************************************************************* // Part Ib: 2D view for slicing axially //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget *view2 = new QmitkSliceWidget(viewParent); hlayout->addWidget(view2); // Tell the QmitkSliceWidget which (part of) the tree to render. // By default, it slices the data axially view2->SetDataStorage(m_DataStorage); mitk::DataStorage::SetOfObjects::ConstPointer rs = m_DataStorage->GetAll(); view2->SetData(rs->Begin(), mitk::SliceNavigationController::Axial); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! m_DataStorage->Add(view2->GetRenderer()->GetCurrentWorldGeometry2DNode()); //************************************************************************* // Part Ic: 2D view for slicing sagitally //************************************************************************* // Create QmitkSliceWidget, which is based on the class // QmitkRenderWindow, but additionally provides sliders QmitkSliceWidget *view3 = new QmitkSliceWidget(viewParent); hlayout->addWidget(view3); // Tell the QmitkSliceWidget which (part of) the tree to render // and to slice sagitally view3->SetDataStorage(m_DataStorage); view3->SetData(rs->Begin(), mitk::SliceNavigationController::Sagittal); // We want to see the position of the slice in 2D and the // slice itself in 3D: add it to the tree! m_DataStorage->Add(view3->GetRenderer()->GetCurrentWorldGeometry2DNode()); //************************************************************************* // Part II: handle updates: To avoid unnecessary updates, we have to //************************************************************************* // define when to update. The RenderingManager serves this purpose, and // each RenderWindow has to be registered to it. /*mitk::RenderingManager *renderingManager = mitk::RenderingManager::GetInstance(); renderingManager->AddRenderWindow( renderWindow ); renderingManager->AddRenderWindow( view2->GetRenderWindow() ); renderingManager->AddRenderWindow( view3->GetRenderWindow() );*/ } /** \example Step6.cpp */ diff --git a/Modules/CameraCalibration/mitkEndoDebug.h b/Modules/CameraCalibration/mitkEndoDebug.h index 457c51816e..0f611b4a7d 100644 --- a/Modules/CameraCalibration/mitkEndoDebug.h +++ b/Modules/CameraCalibration/mitkEndoDebug.h @@ -1,270 +1,312 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkEndoDebug_h #define mitkEndoDebug_h #include #include #include #include #include namespace mitk { /// /// again d pointer impl /// struct EndoDebugData; /// /// class responsible for handling debug matters /// in endotracking /// struct MitkCameraCalibration_EXPORT EndoDebug { /// /// singleton class /// static EndoDebug& GetInstance(); /// /// helper function getting unique file name /// static std::string GetUniqueFileName(const std::string& dir, const std::string& ext="jpg" , const std::string &prefix=""); /// /// set if debug is enabled at all /// void SetDebugEnabled(bool _DebugEnabled); /// /// \return true if debug should be enabled /// bool GetDebugEnabled(); /// /// set if debug is enabled at all /// void SetShowImagesInDebug(bool _ShowImagesInDebug); /// /// \return true if debug should be enabled /// bool GetShowImagesInDebug(); /// /// set if debug is enabled at all /// void SetShowImagesTimeOut(size_t _ShowImagesTimeOut); /// /// \return true if debug should be enabled /// size_t GetShowImagesTimeOut(); /// /// sets an output directory. if set all images that are shown are also written to that /// output dir /// void SetDebugImagesOutputDirectory(const std::string& _DebugImagesOutputDirectory); /// /// \return true if debug should be enabled /// std::string GetDebugImagesOutputDirectory() const; /// /// \return the basename of a file without path /// std::string GetFilenameWithoutExtension(const std::string& s); /// /// add a file to debug ( if one or more files are set ) /// only those files will be debugged when using the macros /// below. e.g. call AddFileToDebug("MyClass.cpp"), then /// statements like endodebug(...) will be evaluated in /// MyClass.cpp and nowhere else /// bool AddFileToDebug(const std::string& fileToDebug); /// /// \see AddFileToDebug /// void SetFilesToDebug(const std::set& filesToDebug); /// /// \return the files to be debugged /// std::set GetFilesToDebug(); /// /// same as files to debug, but the user can provide /// any symbol string. if one or more symbols /// are set only for these symbols Debug() will return true /// bool AddSymbolToDebug(const std::string& symbolToDebug); /// /// \see AddSymbolToDebug /// void SetSymbolsToDebug(const std::set& symbolsToDebug); /// /// \return the symbols to be debugged /// std::set GetSymbolsToDebug(); /// /// \return true if file should be debugged /// bool DebugFile( const std::string& fileToDebug ); /// /// \return true if symbol should be debugged /// bool DebugSymbol( const std::string& symbolToDebug ); /// /// \return the all in all status if debug output /// should be generated /// bool Debug( const std::string& fileToDebug, const std::string& symbol="" ); /// /// set a log file. if a log file is set and debug is activated all messages will be appended to that file /// void SetLogFile( const std::string& file ); /// /// shows a message or writes it to a log file if a file is set (and is valid for writing) /// void ShowMessage( const std::string& message ); /// /// init defaults /// EndoDebug(); /// /// delete d pointer /// virtual ~EndoDebug(); private: /// /// d pointer /// EndoDebugData* d; }; } // DISABLE DEBUGGING FOR RELEASE MODE ON WINDOWS #if (defined(WIN32) && !defined(_DEBUG)) || defined(NDEBUG) #define endodebugmarker #define endodebug(msg) #define endodebugvar(var) #define endodebugsymbol(var, mSymbol) #define endodebugimg(imgVariableName) #define endodebugbegin if( false ) { #define endodebugend } + #define endoAssert(a) \ + if(!(a)) { \ + throw std::invalid_argument("FAILED: " #a); \ + } + + #define endoAssertMsg(a, msg) \ + if(!(a)) { \ + throw std::invalid_argument( "FAILED: " #a ); \ + } + + #define endodebugcode(code) + #define endoAssertCode(assertCode) #else /// /// macro for debugging purposes /// #define endodebugmarker\ if( mitk::EndoDebug::GetInstance().Debug(__FILE__) ) \ { \ std::ostringstream ___ostringstream; \ ___ostringstream << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " << __LINE__\ << ": " << __FUNCTION__ << std::endl;\ mitk::EndoDebug::GetInstance().ShowMessage( ___ostringstream.str() ); \ } /// /// macro for debugging purposes /// #define endodebug(msg)\ if( mitk::EndoDebug::GetInstance().Debug(__FILE__) ) \ { \ std::ostringstream ___ostringstream; \ ___ostringstream << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " << __LINE__\ << ": " << msg << std::endl;\ mitk::EndoDebug::GetInstance().ShowMessage( ___ostringstream.str() ); \ } /// /// macro for debugging variables /// #define endodebugvar(var)\ if( mitk::EndoDebug::GetInstance().Debug(__FILE__) ) \ { \ std::ostringstream ___ostringstream; \ ___ostringstream << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " << __LINE__\ << ": " #var " = " << var << std::endl;\ mitk::EndoDebug::GetInstance().ShowMessage( ___ostringstream.str() ); \ } /// /// macro for debugging a variable as symbol /// #define endodebugsymbol(var, mSymbol)\ if( mitk::EndoDebug::GetInstance().Debug(__FILE__, mSymbol) ) \ { \ std::ostringstream ___ostringstream; \ ___ostringstream << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " << __LINE__\ << ": " #var " = " << var << std::endl;\ mitk::EndoDebug::GetInstance().ShowMessage( ___ostringstream.str() ); \ } /// /// macro for showing cv image if in debug mode /// highgui.h must be included before /// #define endodebugimg(imgVariableName)\ if( mitk::EndoDebug::GetInstance().Debug(__FILE__) \ && mitk::EndoDebug::GetInstance().GetShowImagesInDebug() \ && (imgVariableName).cols > 0 && (imgVariableName).rows > 0 && (imgVariableName).data) \ { \ std::ostringstream ___ostringstream; \ ___ostringstream << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " << __LINE__\ << ": Showing " #imgVariableName << std::endl; \ mitk::EndoDebug::GetInstance().ShowMessage( ___ostringstream.str() ); \ std::string outputFile = mitk::EndoDebug::GetInstance().GetDebugImagesOutputDirectory(); \ if( !outputFile.empty() ) \ {\ outputFile = mitk::EndoDebug::GetInstance().GetUniqueFileName(outputFile, "jpg", std::string(#imgVariableName) );\ cv::imwrite(outputFile, imgVariableName);\ }\ else\ {\ cv::imshow( "Debug", imgVariableName ); \ cv::waitKey( mitk::EndoDebug::GetInstance().GetShowImagesTimeOut() ); \ }\ } /// /// macro for a section that should only be executed if debugging is enabled /// #define endodebugbegin \ if( mitk::EndoDebug::GetInstance().Debug(__FILE__) ) \ { /// /// macro for a section that should only be executed if debugging is enabled /// #define endodebugend \ } + #define endodebugcode(code) \ + endodebugbegin \ + code \ + endodebugend + +/// +/// an assert macro for throwing exceptions from an assert +/// +#define endoAssert(a) \ +if(!(a)) { \ +std::ostringstream s; \ +s << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " \ + << __LINE__ << ", failed: " << #a; \ +throw std::invalid_argument(s.str()); } + +/// +/// same as above but with an output error stream +/// use it like this: endoAssertMsg( file.read() == true, file << "could not be read" ); +/// +#define endoAssertMsg(a, msg) \ +if(!(a)) { \ + std::ostringstream s; \ + s << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " \ + << __LINE__ << ": " << msg; \ + throw std::invalid_argument(s.str()); \ + } + +#define endoAssertCode(assertCode) \ + assertCode + #endif #endif // mitkEndoDebug_h diff --git a/Modules/CameraCalibration/mitkEndoMacros.h b/Modules/CameraCalibration/mitkEndoMacros.h index c448efe2a4..ff43f90e17 100644 --- a/Modules/CameraCalibration/mitkEndoMacros.h +++ b/Modules/CameraCalibration/mitkEndoMacros.h @@ -1,96 +1,100 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkEndoMacros_h #define mitkEndoMacros_h /// /// COLLECTION OF MACROS FOR THE ENDOTRACKING MODULE /// /// /// multiplexing for cv mats /// #define endoAccessCvMat(function, T, arg1, arg2) \ if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else if( arg2.type() == cv::DataType::type ) \ function( arg1, arg2 ); \ else \ throw std::invalid_argument("Unknown type for cv::Mat"); /// /// exec an algorithm with 1 output argument /// #define endoExec(macroAlgName, macroOutputType, macroOutputVarName, ...)\ macroOutputType macroOutputVarName;\ { \ macroAlgName _macroAlgName(__VA_ARGS__, ¯oOutputVarName);\ _macroAlgName.Update();\ } /// /// exec an algorithm with 2 output argument /// #define endoExec2(macroAlgName, macroOutputType1, macroOutputVarName1, macroOutputType2, macroOutputVarName2, ...)\ macroOutputType1 macroOutputVarName1;\ macroOutputType1 macroOutputVarName1;\ { \ macroAlgName _macroAlgName(__VA_ARGS__, ¯oOutputVarName1, ¯oOutputVarName2);\ _macroAlgName.Update();\ } -/// -/// an assert macro for throwing exceptions from an assert -/// -#define endoAssert(a) if(!(a)) { \ -std::ostringstream s; \ -s << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " \ - << __LINE__ << ", failed: " << #a; \ -throw std::invalid_argument(s.str()); } - -/// -/// same as above but with an output error stream -/// use it like this: endoAssertMsg( file.read() == true, file << "could not be read" ); -/// -#define endoAssertMsg(a, msg) if(!(a)) { \ - std::ostringstream s; \ - s << mitk::EndoDebug::GetInstance().GetFilenameWithoutExtension(__FILE__) << ", " \ - << __LINE__ << ": " << msg; \ - throw std::invalid_argument(s.str()); \ - } - /// /// definition of the corresponding directory separator /// #ifdef WIN32 static const std::string DIR_SEPARATOR = "\\"; #else static const std::string DIR_SEPARATOR = "/"; #endif +#define endoSetInput(name, type) \ +public: \ + virtual void Set##name (const type _arg) \ + { \ + if ( this->m_##name != _arg ) \ + { \ + this->m_##name = _arg; \ + } \ + } \ +protected: \ + const type m_##name; + +#define endoSetOutput(name, type) \ +public: \ + virtual void Set##name (type _arg) \ + { \ + if ( this->m_##name != _arg ) \ + { \ + this->m_##name = _arg; \ + } \ + } \ +protected: \ + type m_##name; + #endif // mitkEndoMacros_h diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/mitkPartialVolumeAnalysisHistogramCalculator.cpp b/Modules/DiffusionImaging/DiffusionCore/Algorithms/mitkPartialVolumeAnalysisHistogramCalculator.cpp index d144cb3ffa..c84f89dbbd 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/mitkPartialVolumeAnalysisHistogramCalculator.cpp +++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/mitkPartialVolumeAnalysisHistogramCalculator.cpp @@ -1,1256 +1,1256 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPartialVolumeAnalysisHistogramCalculator.h" #include "mitkImageAccessByItk.h" #include "mitkExtractImageFilter.h" #include #include #include #include #include #include "itkResampleImageFilter.h" #include "itkGaussianInterpolateImageFunction.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "itkGaussianInterpolateImageFunction.h" #include "itkBSplineInterpolateImageFunction.h" #include "itkNearestNeighborInterpolateImageFunction.h" #include "itkImageMaskSpatialObject.h" #include "itkRegionOfInterestImageFilter.h" #include "itkListSample.h" #include #include namespace mitk { PartialVolumeAnalysisHistogramCalculator::PartialVolumeAnalysisHistogramCalculator() : m_MaskingMode( MASKING_MODE_NONE ), m_MaskingModeChanged( false ), m_NumberOfBins(256), m_UpsamplingFactor(1), m_GaussianSigma(0), m_ForceUpdate(false), m_PlanarFigureThickness(0) { m_EmptyHistogram = HistogramType::New(); m_EmptyHistogram->SetMeasurementVectorSize(1); HistogramType::SizeType histogramSize(1); histogramSize.Fill( 256 ); m_EmptyHistogram->Initialize( histogramSize ); m_EmptyStatistics.Reset(); } PartialVolumeAnalysisHistogramCalculator::~PartialVolumeAnalysisHistogramCalculator() { } void PartialVolumeAnalysisHistogramCalculator::SetImage( const mitk::Image *image ) { if ( m_Image != image ) { m_Image = image; this->Modified(); m_ImageStatisticsTimeStamp.Modified(); m_ImageStatisticsCalculationTriggerBool = true; } } void PartialVolumeAnalysisHistogramCalculator::AddAdditionalResamplingImage( const mitk::Image *image ) { m_AdditionalResamplingImages.push_back(image); this->Modified(); m_ImageStatisticsTimeStamp.Modified(); m_ImageStatisticsCalculationTriggerBool = true; } void PartialVolumeAnalysisHistogramCalculator::SetModified( ) { this->Modified(); m_ImageStatisticsTimeStamp.Modified(); m_ImageStatisticsCalculationTriggerBool = true; m_MaskedImageStatisticsTimeStamp.Modified(); m_MaskedImageStatisticsCalculationTriggerBool = true; m_PlanarFigureStatisticsTimeStamp.Modified(); m_PlanarFigureStatisticsCalculationTriggerBool = true; } void PartialVolumeAnalysisHistogramCalculator::SetImageMask( const mitk::Image *imageMask ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_Image->GetTimeSteps() != imageMask->GetTimeSteps() ) { itkExceptionMacro( << "Image and image mask need to have equal number of time steps!" ); } if ( m_ImageMask != imageMask ) { m_ImageMask = imageMask; this->Modified(); m_MaskedImageStatisticsTimeStamp.Modified(); m_MaskedImageStatisticsCalculationTriggerBool = true; } } void PartialVolumeAnalysisHistogramCalculator::SetPlanarFigure( const mitk::PlanarFigure *planarFigure ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_PlanarFigure != planarFigure ) { m_PlanarFigure = planarFigure; this->Modified(); m_PlanarFigureStatisticsTimeStamp.Modified(); m_PlanarFigureStatisticsCalculationTriggerBool = true; } } void PartialVolumeAnalysisHistogramCalculator::SetMaskingMode( unsigned int mode ) { if ( m_MaskingMode != mode ) { m_MaskingMode = mode; m_MaskingModeChanged = true; this->Modified(); } } void PartialVolumeAnalysisHistogramCalculator::SetMaskingModeToNone() { if ( m_MaskingMode != MASKING_MODE_NONE ) { m_MaskingMode = MASKING_MODE_NONE; m_MaskingModeChanged = true; this->Modified(); } } void PartialVolumeAnalysisHistogramCalculator::SetMaskingModeToImage() { if ( m_MaskingMode != MASKING_MODE_IMAGE ) { m_MaskingMode = MASKING_MODE_IMAGE; m_MaskingModeChanged = true; this->Modified(); } } void PartialVolumeAnalysisHistogramCalculator::SetMaskingModeToPlanarFigure() { if ( m_MaskingMode != MASKING_MODE_PLANARFIGURE ) { m_MaskingMode = MASKING_MODE_PLANARFIGURE; m_MaskingModeChanged = true; this->Modified(); } } bool PartialVolumeAnalysisHistogramCalculator::ComputeStatistics() { MITK_DEBUG << "ComputeStatistics() start"; if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image not set!" ); } if ( m_Image->GetReferenceCount() == 1 ) { MITK_DEBUG << "No Stats calculated; no one else holds a reference on it"; return false; } // If a mask was set but we are the only ones to still hold a reference on // it, delete it. if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() == 1) ) { m_ImageMask = NULL; } // Check if statistics is already up-to-date unsigned long imageMTime = m_ImageStatisticsTimeStamp.GetMTime(); unsigned long maskedImageMTime = m_MaskedImageStatisticsTimeStamp.GetMTime(); unsigned long planarFigureMTime = m_PlanarFigureStatisticsTimeStamp.GetMTime(); bool imageStatisticsCalculationTrigger = m_ImageStatisticsCalculationTriggerBool; bool maskedImageStatisticsCalculationTrigger = m_MaskedImageStatisticsCalculationTriggerBool; bool planarFigureStatisticsCalculationTrigger = m_PlanarFigureStatisticsCalculationTriggerBool; if ( /*prevent calculation without mask*/!m_ForceUpdate &&( m_MaskingMode == MASKING_MODE_NONE || ( ((m_MaskingMode != MASKING_MODE_NONE) || (imageMTime > m_Image->GetMTime() && !imageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_IMAGE) || (m_ImageMask.IsNotNull() && maskedImageMTime > m_ImageMask->GetMTime() && !maskedImageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_PLANARFIGURE) || (m_PlanarFigure.IsNotNull() && planarFigureMTime > m_PlanarFigure->GetMTime() && !planarFigureStatisticsCalculationTrigger)) ) ) ) { MITK_DEBUG << "Returning, statistics already up to date!"; if ( m_MaskingModeChanged ) { m_MaskingModeChanged = false; return true; } else { return false; } } // Reset state changed flag m_MaskingModeChanged = false; // Depending on masking mode, extract and/or generate the required image // and mask data from the user input this->ExtractImageAndMask( ); Statistics *statistics; HistogramType::ConstPointer *histogram; switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: statistics = &m_ImageStatistics; histogram = &m_ImageHistogram; m_ImageStatisticsTimeStamp.Modified(); m_ImageStatisticsCalculationTriggerBool = false; break; case MASKING_MODE_IMAGE: statistics = &m_MaskedImageStatistics; histogram = &m_MaskedImageHistogram; m_MaskedImageStatisticsTimeStamp.Modified(); m_MaskedImageStatisticsCalculationTriggerBool = false; break; case MASKING_MODE_PLANARFIGURE: statistics = &m_PlanarFigureStatistics; histogram = &m_PlanarFigureHistogram; m_PlanarFigureStatisticsTimeStamp.Modified(); m_PlanarFigureStatisticsCalculationTriggerBool = false; break; } // Calculate statistics and histogram(s) if ( m_InternalImage->GetDimension() == 3 ) { if ( m_MaskingMode == MASKING_MODE_NONE ) { // Reset state changed flag AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 3, *statistics, histogram ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 3, m_InternalImageMask3D.GetPointer(), *statistics, histogram ); } } else if ( m_InternalImage->GetDimension() == 2 ) { if ( m_MaskingMode == MASKING_MODE_NONE ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 2, *statistics, histogram ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 2, m_InternalImageMask2D.GetPointer(), *statistics, histogram ); } } else { MITK_ERROR << "ImageStatistics: Image dimension not supported!"; } // Release unused image smart pointers to free memory // m_InternalImage = mitk::Image::Pointer(); m_InternalImageMask3D = MaskImage3DType::Pointer(); m_InternalImageMask2D = MaskImage2DType::Pointer(); return true; } const PartialVolumeAnalysisHistogramCalculator::HistogramType * PartialVolumeAnalysisHistogramCalculator::GetHistogram( ) const { if ( m_Image.IsNull() ) { return NULL; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: return m_ImageHistogram; case MASKING_MODE_IMAGE: return m_MaskedImageHistogram; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogram; } } const PartialVolumeAnalysisHistogramCalculator::Statistics & PartialVolumeAnalysisHistogramCalculator::GetStatistics( ) const { if ( m_Image.IsNull() ) { return m_EmptyStatistics; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: return m_ImageStatistics; case MASKING_MODE_IMAGE: return m_MaskedImageStatistics; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatistics; } } void PartialVolumeAnalysisHistogramCalculator::ExtractImageAndMask( ) { MITK_DEBUG << "ExtractImageAndMask( ) start"; if ( m_Image.IsNull() ) { throw std::runtime_error( "Error: image empty!" ); } mitk::Image *timeSliceImage = const_cast(m_Image.GetPointer());//imageTimeSelector->GetOutput(); switch ( m_MaskingMode ) { case MASKING_MODE_NONE: { m_InternalImage = timeSliceImage; int s = m_AdditionalResamplingImages.size(); m_InternalAdditionalResamplingImages.resize(s); for(int i=0; i(m_AdditionalResamplingImages[i].GetPointer()); } m_InternalImageMask2D = NULL; m_InternalImageMask3D = NULL; break; } case MASKING_MODE_IMAGE: { if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() > 1) ) { ImageTimeSelector::Pointer maskedImageTimeSelector = ImageTimeSelector::New(); maskedImageTimeSelector->SetInput( m_ImageMask ); maskedImageTimeSelector->SetTimeNr( 0 ); maskedImageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceMaskedImage = maskedImageTimeSelector->GetOutput(); InternalMaskImage(timeSliceMaskedImage); if(m_UpsamplingFactor != 1) { InternalResampleImage(m_InternalImageMask3D); } AccessFixedDimensionByItk_1( timeSliceImage, InternalResampleImageFromMask, 3, -1 ); int s = m_AdditionalResamplingImages.size(); m_InternalAdditionalResamplingImages.resize(s); for(int i=0; iIsClosed() ) { throw std::runtime_error( "Masking not possible for non-closed figures" ); } const BaseGeometry *imageGeometry = timeSliceImage->GetUpdatedGeometry(); if ( imageGeometry == NULL ) { throw std::runtime_error( "Image geometry invalid!" ); } const PlaneGeometry *planarFigureGeometry2D = m_PlanarFigure->GetPlaneGeometry(); if ( planarFigureGeometry2D == NULL ) { throw std::runtime_error( "Planar-Figure not yet initialized!" ); } const PlaneGeometry *planarFigureGeometry = dynamic_cast< const PlaneGeometry * >( planarFigureGeometry2D ); if ( planarFigureGeometry == NULL ) { throw std::runtime_error( "Non-planar planar figures not supported!" ); } // unsigned int axis = 2; // unsigned int slice = 0; AccessFixedDimensionByItk_3( timeSliceImage, InternalReorientImagePlane, 3, timeSliceImage->GetGeometry(), m_PlanarFigure->GetGeometry(), -1 ); AccessFixedDimensionByItk_1( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 3, 2 ); int s = m_AdditionalResamplingImages.size(); for(int i=0; iGetGeometry(), m_PlanarFigure->GetGeometry(), i ); AccessFixedDimensionByItk_1( m_InternalAdditionalResamplingImages[i], InternalCropAdditionalImage, 3, i ); } } } } bool PartialVolumeAnalysisHistogramCalculator::GetPrincipalAxis( const Geometry3D *geometry, Vector3D vector, unsigned int &axis ) { vector.Normalize(); for ( unsigned int i = 0; i < 3; ++i ) { Vector3D axisVector = geometry->GetAxisVector( i ); axisVector.Normalize(); if ( fabs( fabs( axisVector * vector ) - 1.0) < mitk::eps ) { axis = i; return true; } } return false; } void PartialVolumeAnalysisHistogramCalculator::InternalMaskImage( mitk::Image *image ) { typedef itk::ImageMaskSpatialObject<3> ImageMaskSpatialObject; typedef itk::Image< unsigned char, 3 > ImageType; typedef itk::ImageRegion<3> RegionType; typedef mitk::ImageToItk CastType; CastType::Pointer caster = CastType::New(); caster->SetInput(image); caster->Update(); ImageMaskSpatialObject::Pointer maskSO = ImageMaskSpatialObject::New(); maskSO->SetImage ( caster->GetOutput() ); m_InternalMask3D = maskSO->GetAxisAlignedBoundingBoxRegion(); // check if bounding box is empty, if so set it to 1,1,1 // to prevent empty mask image if (m_InternalMask3D.GetSize()[0] == 0 ) { m_InternalMask3D.SetSize(0,1); m_InternalMask3D.SetSize(1,1); m_InternalMask3D.SetSize(2,1); } MITK_DEBUG << "Bounding Box Region: " << m_InternalMask3D; typedef itk::RegionOfInterestImageFilter< ImageType, MaskImage3DType > ROIFilterType; ROIFilterType::Pointer roi = ROIFilterType::New(); roi->SetRegionOfInterest(m_InternalMask3D); roi->SetInput(caster->GetOutput()); roi->Update(); m_InternalImageMask3D = roi->GetOutput(); MITK_DEBUG << "Created m_InternalImageMask3D"; } template < typename TPixel, unsigned int VImageDimension > void PartialVolumeAnalysisHistogramCalculator::InternalReorientImagePlane( const itk::Image< TPixel, VImageDimension > *image, mitk::BaseGeometry* , mitk::BaseGeometry* planegeo3D, int additionalIndex ) { MITK_DEBUG << "InternalReorientImagePlane() start"; typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< float, VImageDimension > FloatImageType; typedef itk::ResampleImageFilter ResamplerType; typename ResamplerType::Pointer resampler = ResamplerType::New(); mitk::PlaneGeometry* planegeo = dynamic_cast(planegeo3D); float upsamp = m_UpsamplingFactor; float gausssigma = m_GaussianSigma; // Spacing typename ResamplerType::SpacingType spacing = planegeo->GetSpacing(); spacing[0] = image->GetSpacing()[0] / upsamp; spacing[1] = image->GetSpacing()[1] / upsamp; spacing[2] = image->GetSpacing()[2]; if(m_PlanarFigureThickness) { spacing[2] = image->GetSpacing()[2] / upsamp; } resampler->SetOutputSpacing( spacing ); // Size typename ResamplerType::SizeType size; size[0] = planegeo->GetExtentInMM(0) / spacing[0]; size[1] = planegeo->GetExtentInMM(1) / spacing[1]; size[2] = 1+2*m_PlanarFigureThickness; // klaus add +2*m_PlanarFigureThickness MITK_DEBUG << "setting size2:="<SetSize( size ); // Origin typename mitk::Point3D orig = planegeo->GetOrigin(); typename mitk::Point3D corrorig; planegeo3D->WorldToIndex(orig,corrorig); corrorig[0] += 0.5/upsamp; corrorig[1] += 0.5/upsamp; if(m_PlanarFigureThickness) { float thickyyy = m_PlanarFigureThickness; thickyyy/=upsamp; corrorig[2] -= thickyyy; // klaus add -= (float)m_PlanarFigureThickness/upsamp statt += 0 } planegeo3D->IndexToWorld(corrorig,corrorig); resampler->SetOutputOrigin(corrorig ); // Direction typename ResamplerType::DirectionType direction; typename mitk::AffineTransform3D::MatrixType matrix = planegeo->GetIndexToWorldTransform()->GetMatrix(); for(int c=0; cSetOutputDirection( direction ); // Gaussian interpolation if(gausssigma != 0) { double sigma[3]; for( unsigned int d = 0; d < 3; d++ ) { sigma[d] = gausssigma * image->GetSpacing()[d]; } double alpha = 2.0; typedef itk::GaussianInterpolateImageFunction GaussianInterpolatorType; typename GaussianInterpolatorType::Pointer interpolator = GaussianInterpolatorType::New(); interpolator->SetInputImage( image ); interpolator->SetParameters( sigma, alpha ); resampler->SetInterpolator( interpolator ); } else { // typedef typename itk::BSplineInterpolateImageFunction // InterpolatorType; typedef typename itk::LinearInterpolateImageFunction InterpolatorType; typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); interpolator->SetInputImage( image ); resampler->SetInterpolator( interpolator ); } // Other resampling options resampler->SetInput( image ); resampler->SetDefaultPixelValue(0); MITK_DEBUG << "Resampling requested image plane ... "; resampler->Update(); MITK_DEBUG << " ... done"; if(additionalIndex < 0) { this->m_InternalImage = mitk::Image::New(); this->m_InternalImage->InitializeByItk( resampler->GetOutput() ); this->m_InternalImage->SetVolume( resampler->GetOutput()->GetBufferPointer() ); } else { unsigned int myIndex = additionalIndex; this->m_InternalAdditionalResamplingImages.push_back(mitk::Image::New()); this->m_InternalAdditionalResamplingImages[myIndex]->InitializeByItk( resampler->GetOutput() ); this->m_InternalAdditionalResamplingImages[myIndex]->SetVolume( resampler->GetOutput()->GetBufferPointer() ); } } template < typename TPixel, unsigned int VImageDimension > void PartialVolumeAnalysisHistogramCalculator::InternalResampleImageFromMask( const itk::Image< TPixel, VImageDimension > *image, int additionalIndex ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typename ImageType::Pointer outImage = ImageType::New(); outImage->SetSpacing( m_InternalImageMask3D->GetSpacing() ); // Set the image spacing outImage->SetOrigin( m_InternalImageMask3D->GetOrigin() ); // Set the image origin outImage->SetDirection( m_InternalImageMask3D->GetDirection() ); // Set the image direction outImage->SetRegions( m_InternalImageMask3D->GetLargestPossibleRegion() ); outImage->Allocate(); outImage->FillBuffer(0); typedef itk::InterpolateImageFunction BaseInterpType; typedef itk::GaussianInterpolateImageFunction GaussianInterpolatorType; typedef itk::LinearInterpolateImageFunction LinearInterpolatorType; typename BaseInterpType::Pointer interpolator; if(m_GaussianSigma != 0) { double sigma[3]; for( unsigned int d = 0; d < 3; d++ ) { sigma[d] = m_GaussianSigma * image->GetSpacing()[d]; } double alpha = 2.0; interpolator = GaussianInterpolatorType::New(); dynamic_cast(interpolator.GetPointer())->SetParameters( sigma, alpha ); } else { interpolator = LinearInterpolatorType::New(); } interpolator->SetInputImage( image ); itk::ImageRegionConstIterator itmask(m_InternalImageMask3D, m_InternalImageMask3D->GetLargestPossibleRegion()); itk::ImageRegionIterator itimage(outImage, outImage->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); itk::Point< double, 3 > point; itk::ContinuousIndex< double, 3 > index; while( !itmask.IsAtEnd() ) { if(itmask.Get() != 0) { outImage->TransformIndexToPhysicalPoint (itimage.GetIndex(), point); image->TransformPhysicalPointToContinuousIndex(point, index); itimage.Set(interpolator->EvaluateAtContinuousIndex(index)); } ++itmask; ++itimage; } if(additionalIndex < 0) { this->m_InternalImage = mitk::Image::New(); this->m_InternalImage->InitializeByItk( outImage.GetPointer() ); this->m_InternalImage->SetVolume( outImage->GetBufferPointer() ); } else { this->m_InternalAdditionalResamplingImages[additionalIndex] = mitk::Image::New(); this->m_InternalAdditionalResamplingImages[additionalIndex]->InitializeByItk( outImage.GetPointer() ); this->m_InternalAdditionalResamplingImages[additionalIndex]->SetVolume( outImage->GetBufferPointer() ); } } void PartialVolumeAnalysisHistogramCalculator::InternalResampleImage( const MaskImage3DType *image ) { typedef itk::ResampleImageFilter ResamplerType; ResamplerType::Pointer resampler = ResamplerType::New(); // Size ResamplerType::SizeType size; size[0] = m_UpsamplingFactor * image->GetLargestPossibleRegion().GetSize()[0]; size[1] = m_UpsamplingFactor * image->GetLargestPossibleRegion().GetSize()[1]; size[2] = m_UpsamplingFactor * image->GetLargestPossibleRegion().GetSize()[2];; resampler->SetSize( size ); // Origin mitk::Point3D orig = image->GetOrigin(); resampler->SetOutputOrigin(orig ); // Spacing ResamplerType::SpacingType spacing; spacing[0] = image->GetSpacing()[0] / m_UpsamplingFactor; spacing[1] = image->GetSpacing()[1] / m_UpsamplingFactor; spacing[2] = image->GetSpacing()[2] / m_UpsamplingFactor; resampler->SetOutputSpacing( spacing ); resampler->SetOutputDirection( image->GetDirection() ); typedef itk::NearestNeighborInterpolateImageFunction InterpolatorType; InterpolatorType::Pointer interpolator = InterpolatorType::New(); interpolator->SetInputImage( image ); resampler->SetInterpolator( interpolator ); // Other resampling options resampler->SetInput( image ); resampler->SetDefaultPixelValue(0); resampler->Update(); m_InternalImageMask3D = resampler->GetOutput(); } template < typename TPixel, unsigned int VImageDimension > void PartialVolumeAnalysisHistogramCalculator::InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, Statistics &statistics, typename HistogramType::ConstPointer *histogram ) { MITK_DEBUG << "InternalCalculateStatisticsUnmasked()"; typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned char, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; // Progress listening... typedef itk::SimpleMemberCommand< PartialVolumeAnalysisHistogramCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &PartialVolumeAnalysisHistogramCalculator::UnmaskedStatisticsProgressUpdate ); // Issue 100 artificial progress events since ScalarIMageToHistogramGenerator // does not (yet?) support progress reporting this->InvokeEvent( itk::StartEvent() ); for ( unsigned int i = 0; i < 100; ++i ) { this->UnmaskedStatisticsProgressUpdate(); } // Calculate statistics (separate filter) typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( image ); unsigned long observerTag = statisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); statisticsFilter->Update(); statisticsFilter->RemoveObserver( observerTag ); this->InvokeEvent( itk::EndEvent() ); statistics.N = image->GetBufferedRegion().GetNumberOfPixels(); statistics.Min = statisticsFilter->GetMinimum(); statistics.Max = statisticsFilter->GetMaximum(); statistics.Mean = statisticsFilter->GetMean(); statistics.Median = 0.0; statistics.Sigma = statisticsFilter->GetSigma(); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); typename ImageType::Pointer inImage = const_cast(image); // Calculate histogram typedef itk::Statistics::ScalarImageToHistogramGenerator< ImageType > HistogramGeneratorType; typename HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( inImage ); histogramGenerator->SetMarginalScale( 10 ); // Defines y-margin width of histogram histogramGenerator->SetNumberOfBins( m_NumberOfBins ); // CT range [-1024, +2048] --> bin size 4 values histogramGenerator->SetHistogramMin( statistics.Min ); histogramGenerator->SetHistogramMax( statistics.Max ); histogramGenerator->Compute(); *histogram = histogramGenerator->GetOutput(); } template < typename TPixel, unsigned int VImageDimension > void PartialVolumeAnalysisHistogramCalculator::InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned char, VImageDimension > *maskImage, Statistics &, typename HistogramType::ConstPointer *histogram ) { MITK_DEBUG << "InternalCalculateStatisticsMasked() start"; typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned char, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; // generate a list sample of angles at positions // where the fiber-prob is higher than .2*maxprob typedef TPixel MeasurementType; const unsigned int MeasurementVectorLength = 1; typedef itk::Vector< MeasurementType , MeasurementVectorLength > MeasurementVectorType; typedef itk::Statistics::ListSample< MeasurementVectorType > ListSampleType; typename ListSampleType::Pointer listSample = ListSampleType::New(); listSample->SetMeasurementVectorSize( MeasurementVectorLength ); itk::ImageRegionConstIterator itmask(maskImage, maskImage->GetLargestPossibleRegion()); itk::ImageRegionConstIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); while( !itmask.IsAtEnd() ) { if(itmask.Get() != 0) { // apend to list MeasurementVectorType mv; mv[0] = ( MeasurementType ) itimage.Get(); listSample->PushBack(mv); } ++itmask; ++itimage; } // generate a histogram from the list sample typedef double HistogramMeasurementType; typedef itk::Statistics::Histogram< HistogramMeasurementType, itk::Statistics::DenseFrequencyContainer2 > HistogramType; typedef itk::Statistics::SampleToHistogramFilter< ListSampleType, HistogramType > GeneratorType; typename GeneratorType::Pointer generator = GeneratorType::New(); typename GeneratorType::HistogramType::SizeType size(MeasurementVectorLength); size.Fill(m_NumberOfBins); generator->SetHistogramSize( size ); generator->SetInput( listSample ); generator->SetMarginalScale( 10.0 ); generator->Update(); *histogram = generator->GetOutput(); } template < typename TPixel, unsigned int VImageDimension > void PartialVolumeAnalysisHistogramCalculator::InternalCropAdditionalImage( itk::Image< TPixel, VImageDimension > *image, int additionalIndex ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::RegionOfInterestImageFilter< ImageType, ImageType > ROIFilterType; typename ROIFilterType::Pointer roi = ROIFilterType::New(); roi->SetRegionOfInterest(m_CropRegion); roi->SetInput(image); roi->Update(); m_InternalAdditionalResamplingImages[additionalIndex] = mitk::Image::New(); m_InternalAdditionalResamplingImages[additionalIndex]->InitializeByItk(roi->GetOutput()); m_InternalAdditionalResamplingImages[additionalIndex]->SetVolume(roi->GetOutput()->GetBufferPointer()); } template < typename TPixel, unsigned int VImageDimension > void PartialVolumeAnalysisHistogramCalculator::InternalCalculateMaskFromPlanarFigure( itk::Image< TPixel, VImageDimension > *image, unsigned int axis ) { MITK_DEBUG << "InternalCalculateMaskFromPlanarFigure() start"; typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, MaskImage3DType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with "1". MaskImage3DType::Pointer newMaskImage = MaskImage3DType::New(); newMaskImage->SetSpacing( image->GetSpacing() ); // Set the image spacing newMaskImage->SetOrigin( image->GetOrigin() ); // Set the image origin newMaskImage->SetDirection( image->GetDirection() ); // Set the image direction newMaskImage->SetRegions( image->GetLargestPossibleRegion() ); newMaskImage->Allocate(); newMaskImage->FillBuffer( 1 ); // Generate VTK polygon from (closed) PlanarFigure polyline // (The polyline points are shifted by -0.5 in z-direction to make sure // that the extrusion filter, which afterwards elevates all points by +0.5 // in z-direction, creates a 3D object which is cut by the the plane z=0) const mitk::PlaneGeometry *planarFigureGeometry2D = m_PlanarFigure->GetPlaneGeometry(); const typename PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const mitk::BaseGeometry *imageGeometry3D = m_InternalImage->GetGeometry( 0 ); vtkPolyData *polyline = vtkPolyData::New(); polyline->Allocate( 1, 1 ); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } // Create VTK polydata object of polyline contour bool outOfBounds = false; vtkPoints *points = vtkPoints::New(); typename PlanarFigure::PolyLineType::const_iterator it; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image - mitk::Point2D point2D = it->Point; + mitk::Point2D point2D = *it; planarFigureGeometry2D->WorldToIndex(point2D, point2D); point2D[0] -= 0.5/m_UpsamplingFactor; point2D[1] -= 0.5/m_UpsamplingFactor; planarFigureGeometry2D->IndexToWorld(point2D, point2D); planarFigureGeometry2D->Map( point2D, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { outOfBounds = true; } imageGeometry3D->WorldToIndex( point3D, point3D ); point3D[i0] += 0.5; point3D[i1] += 0.5; // Add point to polyline array points->InsertNextPoint( point3D[i0], point3D[i1], -0.5 ); } polyline->SetPoints( points ); points->Delete(); if ( outOfBounds ) { polyline->Delete(); throw std::runtime_error( "Figure at least partially outside of image bounds!" ); } std::size_t numberOfPoints = planarFigurePolyline.size(); vtkIdType *ptIds = new vtkIdType[numberOfPoints]; for ( std::size_t i = 0; i < numberOfPoints; ++i ) { ptIds[i] = i; } polyline->InsertNextCell( VTK_POLY_LINE, numberOfPoints, ptIds ); // Extrude the generated contour polygon vtkLinearExtrusionFilter *extrudeFilter = vtkLinearExtrusionFilter::New(); extrudeFilter->SetInputData( polyline ); extrudeFilter->SetScaleFactor( 1 ); extrudeFilter->SetExtrusionTypeToNormalExtrusion(); extrudeFilter->SetVector( 0.0, 0.0, 1.0 ); // Make a stencil from the extruded polygon vtkPolyDataToImageStencil *polyDataToImageStencil = vtkPolyDataToImageStencil::New(); polyDataToImageStencil->SetInputConnection( extrudeFilter->GetOutputPort() ); // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< MaskImage3DType > ImageImportType; typedef itk::VTKImageExport< MaskImage3DType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( newMaskImage ); vtkImageImport *vtkImporter = vtkImageImport::New(); this->ConnectPipelines( itkExporter, vtkImporter ); vtkImporter->Update(); // Apply the generated image stencil to the input image vtkImageStencil *imageStencilFilter = vtkImageStencil::New(); imageStencilFilter->SetInputData( vtkImporter->GetOutput() ); imageStencilFilter->SetStencilConnection(polyDataToImageStencil->GetOutputPort() ); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); // Export from VTK back to ITK vtkImageExport *vtkExporter = vtkImageExport::New(); vtkExporter->SetInputData( imageStencilFilter->GetOutput() ); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); // calculate cropping bounding box m_InternalImageMask3D = itkImporter->GetOutput(); m_InternalImageMask3D->SetDirection(image->GetDirection()); itk::ImageRegionIterator itmask(m_InternalImageMask3D, m_InternalImageMask3D->GetLargestPossibleRegion()); itmask.GoToBegin(); while( !itmask.IsAtEnd() ) { if(itmask.Get() != 0) { typename ImageType::IndexType index = itmask.GetIndex(); for(unsigned int thick=0; thick<2*m_PlanarFigureThickness+1; thick++) { index[axis] = thick; m_InternalImageMask3D->SetPixel(index, itmask.Get()); } } ++itmask; } itmask.GoToBegin(); itk::ImageRegionIterator itimage(image, image->GetLargestPossibleRegion()); itimage.GoToBegin(); typename ImageType::SizeType lowersize; lowersize.Fill(std::numeric_limits::max()); typename ImageType::SizeType uppersize; uppersize.Fill(std::numeric_limits::min()); while( !itmask.IsAtEnd() ) { if(itmask.Get() == 0) { itimage.Set(0); } else { typename ImageType::IndexType index = itimage.GetIndex(); typename ImageType::SizeType signedindex; signedindex[0] = index[0]; signedindex[1] = index[1]; signedindex[2] = index[2]; lowersize[0] = signedindex[0] < lowersize[0] ? signedindex[0] : lowersize[0]; lowersize[1] = signedindex[1] < lowersize[1] ? signedindex[1] : lowersize[1]; lowersize[2] = signedindex[2] < lowersize[2] ? signedindex[2] : lowersize[2]; uppersize[0] = signedindex[0] > uppersize[0] ? signedindex[0] : uppersize[0]; uppersize[1] = signedindex[1] > uppersize[1] ? signedindex[1] : uppersize[1]; uppersize[2] = signedindex[2] > uppersize[2] ? signedindex[2] : uppersize[2]; } ++itmask; ++itimage; } typename ImageType::IndexType index; index[0] = lowersize[0]; index[1] = lowersize[1]; index[2] = lowersize[2]; typename ImageType::SizeType size; size[0] = uppersize[0] - lowersize[0] + 1; size[1] = uppersize[1] - lowersize[1] + 1; size[2] = uppersize[2] - lowersize[2] + 1; m_CropRegion = itk::ImageRegion<3>(index, size); // crop internal image typedef itk::RegionOfInterestImageFilter< ImageType, ImageType > ROIFilterType; typename ROIFilterType::Pointer roi = ROIFilterType::New(); roi->SetRegionOfInterest(m_CropRegion); roi->SetInput(image); roi->Update(); m_InternalImage = mitk::Image::New(); m_InternalImage->InitializeByItk(roi->GetOutput()); m_InternalImage->SetVolume(roi->GetOutput()->GetBufferPointer()); // crop internal mask typedef itk::RegionOfInterestImageFilter< MaskImage3DType, MaskImage3DType > ROIMaskFilterType; typename ROIMaskFilterType::Pointer roi2 = ROIMaskFilterType::New(); roi2->SetRegionOfInterest(m_CropRegion); roi2->SetInput(m_InternalImageMask3D); roi2->Update(); m_InternalImageMask3D = roi2->GetOutput(); // Clean up VTK objects polyline->Delete(); extrudeFilter->Delete(); polyDataToImageStencil->Delete(); vtkImporter->Delete(); imageStencilFilter->Delete(); //vtkExporter->Delete(); // TODO: crashes when outcommented; memory leak?? delete[] ptIds; } void PartialVolumeAnalysisHistogramCalculator::UnmaskedStatisticsProgressUpdate() { // Need to throw away every second progress event to reach a final count of // 100 since two consecutive filters are used in this case static int updateCounter = 0; if ( updateCounter++ % 2 == 0 ) { this->InvokeEvent( itk::ProgressEvent() ); } } void PartialVolumeAnalysisHistogramCalculator::MaskedStatisticsProgressUpdate() { this->InvokeEvent( itk::ProgressEvent() ); } } diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake b/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake index e1e74266f2..e1079f3acf 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake +++ b/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake @@ -1,12 +1,13 @@ set(MODULE_TESTS mitkFactoryRegistrationTest.cpp mitkDiffusionImageEqualTest.cpp mitkNonLocalMeansDenoisingTest.cpp + mitkDiffusionImageEqualTest.cpp ) set(MODULE_CUSTOM_TESTS mitkPyramidImageRegistrationMethodTest.cpp mitkDWHeadMotionCorrectionTest.cpp mitkImageReconstructionTest.cpp ) diff --git a/Modules/DiffusionImaging/MiniApps/DicomFolderDump.cpp b/Modules/DiffusionImaging/MiniApps/DicomFolderDump.cpp new file mode 100644 index 0000000000..de7b606c92 --- /dev/null +++ b/Modules/DiffusionImaging/MiniApps/DicomFolderDump.cpp @@ -0,0 +1,85 @@ +/*=================================================================== + +The Medical Imaging Interaction Toolkit (MITK) + +Copyright (c) German Cancer Research Center, +Division of Medical and Biological Informatics. +All rights reserved. + +This software is distributed WITHOUT ANY WARRANTY; without +even the implied warranty of MERCHANTABILITY or FITNESS FOR +A PARTICULAR PURPOSE. + +See LICENSE.txt or http://www.mitk.org for details. + +===================================================================*/ + + +#include "MiniAppManager.h" + +#include "mitkDicomSeriesReader.h" +#include "mitkProperties.h" +// CTK +#include "ctkCommandLineParser.h" +#include "mitkIOUtil.h" + + +int DicomFolderDump(int argc, char* argv[]) +{ + ctkCommandLineParser parser; + parser.setArgumentPrefix("--","-"); + // Add command line argument names + parser.addArgument("help", "h",ctkCommandLineParser::Bool, "Show this help text"); + parser.addArgument("xml", "x",ctkCommandLineParser::Bool, "Print a XML description of this modules command line interface"); + parser.addArgument("input", "i", ctkCommandLineParser::String, "Input folder",us::Any(),false); + parser.addArgument("output", "o", ctkCommandLineParser::String, "Output folder (ending with /)",us::Any(),false); + parser.addArgument("filename", "f", ctkCommandLineParser::String, "Output filename (incl. .nrrd)",us::Any(),false); + + map parsedArgs = parser.parseArguments(argc, argv); + + + // Show a help message + if ( parsedArgs.count("help") || parsedArgs.count("h")) + { + std::cout << parser.helpText(); + return EXIT_SUCCESS; + } + + std::string inputFolder = us::any_cast(parsedArgs["input"]); + std::string outputFolder = us::any_cast(parsedArgs["output"]); + std::string outFileName = us::any_cast(parsedArgs["filename"]); + + //check if DICOMTags have been set as property for mitk::Image + mitk::DicomSeriesReader::FileNamesGrouping seriesInFiles = mitk::DicomSeriesReader::GetSeries( inputFolder, true ); + std::list images; + std::map fileMap; + + // TODO sort series UIDs, implementation of map iterator might differ on different platforms (or verify this is a standard topic??) + for (mitk::DicomSeriesReader::FileNamesGrouping::const_iterator seriesIter = seriesInFiles.begin(); + seriesIter != seriesInFiles.end(); + ++seriesIter) + { + mitk::DicomSeriesReader::StringContainer files = seriesIter->second.GetFilenames(); + + mitk::DataNode::Pointer node = mitk::DicomSeriesReader::LoadDicomSeries( files ); + + if (node.IsNotNull()) + { + mitk::Image::Pointer image = dynamic_cast( node->GetData() ); + + images.push_back( image ); + fileMap.insert( std::pair(image,files)); + } + } + + // WARN: EXPECT ONLY ONE ITEM PER FOLDER + for ( std::list::const_iterator imageIter = images.begin(); + imageIter != images.end(); + ++imageIter ) + { + const mitk::Image::Pointer image = *imageIter; + mitk::IOUtil::SaveImage(image,outputFolder + outFileName); + } + return EXIT_SUCCESS; +} +RegisterDiffusionMiniApp(DicomFolderDump); diff --git a/Modules/DiffusionImaging/MiniApps/files.cmake b/Modules/DiffusionImaging/MiniApps/files.cmake index d8e72a7df5..26a8d5afb8 100644 --- a/Modules/DiffusionImaging/MiniApps/files.cmake +++ b/Modules/DiffusionImaging/MiniApps/files.cmake @@ -1,27 +1,28 @@ set(CPP_FILES mitkDiffusionMiniApps.cpp MiniAppManager.cpp BatchedFolderRegistration.cpp + DicomFolderDump.cpp FileFormatConverter.cpp TensorReconstruction.cpp TensorDerivedMapsExtraction.cpp QballReconstruction.cpp DiffusionIndices.cpp ExtractImageStatistics.cpp CopyGeometry.cpp GibbsTracking.cpp StreamlineTracking.cpp FiberProcessing.cpp LocalDirectionalFiberPlausibility.cpp #TractogramAngularError.cpp FiberDirectionExtraction.cpp PeakExtraction.cpp PeaksAngularError.cpp MultishellMethods.cpp #FiberFoxProcessing.cpp ExportShImage.cpp NetworkCreation.cpp NetworkStatistics.cpp DwiDenoising.cpp ) diff --git a/Modules/Ext/Algorithms/mitkAngleCorrectByPointFilter.cpp b/Modules/Ext/Algorithms/mitkAngleCorrectByPointFilter.cpp index 3aa3dc0ee5..01bb587e8d 100644 --- a/Modules/Ext/Algorithms/mitkAngleCorrectByPointFilter.cpp +++ b/Modules/Ext/Algorithms/mitkAngleCorrectByPointFilter.cpp @@ -1,228 +1,229 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkAngleCorrectByPointFilter.h" #include "mitkIpPic.h" #include "mitkImageTimeSelector.h" #include "mitkProperties.h" #include "mitkImageReadAccessor.h" #include mitk::AngleCorrectByPointFilter::AngleCorrectByPointFilter() : m_PreferTransducerPositionFromProperty(true) { m_Center.Fill(0); m_TransducerPosition.Fill(0); } mitk::AngleCorrectByPointFilter::~AngleCorrectByPointFilter() { - } void mitk::AngleCorrectByPointFilter::GenerateOutputInformation() { mitk::Image::ConstPointer input = this->GetInput(); mitk::Image::Pointer output = this->GetOutput(); if ((output->IsInitialized()) && (this->GetMTime() <= m_TimeOfHeaderInitialization.GetMTime())) return; itkDebugMacro(<<"GenerateOutputInformation()"); unsigned int i; unsigned int *tmpDimensions = new unsigned int[input->GetDimension()]; for(i=0;iGetDimension();++i) tmpDimensions[i]=input->GetDimension(i); //@todo maybe we should shift the following somehow in ImageToImageFilter mitk::PixelType scalarPType = MakeScalarPixelType(); output->Initialize(scalarPType, input->GetDimension(), tmpDimensions, input->GetNumberOfChannels()); output->GetSlicedGeometry()->SetSpacing(input->GetSlicedGeometry()->GetSpacing()); //output->GetSlicedGeometry()->SetPlaneGeometry(mitk::Image::BuildStandardPlanePlaneGeometry(output->GetSlicedGeometry(), tmpDimensions).GetPointer(), 0); //output->GetSlicedGeometry()->SetEvenlySpaced(); //set the timebounds - after SetPlaneGeometry, so that the already created PlaneGeometry will also receive this timebounds. //@fixme!!! will not work for not evenly timed data! - output->GetSlicedGeometry()->SetTimeBounds(input->GetSlicedGeometry()->GetTimeBounds()); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(output->GetSlicedGeometry(), output->GetTimeGeometry()->CountTimeSteps()); + timeGeometry->SetFirstTimePoint(output->GetTimeGeometry()->GetMinimumTimePoint()); + TimePointType stepDuration = input->GetTimeGeometry()->GetMaximumTimePoint(0) -input->GetTimeGeometry()->GetMinimumTimePoint(0); + timeGeometry->SetStepDuration(stepDuration); output->SetTimeGeometry(timeGeometry); output->SetPropertyList(input->GetPropertyList()->Clone()); delete [] tmpDimensions; m_TimeOfHeaderInitialization.Modified(); } void mitk::AngleCorrectByPointFilter::GenerateData() { mitk::Image::ConstPointer input = this->GetInput(); mitk::Image::Pointer output = this->GetOutput(); if(m_PreferTransducerPositionFromProperty) { mitk::Point3iProperty::Pointer pointProp; pointProp = dynamic_cast(input->GetProperty("ORIGIN").GetPointer()); if (pointProp.IsNotNull() ) { const itk::Point & p = pointProp->GetValue(); m_TransducerPosition[0] = p[0]; m_TransducerPosition[1] = p[1]; m_TransducerPosition[2] = p[2]; } } itkDebugMacro( << "compute angle corrected image .... " ); itkDebugMacro( << " Center[0]=" << m_Center[0] << " Center[1]=" << m_Center[1] << " Center[2]=" << m_Center[2] ); itkDebugMacro( << " TransducerPosition[0]=" << m_TransducerPosition[0] << " TransducerPosition[1]=" << m_TransducerPosition[1] << " TransducerPosition[2]=" << m_TransducerPosition[2] ); const Vector3D & spacing = input->GetSlicedGeometry()->GetSpacing(); // MITK_INFO << " in: xres=" << spacing[0] << " yres=" << spacing[1] << " zres=" << spacing[2] << std::endl; if((spacing[0]!=spacing[1]) || (spacing[0]!=spacing[2])) { itkExceptionMacro("filter does not work for uninsotropic data: spacing: ("<< spacing[0] << "," << spacing[1] << "," << spacing[2] << ")"); } Vector3D p; Vector3D tx_direction; Vector3D tx_position = m_TransducerPosition.GetVectorFromOrigin(); Vector3D center = m_Center.GetVectorFromOrigin(); Vector3D assumed_direction; ScalarType &x=p[0]; ScalarType &y=p[1]; ScalarType &z=p[2]; Vector3D down; FillVector3D(down,0.0,0.0,-1.0); int xDim = input->GetDimension(0); int yDim = input->GetDimension(1); int zDim = input->GetDimension(2); mitkIpPicDescriptor* pic_out; pic_out = mitkIpPicNew(); pic_out->dim = 3; pic_out->bpe = output->GetPixelType().GetBpe(); //pic_out->type = output->GetPixelType().GetType(); pic_out->n[0] = xDim; pic_out->n[1] = yDim; pic_out->n[2] = zDim; pic_out->data = malloc(_mitkIpPicSize(pic_out)); //go! mitk::ImageTimeSelector::Pointer timeSelector=mitk::ImageTimeSelector::New(); timeSelector->SetInput(input); int nstart, nmax; int tstart, tmax; tstart=output->GetRequestedRegion().GetIndex(3); nstart=output->GetRequestedRegion().GetIndex(4); tmax=tstart+output->GetRequestedRegion().GetSize(3); nmax=nstart+output->GetRequestedRegion().GetSize(4); int n,t; for(n=nstart;nGetNumberOfChannels();++n) { timeSelector->SetChannelNr(n); for(t=tstart;tSetTimeNr(t); timeSelector->Update(); typedef unsigned char InputImagePixelType; typedef ScalarType OutputImagePixelType; if(input->GetPixelType().GetPixelType() != itk::ImageIOBase::SCALAR || input->GetPixelType().GetComponentType()!= MapPixelComponentType::value) { itkExceptionMacro("only implemented for " << typeid(PixelType).name() ); } InputImagePixelType *in; OutputImagePixelType *out; mitk::ImageReadAccessor tsOutAcc(timeSelector->GetOutput()); in = (InputImagePixelType *)tsOutAcc.GetData(); out = (OutputImagePixelType*)pic_out->data; for (z=0 ; zvnl_math::pi_over_4) { assumed_direction = center-p; assumed_direction.Normalize(); ScalarType cos_factor = tx_direction*assumed_direction; if(fabs(cos_factor)>eps) *out=((ScalarType)(*in)-128.0)/cos_factor; else *out=((ScalarType)(*in)-128.0)/eps; } //else // *out=0; } } } //output->SetPicVolume(pic_out, t, n); } } } void mitk::AngleCorrectByPointFilter::GenerateInputRequestedRegion() { Superclass::GenerateInputRequestedRegion(); mitk::ImageToImageFilter::InputImagePointer input = const_cast< mitk::ImageToImageFilter::InputImageType * > ( this->GetInput() ); mitk::Image::Pointer output = this->GetOutput(); Image::RegionType requestedRegion; requestedRegion = output->GetRequestedRegion(); requestedRegion.SetIndex(0, 0); requestedRegion.SetIndex(1, 0); requestedRegion.SetIndex(2, 0); //requestedRegion.SetIndex(3, 0); //requestedRegion.SetIndex(4, 0); requestedRegion.SetSize(0, input->GetDimension(0)); requestedRegion.SetSize(1, input->GetDimension(1)); requestedRegion.SetSize(2, input->GetDimension(2)); //requestedRegion.SetSize(3, output->GetDimension(3)); //requestedRegion.SetSize(4, output->GetNumberOfChannels()); input->SetRequestedRegion( & requestedRegion ); } diff --git a/Modules/Ext/Algorithms/mitkCylindricToCartesianFilter.cpp b/Modules/Ext/Algorithms/mitkCylindricToCartesianFilter.cpp index 25333af8fc..45ac8276fd 100644 --- a/Modules/Ext/Algorithms/mitkCylindricToCartesianFilter.cpp +++ b/Modules/Ext/Algorithms/mitkCylindricToCartesianFilter.cpp @@ -1,501 +1,504 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCylindricToCartesianFilter.h" #include "mitkImageTimeSelector.h" #include "mitkSlicedGeometry3D.h" #include "mitkPlaneGeometry.h" #include "mitkProperties.h" #include "mitkLegacyAdaptors.h" #include #include template void _transform(mitkIpPicDescriptor *pic, mitkIpPicDescriptor *dest, float _outsideValue, float *fr, float *fphi, float *fz, short *rt, unsigned int *phit, unsigned int *zt, mitkIpPicDescriptor *coneCutOff_pic) //...t=truncated { T outsideValue = static_cast(_outsideValue); register float f, ft, f0, f1, f2, f3; mitkIpInt2_t ox_size; mitkIpInt2_t nx_size, ny_size, nz_size; int oxy_size, nxy_size; T* orig, *dp, *dest_start; mitkIpInt2_t* coneCutOff=(mitkIpInt2_t*)coneCutOff_pic->data; orig=(T*)pic->data; ox_size=pic->n[0]; oxy_size=ox_size*pic->n[1]; nx_size=dest->n[0]; ny_size=dest->n[1]; nxy_size=nx_size*ny_size; nz_size=dest->n[2]; /*nx_size=360; ny_size=360; nxy_size=nx_size*ny_size; nz_size=256;*/ dest_start=dp=((T*)dest->data)+nxy_size*(nz_size-1); mitkIpInt2_t y; // int size=_mitkIpPicElements(pic); register mitkIpInt2_t x,z; for(y=0;y=0) { x_start=0; x_end=nx_size; } else { x_start=-r0plusphi0; x_end=nx_size+r0plusphi0; for(z=0;ztype=mitkIpPicInt; rt_pic->bpe=16; rt_pic->dim=2; rt_pic->n[0]=rt_pic->n[1]=new_xsize; rt_pic->data=malloc(_mitkIpPicSize(rt_pic)); phit_pic=mitkIpPicNew(); phit_pic->type=mitkIpPicUInt; phit_pic->bpe=32; phit_pic->dim=2; phit_pic->n[0]=phit_pic->n[1]=new_xsize; phit_pic->data=malloc(_mitkIpPicSize(phit_pic)); fr_pic=mitkIpPicNew(); fr_pic->type=mitkIpPicFloat; fr_pic->bpe=32; fr_pic->dim=2; fr_pic->n[0]=fr_pic->n[1]=new_xsize; fr_pic->data=malloc(_mitkIpPicSize(fr_pic)); fphi_pic=mitkIpPicNew(); fphi_pic->type=mitkIpPicFloat; fphi_pic->bpe=32; fphi_pic->dim=2; fphi_pic->n[0]=fphi_pic->n[1]=new_xsize; fphi_pic->data=malloc(_mitkIpPicSize(fphi_pic)); mitkIpInt2_t *rtp=(mitkIpInt2_t*)rt_pic->data, *rt_xzero, rt, phit; mitkIpUInt4_t *phitp=(mitkIpUInt4_t*)phit_pic->data; mitkIpFloat4_t *fr=(mitkIpFloat4_t *)fr_pic->data; mitkIpFloat4_t *fphi=(mitkIpFloat4_t *)fphi_pic->data; mitkIpFloat4_t r, phi, scale=(double)orig_xsize/(double)new_xsize; int x,y,xy0,xy0_orig, oxy_size, new_zsize; oxy_size=orig_xsize*orig_ysize; xy0=(int)(((double)new_xsize)/2+0.5); xy0_orig=(int)(((double)orig_xsize)/2+0.5); new_zsize=(int)(orig_ysize/scale); // \bug y compared to x for(y=0;yanfangen bei -rt+1!*/ // if((x>=-rt) && (xxy0?1.0:-1.0)*scale+xy0_orig; else r=r*(x>xy0?-1.0:1.0)*scale+xy0_orig; rt=(mitkIpInt2_t)r; int xtmp=x; if(x>xy0) xtmp=new_xsize-x; if(rt<0) { r=rt=0; if(xtmp>-*rt_xzero) *rt_xzero=-xtmp; *fr=0; } else if(rt>orig_xsize-1) { r=rt=orig_xsize-1; if(xtmp>-*rt_xzero) *rt_xzero=-xtmp; *fr=0; } else *fr=r-rt; if(*fr<0) *fr=0; } // else // *fr=0; phi=orig_zsize-(yq==0?1:-atan((float)xq/yq)/M_PI+0.5)*orig_zsize; phit=(mitkIpUInt4_t)phi; *fphi=phi-phit; *rtp=rt; *phitp=phit*oxy_size; } } zt=(unsigned int *)malloc(sizeof(unsigned int)*new_zsize); fz=(float *)malloc(sizeof(float)*new_zsize); float *fzp=fz; unsigned int *ztp=zt; int z; float z_step=orig_ysize/(orig_ysize*((float)new_xsize)/orig_xsize); for(z=0;ztype=mitkIpPicInt; coneCutOff_pic->bpe=16; coneCutOff_pic->dim=2; coneCutOff_pic->n[0]=coneCutOff_pic->n[1]=rt_pic->n[0]; coneCutOff_pic->data=malloc(_mitkIpPicSize(coneCutOff_pic)); int i, size=_mitkIpPicElements(rt_pic); mitkIpInt2_t *rt, *ccop, ohx_size, nz_size; mitkIpFloat4_t *fr; a*=(float)rt_pic->n[0]/orig_xsize; b*=(float)rt_pic->n[0]/orig_xsize; ohx_size=orig_xsize/2; nz_size=orig_ysize*rt_pic->n[0]/orig_xsize; rt=(mitkIpInt2_t *)rt_pic->data; fr=(mitkIpFloat4_t*)fr_pic->data; ccop=(mitkIpInt2_t *)coneCutOff_pic->data; for(i=0; i=nz_size) cco=nz_size; *ccop=cco; } } void mitk::CylindricToCartesianFilter::GenerateOutputInformation() { mitk::Image::Pointer output = this->GetOutput(); if ((output->IsInitialized()) && (output->GetPipelineMTime() <= m_TimeOfHeaderInitialization.GetMTime())) return; mitk::Image::ConstPointer input = this->GetInput(); itkDebugMacro(<<"GenerateOutputInformation()"); unsigned int i, *tmpDimensions=new unsigned int[std::max(3u,input->GetDimension())]; tmpDimensions[0]=m_TargetXSize; if(tmpDimensions[0]==0) tmpDimensions[0] = input->GetDimension(0); float scale=((float)tmpDimensions[0])/input->GetDimension(0); tmpDimensions[1] = tmpDimensions[0]; tmpDimensions[2] = (unsigned int)(scale*input->GetDimension(1)); for(i=3;iGetDimension();++i) tmpDimensions[i]=input->GetDimension(i); output->Initialize(input->GetPixelType(), input->GetDimension(), tmpDimensions, input->GetNumberOfChannels()); // initialize the spacing of the output Vector3D spacing = input->GetSlicedGeometry()->GetSpacing(); if(input->GetDimension()>=2) spacing[2]=spacing[1]; else spacing[2] = 1.0; spacing[1] = spacing[0]; spacing *= 1.0/scale; output->GetSlicedGeometry()->SetSpacing(spacing); mitk::Point3iProperty::Pointer pointProp; pointProp = dynamic_cast(input->GetProperty("ORIGIN").GetPointer()); if (pointProp.IsNotNull() ) { itk::Point tp = pointProp->GetValue(); tp[2] = (int)(tmpDimensions[2]-tp[1] * scale-1); tp[0] = tmpDimensions[0]/2; tp[1] = tmpDimensions[0]/2; mitk::Point3iProperty::Pointer pointProp = mitk::Point3iProperty::New(tp); output->SetProperty("ORIGIN", pointProp); } delete [] tmpDimensions; //output->GetSlicedGeometry()->SetPlaneGeometry(mitk::Image::BuildStandardPlanePlaneGeometry(output->GetSlicedGeometry(), tmpDimensions).GetPointer(), 0); //set the timebounds - after SetPlaneGeometry, so that the already created PlaneGeometry will also receive this timebounds. //@fixme!!! will not work for not evenly timed data! - output->GetSlicedGeometry()->SetTimeBounds(input->GetSlicedGeometry()->GetTimeBounds()); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(output->GetSlicedGeometry(), output->GetTimeGeometry()->CountTimeSteps()); + timeGeometry->Initialize(output->GetSlicedGeometry(), output->GetTimeGeometry()->CountTimeSteps()); + timeGeometry->SetFirstTimePoint(input->GetTimeGeometry()->GetMinimumTimePoint()); + TimePointType stepDuration = input->GetTimeGeometry()->GetMaximumTimePoint(0) -input->GetTimeGeometry()->GetMinimumTimePoint(0); + timeGeometry->SetStepDuration(stepDuration); output->SetTimeGeometry(timeGeometry); output->SetPropertyList(input->GetPropertyList()->Clone()); m_TimeOfHeaderInitialization.Modified(); } void mitk::CylindricToCartesianFilter::GenerateData() { mitk::Image::ConstPointer input = this->GetInput(); mitk::Image::Pointer output = this->GetOutput(); mitk::ImageTimeSelector::Pointer timeSelector=mitk::ImageTimeSelector::New(); timeSelector->SetInput(input); mitkIpPicDescriptor* pic_transformed=NULL; pic_transformed = mitkIpPicNew(); pic_transformed->dim=3; pic_transformed->bpe = output->GetPixelType().GetBpe(); //pic_transformed->type = output->GetPixelType().GetType(); pic_transformed->n[0] = output->GetDimension(0); pic_transformed->n[1] = output->GetDimension(1); pic_transformed->n[2] = output->GetDimension(2); pic_transformed->data=malloc(_mitkIpPicSize(pic_transformed)); int nstart, nmax; int tstart, tmax; tstart=output->GetRequestedRegion().GetIndex(3); nstart=output->GetRequestedRegion().GetIndex(4); tmax=tstart+output->GetRequestedRegion().GetSize(3); nmax=nstart+output->GetRequestedRegion().GetSize(4); if(zt==NULL) { timeSelector->SetChannelNr(nstart); timeSelector->SetTimeNr(tstart); buildTransformShortCuts(input->GetDimension(0),input->GetDimension(1), input->GetDimension(2), output->GetDimension(0), rt_pic, phit_pic, fr_pic, fphi_pic, zt, fz); // query the line limiting the sector a=b=0; mitk::FloatProperty::Pointer prop; prop = dynamic_cast(input->GetProperty("SECTOR LIMITING LINE SLOPE").GetPointer()); if (prop.IsNotNull() ) a = prop->GetValue(); prop = dynamic_cast(input->GetProperty("SECTOR LIMITING LINE OFFSET").GetPointer()); if (prop.IsNotNull() ) b = prop->GetValue(); buildConeCutOffShortCut(input->GetDimension(0),input->GetDimension(1), rt_pic, fr_pic, a, b, coneCutOff_pic); // mitkIpPicPut("C:\\temp\\rt_90.pic",rt_pic); //mitkIpPicPut("C:\\temp\\coneCutOff.pic", coneCutOff_pic); } int n,t; for(n=nstart;nGetNumberOfChannels();++n) { timeSelector->SetChannelNr(n); for(t=tstart;tSetTimeNr(t); timeSelector->Update(); // Cast to pic descriptor for the timeSelector image mitkIpPicDescriptor* timeSelectorPic = mitkIpPicNew(); mitk::ImageWriteAccessor imageAccess(timeSelector->GetOutput()); CastToIpPicDescriptor( timeSelector->GetOutput(), &imageAccess, timeSelectorPic ); _mitkIpPicFreeTags(pic_transformed->info->tags_head); pic_transformed->info->tags_head = _mitkIpPicCloneTags(timeSelectorPic->info->tags_head); if(input->GetDimension(2)>1) { mitkIpPicTypeMultiplex9(_transform, timeSelectorPic , pic_transformed, m_OutsideValue, (float*)fr_pic->data, (float*)fphi_pic->data, fz, (short *)rt_pic->data, (unsigned int *)phit_pic->data, zt, coneCutOff_pic); // mitkIpPicPut("1trf.pic",pic_transformed); } else { mitkIpPicDescriptor *doubleSlice = mitkIpPicCopyHeader( timeSelectorPic , NULL); doubleSlice->dim=3; doubleSlice->n[2]=2; doubleSlice->data=malloc(_mitkIpPicSize(doubleSlice)); memcpy(doubleSlice->data, timeSelectorPic->data, _mitkIpPicSize(doubleSlice)/2); mitkIpPicTypeMultiplex9(_transform, doubleSlice, pic_transformed, m_OutsideValue, (float*)fr_pic->data, (float*)fphi_pic->data, fz, (short *)rt_pic->data, (unsigned int *)phit_pic->data, zt, coneCutOff_pic); mitkIpPicFree(doubleSlice); } output->SetVolume(pic_transformed->data, t, n); } } //mitkIpPicPut("outzzzzzzzz.pic",pic_transformed); mitkIpPicFree(pic_transformed); m_TimeOfHeaderInitialization.Modified(); } mitk::CylindricToCartesianFilter::CylindricToCartesianFilter() : m_OutsideValue(0.0), m_TargetXSize(0) { rt_pic = NULL; phit_pic = NULL; fr_pic = NULL; fphi_pic = NULL; coneCutOff_pic = NULL; zt = NULL; fz = NULL; a=b=0.0; } mitk::CylindricToCartesianFilter::~CylindricToCartesianFilter() { if(rt_pic!=NULL) mitkIpPicFree(rt_pic); if(phit_pic!=NULL) mitkIpPicFree(phit_pic); if(fr_pic!=NULL) mitkIpPicFree(fr_pic); if(fphi_pic!=NULL) mitkIpPicFree(fphi_pic); if(coneCutOff_pic!=NULL) mitkIpPicFree(coneCutOff_pic); if(zt != NULL) free(zt); if(fz != NULL) free (fz); } void mitk::CylindricToCartesianFilter::GenerateInputRequestedRegion() { Superclass::GenerateInputRequestedRegion(); mitk::ImageToImageFilter::InputImagePointer input = const_cast< mitk::ImageToImageFilter::InputImageType * > ( this->GetInput() ); mitk::Image::Pointer output = this->GetOutput(); Image::RegionType requestedRegion; requestedRegion = output->GetRequestedRegion(); requestedRegion.SetIndex(0, 0); requestedRegion.SetIndex(1, 0); requestedRegion.SetIndex(2, 0); requestedRegion.SetSize(0, input->GetDimension(0)); requestedRegion.SetSize(1, input->GetDimension(1)); requestedRegion.SetSize(2, input->GetDimension(2)); input->SetRequestedRegion( & requestedRegion ); } diff --git a/Modules/Ext/Algorithms/mitkProbeFilter.cpp b/Modules/Ext/Algorithms/mitkProbeFilter.cpp index 27f6851664..c54135875e 100644 --- a/Modules/Ext/Algorithms/mitkProbeFilter.cpp +++ b/Modules/Ext/Algorithms/mitkProbeFilter.cpp @@ -1,214 +1,214 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkProbeFilter.h" #include "mitkSurface.h" #include "mitkImage.h" #include #include #include #include #include mitk::ProbeFilter::ProbeFilter() { - } mitk::ProbeFilter::~ProbeFilter() { - } const mitk::Surface *mitk::ProbeFilter::GetInput(void) { if (this->GetNumberOfInputs() < 1) { return 0; } return static_cast< const mitk::Surface * >(this->ProcessObject::GetInput(0) ); } const mitk::Image *mitk::ProbeFilter::GetSource(void) { return static_cast< const mitk::Image * >(this->ProcessObject::GetInput(1)); } void mitk::ProbeFilter::SetInput(const mitk::Surface *input) { this->ProcessObject::SetNthInput( 0, const_cast< mitk::Surface * >( input ) ); } void mitk::ProbeFilter::SetSource(const mitk::Image *source) { this->ProcessObject::SetNthInput( 1, const_cast< mitk::Image * >( source ) ); } void mitk::ProbeFilter::GenerateOutputInformation() { mitk::Surface::ConstPointer input = this->GetInput(); mitk::Image::ConstPointer source = this->GetSource(); mitk::Surface::Pointer output = this->GetOutput(); if(input.IsNull()) return; if(source.IsNull()) return; if(input->GetGeometry()==NULL) return; if(source->GetGeometry()==NULL) return; if( (input->GetTimeGeometry()->CountTimeSteps()==1) && (source->GetTimeGeometry()->CountTimeSteps()>1) ) { Geometry3D::Pointer geo3D = Geometry3D::New(); BaseGeometry::Pointer geometry3D = dynamic_cast(geo3D.GetPointer()); geometry3D->Initialize(); geometry3D->SetBounds(source->GetTimeGeometry()->GetBoundsInWorld()); - geometry3D->SetTimeBounds(source->GetTimeGeometry()->GetGeometryForTimeStep(0)->GetTimeBounds()); ProportionalTimeGeometry::Pointer outputTimeGeometry = ProportionalTimeGeometry::New(); outputTimeGeometry->Initialize(geometry3D, source->GetTimeGeometry()->CountTimeSteps()); + outputTimeGeometry->SetFirstTimePoint(source->GetTimeGeometry()->GetMinimumTimePoint()); + TimePointType stepDuration = source->GetTimeGeometry()->GetMaximumTimePoint(0) - source->GetTimeGeometry()->GetMinimumTimePoint(0); + outputTimeGeometry->SetStepDuration(stepDuration); output->Expand(outputTimeGeometry->CountTimeSteps()); output->SetTimeGeometry( outputTimeGeometry ); } else output->SetGeometry( static_cast(input->GetGeometry()->Clone().GetPointer()) ); itkDebugMacro(<<"GenerateOutputInformation()"); } void mitk::ProbeFilter::GenerateData() { mitk::Surface *input = const_cast< mitk::Surface * >(this->GetInput()); mitk::Image *source = const_cast< mitk::Image * >(this->GetSource()); mitk::Surface::Pointer output = this->GetOutput(); itkDebugMacro(<<"Generating Data"); if(output.IsNull()) { itkDebugMacro(<<"Output is NULL."); return; } mitk::Surface::RegionType outputRegion = output->GetRequestedRegion(); const TimeGeometry *outputTimeGeometry = output->GetTimeGeometry(); const TimeGeometry *inputTimeGeometry = input->GetTimeGeometry(); const TimeGeometry *sourceTimeGeometry = source->GetTimeGeometry(); TimePointType timeInMS; int timestep=0; int tstart, tmax; tstart=outputRegion.GetIndex(3); tmax=tstart+outputRegion.GetSize(3); int t; for(t=tstart;tTimeStepToTimePoint( t ); vtkProbeFilter* probe = vtkProbeFilter::New(); timestep = inputTimeGeometry->TimePointToTimeStep( timeInMS ); probe->SetInputData( input->GetVtkPolyData(timestep) ); timestep = sourceTimeGeometry->TimePointToTimeStep( timeInMS ); probe->SetSourceData( source->GetVtkImageData(timestep) ); output->SetVtkPolyData( probe->GetPolyDataOutput(), t ); probe->Update(); probe->Delete(); } } void mitk::ProbeFilter::GenerateInputRequestedRegion() { Superclass::GenerateInputRequestedRegion(); mitk::Surface *input = const_cast< mitk::Surface * >( this->GetInput() ); mitk::Image *source = const_cast< mitk::Image * >( this->GetSource() ); if(input==NULL) return; if(source==NULL) return; mitk::Surface::Pointer output = this->GetOutput(); mitk::Surface::RegionType outputRegion = output->GetRequestedRegion(); const TimeGeometry *outputTimeGeometry = output->GetTimeGeometry(); mitk::Surface::RegionType inputSurfaceRegion = outputRegion; Image::RegionType sourceImageRegion = source->GetLargestPossibleRegion(); if(outputRegion.GetSize(3)<1) { mitk::Surface::RegionType::SizeType surfacesize; surfacesize.Fill(0); inputSurfaceRegion.SetSize(surfacesize); input->SetRequestedRegion( &inputSurfaceRegion ); mitk::Image::RegionType::SizeType imagesize; imagesize.Fill(0); sourceImageRegion.SetSize(imagesize); source->SetRequestedRegion( &sourceImageRegion ); return; } //create and set input requested region for the input surface const TimeGeometry *inputTimeGeometry = input->GetTimeGeometry(); ScalarType timeInMS; int timestep=0; // convert the start-index-time of output in start-index-time of input via millisecond-time timeInMS = outputTimeGeometry->TimeStepToTimePoint(outputRegion.GetIndex(3)); timestep = inputTimeGeometry->TimePointToTimeStep( timeInMS ); if( ( timeInMS > ScalarTypeNumericTraits::NonpositiveMin() ) && ( inputTimeGeometry->IsValidTimeStep( timestep ) ) ) inputSurfaceRegion.SetIndex( 3, timestep ); else inputSurfaceRegion.SetIndex( 3, 0 ); // convert the end-index-time of output in end-index-time of input via millisecond-time timeInMS = outputTimeGeometry->TimeStepToTimePoint(outputRegion.GetIndex(3)+outputRegion.GetSize(3)-1); timestep = inputTimeGeometry->TimePointToTimeStep( timeInMS ); if( ( timeInMS > ScalarTypeNumericTraits::NonpositiveMin() ) && ( outputTimeGeometry->IsValidTimeStep( timestep ) ) ) inputSurfaceRegion.SetSize( 3, timestep - inputSurfaceRegion.GetIndex(3) + 1 ); else inputSurfaceRegion.SetSize( 3, 1 ); input->SetRequestedRegion( &inputSurfaceRegion ); //create and set input requested region for the source image const TimeGeometry *sourceTimeGeometry = source->GetTimeGeometry(); // convert the start-index-time of output in start-index-time of source via millisecond-time timeInMS = outputTimeGeometry->TimeStepToTimePoint(outputRegion.GetIndex(3)); timestep = sourceTimeGeometry->TimePointToTimeStep( timeInMS ); if( ( timeInMS > ScalarTypeNumericTraits::NonpositiveMin() ) && ( sourceTimeGeometry->IsValidTimeStep( timestep ) ) ) sourceImageRegion.SetIndex( 3, timestep ); else sourceImageRegion.SetIndex( 3, 0 ); // convert the end-index-time of output in end-index-time of source via millisecond-time timeInMS = outputTimeGeometry->TimeStepToTimePoint(outputRegion.GetIndex(3)+outputRegion.GetSize(3)-1); timestep = sourceTimeGeometry->TimePointToTimeStep( timeInMS ); if( ( timeInMS > ScalarTypeNumericTraits::NonpositiveMin() ) && ( outputTimeGeometry->IsValidTimeStep( timestep ) ) ) sourceImageRegion.SetSize( 3, timestep - sourceImageRegion.GetIndex(3) + 1 ); else sourceImageRegion.SetSize( 3, 1 ); sourceImageRegion.SetIndex( 4, 0 ); sourceImageRegion.SetSize( 4, 1 ); source->SetRequestedRegion( &sourceImageRegion ); } diff --git a/Modules/Ext/IO/mitkUnstructuredGridVtkWriter.txx b/Modules/Ext/IO/mitkUnstructuredGridVtkWriter.txx index b544b24d0f..46eb319ee5 100644 --- a/Modules/Ext/IO/mitkUnstructuredGridVtkWriter.txx +++ b/Modules/Ext/IO/mitkUnstructuredGridVtkWriter.txx @@ -1,203 +1,203 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_UNSTRUCTURED_GRID_VTKWRITER_TXX_ #define _MITK_UNSTRUCTURED_GRID_VTKWRITER_TXX_ #include #include #include #include #include #include #include #include #include #include #include namespace mitk { template UnstructuredGridVtkWriter::UnstructuredGridVtkWriter() : m_Success(false) { this->SetNumberOfRequiredInputs(1); } template UnstructuredGridVtkWriter::~UnstructuredGridVtkWriter() { } template void UnstructuredGridVtkWriter::GenerateData() { m_Success = false; if ( m_FileName == "" ) { itkWarningMacro( << "Sorry, filename has not been set!" ); return ; } mitk::UnstructuredGrid::Pointer input = const_cast(this->GetInput()); if (input.IsNull()) { itkWarningMacro( << "Sorry, input to mitk::UnstructuredGridVtkWriter is NULL"); return; } VTKWRITER* unstructuredGridWriter = VTKWRITER::New(); vtkTransformFilter* transformPointSet = vtkTransformFilter::New(); vtkUnstructuredGrid * unstructuredGrid; BaseGeometry* geometry; if(input->GetTimeGeometry()->CountTimeSteps()>1) { int t, timesteps; timesteps = input->GetTimeGeometry()->CountTimeSteps(); for(t = 0; t < timesteps; ++t) { std::ostringstream filename; geometry = input->GetGeometry(t); if(input->GetTimeGeometry()->IsValidTimeStep(t)) { - const mitk::TimeBounds& timebounds = geometry->GetTimeBounds(); + const mitk::TimeBounds& timebounds = input->GetTimeGeometry()->GetTimeBounds(t); filename << m_FileName.c_str() << "_S" << std::setprecision(0) << timebounds[0] << "_E" << std::setprecision(0) << timebounds[1] << "_T" << t << GetDefaultExtension(); } else { itkWarningMacro(<<"Error on write: TimeGeometry invalid of unstructured grid " << filename.str() << "."); filename << m_FileName.c_str() << "_T" << t << GetDefaultExtension(); } transformPointSet->SetInputData(input->GetVtkUnstructuredGrid(t)); transformPointSet->SetTransform(geometry->GetVtkTransform()); transformPointSet->UpdateWholeExtent(); unstructuredGrid = static_cast(transformPointSet->GetOutput()); unstructuredGridWriter->SetFileName(filename.str().c_str()); unstructuredGridWriter->SetInputData(unstructuredGrid); ExecuteWrite( unstructuredGridWriter ); } } else { geometry = input->GetGeometry(); transformPointSet->SetInputData(input->GetVtkUnstructuredGrid()); transformPointSet->SetTransform(geometry->GetVtkTransform()); transformPointSet->UpdateWholeExtent(); unstructuredGrid = static_cast(transformPointSet->GetOutput()); unstructuredGridWriter->SetFileName(m_FileName.c_str()); unstructuredGridWriter->SetInputData(unstructuredGrid); ExecuteWrite( unstructuredGridWriter ); } transformPointSet->Delete(); unstructuredGridWriter->Delete(); m_Success = true; } template void UnstructuredGridVtkWriter::ExecuteWrite( VTKWRITER* vtkWriter ) { struct stat fileStatus; time_t timeBefore=0; if (!stat(vtkWriter->GetFileName(), &fileStatus)) { timeBefore = fileStatus.st_mtime; } if (!vtkWriter->Write()) { itkExceptionMacro( << "Error during unstructured grid writing."); } // check if file can be written because vtkWriter doesn't check that if (stat(vtkWriter->GetFileName(), &fileStatus) || (timeBefore == fileStatus.st_mtime)) { itkExceptionMacro(<<"Error during unstructured grid writing: file could not be written"); } } template void UnstructuredGridVtkWriter::SetInput(BaseData *input) { this->ProcessObject::SetNthInput(0, input); } template const UnstructuredGrid* UnstructuredGridVtkWriter::GetInput() { if (this->GetNumberOfInputs() < 1) { return 0; } else { return dynamic_cast(this->ProcessObject::GetInput(0)); } } template bool UnstructuredGridVtkWriter::CanWriteBaseDataType(BaseData::Pointer data) { return (dynamic_cast(data.GetPointer()) != 0); } template void UnstructuredGridVtkWriter::DoWrite(BaseData::Pointer data) { if (CanWriteBaseDataType(data)) { this->SetInput(dynamic_cast(data.GetPointer())); this->Update(); } } template std::vector UnstructuredGridVtkWriter::GetPossibleFileExtensions() { throw std::exception(); // no specialization available! } template const char* UnstructuredGridVtkWriter::GetDefaultFilename() { throw std::exception(); // no specialization available! } template const char* UnstructuredGridVtkWriter::GetFileDialogPattern() { throw std::exception(); // no specialization available! } template const char* UnstructuredGridVtkWriter::GetDefaultExtension() { throw std::exception(); // no specialization available! } } #endif diff --git a/Modules/IGT/DataManagement/mitkNavigationTool.h b/Modules/IGT/DataManagement/mitkNavigationTool.h index ae13af8022..d92b807bdb 100644 --- a/Modules/IGT/DataManagement/mitkNavigationTool.h +++ b/Modules/IGT/DataManagement/mitkNavigationTool.h @@ -1,183 +1,197 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef NAVIGATIONTOOL_H_INCLUDED #define NAVIGATIONTOOL_H_INCLUDED //itk headers #include #include #include //mitk headers #include #include #include #include #include #include #include namespace mitk { /**Documentation * \brief An object of this class represents a navigation tool in the view of the software. * A few informations like an identifier, a toolname, a surface and a itk spatial * object are stored in such an object. The classes NavigationToolReader and * are availiable to write/read tools to/from the harddisc. If you need a collection * of navigation tools the class NavigationToolStorage could be used. * * \ingroup IGT */ class MitkIGT_EXPORT NavigationTool : public itk::DataObject { public: mitkClassMacro(NavigationTool,itk::DataObject); itkFactorylessNewMacro(Self) itkCloneMacro(Self) enum NavigationToolType {Instrument, Fiducial, Skinmarker, Unknown}; //## getter and setter ## //NavigationToolType: itkGetConstMacro(Type,NavigationToolType); itkSetMacro(Type,NavigationToolType); //Identifier: itkGetConstMacro(Identifier,std::string); itkSetMacro(Identifier,std::string); //Datatreenode: itkGetConstMacro(DataNode,mitk::DataNode::Pointer); itkSetMacro(DataNode,mitk::DataNode::Pointer); //SpatialObject: itkGetConstMacro(SpatialObject,itk::SpatialObject<3>::Pointer); itkSetMacro(SpatialObject,itk::SpatialObject<3>::Pointer); //TrackingTool: itkGetConstMacro(TrackingTool,mitk::TrackingTool::Pointer); itkSetMacro(TrackingTool,mitk::TrackingTool::Pointer); //CalibrationFile: itkGetConstMacro(CalibrationFile,std::string); void SetCalibrationFile(const std::string filename); //Tool tip definition: itkGetConstMacro(ToolTipPosition,mitk::Point3D); itkSetMacro(ToolTipPosition,mitk::Point3D); itkGetConstMacro(ToolTipOrientation,mitk::Quaternion); itkSetMacro(ToolTipOrientation,mitk::Quaternion); /** @return Returns the tooltip as transform object. */ mitk::AffineTransform3D::Pointer GetToolTipTransform(); /** @return Returns true if a tooltip is set, false if not. */ bool IsToolTipSet(); //Tool Landmarks: - /** @return Returns the tool registration landmarks which represent markers / special points on a + /** For overview, here are descriptons of the two types of tool landmarks: + * + * tool calibration landmarks: These landmarks may be used clearly define the tools pose only by + * using landmarks in the tool coordinate system. E.g., two landmarks for a 5DoF tool and three + * landmarks for a 6DoF tool. These landmarks may be used, e.g., for a point based registration + * of a tool from image space to tracking space. + * + * tool registration landmarks: These landmarks are designed for representing defined landmarks + * on a tools surface. The number of these landmarks might exeed the number of tool calibration + * landmarks for reasons of redundancy and averaging. They are used for, e.g., manually registering + * the pose of a tool by visual markers in a CT scan. If you would use these landmarks to do a + * point based registration from image space to tracking space later, you might overweight the + * tool because of two many landmarks compared to other markers. + * + * @return Returns the tool registration landmarks which represent markers / special points on a * tool that can be used for registration. The landmarks should be given in tool coordinates. * If there are no landmarks defined for this tool the method returns an empty point set. */ itkGetConstMacro(ToolRegistrationLandmarks,mitk::PointSet::Pointer); /** @brief Sets the tool registration landmarks which represent markers / special points on a * tool that can be used for registration. The landmarks should be given in tool coordinates. */ itkSetMacro(ToolRegistrationLandmarks,mitk::PointSet::Pointer); /** @return Returns the tool calibration landmarks for calibration of the defined points in the * tool coordinate system, e.g. 2 landmarks for a 5DoF tool and 3 landmarks for a 6DoF tool. */ itkGetConstMacro(ToolCalibrationLandmarks,mitk::PointSet::Pointer); /** @brief Sets the tool calibration landmarks for calibration of defined points in the * tool coordinate system, e.g. 2 landmarks for a 5DoF tool and 3 landmarks for a 6DoF tool. */ itkSetMacro(ToolCalibrationLandmarks,mitk::PointSet::Pointer); //SerialNumber: itkGetConstMacro(SerialNumber,std::string); itkSetMacro(SerialNumber,std::string); //TrackingDeviceType: itkGetConstMacro(TrackingDeviceType,mitk::TrackingDeviceType); itkSetMacro(TrackingDeviceType,mitk::TrackingDeviceType); //ToolName (only getter): /** @return Returns the name of this navigation tool. Returns an empty string if there is * no name (for example because the data node has not been set yet). * * Note: There is no setter for the name, * because the name of the corresponding data node is used as tool name. So if you * want to modify the name of this navigation tool only get the data node and modify * its name. */ std::string GetToolName(); //ToolSurface (only getter): /** @return Returns the surface of this navigation tool. Returns NULL if there is * no surface (for example because the data node has not been set yet). * * Note: There is no setter for the surface, * because the surface is the data of the corresponding data node. So if you * want to set a new surface only get the data node and modify its data. */ mitk::Surface::Pointer GetToolSurface(); /** * \brief Graft the data and information from one NavigationTool to another. * * Copies the content of data into this object. * This is a convenience method to setup a second NavigationTool object with all the meta * information of another NavigationTool object. * Note that this method is different than just using two * SmartPointers to the same NavigationTool object since separate DataObjects are * still maintained. */ virtual void Graft(const DataObject *data); //####################### protected: NavigationTool(); ~NavigationTool(); //## data structure of a navigation tool object ## std::string m_Identifier; NavigationToolType m_Type; /** @brief This DataNode holds a toolname and a tool surface */ mitk::DataNode::Pointer m_DataNode; /** @brief This member variable holds a mathamatical description of the tool */ itk::SpatialObject<3>::Pointer m_SpatialObject; /** @brief This member variable holds a pointer to the corresponding tracking tool in the hardware. */ mitk::TrackingTool::Pointer m_TrackingTool; /** @brief The path to the calibration file of the tool. */ std::string m_CalibrationFile; /** @brief A unique serial number of the tool which is needed to identify the tool correctly. This is very important * in case of the NDI Aurora System. */ std::string m_SerialNumber; /** @brief This member holds the tracking device type of the tool. */ mitk::TrackingDeviceType m_TrackingDeviceType; /** @brief Holds landmarks for tool registration. */ mitk::PointSet::Pointer m_ToolRegistrationLandmarks; /** @brief Holds landmarks for calibration of the defined points in the tool coordinate system, * e.g. 2 landmarks for a 5DoF tool and 3 landmarks for a 6DoF tool. */ mitk::PointSet::Pointer m_ToolCalibrationLandmarks; /** @brief Holds the position of the tool tip. */ mitk::Point3D m_ToolTipPosition; /** @brief Holds the orientation of the tool tip. */ mitk::Quaternion m_ToolTipOrientation; //################################################# }; } // namespace mitk #endif //NAVIGATIONTOOL diff --git a/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.cpp b/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.cpp index 837267c939..6293a244d6 100644 --- a/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.cpp +++ b/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.cpp @@ -1,308 +1,341 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkNavigationToolCreationWidget.h" //mitk headers #include "mitkTrackingTypes.h" #include #include #include "mitkNavigationData.h" #include "mitkRenderingManager.h" //qt headers #include #include #include //poco headers #include // vtk #include #include "vtkConeSource.h" const std::string QmitkNavigationToolCreationWidget::VIEW_ID = "org.mitk.views.navigationtoolcreationwizardwidget"; QmitkNavigationToolCreationWidget::QmitkNavigationToolCreationWidget(QWidget* parent, Qt::WindowFlags f) : QWidget(parent, f) { - m_Controls = NULL; - m_AdvancedWidget = new QmitkNavigationToolCreationAdvancedWidget(this); - m_AdvancedWidget->setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); - m_AdvancedWidget->setWindowTitle("Tool Creation Advanced Options"); - m_AdvancedWidget->setModal(false); - CreateQtPartControl(this); - CreateConnections(); +m_Controls = NULL; +m_AdvancedWidget = new QmitkNavigationToolCreationAdvancedWidget(this); +m_AdvancedWidget->setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); +m_AdvancedWidget->setWindowTitle("Tool Creation Advanced Options"); +m_AdvancedWidget->setModal(false); +CreateQtPartControl(this); +CreateConnections(); } QmitkNavigationToolCreationWidget::~QmitkNavigationToolCreationWidget() { - delete m_AdvancedWidget; +m_Controls->m_CalibrationLandmarksList->SetPointSetNode(NULL); +m_Controls->m_RegistrationLandmarksList->SetPointSetNode(NULL); +delete m_AdvancedWidget; } void QmitkNavigationToolCreationWidget::CreateQtPartControl(QWidget *parent) { - if (!m_Controls) - { - // create GUI widgets - m_Controls = new Ui::QmitkNavigationToolCreationWidgetControls; - m_Controls->setupUi(parent); - } +if (!m_Controls) +{ +// create GUI widgets +m_Controls = new Ui::QmitkNavigationToolCreationWidgetControls; +m_Controls->setupUi(parent); +} } void QmitkNavigationToolCreationWidget::CreateConnections() { - if ( m_Controls ) - { - connect( (QObject*)(m_Controls->m_cancel), SIGNAL(clicked()), this, SLOT(OnCancel()) ); - connect( (QObject*)(m_Controls->m_finished), SIGNAL(clicked()), this, SLOT(OnFinished()) ); - connect( (QObject*)(m_Controls->m_LoadSurface), SIGNAL(clicked()), this, SLOT(OnLoadSurface()) ); - connect( (QObject*)(m_Controls->m_LoadCalibrationFile), SIGNAL(clicked()), this, SLOT(OnLoadCalibrationFile()) ); - connect( (QObject*)(m_Controls->m_ShowAdvancedOptionsPB), SIGNAL(toggled(bool)), this, SLOT(OnShowAdvancedOptions(bool)) ); - connect( (QObject*)(m_AdvancedWidget), SIGNAL(DialogCloseRequested()), this, SLOT(OnProcessDialogCloseRequest()) ); - connect( (QObject*)(m_AdvancedWidget), SIGNAL(RetrieveDataForManualToolTipManipulation()), this, SLOT(OnRetrieveDataForManualTooltipManipulation()) ); - - connect( m_Controls->m_Surface_Use_Other, SIGNAL(toggled(bool)), this, SLOT(OnSurfaceUseOtherToggled(bool))); - } +if ( m_Controls ) +{ +connect( (QObject*)(m_Controls->m_cancel), SIGNAL(clicked()), this, SLOT(OnCancel()) ); +connect( (QObject*)(m_Controls->m_finished), SIGNAL(clicked()), this, SLOT(OnFinished()) ); +connect( (QObject*)(m_Controls->m_LoadSurface), SIGNAL(clicked()), this, SLOT(OnLoadSurface()) ); +connect( (QObject*)(m_Controls->m_LoadCalibrationFile), SIGNAL(clicked()), this, SLOT(OnLoadCalibrationFile()) ); +connect( (QObject*)(m_Controls->m_ShowAdvancedOptionsPB), SIGNAL(toggled(bool)), this, SLOT(OnShowAdvancedOptions(bool)) ); +connect( (QObject*)(m_AdvancedWidget), SIGNAL(DialogCloseRequested()), this, SLOT(OnProcessDialogCloseRequest()) ); +connect( (QObject*)(m_AdvancedWidget), SIGNAL(RetrieveDataForManualToolTipManipulation()), this, SLOT(OnRetrieveDataForManualTooltipManipulation()) ); + +connect( m_Controls->m_Surface_Use_Other, SIGNAL(toggled(bool)), this, SLOT(OnSurfaceUseOtherToggled(bool))); +} } void QmitkNavigationToolCreationWidget::Initialize(mitk::DataStorage* dataStorage, std::string supposedIdentifier, std::string supposedName) { - m_DataStorage = dataStorage; - - //initialize UI components - m_Controls->m_SurfaceChooser->SetDataStorage(m_DataStorage); - m_Controls->m_SurfaceChooser->SetAutoSelectNewItems(true); - m_Controls->m_SurfaceChooser->SetPredicate(mitk::NodePredicateDataType::New("Surface")); - - //set default data - m_Controls->m_ToolNameEdit->setText(supposedName.c_str()); - m_Controls->m_CalibrationFileName->setText("none"); - m_Controls->m_Surface_Use_Sphere->setChecked(true); - m_AdvancedWidget->SetDataStorage(m_DataStorage); - m_Controls->m_IdentifierEdit->setText(supposedIdentifier.c_str()); - +m_DataStorage = dataStorage; + +//initialize UI components +m_Controls->m_SurfaceChooser->SetDataStorage(m_DataStorage); +m_Controls->m_SurfaceChooser->SetAutoSelectNewItems(true); +m_Controls->m_SurfaceChooser->SetPredicate(mitk::NodePredicateDataType::New("Surface")); + +//set default data +m_Controls->m_ToolNameEdit->setText(supposedName.c_str()); +m_Controls->m_CalibrationFileName->setText("none"); +m_Controls->m_Surface_Use_Sphere->setChecked(true); +m_AdvancedWidget->SetDataStorage(m_DataStorage); +m_Controls->m_IdentifierEdit->setText(supposedIdentifier.c_str()); +this->InitializeUIToolLandmarkLists(); +m_Controls->m_CalibrationLandmarksList->EnableEditButton(false); +m_Controls->m_RegistrationLandmarksList->EnableEditButton(false); } void QmitkNavigationToolCreationWidget::SetTrackingDeviceType(mitk::TrackingDeviceType type, bool changeable) { - switch(type) - { - case mitk::NDIAurora: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0);break; - case mitk::NDIPolaris: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(1);break; - case mitk::ClaronMicron: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(2);break; - case mitk::NPOptitrack: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(3);break; - default: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0); - } - m_Controls->m_TrackingDeviceTypeChooser->setEnabled(changeable); +switch(type) +{ +case mitk::NDIAurora: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0);break; +case mitk::NDIPolaris: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(1);break; +case mitk::ClaronMicron: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(2);break; +case mitk::NPOptitrack: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(3);break; +default: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0); +} +m_Controls->m_TrackingDeviceTypeChooser->setEnabled(changeable); } mitk::NavigationTool::Pointer QmitkNavigationToolCreationWidget::GetCreatedTool() { - return m_CreatedTool; +return m_CreatedTool; } //################################################################################## //############################## slots ############################ //################################################################################## void QmitkNavigationToolCreationWidget::OnFinished() { - //here we create a new tool - m_CreatedTool = mitk::NavigationTool::New(); - - //create DataNode... - mitk::DataNode::Pointer newNode = mitk::DataNode::New(); - if(m_Controls->m_Surface_Use_Sphere->isChecked()) - { - //create small sphere and use it as surface - mitk::Surface::Pointer mySphere = mitk::Surface::New(); - vtkConeSource *vtkData = vtkConeSource::New(); - vtkData->SetAngle(5.0); - vtkData->SetResolution(50); - vtkData->SetHeight(6.0f); - vtkData->SetRadius(2.0f); - vtkData->SetCenter(0.0, 0.0, 0.0); - vtkData->Update(); - mySphere->SetVtkPolyData(vtkData->GetOutput()); - vtkData->Delete(); - newNode->SetData(mySphere); - } - else - { - newNode->SetData(m_Controls->m_SurfaceChooser->GetSelectedNode()->GetData()); - } - newNode->SetName(m_Controls->m_ToolNameEdit->text().toLatin1()); - - m_CreatedTool->SetDataNode(newNode); - - //fill NavigationTool object - m_CreatedTool->SetCalibrationFile(m_Controls->m_CalibrationFileName->text().toAscii().data()); - m_CreatedTool->SetIdentifier(m_Controls->m_IdentifierEdit->text().toAscii().data()); - m_CreatedTool->SetSerialNumber(m_Controls->m_SerialNumberEdit->text().toAscii().data()); - - //Tracking Device - if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="NDI Aurora") m_CreatedTool->SetTrackingDeviceType(mitk::NDIAurora); - else if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="NDI Polaris") m_CreatedTool->SetTrackingDeviceType(mitk::NDIPolaris); - else if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="Claron Technology Micron Tracker") m_CreatedTool->SetTrackingDeviceType(mitk::ClaronMicron); - else if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="NP Optitrack") m_CreatedTool->SetTrackingDeviceType(mitk::NPOptitrack); - else m_CreatedTool->SetTrackingDeviceType(mitk::TrackingSystemNotSpecified); - - //ToolType - if (m_Controls->m_ToolTypeChooser->currentText()=="Instrument") m_CreatedTool->SetType(mitk::NavigationTool::Instrument); - else if (m_Controls->m_ToolTypeChooser->currentText()=="Fiducial") m_CreatedTool->SetType(mitk::NavigationTool::Fiducial); - else if (m_Controls->m_ToolTypeChooser->currentText()=="Skinmarker") m_CreatedTool->SetType(mitk::NavigationTool::Skinmarker); - else m_CreatedTool->SetType(mitk::NavigationTool::Unknown); - - mitk::NavigationData::Pointer tempND = mitk::NavigationData::New(m_AdvancedWidget->GetManipulatedToolTip()); - m_CreatedTool->SetToolTipOrientation(tempND->GetOrientation()); - m_CreatedTool->SetToolTipPosition(tempND->GetPosition()); - - emit NavigationToolFinished(); +//here we create a new tool +m_CreatedTool = mitk::NavigationTool::New(); + +//create DataNode... +mitk::DataNode::Pointer newNode = mitk::DataNode::New(); +if(m_Controls->m_Surface_Use_Sphere->isChecked()) +{ +//create small sphere and use it as surface +mitk::Surface::Pointer mySphere = mitk::Surface::New(); +vtkConeSource *vtkData = vtkConeSource::New(); +vtkData->SetAngle(5.0); +vtkData->SetResolution(50); +vtkData->SetHeight(6.0f); +vtkData->SetRadius(2.0f); +vtkData->SetCenter(0.0, 0.0, 0.0); +vtkData->Update(); +mySphere->SetVtkPolyData(vtkData->GetOutput()); +vtkData->Delete(); +newNode->SetData(mySphere); +} +else +{ +newNode->SetData(m_Controls->m_SurfaceChooser->GetSelectedNode()->GetData()); +} +newNode->SetName(m_Controls->m_ToolNameEdit->text().toLatin1()); + +m_CreatedTool->SetDataNode(newNode); + +//fill NavigationTool object +m_CreatedTool->SetCalibrationFile(m_Controls->m_CalibrationFileName->text().toAscii().data()); +m_CreatedTool->SetIdentifier(m_Controls->m_IdentifierEdit->text().toAscii().data()); +m_CreatedTool->SetSerialNumber(m_Controls->m_SerialNumberEdit->text().toAscii().data()); + +//Tracking Device +if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="NDI Aurora") m_CreatedTool->SetTrackingDeviceType(mitk::NDIAurora); +else if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="NDI Polaris") m_CreatedTool->SetTrackingDeviceType(mitk::NDIPolaris); +else if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="Claron Technology Micron Tracker") m_CreatedTool->SetTrackingDeviceType(mitk::ClaronMicron); +else if (m_Controls->m_TrackingDeviceTypeChooser->currentText()=="NP Optitrack") m_CreatedTool->SetTrackingDeviceType(mitk::NPOptitrack); +else m_CreatedTool->SetTrackingDeviceType(mitk::TrackingSystemNotSpecified); + +//ToolType +if (m_Controls->m_ToolTypeChooser->currentText()=="Instrument") m_CreatedTool->SetType(mitk::NavigationTool::Instrument); +else if (m_Controls->m_ToolTypeChooser->currentText()=="Fiducial") m_CreatedTool->SetType(mitk::NavigationTool::Fiducial); +else if (m_Controls->m_ToolTypeChooser->currentText()=="Skinmarker") m_CreatedTool->SetType(mitk::NavigationTool::Skinmarker); +else m_CreatedTool->SetType(mitk::NavigationTool::Unknown); + +//Tool Tip +mitk::NavigationData::Pointer tempND = mitk::NavigationData::New(m_AdvancedWidget->GetManipulatedToolTip()); +m_CreatedTool->SetToolTipOrientation(tempND->GetOrientation()); +m_CreatedTool->SetToolTipPosition(tempND->GetPosition()); + +//Tool Landmarks +mitk::PointSet::Pointer toolCalLandmarks, toolRegLandmarks; +GetUIToolLandmarksLists(toolCalLandmarks,toolRegLandmarks); +m_CreatedTool->SetToolCalibrationLandmarks(toolCalLandmarks); +m_CreatedTool->SetToolRegistrationLandmarks(toolRegLandmarks); + +emit NavigationToolFinished(); } void QmitkNavigationToolCreationWidget::OnCancel() { - m_CreatedTool = NULL; +m_CreatedTool = NULL; - emit Canceled(); +emit Canceled(); } void QmitkNavigationToolCreationWidget::OnLoadSurface() { - std::string filename = QFileDialog::getOpenFileName(NULL,tr("Open Surface"), "/", tr("STL (*.stl)")).toLatin1().data(); - mitk::STLFileReader::Pointer stlReader = mitk::STLFileReader::New(); - try - { - stlReader->SetFileName( filename.c_str() ); - stlReader->Update(); - } - catch (...) - { - } - - if ( stlReader->GetOutput() == NULL ); - else - { - mitk::DataNode::Pointer newNode = mitk::DataNode::New(); - newNode->SetName(filename); - newNode->SetData(stlReader->GetOutput()); - m_DataStorage->Add(newNode); - } +std::string filename = QFileDialog::getOpenFileName(NULL,tr("Open Surface"), "/", tr("STL (*.stl)")).toLatin1().data(); +mitk::STLFileReader::Pointer stlReader = mitk::STLFileReader::New(); +try +{ +stlReader->SetFileName( filename.c_str() ); +stlReader->Update(); +} +catch (...) +{ +} + +if ( stlReader->GetOutput() == NULL ); +else +{ +mitk::DataNode::Pointer newNode = mitk::DataNode::New(); +newNode->SetName(filename); +newNode->SetData(stlReader->GetOutput()); +m_DataStorage->Add(newNode); +} } void QmitkNavigationToolCreationWidget::OnLoadCalibrationFile() { - m_Controls->m_CalibrationFileName->setText(QFileDialog::getOpenFileName(NULL,tr("Open Calibration File"), "/", "*.*")); +m_Controls->m_CalibrationFileName->setText(QFileDialog::getOpenFileName(NULL,tr("Open Calibration File"), "/", "*.*")); } void QmitkNavigationToolCreationWidget::SetDefaultData(mitk::NavigationTool::Pointer DefaultTool) { - m_Controls->m_ToolNameEdit->setText(QString(DefaultTool->GetDataNode()->GetName().c_str())); - m_Controls->m_IdentifierEdit->setText(QString(DefaultTool->GetIdentifier().c_str())); - m_Controls->m_SerialNumberEdit->setText(QString(DefaultTool->GetSerialNumber().c_str())); - m_AdvancedWidget->SetDefaultTooltip( DefaultTool->GetToolTipTransform() ); - switch(DefaultTool->GetTrackingDeviceType()) - { - case mitk::NDIAurora: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0);break; - case mitk::NDIPolaris: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(1);break; - case mitk::ClaronMicron: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(2);break; - case mitk::NPOptitrack: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(3);break; - default: - m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0); - } - m_Controls->m_CalibrationFileName->setText(QString(DefaultTool->GetCalibrationFile().c_str())); - m_Controls->m_Surface_Use_Other->setChecked(true); - switch(DefaultTool->GetType()) - { - case mitk::NavigationTool::Instrument: - m_Controls->m_ToolTypeChooser->setCurrentIndex(0); break; - case mitk::NavigationTool::Fiducial: - m_Controls->m_ToolTypeChooser->setCurrentIndex(1); break; - case mitk::NavigationTool::Skinmarker: - m_Controls->m_ToolTypeChooser->setCurrentIndex(2); break; - case mitk::NavigationTool::Unknown: - m_Controls->m_ToolTypeChooser->setCurrentIndex(3); break; - } - - m_Controls->m_SurfaceChooser->SetSelectedNode(DefaultTool->GetDataNode()); +m_Controls->m_ToolNameEdit->setText(QString(DefaultTool->GetDataNode()->GetName().c_str())); +m_Controls->m_IdentifierEdit->setText(QString(DefaultTool->GetIdentifier().c_str())); +m_Controls->m_SerialNumberEdit->setText(QString(DefaultTool->GetSerialNumber().c_str())); +m_AdvancedWidget->SetDefaultTooltip( DefaultTool->GetToolTipTransform() ); +switch(DefaultTool->GetTrackingDeviceType()) +{ +case mitk::NDIAurora: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0);break; +case mitk::NDIPolaris: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(1);break; +case mitk::ClaronMicron: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(2);break; +case mitk::NPOptitrack: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(3);break; +default: +m_Controls->m_TrackingDeviceTypeChooser->setCurrentIndex(0); +} +m_Controls->m_CalibrationFileName->setText(QString(DefaultTool->GetCalibrationFile().c_str())); +m_Controls->m_Surface_Use_Other->setChecked(true); +switch(DefaultTool->GetType()) +{ +case mitk::NavigationTool::Instrument: +m_Controls->m_ToolTypeChooser->setCurrentIndex(0); break; +case mitk::NavigationTool::Fiducial: +m_Controls->m_ToolTypeChooser->setCurrentIndex(1); break; +case mitk::NavigationTool::Skinmarker: +m_Controls->m_ToolTypeChooser->setCurrentIndex(2); break; +case mitk::NavigationTool::Unknown: +m_Controls->m_ToolTypeChooser->setCurrentIndex(3); break; +} +m_Controls->m_SurfaceChooser->SetSelectedNode(DefaultTool->GetDataNode()); +FillUIToolLandmarkLists(DefaultTool->GetToolCalibrationLandmarks(),DefaultTool->GetToolRegistrationLandmarks()); } //################################################################################## //############################## internal help methods ############################# //################################################################################## void QmitkNavigationToolCreationWidget::MessageBox(std::string s) { - QMessageBox msgBox; - msgBox.setText(s.c_str()); - msgBox.exec(); +QMessageBox msgBox; +msgBox.setText(s.c_str()); +msgBox.exec(); } void QmitkNavigationToolCreationWidget::OnShowAdvancedOptions(bool state) { - if(state) - { - m_AdvancedWidget->show(); - m_AdvancedWidget->SetDefaultTooltip(m_AdvancedWidget->GetManipulatedToolTip()); //use the last one, if there is one - m_AdvancedWidget->ReInitialize(); - - // reinit the views with the new nodes - mitk::DataStorage::SetOfObjects::ConstPointer rs = m_DataStorage->GetAll(); - mitk::TimeGeometry::Pointer bounds = m_DataStorage->ComputeBoundingGeometry3D(rs, "visible"); // initialize the views to the bounding geometry - mitk::RenderingManager::GetInstance()->InitializeViews(bounds); - } - else - { - m_AdvancedWidget->hide(); - } +if(state) +{ +m_AdvancedWidget->show(); +m_AdvancedWidget->SetDefaultTooltip(m_AdvancedWidget->GetManipulatedToolTip()); //use the last one, if there is one +m_AdvancedWidget->ReInitialize(); + +// reinit the views with the new nodes +mitk::DataStorage::SetOfObjects::ConstPointer rs = m_DataStorage->GetAll(); +mitk::TimeGeometry::Pointer bounds = m_DataStorage->ComputeBoundingGeometry3D(rs, "visible"); // initialize the views to the bounding geometry +mitk::RenderingManager::GetInstance()->InitializeViews(bounds); +} +else +{ +m_AdvancedWidget->hide(); +} } void QmitkNavigationToolCreationWidget::OnProcessDialogCloseRequest() { - m_AdvancedWidget->hide(); - m_Controls->m_ShowAdvancedOptionsPB->setChecked(false); +m_AdvancedWidget->hide(); +m_Controls->m_ShowAdvancedOptionsPB->setChecked(false); } void QmitkNavigationToolCreationWidget::OnRetrieveDataForManualTooltipManipulation() { - if(m_Controls->m_Surface_Use_Sphere->isChecked()) - { - m_AdvancedWidget->SetToolTipSurface(true); - } - else - { - m_AdvancedWidget->SetToolTipSurface(false, - dynamic_cast(m_Controls->m_SurfaceChooser->GetSelectedNode().GetPointer())); - } +if(m_Controls->m_Surface_Use_Sphere->isChecked()) +{ +m_AdvancedWidget->SetToolTipSurface(true); +} +else +{ +m_AdvancedWidget->SetToolTipSurface(false, +dynamic_cast(m_Controls->m_SurfaceChooser->GetSelectedNode().GetPointer())); +} } void QmitkNavigationToolCreationWidget::OnSurfaceUseOtherToggled(bool checked) { - m_Controls->m_LoadSurface->setEnabled(checked); +m_Controls->m_LoadSurface->setEnabled(checked); +} + +void QmitkNavigationToolCreationWidget::FillUIToolLandmarkLists(mitk::PointSet::Pointer calLandmarks, mitk::PointSet::Pointer regLandmarks) +{ +m_calLandmarkNode->SetData(calLandmarks); +m_regLandmarkNode->SetData(regLandmarks); +m_Controls->m_CalibrationLandmarksList->SetPointSetNode(m_calLandmarkNode); +m_Controls->m_RegistrationLandmarksList->SetPointSetNode(m_regLandmarkNode); + +} + +void QmitkNavigationToolCreationWidget::GetUIToolLandmarksLists(mitk::PointSet::Pointer& calLandmarks, mitk::PointSet::Pointer& regLandmarks) +{ +calLandmarks = dynamic_cast(m_calLandmarkNode->GetData()); +regLandmarks = dynamic_cast(m_regLandmarkNode->GetData()); +} + +void QmitkNavigationToolCreationWidget::InitializeUIToolLandmarkLists() +{ +m_calLandmarkNode = mitk::DataNode::New(); +m_regLandmarkNode = mitk::DataNode::New(); +FillUIToolLandmarkLists(mitk::PointSet::New(),mitk::PointSet::New()); } diff --git a/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.h b/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.h index 4aad403635..042b27cd15 100644 --- a/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.h +++ b/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.h @@ -1,109 +1,125 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkNavigationToolCreationWidget_H #define QmitkNavigationToolCreationWidget_H //QT headers #include //mitk headers #include "MitkIGTUIExports.h" #include #include #include // Qmitk headers #include "QmitkNavigationToolCreationAdvancedWidget.h" //ui header #include "ui_QmitkNavigationToolCreationWidget.h" /** Documentation: * \brief An object of this class offers an UI to create or modify NavigationTools. * * Be sure to call the initialize method before you start the widget * otherwise some errors might occure. * * \ingroup IGTUI */ class MitkIGTUI_EXPORT QmitkNavigationToolCreationWidget : public QWidget { Q_OBJECT public: static const std::string VIEW_ID; /** @brief Initializes the widget. * @param dataStorage The data storage is needed to offer the possibility to choose surfaces from the data storage for tool visualization. * @param supposedIdentifier This Identifier is supposed for the user. It is needed because every identifier in a navigation tool storage must be unique and we don't know the others. */ void Initialize(mitk::DataStorage* dataStorage, std::string supposedIdentifier, std::string supposedName = "NewTool"); /** @brief Sets the default tracking device type. You may also define if it is changeable or not.*/ void SetTrackingDeviceType(mitk::TrackingDeviceType type, bool changeable = true); /** @brief Sets the default data of all input fields. The default data is used from the default tool which is given as parameter. */ void SetDefaultData(mitk::NavigationTool::Pointer DefaultTool); QmitkNavigationToolCreationWidget(QWidget* parent = 0, Qt::WindowFlags f = 0); ~QmitkNavigationToolCreationWidget(); /** @return Returns the created tool. Returns NULL if no tool was created yet. */ mitk::NavigationTool::Pointer GetCreatedTool(); signals: /** @brief This signal is emitted if the user finished the creation of the tool. */ void NavigationToolFinished(); /** @brief This signal is emitted if the user canceled the creation of the tool. */ void Canceled(); protected slots: void OnCancel(); void OnFinished(); void OnLoadSurface(); void OnLoadCalibrationFile(); void OnShowAdvancedOptions(bool state); void OnProcessDialogCloseRequest(); void OnRetrieveDataForManualTooltipManipulation(); void OnSurfaceUseOtherToggled(bool checked); protected: /// \brief Creation of the connections virtual void CreateConnections(); virtual void CreateQtPartControl(QWidget *parent); Ui::QmitkNavigationToolCreationWidgetControls* m_Controls; QmitkNavigationToolCreationAdvancedWidget* m_AdvancedWidget; /** @brief holds the DataStorage */ mitk::DataStorage* m_DataStorage; /** @brief this pointer holds the tool which is created */ mitk::NavigationTool::Pointer m_CreatedTool; //############## private help methods ####################### + /** Shows a message box with the given message s. */ void MessageBox(std::string s); + /** Hold the data nodes which are needed for the landmark widgets. */ + mitk::DataNode::Pointer m_calLandmarkNode, m_regLandmarkNode; + + /** Set the tool landmark lists in the UI.*/ + void FillUIToolLandmarkLists(mitk::PointSet::Pointer calLandmarks, mitk::PointSet::Pointer regLandmarks); + + /** Returns the tool landmark lists from the UI. + * @param[out] calLandmarks Returns a pointer to the calibration landmarks point set. + * @param[out] regLandmarks Returns a pointer to the registration landmarks point set. + */ + void GetUIToolLandmarksLists(mitk::PointSet::Pointer& calLandmarks, mitk::PointSet::Pointer& regLandmarks); + + /** Initializes the tool landmark lists in the UI. */ + void InitializeUIToolLandmarkLists(); + }; #endif diff --git a/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.ui b/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.ui index 0572c457bd..28beb9ffb6 100644 --- a/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.ui +++ b/Modules/IGTUI/Qmitk/QmitkNavigationToolCreationWidget.ui @@ -1,483 +1,531 @@ QmitkNavigationToolCreationWidgetControls 0 0 - 358 - 371 + 254 + 309 Form Device Type: 150 0 150 16777215 NDI Aurora NDI Polaris Claron Technology Micron Tracker NP Optitrack 0 0 0 - 340 - 205 + 236 + 90 Basic Information 100 0 Name: NewTool 100 0 Calibration File: none 40 16777215 Load Qt::Vertical 20 40 0 0 - 340 - 205 + 310 + 113 Tool Visualization Use Simple Cone true Use Surface: Qt::Horizontal QSizePolicy::Fixed 25 20 200 0 150 16777215 false 40 16777215 Load Qt::Horizontal 40 20 Qt::Vertical 20 8 + + + + 0 + 0 + 232 + 85 + + + + Tool Landmarks + + + + + + 0 + + + + Calibration Landmarks + + + + + + + + + + Registration Landmarks + + + + + + + + + + + 0 0 - 340 - 129 + 281 + 152 Advanced 100 0 Tool Type: 150 0 150 16777215 Instrument Fiducial Skinmarker Unkown 100 0 Identifier: <not given> 100 0 Serial Number: <not given> Tooltip: Qt::Horizontal 40 20 Edit Tooltip true Qt::Vertical 20 40 Qt::Horizontal Qt::Horizontal 40 20 Cancel Finished QmitkDataStorageComboBox QComboBox
QmitkDataStorageComboBox.h
1
+ + QmitkPointListWidget + QWidget +
QmitkPointListWidget.h
+ 1 +
diff --git a/Modules/IOExt/Internal/mitkUnstructuredGridVtkWriter.txx b/Modules/IOExt/Internal/mitkUnstructuredGridVtkWriter.txx index b544b24d0f..46eb319ee5 100644 --- a/Modules/IOExt/Internal/mitkUnstructuredGridVtkWriter.txx +++ b/Modules/IOExt/Internal/mitkUnstructuredGridVtkWriter.txx @@ -1,203 +1,203 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_UNSTRUCTURED_GRID_VTKWRITER_TXX_ #define _MITK_UNSTRUCTURED_GRID_VTKWRITER_TXX_ #include #include #include #include #include #include #include #include #include #include #include namespace mitk { template UnstructuredGridVtkWriter::UnstructuredGridVtkWriter() : m_Success(false) { this->SetNumberOfRequiredInputs(1); } template UnstructuredGridVtkWriter::~UnstructuredGridVtkWriter() { } template void UnstructuredGridVtkWriter::GenerateData() { m_Success = false; if ( m_FileName == "" ) { itkWarningMacro( << "Sorry, filename has not been set!" ); return ; } mitk::UnstructuredGrid::Pointer input = const_cast(this->GetInput()); if (input.IsNull()) { itkWarningMacro( << "Sorry, input to mitk::UnstructuredGridVtkWriter is NULL"); return; } VTKWRITER* unstructuredGridWriter = VTKWRITER::New(); vtkTransformFilter* transformPointSet = vtkTransformFilter::New(); vtkUnstructuredGrid * unstructuredGrid; BaseGeometry* geometry; if(input->GetTimeGeometry()->CountTimeSteps()>1) { int t, timesteps; timesteps = input->GetTimeGeometry()->CountTimeSteps(); for(t = 0; t < timesteps; ++t) { std::ostringstream filename; geometry = input->GetGeometry(t); if(input->GetTimeGeometry()->IsValidTimeStep(t)) { - const mitk::TimeBounds& timebounds = geometry->GetTimeBounds(); + const mitk::TimeBounds& timebounds = input->GetTimeGeometry()->GetTimeBounds(t); filename << m_FileName.c_str() << "_S" << std::setprecision(0) << timebounds[0] << "_E" << std::setprecision(0) << timebounds[1] << "_T" << t << GetDefaultExtension(); } else { itkWarningMacro(<<"Error on write: TimeGeometry invalid of unstructured grid " << filename.str() << "."); filename << m_FileName.c_str() << "_T" << t << GetDefaultExtension(); } transformPointSet->SetInputData(input->GetVtkUnstructuredGrid(t)); transformPointSet->SetTransform(geometry->GetVtkTransform()); transformPointSet->UpdateWholeExtent(); unstructuredGrid = static_cast(transformPointSet->GetOutput()); unstructuredGridWriter->SetFileName(filename.str().c_str()); unstructuredGridWriter->SetInputData(unstructuredGrid); ExecuteWrite( unstructuredGridWriter ); } } else { geometry = input->GetGeometry(); transformPointSet->SetInputData(input->GetVtkUnstructuredGrid()); transformPointSet->SetTransform(geometry->GetVtkTransform()); transformPointSet->UpdateWholeExtent(); unstructuredGrid = static_cast(transformPointSet->GetOutput()); unstructuredGridWriter->SetFileName(m_FileName.c_str()); unstructuredGridWriter->SetInputData(unstructuredGrid); ExecuteWrite( unstructuredGridWriter ); } transformPointSet->Delete(); unstructuredGridWriter->Delete(); m_Success = true; } template void UnstructuredGridVtkWriter::ExecuteWrite( VTKWRITER* vtkWriter ) { struct stat fileStatus; time_t timeBefore=0; if (!stat(vtkWriter->GetFileName(), &fileStatus)) { timeBefore = fileStatus.st_mtime; } if (!vtkWriter->Write()) { itkExceptionMacro( << "Error during unstructured grid writing."); } // check if file can be written because vtkWriter doesn't check that if (stat(vtkWriter->GetFileName(), &fileStatus) || (timeBefore == fileStatus.st_mtime)) { itkExceptionMacro(<<"Error during unstructured grid writing: file could not be written"); } } template void UnstructuredGridVtkWriter::SetInput(BaseData *input) { this->ProcessObject::SetNthInput(0, input); } template const UnstructuredGrid* UnstructuredGridVtkWriter::GetInput() { if (this->GetNumberOfInputs() < 1) { return 0; } else { return dynamic_cast(this->ProcessObject::GetInput(0)); } } template bool UnstructuredGridVtkWriter::CanWriteBaseDataType(BaseData::Pointer data) { return (dynamic_cast(data.GetPointer()) != 0); } template void UnstructuredGridVtkWriter::DoWrite(BaseData::Pointer data) { if (CanWriteBaseDataType(data)) { this->SetInput(dynamic_cast(data.GetPointer())); this->Update(); } } template std::vector UnstructuredGridVtkWriter::GetPossibleFileExtensions() { throw std::exception(); // no specialization available! } template const char* UnstructuredGridVtkWriter::GetDefaultFilename() { throw std::exception(); // no specialization available! } template const char* UnstructuredGridVtkWriter::GetFileDialogPattern() { throw std::exception(); // no specialization available! } template const char* UnstructuredGridVtkWriter::GetDefaultExtension() { throw std::exception(); // no specialization available! } } #endif diff --git a/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp b/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp index f331f8ec7b..27bc33dfc4 100644 --- a/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp +++ b/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp @@ -1,490 +1,481 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkExtractDirectedPlaneImageFilter.h" #include "mitkAbstractTransformGeometry.h" //#include "mitkImageMapperGL2D.h" #include #include #include #include #include "vtkMitkThickSlicesFilter.h" #include #include #include #include #include #include #include mitk::ExtractDirectedPlaneImageFilter::ExtractDirectedPlaneImageFilter() : m_WorldGeometry(NULL) { MITK_WARN << "Class ExtractDirectedPlaneImageFilter is deprecated! Use ExtractSliceFilter instead."; m_Reslicer = vtkImageReslice::New(); m_TargetTimestep = 0; m_InPlaneResampleExtentByGeometry = true; m_ResliceInterpolationProperty = NULL;//VtkResliceInterpolationProperty::New(); //TODO initial with value m_ThickSlicesMode = 0; m_ThickSlicesNum = 1; } mitk::ExtractDirectedPlaneImageFilter::~ExtractDirectedPlaneImageFilter() { if(m_ResliceInterpolationProperty!=NULL)m_ResliceInterpolationProperty->Delete(); m_Reslicer->Delete(); } void mitk::ExtractDirectedPlaneImageFilter::GenerateData() { // A world geometry must be set... if ( m_WorldGeometry == NULL ) { itkWarningMacro(<<"No world geometry has been set. Returning."); return; } Image *input = const_cast< ImageToImageFilter::InputImageType* >( this->GetInput() ); input->Update(); if ( input == NULL ) { itkWarningMacro(<<"No input set."); return; } const TimeGeometry *inputTimeGeometry = input->GetTimeGeometry(); if ( ( inputTimeGeometry == NULL ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) { itkWarningMacro(<<"Error reading input image geometry."); return; } // Get the target timestep; if none is set, use the lowest given. - unsigned int timestep = 0; - if ( ! m_TargetTimestep ) - { - ScalarType time = m_WorldGeometry->GetTimeBounds()[0]; - if ( time > ScalarTypeNumericTraits::NonpositiveMin() ) - { - timestep = inputTimeGeometry->TimePointToTimeStep( time ); - } - } - else timestep = m_TargetTimestep; + unsigned int timestep = m_TargetTimestep; if ( inputTimeGeometry->IsValidTimeStep( timestep ) == false ) { itkWarningMacro(<<"This is not a valid timestep: "<IsVolumeSet( timestep ) ) { itkWarningMacro(<<"No volume data existent at given timestep "<GetLargestPossibleRegion(); requestedRegion.SetIndex( 3, timestep ); requestedRegion.SetSize( 3, 1 ); requestedRegion.SetSize( 4, 1 ); input->SetRequestedRegion( &requestedRegion ); input->Update(); vtkImageData* inputData = input->GetVtkImageData( timestep ); if ( inputData == NULL ) { itkWarningMacro(<<"Could not extract vtk image data for given timestep"<GetSpacing( spacing ); // how big the area is in physical coordinates: widthInMM x heightInMM pixels mitk::ScalarType widthInMM, heightInMM; // where we want to sample Point3D origin; Vector3D right, bottom, normal; Vector3D rightInIndex, bottomInIndex; assert( input->GetTimeGeometry() == inputTimeGeometry ); // take transform of input image into account BaseGeometry* inputGeometry = inputTimeGeometry->GetGeometryForTimeStep( timestep ); if ( inputGeometry == NULL ) { itkWarningMacro(<<"There is no Geometry3D at given timestep "<( m_WorldGeometry ) != NULL ) { const PlaneGeometry *planeGeometry = static_cast< const PlaneGeometry * >( m_WorldGeometry ); origin = planeGeometry->GetOrigin(); right = planeGeometry->GetAxisVector( 0 ); bottom = planeGeometry->GetAxisVector( 1 ); normal = planeGeometry->GetNormal(); if ( m_InPlaneResampleExtentByGeometry ) { // Resampling grid corresponds to the current world geometry. This // means that the spacing of the output 2D image depends on the // currently selected world geometry, and *not* on the image itself. extent[0] = m_WorldGeometry->GetExtent( 0 ); extent[1] = m_WorldGeometry->GetExtent( 1 ); } else { // Resampling grid corresponds to the input geometry. This means that // the spacing of the output 2D image is directly derived from the // associated input image, regardless of the currently selected world // geometry. inputGeometry->WorldToIndex( right, rightInIndex ); inputGeometry->WorldToIndex( bottom, bottomInIndex ); extent[0] = rightInIndex.GetNorm(); extent[1] = bottomInIndex.GetNorm(); } // Get the extent of the current world geometry and calculate resampling // spacing therefrom. widthInMM = m_WorldGeometry->GetExtentInMM( 0 ); heightInMM = m_WorldGeometry->GetExtentInMM( 1 ); mmPerPixel[0] = widthInMM / extent[0]; mmPerPixel[1] = heightInMM / extent[1]; right.Normalize(); bottom.Normalize(); normal.Normalize(); //origin += right * ( mmPerPixel[0] * 0.5 ); //origin += bottom * ( mmPerPixel[1] * 0.5 ); //widthInMM -= mmPerPixel[0]; //heightInMM -= mmPerPixel[1]; // Use inverse transform of the input geometry for reslicing the 3D image m_Reslicer->SetResliceTransform( inputGeometry->GetVtkTransform()->GetLinearInverse() ); // Set background level to TRANSLUCENT (see PlaneGeometryDataVtkMapper3D) m_Reslicer->SetBackgroundLevel( -32768 ); // Check if a reference geometry does exist (as would usually be the case for // PlaneGeometry). // Note: this is currently not strictly required, but could facilitate // correct plane clipping. if ( m_WorldGeometry->GetReferenceGeometry() ) { // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. boundsInitialized = this->CalculateClippedPlaneBounds( m_WorldGeometry->GetReferenceGeometry(), planeGeometry, bounds ); } } // Do we have an AbstractTransformGeometry? else if ( dynamic_cast< const AbstractTransformGeometry * >( m_WorldGeometry ) ) { const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * >(m_WorldGeometry); extent[0] = abstractGeometry->GetParametricExtent(0); extent[1] = abstractGeometry->GetParametricExtent(1); widthInMM = abstractGeometry->GetParametricExtentInMM(0); heightInMM = abstractGeometry->GetParametricExtentInMM(1); mmPerPixel[0] = widthInMM / extent[0]; mmPerPixel[1] = heightInMM / extent[1]; origin = abstractGeometry->GetPlane()->GetOrigin(); right = abstractGeometry->GetPlane()->GetAxisVector(0); right.Normalize(); bottom = abstractGeometry->GetPlane()->GetAxisVector(1); bottom.Normalize(); normal = abstractGeometry->GetPlane()->GetNormal(); normal.Normalize(); // Use a combination of the InputGeometry *and* the possible non-rigid // AbstractTransformGeometry for reslicing the 3D Image vtkGeneralTransform *composedResliceTransform = vtkGeneralTransform::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( inputGeometry->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); m_Reslicer->SetResliceTransform( composedResliceTransform ); // Set background level to BLACK instead of translucent, to avoid // boundary artifacts (see PlaneGeometryDataVtkMapper3D) m_Reslicer->SetBackgroundLevel( -1023 ); composedResliceTransform->Delete(); } else { itkWarningMacro(<<"World Geometry has to be a PlaneGeometry or an AbstractTransformGeometry."); return; } // Make sure that the image to be resliced has a certain minimum size. if ( (extent[0] <= 2) && (extent[1] <= 2) ) { itkWarningMacro(<<"Image is too small to be resliced..."); return; } vtkSmartPointer unitSpacingImageFilter = vtkImageChangeInformation::New() ; unitSpacingImageFilter->SetOutputSpacing( 1.0, 1.0, 1.0 ); unitSpacingImageFilter->SetInputData( inputData ); m_Reslicer->SetInputConnection( unitSpacingImageFilter->GetOutputPort() ); //m_Reslicer->SetInput( inputData ); m_Reslicer->SetOutputDimensionality( 2 ); m_Reslicer->SetOutputOrigin( 0.0, 0.0, 0.0 ); Vector2D pixelsPerMM; pixelsPerMM[0] = 1.0 / mmPerPixel[0]; pixelsPerMM[1] = 1.0 / mmPerPixel[1]; //calulate the originArray and the orientations for the reslice-filter double originArray[3]; itk2vtk( origin, originArray ); m_Reslicer->SetResliceAxesOrigin( originArray ); double cosines[9]; // direction of the X-axis of the sampled result vnl2vtk( right.GetVnlVector(), cosines ); // direction of the Y-axis of the sampled result vnl2vtk( bottom.GetVnlVector(), cosines + 3 ); // normal of the plane vnl2vtk( normal.GetVnlVector(), cosines + 6 ); m_Reslicer->SetResliceAxesDirectionCosines( cosines ); int xMin, xMax, yMin, yMax; if ( boundsInitialized ) { xMin = static_cast< int >( bounds[0] / mmPerPixel[0] );//+ 0.5 ); xMax = static_cast< int >( bounds[1] / mmPerPixel[0] );//+ 0.5 ); yMin = static_cast< int >( bounds[2] / mmPerPixel[1] );//+ 0.5); yMax = static_cast< int >( bounds[3] / mmPerPixel[1] );//+ 0.5 ); } else { // If no reference geometry is available, we also don't know about the // maximum plane size; so the overlap is just ignored xMin = yMin = 0; xMax = static_cast< int >( extent[0] - pixelsPerMM[0] );//+ 0.5 ); yMax = static_cast< int >( extent[1] - pixelsPerMM[1] );//+ 0.5 ); } m_Reslicer->SetOutputSpacing( mmPerPixel[0], mmPerPixel[1], 1.0 ); // xMax and yMax are meant exclusive until now, whereas // SetOutputExtent wants an inclusive bound. Thus, we need // to subtract 1. m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, 0, 1 ); // Do the reslicing. Modified() is called to make sure that the reslicer is // executed even though the input geometry information did not change; this // is necessary when the input /em data, but not the /em geometry changes. m_Reslicer->Modified(); m_Reslicer->ReleaseDataFlagOn(); m_Reslicer->Update(); // 1. Check the result vtkImageData* reslicedImage = m_Reslicer->GetOutput(); if((reslicedImage == NULL) || (reslicedImage->GetDataDimension() < 1)) { itkWarningMacro(<<"Reslicer returned empty image"); return; } unsigned int dimensions[2]; dimensions[0] = (unsigned int)extent[0]; dimensions[1] = (unsigned int)extent[1]; Vector3D spacingVector; FillVector3D(spacingVector, mmPerPixel[0], mmPerPixel[1], 1.0); mitk::Image::Pointer resultImage = this->GetOutput(); resultImage->Initialize(input->GetPixelType(), 2, dimensions ); resultImage->SetSpacing( spacingVector ); } void mitk::ExtractDirectedPlaneImageFilter::GenerateOutputInformation() { Superclass::GenerateOutputInformation(); } bool mitk::ExtractDirectedPlaneImageFilter ::CalculateClippedPlaneBounds( const BaseGeometry *boundingGeometry, const PlaneGeometry *planeGeometry, double *bounds ) { // Clip the plane with the bounding geometry. To do so, the corner points // of the bounding box are transformed by the inverse transformation // matrix, and the transformed bounding box edges derived therefrom are // clipped with the plane z=0. The resulting min/max values are taken as // bounds for the image reslicer. const BoundingBox *boundingBox = boundingGeometry->GetBoundingBox(); BoundingBox::PointType bbMin = boundingBox->GetMinimum(); BoundingBox::PointType bbMax = boundingBox->GetMaximum(); vtkPoints *points = vtkPoints::New(); if(boundingGeometry->GetImageGeometry()) { points->InsertPoint( 0, bbMin[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 1, bbMin[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 2, bbMin[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 3, bbMin[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 4, bbMax[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 5, bbMax[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 6, bbMax[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 7, bbMax[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); } else { points->InsertPoint( 0, bbMin[0], bbMin[1], bbMin[2] ); points->InsertPoint( 1, bbMin[0], bbMin[1], bbMax[2] ); points->InsertPoint( 2, bbMin[0], bbMax[1], bbMax[2] ); points->InsertPoint( 3, bbMin[0], bbMax[1], bbMin[2] ); points->InsertPoint( 4, bbMax[0], bbMin[1], bbMin[2] ); points->InsertPoint( 5, bbMax[0], bbMin[1], bbMax[2] ); points->InsertPoint( 6, bbMax[0], bbMax[1], bbMax[2] ); points->InsertPoint( 7, bbMax[0], bbMax[1], bbMin[2] ); } vtkPoints *newPoints = vtkPoints::New(); vtkTransform *transform = vtkTransform::New(); transform->Identity(); transform->Concatenate( planeGeometry->GetVtkTransform()->GetLinearInverse() ); transform->Concatenate( boundingGeometry->GetVtkTransform() ); transform->TransformPoints( points, newPoints ); transform->Delete(); bounds[0] = bounds[2] = 10000000.0; bounds[1] = bounds[3] = -10000000.0; bounds[4] = bounds[5] = 0.0; this->LineIntersectZero( newPoints, 0, 1, bounds ); this->LineIntersectZero( newPoints, 1, 2, bounds ); this->LineIntersectZero( newPoints, 2, 3, bounds ); this->LineIntersectZero( newPoints, 3, 0, bounds ); this->LineIntersectZero( newPoints, 0, 4, bounds ); this->LineIntersectZero( newPoints, 1, 5, bounds ); this->LineIntersectZero( newPoints, 2, 6, bounds ); this->LineIntersectZero( newPoints, 3, 7, bounds ); this->LineIntersectZero( newPoints, 4, 5, bounds ); this->LineIntersectZero( newPoints, 5, 6, bounds ); this->LineIntersectZero( newPoints, 6, 7, bounds ); this->LineIntersectZero( newPoints, 7, 4, bounds ); // clean up vtk data points->Delete(); newPoints->Delete(); if ( (bounds[0] > 9999999.0) || (bounds[2] > 9999999.0) || (bounds[1] < -9999999.0) || (bounds[3] < -9999999.0) ) { return false; } else { // The resulting bounds must be adjusted by the plane spacing, since we // we have so far dealt with index coordinates const mitk::Vector3D planeSpacing = planeGeometry->GetSpacing(); bounds[0] *= planeSpacing[0]; bounds[1] *= planeSpacing[0]; bounds[2] *= planeSpacing[1]; bounds[3] *= planeSpacing[1]; bounds[4] *= planeSpacing[2]; bounds[5] *= planeSpacing[2]; return true; } } bool mitk::ExtractDirectedPlaneImageFilter ::LineIntersectZero( vtkPoints *points, int p1, int p2, double *bounds ) { double point1[3]; double point2[3]; points->GetPoint( p1, point1 ); points->GetPoint( p2, point2 ); if ( (point1[2] * point2[2] <= 0.0) && (point1[2] != point2[2]) ) { double x, y; x = ( point1[0] * point2[2] - point1[2] * point2[0] ) / ( point2[2] - point1[2] ); y = ( point1[1] * point2[2] - point1[2] * point2[1] ) / ( point2[2] - point1[2] ); if ( x < bounds[0] ) { bounds[0] = x; } if ( x > bounds[1] ) { bounds[1] = x; } if ( y < bounds[2] ) { bounds[2] = y; } if ( y > bounds[3] ) { bounds[3] = y; } bounds[4] = bounds[5] = 0.0; return true; } return false; } diff --git a/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilterNew.cpp b/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilterNew.cpp index 716e202c8a..9447cf64cc 100644 --- a/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilterNew.cpp +++ b/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilterNew.cpp @@ -1,297 +1,285 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkExtractDirectedPlaneImageFilterNew.h" #include "mitkImageCast.h" #include "mitkImageTimeSelector.h" #include "itkImageRegionIterator.h" #include mitk::ExtractDirectedPlaneImageFilterNew::ExtractDirectedPlaneImageFilterNew() :m_CurrentWorldPlaneGeometry(NULL), -m_ActualInputTimestep(-1) +m_ActualInputTimestep(0) { MITK_WARN << "Class ExtractDirectedPlaneImageFilterNew is deprecated! Use ExtractSliceFilter instead."; } mitk::ExtractDirectedPlaneImageFilterNew::~ExtractDirectedPlaneImageFilterNew() { } void mitk::ExtractDirectedPlaneImageFilterNew::GenerateData(){ - mitk::Image::ConstPointer inputImage = ImageToImageFilter::GetInput(0); if ( !inputImage ) { MITK_ERROR << "mitk::ExtractDirectedPlaneImageFilterNew: No input available. Please set the input!" << std::endl; itkExceptionMacro("mitk::ExtractDirectedPlaneImageFilterNew: No input available. Please set the input!"); return; } m_ImageGeometry = inputImage->GetGeometry(); //If no timestep is set, the lowest given will be selected const mitk::TimeGeometry* inputTimeGeometry = this->GetInput()->GetTimeGeometry(); - if ( m_ActualInputTimestep == -1) - { - ScalarType time = m_CurrentWorldPlaneGeometry->GetTimeBounds()[0]; - if ( time > ScalarTypeNumericTraits::NonpositiveMin() ) - { - m_ActualInputTimestep = inputTimeGeometry->TimePointToTimeStep( time ); - } - } if ( inputImage->GetDimension() > 4 || inputImage->GetDimension() < 2) { MITK_ERROR << "mitk::ExtractDirectedPlaneImageFilterNew:GenerateData works only with 3D and 3D+t images, sorry." << std::endl; itkExceptionMacro("mitk::ExtractDirectedPlaneImageFilterNew works only with 3D and 3D+t images, sorry."); return; } else if ( inputImage->GetDimension() == 4 ) { mitk::ImageTimeSelector::Pointer timeselector = mitk::ImageTimeSelector::New(); timeselector->SetInput( inputImage ); timeselector->SetTimeNr( m_ActualInputTimestep ); timeselector->UpdateLargestPossibleRegion(); inputImage = timeselector->GetOutput(); } else if ( inputImage->GetDimension() == 2) { mitk::Image::Pointer resultImage = ImageToImageFilter::GetOutput(); resultImage = const_cast( inputImage.GetPointer() ); ImageToImageFilter::SetNthOutput( 0, resultImage); return; } if ( !m_CurrentWorldPlaneGeometry ) { MITK_ERROR<< "mitk::ExtractDirectedPlaneImageFilterNew::GenerateData has no CurrentWorldPlaneGeometry set" << std::endl; return; } AccessFixedDimensionByItk( inputImage, ItkSliceExtraction, 3 ); - }//Generate Data void mitk::ExtractDirectedPlaneImageFilterNew::GenerateOutputInformation () { Superclass::GenerateOutputInformation(); } /* * The desired slice is extracted by filling the image`s corresponding pixel values in an empty 2 dimensional itk::Image * Therefor the itk image`s extent in pixel (in each direction) is doubled and its spacing (also in each direction) is divided by two * (similar to the shannon theorem). */ template void mitk::ExtractDirectedPlaneImageFilterNew::ItkSliceExtraction (itk::Image* inputImage) { typedef itk::Image InputImageType; typedef itk::Image SliceImageType; typedef itk::ImageRegionConstIterator< SliceImageType > SliceIterator; //Creating an itk::Image that represents the sampled slice typename SliceImageType::Pointer resultSlice = SliceImageType::New(); typename SliceImageType::IndexType start; start[0] = 0; start[1] = 0; Point3D origin = m_CurrentWorldPlaneGeometry->GetOrigin(); Vector3D right = m_CurrentWorldPlaneGeometry->GetAxisVector(0); Vector3D bottom = m_CurrentWorldPlaneGeometry->GetAxisVector(1); //Calculation the sample-spacing, i.e the half of the smallest spacing existing in the original image Vector3D newPixelSpacing = m_ImageGeometry->GetSpacing(); float minSpacing = newPixelSpacing[0]; for (unsigned int i = 1; i < newPixelSpacing.Size(); i++) { if (newPixelSpacing[i] < minSpacing ) { minSpacing = newPixelSpacing[i]; } } newPixelSpacing[0] = 0.5*minSpacing; newPixelSpacing[1] = 0.5*minSpacing; newPixelSpacing[2] = 0.5*minSpacing; float pixelSpacing[2]; pixelSpacing[0] = newPixelSpacing[0]; pixelSpacing[1] = newPixelSpacing[1]; //Calculating the size of the sampled slice typename SliceImageType::SizeType size; Vector2D extentInMM; extentInMM[0] = m_CurrentWorldPlaneGeometry->GetExtentInMM(0); extentInMM[1] = m_CurrentWorldPlaneGeometry->GetExtentInMM(1); //The maximum extent is the lenght of the diagonal of the considered plane double maxExtent = sqrt(extentInMM[0]*extentInMM[0]+extentInMM[1]*extentInMM[1]); unsigned int xTranlation = (maxExtent-extentInMM[0]); unsigned int yTranlation = (maxExtent-extentInMM[1]); size[0] = (maxExtent+xTranlation)/newPixelSpacing[0]; size[1] = (maxExtent+yTranlation)/newPixelSpacing[1]; //Creating an ImageRegion Object typename SliceImageType::RegionType region; region.SetSize( size ); region.SetIndex( start ); //Defining the image`s extent and origin by passing the region to it and allocating memory for it resultSlice->SetRegions( region ); resultSlice->SetSpacing( pixelSpacing ); resultSlice->Allocate(); /* * Here we create an new geometry so that the transformations are calculated correctly (our resulting slice has a different bounding box and spacing) * The original current worldgeometry must be cloned because we have to keep the directions of the axis vector which represents the rotation */ right.Normalize(); bottom.Normalize(); //Here we translate the origin to adapt the new geometry to the previous calculated extent origin[0] -= xTranlation*right[0]+yTranlation*bottom[0]; origin[1] -= xTranlation*right[1]+yTranlation*bottom[1]; origin[2] -= xTranlation*right[2]+yTranlation*bottom[2]; //Putting it together for the new geometry mitk::BaseGeometry::Pointer newSliceGeometryTest = dynamic_cast(m_CurrentWorldPlaneGeometry->Clone().GetPointer()); newSliceGeometryTest->ChangeImageGeometryConsideringOriginOffset(true); //Workaround because of BUG (#6505) newSliceGeometryTest->GetIndexToWorldTransform()->SetMatrix(m_CurrentWorldPlaneGeometry->GetIndexToWorldTransform()->GetMatrix()); //Workaround end newSliceGeometryTest->SetOrigin(origin); ScalarType bounds[6]={0, static_cast(size[0]), 0, static_cast(size[1]), 0, 1}; newSliceGeometryTest->SetBounds(bounds); newSliceGeometryTest->SetSpacing(newPixelSpacing); newSliceGeometryTest->Modified(); //Workaround because of BUG (#6505) itk::MatrixOffsetTransformBase::MatrixType tempTransform = newSliceGeometryTest->GetIndexToWorldTransform()->GetMatrix(); //Workaround end /* * Now we iterate over the recently created slice. * For each slice - pixel we check whether there is an according * pixel in the input - image which can be set in the slice. * In this way a slice is sampled out of the input - image regrading to the given PlaneGeometry */ Point3D currentSliceIndexPointIn2D; Point3D currentImageWorldPointIn3D; typename InputImageType::IndexType inputIndex; SliceIterator sliceIterator ( resultSlice, resultSlice->GetLargestPossibleRegion() ); sliceIterator.GoToBegin(); while ( !sliceIterator.IsAtEnd() ) { /* * Here we add 0.5 to to assure that the indices are correctly transformed. * (Because of the 0.5er Bug) */ currentSliceIndexPointIn2D[0] = sliceIterator.GetIndex()[0]+0.5; currentSliceIndexPointIn2D[1] = sliceIterator.GetIndex()[1]+0.5; currentSliceIndexPointIn2D[2] = 0; newSliceGeometryTest->IndexToWorld( currentSliceIndexPointIn2D, currentImageWorldPointIn3D ); m_ImageGeometry->WorldToIndex( currentImageWorldPointIn3D, inputIndex); if ( m_ImageGeometry->IsIndexInside( inputIndex )) { - resultSlice->SetPixel( sliceIterator.GetIndex(), inputImage->GetPixel(inputIndex) ); - } else { resultSlice->SetPixel( sliceIterator.GetIndex(), 0); } ++sliceIterator; } Image::Pointer resultImage = ImageToImageFilter::GetOutput(); GrabItkImageMemory(resultSlice, resultImage, NULL, false); resultImage->SetClonedGeometry(newSliceGeometryTest); //Workaround because of BUG (#6505) resultImage->GetGeometry()->GetIndexToWorldTransform()->SetMatrix(tempTransform); //Workaround end } ///**TEST** May ba a little bit more efficient but doesn`t already work/ //right.Normalize(); //bottom.Normalize(); //Point3D currentImagePointIn3D = origin /*+ bottom*newPixelSpacing*/; //unsigned int columns ( 0 ); /**ENDE**/ /****TEST***/ //SliceImageType::IndexType index = sliceIterator.GetIndex(); //if ( columns == (extentInPixel[0]) ) //{ //If we are at the end of a row, then we have to go to the beginning of the next row //currentImagePointIn3D = origin; //currentImagePointIn3D += newPixelSpacing[1]*bottom*index[1]; //columns = 0; //m_ImageGeometry->WorldToIndex(currentImagePointIn3D, inputIndex); //} //else //{ //// //if ( columns != 0 ) //{ //currentImagePointIn3D += newPixelSpacing[0]*right; //} //m_ImageGeometry->WorldToIndex(currentImagePointIn3D, inputIndex); //} //if ( m_ImageGeometry->IsIndexInside( inputIndex )) //{ //resultSlice->SetPixel( sliceIterator.GetIndex(), inputImage->GetPixel(inputIndex) ); //} //else if (currentImagePointIn3D == origin) //{ //Point3D temp; //temp[0] = bottom[0]*newPixelSpacing[0]*0.5; //temp[1] = bottom[1]*newPixelSpacing[1]*0.5; //temp[2] = bottom[2]*newPixelSpacing[2]*0.5; //origin[0] += temp[0]; //origin[1] += temp[1]; //origin[2] += temp[2]; //currentImagePointIn3D = origin; //m_ImageGeometry->WorldToIndex(currentImagePointIn3D, inputIndex); //if ( m_ImageGeometry->IsIndexInside( inputIndex )) //{ //resultSlice->SetPixel( sliceIterator.GetIndex(), inputImage->GetPixel(inputIndex) ); //} //} /****TEST ENDE****/ diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp index 9f356b312e..67f13ec20f 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp @@ -1,1271 +1,1284 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageStatisticsCalculator.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkExtractImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace mitk { ImageStatisticsCalculator::ImageStatisticsCalculator() : m_MaskingMode( MASKING_MODE_NONE ), m_MaskingModeChanged( false ), m_IgnorePixelValue(0.0), m_DoIgnorePixelValue(false), m_IgnorePixelValueChanged(false), m_PlanarFigureAxis (0), m_PlanarFigureSlice (0), m_PlanarFigureCoordinate0 (0), - m_PlanarFigureCoordinate1 (0) + m_PlanarFigureCoordinate1 (0), + m_HistogramBinSize(1) { m_EmptyHistogram = HistogramType::New(); m_EmptyHistogram->SetMeasurementVectorSize(1); HistogramType::SizeType histogramSize(1); histogramSize.Fill( 256 ); m_EmptyHistogram->Initialize( histogramSize ); m_EmptyStatistics.Reset(); } ImageStatisticsCalculator::~ImageStatisticsCalculator() { } void ImageStatisticsCalculator::SetImage( const mitk::Image *image ) { if ( m_Image != image ) { m_Image = image; this->Modified(); unsigned int numberOfTimeSteps = image->GetTimeSteps(); // Initialize vectors to time-size of this image m_ImageHistogramVector.resize( numberOfTimeSteps ); m_MaskedImageHistogramVector.resize( numberOfTimeSteps ); m_PlanarFigureHistogramVector.resize( numberOfTimeSteps ); m_ImageStatisticsVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsVector.resize( numberOfTimeSteps ); m_ImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_ImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); for ( unsigned int t = 0; t < image->GetTimeSteps(); ++t ) { m_ImageStatisticsTimeStampVector[t].Modified(); m_ImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetImageMask( const mitk::Image *imageMask ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_ImageMask != imageMask ) { m_ImageMask = imageMask; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_MaskedImageStatisticsTimeStampVector[t].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetPlanarFigure( mitk::PlanarFigure *planarFigure ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_PlanarFigure != planarFigure ) { m_PlanarFigure = planarFigure; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_PlanarFigureStatisticsTimeStampVector[t].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetMaskingMode( unsigned int mode ) { if ( m_MaskingMode != mode ) { m_MaskingMode = mode; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToNone() { if ( m_MaskingMode != MASKING_MODE_NONE ) { m_MaskingMode = MASKING_MODE_NONE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToImage() { if ( m_MaskingMode != MASKING_MODE_IMAGE ) { m_MaskingMode = MASKING_MODE_IMAGE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToPlanarFigure() { if ( m_MaskingMode != MASKING_MODE_PLANARFIGURE ) { m_MaskingMode = MASKING_MODE_PLANARFIGURE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetIgnorePixelValue(double value) { if ( m_IgnorePixelValue != value ) { m_IgnorePixelValue = value; if(m_DoIgnorePixelValue) { m_IgnorePixelValueChanged = true; } this->Modified(); } } double ImageStatisticsCalculator::GetIgnorePixelValue() { return m_IgnorePixelValue; } void ImageStatisticsCalculator::SetDoIgnorePixelValue(bool value) { if ( m_DoIgnorePixelValue != value ) { m_DoIgnorePixelValue = value; m_IgnorePixelValueChanged = true; this->Modified(); } } bool ImageStatisticsCalculator::GetDoIgnorePixelValue() { return m_DoIgnorePixelValue; } +void ImageStatisticsCalculator::SetHistogramBinSize(unsigned int size) +{ + this->m_HistogramBinSize = size; +} + +unsigned int ImageStatisticsCalculator::GetHistogramBinSize() +{ + return this->m_HistogramBinSize; +} bool ImageStatisticsCalculator::ComputeStatistics( unsigned int timeStep ) { if (m_Image.IsNull() ) { mitkThrow() << "Image not set!"; } if (!m_Image->IsInitialized()) { mitkThrow() << "Image not initialized!"; } if ( m_Image->GetReferenceCount() == 1 ) { // Image no longer valid; we are the only ones to still hold a reference on it return false; } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } // If a mask was set but we are the only ones to still hold a reference on // it, delete it. if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() == 1) ) { m_ImageMask = NULL; } // Check if statistics is already up-to-date unsigned long imageMTime = m_ImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long maskedImageMTime = m_MaskedImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long planarFigureMTime = m_PlanarFigureStatisticsTimeStampVector[timeStep].GetMTime(); bool imageStatisticsCalculationTrigger = m_ImageStatisticsCalculationTriggerVector[timeStep]; bool maskedImageStatisticsCalculationTrigger = m_MaskedImageStatisticsCalculationTriggerVector[timeStep]; bool planarFigureStatisticsCalculationTrigger = m_PlanarFigureStatisticsCalculationTriggerVector[timeStep]; if ( !m_IgnorePixelValueChanged && ((m_MaskingMode != MASKING_MODE_NONE) || (imageMTime > m_Image->GetMTime() && !imageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_IMAGE) || (maskedImageMTime > m_ImageMask->GetMTime() && !maskedImageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_PLANARFIGURE) || (planarFigureMTime > m_PlanarFigure->GetMTime() && !planarFigureStatisticsCalculationTrigger)) ) { // Statistics is up to date! if ( m_MaskingModeChanged ) { m_MaskingModeChanged = false; return true; } else { return false; } } // Reset state changed flag m_MaskingModeChanged = false; m_IgnorePixelValueChanged = false; // Depending on masking mode, extract and/or generate the required image // and mask data from the user input this->ExtractImageAndMask( timeStep ); StatisticsContainer *statisticsContainer; HistogramContainer *histogramContainer; switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: if(!m_DoIgnorePixelValue) { statisticsContainer = &m_ImageStatisticsVector[timeStep]; histogramContainer = &m_ImageHistogramVector[timeStep]; m_ImageStatisticsTimeStampVector[timeStep].Modified(); m_ImageStatisticsCalculationTriggerVector[timeStep] = false; } else { statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; } break; case MASKING_MODE_IMAGE: statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; break; case MASKING_MODE_PLANARFIGURE: statisticsContainer = &m_PlanarFigureStatisticsVector[timeStep]; histogramContainer = &m_PlanarFigureHistogramVector[timeStep]; m_PlanarFigureStatisticsTimeStampVector[timeStep].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[timeStep] = false; break; } // Calculate statistics and histogram(s) if ( m_InternalImage->GetDimension() == 3 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 3, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 3, m_InternalImageMask3D.GetPointer(), statisticsContainer, histogramContainer ); } } else if ( m_InternalImage->GetDimension() == 2 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 2, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 2, m_InternalImageMask2D.GetPointer(), statisticsContainer, histogramContainer ); } } else { MITK_ERROR << "ImageStatistics: Image dimension not supported!"; } // Release unused image smart pointers to free memory m_InternalImage = mitk::Image::ConstPointer(); m_InternalImageMask3D = MaskImage3DType::Pointer(); m_InternalImageMask2D = MaskImage2DType::Pointer(); return true; } const ImageStatisticsCalculator::HistogramType * ImageStatisticsCalculator::GetHistogram( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return NULL; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep][label]; return m_ImageHistogramVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep][label]; } } const ImageStatisticsCalculator::HistogramContainer & ImageStatisticsCalculator::GetHistogramVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyHistogramContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep]; return m_ImageHistogramVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep]; } } const ImageStatisticsCalculator::Statistics & ImageStatisticsCalculator::GetStatistics( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatistics; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep][label]; return m_ImageStatisticsVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep][label]; } } const ImageStatisticsCalculator::StatisticsContainer & ImageStatisticsCalculator::GetStatisticsVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatisticsContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep]; return m_ImageStatisticsVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep]; } } void ImageStatisticsCalculator::ExtractImageAndMask( unsigned int timeStep ) { if ( m_Image.IsNull() ) { throw std::runtime_error( "Error: image empty!" ); } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput( m_Image ); imageTimeSelector->SetTimeNr( timeStep ); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceImage = imageTimeSelector->GetOutput(); switch ( m_MaskingMode ) { case MASKING_MODE_NONE: { m_InternalImage = timeSliceImage; m_InternalImageMask2D = NULL; m_InternalImageMask3D = NULL; if(m_DoIgnorePixelValue) { if( m_InternalImage->GetDimension() == 3 ) { CastToItkImage( timeSliceImage, m_InternalImageMask3D ); m_InternalImageMask3D->FillBuffer(1); } if( m_InternalImage->GetDimension() == 2 ) { CastToItkImage( timeSliceImage, m_InternalImageMask2D ); m_InternalImageMask2D->FillBuffer(1); } } break; } case MASKING_MODE_IMAGE: { if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() > 1) ) { if ( timeStep >= m_ImageMask->GetTimeSteps() ) { // Use the last mask time step in case the current time step is bigger than the total // number of mask time steps. // It makes more sense setting this to the last mask time step than to 0. // For instance if you have a mask with 2 time steps and an image with 5: // If time step 0 is selected, the mask will use time step 0. // If time step 1 is selected, the mask will use time step 1. // If time step 2+ is selected, the mask will use time step 1. // If you have a mask with only one time step instead, this will always default to 0. timeStep = m_ImageMask->GetTimeSteps() - 1; } ImageTimeSelector::Pointer maskedImageTimeSelector = ImageTimeSelector::New(); maskedImageTimeSelector->SetInput( m_ImageMask ); maskedImageTimeSelector->SetTimeNr( timeStep ); maskedImageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceMaskedImage = maskedImageTimeSelector->GetOutput(); m_InternalImage = timeSliceImage; CastToItkImage( timeSliceMaskedImage, m_InternalImageMask3D ); } else { throw std::runtime_error( "Error: image mask empty!" ); } break; } case MASKING_MODE_PLANARFIGURE: { m_InternalImageMask2D = NULL; if ( m_PlanarFigure.IsNull() ) { throw std::runtime_error( "Error: planar figure empty!" ); } if ( !m_PlanarFigure->IsClosed() ) { throw std::runtime_error( "Masking not possible for non-closed figures" ); } const BaseGeometry *imageGeometry = timeSliceImage->GetGeometry(); if ( imageGeometry == NULL ) { throw std::runtime_error( "Image geometry invalid!" ); } const PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); if ( planarFigurePlaneGeometry == NULL ) { throw std::runtime_error( "Planar-Figure not yet initialized!" ); } const PlaneGeometry *planarFigureGeometry = dynamic_cast< const PlaneGeometry * >( planarFigurePlaneGeometry ); if ( planarFigureGeometry == NULL ) { throw std::runtime_error( "Non-planar planar figures not supported!" ); } // Find principal direction of PlanarFigure in input image unsigned int axis; if ( !this->GetPrincipalAxis( imageGeometry, planarFigureGeometry->GetNormal(), axis ) ) { throw std::runtime_error( "Non-aligned planar figures not supported!" ); } m_PlanarFigureAxis = axis; // Find slice number corresponding to PlanarFigure in input image MaskImage3DType::IndexType index; imageGeometry->WorldToIndex( planarFigureGeometry->GetOrigin(), index ); unsigned int slice = index[axis]; m_PlanarFigureSlice = slice; // Extract slice with given position and direction from image unsigned int dimension = timeSliceImage->GetDimension(); if (dimension != 2) { ExtractImageFilter::Pointer imageExtractor = ExtractImageFilter::New(); imageExtractor->SetInput( timeSliceImage ); imageExtractor->SetSliceDimension( axis ); imageExtractor->SetSliceIndex( slice ); imageExtractor->Update(); m_InternalImage = imageExtractor->GetOutput(); } else { m_InternalImage = timeSliceImage; } // Compute mask from PlanarFigure AccessFixedDimensionByItk_1( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 2, axis ); } } if(m_DoIgnorePixelValue) { if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 3, m_InternalImageMask3D.GetPointer() ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 2, m_InternalImageMask2D.GetPointer() ); } } } bool ImageStatisticsCalculator::GetPrincipalAxis( const BaseGeometry *geometry, Vector3D vector, unsigned int &axis ) { vector.Normalize(); for ( unsigned int i = 0; i < 3; ++i ) { Vector3D axisVector = geometry->GetAxisVector( i ); axisVector.Normalize(); if ( fabs( fabs( axisVector * vector ) - 1.0) < mitk::eps ) { axis = i; return true; } } return false; } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer *statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef itk::Statistics::ScalarImageToHistogramGenerator< ImageType > HistogramGeneratorType; statisticsContainer->clear(); histogramContainer->clear(); // Progress listening... typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate ); // Issue 100 artificial progress events since ScalarIMageToHistogramGenerator // does not (yet?) support progress reporting this->InvokeEvent( itk::StartEvent() ); for ( unsigned int i = 0; i < 100; ++i ) { this->UnmaskedStatisticsProgressUpdate(); } // Calculate statistics (separate filter) typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( image ); unsigned long observerTag = statisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); statisticsFilter->Update(); statisticsFilter->RemoveObserver( observerTag ); this->InvokeEvent( itk::EndEvent() ); // Calculate minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( image ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); Statistics statistics; statistics.Reset(); statistics.Label = 1; statistics.N = image->GetBufferedRegion().GetNumberOfPixels(); statistics.Min = statisticsFilter->GetMinimum(); statistics.Max = statisticsFilter->GetMaximum(); statistics.Mean = statisticsFilter->GetMean(); statistics.Median = 0.0; statistics.Sigma = statisticsFilter->GetSigma(); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); statistics.MinIndex.set_size(image->GetImageDimension()); statistics.MaxIndex.set_size(image->GetImageDimension()); for (unsigned int i=0; iGetIndexOfMaximum()[i]; statistics.MinIndex[i] = minMaxFilter->GetIndexOfMinimum()[i]; } statisticsContainer->push_back( statistics ); - // Calculate histogram + // Calculate histogram + unsigned int numberOfBins = std::floor( ( (statistics.Max - statistics.Min + 1) / m_HistogramBinSize) + 0.5 ); + typename HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( image ); histogramGenerator->SetMarginalScale( 100 ); - histogramGenerator->SetNumberOfBins( 768 ); + histogramGenerator->SetNumberOfBins( numberOfBins ); histogramGenerator->SetHistogramMin( statistics.Min ); histogramGenerator->SetHistogramMax( statistics.Max ); histogramGenerator->Compute(); histogramContainer->push_back( histogramGenerator->GetOutput() ); } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; itk::ImageRegionIterator itmask(maskImage, maskImage->GetLargestPossibleRegion()); itk::ImageRegionConstIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); while( !itmask.IsAtEnd() ) { if(m_IgnorePixelValue == itimage.Get()) { itmask.Set(0); } ++itmask; ++itimage; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef typename ImageType::PointType PointType; typedef typename ImageType::SpacingType SpacingType; typedef itk::LabelStatisticsImageFilter< ImageType, MaskImageType > LabelStatisticsFilterType; typedef itk::ChangeInformationImageFilter< MaskImageType > ChangeInformationFilterType; typedef itk::ExtractImageFilter< ImageType, ImageType > ExtractImageFilterType; statisticsContainer->clear(); histogramContainer->clear(); // Make sure that mask is set if ( maskImage == NULL ) { itkExceptionMacro( << "Mask image needs to be set!" ); } // Make sure that spacing of mask and image are the same SpacingType imageSpacing = image->GetSpacing(); SpacingType maskSpacing = maskImage->GetSpacing(); PointType zeroPoint; zeroPoint.Fill( 0.0 ); if ( (zeroPoint + imageSpacing).SquaredEuclideanDistanceTo( (zeroPoint + maskSpacing) ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same spacing as image! (Image spacing: " << imageSpacing << "; Mask spacing: " << maskSpacing << ")" ); } // Make sure that orientation of mask and image are the same typedef typename ImageType::DirectionType DirectionType; DirectionType imageDirection = image->GetDirection(); DirectionType maskDirection = maskImage->GetDirection(); for( int i = 0; i < imageDirection.ColumnDimensions; ++i ) { for( int j = 0; j < imageDirection.ColumnDimensions; ++j ) { double differenceDirection = imageDirection[i][j] - maskDirection[i][j]; if ( fabs( differenceDirection ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same direction as image! (Image direction: " << imageDirection << "; Mask direction: " << maskDirection << ")" ); } } } // Make sure that the voxels of mask and image are correctly "aligned", i.e., voxel boundaries are the same in both images PointType imageOrigin = image->GetOrigin(); PointType maskOrigin = maskImage->GetOrigin(); long offset[ImageType::ImageDimension]; typedef itk::ContinuousIndex ContinousIndexType; ContinousIndexType maskOriginContinousIndex, imageOriginContinousIndex; image->TransformPhysicalPointToContinuousIndex(maskOrigin, maskOriginContinousIndex); image->TransformPhysicalPointToContinuousIndex(imageOrigin, imageOriginContinousIndex); for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { double misalignment = maskOriginContinousIndex[i] - floor( maskOriginContinousIndex[i] + 0.5 ); if ( fabs( misalignment ) > mitk::eps ) { itkExceptionMacro( << "Pixels/voxels of mask and image are not sufficiently aligned! (Misalignment: " << misalignment << ")" ); } double indexCoordDistance = maskOriginContinousIndex[i] - imageOriginContinousIndex[i]; offset[i] = (int) indexCoordDistance + image->GetBufferedRegion().GetIndex()[i]; } // Adapt the origin and region (index/size) of the mask so that the origin of both are the same typename ChangeInformationFilterType::Pointer adaptMaskFilter; adaptMaskFilter = ChangeInformationFilterType::New(); adaptMaskFilter->ChangeOriginOn(); adaptMaskFilter->ChangeRegionOn(); adaptMaskFilter->SetInput( maskImage ); adaptMaskFilter->SetOutputOrigin( image->GetOrigin() ); adaptMaskFilter->SetOutputOffset( offset ); adaptMaskFilter->Update(); typename MaskImageType::Pointer adaptedMaskImage = adaptMaskFilter->GetOutput(); // Make sure that mask region is contained within image region if ( !image->GetLargestPossibleRegion().IsInside( adaptedMaskImage->GetLargestPossibleRegion() ) ) { itkExceptionMacro( << "Mask region needs to be inside of image region! (Image region: " << image->GetLargestPossibleRegion() << "; Mask region: " << adaptedMaskImage->GetLargestPossibleRegion() << ")" ); } // If mask region is smaller than image region, extract the sub-sampled region from the original image typename ImageType::SizeType imageSize = image->GetBufferedRegion().GetSize(); typename ImageType::SizeType maskSize = maskImage->GetBufferedRegion().GetSize(); bool maskSmallerImage = false; for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { if ( maskSize[i] < imageSize[i] ) { maskSmallerImage = true; } } typename ImageType::ConstPointer adaptedImage; if ( maskSmallerImage ) { typename ExtractImageFilterType::Pointer extractImageFilter = ExtractImageFilterType::New(); extractImageFilter->SetInput( image ); extractImageFilter->SetExtractionRegion( adaptedMaskImage->GetBufferedRegion() ); extractImageFilter->Update(); adaptedImage = extractImageFilter->GetOutput(); } else { adaptedImage = image; } // Initialize Filter typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( adaptedImage ); statisticsFilter->Update(); - int numberOfBins = ( m_DoIgnorePixelValue && (m_MaskingMode == MASKING_MODE_NONE) ) ? 768 : 384; + int numberOfBins = std::floor( ( (statisticsFilter->GetMaximum() - statisticsFilter->GetMinimum() + 1) / m_HistogramBinSize) + 0.5 ); + typename LabelStatisticsFilterType::Pointer labelStatisticsFilter; labelStatisticsFilter = LabelStatisticsFilterType::New(); labelStatisticsFilter->SetInput( adaptedImage ); labelStatisticsFilter->SetLabelInput( adaptedMaskImage ); labelStatisticsFilter->UseHistogramsOn(); labelStatisticsFilter->SetHistogramParameters( numberOfBins, statisticsFilter->GetMinimum(), statisticsFilter->GetMaximum() ); // Add progress listening typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::MaskedStatisticsProgressUpdate ); unsigned long observerTag = labelStatisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); // Execute filter this->InvokeEvent( itk::StartEvent() ); // Make sure that only the mask region is considered (otherwise, if the mask region is smaller // than the image region, the Update() would result in an exception). labelStatisticsFilter->GetOutput()->SetRequestedRegion( adaptedMaskImage->GetLargestPossibleRegion() ); // Execute the filter labelStatisticsFilter->Update(); this->InvokeEvent( itk::EndEvent() ); labelStatisticsFilter->RemoveObserver( observerTag ); // Find all relevant labels of mask (other than 0) std::list< int > relevantLabels; bool maskNonEmpty = false; unsigned int i; for ( i = 1; i < 4096; ++i ) { if ( labelStatisticsFilter->HasLabel( i ) ) { relevantLabels.push_back( i ); maskNonEmpty = true; } } if ( maskNonEmpty ) { std::list< int >::iterator it; for ( it = relevantLabels.begin(), i = 0; it != relevantLabels.end(); ++it, ++i ) { histogramContainer->push_back( HistogramType::ConstPointer( labelStatisticsFilter->GetHistogram( (*it) ) ) ); Statistics statistics; statistics.Label = (*it); statistics.N = labelStatisticsFilter->GetCount( *it ); statistics.Min = labelStatisticsFilter->GetMinimum( *it ); statistics.Max = labelStatisticsFilter->GetMaximum( *it ); statistics.Mean = labelStatisticsFilter->GetMean( *it ); statistics.Median = labelStatisticsFilter->GetMedian( *it ); statistics.Sigma = labelStatisticsFilter->GetSigma( *it ); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); // restrict image to mask area for min/max index calculation typedef itk::MaskImageFilter< ImageType, MaskImageType, ImageType > MaskImageFilterType; typename MaskImageFilterType::Pointer masker = MaskImageFilterType::New(); masker->SetOutsideValue( (statistics.Min+statistics.Max)/2 ); masker->SetInput1(adaptedImage); masker->SetInput2(adaptedMaskImage); masker->Update(); // get index of minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( masker->GetOutput() ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); statistics.MinIndex.set_size(adaptedImage->GetImageDimension()); statistics.MaxIndex.set_size(adaptedImage->GetImageDimension()); typename MinMaxFilterType::IndexType tempMaxIndex = minMaxFilter->GetIndexOfMaximum(); typename MinMaxFilterType::IndexType tempMinIndex = minMaxFilter->GetIndexOfMinimum(); // FIX BUG 14644 //If a PlanarFigure is used for segmentation the //adaptedImage is a single slice (2D). Adding the // 3. dimension. if (m_MaskingMode == MASKING_MODE_PLANARFIGURE && m_Image->GetDimension()==3) { statistics.MaxIndex.set_size(m_Image->GetDimension()); statistics.MaxIndex[m_PlanarFigureCoordinate0]=tempMaxIndex[0]; statistics.MaxIndex[m_PlanarFigureCoordinate1]=tempMaxIndex[1]; statistics.MaxIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; statistics.MinIndex.set_size(m_Image->GetDimension()); statistics.MinIndex[m_PlanarFigureCoordinate0]=tempMinIndex[0]; statistics.MinIndex[m_PlanarFigureCoordinate1]=tempMinIndex[1]; statistics.MinIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; } else { for (unsigned int i = 0; ipush_back( statistics ); } } else { histogramContainer->push_back( HistogramType::ConstPointer( m_EmptyHistogram ) ); statisticsContainer->push_back( Statistics() ); } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, MaskImage2DType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with "1". typename CastFilterType::Pointer castFilter = CastFilterType::New(); castFilter->SetInput( image ); castFilter->Update(); castFilter->GetOutput()->FillBuffer( 1 ); // all PolylinePoints of the PlanarFigure are stored in a vtkPoints object. // These points are used by the vtkLassoStencilSource to create // a vtkImageStencil. const mitk::PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); const typename PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const mitk::BaseGeometry *imageGeometry3D = m_Image->GetGeometry( 0 ); // If there is a second poly line in a closed planar figure, treat it as a hole. PlanarFigure::PolyLineType planarFigureHolePolyline; if (m_PlanarFigure->GetPolyLinesSize() == 2) planarFigureHolePolyline = m_PlanarFigure->GetPolyLine(1); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } m_PlanarFigureCoordinate0= i0; m_PlanarFigureCoordinate1= i1; // store the polyline contour as vtkPoints object bool outOfBounds = false; vtkSmartPointer points = vtkSmartPointer::New(); typename PlanarFigure::PolyLineType::const_iterator it; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image planarFigurePlaneGeometry->Map( it->Point, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { outOfBounds = true; } imageGeometry3D->WorldToIndex( point3D, point3D ); points->InsertNextPoint( point3D[i0], point3D[i1], 0 ); } vtkSmartPointer holePoints = NULL; if (!planarFigureHolePolyline.empty()) { holePoints = vtkSmartPointer::New(); Point3D point3D; PlanarFigure::PolyLineType::const_iterator end = planarFigureHolePolyline.end(); for (it = planarFigureHolePolyline.begin(); it != end; ++it) { planarFigurePlaneGeometry->Map(it->Point, point3D); imageGeometry3D->WorldToIndex(point3D, point3D); holePoints->InsertNextPoint(point3D[i0], point3D[i1], 0); } } // mark a malformed 2D planar figure ( i.e. area = 0 ) as out of bounds // this can happen when all control points of a rectangle lie on the same line = two of the three extents are zero double bounds[6] = {0, 0, 0, 0, 0, 0}; points->GetBounds( bounds ); bool extent_x = (fabs(bounds[0] - bounds[1])) < mitk::eps; bool extent_y = (fabs(bounds[2] - bounds[3])) < mitk::eps; bool extent_z = (fabs(bounds[4] - bounds[5])) < mitk::eps; // throw an exception if a closed planar figure is deformed, i.e. has only one non-zero extent if ( m_PlanarFigure->IsClosed() && ((extent_x && extent_y) || (extent_x && extent_z) || (extent_y && extent_z))) { mitkThrow() << "Figure has a zero area and cannot be used for masking."; } if ( outOfBounds ) { throw std::runtime_error( "Figure at least partially outside of image bounds!" ); } // create a vtkLassoStencilSource and set the points of the Polygon vtkSmartPointer lassoStencil = vtkSmartPointer::New(); lassoStencil->SetShapeToPolygon(); lassoStencil->SetPoints( points ); vtkSmartPointer holeLassoStencil = NULL; if (holePoints.GetPointer() != NULL) { holeLassoStencil = vtkSmartPointer::New(); holeLassoStencil->SetShapeToPolygon(); holeLassoStencil->SetPoints(holePoints); } // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< MaskImage2DType > ImageImportType; typedef itk::VTKImageExport< MaskImage2DType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( castFilter->GetOutput() ); vtkSmartPointer vtkImporter = vtkSmartPointer::New(); this->ConnectPipelines( itkExporter, vtkImporter ); // Apply the generated image stencil to the input image vtkSmartPointer imageStencilFilter = vtkSmartPointer::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencilConnection(lassoStencil->GetOutputPort()); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); vtkSmartPointer holeStencilFilter = NULL; if (holeLassoStencil.GetPointer() != NULL) { holeStencilFilter = vtkSmartPointer::New(); holeStencilFilter->SetInputConnection(imageStencilFilter->GetOutputPort()); holeStencilFilter->SetStencilConnection(holeLassoStencil->GetOutputPort()); holeStencilFilter->ReverseStencilOn(); holeStencilFilter->SetBackgroundValue(0); holeStencilFilter->Update(); } // Export from VTK back to ITK vtkSmartPointer vtkExporter = vtkSmartPointer::New(); vtkExporter->SetInputConnection( holeStencilFilter.GetPointer() == NULL ? imageStencilFilter->GetOutputPort() : holeStencilFilter->GetOutputPort()); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); typedef itk::ImageDuplicator< ImageImportType::OutputImageType > DuplicatorType; DuplicatorType::Pointer duplicator = DuplicatorType::New(); duplicator->SetInputImage( itkImporter->GetOutput() ); duplicator->Update(); // Store mask m_InternalImageMask2D = duplicator->GetOutput(); } void ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate() { // Need to throw away every second progress event to reach a final count of // 100 since two consecutive filters are used in this case static int updateCounter = 0; if ( updateCounter++ % 2 == 0 ) { this->InvokeEvent( itk::ProgressEvent() ); } } void ImageStatisticsCalculator::MaskedStatisticsProgressUpdate() { this->InvokeEvent( itk::ProgressEvent() ); } } diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h index ef06d8856b..eb15be01ce 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h @@ -1,334 +1,342 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_IMAGESTATISTICSCALCULATOR_H #define _MITK_IMAGESTATISTICSCALCULATOR_H #include #include "MitkImageStatisticsExports.h" #include #include #ifndef __itkHistogram_h #include #endif #include "mitkImage.h" #include "mitkImageTimeSelector.h" #include "mitkPlanarFigure.h" #include namespace mitk { /** * \brief Class for calculating statistics and histogram for an (optionally * masked) image. * * Images can be masked by either a label image (of the same dimensions as * the original image) or by a closed mitk::PlanarFigure, e.g. a circle or * polygon. When masking with a planar figure, the slice corresponding to the * plane containing the figure is extracted and then clipped with contour * defined by the figure. Planar figures need to be aligned along the main axes * of the image (axial, sagittal, coronal). Planar figures on arbitrary * rotated planes are not supported. * * For each operating mode (no masking, masking by image, masking by planar * figure), the calculated statistics and histogram are cached so that, when * switching back and forth between operation modes without modifying mask or * image, the information doesn't need to be recalculated. * * Note: currently time-resolved and multi-channel pictures are not properly * supported. */ class MitkImageStatistics_EXPORT ImageStatisticsCalculator : public itk::Object { public: enum { MASKING_MODE_NONE = 0, MASKING_MODE_IMAGE, MASKING_MODE_PLANARFIGURE }; typedef itk::Statistics::Histogram HistogramType; typedef HistogramType::ConstIterator HistogramConstIteratorType; struct Statistics { Statistics() { Reset(); } int Label; unsigned int N; double Min; double Max; double Mean; double Median; double Variance; double Sigma; double RMS; vnl_vector< int > MinIndex; vnl_vector< int > MaxIndex; void Reset() { Label = 0; N = 0; Min = 0.0; Max = 0.0; Mean = 0.0; Median = 0.0; Variance = 0.0; Sigma = 0.0; RMS = 0.0; } }; typedef std::vector< HistogramType::ConstPointer > HistogramContainer; typedef std::vector< Statistics > StatisticsContainer; mitkClassMacro( ImageStatisticsCalculator, itk::Object ); itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** \brief Set image from which to compute statistics. */ void SetImage( const mitk::Image *image ); /** \brief Set image for masking. */ void SetImageMask( const mitk::Image *imageMask ); /** \brief Set planar figure for masking. */ void SetPlanarFigure( mitk::PlanarFigure *planarFigure ); /** \brief Set/Get operation mode for masking */ void SetMaskingMode( unsigned int mode ); /** \brief Set/Get operation mode for masking */ itkGetMacro( MaskingMode, unsigned int ); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToNone(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToImage(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToPlanarFigure(); /** \brief Set a pixel value for pixels that will be ignored in the statistics */ void SetIgnorePixelValue(double value); /** \brief Get the pixel value for pixels that will be ignored in the statistics */ double GetIgnorePixelValue(); /** \brief Set wether a pixel value should be ignored in the statistics */ void SetDoIgnorePixelValue(bool doit); /** \brief Get wether a pixel value will be ignored in the statistics */ bool GetDoIgnorePixelValue(); + /** \brief Set bin size for histogram resolution.*/ + void SetHistogramBinSize( unsigned int size); + + /** \brief Get bin size for histogram resolution.*/ + unsigned int GetHistogramBinSize(); + /** \brief Compute statistics (together with histogram) for the current * masking mode. * * Computation is not executed if statistics is already up to date. In this * case, false is returned; otherwise, true.*/ virtual bool ComputeStatistics( unsigned int timeStep = 0 ); /** \brief Retrieve the histogram depending on the current masking mode. * * \param label The label for which to retrieve the histogram in multi-label situations (ascending order). */ const HistogramType *GetHistogram( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve the histogram depending on the current masking mode (for all image labels. */ const HistogramContainer &GetHistogramVector( unsigned int timeStep = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode. * * \param label The label for which to retrieve the statistics in multi-label situations (ascending order). */ const Statistics &GetStatistics( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode (for all image labels). */ const StatisticsContainer &GetStatisticsVector( unsigned int timeStep = 0 ) const; protected: typedef std::vector< HistogramContainer > HistogramVector; typedef std::vector< StatisticsContainer > StatisticsVector; typedef std::vector< itk::TimeStamp > TimeStampVectorType; typedef std::vector< bool > BoolVectorType; typedef itk::Image< unsigned short, 3 > MaskImage3DType; typedef itk::Image< unsigned short, 2 > MaskImage2DType; ImageStatisticsCalculator(); virtual ~ImageStatisticsCalculator(); /** \brief Depending on the masking mode, the image and mask from which to * calculate statistics is extracted from the original input image and mask * data. * * For example, a when using a PlanarFigure as mask, the 2D image slice * corresponding to the PlanarFigure will be extracted from the original * image. If masking is disabled, the original image is simply passed * through. */ void ExtractImageAndMask( unsigned int timeStep = 0 ); /** \brief If the passed vector matches any of the three principal axes * of the passed geometry, the ínteger value corresponding to the axis * is set and true is returned. */ bool GetPrincipalAxis( const BaseGeometry *geometry, Vector3D vector, unsigned int &axis ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer* statisticsContainer, HistogramContainer *histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ); template < typename TPixel, unsigned int VImageDimension > void InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ); /** Connection from ITK to VTK */ template void ConnectPipelines(ITK_Exporter exporter, vtkSmartPointer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } /** Connection from VTK to ITK */ template void ConnectPipelines(vtkSmartPointer exporter, ITK_Importer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } void UnmaskedStatisticsProgressUpdate(); void MaskedStatisticsProgressUpdate(); /** m_Image contains the input image (e.g. 2D, 3D, 3D+t)*/ mitk::Image::ConstPointer m_Image; mitk::Image::ConstPointer m_ImageMask; mitk::PlanarFigure::Pointer m_PlanarFigure; HistogramVector m_ImageHistogramVector; HistogramVector m_MaskedImageHistogramVector; HistogramVector m_PlanarFigureHistogramVector; HistogramType::Pointer m_EmptyHistogram; HistogramContainer m_EmptyHistogramContainer; StatisticsVector m_ImageStatisticsVector; StatisticsVector m_MaskedImageStatisticsVector; StatisticsVector m_PlanarFigureStatisticsVector; Statistics m_EmptyStatistics; StatisticsContainer m_EmptyStatisticsContainer; unsigned int m_MaskingMode; bool m_MaskingModeChanged; /** m_InternalImage contains a image volume at one time step (e.g. 2D, 3D)*/ mitk::Image::ConstPointer m_InternalImage; MaskImage3DType::Pointer m_InternalImageMask3D; MaskImage2DType::Pointer m_InternalImageMask2D; TimeStampVectorType m_ImageStatisticsTimeStampVector; TimeStampVectorType m_MaskedImageStatisticsTimeStampVector; TimeStampVectorType m_PlanarFigureStatisticsTimeStampVector; BoolVectorType m_ImageStatisticsCalculationTriggerVector; BoolVectorType m_MaskedImageStatisticsCalculationTriggerVector; BoolVectorType m_PlanarFigureStatisticsCalculationTriggerVector; double m_IgnorePixelValue; bool m_DoIgnorePixelValue; bool m_IgnorePixelValueChanged; unsigned int m_PlanarFigureAxis; // Normal axis for PlanarFigure unsigned int m_PlanarFigureSlice; // Slice which contains PlanarFigure int m_PlanarFigureCoordinate0; // First plane-axis for PlanarFigure int m_PlanarFigureCoordinate1; // Second plane-axis for PlanarFigure + unsigned int m_HistogramBinSize; ///Bin size for histogram resoluion. + }; } #endif // #define _MITK_IMAGESTATISTICSCALCULATOR_H diff --git a/Modules/ImageStatistics/mitkIntensityProfile.cpp b/Modules/ImageStatistics/mitkIntensityProfile.cpp index 590cf415db..74090ec057 100644 --- a/Modules/ImageStatistics/mitkIntensityProfile.cpp +++ b/Modules/ImageStatistics/mitkIntensityProfile.cpp @@ -1,337 +1,337 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include "mitkIntensityProfile.h" using namespace mitk; template static void ReadPixel(const PixelType&, Image::Pointer image, const Index3D& index, ScalarType* returnValue) { switch (image->GetDimension()) { case 2: { ImagePixelReadAccessor readAccess(image, image->GetSliceData(0)); *returnValue = readAccess.GetPixelByIndex(reinterpret_cast&>(index)); break; } case 3: { ImagePixelReadAccessor readAccess(image, image->GetVolumeData(0)); *returnValue = readAccess.GetPixelByIndex(index); break; } default: *returnValue = 0; break; } } static IntensityProfile::Pointer ComputeIntensityProfile(Image::Pointer image, itk::PolyLineParametricPath<3>::Pointer path) { IntensityProfile::Pointer intensityProfile = IntensityProfile::New(); itk::PolyLineParametricPath<3>::InputType input = path->StartOfInput(); BaseGeometry* imageGeometry = image->GetGeometry(); const PixelType pixelType = image->GetPixelType(); IntensityProfile::MeasurementVectorType measurementVector; itk::PolyLineParametricPath<3>::OffsetType offset; Point3D worldPoint; Index3D index; do { imageGeometry->IndexToWorld(path->Evaluate(input), worldPoint); imageGeometry->WorldToIndex(worldPoint, index); mitkPixelTypeMultiplex3(ReadPixel, pixelType, image, index, measurementVector.GetDataPointer()); intensityProfile->PushBack(measurementVector); offset = path->IncrementInput(input); } while ((offset[0] | offset[1] | offset[2]) != 0); return intensityProfile; } template static typename itk::InterpolateImageFunction::Pointer CreateInterpolateImageFunction(InterpolateImageFunction::Enum interpolator) { switch (interpolator) { case InterpolateImageFunction::NearestNeighbor: return itk::NearestNeighborInterpolateImageFunction::New().GetPointer(); case InterpolateImageFunction::Linear: return itk::LinearInterpolateImageFunction::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Blackman_3: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Blackman_4: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Blackman_5: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Cosine_3: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Cosine_4: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Cosine_5: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Hamming_3: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Hamming_4: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Hamming_5: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Lanczos_3: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Lanczos_4: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Lanczos_5: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Welch_3: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Welch_4: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); case InterpolateImageFunction::WindowedSinc_Welch_5: return itk::WindowedSincInterpolateImageFunction >::New().GetPointer(); default: return itk::NearestNeighborInterpolateImageFunction::New().GetPointer(); } } template static void ComputeIntensityProfile(itk::Image* image, itk::PolyLineParametricPath<3>::Pointer path, unsigned int numSamples, InterpolateImageFunction::Enum interpolator, IntensityProfile::Pointer intensityProfile) { typename itk::InterpolateImageFunction >::Pointer interpolateImageFunction = CreateInterpolateImageFunction >(interpolator); interpolateImageFunction->SetInputImage(image); const itk::PolyLineParametricPath<3>::InputType startOfInput = path->StartOfInput(); const itk::PolyLineParametricPath<3>::InputType delta = 1.0 / (numSamples - 1); IntensityProfile::MeasurementVectorType measurementVector; for (unsigned int i = 0; i < numSamples; ++i) { measurementVector[0] = interpolateImageFunction->EvaluateAtContinuousIndex(path->Evaluate(startOfInput + i * delta)); intensityProfile->PushBack(measurementVector); } } static IntensityProfile::Pointer ComputeIntensityProfile(Image::Pointer image, itk::PolyLineParametricPath<3>::Pointer path, unsigned int numSamples, InterpolateImageFunction::Enum interpolator) { IntensityProfile::Pointer intensityProfile = IntensityProfile::New(); AccessFixedDimensionByItk_n(image, ComputeIntensityProfile, 3, (path, numSamples, interpolator, intensityProfile)); return intensityProfile; } class AddPolyLineElementToPath { public: AddPolyLineElementToPath(const PlaneGeometry* planarFigureGeometry, const BaseGeometry* imageGeometry, itk::PolyLineParametricPath<3>::Pointer path) : m_PlanarFigureGeometry(planarFigureGeometry), m_ImageGeometry(imageGeometry), m_Path(path) { } void operator()(const PlanarFigure::PolyLineElement& polyLineElement) { - m_PlanarFigureGeometry->Map(polyLineElement.Point, m_WorldPoint); + m_PlanarFigureGeometry->Map(polyLineElement, m_WorldPoint); m_ImageGeometry->WorldToIndex(m_WorldPoint, m_ContinuousIndexPoint); m_Vertex.CastFrom(m_ContinuousIndexPoint); m_Path->AddVertex(m_Vertex); } private: const PlaneGeometry* m_PlanarFigureGeometry; const BaseGeometry* m_ImageGeometry; itk::PolyLineParametricPath<3>::Pointer m_Path; Point3D m_WorldPoint; Point3D m_ContinuousIndexPoint; itk::PolyLineParametricPath<3>::ContinuousIndexType m_Vertex; }; static itk::PolyLineParametricPath<3>::Pointer CreatePathFromPlanarFigure(BaseGeometry* imageGeometry, PlanarFigure* planarFigure) { itk::PolyLineParametricPath<3>::Pointer path = itk::PolyLineParametricPath<3>::New(); const PlanarFigure::PolyLineType polyLine = planarFigure->GetPolyLine(0); std::for_each(polyLine.begin(), polyLine.end(), AddPolyLineElementToPath(planarFigure->GetPlaneGeometry(), imageGeometry, path)); return path; } static void AddPointToPath(const BaseGeometry* imageGeometry, const Point3D& point, itk::PolyLineParametricPath<3>::Pointer path) { Point3D continuousIndexPoint; imageGeometry->WorldToIndex(point, continuousIndexPoint); itk::PolyLineParametricPath<3>::ContinuousIndexType vertex; vertex.CastFrom(continuousIndexPoint); path->AddVertex(vertex); } static itk::PolyLineParametricPath<3>::Pointer CreatePathFromPoints(BaseGeometry* imageGeometry, const Point3D& startPoint, const Point3D& endPoint) { itk::PolyLineParametricPath<3>::Pointer path = itk::PolyLineParametricPath<3>::New(); AddPointToPath(imageGeometry, startPoint, path); AddPointToPath(imageGeometry, endPoint, path); return path; } IntensityProfile::Pointer mitk::ComputeIntensityProfile(Image::Pointer image, PlanarFigure::Pointer planarFigure) { return ::ComputeIntensityProfile(image, CreatePathFromPlanarFigure(image->GetGeometry(), planarFigure)); } IntensityProfile::Pointer mitk::ComputeIntensityProfile(Image::Pointer image, PlanarLine::Pointer planarLine, unsigned int numSamples, InterpolateImageFunction::Enum interpolator) { return ::ComputeIntensityProfile(image, CreatePathFromPlanarFigure(image->GetGeometry(), planarLine.GetPointer()), numSamples, interpolator); } IntensityProfile::Pointer mitk::ComputeIntensityProfile(Image::Pointer image, const Point3D& startPoint, const Point3D& endPoint, unsigned int numSamples, InterpolateImageFunction::Enum interpolator) { return ::ComputeIntensityProfile(image, CreatePathFromPoints(image->GetGeometry(), startPoint, endPoint), numSamples, interpolator); } IntensityProfile::InstanceIdentifier mitk::ComputeGlobalMaximum(IntensityProfile::Pointer intensityProfile) { IntensityProfile::MeasurementType max = -vcl_numeric_limits::max(); IntensityProfile::InstanceIdentifier maxIndex = 0; IntensityProfile::ConstIterator end = intensityProfile->End(); IntensityProfile::MeasurementType measurement; for (IntensityProfile::ConstIterator it = intensityProfile->Begin(); it != end; ++it) { measurement = it.GetMeasurementVector()[0]; if (measurement > max) { max = measurement; maxIndex = it.GetInstanceIdentifier(); } } return maxIndex; } IntensityProfile::InstanceIdentifier mitk::ComputeGlobalMinimum(IntensityProfile::Pointer intensityProfile) { IntensityProfile::MeasurementType min = vcl_numeric_limits::max(); IntensityProfile::InstanceIdentifier minIndex = 0; IntensityProfile::ConstIterator end = intensityProfile->End(); IntensityProfile::MeasurementType measurement; for (IntensityProfile::ConstIterator it = intensityProfile->Begin(); it != end; ++it) { measurement = it.GetMeasurementVector()[0]; if (measurement < min) { min = measurement; minIndex = it.GetInstanceIdentifier(); } } return minIndex; } IntensityProfile::InstanceIdentifier mitk::ComputeCenterOfMaximumArea(IntensityProfile::Pointer intensityProfile, IntensityProfile::InstanceIdentifier radius) { const IntensityProfile::MeasurementType min = intensityProfile->GetMeasurementVector(ComputeGlobalMinimum(intensityProfile))[0]; const IntensityProfile::InstanceIdentifier areaWidth = 1 + 2 * radius; IntensityProfile::MeasurementType maxArea = 0; for (IntensityProfile::InstanceIdentifier i = 0; i < areaWidth; ++i) maxArea += intensityProfile->GetMeasurementVector(i)[0] - min; const IntensityProfile::InstanceIdentifier lastIndex = intensityProfile->Size() - areaWidth; IntensityProfile::InstanceIdentifier centerOfMaxArea = radius; IntensityProfile::MeasurementType area = maxArea; for (IntensityProfile::InstanceIdentifier i = 1; i <= lastIndex; ++i) { area += intensityProfile->GetMeasurementVector(i + areaWidth - 1)[0] - min; area -= intensityProfile->GetMeasurementVector(i - 1)[0] - min; if (area > maxArea) { maxArea = area; centerOfMaxArea = i + radius; // TODO: If multiple areas in the neighborhood have the same intensity chose the middle one instead of the first one. } } return centerOfMaxArea; } std::vector mitk::CreateVectorFromIntensityProfile(IntensityProfile::Pointer intensityProfile) { std::vector result; result.reserve(intensityProfile->Size()); IntensityProfile::ConstIterator end = intensityProfile->End(); for (IntensityProfile::ConstIterator it = intensityProfile->Begin(); it != end; ++it) result.push_back(it.GetMeasurementVector()[0]); return result; } IntensityProfile::Pointer mitk::CreateIntensityProfileFromVector(const std::vector& vector) { const IntensityProfile::InstanceIdentifier size = vector.size(); IntensityProfile::Pointer result = IntensityProfile::New(); result->Resize(size); for (IntensityProfile::InstanceIdentifier i = 0; i < size; ++i) result->SetMeasurement(i, 0, vector[i]); return result; } diff --git a/Modules/IpPicSupport/Testing/mitkPicFileReaderTest.cpp b/Modules/IpPicSupport/Testing/mitkPicFileReaderTest.cpp index 0df829da33..2a2c879816 100644 --- a/Modules/IpPicSupport/Testing/mitkPicFileReaderTest.cpp +++ b/Modules/IpPicSupport/Testing/mitkPicFileReaderTest.cpp @@ -1,189 +1,186 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include "mitkImage.h" #include "mitkPicFileReader.h" #include "mitkPicHelper.h" #include "mitkSlicedGeometry3D.h" #include #include #include #include int mitkPicFileReaderTest(int argc, char* argv[]) { MITK_TEST_BEGIN(mitkPicFileReaderTest) if(argc>=1) { if(itksys::SystemTools::FileLength(argv[1]) == 0) { - mitk::PicFileReader::Pointer emptyFileReader = mitk::PicFileReader::New(); emptyFileReader->SetFileName(argv[1]); MITK_TEST_FOR_EXCEPTION(itk::ImageFileReaderException,emptyFileReader->Update()); } else { - - //independently read header of pic file mitkIpPicDescriptor *picheader=NULL; if(itksys::SystemTools::LowerCase(itksys::SystemTools::GetFilenameExtension(argv[1])).find(".pic")!=std::string::npos) { picheader = mitkIpPicGetHeader(argv[1], NULL); } if(picheader==NULL) { std::cout<<"file not found/not a pic-file - test not applied [PASSED]"<SetFileName(argv[1]); reader->Update(); std::cout << "Testing IsInitialized(): "; if(reader->GetOutput()->IsInitialized()==false) { std::cout<<"[FAILED]"<GetOutput()->IsSliceSet(0)==false) { std::cout<<"[FAILED]"<GetOutput()->GetGeometry()==NULL) { std::cout<<"[FAILED]"<GetOutput()->GetTimeGeometry(); if(timeGeometry==NULL) { std::cout<<"[FAILED]"<GetGeometryForTimeStep(0).IsNull()) { std::cout<<"[FAILED]"<(timeGeometry->GetGeometryForTimeStep(0).GetPointer()); if(slicedgeometry==NULL) { std::cout<<"[FAILED]"<GetPlaneGeometry(0); if(geometry2d==NULL) { std::cout<<"[FAILED]"<GetExtent(0)-picheader->n[0])>mitk::eps) || (fabs(geometry2d->GetExtent(1)-picheader->n[1])>mitk::eps)) { std::cout<<"[FAILED]"<GetExtent(0)-picheader->n[0])>mitk::eps) || (fabs(slicedgeometry->GetExtent(1)-picheader->n[1])>mitk::eps) || (picheader->dim>2 && (fabs(slicedgeometry->GetExtent(2)-picheader->n[2])>mitk::eps)) ) { std::cout<<"[FAILED]"<GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0).two_norm(); spacing[1] = slicedgeometry->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(1).two_norm(); spacing[2] = slicedgeometry->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).two_norm(); mitk::Vector3D readspacing=slicedgeometry->GetSpacing(); mitk::Vector3D dist = spacing-readspacing; if(dist.GetSquaredNorm()>mitk::eps) { std::cout<<"[FAILED]"<mitk::eps) { std::cout<<"[FAILED]"<dim==4) { std::cout << "4D dataset: Testing that timebounds are not infinite: "; - if((slicedgeometry->GetTimeBounds()[0] == mitk::ScalarTypeNumericTraits::NonpositiveMin()) && - (slicedgeometry->GetTimeBounds()[1] == mitk::ScalarTypeNumericTraits::max()) + if((timeGeometry->GetTimeBounds(0)[0] == mitk::ScalarTypeNumericTraits::NonpositiveMin()) && + (timeGeometry->GetTimeBounds(0)[1] == mitk::ScalarTypeNumericTraits::max()) ) { std::cout<<"[FAILED]"<(aPic); mitkIpPicTSV_t *tsv; bool pixelSize = false; tsv = mitkIpPicQueryTag( pic, "REAL PIXEL SIZE" ); if(tsv==NULL) { tsv = mitkIpPicQueryTag( pic, "PIXEL SIZE" ); pixelSize = true; } if(tsv) { bool tagFound = false; if((tsv->dim*tsv->n[0]>=3) && (tsv->type==mitkIpPicFloat)) { if(tsv->bpe==32) { FillVector3D(spacing,((mitkIpFloat4_t*)tsv->value)[0], ((mitkIpFloat4_t*)tsv->value)[1],((mitkIpFloat4_t*)tsv->value)[2]); tagFound = true; } else if(tsv->bpe==64) { FillVector3D(spacing,((mitkIpFloat8_t*)tsv->value)[0], ((mitkIpFloat8_t*)tsv->value)[1],((mitkIpFloat8_t*)tsv->value)[2]); tagFound = true; } } if(tagFound && pixelSize) { tsv = mitkIpPicQueryTag( pic, "PIXEL SPACING" ); if(tsv) { mitk::ScalarType zSpacing = 0; if((tsv->dim*tsv->n[0]>=3) && (tsv->type==mitkIpPicFloat)) { if(tsv->bpe==32) { zSpacing = ((mitkIpFloat4_t*)tsv->value)[2]; } else if(tsv->bpe==64) { zSpacing = ((mitkIpFloat8_t*)tsv->value)[2]; } if(zSpacing != 0) { spacing[2] = zSpacing; } } } } if(tagFound) return true; } #ifdef HAVE_IPDICOM tsv = mitkIpPicQueryTag( pic, "SOURCE HEADER" ); if( tsv ) { void *data; mitkIpUInt4_t len; mitkIpFloat8_t spacing_z = 0; mitkIpFloat8_t thickness = 1; mitkIpFloat8_t fx = 1; mitkIpFloat8_t fy = 1; bool ok=false; if( dicomFindElement( (unsigned char *) tsv->value, 0x0018, 0x0088, &data, &len ) ) { ok=true; sscanf( (char *) data, "%lf", &spacing_z ); // itkGenericOutputMacro( "spacing: " << spacing_z << " mm"); } if( dicomFindElement( (unsigned char *) tsv->value, 0x0018, 0x0050, &data, &len ) ) { ok=true; sscanf( (char *) data, "%lf", &thickness ); // itkGenericOutputMacro( "thickness: " << thickness << " mm"); if( thickness == 0 ) thickness = 1; } if( dicomFindElement( (unsigned char *) tsv->value, 0x0028, 0x0030, &data, &len ) && len>0 && ((char *)data)[0] ) { sscanf( (char *) data, "%lf\\%lf", &fy, &fx ); // row / column value // itkGenericOutputMacro( "fx, fy: " << fx << "/" << fy << " mm"); } else ok=false; if(ok) FillVector3D(spacing, fx, fy,( spacing_z > 0 ? spacing_z : thickness)); return ok; } #endif /* HAVE_IPDICOM */ if(spacing[0]<=0 || spacing[1]<=0 || spacing[2]<=0) { itkGenericOutputMacro(<< "illegal spacing by pic tag: " << spacing << ". Setting spacing to (1,1,1)."); spacing.Fill(1); } return false; } bool mitk::PicHelper::GetTimeSpacing(const mitkIpPicDescriptor* aPic, float& timeSpacing) { - mitkIpPicDescriptor* pic = const_cast(aPic); mitkIpPicTSV_t *tsv; tsv = mitkIpPicQueryTag( pic, "PIXEL SIZE" ); if(tsv) { timeSpacing = ((mitkIpFloat4_t*)tsv->value)[3]; if( timeSpacing <=0 ) timeSpacing = 1; } else timeSpacing = 1; return true; } bool mitk::PicHelper::SetSpacing(const mitkIpPicDescriptor* aPic, SlicedGeometry3D* slicedgeometry) { mitkIpPicDescriptor* pic = const_cast(aPic); Vector3D spacing(slicedgeometry->GetSpacing()); mitkIpPicTSV_t *tsv; if ( (tsv = mitkIpPicQueryTag( pic, "REAL PIXEL SIZES" )) != NULL) { int count = tsv->n[1]; float* value = (float*) tsv->value; mitk::Vector3D pixelSize; spacing.Fill(0); for ( int s=0; s < count; s++ ) { pixelSize[0] = (ScalarType) *value++; pixelSize[1] = (ScalarType) *value++; pixelSize[2] = (ScalarType) *value++; spacing += pixelSize; } spacing *= 1.0f/count; slicedgeometry->SetSpacing(spacing); itkGenericOutputMacro(<< "the slices are inhomogeneous" ); } else if(GetSpacing(pic, spacing)) { slicedgeometry->SetSpacing(spacing); return true; } return false; } void mitk::PicHelper::InitializeEvenlySpaced(const mitkIpPicDescriptor* pic, unsigned int slices, SlicedGeometry3D* slicedgeometry) { assert(pic!=NULL); assert(slicedgeometry!=NULL); mitk::PlaneGeometry::Pointer planegeometry=mitk::PlaneGeometry::New(); mitkIpPicTSV_t *geometryTag; if ( (geometryTag = mitkIpPicQueryTag( const_cast(pic), "ISG" )) != NULL) { mitk::Point3D origin; mitk::Vector3D rightVector; mitk::Vector3D downVector; mitk::Vector3D spacing; mitk::vtk2itk(((float*)geometryTag->value+0), origin); mitk::vtk2itk(((float*)geometryTag->value+3), rightVector); mitk::vtk2itk(((float*)geometryTag->value+6), downVector); mitk::vtk2itk(((float*)geometryTag->value+9), spacing); mitk::PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], rightVector, downVector, &spacing); planegeometry->SetOrigin(origin); slicedgeometry->InitializeEvenlySpaced(planegeometry, slices); } else { Vector3D spacing; spacing.Fill(1); GetSpacing(pic, spacing); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], spacing); slicedgeometry->InitializeEvenlySpaced(planegeometry, spacing[2], slices); } - - if(pic->dim>=4) - { - float ts = 0; - GetTimeSpacing(pic, ts); - TimeBounds timebounds; - timebounds[0] = 0.0; - timebounds[1] = ts; - slicedgeometry->SetTimeBounds(timebounds); - } } bool mitk::PicHelper::SetPlaneGeometry(const mitkIpPicDescriptor* aPic, int s, SlicedGeometry3D* slicedgeometry) { mitkIpPicDescriptor* pic = const_cast(aPic); if((pic!=NULL) && (slicedgeometry->IsValidSlice(s))) { //construct standard view mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; mitkIpPicTSV_t *tsv; if ( (tsv = mitkIpPicQueryTag( pic, "REAL PIXEL SIZES" )) != NULL) { unsigned int count = (unsigned int) tsv->n[1]; float* value = (float*) tsv->value; mitk::Vector3D pixelSize; ScalarType zPosition = 0.0f; if(s >= 0) { if(count < (unsigned int) s) return false; count = s; } else { if(count < slicedgeometry->GetSlices()) return false; count = slicedgeometry->GetSlices(); } unsigned int slice; for (slice=0; slice < count; ++slice ) { pixelSize[0] = (ScalarType) *value++; pixelSize[1] = (ScalarType) *value++; pixelSize[2] = (ScalarType) *value++; zPosition += pixelSize[2] / 2.0f; // first half slice thickness if((s==-1) || (slice== (unsigned int) s)) { Vector3D spacing; spacing = pixelSize; FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, pic->n[0], 0, 0); FillVector3D(bottomDV, 0, pic->n[1], 0); mitk::PlaneGeometry::Pointer planegeometry=mitk::PlaneGeometry::New(); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &spacing); planegeometry->SetOrigin(origin); slicedgeometry->SetPlaneGeometry(planegeometry, s); } zPosition += pixelSize[2] / 2.0f; // second half slice thickness } - } else { FillVector3D(origin,0,0,s); slicedgeometry->IndexToWorld(origin, origin); FillVector3D(rightDV,pic->n[0],0,0); FillVector3D(bottomDV,0,pic->n[1],0); mitk::PlaneGeometry::Pointer planegeometry=mitk::PlaneGeometry::New(); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &slicedgeometry->GetSpacing()); planegeometry->SetOrigin(origin); slicedgeometry->SetPlaneGeometry(planegeometry, s); } return true; } return false; } diff --git a/Modules/IpPicSupportIO/Internal/mitkPicHelper.cpp b/Modules/IpPicSupportIO/Internal/mitkPicHelper.cpp index 8e41d1a906..04a27fb3f8 100644 --- a/Modules/IpPicSupportIO/Internal/mitkPicHelper.cpp +++ b/Modules/IpPicSupportIO/Internal/mitkPicHelper.cpp @@ -1,296 +1,284 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkConfig.h" #include "mitkPicHelper.h" #include "mitkSlicedGeometry3D.h" #include "mitkPlaneGeometry.h" #ifdef HAVE_IPDICOM #include "ipDicom/ipDicom.h" #endif /* HAVE_IPDICOM */ bool mitk::PicHelper::GetSpacing(const mitkIpPicDescriptor* aPic, Vector3D & spacing) { mitkIpPicDescriptor* pic = const_cast(aPic); mitkIpPicTSV_t *tsv; bool pixelSize = false; tsv = mitkIpPicQueryTag( pic, "REAL PIXEL SIZE" ); if(tsv==NULL) { tsv = mitkIpPicQueryTag( pic, "PIXEL SIZE" ); pixelSize = true; } if(tsv) { bool tagFound = false; if((tsv->dim*tsv->n[0]>=3) && (tsv->type==mitkIpPicFloat)) { if(tsv->bpe==32) { FillVector3D(spacing,((mitkIpFloat4_t*)tsv->value)[0], ((mitkIpFloat4_t*)tsv->value)[1],((mitkIpFloat4_t*)tsv->value)[2]); tagFound = true; } else if(tsv->bpe==64) { FillVector3D(spacing,((mitkIpFloat8_t*)tsv->value)[0], ((mitkIpFloat8_t*)tsv->value)[1],((mitkIpFloat8_t*)tsv->value)[2]); tagFound = true; } } if(tagFound && pixelSize) { tsv = mitkIpPicQueryTag( pic, "PIXEL SPACING" ); if(tsv) { mitk::ScalarType zSpacing = 0; if((tsv->dim*tsv->n[0]>=3) && (tsv->type==mitkIpPicFloat)) { if(tsv->bpe==32) { zSpacing = ((mitkIpFloat4_t*)tsv->value)[2]; } else if(tsv->bpe==64) { zSpacing = ((mitkIpFloat8_t*)tsv->value)[2]; } if(zSpacing != 0) { spacing[2] = zSpacing; } } } } if(tagFound) return true; } #ifdef HAVE_IPDICOM tsv = mitkIpPicQueryTag( pic, "SOURCE HEADER" ); if( tsv ) { void *data; mitkIpUInt4_t len; mitkIpFloat8_t spacing_z = 0; mitkIpFloat8_t thickness = 1; mitkIpFloat8_t fx = 1; mitkIpFloat8_t fy = 1; bool ok=false; if( dicomFindElement( (unsigned char *) tsv->value, 0x0018, 0x0088, &data, &len ) ) { ok=true; sscanf( (char *) data, "%lf", &spacing_z ); // itkGenericOutputMacro( "spacing: " << spacing_z << " mm"); } if( dicomFindElement( (unsigned char *) tsv->value, 0x0018, 0x0050, &data, &len ) ) { ok=true; sscanf( (char *) data, "%lf", &thickness ); // itkGenericOutputMacro( "thickness: " << thickness << " mm"); if( thickness == 0 ) thickness = 1; } if( dicomFindElement( (unsigned char *) tsv->value, 0x0028, 0x0030, &data, &len ) && len>0 && ((char *)data)[0] ) { sscanf( (char *) data, "%lf\\%lf", &fy, &fx ); // row / column value // itkGenericOutputMacro( "fx, fy: " << fx << "/" << fy << " mm"); } else ok=false; if(ok) FillVector3D(spacing, fx, fy,( spacing_z > 0 ? spacing_z : thickness)); return ok; } #endif /* HAVE_IPDICOM */ if(spacing[0]<=0 || spacing[1]<=0 || spacing[2]<=0) { itkGenericOutputMacro(<< "illegal spacing by pic tag: " << spacing << ". Setting spacing to (1,1,1)."); spacing.Fill(1); } return false; } bool mitk::PicHelper::GetTimeSpacing(const mitkIpPicDescriptor* aPic, float& timeSpacing) { - mitkIpPicDescriptor* pic = const_cast(aPic); mitkIpPicTSV_t *tsv; tsv = mitkIpPicQueryTag( pic, "PIXEL SIZE" ); if(tsv) { timeSpacing = ((mitkIpFloat4_t*)tsv->value)[3]; if( timeSpacing <=0 ) timeSpacing = 1; } else timeSpacing = 1; return true; } bool mitk::PicHelper::SetSpacing(const mitkIpPicDescriptor* aPic, SlicedGeometry3D* slicedgeometry) { mitkIpPicDescriptor* pic = const_cast(aPic); Vector3D spacing(slicedgeometry->GetSpacing()); mitkIpPicTSV_t *tsv; if ( (tsv = mitkIpPicQueryTag( pic, "REAL PIXEL SIZES" )) != NULL) { int count = tsv->n[1]; float* value = (float*) tsv->value; mitk::Vector3D pixelSize; spacing.Fill(0); for ( int s=0; s < count; s++ ) { pixelSize[0] = (ScalarType) *value++; pixelSize[1] = (ScalarType) *value++; pixelSize[2] = (ScalarType) *value++; spacing += pixelSize; } spacing *= 1.0f/count; slicedgeometry->SetSpacing(spacing); itkGenericOutputMacro(<< "the slices are inhomogeneous" ); } else if(GetSpacing(pic, spacing)) { slicedgeometry->SetSpacing(spacing); return true; } return false; } void mitk::PicHelper::InitializeEvenlySpaced(const mitkIpPicDescriptor* pic, unsigned int slices, SlicedGeometry3D* slicedgeometry) { assert(pic!=NULL); assert(slicedgeometry!=NULL); mitk::PlaneGeometry::Pointer planegeometry=mitk::PlaneGeometry::New(); mitkIpPicTSV_t *geometryTag; if ( (geometryTag = mitkIpPicQueryTag( const_cast(pic), "ISG" )) != NULL) { mitk::Point3D origin; mitk::Vector3D rightVector; mitk::Vector3D downVector; mitk::Vector3D spacing; mitk::vtk2itk(((float*)geometryTag->value+0), origin); mitk::vtk2itk(((float*)geometryTag->value+3), rightVector); mitk::vtk2itk(((float*)geometryTag->value+6), downVector); mitk::vtk2itk(((float*)geometryTag->value+9), spacing); mitk::PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], rightVector, downVector, &spacing); planegeometry->SetOrigin(origin); slicedgeometry->InitializeEvenlySpaced(planegeometry, slices); } else { Vector3D spacing; spacing.Fill(1); GetSpacing(pic, spacing); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], spacing); slicedgeometry->InitializeEvenlySpaced(planegeometry, spacing[2], slices); } - - if(pic->dim>=4) - { - float ts = 0; - GetTimeSpacing(pic, ts); - TimeBounds timebounds; - timebounds[0] = 0.0; - timebounds[1] = ts; - slicedgeometry->SetTimeBounds(timebounds); - } } bool mitk::PicHelper::SetPlaneGeometry(const mitkIpPicDescriptor* aPic, int s, SlicedGeometry3D* slicedgeometry) { mitkIpPicDescriptor* pic = const_cast(aPic); if((pic!=NULL) && (slicedgeometry->IsValidSlice(s))) { //construct standard view mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; mitkIpPicTSV_t *tsv; if ( (tsv = mitkIpPicQueryTag( pic, "REAL PIXEL SIZES" )) != NULL) { unsigned int count = (unsigned int) tsv->n[1]; float* value = (float*) tsv->value; mitk::Vector3D pixelSize; ScalarType zPosition = 0.0f; if(s >= 0) { if(count < (unsigned int) s) return false; count = s; } else { if(count < slicedgeometry->GetSlices()) return false; count = slicedgeometry->GetSlices(); } unsigned int slice; for (slice=0; slice < count; ++slice ) { pixelSize[0] = (ScalarType) *value++; pixelSize[1] = (ScalarType) *value++; pixelSize[2] = (ScalarType) *value++; zPosition += pixelSize[2] / 2.0f; // first half slice thickness if((s==-1) || (slice== (unsigned int) s)) { Vector3D spacing; spacing = pixelSize; FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, pic->n[0], 0, 0); FillVector3D(bottomDV, 0, pic->n[1], 0); mitk::PlaneGeometry::Pointer planegeometry=mitk::PlaneGeometry::New(); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &spacing); planegeometry->SetOrigin(origin); slicedgeometry->SetPlaneGeometry(planegeometry, s); } zPosition += pixelSize[2] / 2.0f; // second half slice thickness } - } else { FillVector3D(origin,0,0,s); slicedgeometry->IndexToWorld(origin, origin); FillVector3D(rightDV,pic->n[0],0,0); FillVector3D(bottomDV,0,pic->n[1],0); mitk::PlaneGeometry::Pointer planegeometry=mitk::PlaneGeometry::New(); planegeometry->InitializeStandardPlane(pic->n[0], pic->n[1], rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &slicedgeometry->GetSpacing()); planegeometry->SetOrigin(origin); slicedgeometry->SetPlaneGeometry(planegeometry, s); } return true; } return false; } diff --git a/Modules/MapperExt/mitkMeshMapper2D.cpp b/Modules/MapperExt/mitkMeshMapper2D.cpp index 0339493695..b2cbd1fb4d 100644 --- a/Modules/MapperExt/mitkMeshMapper2D.cpp +++ b/Modules/MapperExt/mitkMeshMapper2D.cpp @@ -1,481 +1,478 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkMeshMapper2D.h" #include "mitkMesh.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkLine.h" #include "mitkGL.h" #include #include const float selectedColor[]={1.0,0.0,0.6}; //for selected! mitk::MeshMapper2D::MeshMapper2D() { } mitk::MeshMapper2D::~MeshMapper2D() { } const mitk::Mesh *mitk::MeshMapper2D::GetInput(void) { return static_cast ( GetDataNode()->GetData() ); } // Return whether a point is "smaller" than the second static bool point3DSmaller( const mitk::Point3D& elem1, const mitk::Point3D& elem2 ) { if(elem1[0]!=elem2[0]) return elem1[0] < elem2[0]; if(elem1[1]!=elem2[1]) return elem1[1] < elem2[1]; return elem1[2] < elem2[2]; } void mitk::MeshMapper2D::Paint( mitk::BaseRenderer *renderer ) { - bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if(!visible) return; // @FIXME: Logik fuer update bool updateNeccesary = true; if (updateNeccesary) { //aus GenerateData mitk::Mesh::Pointer input = const_cast(this->GetInput()); // Get the TimeGeometry of the input object const TimeGeometry* inputTimeGeometry = input->GetTimeGeometry(); if (( inputTimeGeometry == NULL ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) { return; } // // get the world time // - const PlaneGeometry* worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); - assert( worldGeometry != NULL ); - ScalarType time = worldGeometry->GetTimeBounds()[ 0 ]; + ScalarType time = renderer->GetTime(); // // convert the world time in time steps of the input object // int timeStep=0; if ( time > ScalarTypeNumericTraits::NonpositiveMin() ) timeStep = inputTimeGeometry->TimePointToTimeStep( time ); if ( inputTimeGeometry->IsValidTimeStep( timeStep ) == false ) { return; } mitk::Mesh::MeshType::Pointer itkMesh = input->GetMesh( timeStep ); if ( itkMesh.GetPointer() == NULL) { return; } mitk::DisplayGeometry::Pointer displayGeometry = renderer->GetDisplayGeometry(); assert(displayGeometry.IsNotNull()); const PlaneGeometry* worldplanegeometry = dynamic_cast(renderer->GetCurrentWorldPlaneGeometry()); //apply color and opacity read from the PropertyList ApplyColorAndOpacityProperties(renderer); vtkLinearTransform* transform = GetDataNode()->GetVtkTransform(); //List of the Points Mesh::DataType::PointsContainerConstIterator it, end; it=itkMesh->GetPoints()->Begin(); end=itkMesh ->GetPoints()->End(); //iterator on the additional data of each point Mesh::PointDataIterator dataIt;//, dataEnd; dataIt=itkMesh->GetPointData()->Begin(); //for switching back to old color after using selected color float unselectedColor[4]; glGetFloatv(GL_CURRENT_COLOR,unselectedColor); while(it!=end) { mitk::Point3D p, projected_p; float vtkp[3]; itk2vtk(it->Value(), vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); Vector3D diff=p-projected_p; if(diff.GetSquaredNorm()<4.0) { Point2D pt2d, tmp; displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); Vector2D horz,vert; horz[0]=5; horz[1]=0; vert[0]=0; vert[1]=5; //check if the point is to be marked as selected if (dataIt->Value().selected) { horz[0]=8; vert[1]=8; glColor3f(selectedColor[0],selectedColor[1],selectedColor[2]);//red switch (dataIt->Value().pointSpec) { case PTSTART: { //a quad glBegin (GL_LINE_LOOP); tmp=pt2d-horz+vert; glVertex2dv(&tmp[0]); tmp=pt2d+horz+vert; glVertex2dv(&tmp[0]); tmp=pt2d+horz-vert; glVertex2dv(&tmp[0]); tmp=pt2d-horz-vert; glVertex2dv(&tmp[0]); glEnd (); } break; case PTUNDEFINED: { //a diamond around the point glBegin (GL_LINE_LOOP); tmp=pt2d-horz; glVertex2dv(&tmp[0]); tmp=pt2d+vert; glVertex2dv(&tmp[0]); tmp=pt2d+horz; glVertex2dv(&tmp[0]); tmp=pt2d-vert; glVertex2dv(&tmp[0]); glEnd (); } break; default: break; }//switch //the actual point glBegin (GL_POINTS); tmp=pt2d; glVertex2dv(&tmp[0]); glEnd (); } else //if not selected { glColor3f(unselectedColor[0],unselectedColor[1],unselectedColor[2]); switch (dataIt->Value().pointSpec) { case PTSTART: { //a quad glBegin (GL_LINE_LOOP); tmp=pt2d-horz+vert; glVertex2dv(&tmp[0]); tmp=pt2d+horz+vert; glVertex2dv(&tmp[0]); tmp=pt2d+horz-vert; glVertex2dv(&tmp[0]); tmp=pt2d-horz-vert; glVertex2dv(&tmp[0]); glEnd (); } case PTUNDEFINED: { //drawing crosses glBegin (GL_LINES); tmp=pt2d-horz; glVertex2dv(&tmp[0]); tmp=pt2d+horz; glVertex2dv(&tmp[0]); tmp=pt2d-vert; glVertex2dv(&tmp[0]); tmp=pt2d+vert; glVertex2dv(&tmp[0]); glEnd (); } default: { break; } }//switch }//else } ++it; ++dataIt; } //now connect the lines inbetween mitk::Mesh::PointType thisPoint; thisPoint.Fill(0); Point2D *firstOfCell = NULL; Point2D *lastPoint = NULL; unsigned int lastPointId = 0; bool lineSelected = false; Point3D firstOfCell3D; Point3D lastPoint3D; bool first; mitk::Line line; std::vector intersectionPoints; double t; //iterate through all cells and then iterate through all indexes of points in that cell Mesh::CellIterator cellIt, cellEnd; Mesh::CellDataIterator cellDataIt;//, cellDataEnd; Mesh::PointIdIterator cellIdIt, cellIdEnd; cellIt = itkMesh->GetCells()->Begin(); cellEnd = itkMesh->GetCells()->End(); cellDataIt = itkMesh->GetCellData()->Begin(); while (cellIt != cellEnd) { unsigned int numOfPointsInCell = cellIt->Value()->GetNumberOfPoints(); if (numOfPointsInCell>1) { //iterate through all id's in the cell cellIdIt = cellIt->Value()->PointIdsBegin(); cellIdEnd = cellIt->Value()->PointIdsEnd(); firstOfCell3D = input->GetPoint(*cellIdIt,timeStep); intersectionPoints.clear(); intersectionPoints.reserve(numOfPointsInCell); first = true; while(cellIdIt != cellIdEnd) { lastPoint3D = thisPoint; thisPoint = input->GetPoint(*cellIdIt,timeStep); //search in data (vector<> selectedLines) if the index of the point is set. if so, then the line is selected. lineSelected = false; Mesh::SelectedLinesType selectedLines = cellDataIt->Value().selectedLines; //a line between 1(lastPoint) and 2(pt2d) has the Id 1, so look for the Id of lastPoint //since we only start, if we have more than one point in the cell, lastPointId is initiated with 0 Mesh::SelectedLinesIter position = std::find(selectedLines.begin(), selectedLines.end(), lastPointId); if (position != selectedLines.end()) { lineSelected = true; } mitk::Point3D p, projected_p; float vtkp[3]; itk2vtk(thisPoint, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); Vector3D diff=p-projected_p; if(diff.GetSquaredNorm()<4.0) { Point2D pt2d, tmp; displayGeometry->Map(projected_p, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); if (lastPoint == NULL) { //set the first point in the cell. This point in needed to close the polygon firstOfCell = new Point2D; *firstOfCell = pt2d; lastPoint = new Point2D; *lastPoint = pt2d; lastPointId = *cellIdIt; } else { if (lineSelected) { glColor3f(selectedColor[0],selectedColor[1],selectedColor[2]);//red //a line from lastPoint to thisPoint glBegin (GL_LINES); glVertex2dv(&(*lastPoint)[0]); glVertex2dv(&pt2d[0]); glEnd (); } else //if not selected { glColor3f(unselectedColor[0],unselectedColor[1],unselectedColor[2]); //drawing crosses glBegin (GL_LINES); glVertex2dv(&(*lastPoint)[0]); glVertex2dv(&pt2d[0]); glEnd (); } //to draw the line to the next in iteration step *lastPoint = pt2d; //and to search for the selection state of the line lastPointId = *cellIdIt; }//if..else }//if <4.0 //fill off-plane polygon part 1 if((!first) && (worldplanegeometry!=NULL)) { line.SetPoints(lastPoint3D, thisPoint); if(worldplanegeometry->IntersectionPointParam(line, t) && ((t>=0) && (t<=1)) ) { intersectionPoints.push_back(line.GetPoint(t)); } } ++cellIdIt; first=false; }//while cellIdIter //closed polygon? if ( cellDataIt->Value().closed ) { //close the polygon if needed if( firstOfCell != NULL ) { lineSelected = false; Mesh::SelectedLinesType selectedLines = cellDataIt->Value().selectedLines; Mesh::SelectedLinesIter position = std::find(selectedLines.begin(), selectedLines.end(), lastPointId); if (position != selectedLines.end())//found the index { glColor3f(selectedColor[0],selectedColor[1],selectedColor[2]);//red //a line from lastPoint to firstPoint glBegin (GL_LINES); glVertex2dv(&(*lastPoint)[0]); glVertex2dv(&(*firstOfCell)[0]); glEnd (); } else { glColor3f(unselectedColor[0],unselectedColor[1],unselectedColor[2]); glBegin (GL_LINES); glVertex2dv(&(*lastPoint)[0]); glVertex2dv(&(*firstOfCell)[0]); glEnd (); } } }//if closed //Axis-aligned bounding box(AABB) around the cell if selected and set in Property bool showBoundingBox; if (dynamic_cast(this->GetDataNode()->GetProperty("showBoundingBox")) == NULL) showBoundingBox = false; else showBoundingBox = dynamic_cast(this->GetDataNode()->GetProperty("showBoundingBox"))->GetValue(); if(showBoundingBox) { if (cellDataIt->Value().selected) { mitk::Mesh::DataType::BoundingBoxPointer aABB = input->GetBoundingBoxFromCell(cellIt->Index()); if (aABB.IsNotNull()) { mitk::Mesh::PointType min, max; min = aABB->GetMinimum(); max = aABB->GetMaximum(); //project to the displayed geometry Point2D min2D, max2D; Point3D p, projected_p; float vtkp[3]; itk2vtk(min, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); displayGeometry->Map(projected_p, min2D); displayGeometry->WorldToDisplay(min2D, min2D); itk2vtk(max, vtkp); transform->TransformPoint(vtkp, vtkp); vtk2itk(vtkp,p); displayGeometry->Project(p, projected_p); Vector3D diff=p-projected_p; if(diff.GetSquaredNorm()<4.0) { displayGeometry->Map(projected_p, max2D); displayGeometry->WorldToDisplay(max2D, max2D); //draw the BoundingBox glColor3f(selectedColor[0],selectedColor[1],selectedColor[2]);//red //a line from lastPoint to firstPoint glBegin(GL_LINE_LOOP); glVertex2f(min2D[0], min2D[1]); glVertex2f(min2D[0], max2D[1]); glVertex2f(max2D[0], max2D[1]); glVertex2f(max2D[0], min2D[1]); glEnd(); }//draw bounding-box }//bounding-box exists }//cell selected }//show bounding-box //fill off-plane polygon part 2 if(worldplanegeometry!=NULL) { //consider line from last to first line.SetPoints(thisPoint, firstOfCell3D); if(worldplanegeometry->IntersectionPointParam(line, t) && ((t>=0) && (t<=1)) ) { intersectionPoints.push_back(line.GetPoint(t)); } std::sort(intersectionPoints.begin(), intersectionPoints.end(), point3DSmaller); std::vector::iterator it, end; end=intersectionPoints.end(); if((intersectionPoints.size()%2)!=0) { --end; //ensure even number of intersection-points } double p[2]; Point3D pt3d; Point2D pt2d; for ( it = intersectionPoints.begin( ); it != end; ++it ) { glBegin (GL_LINES); displayGeometry->Map(*it, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); p[0] = pt2d[0]; p[1] = pt2d[1]; glVertex2dv(p); ++it; displayGeometry->Map(*it, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); p[0] = pt2d[0]; p[1] = pt2d[1]; glVertex2dv(p); glEnd (); } if(it!=intersectionPoints.end()) { glBegin (GL_LINES); displayGeometry->Map(*it, pt2d); displayGeometry->WorldToDisplay(pt2d, pt2d); p[0] = pt2d[0]; p[1] = pt2d[1]; glVertex2dv(p); p[0] = pt2d[0]; p[1] = pt2d[1]; glVertex2dv(p); glEnd (); } }//fill off-plane polygon part 2 }//if numOfPointsInCell>1 delete firstOfCell; delete lastPoint; lastPoint = NULL; firstOfCell = NULL; lastPointId = 0; ++cellIt; ++cellDataIt; } } } diff --git a/Modules/MapperExt/mitkVectorImageMapper2D.cpp b/Modules/MapperExt/mitkVectorImageMapper2D.cpp index 630e380897..72d4c4853f 100644 --- a/Modules/MapperExt/mitkVectorImageMapper2D.cpp +++ b/Modules/MapperExt/mitkVectorImageMapper2D.cpp @@ -1,538 +1,531 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkVectorImageMapper2D.h" //vtk related includes #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //mitk related includes #include "mitkGL.h" #include "mitkBaseRenderer.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkAbstractTransformGeometry.h" #include const mitk::Image * mitk::VectorImageMapper2D::GetInput( void ) { if ( m_Image.IsNotNull() ) return m_Image; else return dynamic_cast( GetDataNode()->GetData() ); } void mitk::VectorImageMapper2D::Paint( mitk::BaseRenderer * renderer ) { //std::cout << "2d vector mapping..." << std::endl; bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) return ; mitk::Image::Pointer input = const_cast( this->GetInput() ); if ( input.IsNull() ) return ; mitk::PlaneGeometry::Pointer worldPlanePlaneGeometry = dynamic_cast< mitk::PlaneGeometry*>( const_cast( renderer->GetCurrentWorldPlaneGeometry() ) ); assert( worldPlanePlaneGeometry.IsNotNull() ); vtkImageData* vtkImage = input->GetVtkImageData( this->GetCurrentTimeStep( input, renderer ) ); // // set up the cutter orientation according to the current geometry of // the renderers plane // Point3D point; Vector3D normal; PlaneGeometry::ConstPointer worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); if ( worldPlaneGeometry.IsNotNull() ) { // set up vtkPlane according to worldGeometry point = worldPlaneGeometry->GetOrigin(); normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); m_Plane->SetTransform( (vtkAbstractTransform*)NULL ); } else { itkWarningMacro( << "worldPlaneGeometry is NULL!" ); return ; } double vp[ 3 ], vp_slice[ 3 ], vnormal[ 3 ]; vnl2vtk( point.GetVnlVector(), vp ); vnl2vtk( normal.GetVnlVector(), vnormal ); //std::cout << "Origin: " << vp[0] <<" "<< vp[1] <<" "<< vp[2] << std::endl; //std::cout << "Normal: " << vnormal[0] <<" "<< vnormal[1] <<" "<< vnormal[2] << std::endl; //normally, we would need to transform the surface and cut the transformed surface with the cutter. //This might be quite slow. Thus, the idea is, to perform an inverse transform of the plane instead. //@todo It probably does not work for scaling operations yet:scaling operations have to be //dealed with after the cut is performed by scaling the contour. vtkLinearTransform * vtktransform = GetDataNode() ->GetVtkTransform(); vtkTransform* world2vtk = vtkTransform::New(); world2vtk->Identity(); world2vtk->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; world2vtk->GetScale(myscale); world2vtk->PostMultiply(); world2vtk->Scale(1/myscale[0],1/myscale[1],1/myscale[2]); world2vtk->TransformPoint( vp, vp ); world2vtk->TransformNormalAtPoint( vp, vnormal, vnormal ); world2vtk->Delete(); // vtk works in axis align coords // thus the normal also must be axis align, since // we do not allow arbitrary cutting through volume // // vnormal should already be axis align, but in order // to get rid of precision effects, we set the two smaller // components to zero here int dims[3]; vtkImage->GetDimensions(dims); double spac[3]; vtkImage->GetSpacing(spac); vp_slice[0] = vp[0]; vp_slice[1] = vp[1]; vp_slice[2] = vp[2]; if(fabs(vnormal[0]) > fabs(vnormal[1]) && fabs(vnormal[0]) > fabs(vnormal[2]) ) { if(fabs(vp_slice[0]/spac[0]) < 0.4) vp_slice[0] = 0.4*spac[0]; if(fabs(vp_slice[0]/spac[0]) > (dims[0]-1)-0.4) vp_slice[0] = ((dims[0]-1)-0.4)*spac[0]; vnormal[1] = 0; vnormal[2] = 0; } if(fabs(vnormal[1]) > fabs(vnormal[0]) && fabs(vnormal[1]) > fabs(vnormal[2]) ) { if(fabs(vp_slice[1]/spac[1]) < 0.4) vp_slice[1] = 0.4*spac[1]; if(fabs(vp_slice[1]/spac[1]) > (dims[1]-1)-0.4) vp_slice[1] = ((dims[1]-1)-0.4)*spac[1]; vnormal[0] = 0; vnormal[2] = 0; } if(fabs(vnormal[2]) > fabs(vnormal[1]) && fabs(vnormal[2]) > fabs(vnormal[0]) ) { if(fabs(vp_slice[2]/spac[2]) < 0.4) vp_slice[2] = 0.4*spac[2]; if(fabs(vp_slice[2]/spac[2]) > (dims[2]-1)-0.4) vp_slice[2] = ((dims[2]-1)-0.4)*spac[2]; vnormal[0] = 0; vnormal[1] = 0; } m_Plane->SetOrigin( vp_slice ); m_Plane->SetNormal( vnormal ); vtkPolyData* cuttedPlane; if(!( (dims[0] == 1 && vnormal[0] != 0) || (dims[1] == 1 && vnormal[1] != 0) || (dims[2] == 1 && vnormal[2] != 0) )) { m_Cutter->SetCutFunction( m_Plane ); m_Cutter->SetInputData( vtkImage ); m_Cutter->GenerateCutScalarsOff();//! m_Cutter->Update(); cuttedPlane = m_Cutter->GetOutput(); } else { // cutting of a 2D-Volume does not work, // so we have to build up our own polydata object cuttedPlane = vtkPolyData::New(); vtkPoints* points = vtkPoints::New(); points->SetNumberOfPoints(vtkImage->GetNumberOfPoints()); for(int i=0; iGetNumberOfPoints(); i++) points->SetPoint(i, vtkImage->GetPoint(i)); cuttedPlane->SetPoints(points); vtkFloatArray* pointdata = vtkFloatArray::New(); int comps = vtkImage->GetPointData()->GetScalars()->GetNumberOfComponents(); pointdata->SetNumberOfComponents(comps); int tuples = vtkImage->GetPointData()->GetScalars()->GetNumberOfTuples(); pointdata->SetNumberOfTuples(tuples); for(int i=0; iSetTuple(i,vtkImage->GetPointData()->GetScalars()->GetTuple(i)); pointdata->SetName( "vector" ); cuttedPlane->GetPointData()->AddArray(pointdata); } if ( cuttedPlane->GetNumberOfPoints() != 0) { // // make sure, that we have point data with more than 1 component (as vectors) // vtkPointData * pointData = cuttedPlane->GetPointData(); if ( pointData == NULL ) { itkWarningMacro( << "no point data associated with cutters result!" ); return ; } if ( pointData->GetNumberOfArrays() == 0 ) { itkWarningMacro( << "point data returned by cutter doesn't have any arrays associated!" ); return ; } else if ( pointData->GetArray(0)->GetNumberOfComponents() <= 1) { itkWarningMacro( << "number of components <= 1!" ); return; } else if ( pointData->GetArrayName( 0 ) == NULL ) { pointData->GetArray( 0 ) ->SetName( "vector" ); //std::cout << "array name = vectors now" << std::endl; } //std::cout << " projecting..."<< std::endl; // // constrain the vectors to lie on the plane, which means to remove the vector component, // which is orthogonal to the plane. // vtkIdType numPoints, pointId; numPoints = cuttedPlane->GetNumberOfPoints(); vtkDataArray* inVectors = cuttedPlane->GetPointData()->GetVectors( "vector" ); assert( inVectors != NULL ); vtkFloatArray* vectorMagnitudes = vtkFloatArray::New(); vectorMagnitudes->SetName("vectorMagnitudes"); vectorMagnitudes->SetNumberOfComponents(1); vectorMagnitudes->SetNumberOfValues(numPoints); vectorMagnitudes->SetNumberOfTuples(numPoints); double inVector[ 3 ], outVector[3], wnormal[3]; //, tmpVector[ 3 ], outVector[ 3 ]; double k = 0.0; vnl2vtk( normal.GetVnlVector(), wnormal ); vtkMath::Normalize( wnormal ); bool normalizeVecs; m_DataNode->GetBoolProperty( "NormalizeVecs", normalizeVecs ); for ( pointId = 0; pointId < numPoints; ++pointId ) { inVectors->GetTuple( pointId, inVector ); if(normalizeVecs) { vnl_vector tmp(3); vtk2vnl(inVector, tmp); tmp.normalize(); vnl2vtk(tmp, inVector); } k = vtkMath::Dot( wnormal, inVector ); // Remove non orthogonal component. outVector[ 0 ] = inVector[ 0 ] - ( wnormal[ 0 ] * k ); outVector[ 1 ] = inVector[ 1 ] - ( wnormal[ 1 ] * k ); outVector[ 2 ] = inVector[ 2 ] - ( wnormal[ 2 ] * k ); inVectors->SetTuple( pointId, outVector ); // ?? this was set to norm(inVector) before, but outVector made more sense to me vectorMagnitudes->SetValue( pointId, vtkMath::Norm( outVector ) ); //std::cout << "method old: " << inVector[0] <<", " << inVector[1] << ", "<AddArray(vectorMagnitudes); pointData->CopyAllOn(); //pointData->PrintSelf(std::cout, vtkIndent(4)); //std::cout << " ...done!"<< std::endl; //std::cout << " glyphing..."<< std::endl; // call glyph2D to generate 2D glyphs for each of the // vectors vtkGlyphSource2D* glyphSource = vtkGlyphSource2D::New(); //glyphSource->SetGlyphTypeToDash(); glyphSource->DashOn(); //glyphSource->SetScale( 0.1 ); //glyphSource->SetScale2( .5 ); //glyphSource->SetCenter( 0.5, 0.5, 0.5 ); glyphSource->CrossOff(); //glyphSource->FilledOff(); //glyphSource->Update(); double spacing[3]; vtkImage->GetSpacing(spacing); double min = spacing[0]; min = min > spacing[1] ? spacing[1] : min; min = min > spacing[2] ? spacing[2] : min; float scale = 1; mitk::FloatProperty::Pointer mitkScaleProp = dynamic_cast(GetDataNode()->GetProperty("Scale")); if (mitkScaleProp.IsNotNull()) { scale = mitkScaleProp->GetValue(); } vtkMaskedGlyph3D* glyphGenerator = vtkMaskedGlyph3D::New(); glyphGenerator->SetSourceData(glyphSource->GetOutput() ); glyphGenerator->SetInput(cuttedPlane); glyphGenerator->SetInputArrayToProcess (1, 0,0, vtkDataObject::FIELD_ASSOCIATION_POINTS , "vector"); glyphGenerator->SetVectorModeToUseVector(); glyphGenerator->OrientOn(); glyphGenerator->SetScaleFactor( min*scale ); glyphGenerator->SetUseMaskPoints( true ); glyphGenerator->SetRandomMode( true ); glyphGenerator->SetMaximumNumberOfPoints( 128*128 ); glyphGenerator->Update(); /* vtkLookupTable* vtkLut = NULL; mitk::LookupTableProperty::Pointer mitkLutProp = dynamic_cast(GetDataNode()->GetProperty("LookupTable")); if (mitkLutProp.IsNotNull()) { vtkLut = mitkLutProp->GetLookupTable()->GetVtkLookupTable(); } */ mitk::Color color; mitk::ColorProperty::Pointer mitkColorProp = dynamic_cast(GetDataNode()->GetProperty("color")); if (mitkColorProp.IsNotNull()) { color = mitkColorProp->GetColor(); } else { color.SetRed(0); color.SetBlue(1); color.SetGreen(0); } float lwidth = 1; mitk::FloatProperty::Pointer mitkLWidthProp = dynamic_cast(GetDataNode()->GetProperty("LineWidth")); if (mitkLWidthProp.IsNotNull()) { lwidth = mitkLWidthProp->GetValue(); } vtkTransform* trafo = vtkTransform::New(); trafo->Identity(); trafo->Concatenate(vtktransform); trafo->PreMultiply(); double myscale[3]; trafo->GetScale(myscale); trafo->Scale(1/myscale[0],1/myscale[1],1/myscale[2]); this->PaintCells( glyphGenerator->GetOutput(), renderer->GetCurrentWorldPlaneGeometry(), renderer->GetDisplayGeometry(), trafo, renderer, NULL/*vtkLut*/, color, lwidth, spacing ); vectorMagnitudes->Delete(); glyphSource->Delete(); glyphGenerator->Delete(); trafo->Delete(); } else { std::cout << " no points cutted!"<< std::endl; } //std::cout << "...done!" << std::endl; } void mitk::VectorImageMapper2D::PaintCells( vtkPolyData* glyphs, const PlaneGeometry* worldGeometry, const DisplayGeometry* displayGeometry, vtkLinearTransform* vtktransform, mitk::BaseRenderer* /*renderer*/, vtkScalarsToColors *lut, mitk::Color color, float lwidth, double *spacing ) { - vtkPoints * points = glyphs->GetPoints(); vtkPointData * vpointdata = glyphs->GetPointData(); vtkDataArray* vpointscalars = vpointdata->GetArray("vectorMagnitudes"); //vtkDataArray* vpointpositions = vpointdata->GetArray("pointPositions"); assert(vpointscalars != NULL); //std::cout << " Scalars range 2d:" << vpointscalars->GetRange()[0] << " " << vpointscalars->GetRange()[0] << std::endl; Point3D p; Point2D p2d; vtkIdList* idList; vtkCell* cell; double offset[3]; for (unsigned int i = 0; i < 3; ++i) { offset[i] = 0; } vtkIdType numCells = glyphs->GetNumberOfCells(); for ( vtkIdType cellId = 0; cellId < numCells; ++cellId ) { double vp[ 3 ]; cell = glyphs->GetCell( cellId ); idList = cell->GetPointIds(); int numPoints = idList->GetNumberOfIds(); if(numPoints == 1) { //take transformation via vtktransform into account double pos[ 3 ],vp_raster[3]; points->GetPoint( idList->GetId( 0 ), vp ); vp_raster[0] = vtkMath::Round(vp[0]/spacing[0])*spacing[0]; vp_raster[1] = vtkMath::Round(vp[1]/spacing[1])*spacing[1]; vp_raster[2] = vtkMath::Round(vp[2]/spacing[2])*spacing[2]; vtktransform->TransformPoint( vp_raster, pos ); offset[0] = pos[0] - vp[0]; offset[1] = pos[1] - vp[1]; offset[2] = pos[2] - vp[2]; } else { glLineWidth(lwidth); glBegin ( GL_LINE_LOOP ); for ( int pointNr = 0; pointNr < numPoints ;++pointNr ) { points->GetPoint( idList->GetId( pointNr ), vp ); vp[0] = vp[0] + offset[0]; vp[1] = vp[1] + offset[1]; vp[2] = vp[2] + offset[2]; double tmp[ 3 ]; vtktransform->TransformPoint( vp,tmp ); vtk2itk( vp, p ); //convert 3D point (in mm) to 2D point on slice (also in mm) worldGeometry->Map( p, p2d ); //convert point (until now mm and in worldcoordinates) to display coordinates (units ) displayGeometry->WorldToDisplay( p2d, p2d ); if ( lut != NULL ) { // color each point according to point data double * color; if ( vpointscalars != NULL ) { vpointscalars->GetComponent( pointNr, 0 ); color = lut->GetColor( vpointscalars->GetComponent( idList->GetId( pointNr ), 0 ) ); glColor3f( color[ 0 ], color[ 1 ], color[ 2 ] ); } } else { glColor3f( color.GetRed(), color.GetGreen(), color.GetBlue() ); } //std::cout << idList->GetId( pointNr )<< ": " << p2d[0]<< " "<< p2d[1] << std::endl; //draw the line glVertex2f( p2d[ 0 ], p2d[ 1 ] ); - - - } glEnd (); } } } mitk::VectorImageMapper2D::VectorImageMapper2D() { m_LUT = NULL; m_Plane = vtkPlane::New(); m_Cutter = vtkCutter::New(); m_Cutter->SetCutFunction( m_Plane ); m_Cutter->GenerateValues( 1, 0, 1 ); } mitk::VectorImageMapper2D::~VectorImageMapper2D() { if ( m_LUT != NULL ) m_LUT->Delete(); if ( m_Plane != NULL ) m_Plane->Delete(); if ( m_Cutter != NULL ) m_Cutter->Delete(); } int mitk::VectorImageMapper2D::GetCurrentTimeStep( mitk::BaseData* data, mitk::BaseRenderer* renderer ) { // // get the TimeGeometry of the input object // const TimeGeometry * dataTimeGeometry = data->GetUpdatedTimeGeometry(); if ( ( dataTimeGeometry == NULL ) || ( dataTimeGeometry->CountTimeSteps() == 0 ) ) { itkWarningMacro( << "The given object is missing a mitk::TimeGeometry, or the number of time steps is 0!" ); return 0; } // // get the world time // - PlaneGeometry::ConstPointer worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); - assert( worldGeometry.IsNotNull() ); - ScalarType time = worldGeometry->GetTimeBounds() [ 0 ]; - + ScalarType time = renderer->GetTime(); // // convert the world time to time steps of the input object // int timestep = 0; if ( time > ScalarTypeNumericTraits::NonpositiveMin() ) timestep = dataTimeGeometry->TimePointToTimeStep( time ); if ( dataTimeGeometry->IsValidTimeStep( timestep ) == false ) { itkWarningMacro( << timestep << " is not a valid time of the given data object!" ); return 0; } return timestep; } diff --git a/Modules/PlanarFigure/Algorithms/mitkExtrudePlanarFigureFilter.cpp b/Modules/PlanarFigure/Algorithms/mitkExtrudePlanarFigureFilter.cpp index f82d58edff..76bf5b8197 100644 --- a/Modules/PlanarFigure/Algorithms/mitkExtrudePlanarFigureFilter.cpp +++ b/Modules/PlanarFigure/Algorithms/mitkExtrudePlanarFigureFilter.cpp @@ -1,323 +1,323 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigure.h" #include #include #include #include #include #include #include #include static mitk::Point2D GetCenterPoint(const mitk::PlanarFigure::PolyLineType& polyLine) { mitk::Point2D centerPoint; centerPoint[0] = 0; centerPoint[1] = 0; mitk::PlanarFigure::PolyLineType::const_iterator polyLineEnd = polyLine.end(); for (mitk::PlanarFigure::PolyLineType::const_iterator polyLineIter = polyLine.begin(); polyLineIter != polyLineEnd; ++polyLineIter) { - centerPoint[0] += polyLineIter->Point[0]; - centerPoint[1] += polyLineIter->Point[1]; + centerPoint[0] += static_cast(*polyLineIter)[0]; + centerPoint[1] += static_cast(*polyLineIter)[1]; } size_t numPoints = polyLine.size(); centerPoint[0] /= numPoints; centerPoint[1] /= numPoints; return centerPoint; } static mitk::Point2D GetCenterPoint(mitk::PlanarFigure* planarFigure) { mitk::Point2D centerPoint; centerPoint[0] = 0; centerPoint[1] = 0; size_t numPolyLines = planarFigure->GetPolyLinesSize(); for (size_t i = 0; i < numPolyLines; ++i) { mitk::Point2D polyLineCenterPoint = GetCenterPoint(planarFigure->GetPolyLine(i)); centerPoint[0] += polyLineCenterPoint[0]; centerPoint[1] += polyLineCenterPoint[1]; } centerPoint[0] /= numPolyLines; centerPoint[1] /= numPolyLines; return centerPoint; } static mitk::Vector3D GetBendDirection(const mitk::PlaneGeometry* planeGeometry, const mitk::Point2D& centerPoint2d, const mitk::Vector2D& bendDirection2d) { mitk::Point2D point2d = centerPoint2d + bendDirection2d; mitk::Point3D point3d; planeGeometry->Map(point2d, point3d); mitk::Point3D centerPoint3d; planeGeometry->Map(centerPoint2d, centerPoint3d); mitk::Vector3D bendDirection3d = point3d - centerPoint3d; bendDirection3d.Normalize(); return bendDirection3d; } mitk::ExtrudePlanarFigureFilter::ExtrudePlanarFigureFilter() : m_Length(1), m_NumberOfSegments(1), m_TwistAngle(0), m_BendAngle(0), m_FlipDirection(false), m_FlipNormals(false) { m_BendDirection[0] = 0; m_BendDirection[1] = 0; this->SetNumberOfRequiredInputs(1); this->SetNumberOfRequiredOutputs(1); this->SetNthOutput(0, this->MakeOutput(0)); } mitk::ExtrudePlanarFigureFilter::~ExtrudePlanarFigureFilter() { } void mitk::ExtrudePlanarFigureFilter::GenerateData() { typedef PlanarFigure::PolyLineType PolyLine; typedef PolyLine::const_iterator PolyLineConstIter; if (m_Length <= 0) mitkThrow() << "Length is not positive!"; if (m_NumberOfSegments == 0) mitkThrow() << "Number of segments is zero!"; if (m_BendAngle != 0 && m_BendDirection[0] == 0 && m_BendDirection[1] == 0) mitkThrow() << "Bend direction is zero-length vector!"; PlanarFigure* input = dynamic_cast(this->GetPrimaryInput()); if (input == NULL) mitkThrow() << "Primary input is not a planar figure!"; size_t numPolyLines = input->GetPolyLinesSize(); if (numPolyLines == 0) mitkThrow() << "Primary input does not contain any poly lines!"; const PlaneGeometry* planeGeometry = dynamic_cast(input->GetPlaneGeometry()); if (planeGeometry == NULL) mitkThrow() << "Could not get plane geometry from primary input!"; Vector3D planeNormal = planeGeometry->GetNormal(); planeNormal.Normalize(); Point2D centerPoint2d = GetCenterPoint(input); Point3D centerPoint3d; planeGeometry->Map(centerPoint2d, centerPoint3d); Vector3D bendDirection3d = m_BendAngle != 0 ? ::GetBendDirection(planeGeometry, centerPoint2d, m_BendDirection) : Vector3D(); ScalarType radius = m_Length * (360 / m_BendAngle) / (2 * vnl_math::pi); Vector3D scaledBendDirection3d = bendDirection3d * radius; Vector3D bendAxis = itk::CrossProduct(planeNormal, bendDirection3d); bendAxis.Normalize(); vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer cells = vtkSmartPointer::New(); vtkIdType baseIndex = 0; for (size_t i = 0; i < numPolyLines; ++i) { PolyLine polyLine = input->GetPolyLine(i); size_t numPoints = polyLine.size(); if (numPoints < 2) mitkThrow() << "Poly line " << i << " of primary input consists of less than two points!"; std::vector crossSection; PolyLineConstIter polyLineEnd = polyLine.end(); for (PolyLineConstIter polyLineIter = polyLine.begin(); polyLineIter != polyLineEnd; ++polyLineIter) { Point3D point; - planeGeometry->Map(polyLineIter->Point, point); + planeGeometry->Map(*polyLineIter, point); crossSection.push_back(point); } ScalarType segmentLength = m_Length / m_NumberOfSegments; Vector3D translation = planeNormal * segmentLength; bool bend = std::abs(m_BendAngle) > mitk::eps; bool twist = std::abs(m_TwistAngle) > mitk::eps; ScalarType twistAngle = twist ? m_TwistAngle / m_NumberOfSegments * vnl_math::pi / 180 : 0; ScalarType bendAngle = bend ? m_BendAngle / m_NumberOfSegments * vnl_math::pi / 180 : 0; if (m_FlipDirection) { translation *= -1; bendAngle *= -1; } for (size_t k = 0; k < numPoints; ++k) points->InsertNextPoint(crossSection[k].GetDataPointer()); for (size_t j = 1; j <= m_NumberOfSegments; ++j) { mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); if (bend || twist) transform->Translate(centerPoint3d.GetVectorFromOrigin(), true); if (bend) { transform->Translate(scaledBendDirection3d, true); transform->Rotate3D(bendAxis, bendAngle * j, true); transform->Translate(-scaledBendDirection3d, true); } else { transform->Translate(translation * j, true); } if (twist) transform->Rotate3D(planeNormal, twistAngle * j, true); if (bend || twist) transform->Translate(-centerPoint3d.GetVectorFromOrigin(), true); for (size_t k = 0; k < numPoints; ++k) { mitk::Point3D transformedPoint = transform->TransformPoint(crossSection[k]); points->InsertNextPoint(transformedPoint.GetDataPointer()); } } for (size_t j = 0; j < m_NumberOfSegments; ++j) { for (size_t k = 1; k < numPoints; ++k) { vtkIdType cell[3]; cell[0] = baseIndex + j * numPoints + (k - 1); cell[1] = baseIndex + (j + 1) * numPoints + (k - 1); cell[2] = baseIndex + j * numPoints + k; cells->InsertNextCell(3, cell); cell[0] = cell[1]; cell[1] = baseIndex + (j + 1) * numPoints + k; cells->InsertNextCell(3, cell); } if (input->IsClosed() && numPoints > 2) { vtkIdType cell[3]; cell[0] = baseIndex + j * numPoints + (numPoints - 1); cell[1] = baseIndex + (j + 1) * numPoints + (numPoints - 1); cell[2] = baseIndex + j * numPoints; cells->InsertNextCell(3, cell); cell[0] = cell[1]; cell[1] = baseIndex + (j + 1) * numPoints; cells->InsertNextCell(3, cell); } } baseIndex += points->GetNumberOfPoints(); } vtkSmartPointer polyData = vtkSmartPointer::New(); polyData->SetPoints(points); polyData->SetPolys(cells); vtkSmartPointer polyDataNormals = vtkSmartPointer::New(); polyDataNormals->SetFlipNormals(m_FlipNormals); polyDataNormals->SetInputData(polyData); polyDataNormals->SplittingOff(); polyDataNormals->Update(); Surface* output = static_cast(this->GetPrimaryOutput()); output->SetVtkPolyData(polyDataNormals->GetOutput()); } void mitk::ExtrudePlanarFigureFilter::GenerateOutputInformation() { } itk::ProcessObject::DataObjectPointer mitk::ExtrudePlanarFigureFilter::MakeOutput(DataObjectPointerArraySizeType idx) { return idx == 0 ? Surface::New().GetPointer() : NULL; } itk::ProcessObject::DataObjectPointer mitk::ExtrudePlanarFigureFilter::MakeOutput(const DataObjectIdentifierType& name) { return this->IsIndexedOutputName(name) ? this->MakeOutput(this->MakeIndexFromOutputName(name)) : NULL; } void mitk::ExtrudePlanarFigureFilter::PrintSelf(std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "Length: " << m_Length << std::endl; os << indent << "Number of Segments: " << m_NumberOfSegments << std::endl; os << indent << "Twist Angle: " << m_TwistAngle << std::endl; os << indent << "Bend Angle: " << m_BendAngle << std::endl; os << indent << "Bend Direction: " << m_BendDirection << std::endl; os << indent << "Flip Normals: " << m_FlipNormals << std::endl; } void mitk::ExtrudePlanarFigureFilter::SetInput(PlanarFigure* planarFigure) { this->SetPrimaryInput(planarFigure); } mitk::Surface* mitk::ExtrudePlanarFigureFilter::GetOutput() { return static_cast(this->GetPrimaryOutput()); } diff --git a/Modules/PlanarFigure/CMakeLists.txt b/Modules/PlanarFigure/CMakeLists.txt index cf6f567b1b..3f37aaf0f2 100644 --- a/Modules/PlanarFigure/CMakeLists.txt +++ b/Modules/PlanarFigure/CMakeLists.txt @@ -1,9 +1,9 @@ MITK_CREATE_MODULE( INCLUDE_DIRS Algorithms DataManagement Interactions IO Rendering DEPENDS MitkSceneSerializationBase - WARNINGS_AS_ERRORS + # WARNINGS_AS_ERRORS ) IF( BUILD_TESTING ) add_subdirectory(Testing) ENDIF() diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarAngle.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarAngle.cpp index 98823d1ced..338f9b7023 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarAngle.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarAngle.cpp @@ -1,175 +1,171 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarAngle.h" #include "mitkPlaneGeometry.h" mitk::PlanarAngle::PlanarAngle() : FEATURE_ID_ANGLE( this->AddFeature( "Angle", "deg" ) ) { // Start with two control points this->ResetNumberOfControlPoints( 2 ); this->SetNumberOfPolyLines(1); this->SetNumberOfHelperPolyLines(1); m_HelperPolyLinesToBePainted->InsertElement( 0, false ); } mitk::PlanarAngle::~PlanarAngle() { } void mitk::PlanarAngle::GeneratePolyLine() { this->ClearPolyLines(); - // Generate poly-line for angle for ( unsigned int i=0; iGetNumberOfControlPoints(); i++ ) - { - mitk::PlanarFigure::PolyLineElement element( this->GetControlPoint( i ), i ); - this->AppendPointToPolyLine( 0, element ); - } + this->AppendPointToPolyLine(0, this->GetControlPoint(i)); } void mitk::PlanarAngle::GenerateHelperPolyLine(double mmPerDisplayUnit, unsigned int displayHeight) { // Generate helper-poly-line for angle if ( this->GetNumberOfControlPoints() < 3) { m_HelperPolyLinesToBePainted->SetElement(0, false); return; //We do not need to draw an angle as there are no two arms yet } this->ClearHelperPolyLines(); const Point2D centerPoint = this->GetControlPoint( 1 ); const Point2D boundaryPointOne = this->GetControlPoint( 0 ); const Point2D boundaryPointTwo = this->GetControlPoint( 2 ); double radius = centerPoint.EuclideanDistanceTo( boundaryPointOne ); if ( radius > centerPoint.EuclideanDistanceTo( boundaryPointTwo ) ) { radius = centerPoint.EuclideanDistanceTo( boundaryPointTwo ); } //Fixed size radius depending on screen size for the angle double nonScalingRadius = displayHeight * mmPerDisplayUnit * 0.05; if (nonScalingRadius > radius) { m_HelperPolyLinesToBePainted->SetElement(0, false); return; //if the arc has a radius that is longer than the shortest arm it should not be painted } m_HelperPolyLinesToBePainted->SetElement(0, true); radius = nonScalingRadius; double angle = this->GetQuantity( FEATURE_ID_ANGLE ); //Determine from which arm the angle should be drawn Vector2D v0 = boundaryPointOne - centerPoint; Vector2D v1 = boundaryPointTwo - centerPoint; Vector2D v2; v2[0] = 1.0; v2[1] = 0.0; v0[0] = v0[0] * cos( 0.001 ) - v0[1] * sin( 0.001 ); //rotate one arm a bit v0[1] = v0[0] * sin( 0.001 ) + v0[1] * cos( 0.001 ); v0.Normalize(); v1.Normalize(); double testAngle = acos( v0 * v1 ); //if the rotated arm is closer to the other arm than before it is the one from which we start drawing //else we start drawing from the other arm (we want to draw in the mathematically positive direction) if( angle > testAngle ) { v1[0] = v0[0] * cos( -0.001 ) - v0[1] * sin( -0.001 ); v1[1] = v0[0] * sin( -0.001 ) + v0[1] * cos( -0.001 ); //We determine if the arm is mathematically forward or backward //assuming we rotate between -pi and pi if ( acos( v0 * v2 ) > acos ( v1 * v2 )) { testAngle = acos( v1 * v2 ); } else { testAngle = -acos( v1 * v2 ); } } else { v0[0] = v1[0] * cos( -0.001 ) - v1[1] * sin( -0.001 ); v0[1] = v1[0] * sin( -0.001 ) + v1[1] * cos( -0.001 ); //We determine if the arm is mathematically forward or backward //assuming we rotate between -pi and pi if ( acos( v0 * v2 ) < acos ( v1 * v2 )) { testAngle = acos( v1 * v2 ); } else { testAngle = -acos( v1 * v2 ); } } // Generate poly-line with 16 segments for ( int t = 0; t < 16; ++t ) { double alpha = (double) t * angle / 15.0 + testAngle; Point2D polyLinePoint; polyLinePoint[0] = centerPoint[0] + radius * cos( alpha ); polyLinePoint[1] = centerPoint[1] + radius * sin( alpha ); - AppendPointToHelperPolyLine( 0, PolyLineElement( polyLinePoint, t ) ); + this->AppendPointToHelperPolyLine(0, polyLinePoint); } } void mitk::PlanarAngle::EvaluateFeaturesInternal() { if ( this->GetNumberOfControlPoints() < 3 ) { // Angle not yet complete. return; } // Calculate angle between lines const Point2D &p0 = this->GetControlPoint( 0 ); const Point2D &p1 = this->GetControlPoint( 1 ); const Point2D &p2 = this->GetControlPoint( 2 ); Vector2D v0 = p1 - p0; Vector2D v1 = p1 - p2; v0.Normalize(); v1.Normalize(); double angle = acos( v0 * v1 ); this->SetQuantity( FEATURE_ID_ANGLE, angle ); } void mitk::PlanarAngle::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarArrow.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarArrow.cpp index 0b9e61ab00..6849893664 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarArrow.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarArrow.cpp @@ -1,137 +1,117 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarArrow.h" #include "mitkPlaneGeometry.h" mitk::PlanarArrow::PlanarArrow() : FEATURE_ID_LENGTH( this->AddFeature( "Length", "mm" ) ) { // Directed arrow has two control points this->ResetNumberOfControlPoints( 2 ); m_ArrowTipScaleFactor = -1.0; this->SetNumberOfPolyLines( 1 ); this->SetNumberOfHelperPolyLines( 2 ); - //m_PolyLines->InsertElement( 0, VertexContainerType::New()); - // Create helper polyline object (for drawing the orthogonal orientation line) - //m_HelperPolyLines->InsertElement( 0, VertexContainerType::New()); - //m_HelperPolyLines->InsertElement( 1, VertexContainerType::New()); - //m_HelperPolyLines->ElementAt( 0 )->Reserve( 2 ); - //m_HelperPolyLines->ElementAt( 1 )->Reserve( 2 ); m_HelperPolyLinesToBePainted->InsertElement( 0, false ); m_HelperPolyLinesToBePainted->InsertElement( 1, false ); } mitk::PlanarArrow::~PlanarArrow() { } void mitk::PlanarArrow::GeneratePolyLine() { this->ClearPolyLines(); - this->AppendPointToPolyLine( 0, PolyLineElement( this->GetControlPoint( 0 ), 0 )); - this->AppendPointToPolyLine( 0, PolyLineElement( this->GetControlPoint( 1 ), 0 )); - - // TODO: start line at specified start point... - // Generate poly-line - //m_PolyLines->ElementAt( 0 )->Reserve( 2 ); - //m_PolyLines->ElementAt( 0 )->ElementAt( 0 ) = m_ControlPoints->ElementAt( 0 ); - //m_PolyLines->ElementAt( 0 )->ElementAt( 1 ) = m_ControlPoints->ElementAt( 1 ); + this->AppendPointToPolyLine(0, this->GetControlPoint(0)); + this->AppendPointToPolyLine(0, this->GetControlPoint(1)); } void mitk::PlanarArrow::GenerateHelperPolyLine(double mmPerDisplayUnit, unsigned int displayHeight) { // Generate helper polyline (orientation line orthogonal to first line) // if the third control point is currently being set if ( this->GetNumberOfControlPoints() != 2 ) { m_HelperPolyLinesToBePainted->SetElement( 0, false ); m_HelperPolyLinesToBePainted->SetElement( 1, false ); return; } this->ClearHelperPolyLines(); m_HelperPolyLinesToBePainted->SetElement( 0, true ); m_HelperPolyLinesToBePainted->SetElement( 1, true ); //Fixed size depending on screen size for the angle float scaleFactor = 0.015; if ( m_ArrowTipScaleFactor > 0.0 ) { scaleFactor = m_ArrowTipScaleFactor; } double nonScalingLength = displayHeight * mmPerDisplayUnit * scaleFactor; // Calculate arrow peak const Point2D p1 = this->GetControlPoint( 0 ); const Point2D p2 = this->GetControlPoint( 1 ); - //const Point2D& p1 = m_ControlPoints->ElementAt( 0 ); - //const Point2D& p2 = m_ControlPoints->ElementAt( 1 ); Vector2D n1 = p1 - p2; n1.Normalize(); double degrees = 100.0; Vector2D temp; temp[0] = n1[0] * cos(degrees) - n1[1] * sin(degrees); temp[1] = n1[0] * sin(degrees) + n1[1] * cos(degrees); Vector2D temp2; temp2[0] = n1[0] * cos(-degrees) - n1[1] * sin(-degrees); temp2[1] = n1[0] * sin(-degrees) + n1[1] * cos(-degrees); - this->AppendPointToHelperPolyLine( 0, PolyLineElement( p1, 0 )); - this->AppendPointToHelperPolyLine( 0, PolyLineElement( p1 - temp * nonScalingLength, 0 )); - this->AppendPointToHelperPolyLine( 1, PolyLineElement( p1, 0 )); - this->AppendPointToHelperPolyLine( 1, PolyLineElement( p1 - temp2 * nonScalingLength, 0 )); - - //m_HelperPolyLines->ElementAt( 0 )->ElementAt( 0 ) = p1; - //m_HelperPolyLines->ElementAt( 0 )->ElementAt( 1 ) = p1 - temp * nonScalingLength; - //m_HelperPolyLines->ElementAt( 1 )->ElementAt( 0 ) = p1; - //m_HelperPolyLines->ElementAt( 1 )->ElementAt( 1 ) = p1 - temp2 * nonScalingLength; - + this->AppendPointToHelperPolyLine(0, p1); + this->AppendPointToHelperPolyLine(0, p1 - temp * nonScalingLength); + this->AppendPointToHelperPolyLine(1, p1); + this->AppendPointToHelperPolyLine(1, p1 - temp2 * nonScalingLength); } void mitk::PlanarArrow::EvaluateFeaturesInternal() { // Calculate line length const Point3D &p0 = this->GetWorldControlPoint( 0 ); const Point3D &p1 = this->GetWorldControlPoint( 1 ); double length = p0.EuclideanDistanceTo( p1 ); this->SetQuantity( FEATURE_ID_LENGTH, length ); } void mitk::PlanarArrow::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); } void mitk::PlanarArrow::SetArrowTipScaleFactor( float scale ) { m_ArrowTipScaleFactor = scale; } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarBezierCurve.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarBezierCurve.cpp index d2293d3a67..fe6e689199 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarBezierCurve.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarBezierCurve.cpp @@ -1,128 +1,120 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarBezierCurve.h" #include #include mitk::PlanarBezierCurve::PlanarBezierCurve() : FEATURE_ID_LENGTH(Superclass::AddFeature("Length", "mm")), m_NumberOfSegments(100) { this->ResetNumberOfControlPoints(2); this->SetNumberOfPolyLines(1); this->SetNumberOfHelperPolyLines(1); } mitk::PlanarBezierCurve::~PlanarBezierCurve() { } void mitk::PlanarBezierCurve::EvaluateFeaturesInternal() { - std::vector points; - points.reserve(m_NumberOfSegments + 1); - - PolyLineType::const_iterator end = m_PolyLines[0].end(); - - for (PolyLineType::const_iterator it = m_PolyLines[0].begin(); it != end; ++it) - points.push_back(it->Point); - double length = 0.0; for (unsigned int i = 0; i < m_NumberOfSegments; ++i) - length += points[i].EuclideanDistanceTo(points[i + 1]); + length += static_cast(m_PolyLines[0][i]).EuclideanDistanceTo(static_cast(m_PolyLines[0][i + 1])); this->SetQuantity(FEATURE_ID_LENGTH, length); } unsigned int mitk::PlanarBezierCurve::GetNumberOfSegments() const { return m_NumberOfSegments; } void mitk::PlanarBezierCurve::SetNumberOfSegments(unsigned int numSegments) { m_NumberOfSegments = std::max(1U, numSegments); if (this->IsPlaced()) { this->GeneratePolyLine(); this->Modified(); } } void mitk::PlanarBezierCurve::GenerateHelperPolyLine(double, unsigned int) { this->ClearHelperPolyLines(); unsigned int numHelperPolyLinePoints = m_ControlPoints.size(); for (unsigned int i = 0; i < numHelperPolyLinePoints; ++i) - this->AppendPointToHelperPolyLine(0, PolyLineElement(m_ControlPoints[i], i)); + this->AppendPointToHelperPolyLine(0, m_ControlPoints[i]); } void mitk::PlanarBezierCurve::GeneratePolyLine() { this->ClearPolyLines(); const unsigned int numPolyLinePoints = m_NumberOfSegments + 1; for (unsigned int i = 0; i < numPolyLinePoints; ++i) - this->AppendPointToPolyLine(0, PolyLineElement(this->ComputeDeCasteljauPoint(i / static_cast(m_NumberOfSegments)), i)); + this->AppendPointToPolyLine(0, this->ComputeDeCasteljauPoint(i / static_cast(m_NumberOfSegments))); } mitk::Point2D mitk::PlanarBezierCurve::ComputeDeCasteljauPoint(mitk::ScalarType t) { unsigned int n = m_ControlPoints.size() - 1; if (m_DeCasteljauPoints.size() != n) m_DeCasteljauPoints.resize(n); for (unsigned int i = 0; i < n; ++i) { m_DeCasteljauPoints[i][0] = (1 - t) * m_ControlPoints[i][0] + t * m_ControlPoints[i + 1][0]; m_DeCasteljauPoints[i][1] = (1 - t) * m_ControlPoints[i][1] + t * m_ControlPoints[i + 1][1]; } for (--n; n > 0; --n) { for (unsigned int i = 0; i < n; ++i) { m_DeCasteljauPoints[i][0] = (1 - t) * m_DeCasteljauPoints[i][0] + t * m_DeCasteljauPoints[i + 1][0]; m_DeCasteljauPoints[i][1] = (1 - t) * m_DeCasteljauPoints[i][1] + t * m_DeCasteljauPoints[i + 1][1]; } } return m_DeCasteljauPoints[0]; } unsigned int mitk::PlanarBezierCurve::GetMaximumNumberOfControlPoints() const { return std::numeric_limits::max(); } unsigned int mitk::PlanarBezierCurve::GetMinimumNumberOfControlPoints() const { return 2; } bool mitk::PlanarBezierCurve::IsHelperToBePainted(unsigned int index) { return index == 0 && m_ControlPoints.size() > 2; } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarCircle.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarCircle.cpp index 10f53b994b..717df35bef 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarCircle.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarCircle.cpp @@ -1,165 +1,165 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarCircle.h" #include "mitkPlaneGeometry.h" #include "mitkProperties.h" mitk::PlanarCircle::PlanarCircle() : FEATURE_ID_RADIUS( this->AddFeature( "Radius", "mm" ) ), FEATURE_ID_DIAMETER( this->AddFeature( "Diameter", "mm" ) ), FEATURE_ID_AREA( this->AddFeature( "Area", "mm2" ) ), m_MinRadius(0), m_MaxRadius(100), m_MinMaxRadiusContraintsActive(false) { // Circle has two control points this->ResetNumberOfControlPoints( 2 ); this->SetNumberOfPolyLines( 1 ); this->SetProperty( "closed", mitk::BoolProperty::New(true) ); } mitk::PlanarCircle::~PlanarCircle() { } bool mitk::PlanarCircle::SetControlPoint( unsigned int index, const Point2D &point, bool /*createIfDoesNotExist*/ ) { // moving center point if(index == 0) { const Point2D ¢erPoint = GetControlPoint( 0 ); Point2D boundaryPoint = GetControlPoint( 1 ); vnl_vector vec = (point.GetVnlVector() - centerPoint.GetVnlVector()); boundaryPoint[0] += vec[0]; boundaryPoint[1] += vec[1]; PlanarFigure::SetControlPoint( 0, point ); PlanarFigure::SetControlPoint( 1, boundaryPoint ); return true; } else if ( index == 1 ) { PlanarFigure::SetControlPoint( index, point ); return true; } return false; } mitk::Point2D mitk::PlanarCircle::ApplyControlPointConstraints(unsigned int index, const Point2D &point) { if ( this->GetPlaneGeometry() == NULL ) { return point; } Point2D indexPoint; this->GetPlaneGeometry()->WorldToIndex( point, indexPoint ); BoundingBox::BoundsArrayType bounds = this->GetPlaneGeometry()->GetBounds(); if ( indexPoint[0] < bounds[0] ) { indexPoint[0] = bounds[0]; } if ( indexPoint[0] > bounds[1] ) { indexPoint[0] = bounds[1]; } if ( indexPoint[1] < bounds[2] ) { indexPoint[1] = bounds[2]; } if ( indexPoint[1] > bounds[3] ) { indexPoint[1] = bounds[3]; } Point2D constrainedPoint; this->GetPlaneGeometry()->IndexToWorld( indexPoint, constrainedPoint ); if(m_MinMaxRadiusContraintsActive) { if( index != 0) { const Point2D ¢erPoint = this->GetControlPoint(0); double euclideanDinstanceFromCenterToPoint1 = centerPoint.EuclideanDistanceTo(point); Vector2D vectorProjectedPoint; vectorProjectedPoint = point - centerPoint; vectorProjectedPoint.Normalize(); if( euclideanDinstanceFromCenterToPoint1 > m_MaxRadius ) { vectorProjectedPoint *= m_MaxRadius; constrainedPoint = centerPoint; constrainedPoint += vectorProjectedPoint; } else if( euclideanDinstanceFromCenterToPoint1 < m_MinRadius ) { vectorProjectedPoint *= m_MinRadius; constrainedPoint = centerPoint; constrainedPoint += vectorProjectedPoint; } } } return constrainedPoint; } void mitk::PlanarCircle::GeneratePolyLine() { // TODO: start circle at specified boundary point... // clear the PolyLine-Contrainer, it will be reconstructed soon enough... this->ClearPolyLines(); const Point2D ¢erPoint = GetControlPoint( 0 ); const Point2D &boundaryPoint = GetControlPoint( 1 ); double radius = centerPoint.EuclideanDistanceTo( boundaryPoint ); // Generate poly-line with 64 segments for ( int t = 0; t < 64; ++t ) { double alpha = (double) t * vnl_math::pi / 32.0; // construct the new polyline point ... Point2D polyLinePoint; polyLinePoint[0] = centerPoint[0] + radius * cos( alpha ); polyLinePoint[1] = centerPoint[1] + radius * sin( alpha ); // ... and append it to the PolyLine. // No extending supported here, so we can set the index of the PolyLineElement to '0' - AppendPointToPolyLine( 0, PolyLineElement( polyLinePoint, 0 ) ); + this->AppendPointToPolyLine(0, polyLinePoint); } } void mitk::PlanarCircle::GenerateHelperPolyLine(double /*mmPerDisplayUnit*/, unsigned int /*displayHeight*/) { // A circle does not require a helper object } void mitk::PlanarCircle::EvaluateFeaturesInternal() { // Calculate circle radius and area const Point3D &p0 = this->GetWorldControlPoint( 0 ); const Point3D &p1 = this->GetWorldControlPoint( 1 ); double radius = p0.EuclideanDistanceTo( p1 ); double area = vnl_math::pi * radius * radius; this->SetQuantity( FEATURE_ID_RADIUS, radius ); this->SetQuantity( FEATURE_ID_DIAMETER, 2*radius ); this->SetQuantity( FEATURE_ID_AREA, area ); } void mitk::PlanarCircle::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarCross.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarCross.cpp index a9cdfc08bc..98045a3501 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarCross.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarCross.cpp @@ -1,350 +1,344 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarCross.h" #include "mitkPlaneGeometry.h" #include "mitkProperties.h" mitk::PlanarCross::PlanarCross() : FEATURE_ID_LONGESTDIAMETER( this->AddFeature( "Longest Axis", "mm" ) ), FEATURE_ID_SHORTAXISDIAMETER( this->AddFeature( "Short Axis", "mm" ) ) { // Cross has two control points at the beginning this->ResetNumberOfControlPoints( 2 ); // Create property for SingleLineMode (default: false) this->SetProperty( "SingleLineMode", mitk::BoolProperty::New( false ) ); // Create helper polyline object (for drawing the orthogonal orientation line) this->SetNumberOfHelperPolyLines( 1 ); m_HelperPolyLinesToBePainted->InsertElement( 0, false ); } mitk::PlanarCross::~PlanarCross() { } void mitk::PlanarCross::SetSingleLineMode( bool singleLineMode ) { this->SetProperty( "SingleLineMode", mitk::BoolProperty::New( singleLineMode ) ); this->Modified(); } bool mitk::PlanarCross::GetSingleLineMode() const { mitk::BoolProperty* singleLineMode = dynamic_cast< mitk::BoolProperty* >( this->GetProperty( "SingleLineMode" ).GetPointer() ); if ( singleLineMode != NULL ) { return singleLineMode->GetValue(); } return false; } bool mitk::PlanarCross::ResetOnPointSelect() { if ( this->GetSingleLineMode() ) { // In single line mode --> nothing to reset return false; } switch ( m_SelectedControlPoint ) { default: // Nothing selected --> nothing to reset return false; case 0: { // Control point 0 selected: exchange points 0 and 1 Point2D tmpPoint = this->GetControlPoint( 0 ); this->SetControlPoint( 0, this->GetControlPoint( 1 ) ); this->SetControlPoint( 1, tmpPoint ); // FALLS THROUGH! } case 1: { // Control point 0 or 1 selected: reset number of control points to two this->ResetNumberOfControlPoints( 2 ); this->SelectControlPoint( 1 ); return true; } case 2: { // Control point 2 selected: replace point 0 with point 3 and point 1 with point 2 this->SetControlPoint( 0, this->GetControlPoint( 3 ) ); this->SetControlPoint( 1, this->GetControlPoint( 2 ) ); // Adjust selected control point, reset number of control points to two this->ResetNumberOfControlPoints( 2 ); this->SelectControlPoint( 1 ); return true; } case 3: { // Control point 3 selected: replace point 0 with point 2 and point 1 with point 3 this->SetControlPoint( 0, this->GetControlPoint( 2 ) ); this->SetControlPoint( 1, this->GetControlPoint( 3 ) ); // Adjust selected control point, reset number of control points to two this->ResetNumberOfControlPoints( 2 ); this->SelectControlPoint( 1 ); return true; } } } unsigned int mitk::PlanarCross::GetNumberOfFeatures() const { if ( this->GetSingleLineMode() || (this->GetNumberOfControlPoints() < 4) ) { return 1; } else { return 2; } } mitk::Point2D mitk::PlanarCross::ApplyControlPointConstraints( unsigned int index, const Point2D& point ) { // Apply spatial constraints from superclass and from this class until the resulting constrained // point converges. Although not an optimal implementation, this iterative approach // helps to respect both constraints from the superclass and from this class. Without this, // situations may occur where control points are constrained by the superclass, but again // moved out of the superclass bounds by the subclass, or vice versa. unsigned int count = 0; // ensures stop of approach if point does not converge in reasonable time Point2D confinedPoint = point; Point2D superclassConfinedPoint; do { superclassConfinedPoint = Superclass::ApplyControlPointConstraints( index, confinedPoint ); confinedPoint = this->InternalApplyControlPointConstraints( index, superclassConfinedPoint ); ++count; } while ( (confinedPoint.EuclideanDistanceTo( superclassConfinedPoint ) > mitk::eps) && (count < 32) ); return confinedPoint; } mitk::Point2D mitk::PlanarCross::InternalApplyControlPointConstraints( unsigned int index, const Point2D& point ) { // Apply constraints depending on current interaction state switch ( index ) { case 2: { // Check if 3rd control point is outside of the range (2D area) defined by the first // line (via the first two control points); if it is outside, clip it to the bounds const Point2D p1 = this->GetControlPoint( 0 ); const Point2D p2 = this->GetControlPoint( 1 ); Vector2D n1 = p2 - p1; n1.Normalize(); Vector2D v1 = point - p1; double dotProduct = n1 * v1; Point2D crossPoint = p1 + n1 * dotProduct;; Vector2D crossVector = point - crossPoint; if ( dotProduct < 0.0 ) { // Out-of-bounds on the left: clip point to left boundary return (p1 + crossVector); } else if ( dotProduct > p2.EuclideanDistanceTo( p1 ) ) { // Out-of-bounds on the right: clip point to right boundary return (p2 + crossVector); } else { // Pass back original point return point; } } case 3: { // Constrain 4th control point so that with the 3rd control point it forms // a line orthogonal to the first line (constraint 1); the 4th control point // must lie on the opposite side of the line defined by the first two control // points than the 3rd control point (constraint 2) const Point2D p1 = this->GetControlPoint( 0 ); const Point2D p2 = this->GetControlPoint( 1 ); const Point2D p3 = this->GetControlPoint( 2 ); // Calculate distance of original point from orthogonal line the corrected // point should lie on to project the point onto this line Vector2D n1 = p2 - p1; n1.Normalize(); Vector2D v1 = point - p3; double dotProduct1 = n1 * v1; Point2D pointOnLine = point - n1 * dotProduct1; // Project new point onto line [p1, p2] Vector2D v2 = pointOnLine - p1; double dotProduct2 = n1 * v2; Point2D crossingPoint = p1 + n1 * dotProduct2; // Determine whether the projected point on the line, or the crossing point should be // used (according to the second constraint in the comment above) if ( (pointOnLine.SquaredEuclideanDistanceTo( p3 ) > crossingPoint.SquaredEuclideanDistanceTo( p3 )) && (pointOnLine.SquaredEuclideanDistanceTo( p3 ) > pointOnLine.SquaredEuclideanDistanceTo( crossingPoint )) ) { return pointOnLine; } else { return crossingPoint; } } default: return point; } } void mitk::PlanarCross::GeneratePolyLine() { - this->SetNumberOfPolyLines( 1 ); - + this->SetNumberOfPolyLines(1); this->ClearPolyLines(); - if ( this->GetNumberOfControlPoints() > 2) - { + if (this->GetNumberOfControlPoints() > 2) this->SetNumberOfPolyLines( 2 ); - } - for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) + for (unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i) { if (i < 2) - { - this->AppendPointToPolyLine( 0, mitk::PlanarFigure::PolyLineElement( this->GetControlPoint( i ), i ) ); - } + this->AppendPointToPolyLine(0, this->GetControlPoint(i)); + if (i > 1) - { - this->AppendPointToPolyLine( 1, mitk::PlanarFigure::PolyLineElement( this->GetControlPoint( i ), i ) ); - } + this->AppendPointToPolyLine(1, this->GetControlPoint(i)); } } void mitk::PlanarCross::GenerateHelperPolyLine(double /*mmPerDisplayUnit*/, unsigned int /*displayHeight*/) { // Generate helper polyline (orientation line orthogonal to first line) // if the third control point is currently being set if ( this->GetNumberOfControlPoints() != 3 ) { m_HelperPolyLinesToBePainted->SetElement( 0, false ); return; } m_HelperPolyLinesToBePainted->SetElement( 0, true ); this->ClearHelperPolyLines(); // Calculate cross point of first line (p1 to p2) and orthogonal line through // the third control point (p3) const Point2D p1 = this->GetControlPoint( 0 ); const Point2D p2 = this->GetControlPoint( 1 ); const Point2D p3 = this->GetControlPoint( 2 ); Vector2D n1 = p2 - p1; n1.Normalize(); Vector2D v1 = p3 - p1; Point2D crossPoint = p1 + n1 * (n1 * v1); Vector2D v2 = crossPoint - p3; if ( v2.GetNorm() < 1.0 ) { // If third point is on the first line, draw orthogonal "infinite" line // through cross point on line Vector2D v0; v0[0] = n1[1]; v0[1] = -n1[0]; - this->AppendPointToHelperPolyLine( 0, mitk::PlanarFigure::PolyLineElement( p3 - v0 * 10000.0, 0 ) ) ; - this->AppendPointToHelperPolyLine( 0, mitk::PlanarFigure::PolyLineElement( p3 + v0 * 10000.0, 0 ) ) ; + this->AppendPointToHelperPolyLine(0, p3 - v0 * 10000.0); + this->AppendPointToHelperPolyLine(0, p3 + v0 * 10000.0); } else { // Else, draw orthogonal line starting from third point and crossing the // first line, open-ended only on the other side - this->AppendPointToHelperPolyLine( 0, mitk::PlanarFigure::PolyLineElement( p3, 0 ) ) ; - this->AppendPointToHelperPolyLine( 0, mitk::PlanarFigure::PolyLineElement( p3 + v2 * 10000.0, 0 ) ) ; + this->AppendPointToHelperPolyLine(0, p3); + this->AppendPointToHelperPolyLine(0, p3 + v2 * 10000.0); } } void mitk::PlanarCross::EvaluateFeaturesInternal() { // Calculate length of first line const Point3D &p0 = this->GetWorldControlPoint( 0 ); const Point3D &p1 = this->GetWorldControlPoint( 1 ); double l1 = p0.EuclideanDistanceTo( p1 ); // Calculate length of second line double l2 = 0.0; if ( !this->GetSingleLineMode() && (this->GetNumberOfControlPoints() > 3) ) { const Point3D &p2 = this->GetWorldControlPoint( 2 ); const Point3D &p3 = this->GetWorldControlPoint( 3 ); l2 = p2.EuclideanDistanceTo( p3 ); } double longestDiameter; double shortAxisDiameter; if ( l1 > l2 ) { longestDiameter = l1; shortAxisDiameter = l2; } else { longestDiameter = l2; shortAxisDiameter = l1; } this->SetQuantity( FEATURE_ID_LONGESTDIAMETER, longestDiameter ); this->SetQuantity( FEATURE_ID_SHORTAXISDIAMETER, shortAxisDiameter ); } void mitk::PlanarCross::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.cpp index 22fb6754d0..68dfab03db 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.cpp @@ -1,251 +1,251 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarDoubleEllipse.h" #include #include mitk::PlanarDoubleEllipse::PlanarDoubleEllipse() : FEATURE_ID_MAJOR_AXIS(Superclass::AddFeature("Major Axis", "mm")), FEATURE_ID_MINOR_AXIS(Superclass::AddFeature("Minor Axis", "mm")), FEATURE_ID_THICKNESS(Superclass::AddFeature("Thickness", "mm")), m_NumberOfSegments(64), m_ConstrainCircle(true), m_ConstrainThickness(true) { this->ResetNumberOfControlPoints(4); this->SetNumberOfPolyLines(2); this->SetProperty("closed", mitk::BoolProperty::New(true)); } mitk::PlanarDoubleEllipse::~PlanarDoubleEllipse() { } mitk::Point2D mitk::PlanarDoubleEllipse::ApplyControlPointConstraints(unsigned int index, const Point2D& point) { if (index == 2 && !m_ConstrainCircle) { Point2D centerPoint = this->GetControlPoint(0); Vector2D outerMajorVector = this->GetControlPoint(1) - centerPoint; Vector2D minorDirection; minorDirection[0] = outerMajorVector[1]; minorDirection[1] = -outerMajorVector[0]; minorDirection.Normalize(); double outerMajorRadius = outerMajorVector.GetNorm(); double innerMajorRadius = (this->GetControlPoint(3) - centerPoint).GetNorm(); ScalarType radius = std::max(outerMajorRadius - innerMajorRadius, std::min(centerPoint.EuclideanDistanceTo(point), outerMajorRadius)); return centerPoint + minorDirection * radius; } else if (index == 3 && !m_ConstrainThickness) { Point2D centerPoint = this->GetControlPoint(0); Vector2D outerMajorVector = this->GetControlPoint(1) - centerPoint; double outerMajorRadius = outerMajorVector.GetNorm(); double outerMinorRadius = (this->GetControlPoint(2) - centerPoint).GetNorm(); ScalarType radius = std::max(outerMajorRadius - outerMinorRadius, std::min(centerPoint.EuclideanDistanceTo(point), outerMajorRadius)); outerMajorVector.Normalize(); return centerPoint - outerMajorVector * radius; } return point; } void mitk::PlanarDoubleEllipse::EvaluateFeaturesInternal() { Point2D centerPoint = this->GetControlPoint(0); ScalarType outerMajorRadius = centerPoint.EuclideanDistanceTo(this->GetControlPoint(1)); this->SetQuantity(FEATURE_ID_MAJOR_AXIS, 2 * outerMajorRadius); this->SetQuantity(FEATURE_ID_MINOR_AXIS, 2 * centerPoint.EuclideanDistanceTo(this->GetControlPoint(2))); this->SetQuantity(FEATURE_ID_THICKNESS, outerMajorRadius - centerPoint.EuclideanDistanceTo(this->GetControlPoint(3))); } void mitk::PlanarDoubleEllipse::GenerateHelperPolyLine(double, unsigned int) { } void mitk::PlanarDoubleEllipse::GeneratePolyLine() { this->ClearPolyLines(); Point2D centerPoint = this->GetControlPoint(0); Point2D outerMajorPoint = this->GetControlPoint(1); Vector2D direction = outerMajorPoint - centerPoint; direction.Normalize(); const ScalarType deltaAngle = vnl_math::pi / (m_NumberOfSegments / 2); int start = 0; int end = m_NumberOfSegments; if (direction[1] < 0.0) { direction[0] = -direction[0]; end = m_NumberOfSegments / 2; start = -end; } vnl_matrix_fixed rotation; rotation[1][0] = std::sin(std::acos(direction[0])); rotation[0][0] = direction[0]; rotation[1][1] = direction[0]; rotation[0][1] = -rotation[1][0]; ScalarType outerMajorRadius = centerPoint.EuclideanDistanceTo(outerMajorPoint); ScalarType outerMinorRadius = centerPoint.EuclideanDistanceTo(this->GetControlPoint(2)); ScalarType innerMajorRadius = centerPoint.EuclideanDistanceTo(this->GetControlPoint(3)); ScalarType innerMinorRadius = innerMajorRadius - (outerMajorRadius - outerMinorRadius); ScalarType angle; ScalarType cosAngle; ScalarType sinAngle; vnl_vector_fixed vector; Point2D point; for (int i = start; i < end; ++i) { angle = i * deltaAngle; cosAngle = std::cos(angle); sinAngle = std::sin(angle); vector[0] = outerMajorRadius * cosAngle; vector[1] = outerMinorRadius * sinAngle; vector = rotation * vector; point[0] = centerPoint[0] + vector[0]; point[1] = centerPoint[1] + vector[1]; - this->AppendPointToPolyLine(0, PolyLineElement(point, 0)); + this->AppendPointToPolyLine(0, point); vector[0] = innerMajorRadius * cosAngle; vector[1] = innerMinorRadius * sinAngle; vector = rotation * vector; point[0] = centerPoint[0] + vector[0]; point[1] = centerPoint[1] + vector[1]; - this->AppendPointToPolyLine(1, PolyLineElement(point, 0)); + this->AppendPointToPolyLine(1, point); } } unsigned int mitk::PlanarDoubleEllipse::GetNumberOfSegments() const { return m_NumberOfSegments; } void mitk::PlanarDoubleEllipse::SetNumberOfSegments(unsigned int numSegments) { m_NumberOfSegments = std::max(4U, numSegments); if (this->IsPlaced()) { this->GeneratePolyLine(); this->Modified(); } } unsigned int mitk::PlanarDoubleEllipse::GetMaximumNumberOfControlPoints() const { return 4; } unsigned int mitk::PlanarDoubleEllipse::GetMinimumNumberOfControlPoints() const { return 4; } bool mitk::PlanarDoubleEllipse::SetControlPoint(unsigned int index, const Point2D& point, bool createIfDoesNotExist) { switch (index) { case 0: { Point2D centerPoint = this->GetControlPoint(0); Vector2D vector = point - centerPoint; Superclass::SetControlPoint(0, point, createIfDoesNotExist); Superclass::SetControlPoint(1, this->GetControlPoint(1) + vector, createIfDoesNotExist); Superclass::SetControlPoint(2, this->GetControlPoint(2) + vector, createIfDoesNotExist); Superclass::SetControlPoint(3, this->GetControlPoint(3) + vector, createIfDoesNotExist); break; } case 1: { Vector2D vector = point - this->GetControlPoint(1); Superclass::SetControlPoint(1, point, createIfDoesNotExist); Point2D centerPoint = this->GetControlPoint(0); Vector2D outerMajorVector = point - centerPoint; Vector2D outerMinorVector; outerMinorVector[0] = outerMajorVector[1]; outerMinorVector[1] = -outerMajorVector[0]; if (!m_ConstrainCircle) { outerMinorVector.Normalize(); outerMinorVector *= centerPoint.EuclideanDistanceTo(this->GetControlPoint(2)); } Superclass::SetControlPoint(2, centerPoint + outerMinorVector, createIfDoesNotExist); Vector2D innerMajorVector = outerMajorVector; if (!m_ConstrainThickness) { innerMajorVector.Normalize(); innerMajorVector *= centerPoint.EuclideanDistanceTo(this->GetControlPoint(3) - vector); } Superclass::SetControlPoint(3, centerPoint - innerMajorVector, createIfDoesNotExist); break; } case 2: { m_ConstrainCircle = false; Superclass::SetControlPoint(2, point, createIfDoesNotExist); break; } case 3: { m_ConstrainThickness = false; Superclass::SetControlPoint(3, point, createIfDoesNotExist); break; } default: return false; } return true; } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.h b/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.h index 37a9eb0f42..ff67568439 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.h +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarDoubleEllipse.h @@ -1,61 +1,61 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkPlanarDoubleEllipse_h #define mitkPlanarDoubleEllipse_h #include #include namespace mitk { class MitkPlanarFigure_EXPORT PlanarDoubleEllipse : public PlanarFigure { public: mitkClassMacro(PlanarDoubleEllipse, PlanarFigure); itkFactorylessNewMacro(Self) itkCloneMacro(Self) unsigned int GetNumberOfSegments() const; void SetNumberOfSegments(unsigned int numSegments); virtual unsigned int GetMaximumNumberOfControlPoints() const; virtual unsigned int GetMinimumNumberOfControlPoints() const; virtual bool SetControlPoint(unsigned int index, const Point2D& point, bool createIfDoesNotExist = true); const unsigned int FEATURE_ID_MAJOR_AXIS; const unsigned int FEATURE_ID_MINOR_AXIS; const unsigned int FEATURE_ID_THICKNESS; protected: PlanarDoubleEllipse(); virtual ~PlanarDoubleEllipse(); - mitkCloneMacro(Self); + mitkCloneMacro(Self) virtual mitk::Point2D ApplyControlPointConstraints(unsigned int index, const Point2D& point); virtual void EvaluateFeaturesInternal(); virtual void GenerateHelperPolyLine(double, unsigned int); virtual void GeneratePolyLine(); private: unsigned int m_NumberOfSegments; bool m_ConstrainCircle; bool m_ConstrainThickness; }; } #endif diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.cpp index 754529369c..49ddb0f02d 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.cpp @@ -1,275 +1,280 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkPlanarEllipse.h" #include "mitkPlaneGeometry.h" #include "mitkProperties.h" #include mitk::PlanarEllipse::PlanarEllipse() - : m_MinRadius(0), + : FEATURE_ID_MAJOR_AXIS(Superclass::AddFeature("Major Axis", "mm")), + FEATURE_ID_MINOR_AXIS(Superclass::AddFeature("Minor Axis", "mm")), + m_MinRadius(0), m_MaxRadius(100), m_MinMaxRadiusContraintsActive(false), m_TreatAsCircle(true) { // Ellipse has three control points this->ResetNumberOfControlPoints( 4 ); this->SetNumberOfPolyLines( 2 ); this->SetProperty( "closed", mitk::BoolProperty::New(true) ); } mitk::PlanarEllipse::~PlanarEllipse() { } bool mitk::PlanarEllipse::SetControlPoint( unsigned int index, const Point2D &point, bool createIfDoesNotExist ) { if(index == 0) // moving center point and control points accordingly { const Point2D ¢erPoint = GetControlPoint( 0 ); Point2D boundaryPoint1 = GetControlPoint( 1 ); Point2D boundaryPoint2 = GetControlPoint( 2 ); Point2D boundaryPoint3 = GetControlPoint( 3 ); vnl_vector vec = (point.GetVnlVector() - centerPoint.GetVnlVector()); boundaryPoint1[0] += vec[0]; boundaryPoint1[1] += vec[1]; boundaryPoint2[0] += vec[0]; boundaryPoint2[1] += vec[1]; boundaryPoint3[0] += vec[0]; boundaryPoint3[1] += vec[1]; PlanarFigure::SetControlPoint( 0, point, createIfDoesNotExist ); PlanarFigure::SetControlPoint( 1, boundaryPoint1, createIfDoesNotExist ); PlanarFigure::SetControlPoint( 2, boundaryPoint2, createIfDoesNotExist ); PlanarFigure::SetControlPoint( 3, boundaryPoint3, createIfDoesNotExist ); return true; } else if (index < 3) { PlanarFigure::SetControlPoint( index, point, createIfDoesNotExist ); int otherIndex = index+1; if (otherIndex > 2) otherIndex = 1; const Point2D ¢erPoint = GetControlPoint( 0 ); Point2D otherPoint = GetControlPoint( otherIndex ); Point2D point3 = GetControlPoint( 3 ); Vector2D vec1 = point - centerPoint; Vector2D vec2; if (index == 1 && m_TreatAsCircle ) { float x = vec1[0]; vec2[0] = vec1[1]; vec2[1] = x; if (index==1) vec2[0] *= -1; else vec2[1] *= -1; otherPoint = centerPoint+vec2; PlanarFigure::SetControlPoint( otherIndex, otherPoint, createIfDoesNotExist ); float r = centerPoint.EuclideanDistanceTo(otherPoint); // adjust additional third control point Point2D p3 = this->GetControlPoint(3); Vector2D vec3; vec3[0] = p3[0]-centerPoint[0]; vec3[1] = p3[1]-centerPoint[1]; if (vec3[0]!=0 || vec3[1]!=0) { vec3.Normalize(); vec3 *= r; } else { vec3[0] = r; vec3[1] = 0; } point3 = centerPoint + vec3; PlanarFigure::SetControlPoint( 3, point3, createIfDoesNotExist ); } else if ( vec1.GetNorm() > 0 ) { float r = centerPoint.EuclideanDistanceTo(otherPoint); float x = vec1[0]; vec2[0] = vec1[1]; vec2[1] = x; if (index==1) vec2[0] *= -1; else vec2[1] *= -1; vec2.Normalize(); vec2 *= r; if ( vec2.GetNorm() > 0 ) { otherPoint = centerPoint+vec2; PlanarFigure::SetControlPoint( otherIndex, otherPoint, createIfDoesNotExist ); } // adjust third control point Vector2D vec3 = point3 - centerPoint; vec3.Normalize(); double r1 = centerPoint.EuclideanDistanceTo( GetControlPoint( 1 ) ); double r2 = centerPoint.EuclideanDistanceTo( GetControlPoint( 2 ) ); Point2D newPoint = centerPoint + vec3*std::max(r1, r2); PlanarFigure::SetControlPoint( 3, newPoint, createIfDoesNotExist ); m_TreatAsCircle = false; } return true; } else if (index == 3) { Point2D centerPoint = GetControlPoint( 0 ); Vector2D vec3 = point - centerPoint; vec3.Normalize(); double r1 = centerPoint.EuclideanDistanceTo( GetControlPoint( 1 ) ); double r2 = centerPoint.EuclideanDistanceTo( GetControlPoint( 2 ) ); Point2D newPoint = centerPoint + vec3*std::max(r1, r2); PlanarFigure::SetControlPoint( index, newPoint, createIfDoesNotExist ); m_TreatAsCircle = false; return true; } return false; } void mitk::PlanarEllipse::PlaceFigure( const mitk::Point2D &point ) { PlanarFigure::PlaceFigure( point ); m_SelectedControlPoint = 1; } mitk::Point2D mitk::PlanarEllipse::ApplyControlPointConstraints(unsigned int index, const Point2D &point) { return point; Point2D indexPoint; this->GetPlaneGeometry()->WorldToIndex( point, indexPoint ); BoundingBox::BoundsArrayType bounds = this->GetPlaneGeometry()->GetBounds(); if ( indexPoint[0] < bounds[0] ) { indexPoint[0] = bounds[0]; } if ( indexPoint[0] > bounds[1] ) { indexPoint[0] = bounds[1]; } if ( indexPoint[1] < bounds[2] ) { indexPoint[1] = bounds[2]; } if ( indexPoint[1] > bounds[3] ) { indexPoint[1] = bounds[3]; } Point2D constrainedPoint; this->GetPlaneGeometry()->IndexToWorld( indexPoint, constrainedPoint ); if(m_MinMaxRadiusContraintsActive) { if( index != 0) { const Point2D ¢erPoint = this->GetControlPoint(0); double euclideanDinstanceFromCenterToPoint1 = centerPoint.EuclideanDistanceTo(point); Vector2D vectorProjectedPoint; vectorProjectedPoint = point - centerPoint; vectorProjectedPoint.Normalize(); if( euclideanDinstanceFromCenterToPoint1 > m_MaxRadius ) { vectorProjectedPoint *= m_MaxRadius; constrainedPoint = centerPoint; constrainedPoint += vectorProjectedPoint; } else if( euclideanDinstanceFromCenterToPoint1 < m_MinRadius ) { vectorProjectedPoint *= m_MinRadius; constrainedPoint = centerPoint; constrainedPoint += vectorProjectedPoint; } } } return constrainedPoint; } void mitk::PlanarEllipse::GeneratePolyLine() { // clear the PolyLine-Contrainer, it will be reconstructed soon enough... this->ClearPolyLines(); const Point2D ¢erPoint = GetControlPoint( 0 ); const Point2D &boundaryPoint1 = GetControlPoint( 1 ); const Point2D &boundaryPoint2 = GetControlPoint( 2 ); Vector2D dir = boundaryPoint1 - centerPoint; dir.Normalize(); vnl_matrix_fixed rot; // differentiate between clockwise and counterclockwise rotation int start = 0; int end = 64; if (dir[1]<0) { dir[0] = -dir[0]; start = -32; end = 32; } // construct rotation matrix to align ellipse with control point vector rot[0][0] = dir[0]; rot[1][1] = rot[0][0]; rot[1][0] = sin(acos(rot[0][0])); rot[0][1] = -rot[1][0]; double radius1 = centerPoint.EuclideanDistanceTo( boundaryPoint1 ); double radius2 = centerPoint.EuclideanDistanceTo( boundaryPoint2 ); // Generate poly-line with 64 segments for ( int t = start; t < end; ++t ) { double alpha = (double) t * vnl_math::pi / 32.0; // construct the new polyline point ... vnl_vector_fixed< float, 2 > vec; vec[0] = radius1 * cos( alpha ); vec[1] = radius2 * sin( alpha ); vec = rot*vec; Point2D polyLinePoint; polyLinePoint[0] = centerPoint[0] + vec[0]; polyLinePoint[1] = centerPoint[1] + vec[1]; // ... and append it to the PolyLine. // No extending supported here, so we can set the index of the PolyLineElement to '0' - AppendPointToPolyLine( 0, PolyLineElement( polyLinePoint, 0 ) ); + this->AppendPointToPolyLine(0, polyLinePoint); } - AppendPointToPolyLine( 1, PolyLineElement( centerPoint, 0 ) ); - AppendPointToPolyLine( 1, PolyLineElement( GetControlPoint( 3 ), 0 ) ); + this->AppendPointToPolyLine(1, centerPoint); + this->AppendPointToPolyLine(1, this->GetControlPoint(3)); } void mitk::PlanarEllipse::GenerateHelperPolyLine(double /*mmPerDisplayUnit*/, unsigned int /*displayHeight*/) { // A circle does not require a helper object } void mitk::PlanarEllipse::EvaluateFeaturesInternal() { + Point2D centerPoint = this->GetControlPoint(0); + this->SetQuantity(FEATURE_ID_MAJOR_AXIS, 2 * centerPoint.EuclideanDistanceTo(this->GetControlPoint(1))); + this->SetQuantity(FEATURE_ID_MINOR_AXIS, 2 * centerPoint.EuclideanDistanceTo(this->GetControlPoint(2))); } void mitk::PlanarEllipse::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.h b/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.h index 3f1da90980..ea900bf835 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.h +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarEllipse.h @@ -1,137 +1,140 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_PLANAR_ELLIPSE_H_ #define _MITK_PLANAR_ELLIPSE_H_ #include "mitkPlanarFigure.h" #include namespace mitk { class PlaneGeometry; /** * \brief Implementation of PlanarFigure representing a circle * through two control points */ class MitkPlanarFigure_EXPORT PlanarEllipse : public PlanarFigure { public: mitkClassMacro( PlanarEllipse, PlanarFigure ) itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** \brief Place figure in its minimal configuration (a point at least) * onto the given 2D geometry. * * Must be implemented in sub-classes. */ virtual void PlaceFigure( const Point2D &point ); bool SetControlPoint( unsigned int index, const Point2D &point, bool createIfDoesNotExist = true ); /** \brief Ellipse has 3 control points per definition. */ unsigned int GetMinimumNumberOfControlPoints() const { return 4; } /** \brief Ellipse has 3 control points per definition. */ unsigned int GetMaximumNumberOfControlPoints() const { return 4; } /** \brief Sets the minimum radius */ void SetMinimumRadius( double radius ) { m_MinRadius = radius; } /** \brief Gets the minimum radius */ double GetMinimumRadius() { return m_MinRadius; } /** \brief Sets the maximum radius */ void SetMaximumRadius( double radius ) { m_MaxRadius = radius; } /** \brief Gets the minimum radius */ double GetMaximumRadius() { return m_MaxRadius; } void ActivateMinMaxRadiusContstraints( bool active ) { m_MinMaxRadiusContraintsActive = active; } /** \brief Treat ellipse as circle (equal radii) */ void SetTreatAsCircle( bool active ) { m_TreatAsCircle = active; } + const unsigned int FEATURE_ID_MAJOR_AXIS; + const unsigned int FEATURE_ID_MINOR_AXIS; + protected: PlanarEllipse(); virtual ~PlanarEllipse(); mitkCloneMacro(Self); /** \brief Generates the poly-line representation of the planar figure. */ virtual void GeneratePolyLine(); /** \brief Generates the poly-lines that should be drawn the same size regardless of zoom.*/ virtual void GenerateHelperPolyLine(double mmPerDisplayUnit, unsigned int displayHeight); /** \brief Spatially constrain control points of second (orthogonal) line */ virtual Point2D ApplyControlPointConstraints( unsigned int index, const Point2D& point ); /** \brief Calculates feature quantities of the planar figure. */ virtual void EvaluateFeaturesInternal(); virtual void PrintSelf( std::ostream &os, itk::Indent indent ) const; //Member variables: double m_MinRadius; double m_MaxRadius; bool m_MinMaxRadiusContraintsActive; bool m_TreatAsCircle; private: }; } // namespace mitk #endif //_MITK_PLANAR_ELLIPSE_H_ diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp index 4d1d0ac0f0..2b4fdbbbb0 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp @@ -1,730 +1,780 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigure.h" #include "mitkPlaneGeometry.h" -#include "mitkProperties.h" +#include #include -#include "algorithm" +#include +#ifdef __GNUC__ +# pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#elif __clang__ +# pragma clang diagnostic ignored "-Wdeprecated-declarations" +#elif _MSC_VER +# pragma warning (push) +# pragma warning (disable: 4996) +#endif + +mitk::PlanarFigure::PolyLineElement::PolyLineElement(Point2D point, int index) + : Point(point), + Index(index) +{ +} + +mitk::PlanarFigure::PolyLineElement::PolyLineElement(const Point2D& point) + : Point(point), + Index(-1) +{ +} + +mitk::PlanarFigure::PolyLineElement::PolyLineElement(const PolyLineElement &other) + : Point(other.Point), + Index(other.Index) +{ +} + +mitk::PlanarFigure::PolyLineElement& mitk::PlanarFigure::PolyLineElement::operator=(const PolyLineElement &other) +{ + if (this != &other) + { + Point = other.Point; + Index = other.Index; + } + + return *this; +} + +mitk::PlanarFigure::PolyLineElement::operator mitk::Point2D&() +{ + return Point; +} + +mitk::PlanarFigure::PolyLineElement::operator const mitk::Point2D&() const +{ + return Point; +} mitk::PlanarFigure::PlanarFigure() : m_SelectedControlPoint( -1 ), m_PreviewControlPointVisible( false ), m_FigurePlaced( false ), m_PlaneGeometry( NULL ), m_PolyLineUpToDate(false), m_HelperLinesUpToDate(false), m_FeaturesUpToDate(false), m_FeaturesMTime( 0 ) { - - m_HelperPolyLinesToBePainted = BoolContainerType::New(); m_DisplaySize.first = 0.0; m_DisplaySize.second = 0; this->SetProperty( "closed", mitk::BoolProperty::New( false ) ); // Currently only single-time-step geometries are supported this->InitializeTimeGeometry( 1 ); } mitk::PlanarFigure::~PlanarFigure() { } mitk::PlanarFigure::PlanarFigure(const Self& other) : BaseData(other), m_ControlPoints(other.m_ControlPoints), m_NumberOfControlPoints(other.m_NumberOfControlPoints), m_SelectedControlPoint(other.m_SelectedControlPoint), m_PolyLines(other.m_PolyLines), m_HelperPolyLines(other.m_HelperPolyLines), m_HelperPolyLinesToBePainted(other.m_HelperPolyLinesToBePainted->Clone()), m_PreviewControlPoint(other.m_PreviewControlPoint), m_PreviewControlPointVisible(other.m_PreviewControlPointVisible), m_FigurePlaced(other.m_FigurePlaced), m_PlaneGeometry(other.m_PlaneGeometry), // do not clone since SetPlaneGeometry() doesn't clone either m_PolyLineUpToDate(other.m_PolyLineUpToDate), m_HelperLinesUpToDate(other.m_HelperLinesUpToDate), m_FeaturesUpToDate(other.m_FeaturesUpToDate), m_Features(other.m_Features), m_FeaturesMTime(other.m_FeaturesMTime), m_DisplaySize(other.m_DisplaySize) { } void mitk::PlanarFigure::SetPlaneGeometry( mitk::PlaneGeometry *geometry ) { this->SetGeometry( geometry ); m_PlaneGeometry = dynamic_cast(GetGeometry(0));//geometry; } const mitk::PlaneGeometry *mitk::PlanarFigure::GetPlaneGeometry() const { return m_PlaneGeometry; } bool mitk::PlanarFigure::IsClosed() const { mitk::BoolProperty* closed = dynamic_cast< mitk::BoolProperty* >( this->GetProperty( "closed" ).GetPointer() ); if ( closed != NULL ) { return closed->GetValue(); } return false; } void mitk::PlanarFigure::PlaceFigure( const mitk::Point2D& point ) { for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { m_ControlPoints.push_back( this->ApplyControlPointConstraints( i, point ) ); } m_FigurePlaced = true; m_SelectedControlPoint = 1; } bool mitk::PlanarFigure::AddControlPoint( const mitk::Point2D& point, int position ) { // if we already have the maximum number of control points, do nothing if ( m_NumberOfControlPoints < this->GetMaximumNumberOfControlPoints() ) { // if position has not been defined or position would be the last control point, just append the new one // we also append a new point if we click onto the line between the first two control-points if the second control-point is selected // -> special case for PlanarCross if ( position == -1 || position > (int)m_NumberOfControlPoints-1 || (position == 1 && m_SelectedControlPoint == 2) ) { if ( m_ControlPoints.size() > this->GetMaximumNumberOfControlPoints()-1 ) { // get rid of deprecated control points in the list. This is necessary // as ::ResetNumberOfControlPoints() only sets the member, does not resize the list! m_ControlPoints.resize( this->GetNumberOfControlPoints() ); } m_ControlPoints.push_back( this->ApplyControlPointConstraints( m_NumberOfControlPoints, point ) ); m_SelectedControlPoint = m_NumberOfControlPoints; } else { // insert the point at the given position and set it as selected point ControlPointListType::iterator iter = m_ControlPoints.begin() + position; m_ControlPoints.insert( iter, this->ApplyControlPointConstraints( position, point ) ); for( unsigned int i = 0; i < m_ControlPoints.size(); ++i ) { if( point == m_ControlPoints.at(i) ) { m_SelectedControlPoint = i; } } } // polylines & helperpolylines need to be repainted m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; // one control point more ++m_NumberOfControlPoints; return true; } else { return false; } } bool mitk::PlanarFigure::SetControlPoint( unsigned int index, const Point2D& point, bool createIfDoesNotExist ) { bool controlPointSetCorrectly = false; if (createIfDoesNotExist) { if ( m_NumberOfControlPoints <= index ) { m_ControlPoints.push_back( this->ApplyControlPointConstraints( index, point ) ); m_NumberOfControlPoints++; } else { m_ControlPoints.at( index ) = this->ApplyControlPointConstraints( index, point ); } controlPointSetCorrectly = true; } else if ( index < m_NumberOfControlPoints ) { m_ControlPoints.at( index ) = this->ApplyControlPointConstraints( index, point ); controlPointSetCorrectly = true; } else { return false; } if ( controlPointSetCorrectly ) { m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; } return controlPointSetCorrectly; } bool mitk::PlanarFigure::SetCurrentControlPoint( const Point2D& point ) { if ( (m_SelectedControlPoint < 0) || (m_SelectedControlPoint >= (int)m_NumberOfControlPoints) ) { return false; } return this->SetControlPoint(m_SelectedControlPoint, point, false); } unsigned int mitk::PlanarFigure::GetNumberOfControlPoints() const { return m_NumberOfControlPoints; } bool mitk::PlanarFigure::SelectControlPoint( unsigned int index ) { if ( index < this->GetNumberOfControlPoints() ) { m_SelectedControlPoint = index; return true; } else { return false; } } bool mitk::PlanarFigure::DeselectControlPoint() { bool wasSelected = ( m_SelectedControlPoint != -1); m_SelectedControlPoint = -1; return wasSelected; } void mitk::PlanarFigure::SetPreviewControlPoint( const Point2D& point ) { m_PreviewControlPoint = point; m_PreviewControlPointVisible = true; } void mitk::PlanarFigure::ResetPreviewContolPoint() { m_PreviewControlPointVisible = false; } mitk::Point2D mitk::PlanarFigure::GetPreviewControlPoint() { return m_PreviewControlPoint; } bool mitk::PlanarFigure::IsPreviewControlPointVisible() { return m_PreviewControlPointVisible; } mitk::Point2D mitk::PlanarFigure::GetControlPoint( unsigned int index ) const { if ( index < m_NumberOfControlPoints ) { return m_ControlPoints.at( index ); } itkExceptionMacro( << "GetControlPoint(): Invalid index!" ); } mitk::Point3D mitk::PlanarFigure::GetWorldControlPoint( unsigned int index ) const { Point3D point3D; if ( (m_PlaneGeometry != NULL) && (index < m_NumberOfControlPoints) ) { m_PlaneGeometry->Map( m_ControlPoints.at( index ), point3D ); return point3D; } itkExceptionMacro( << "GetWorldControlPoint(): Invalid index!" ); } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) { mitk::PlanarFigure::PolyLineType polyLine; if ( index > m_PolyLines.size() || !m_PolyLineUpToDate ) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.at( index );; } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) const { return m_PolyLines.at( index ); } void mitk::PlanarFigure::ClearPolyLines() { for ( std::vector::size_type i=0; iGenerateHelperPolyLine(mmPerDisplayUnit, displayHeight); m_HelperLinesUpToDate = true; // store these parameters to be able to check next time if somebody zoomed in or out m_DisplaySize.first = mmPerDisplayUnit; m_DisplaySize.second = displayHeight; } helperPolyLine = m_HelperPolyLines.at(index); } return helperPolyLine; } void mitk::PlanarFigure::ClearHelperPolyLines() { for ( std::vector::size_type i=0; iGeneratePolyLine(); } this->EvaluateFeaturesInternal(); m_FeaturesUpToDate = true; } } void mitk::PlanarFigure::UpdateOutputInformation() { // Bounds are NOT calculated here, since the PlaneGeometry defines a fixed // frame (= bounds) for the planar figure. Superclass::UpdateOutputInformation(); this->GetTimeGeometry()->Update(); } void mitk::PlanarFigure::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::PlanarFigure::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::PlanarFigure::VerifyRequestedRegion() { return true; } void mitk::PlanarFigure::SetRequestedRegion(const itk::DataObject * /*data*/ ) { - } void mitk::PlanarFigure::ResetNumberOfControlPoints( int numberOfControlPoints ) { // DO NOT resize the list here, will cause crash!! m_NumberOfControlPoints = numberOfControlPoints; } mitk::Point2D mitk::PlanarFigure::ApplyControlPointConstraints( unsigned int /*index*/, const Point2D& point ) { if ( m_PlaneGeometry == NULL ) { return point; } Point2D indexPoint; m_PlaneGeometry->WorldToIndex( point, indexPoint ); BoundingBox::BoundsArrayType bounds = m_PlaneGeometry->GetBounds(); if ( indexPoint[0] < bounds[0] ) { indexPoint[0] = bounds[0]; } if ( indexPoint[0] > bounds[1] ) { indexPoint[0] = bounds[1]; } if ( indexPoint[1] < bounds[2] ) { indexPoint[1] = bounds[2]; } if ( indexPoint[1] > bounds[3] ) { indexPoint[1] = bounds[3]; } Point2D constrainedPoint; m_PlaneGeometry->IndexToWorld( indexPoint, constrainedPoint ); return constrainedPoint; } unsigned int mitk::PlanarFigure::AddFeature( const char *featureName, const char *unitName ) { unsigned int index = m_Features.size(); Feature newFeature( featureName, unitName ); m_Features.push_back( newFeature ); return index; } void mitk::PlanarFigure::SetFeatureName( unsigned int index, const char *featureName ) { if ( index < m_Features.size() ) { m_Features[index].Name = featureName; } } void mitk::PlanarFigure::SetFeatureUnit( unsigned int index, const char *unitName ) { if ( index < m_Features.size() ) { m_Features[index].Unit = unitName; } } void mitk::PlanarFigure::SetQuantity( unsigned int index, double quantity ) { if ( index < m_Features.size() ) { m_Features[index].Quantity = quantity; } } void mitk::PlanarFigure::ActivateFeature( unsigned int index ) { if ( index < m_Features.size() ) { m_Features[index].Active = true; } } void mitk::PlanarFigure::DeactivateFeature( unsigned int index ) { if ( index < m_Features.size() ) { m_Features[index].Active = false; } } void mitk::PlanarFigure::InitializeTimeGeometry( unsigned int timeSteps ) { mitk::PlaneGeometry::Pointer geometry2D = mitk::PlaneGeometry::New(); geometry2D->Initialize(); - if ( timeSteps > 1 ) - { - mitk::ScalarType timeBounds[] = {0.0, 1.0}; - geometry2D->SetTimeBounds( timeBounds ); - } - // The geometry is propagated automatically to all time steps, // if EvenlyTimed is true... ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry2D, timeSteps); SetTimeGeometry(timeGeometry); } void mitk::PlanarFigure::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); os << indent << this->GetNameOfClass() << ":\n"; if (this->IsClosed()) os << indent << "This figure is closed\n"; else os << indent << "This figure is not closed\n"; os << indent << "Minimum number of control points: " << this->GetMinimumNumberOfControlPoints() << std::endl; os << indent << "Maximum number of control points: " << this->GetMaximumNumberOfControlPoints() << std::endl; os << indent << "Current number of control points: " << this->GetNumberOfControlPoints() << std::endl; os << indent << "Control points:" << std::endl; for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { //os << indent.GetNextIndent() << i << ": " << m_ControlPoints->ElementAt( i ) << std::endl; os << indent.GetNextIndent() << i << ": " << m_ControlPoints.at( i ) << std::endl; } os << indent << "Geometry:\n"; this->GetPlaneGeometry()->Print(os, indent.GetNextIndent()); } unsigned short mitk::PlanarFigure::GetPolyLinesSize() { if ( !m_PolyLineUpToDate ) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.size(); } unsigned short mitk::PlanarFigure::GetHelperPolyLinesSize() { return m_HelperPolyLines.size(); } bool mitk::PlanarFigure::IsHelperToBePainted(unsigned int index) { return m_HelperPolyLinesToBePainted->GetElement( index ); } bool mitk::PlanarFigure::ResetOnPointSelect() { return false; } void mitk::PlanarFigure::RemoveControlPoint( unsigned int index ) { if ( index > m_ControlPoints.size() ) return; if ( (m_ControlPoints.size() -1) < this->GetMinimumNumberOfControlPoints() ) return; ControlPointListType::iterator iter; iter = m_ControlPoints.begin() + index; m_ControlPoints.erase( iter ); m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; --m_NumberOfControlPoints; } void mitk::PlanarFigure::RemoveLastControlPoint() { RemoveControlPoint( m_ControlPoints.size()-1 ); } void mitk::PlanarFigure::DeepCopy(Self::Pointer oldFigure) { //DeepCopy only same types of planar figures //Notice to get typeid polymorph you have to use the *operator if(typeid(*oldFigure) != typeid(*this)) { itkExceptionMacro( << "DeepCopy(): Inconsistent type of source (" << typeid(*oldFigure).name() << ") and destination figure (" << typeid(*this).name() << ")!" ); return; } m_ControlPoints.clear(); this->ClearPolyLines(); this->ClearHelperPolyLines(); // clone base data members SetPropertyList(oldFigure->GetPropertyList()->Clone()); /// deep copy members m_FigurePlaced = oldFigure->m_FigurePlaced; m_SelectedControlPoint = oldFigure->m_SelectedControlPoint; m_FeaturesMTime = oldFigure->m_FeaturesMTime; m_Features = oldFigure->m_Features; m_NumberOfControlPoints = oldFigure->m_NumberOfControlPoints; //copy geometry 2D of planar figure PlaneGeometry::Pointer affineGeometry = oldFigure->m_PlaneGeometry->Clone(); SetPlaneGeometry(affineGeometry.GetPointer()); for(unsigned long index=0; index < oldFigure->GetNumberOfControlPoints(); index++) { m_ControlPoints.push_back( oldFigure->GetControlPoint( index )); } //After setting the control points we can generate the polylines this->GeneratePolyLine(); } void mitk::PlanarFigure::SetNumberOfPolyLines( unsigned int numberOfPolyLines ) { m_PolyLines.resize(numberOfPolyLines); } void mitk::PlanarFigure::SetNumberOfHelperPolyLines( unsigned int numberOfHerlperPolyLines ) { m_HelperPolyLines.resize(numberOfHerlperPolyLines); } - void mitk::PlanarFigure::AppendPointToPolyLine( unsigned int index, PolyLineElement element ) { if ( index < m_PolyLines.size() ) { - m_PolyLines.at( index ).push_back( element ); + if(element.Index == -1) + element.Index = m_PolyLines[index].size(); + + m_PolyLines[index].push_back(element); m_PolyLineUpToDate = false; } else { MITK_ERROR << "Tried to add point to PolyLine " << index+1 << ", although only " << m_PolyLines.size() << " exists"; } } void mitk::PlanarFigure::AppendPointToHelperPolyLine( unsigned int index, PolyLineElement element ) { if ( index < m_HelperPolyLines.size() ) { - m_HelperPolyLines.at( index ).push_back( element ); + if(element.Index == -1) + element.Index = m_HelperPolyLines[index].size(); + + m_HelperPolyLines[index].push_back(element); m_HelperLinesUpToDate = false; } else { MITK_ERROR << "Tried to add point to HelperPolyLine " << index+1 << ", although only " << m_HelperPolyLines.size() << " exists"; } } +#ifdef __GNUC__ +# pragma GCC diagnostic error "-Wdeprecated-declarations" +#elif __clang__ +# pragma clang diagnostic error "-Wdeprecated-declarations" +#elif _MSC_VER +# pragma warning (pop) +#endif diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h index 86f0fb3a90..1bf4fe062a 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.h @@ -1,426 +1,434 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_PLANAR_FIGURE_H_ #define _MITK_PLANAR_FIGURE_H_ #include #include "mitkBaseData.h" #include "mitkCommon.h" #include namespace mitk { class PlaneGeometry; /** * \brief Base-class for geometric planar (2D) figures, such as * lines, circles, rectangles, polygons, etc. * * \warning Currently does not support time-resolved data handling * * Behavior and appearance of PlanarFigures are controlled by various properties; for a detailed * list of appearance properties see mitk::PlanarFigureMapper2D * * The following properties control general PlanarFigure behavior: * *
    *
  • "selected": true if the planar figure is selected *
  • "planarfigure.ishovering": true if the mouse "hovers" over the planar figure *
  • "planarfigure.iseditable": true if the planar figure can be edited (otherwise, * it can only be picked/selected, but its control points cannot be edited); default is true *
  • "planarfigure.isextendable": true if new control points can be inserted into the list of control points; * default is false *
* * * TODO: Implement local 2D transform (including center of rotation...) * */ class MitkPlanarFigure_EXPORT PlanarFigure : public BaseData { public: mitkClassMacro( PlanarFigure, BaseData ) itkCloneMacro( Self ) - struct PolyLineElement + /** \brief Treat as Point2D by implicitly using conversion operators. + * + * \deprecatedSince{2014_06} "struct PolyLineElement {...};" will be changed to "typedef Point2D PolyLineElement;". + */ + struct MitkPlanarFigure_EXPORT PolyLineElement { - PolyLineElement( Point2D point, int index ) - : Point( point ), Index( index ) - { - }; + DEPRECATED(PolyLineElement(Point2D point, int index)); + PolyLineElement(const Point2D& point); + + PolyLineElement(const PolyLineElement &other); + PolyLineElement& operator=(const PolyLineElement &other); + + operator Point2D&(); + operator const Point2D&() const; - Point2D Point; - int Index; + DEPRECATED(Point2D Point); + DEPRECATED(int Index); }; typedef itk::VectorContainer< unsigned long, bool> BoolContainerType; typedef std::deque< Point2D > ControlPointListType; - typedef std::list< PolyLineElement > PolyLineType; + typedef std::vector< PolyLineElement > PolyLineType; /** \brief Sets the 2D geometry on which this figure will be placed. * * In most cases, this is a Geometry already owned by another object, e.g. * describing the slice of the image on which measurements will be * performed. */ virtual void SetPlaneGeometry( mitk::PlaneGeometry *geometry ); /** * \deprecatedSince{2014_06} Please use SetPlaneGeometry */ DEPRECATED(void SetGeometry2D(PlaneGeometry* geo){SetPlaneGeometry(geo);};) /** \brief Returns (previously set) 2D geometry of this figure. */ virtual const PlaneGeometry *GetPlaneGeometry() const; /** * \deprecatedSince{2014_06} Please use GetPlaneGeometry */ DEPRECATED(const PlaneGeometry* GetGeometry2D(){return GetPlaneGeometry();};) /** \brief True if the planar figure is closed. * * Default is false. The "closed" boolean property must be set in sub-classes. */ virtual bool IsClosed() const; /** \brief True if the planar figure has been placed (and can be * displayed/interacted with). */ virtual bool IsPlaced() const { return m_FigurePlaced; }; /** \brief Place figure at the given point (in 2D index coordinates) onto * the given 2D geometry. * * By default, the first two control points of the figure are set to the * passed point. Further points can be set via AddControlPoint(), if the * current number of control points is below the maximum number of control * points. * * Can be re-implemented in sub-classes as needed. */ virtual void PlaceFigure( const Point2D& point ); /** * \brief Adds / inserts new control-points * * This method adds a new control-point with the coordinates defined by point at the given index. * If 'index' == -1 or index is greater than the number of control-points the new point is appended * to the back of the list of control points. * If a control-point already exists for 'index', an additional point is inserted at that position. * It is not possible to add more points if the maximum number of control-points (GetMaximumNumberOfControlPoints()) * has been reached. */ virtual bool AddControlPoint( const Point2D& point, int index = -1 ); virtual bool SetControlPoint( unsigned int index, const Point2D& point, bool createIfDoesNotExist = false); virtual bool SetCurrentControlPoint( const Point2D& point ); /** \brief Returns the current number of 2D control points defining this figure. */ unsigned int GetNumberOfControlPoints() const; /** \brief Returns the minimum number of control points needed to represent * this figure. * * Must be implemented in sub-classes. */ virtual unsigned int GetMinimumNumberOfControlPoints() const = 0; /** \brief Returns the maximum number of control points allowed for * this figure (e.g. 3 for triangles). * * Must be implemented in sub-classes. */ virtual unsigned int GetMaximumNumberOfControlPoints() const = 0; /** \brief Selects currently active control points. */ virtual bool SelectControlPoint( unsigned int index ); /** \brief Deselect control point; no control point active. */ virtual bool DeselectControlPoint(); /** \brief Return currently selected control point. */ virtual int GetSelectedControlPoint() const { return m_SelectedControlPoint; } /** \brief Returns specified control point in 2D world coordinates. */ Point2D GetControlPoint( unsigned int index ) const; /** \brief Returns specified control point in world coordinates. */ Point3D GetWorldControlPoint( unsigned int index ) const; /** \brief Returns the polyline representing the planar figure * (for rendering, measurements, etc.). */ const PolyLineType GetPolyLine(unsigned int index); /** \brief Returns the polyline representing the planar figure * (for rendering, measurments, etc.). */ const PolyLineType GetPolyLine(unsigned int index) const; /** \brief Returns the polyline that should be drawn the same size at every scale * (for text, angles, etc.). */ const PolyLineType GetHelperPolyLine( unsigned int index, double mmPerDisplayUnit, unsigned int displayHeight ); /** \brief Sets the position of the PreviewControlPoint. Automatically sets it visible.*/ void SetPreviewControlPoint( const Point2D& point ); /** \brief Marks the PreviewControlPoint as invisible.*/ void ResetPreviewContolPoint(); /** \brief Returns whether or not the PreviewControlPoint is visible.*/ bool IsPreviewControlPointVisible(); /** \brief Returns the coordinates of the PreviewControlPoint. */ Point2D GetPreviewControlPoint(); /** \brief Returns the number of features available for this PlanarFigure * (such as, radius, area, ...). */ virtual unsigned int GetNumberOfFeatures() const; /** \brief Returns the name (identifier) of the specified features. */ const char *GetFeatureName( unsigned int index ) const; /** \brief Returns the physical unit of the specified features. */ const char *GetFeatureUnit( unsigned int index ) const; /** Returns quantity of the specified feature (e.g., length, radius, * area, ... ) */ double GetQuantity( unsigned int index ) const; /** \brief Returns true if the feature with the specified index exists and * is active (an inactive feature may e.g. be the area of a non-closed * polygon. */ bool IsFeatureActive( unsigned int index ) const; /** \brief Returns true if the feature with the specified index exists and is set visible */ bool IsFeatureVisible( unsigned int index ) const; /** \brief Defines if the feature with the specified index will be shown as an * overlay in the RenderWindow */ void SetFeatureVisible( unsigned int index, bool visible ); /** \brief Calculates quantities of all features of this planar figure. */ virtual void EvaluateFeatures(); /** \brief Intherited from parent */ virtual void UpdateOutputInformation(); /** \brief Intherited from parent */ virtual void SetRequestedRegionToLargestPossibleRegion(); /** \brief Intherited from parent */ virtual bool RequestedRegionIsOutsideOfTheBufferedRegion(); /** \brief Intherited from parent */ virtual bool VerifyRequestedRegion(); /** \brief Intherited from parent */ virtual void SetRequestedRegion( const itk::DataObject *data); /** \brief Returns the current number of polylines */ virtual unsigned short GetPolyLinesSize(); /** \brief Returns the current number of helperpolylines */ virtual unsigned short GetHelperPolyLinesSize(); /** \brief Returns whether a helper polyline should be painted or not */ virtual bool IsHelperToBePainted(unsigned int index); /** \brief Returns true if the planar figure is reset to "add points" mode * when a point is selected. * * Default return value is false. Subclasses can overwrite this method and * execute any reset / initialization statements required. */ virtual bool ResetOnPointSelect(); /** \brief removes the point with the given index from the list of controlpoints. */ virtual void RemoveControlPoint( unsigned int index ); /** \brief Removes last control point */ virtual void RemoveLastControlPoint(); /** \brief Copies contents and state of a figre provided as parameter to the current object. * * Requires a matching type of both figures. * * \note Deprecated, use Clone() instead. */ DEPRECATED(void DeepCopy(Self::Pointer oldFigure)); /** \brief Allow sub-classes to apply constraints on control points. * * Sub-classes can define spatial constraints to certain control points by * overwriting this method and returning a constrained point. By default, * the points are constrained by the image bounds. */ virtual Point2D ApplyControlPointConstraints( unsigned int /*index*/, const Point2D& point ); protected: PlanarFigure(); virtual ~PlanarFigure(); PlanarFigure(const Self& other); /** \brief Set the initial number of control points of the planar figure */ void ResetNumberOfControlPoints( int numberOfControlPoints ); /** Adds feature (e.g., circumference, radius, angle, ...) to feature vector * of a planar figure object and returns integer ID for the feature element. * Should be called in sub-class constructors. */ virtual unsigned int AddFeature( const char *featureName, const char *unitName ); /** Sets the name of the specified feature. INTERNAL METHOD. */ void SetFeatureName( unsigned int index, const char *featureName ); /** Sets the physical unit of the specified feature. INTERNAL METHOD. */ void SetFeatureUnit( unsigned int index, const char *unitName ); /** Sets quantity of the specified feature. INTERNAL METHOD. */ void SetQuantity( unsigned int index, double quantity ); /** Sets the specified feature as active. INTERAL METHOD. */ void ActivateFeature( unsigned int index ); /** Sets the specified feature as active. INTERAL METHOD. */ void DeactivateFeature( unsigned int index ); /** \brief Generates the poly-line representation of the planar figure. * Must be implemented in sub-classes. */ virtual void GeneratePolyLine() = 0; /** \brief Generates the poly-lines that should be drawn the same size regardless of zoom. * Must be implemented in sub-classes. */ virtual void GenerateHelperPolyLine(double mmPerDisplayUnit, unsigned int displayHeight) = 0; /** \brief Calculates quantities of all features of this planar figure. * Must be implemented in sub-classes. */ virtual void EvaluateFeaturesInternal() = 0; /** \brief Initializes the TimeGeometry describing the (time-resolved) * geometry of this figure. Note that each time step holds one PlaneGeometry. */ virtual void InitializeTimeGeometry( unsigned int timeSteps = 1 ); /** \brief defines the number of PolyLines that will be available */ void SetNumberOfPolyLines( unsigned int numberOfPolyLines ); /** \brief Append a point to the PolyLine # index */ void AppendPointToPolyLine( unsigned int index, PolyLineElement element ); /** \brief clears the list of PolyLines. Call before re-calculating a new Polyline. */ void ClearPolyLines(); /** \brief defines the number of HelperPolyLines that will be available */ void SetNumberOfHelperPolyLines( unsigned int numberOfHelperPolyLines ); /** \brief Append a point to the HelperPolyLine # index */ void AppendPointToHelperPolyLine( unsigned int index, PolyLineElement element ); /** \brief clears the list of HelperPolyLines. Call before re-calculating a new HelperPolyline. */ void ClearHelperPolyLines(); virtual void PrintSelf( std::ostream& os, itk::Indent indent ) const; ControlPointListType m_ControlPoints; unsigned int m_NumberOfControlPoints; // Currently selected control point; -1 means no point selected int m_SelectedControlPoint; std::vector m_PolyLines; std::vector m_HelperPolyLines; BoolContainerType::Pointer m_HelperPolyLinesToBePainted; // this point is used to store the coordiantes an additional 'ControlPoint' that is rendered // when the mouse cursor is above the figure (and not a control-point) and when the // property 'planarfigure.isextendable' is set to true Point2D m_PreviewControlPoint; bool m_PreviewControlPointVisible; bool m_FigurePlaced; private: // not implemented to prevent PlanarFigure::New() calls which would create an itk::Object. static Pointer New(); struct Feature { Feature( const char *name, const char *unit ) : Name( name ), Unit( unit ), Quantity( 0.0 ), Active( true ), Visible( true ) { } std::string Name; std::string Unit; double Quantity; bool Active; bool Visible; }; virtual itk::LightObject::Pointer InternalClone() const = 0; PlaneGeometry *m_PlaneGeometry; bool m_PolyLineUpToDate; bool m_HelperLinesUpToDate; bool m_FeaturesUpToDate; // Vector of features available for this geometric figure typedef std::vector< Feature > FeatureVectorType; FeatureVectorType m_Features; unsigned long m_FeaturesMTime; // this pair is used to store the mmInDisplayUnits (m_DisplaySize.first) and the displayHeight (m_DisplaySize.second) // that the helperPolyLines have been calculated for. // It's used to determine whether or not GetHelperPolyLine() needs to recalculate the HelperPolyLines. std::pair m_DisplaySize; }; } // namespace mitk #endif //_MITK_PLANAR_FIGURE_H_ diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarFourPointAngle.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarFourPointAngle.cpp index 7d9f79e2d9..ddd3d8c262 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarFourPointAngle.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarFourPointAngle.cpp @@ -1,84 +1,79 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFourPointAngle.h" #include "mitkPlaneGeometry.h" mitk::PlanarFourPointAngle::PlanarFourPointAngle() : FEATURE_ID_ANGLE( this->AddFeature( "Angle", "deg" ) ) { // Four point angle has two control points this->ResetNumberOfControlPoints( 2 ); this->SetNumberOfPolyLines( 2 ); } mitk::PlanarFourPointAngle::~PlanarFourPointAngle() { } void mitk::PlanarFourPointAngle::GeneratePolyLine() { this->ClearPolyLines(); - // TODO: start line at specified start point... - // Generate poly-line - for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) - { - int index = i/2; - this->AppendPointToPolyLine( index, PolyLineElement( GetControlPoint( i ), i ) ); - } + for (unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i) + this->AppendPointToPolyLine(i / 2, this->GetControlPoint(i)); } void mitk::PlanarFourPointAngle::GenerateHelperPolyLine(double /*mmPerDisplayUnit*/, unsigned int /*displayHeight*/) { // Generate helper-poly-line for an four point angle // Need to discuss a sensible implementation } void mitk::PlanarFourPointAngle::EvaluateFeaturesInternal() { if ( this->GetNumberOfControlPoints() < 4 ) { // Angle not yet complete. return; } // Calculate angle between lines const Point2D &p0 = this->GetControlPoint( 0 ); const Point2D &p1 = this->GetControlPoint( 1 ); const Point2D &p2 = this->GetControlPoint( 2 ); const Point2D &p3 = this->GetControlPoint( 3 ); Vector2D v0 = p1 - p0; Vector2D v1 = p3 - p2; v0.Normalize(); v1.Normalize(); double angle = acos( v0 * v1 ); this->SetQuantity( FEATURE_ID_ANGLE, angle ); } void mitk::PlanarFourPointAngle::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarLine.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarLine.cpp index ffca005ea5..a534089a6a 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarLine.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarLine.cpp @@ -1,66 +1,65 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarLine.h" #include "mitkPlaneGeometry.h" mitk::PlanarLine::PlanarLine() : FEATURE_ID_LENGTH( this->AddFeature( "Length", "mm" ) ) { // Line has two control points this->ResetNumberOfControlPoints( 2 ); this->SetNumberOfPolyLines( 1 ); } mitk::PlanarLine::~PlanarLine() { } void mitk::PlanarLine::GeneratePolyLine() { this->ClearPolyLines(); - // TODO: start line at specified start point... - // Generate poly-line - this->AppendPointToPolyLine( 0 , mitk::PlanarFigure::PolyLineElement( this->GetControlPoint(0), 0) ); - this->AppendPointToPolyLine( 0 , mitk::PlanarFigure::PolyLineElement( this->GetControlPoint(1), 0) ); + + this->AppendPointToPolyLine(0, this->GetControlPoint(0)); + this->AppendPointToPolyLine(0, this->GetControlPoint(1)); } void mitk::PlanarLine::GenerateHelperPolyLine(double /*mmPerDisplayUnit*/, unsigned int /*displayHeight*/) { // A line does not require a helper object } void mitk::PlanarLine::EvaluateFeaturesInternal() { // Calculate line length const Point3D &p0 = this->GetWorldControlPoint( 0 ); const Point3D &p1 = this->GetWorldControlPoint( 1 ); double length = p0.EuclideanDistanceTo( p1 ); this->SetQuantity( FEATURE_ID_LENGTH, length ); } void mitk::PlanarLine::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarPolygon.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarPolygon.cpp index 2bf8caee31..669d952f3f 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarPolygon.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarPolygon.cpp @@ -1,284 +1,274 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarPolygon.h" #include "mitkPlaneGeometry.h" #include "mitkProperties.h" // stl related includes #include mitk::PlanarPolygon::PlanarPolygon() : FEATURE_ID_CIRCUMFERENCE( this->AddFeature( "Circumference", "mm" ) ), FEATURE_ID_AREA( this->AddFeature( "Area", "mm2" ) ) { // Polygon has at least two control points this->ResetNumberOfControlPoints( 2 ); this->SetNumberOfPolyLines( 1 ); // Polygon is closed by default this->SetProperty( "closed", mitk::BoolProperty::New( true ) ); this->SetProperty( "subdivision", mitk::BoolProperty::New( false ) ); } mitk::PlanarPolygon::~PlanarPolygon() { } void mitk::PlanarPolygon::SetClosed( bool closed ) { this->SetProperty( "closed", mitk::BoolProperty::New( closed ) ); if ( !closed ) { // For non-closed polygons: use "Length" as feature name; disable area this->SetFeatureName( FEATURE_ID_CIRCUMFERENCE, "Length" ); this->DeactivateFeature( FEATURE_ID_AREA ); } else { // For closed polygons: use "Circumference" as feature name; enable area this->SetFeatureName( FEATURE_ID_CIRCUMFERENCE, "Circumference" ); this->ActivateFeature( FEATURE_ID_AREA ); } this->Modified(); } void mitk::PlanarPolygon::GeneratePolyLine() { this->ClearPolyLines(); - for ( ControlPointListType::size_type i=0; iAppendPointToPolyLine( 0, elem ); - } + for (ControlPointListType::size_type i = 0; i < m_ControlPoints.size(); ++i) + this->AppendPointToPolyLine(0, this->GetControlPoint(i)); } void mitk::PlanarPolygon::GenerateHelperPolyLine(double /*mmPerDisplayUnit*/, unsigned int /*displayHeight*/) { // A polygon does not require helper objects } void mitk::PlanarPolygon::EvaluateFeaturesInternal() { // Calculate circumference double circumference = 0.0; unsigned int i,j; - ControlPointListType polyLinePoints; - polyLinePoints.clear(); - PolyLineType::iterator iter; - for( iter = m_PolyLines[0].begin(); iter != m_PolyLines[0].end(); ++iter ) - { - polyLinePoints.push_back((*iter).Point); - } + PolyLineType polyLine = m_PolyLines[0]; - if(polyLinePoints.empty()) + if(polyLine.empty()) return; - for ( i = 0; i <(polyLinePoints.size()-1); ++i ) + for ( i = 0; i <(polyLine.size()-1); ++i ) { - circumference += polyLinePoints[i].EuclideanDistanceTo( - polyLinePoints[i + 1] ); + circumference += static_cast(polyLine[i]).EuclideanDistanceTo( + static_cast(polyLine[i + 1]) ); } if ( this->IsClosed() ) { - circumference += polyLinePoints[i].EuclideanDistanceTo( - polyLinePoints.front() ); + circumference += static_cast(polyLine[i]).EuclideanDistanceTo( + static_cast(polyLine.front()) ); } this->SetQuantity( FEATURE_ID_CIRCUMFERENCE, circumference ); // Calculate polygon area (if closed) double area = 0.0; bool intersection = false; if ( this->IsClosed() && (this->GetPlaneGeometry() != NULL) ) { // does PlanarPolygon overlap/intersect itself? - unsigned int numberOfPoints = polyLinePoints.size(); + unsigned int numberOfPoints = polyLine.size(); if( numberOfPoints >= 4) { for ( i = 0; i < (numberOfPoints - 1); ++i ) { // line 1 - Point2D p0 = polyLinePoints[i]; - Point2D p1 = polyLinePoints[i + 1]; + Point2D p0 = polyLine[i]; + Point2D p1 = polyLine[i + 1]; // check for intersection with all other lines for (j = i+1; j < (numberOfPoints - 1); ++j ) { - Point2D p2 = polyLinePoints[j]; - Point2D p3 = polyLinePoints[j + 1]; + Point2D p2 = polyLine[j]; + Point2D p3 = polyLine[j + 1]; intersection = CheckForLineIntersection(p0,p1,p2,p3); if (intersection) break; } if (intersection) break; // only because the inner loop might have changed "intersection" // last line from p_x to p_0 - Point2D p2 = polyLinePoints.front(); - Point2D p3 = polyLinePoints.back(); + Point2D p2 = polyLine.front(); + Point2D p3 = polyLine.back(); intersection = CheckForLineIntersection(p0,p1,p2,p3); if (intersection) break; } } // calculate area - for ( i = 0; i < polyLinePoints.size(); ++i ) + for ( i = 0; i < polyLine.size(); ++i ) { - Point2D p0 = polyLinePoints[i]; - Point2D p1 = polyLinePoints[ (i + 1) % polyLinePoints.size() ]; + Point2D p0 = polyLine[i]; + Point2D p1 = polyLine[ (i + 1) % polyLine.size() ]; area += p0[0] * p1[1] - p1[0] * p0[1]; } area /= 2.0; } // set area if appropiate (i.e. closed and not intersected) if(this->IsClosed() && !intersection) { SetQuantity( FEATURE_ID_AREA, fabs( area ) ); this->ActivateFeature( FEATURE_ID_AREA ); } else { SetQuantity( FEATURE_ID_AREA, 0 ); this->DeactivateFeature( FEATURE_ID_AREA ); } } void mitk::PlanarPolygon::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); if (this->IsClosed()) os << indent << "Polygon is closed\n"; else os << indent << "Polygon is not closed\n"; } // based on // http://flassari.is/2008/11/line-line-intersection-in-cplusplus/ bool mitk::PlanarPolygon::CheckForLineIntersection( const mitk::Point2D& p1, const mitk::Point2D& p2, const mitk::Point2D& p3, const mitk::Point2D& p4, Point2D& intersection ) const { // do not check for intersections with control points if(p1 == p2 || p1 == p3 || p1 == p4 || p2 == p3 || p2 == p4 || p3 == p4) return false; // Store the values for fast access and easy // equations-to-code conversion double x1 = p1[0], x2 = p2[0], x3 = p3[0], x4 = p4[0]; double y1 = p1[1], y2 = p2[1], y3 = p3[1], y4 = p4[1]; double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); // If d is zero, there is no intersection //if (d < mitk::eps) return false; if (d == 0) return false; // Get the x and y double pre = (x1*y2 - y1*x2); double post = (x3*y4 - y3*x4); double x = ( pre * (x3 - x4) - (x1 - x2) * post ) / d; double y = ( pre * (y3 - y4) - (y1 - y2) * post ) / d; double tolerance = 0.001; // Check if the x coordinates are within both lines, including tolerance if ( x < ( std::min(x1, x2) - tolerance ) || x > ( std::max(x1, x2) + tolerance ) || x < ( std::min(x3, x4) - tolerance ) || x > ( std::max(x3, x4) + tolerance ) ) { return false; } // Check if the y coordinates are within both lines, including tolerance if ( y < ( std::min(y1, y2) - tolerance ) || y > ( std::max(y1, y2) + tolerance ) || y < ( std::min(y3, y4) - tolerance ) || y > ( std::max(y3, y4) + tolerance ) ) { return false; } // point of intersection Point2D ret; ret[0] = x; ret[1] = y; intersection = ret; return true; } bool mitk::PlanarPolygon::CheckForLineIntersection( const mitk::Point2D& p1, const mitk::Point2D& p2, const mitk::Point2D& p3, const mitk::Point2D& p4 ) const { mitk::Point2D intersection; return mitk::PlanarPolygon::CheckForLineIntersection( p1, p2, p3, p4, intersection ); } std::vector mitk::PlanarPolygon::CheckForLineIntersection( const mitk::Point2D& p1, const mitk::Point2D& p2 ) const { std::vector intersectionList; ControlPointListType polyLinePoints; PolyLineType tempList = m_PolyLines[0]; PolyLineType::iterator iter; for( iter = tempList.begin(); iter != tempList.end(); ++iter ) { - polyLinePoints.push_back((*iter).Point); + polyLinePoints.push_back(*iter); } for ( ControlPointListType::size_type i=0; iIsClosed() ) { mitk::Point2D intersection, lastControlPoint, firstControlPoint; lastControlPoint = polyLinePoints.back(); firstControlPoint = polyLinePoints.front(); if ( mitk::PlanarPolygon::CheckForLineIntersection( lastControlPoint, firstControlPoint, p1, p2, intersection ) ) { intersectionList.push_back( intersection ); } } return intersectionList; } diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarRectangle.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarRectangle.cpp index 19c6f5de43..cc7169ece3 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarRectangle.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarRectangle.cpp @@ -1,150 +1,146 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkProperties.h" #include "mitkPlanarRectangle.h" #include "mitkPlaneGeometry.h" mitk::PlanarRectangle::PlanarRectangle() : FEATURE_ID_CIRCUMFERENCE( this->AddFeature( "Circumference", "mm" ) ), FEATURE_ID_AREA( this->AddFeature( "Area", "mm2" ) ) { // Rectangle has four control points this->ResetNumberOfControlPoints( 4 ); this->SetProperty( "closed", mitk::BoolProperty::New(true) ); this->SetNumberOfPolyLines( 1 ); } mitk::PlanarRectangle::~PlanarRectangle() { } bool mitk::PlanarRectangle::SetControlPoint( unsigned int index, const Point2D &point, bool createIfDoesNotExist ) { // heres the deal with the rectangle: // when a point is moved all corresponding corner points are moved with him // e.g. if the lower right point (index=3) is moved the upper right point (index=1) // is moved in the same x direction // and the lower left point (index=2) is moved in the same y direction // the upper left point (index=0) is left untouched bool set = PlanarFigure::SetControlPoint( index, point, createIfDoesNotExist ); if(set) { // can be made better ... unsigned int horizontalCorrespondingPointIndex = 1; unsigned int verticalCorrespondingPointIndex = 3; if(index == 1) { horizontalCorrespondingPointIndex = 0; verticalCorrespondingPointIndex = 2; } else if(index == 2) { horizontalCorrespondingPointIndex = 3; verticalCorrespondingPointIndex = 1; } else if(index == 3) { horizontalCorrespondingPointIndex = 2; verticalCorrespondingPointIndex = 0; } Point2D verticalCorrespondingPoint = GetControlPoint( verticalCorrespondingPointIndex ); verticalCorrespondingPoint[0] = point[0]; PlanarFigure::SetControlPoint( verticalCorrespondingPointIndex, verticalCorrespondingPoint ); Point2D horizontalCorrespondingPoint = GetControlPoint( horizontalCorrespondingPointIndex ); horizontalCorrespondingPoint[1] = point[1]; PlanarFigure::SetControlPoint( horizontalCorrespondingPointIndex, horizontalCorrespondingPoint ); } return set; } void mitk::PlanarRectangle::PlaceFigure( const mitk::Point2D &point ) { PlanarFigure::PlaceFigure( point ); m_SelectedControlPoint = 3; } void mitk::PlanarRectangle::GeneratePolyLine() { - // TODO: start polygon at specified initalize point... + this->ClearPolyLines(); - ClearPolyLines(); - - for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) - { - AppendPointToPolyLine( 0, PolyLineElement( GetControlPoint(i), i ) ); - } + for (unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i) + this->AppendPointToPolyLine(0, this->GetControlPoint(i)); } void mitk::PlanarRectangle::GenerateHelperPolyLine(double /*mmPerDisplayUnit*/, unsigned int /*displayHeight*/) { // A polygon does not require helper objects } void mitk::PlanarRectangle::EvaluateFeaturesInternal() { // Calculate circumference double circumference = 0.0; unsigned int i; for ( i = 0; i < this->GetNumberOfControlPoints(); ++i ) { circumference += this->GetWorldControlPoint( i ).EuclideanDistanceTo( this->GetWorldControlPoint( (i + 1) % this->GetNumberOfControlPoints() ) ); } this->SetQuantity( FEATURE_ID_CIRCUMFERENCE, circumference ); // Calculate rectangle area (well, done a bit clumsy...) double area = 0.0; if ( this->GetPlaneGeometry() != NULL ) { for ( i = 0; i < this->GetNumberOfControlPoints(); ++i ) { Point2D p0 = this->GetControlPoint( i ); Point2D p1 = this->GetControlPoint( (i + 1) % this->GetNumberOfControlPoints() ); area += p0[0] * p1[1] - p1[0] * p0[1]; } area /= 2.0; } this->SetQuantity( FEATURE_ID_AREA, fabs(area) ); } void mitk::PlanarRectangle::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); os << indent << "Number of control points: " << this->GetNumberOfControlPoints() << std::endl; os << indent << "Control points:" << std::endl; for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { os << indent << indent << i << ": " < #include "mitkBaseDataSerializer.h" namespace mitk { /** \brief Serializes mitk::Surface for mitk::SceneIO */ class MitkPlanarFigure_EXPORT PlanarFigureSerializer : public BaseDataSerializer { public: - mitkClassMacro( PlanarFigureSerializer, BaseDataSerializer ); + mitkClassMacro( PlanarFigureSerializer, BaseDataSerializer ) itkFactorylessNewMacro(Self) itkCloneMacro(Self) virtual std::string Serialize(); protected: PlanarFigureSerializer(); virtual ~PlanarFigureSerializer(); }; } // namespace #endif diff --git a/Modules/PlanarFigure/IO/mitkPlanarFigureSubclassesSerializer.cpp b/Modules/PlanarFigure/IO/mitkPlanarFigureSubclassesSerializer.cpp index b26d34dcca..af9ed19341 100644 --- a/Modules/PlanarFigure/IO/mitkPlanarFigureSubclassesSerializer.cpp +++ b/Modules/PlanarFigure/IO/mitkPlanarFigureSubclassesSerializer.cpp @@ -1,56 +1,57 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkPlanarFiguresSubclassesSerializer_h_included #define mitkPlanarFiguresSubclassesSerializer_h_included #include "mitkPlanarFigureSerializer.h" #define MITK_REGISTER_PF_SUB_SERIALIZER(classname) \ \ namespace mitk \ { \ \ class MitkPlanarFigure_EXPORT classname ## Serializer : public PlanarFigureSerializer \ { \ public: \ \ mitkClassMacro( classname ## Serializer, PlanarFigureSerializer ) \ itkFactorylessNewMacro(Self) \ itkCloneMacro(Self) \ \ protected: \ \ classname ## Serializer () {} \ virtual ~classname ## Serializer () {} \ }; \ \ } \ \ MITK_REGISTER_SERIALIZER( classname ## Serializer ); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarAngle); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarCircle); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarCross); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarFourPointAngle); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarLine); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarPolygon); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarRectangle); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarEllipse); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarDoubleEllipse); -MITK_REGISTER_PF_SUB_SERIALIZER(PlanarBezierCurve); +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarAngle) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarCircle) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarCross) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarFourPointAngle) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarLine) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarPolygon) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarRectangle) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarEllipse) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarDoubleEllipse) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarBezierCurve) +MITK_REGISTER_PF_SUB_SERIALIZER(PlanarSubdivisionPolygon) #endif diff --git a/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp b/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp index 347e32b219..ea6f0b7086 100644 --- a/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp +++ b/Modules/PlanarFigure/Interactions/mitkPlanarFigureInteractor.cpp @@ -1,947 +1,947 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define PLANARFIGUREINTERACTOR_DBG MITK_DEBUG("PlanarFigureInteractor") << __LINE__ << ": " #include "mitkPlanarFigureInteractor.h" #include "mitkPlanarFigure.h" #include "mitkPlanarPolygon.h" #include "mitkInteractionPositionEvent.h" #include "mitkInternalEvent.h" #include "mitkBaseRenderer.h" #include "mitkRenderingManager.h" //how precise must the user pick the point //default value mitk::PlanarFigureInteractor::PlanarFigureInteractor() : DataInteractor() , m_Precision( 6.5 ) , m_MinimumPointDistance( 25.0 ) , m_IsHovering( false ) , m_LastPointWasValid( false ) { } mitk::PlanarFigureInteractor::~PlanarFigureInteractor() { } void mitk::PlanarFigureInteractor::ConnectActionsAndFunctions() { CONNECT_CONDITION("figure_is_on_current_slice", CheckFigureOnRenderingGeometry); CONNECT_CONDITION("figure_is_placed", CheckFigurePlaced); CONNECT_CONDITION("minimal_figure_is_finished", CheckMinimalFigureFinished); CONNECT_CONDITION("hovering_above_figure", CheckFigureHovering); CONNECT_CONDITION("hovering_above_point", CheckControlPointHovering); CONNECT_CONDITION("figure_is_selected", CheckSelection); CONNECT_CONDITION("point_is_valid", CheckPointValidity); CONNECT_CONDITION("figure_is_finished", CheckFigureFinished); CONNECT_CONDITION("reset_on_point_select_needed", CheckResetOnPointSelect); CONNECT_CONDITION("points_can_be_added_or_removed", CheckFigureIsExtendable); CONNECT_FUNCTION( "finalize_figure", FinalizeFigure); CONNECT_FUNCTION( "hide_preview_point", HidePreviewPoint ) CONNECT_FUNCTION( "hide_control_points", HideControlPoints ) CONNECT_FUNCTION( "set_preview_point_position", SetPreviewPointPosition ) CONNECT_FUNCTION( "move_current_point", MoveCurrentPoint); CONNECT_FUNCTION( "deselect_point", DeselectPoint); CONNECT_FUNCTION( "add_new_point", AddPoint); CONNECT_FUNCTION( "add_initial_point", AddInitialPoint); CONNECT_FUNCTION( "remove_selected_point", RemoveSelectedPoint); CONNECT_FUNCTION( "request_context_menu", RequestContextMenu); CONNECT_FUNCTION( "select_figure", SelectFigure ); CONNECT_FUNCTION( "select_point", SelectPoint ); CONNECT_FUNCTION( "end_interaction", EndInteraction ); CONNECT_FUNCTION( "start_hovering", StartHovering ) CONNECT_FUNCTION( "end_hovering", EndHovering ); } bool mitk::PlanarFigureInteractor::CheckFigurePlaced( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); bool isFigureFinished = false; planarFigure->GetPropertyList()->GetBoolProperty( "initiallyplaced", isFigureFinished ); return planarFigure->IsPlaced() && isFigureFinished; } bool mitk::PlanarFigureInteractor::MoveCurrentPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; bool isEditable = true; GetDataNode()->GetBoolProperty( "planarfigure.iseditable", isEditable ); mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); // Extract point in 2D world coordinates (relative to PlaneGeometry of // PlanarFigure) Point2D point2D; if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) || !isEditable ) { return false; } // check if the control points shall be hidden during interaction bool hidecontrolpointsduringinteraction = false; GetDataNode()->GetBoolProperty( "planarfigure.hidecontrolpointsduringinteraction", hidecontrolpointsduringinteraction ); // hide the control points if necessary //interactionEvent->GetSender()->GetDataStorage()->BlockNodeModifiedEvents( true ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", !hidecontrolpointsduringinteraction ); //interactionEvent->GetSender()->GetDataStorage()->BlockNodeModifiedEvents( false ); // Move current control point to this point planarFigure->SetCurrentControlPoint( point2D ); // Re-evaluate features planarFigure->EvaluateFeatures(); // Update rendered scene interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::FinalizeFigure( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->Modified(); planarFigure->DeselectControlPoint(); planarFigure->RemoveLastControlPoint(); planarFigure->SetProperty( "initiallyplaced", mitk::BoolProperty::New( true ) ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); GetDataNode()->Modified(); planarFigure->InvokeEvent( EndPlacementPlanarFigureEvent() ); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return false; } bool mitk::PlanarFigureInteractor::EndInteraction( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); planarFigure->Modified(); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return false; } bool mitk::PlanarFigureInteractor::EndHovering( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->ResetPreviewContolPoint(); // Invoke end-hover event once the mouse is exiting the figure area m_IsHovering = false; planarFigure->InvokeEvent( EndHoverPlanarFigureEvent() ); // Set bool property to indicate that planar figure is no longer in "hovering" mode GetDataNode()->SetBoolProperty( "planarfigure.ishovering", false ); interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return false; } bool mitk::PlanarFigureInteractor::CheckMinimalFigureFinished( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); return ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMinimumNumberOfControlPoints() ); } bool mitk::PlanarFigureInteractor::CheckFigureFinished( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); return ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMaximumNumberOfControlPoints() ); } bool mitk::PlanarFigureInteractor::CheckFigureIsExtendable( const InteractionEvent* /*interactionEvent*/ ) { bool isExtendable = false; GetDataNode()->GetBoolProperty("planarfigure.isextendable", isExtendable); return isExtendable; } bool mitk::PlanarFigureInteractor::DeselectPoint(StateMachineAction*, InteractionEvent* /*interactionEvent*/) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); bool wasSelected = planarFigure->DeselectControlPoint(); if ( wasSelected ) { // Issue event so that listeners may update themselves planarFigure->Modified(); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); // GetDataNode()->SetBoolProperty( "planarfigure.ishovering", false ); GetDataNode()->Modified(); } return true; } bool mitk::PlanarFigureInteractor::AddPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; bool selected = false; bool isEditable = true; GetDataNode()->GetBoolProperty("selected", selected); GetDataNode()->GetBoolProperty( "planarfigure.iseditable", isEditable ); if ( !selected || !isEditable ) { return false; } mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); // If the planarFigure already has reached the maximum number if ( planarFigure->GetNumberOfControlPoints() >= planarFigure->GetMaximumNumberOfControlPoints() ) { return false; } // Extract point in 2D world coordinates (relative to PlaneGeometry of // PlanarFigure) Point2D point2D, projectedPoint; if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) ) { return false; } // TODO: check segment of polyline we clicked in int nextIndex = -1; // We only need to check which position to insert the control point // when interacting with a PlanarPolygon. For all other types // new control points will always be appended /* * Added check for "initiallyplaced" due to bug 13097: * * There are two possible cases in which a point can be inserted into a PlanarPolygon: * * 1. The figure is currently drawn -> the point will be appended at the end of the figure * 2. A point is inserted at a userdefined position after the initial placement of the figure is finished * * In the second case we need to determine the proper insertion index. In the first case the index always has * to be -1 so that the point is appended to the end. * * These changes are necessary because of a mac os x specific issue: If a users draws a PlanarPolygon then the * next point to be added moves according to the mouse position. If then the user left clicks in order to add * a point one would assume the last move position is identical to the left click position. This is actually the * case for windows and linux but somehow NOT for mac. Because of the insertion logic of a new point in the * PlanarFigure then for mac the wrong current selected point is determined. * * With this check here this problem can be avoided. However a redesign of the insertion logic should be considered */ bool isFigureFinished = false; planarFigure->GetPropertyList()->GetBoolProperty( "initiallyplaced", isFigureFinished ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); if ( dynamic_cast( planarFigure ) && isFigureFinished) { nextIndex = this->IsPositionOverFigure( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry(), projectedPoint ); } // Add point as new control point renderer->GetDisplayGeometry()->DisplayToWorld( projectedPoint, projectedPoint ); if ( planarFigure->IsPreviewControlPointVisible() ) { point2D = planarFigure->GetPreviewControlPoint(); } planarFigure->AddControlPoint( point2D, nextIndex ); if ( planarFigure->IsPreviewControlPointVisible() ) { planarFigure->SelectControlPoint( nextIndex ); planarFigure->ResetPreviewContolPoint(); } // Re-evaluate features planarFigure->EvaluateFeatures(); //this->LogPrintPlanarFigureQuantities( planarFigure ); // Update rendered scene renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::AddInitialPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); // Invoke event to notify listeners that placement of this PF starts now planarFigure->InvokeEvent( StartPlacementPlanarFigureEvent() ); // Use PlaneGeometry of the renderer clicked on for this PlanarFigure mitk::PlaneGeometry *planeGeometry = const_cast< mitk::PlaneGeometry * >( dynamic_cast< const mitk::PlaneGeometry * >( renderer->GetSliceNavigationController()->GetCurrentPlaneGeometry() ) ); if ( planeGeometry != NULL ) { planarFigureGeometry = planeGeometry; planarFigure->SetPlaneGeometry( planeGeometry ); } else { return false; } // Extract point in 2D world coordinates (relative to PlaneGeometry of // PlanarFigure) Point2D point2D; if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) ) { return false; } // Place PlanarFigure at this point planarFigure->PlaceFigure( point2D ); // Re-evaluate features planarFigure->EvaluateFeatures(); //this->LogPrintPlanarFigureQuantities( planarFigure ); // Set a bool property indicating that the figure has been placed in // the current RenderWindow. This is required so that the same render // window can be re-aligned to the PlaneGeometry of the PlanarFigure later // on in an application. GetDataNode()->SetBoolProperty( "PlanarFigureInitializedWindow", true, renderer ); // Update rendered scene renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::StartHovering( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); if ( !m_IsHovering ) { // Invoke hover event once when the mouse is entering the figure area m_IsHovering = true; planarFigure->InvokeEvent( StartHoverPlanarFigureEvent() ); // Set bool property to indicate that planar figure is currently in "hovering" mode GetDataNode()->SetBoolProperty( "planarfigure.ishovering", true ); renderer->GetRenderingManager()->RequestUpdateAll(); } return true; } bool mitk::PlanarFigureInteractor::SetPreviewPointPosition( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); planarFigure->DeselectControlPoint(); mitk::Point2D pointProjectedOntoLine = positionEvent->GetPointerPositionOnScreen(); bool selected(false); bool isExtendable(false); bool isEditable(true); GetDataNode()->GetBoolProperty("selected", selected); GetDataNode()->GetBoolProperty("planarfigure.isextendable", isExtendable); GetDataNode()->GetBoolProperty("planarfigure.iseditable", isEditable ); if ( selected && isExtendable && isEditable ) { renderer->GetDisplayGeometry()->DisplayToWorld( pointProjectedOntoLine, pointProjectedOntoLine ); planarFigure->SetPreviewControlPoint( pointProjectedOntoLine ); } renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::HideControlPoints( StateMachineAction*, InteractionEvent* /*interactionEvent*/ ) { GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", false ); return true; } bool mitk::PlanarFigureInteractor::HidePreviewPoint( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->ResetPreviewContolPoint(); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); renderer->GetRenderingManager()->RequestUpdateAll(); return true; } bool mitk::PlanarFigureInteractor::CheckFigureHovering( const InteractionEvent* interactionEvent ) { const mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); mitk::Point2D pointProjectedOntoLine; int previousControlPoint = this->IsPositionOverFigure( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry(), pointProjectedOntoLine ); bool isHovering = (previousControlPoint != -1); if ( isHovering ) { return true; } else { return false; } return false; } bool mitk::PlanarFigureInteractor::CheckControlPointHovering( const InteractionEvent* interactionEvent ) { const mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); int pointIndex = -1; pointIndex = mitk::PlanarFigureInteractor::IsPositionInsideMarker( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry() ); if ( pointIndex >= 0 ) { return true; } else { return false; } } bool mitk::PlanarFigureInteractor::CheckSelection( const InteractionEvent* /*interactionEvent*/ ) { bool selected = false; GetDataNode()->GetBoolProperty("selected", selected); return selected; } bool mitk::PlanarFigureInteractor::SelectFigure( StateMachineAction*, InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); planarFigure->InvokeEvent( SelectPlanarFigureEvent() ); return false; } bool mitk::PlanarFigureInteractor::SelectPoint( StateMachineAction*, InteractionEvent* interactionEvent ) { mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); const PlaneGeometry *projectionPlane = renderer->GetCurrentWorldPlaneGeometry(); int pointIndex = -1; pointIndex = mitk::PlanarFigureInteractor::IsPositionInsideMarker( positionEvent, planarFigure, planarFigureGeometry, projectionPlane, renderer->GetDisplayGeometry() ); if ( pointIndex >= 0 ) { // If mouse is above control point, mark it as selected planarFigure->SelectControlPoint( pointIndex ); } else { planarFigure->DeselectControlPoint(); } return false; } bool mitk::PlanarFigureInteractor::CheckPointValidity( const InteractionEvent* interactionEvent ) { // Check if the distance of the current point to the previously set point in display coordinates // is sufficient (if a previous point exists) // Extract display position const mitk::InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); if ( positionEvent == NULL ) return false; mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); m_LastPointWasValid = IsMousePositionAcceptableAsNewControlPoint( positionEvent, planarFigure ); return m_LastPointWasValid; } bool mitk::PlanarFigureInteractor::RemoveSelectedPoint(StateMachineAction*, InteractionEvent* interactionEvent) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::BaseRenderer *renderer = interactionEvent->GetSender(); int selectedControlPoint = planarFigure->GetSelectedControlPoint(); planarFigure->RemoveControlPoint( selectedControlPoint ); // Re-evaluate features planarFigure->EvaluateFeatures(); planarFigure->Modified(); GetDataNode()->SetBoolProperty( "planarfigure.drawcontrolpoints", true ); planarFigure->InvokeEvent( EndInteractionPlanarFigureEvent() ); renderer->GetRenderingManager()->RequestUpdateAll(); HandleEvent( mitk::InternalEvent::New( renderer, this, "Dummy-Event" ), GetDataNode() ); return true; } bool mitk::PlanarFigureInteractor::RequestContextMenu(StateMachineAction*, InteractionEvent* /*interactionEvent*/) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); bool selected = false; GetDataNode()->GetBoolProperty("selected", selected); // no need to invoke this if the figure is already selected if ( !selected ) { planarFigure->InvokeEvent( SelectPlanarFigureEvent() ); } planarFigure->InvokeEvent( ContextMenuPlanarFigureEvent() ); return true; } bool mitk::PlanarFigureInteractor::CheckResetOnPointSelect( const InteractionEvent* /*interactionEvent*/ ) { mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); // Invoke tmpEvent to notify listeners that interaction with this PF starts now planarFigure->InvokeEvent( StartInteractionPlanarFigureEvent() ); // Reset the PlanarFigure if required return planarFigure->ResetOnPointSelect(); } bool mitk::PlanarFigureInteractor::CheckFigureOnRenderingGeometry( const InteractionEvent* interactionEvent ) { const mitk::InteractionPositionEvent* posEvent = dynamic_cast(interactionEvent); if ( posEvent == NULL ) return false; mitk::Point3D worldPoint3D = posEvent->GetPositionInWorld(); mitk::PlanarFigure *planarFigure = dynamic_cast( GetDataNode()->GetData() ); mitk::PlaneGeometry *planarFigurePlaneGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); double planeThickness = planarFigurePlaneGeometry->GetExtentInMM( 2 ); if ( planarFigurePlaneGeometry->Distance( worldPoint3D ) > planeThickness ) { // don't react, when interaction is too far away return false; } return true; } void mitk::PlanarFigureInteractor::SetPrecision( mitk::ScalarType precision ) { m_Precision = precision; } void mitk::PlanarFigureInteractor::SetMinimumPointDistance( ScalarType minimumDistance ) { m_MinimumPointDistance = minimumDistance; } bool mitk::PlanarFigureInteractor::TransformPositionEventToPoint2D( const InteractionPositionEvent *positionEvent, const PlaneGeometry *planarFigureGeometry, Point2D &point2D ) { mitk::Point3D worldPoint3D = positionEvent->GetPositionInWorld(); // TODO: proper handling of distance tolerance if ( planarFigureGeometry->Distance( worldPoint3D ) > 0.1 ) { return false; } // Project point onto plane of this PlanarFigure planarFigureGeometry->Map( worldPoint3D, point2D ); return true; } bool mitk::PlanarFigureInteractor::TransformObjectToDisplay( const mitk::Point2D &point2D, mitk::Point2D &displayPoint, const mitk::PlaneGeometry *objectGeometry, const mitk::PlaneGeometry *rendererGeometry, const mitk::DisplayGeometry *displayGeometry ) const { mitk::Point3D point3D; // Map circle point from local 2D geometry into 3D world space objectGeometry->Map( point2D, point3D ); // TODO: proper handling of distance tolerance if ( displayGeometry->Distance( point3D ) < 0.1 ) { // Project 3D world point onto display geometry rendererGeometry->Map( point3D, displayPoint ); displayGeometry->WorldToDisplay( displayPoint, displayPoint ); return true; } return false; } bool mitk::PlanarFigureInteractor::IsPointNearLine( const mitk::Point2D& point, const mitk::Point2D& startPoint, const mitk::Point2D& endPoint, mitk::Point2D& projectedPoint ) const { mitk::Vector2D n1 = endPoint - startPoint; n1.Normalize(); // Determine dot products between line vector and startpoint-point / endpoint-point vectors double l1 = n1 * (point - startPoint); double l2 = -n1 * (point - endPoint); // Determine projection of specified point onto line defined by start / end point mitk::Point2D crossPoint = startPoint + n1 * l1; projectedPoint = crossPoint; // Point is inside encompassing rectangle IF // - its distance to its projected point is small enough // - it is not further outside of the line than the defined tolerance if (((crossPoint.SquaredEuclideanDistanceTo(point) < 20.0) && (l1 > 0.0) && (l2 > 0.0)) || endPoint.SquaredEuclideanDistanceTo(point) < 20.0 || startPoint.SquaredEuclideanDistanceTo(point) < 20.0) { return true; } return false; } int mitk::PlanarFigureInteractor::IsPositionOverFigure( const InteractionPositionEvent *positionEvent, PlanarFigure *planarFigure, const PlaneGeometry *planarFigureGeometry, const PlaneGeometry *rendererGeometry, const DisplayGeometry *displayGeometry, Point2D& pointProjectedOntoLine ) const { mitk::Point2D displayPosition = positionEvent->GetPointerPositionOnScreen(); // Iterate over all polylines of planar figure, and check if // any one is close to the current display position typedef mitk::PlanarFigure::PolyLineType VertexContainerType; Point2D polyLinePoint; Point2D firstPolyLinePoint; Point2D previousPolyLinePoint; for ( unsigned short loop=0; loopGetPolyLinesSize(); ++loop ) { const VertexContainerType polyLine = planarFigure->GetPolyLine( loop ); bool firstPoint( true ); for ( VertexContainerType::const_iterator it = polyLine.begin(); it != polyLine.end(); ++it ) { // Get plane coordinates of this point of polyline (if possible) - if ( !this->TransformObjectToDisplay( it->Point, + if ( !this->TransformObjectToDisplay( *it, polyLinePoint, planarFigureGeometry, rendererGeometry, displayGeometry ) ) { break; // Poly line invalid (not on current 2D plane) --> skip it } if ( firstPoint ) { firstPolyLinePoint = polyLinePoint; firstPoint = false; } else if ( this->IsPointNearLine( displayPosition, previousPolyLinePoint, polyLinePoint, pointProjectedOntoLine ) ) { // Point is close enough to line segment --> Return index of the segment - return it->Index; + return std::distance(polyLine.begin(), it); } previousPolyLinePoint = polyLinePoint; } // For closed figures, also check last line segment if ( planarFigure->IsClosed() && this->IsPointNearLine( displayPosition, polyLinePoint, firstPolyLinePoint, pointProjectedOntoLine ) ) { return 0; // Return index of first control point } } return -1; } int mitk::PlanarFigureInteractor::IsPositionInsideMarker( const InteractionPositionEvent* positionEvent, const PlanarFigure *planarFigure, const PlaneGeometry *planarFigureGeometry, const PlaneGeometry *rendererGeometry, const DisplayGeometry *displayGeometry ) const { mitk::Point2D displayPosition = positionEvent->GetPointerPositionOnScreen(); // Iterate over all control points of planar figure, and check if // any one is close to the current display position mitk::Point2D displayControlPoint; int numberOfControlPoints = planarFigure->GetNumberOfControlPoints(); for ( int i=0; iTransformObjectToDisplay( planarFigure->GetControlPoint(i), displayControlPoint, planarFigureGeometry, rendererGeometry, displayGeometry ) ) { // TODO: variable size of markers if ( displayPosition.SquaredEuclideanDistanceTo( displayControlPoint ) < 20.0 ) { return i; } } } return -1; } void mitk::PlanarFigureInteractor::LogPrintPlanarFigureQuantities( const PlanarFigure *planarFigure ) { MITK_INFO << "PlanarFigure: " << planarFigure->GetNameOfClass(); for ( unsigned int i = 0; i < planarFigure->GetNumberOfFeatures(); ++i ) { MITK_INFO << "* " << planarFigure->GetFeatureName( i ) << ": " << planarFigure->GetQuantity( i ) << " " << planarFigure->GetFeatureUnit( i ); } } bool mitk::PlanarFigureInteractor::IsMousePositionAcceptableAsNewControlPoint( const mitk::InteractionPositionEvent* positionEvent, const PlanarFigure* planarFigure ) { assert(positionEvent && planarFigure); BaseRenderer* renderer = positionEvent->GetSender(); assert(renderer); // Get the timestep to support 3D+t int timeStep( renderer->GetTimeStep( planarFigure ) ); bool tooClose(false); const PlaneGeometry *renderingPlane = renderer->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry *planarFigureGeometry = dynamic_cast< mitk::PlaneGeometry * >( planarFigure->GetGeometry( timeStep ) ); Point2D point2D, correctedPoint; // Get the point2D from the positionEvent if ( !this->TransformPositionEventToPoint2D( positionEvent, planarFigureGeometry, point2D ) ) { return false; } // apply the controlPoint constraints of the planarFigure to get the // coordinates that would actually be used. correctedPoint = const_cast( planarFigure )->ApplyControlPointConstraints( 0, point2D ); // map the 2D coordinates of the new point to world-coordinates // and transform those to display-coordinates mitk::Point3D newPoint3D; planarFigureGeometry->Map( correctedPoint, newPoint3D ); mitk::Point2D newDisplayPosition; renderingPlane->Map( newPoint3D, newDisplayPosition ); renderer->GetDisplayGeometry()->WorldToDisplay( newDisplayPosition, newDisplayPosition ); for( int i=0; i < (int)planarFigure->GetNumberOfControlPoints(); i++ ) { if ( i != planarFigure->GetSelectedControlPoint() ) { // Try to convert previous point to current display coordinates mitk::Point3D previousPoint3D; // map the 2D coordinates of the control-point to world-coordinates planarFigureGeometry->Map( planarFigure->GetControlPoint( i ), previousPoint3D ); if ( renderer->GetDisplayGeometry()->Distance( previousPoint3D ) < 0.1 ) // ugly, but assert makes this work { mitk::Point2D previousDisplayPosition; // transform the world-coordinates into display-coordinates renderingPlane->Map( previousPoint3D, previousDisplayPosition ); renderer->GetDisplayGeometry()->WorldToDisplay( previousDisplayPosition, previousDisplayPosition ); //Calculate the distance. We use display-coordinates here to make // the check independent of the zoom-level of the rendering scene. double a = newDisplayPosition[0] - previousDisplayPosition[0]; double b = newDisplayPosition[1] - previousDisplayPosition[1]; // If point is to close, do not set a new point tooClose = (a * a + b * b < m_MinimumPointDistance ); } if ( tooClose ) return false; // abort loop early } } return !tooClose; // default } void mitk::PlanarFigureInteractor::ConfigurationChanged() { mitk::PropertyList::Pointer properties = GetAttributes(); std::string precision = ""; if (properties->GetStringProperty("precision", precision)) { m_Precision = atof(precision.c_str()); } else { m_Precision = (ScalarType) 6.5; } std::string minPointDistance = ""; if (properties->GetStringProperty("minPointDistance", minPointDistance)) { m_MinimumPointDistance = atof(minPointDistance.c_str()); } else { m_MinimumPointDistance = (ScalarType) 25.0; } } diff --git a/Modules/PlanarFigure/Rendering/mitkPlanarFigureMapper2D.cpp b/Modules/PlanarFigure/Rendering/mitkPlanarFigureMapper2D.cpp index 8c56f6d131..9b0d2d6566 100644 --- a/Modules/PlanarFigure/Rendering/mitkPlanarFigureMapper2D.cpp +++ b/Modules/PlanarFigure/Rendering/mitkPlanarFigureMapper2D.cpp @@ -1,923 +1,923 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigureMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkGL.h" #include "mitkVtkPropRenderer.h" #define _USE_MATH_DEFINES #include // offset which moves the planarfigures on top of the other content // the crosshair is rendered into the z = 1 layer. static const float PLANAR_OFFSET = 0.5f; mitk::PlanarFigureMapper2D::PlanarFigureMapper2D() : m_NodeModified(true) , m_NodeModifiedObserverTag(0) , m_NodeModifiedObserverAdded(false) { this->InitializeDefaultPlanarFigureProperties(); } mitk::PlanarFigureMapper2D::~PlanarFigureMapper2D() { if ( m_NodeModifiedObserverAdded && GetDataNode() != NULL ) { GetDataNode()->RemoveObserver( m_NodeModifiedObserverTag ); } } void mitk::PlanarFigureMapper2D::Paint( mitk::BaseRenderer *renderer ) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) return; // Get PlanarFigure from input mitk::PlanarFigure *planarFigure = const_cast< mitk::PlanarFigure * >( static_cast< const mitk::PlanarFigure * >( GetDataNode()->GetData() ) ); // Check if PlanarFigure has already been placed; otherwise, do nothing if ( !planarFigure->IsPlaced() ) { return; } // Get 2D geometry frame of PlanarFigure mitk::PlaneGeometry *planarFigurePlaneGeometry = dynamic_cast< PlaneGeometry * >( planarFigure->GetGeometry( 0 ) ); if ( planarFigurePlaneGeometry == NULL ) { MITK_ERROR << "PlanarFigure does not have valid PlaneGeometry!"; return; } // Get current world 2D geometry from renderer const mitk::PlaneGeometry *rendererPlaneGeometry = renderer->GetCurrentWorldPlaneGeometry(); // If the PlanarFigure geometry is a plane geometry, check if current // world plane is parallel to and within the planar figure geometry bounds // (otherwise, display nothing) if ( (planarFigurePlaneGeometry != NULL) && (rendererPlaneGeometry != NULL) ) { double planeThickness = planarFigurePlaneGeometry->GetExtentInMM( 2 ); if ( !planarFigurePlaneGeometry->IsParallel( rendererPlaneGeometry ) || !(planarFigurePlaneGeometry->DistanceFromPlane( rendererPlaneGeometry ) < planeThickness / 3.0) ) { // Planes are not parallel or renderer plane is not within PlanarFigure // geometry bounds --> exit return; } } else { // Plane is not valid (curved reformations are not possible yet) return; } // Get display geometry mitk::DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); assert( displayGeometry != NULL ); // Apply visual appearance properties from the PropertyList ApplyColorAndOpacityProperties( renderer ); // Enable line antialiasing glEnable( GL_LINE_SMOOTH ); glHint( GL_LINE_SMOOTH_HINT, GL_NICEST ); glEnable(GL_DEPTH_TEST); // Get properties from node (if present) const mitk::DataNode* node=this->GetDataNode(); this->InitializePlanarFigurePropertiesFromDataNode( node ); PlanarFigureDisplayMode lineDisplayMode = PF_DEFAULT; if ( m_IsSelected ) { lineDisplayMode = PF_SELECTED; } else if ( m_IsHovering ) { lineDisplayMode = PF_HOVER; } mitk::Point2D anchorPoint; anchorPoint[0] = 0; anchorPoint[1] = 1; // render the actual lines of the PlanarFigure RenderLines(lineDisplayMode, planarFigure, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry); // position-offset of the annotations, is set in RenderAnnotations() and // used in RenderQuantities() double annotationOffset = 0.0; //Get Global Opacity float globalOpacity = 1.0; node->GetFloatProperty("opacity", globalOpacity); // draw name near the anchor point (point located on the right) std::string name = node->GetName(); if ( m_DrawName && !name.empty() ) { RenderAnnotations(renderer, name, anchorPoint, globalOpacity, lineDisplayMode, annotationOffset); } // draw feature quantities (if requested) next to the anchor point, // but under the name (that is where 'annotationOffset' is used) if ( m_DrawQuantities ) { RenderQuantities(planarFigure, renderer, anchorPoint, annotationOffset, globalOpacity, lineDisplayMode); } if ( m_DrawControlPoints ) { // draw the control-points RenderControlPoints(planarFigure, lineDisplayMode, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry); } glLineWidth( 1.0f ); } void mitk::PlanarFigureMapper2D::PaintPolyLine( mitk::PlanarFigure::PolyLineType vertices, bool closed, Point2D& anchorPoint, const PlaneGeometry* planarFigurePlaneGeometry, const PlaneGeometry* rendererPlaneGeometry, const DisplayGeometry* displayGeometry) { mitk::Point2D rightMostPoint; rightMostPoint.Fill( itk::NumericTraits::min() ); // transform all vertices into Point2Ds in display-Coordinates and store them in vector std::vector pointlist; for ( PlanarFigure::PolyLineType::iterator iter = vertices.begin(); iter!=vertices.end(); iter++ ) { // Draw this 2D point as OpenGL vertex mitk::Point2D displayPoint; - this->TransformObjectToDisplay( iter->Point, displayPoint, + this->TransformObjectToDisplay( *iter, displayPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); pointlist.push_back(displayPoint); if ( displayPoint[0] > rightMostPoint[0] ) rightMostPoint = displayPoint; } // now paint all the points in one run std::vector::iterator pointIter; if ( closed ) { glBegin( GL_LINE_LOOP ); } else { glBegin( GL_LINE_STRIP ); } for ( pointIter = pointlist.begin(); pointIter!=pointlist.end(); pointIter++ ) { glVertex3f( (*pointIter)[0], (*pointIter)[1], PLANAR_OFFSET ); } glEnd(); anchorPoint = rightMostPoint; } void mitk::PlanarFigureMapper2D::DrawMainLines( mitk::PlanarFigure* figure, Point2D& anchorPoint, const PlaneGeometry* planarFigurePlaneGeometry, const PlaneGeometry* rendererPlaneGeometry, const DisplayGeometry* displayGeometry) { unsigned short numberOfPolyLines = figure->GetPolyLinesSize(); for ( unsigned short loop=0; loopGetPolyLine(loop); this->PaintPolyLine( polyline, figure->IsClosed(), anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); } } void mitk::PlanarFigureMapper2D::DrawHelperLines( mitk::PlanarFigure* figure, Point2D& anchorPoint, const PlaneGeometry* planarFigurePlaneGeometry, const PlaneGeometry* rendererPlaneGeometry, const DisplayGeometry* displayGeometry) { unsigned short numberOfHelperPolyLines = figure->GetHelperPolyLinesSize(); // Draw helper objects for ( unsigned int loop=0; loopGetHelperPolyLine(loop, displayGeometry->GetScaleFactorMMPerDisplayUnit(), displayGeometry->GetDisplayHeight() ); // Check if the current helper objects is to be painted if ( !figure->IsHelperToBePainted( loop ) ) { continue; } // ... and once normally above the shadow. this->PaintPolyLine( helperPolyLine, false, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); } } void mitk::PlanarFigureMapper2D::TransformObjectToDisplay( const mitk::Point2D &point2D, mitk::Point2D &displayPoint, const mitk::PlaneGeometry *objectGeometry, const mitk::PlaneGeometry *rendererGeometry, const mitk::DisplayGeometry *displayGeometry ) { mitk::Point3D point3D; // Map circle point from local 2D geometry into 3D world space objectGeometry->Map( point2D, point3D ); // Project 3D world point onto display geometry rendererGeometry->Map( point3D, displayPoint ); displayGeometry->WorldToDisplay( displayPoint, displayPoint ); } void mitk::PlanarFigureMapper2D::DrawMarker( const mitk::Point2D &point, float* lineColor, float lineOpacity, float* markerColor, float markerOpacity, float lineWidth, PlanarFigureControlPointStyleProperty::Shape shape, const mitk::PlaneGeometry *objectGeometry, const mitk::PlaneGeometry *rendererGeometry, const mitk::DisplayGeometry *displayGeometry ) { mitk::Point2D displayPoint; if ( markerOpacity == 0 && lineOpacity == 0 ) return; this->TransformObjectToDisplay( point, displayPoint, objectGeometry, rendererGeometry, displayGeometry ); glColor4f( markerColor[0], markerColor[1], markerColor[2], markerOpacity ); glLineWidth( lineWidth ); switch ( shape ) { case PlanarFigureControlPointStyleProperty::Square: default: { // Paint filled square // Disable line antialiasing (does not look nice for squares) glDisable( GL_LINE_SMOOTH ); if ( markerOpacity > 0 ) { glRectf( displayPoint[0] - 4, displayPoint[1] - 4, displayPoint[0] + 4, displayPoint[1] + 4 ); } // Paint outline glColor4f( lineColor[0], lineColor[1], lineColor[2], lineOpacity ); glBegin( GL_LINE_LOOP ); glVertex3f( displayPoint[0] - 4, displayPoint[1] - 4, PLANAR_OFFSET ); glVertex3f( displayPoint[0] - 4, displayPoint[1] + 4, PLANAR_OFFSET ); glVertex3f( displayPoint[0] + 4, displayPoint[1] + 4, PLANAR_OFFSET ); glVertex3f( displayPoint[0] + 4, displayPoint[1] - 4, PLANAR_OFFSET ); glEnd(); break; } case PlanarFigureControlPointStyleProperty::Circle: { float radius = 4.0; if ( markerOpacity > 0 ) { // Paint filled circle glBegin( GL_POLYGON ); for ( int angle = 0; angle < 8; ++angle ) { float angleRad = angle * (float) 3.14159 / 4.0; float x = displayPoint[0] + radius * (float)cos( angleRad ); float y = displayPoint[1] + radius * (float)sin( angleRad ); glVertex3f(x, y, PLANAR_OFFSET); } glEnd(); } // Paint outline glColor4f( lineColor[0], lineColor[1], lineColor[2], lineOpacity ); glBegin( GL_LINE_LOOP ); for ( int angle = 0; angle < 8; ++angle ) { float angleRad = angle * (float) 3.14159 / 4.0; float x = displayPoint[0] + radius * (float)cos( angleRad ); float y = displayPoint[1] + radius * (float)sin( angleRad ); glVertex3f(x, y, PLANAR_OFFSET); } glEnd(); break; } } // end switch } void mitk::PlanarFigureMapper2D::InitializeDefaultPlanarFigureProperties() { m_IsSelected = false; m_IsHovering = false; m_DrawOutline = false; m_DrawQuantities = false; m_DrawShadow = false; m_DrawControlPoints = false; m_DrawName = true; m_DrawDashed = false; m_DrawHelperDashed = false; m_ShadowWidthFactor = 1.2; m_LineWidth = 1.0; m_OutlineWidth = 4.0; m_HelperlineWidth = 2.0; m_ControlPointShape = PlanarFigureControlPointStyleProperty::Square; this->SetColorProperty( m_LineColor, PF_DEFAULT, 1.0, 1.0, 1.0 ); this->SetFloatProperty( m_LineOpacity, PF_DEFAULT, 1.0 ); this->SetColorProperty( m_OutlineColor, PF_DEFAULT, 0.0, 0.0, 1.0 ); this->SetFloatProperty( m_OutlineOpacity, PF_DEFAULT, 1.0 ); this->SetColorProperty( m_HelperlineColor, PF_DEFAULT, 0.4, 0.8, 0.2 ); this->SetFloatProperty( m_HelperlineOpacity, PF_DEFAULT, 0.4 ); this->SetColorProperty( m_MarkerlineColor, PF_DEFAULT, 1.0, 1.0, 1.0 ); this->SetFloatProperty( m_MarkerlineOpacity, PF_DEFAULT, 1.0 ); this->SetColorProperty( m_MarkerColor, PF_DEFAULT, 1.0, 1.0, 1.0 ); this->SetFloatProperty( m_MarkerOpacity, PF_DEFAULT, 0.0 ); this->SetColorProperty( m_LineColor, PF_HOVER, 1.0, 0.7, 0.0 ); this->SetFloatProperty( m_LineOpacity, PF_HOVER, 1.0 ); this->SetColorProperty( m_OutlineColor, PF_HOVER, 0.0, 0.0, 1.0 ); this->SetFloatProperty( m_OutlineOpacity, PF_HOVER, 1.0 ); this->SetColorProperty( m_HelperlineColor, PF_HOVER, 0.4, 0.8, 0.2 ); this->SetFloatProperty( m_HelperlineOpacity, PF_HOVER, 0.4 ); this->SetColorProperty( m_MarkerlineColor, PF_HOVER, 1.0, 1.0, 1.0 ); this->SetFloatProperty( m_MarkerlineOpacity, PF_HOVER, 1.0 ); this->SetColorProperty( m_MarkerColor, PF_HOVER, 1.0, 0.6, 0.0 ); this->SetFloatProperty( m_MarkerOpacity, PF_HOVER, 0.2 ); this->SetColorProperty( m_LineColor, PF_SELECTED, 1.0, 0.0, 0.0 ); this->SetFloatProperty( m_LineOpacity, PF_SELECTED, 1.0 ); this->SetColorProperty( m_OutlineColor, PF_SELECTED, 0.0, 0.0, 1.0 ); this->SetFloatProperty( m_OutlineOpacity, PF_SELECTED, 1.0 ); this->SetColorProperty( m_HelperlineColor, PF_SELECTED, 0.4, 0.8, 0.2 ); this->SetFloatProperty( m_HelperlineOpacity, PF_SELECTED, 0.4 ); this->SetColorProperty( m_MarkerlineColor, PF_SELECTED, 1.0, 1.0, 1.0 ); this->SetFloatProperty( m_MarkerlineOpacity, PF_SELECTED, 1.0 ); this->SetColorProperty( m_MarkerColor, PF_SELECTED, 1.0, 0.6, 0.0 ); this->SetFloatProperty( m_MarkerOpacity, PF_SELECTED, 1.0 ); } void mitk::PlanarFigureMapper2D::InitializePlanarFigurePropertiesFromDataNode( const mitk::DataNode* node ) { if ( node == NULL ) { return; } // if we have not added an observer for ModifiedEvents on the DataNode, // we add one now. if ( !m_NodeModifiedObserverAdded ) { itk::SimpleMemberCommand::Pointer nodeModifiedCommand = itk::SimpleMemberCommand::New(); nodeModifiedCommand->SetCallbackFunction(this, &mitk::PlanarFigureMapper2D::OnNodeModified); m_NodeModifiedObserverTag = node->AddObserver(itk::ModifiedEvent(), nodeModifiedCommand); m_NodeModifiedObserverAdded = true; } // If the DataNode has not been modified since the last execution of // this method, we do not run it now. if ( !m_NodeModified ) return; // Mark the current properties as unmodified m_NodeModified = false; //Get Global Opacity float globalOpacity = 1.0; node->GetFloatProperty("opacity", globalOpacity); node->GetBoolProperty( "selected", m_IsSelected ); node->GetBoolProperty( "planarfigure.ishovering", m_IsHovering ); node->GetBoolProperty( "planarfigure.drawoutline", m_DrawOutline ); node->GetBoolProperty( "planarfigure.drawshadow", m_DrawShadow ); node->GetBoolProperty( "planarfigure.drawquantities", m_DrawQuantities ); node->GetBoolProperty( "planarfigure.drawcontrolpoints", m_DrawControlPoints ); node->GetBoolProperty( "planarfigure.drawname", m_DrawName ); node->GetBoolProperty( "planarfigure.drawdashed", m_DrawDashed ); node->GetBoolProperty( "planarfigure.helperline.drawdashed", m_DrawHelperDashed ); node->GetFloatProperty( "planarfigure.line.width", m_LineWidth ); node->GetFloatProperty( "planarfigure.shadow.widthmodifier", m_ShadowWidthFactor ); node->GetFloatProperty( "planarfigure.outline.width", m_OutlineWidth ); node->GetFloatProperty( "planarfigure.helperline.width", m_HelperlineWidth ); PlanarFigureControlPointStyleProperty::Pointer styleProperty = dynamic_cast< PlanarFigureControlPointStyleProperty* >( node->GetProperty( "planarfigure.controlpointshape" ) ); if ( styleProperty.IsNotNull() ) { m_ControlPointShape = styleProperty->GetShape(); } //Set default color and opacity //If property "planarfigure.default.*.color" exists, then use that color. Otherwise global "color" property is used. if( !node->GetColor( m_LineColor[PF_DEFAULT], NULL, "planarfigure.default.line.color")) { node->GetColor( m_LineColor[PF_DEFAULT], NULL, "color" ); } node->GetFloatProperty( "planarfigure.default.line.opacity", m_LineOpacity[PF_DEFAULT] ); if( !node->GetColor( m_OutlineColor[PF_DEFAULT], NULL, "planarfigure.default.outline.color")) { node->GetColor( m_OutlineColor[PF_DEFAULT], NULL, "color" ); } node->GetFloatProperty( "planarfigure.default.outline.opacity", m_OutlineOpacity[PF_DEFAULT] ); if( !node->GetColor( m_HelperlineColor[PF_DEFAULT], NULL, "planarfigure.default.helperline.color")) { node->GetColor( m_HelperlineColor[PF_DEFAULT], NULL, "color" ); } node->GetFloatProperty( "planarfigure.default.helperline.opacity", m_HelperlineOpacity[PF_DEFAULT] ); node->GetColor( m_MarkerlineColor[PF_DEFAULT], NULL, "planarfigure.default.markerline.color" ); node->GetFloatProperty( "planarfigure.default.markerline.opacity", m_MarkerlineOpacity[PF_DEFAULT] ); node->GetColor( m_MarkerColor[PF_DEFAULT], NULL, "planarfigure.default.marker.color" ); node->GetFloatProperty( "planarfigure.default.marker.opacity", m_MarkerOpacity[PF_DEFAULT] ); //Set hover color and opacity node->GetColor( m_LineColor[PF_HOVER], NULL, "planarfigure.hover.line.color" ); node->GetFloatProperty( "planarfigure.hover.line.opacity", m_LineOpacity[PF_HOVER] ); node->GetColor( m_OutlineColor[PF_HOVER], NULL, "planarfigure.hover.outline.color" ); node->GetFloatProperty( "planarfigure.hover.outline.opacity", m_OutlineOpacity[PF_HOVER] ); node->GetColor( m_HelperlineColor[PF_HOVER], NULL, "planarfigure.hover.helperline.color" ); node->GetFloatProperty( "planarfigure.hover.helperline.opacity", m_HelperlineOpacity[PF_HOVER] ); node->GetColor( m_MarkerlineColor[PF_HOVER], NULL, "planarfigure.hover.markerline.color" ); node->GetFloatProperty( "planarfigure.hover.markerline.opacity", m_MarkerlineOpacity[PF_HOVER] ); node->GetColor( m_MarkerColor[PF_HOVER], NULL, "planarfigure.hover.marker.color" ); node->GetFloatProperty( "planarfigure.hover.marker.opacity", m_MarkerOpacity[PF_HOVER] ); //Set selected color and opacity node->GetColor( m_LineColor[PF_SELECTED], NULL, "planarfigure.selected.line.color" ); node->GetFloatProperty( "planarfigure.selected.line.opacity", m_LineOpacity[PF_SELECTED] ); node->GetColor( m_OutlineColor[PF_SELECTED], NULL, "planarfigure.selected.outline.color" ); node->GetFloatProperty( "planarfigure.selected.outline.opacity", m_OutlineOpacity[PF_SELECTED] ); node->GetColor( m_HelperlineColor[PF_SELECTED], NULL, "planarfigure.selected.helperline.color" ); node->GetFloatProperty( "planarfigure.selected.helperline.opacity", m_HelperlineOpacity[PF_SELECTED] ); node->GetColor( m_MarkerlineColor[PF_SELECTED], NULL, "planarfigure.selected.markerline.color" ); node->GetFloatProperty( "planarfigure.selected.markerline.opacity", m_MarkerlineOpacity[PF_SELECTED] ); node->GetColor( m_MarkerColor[PF_SELECTED], NULL, "planarfigure.selected.marker.color" ); node->GetFloatProperty( "planarfigure.selected.marker.opacity", m_MarkerOpacity[PF_SELECTED] ); //adapt opacity values to global "opacity" property for( unsigned int i = 0; i < PF_COUNT; ++i ) { m_LineOpacity[i] *= globalOpacity; m_OutlineOpacity[i] *= globalOpacity; m_HelperlineOpacity[i] *= globalOpacity; m_MarkerlineOpacity[i] *= globalOpacity; m_MarkerOpacity[i] *= globalOpacity; } } void mitk::PlanarFigureMapper2D::OnNodeModified() { m_NodeModified = true; } void mitk::PlanarFigureMapper2D::SetDefaultProperties( mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite ) { node->AddProperty( "visible", mitk::BoolProperty::New(true), renderer, overwrite ); //node->SetProperty("planarfigure.iseditable",mitk::BoolProperty::New(true)); node->AddProperty("planarfigure.isextendable",mitk::BoolProperty::New(false)); //node->AddProperty( "planarfigure.ishovering", mitk::BoolProperty::New(true) ); node->AddProperty( "planarfigure.drawoutline", mitk::BoolProperty::New(false) ); //node->AddProperty( "planarfigure.drawquantities", mitk::BoolProperty::New(true) ); node->AddProperty( "planarfigure.drawshadow", mitk::BoolProperty::New(true) ); node->AddProperty( "planarfigure.drawcontrolpoints", mitk::BoolProperty::New(true) ); node->AddProperty( "planarfigure.drawname", mitk::BoolProperty::New(true) ); node->AddProperty( "planarfigure.drawdashed", mitk::BoolProperty::New(false) ); node->AddProperty( "planarfigure.helperline.drawdashed", mitk::BoolProperty::New(false) ); node->AddProperty("planarfigure.line.width", mitk::FloatProperty::New(2.0) ); node->AddProperty("planarfigure.shadow.widthmodifier", mitk::FloatProperty::New(2.0) ); node->AddProperty("planarfigure.outline.width", mitk::FloatProperty::New(2.0) ); node->AddProperty("planarfigure.helperline.width", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.default.line.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.default.outline.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.default.helperline.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.default.markerline.color", mitk::ColorProperty::New(1.0,1.0,1.0) ); node->AddProperty( "planarfigure.default.markerline.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.default.marker.color", mitk::ColorProperty::New(1.0,1.0,1.0) ); node->AddProperty( "planarfigure.default.marker.opacity",mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.hover.line.color", mitk::ColorProperty::New(0.0,1.0,0.0) ); node->AddProperty( "planarfigure.hover.line.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.hover.outline.color", mitk::ColorProperty::New(0.0,1.0,0.0) ); node->AddProperty( "planarfigure.hover.outline.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.hover.helperline.color", mitk::ColorProperty::New(0.0,1.0,0.0) ); node->AddProperty( "planarfigure.hover.helperline.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.hover.markerline.color", mitk::ColorProperty::New(0.0,1.0,0.0) ); node->AddProperty( "planarfigure.hover.markerline.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.hover.marker.color", mitk::ColorProperty::New(0.0,1.0,0.0) ); node->AddProperty( "planarfigure.hover.marker.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.selected.line.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); node->AddProperty( "planarfigure.selected.line.opacity",mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.selected.outline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); node->AddProperty( "planarfigure.selected.outline.opacity", mitk::FloatProperty::New(1.0)); node->AddProperty( "planarfigure.selected.helperline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); node->AddProperty( "planarfigure.selected.helperline.opacity",mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.selected.markerline.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); node->AddProperty( "planarfigure.selected.markerline.opacity", mitk::FloatProperty::New(1.0) ); node->AddProperty( "planarfigure.selected.marker.color", mitk::ColorProperty::New(1.0,0.0,0.0) ); node->AddProperty( "planarfigure.selected.marker.opacity",mitk::FloatProperty::New(1.0)); } void mitk::PlanarFigureMapper2D::RenderControlPoints( mitk::PlanarFigure * planarFigure, PlanarFigureDisplayMode lineDisplayMode, mitk::PlaneGeometry * planarFigurePlaneGeometry, const mitk::PlaneGeometry * rendererPlaneGeometry, mitk::DisplayGeometry * displayGeometry ) { bool isEditable = true; m_DataNode->GetBoolProperty( "planarfigure.iseditable", isEditable ); PlanarFigureDisplayMode pointDisplayMode = PF_DEFAULT; unsigned int selectedControlPointsIdx = (unsigned int) planarFigure->GetSelectedControlPoint(); unsigned int numberOfControlPoints = planarFigure->GetNumberOfControlPoints(); // Draw markers at control points (selected control point will be colored) for ( unsigned int i = 0; i < numberOfControlPoints ; ++i ) { // Only if planar figure is marked as editable: display markers (control points) in a // different style if mouse is over them or they are selected if ( isEditable ) { if ( i == selectedControlPointsIdx ) { pointDisplayMode = PF_SELECTED; } else if ( m_IsHovering && isEditable ) { pointDisplayMode = PF_HOVER; } } if ( m_MarkerOpacity[pointDisplayMode] == 0 && m_MarkerlineOpacity[pointDisplayMode] == 0 ) { continue; } if ( m_DrawOutline ) { // draw outlines for markers as well // linewidth for the contour is only half, as full width looks // much too thick! this->DrawMarker( planarFigure->GetControlPoint( i ), m_OutlineColor[lineDisplayMode], m_MarkerlineOpacity[pointDisplayMode], m_OutlineColor[lineDisplayMode], m_MarkerOpacity[pointDisplayMode], m_OutlineWidth/2, m_ControlPointShape, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); } this->DrawMarker( planarFigure->GetControlPoint( i ), m_MarkerlineColor[pointDisplayMode], m_MarkerlineOpacity[pointDisplayMode], m_MarkerColor[pointDisplayMode], m_MarkerOpacity[pointDisplayMode], m_LineWidth, m_ControlPointShape, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); } if ( planarFigure->IsPreviewControlPointVisible() ) { this->DrawMarker( planarFigure->GetPreviewControlPoint(), m_MarkerlineColor[PF_HOVER], m_MarkerlineOpacity[PF_HOVER], m_MarkerColor[PF_HOVER], m_MarkerOpacity[PF_HOVER], m_LineWidth, m_ControlPointShape, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); } } void mitk::PlanarFigureMapper2D::RenderAnnotations( mitk::BaseRenderer * renderer, std::string name, mitk::Point2D anchorPoint, float globalOpacity, PlanarFigureDisplayMode lineDisplayMode, double &annotationOffset ) { mitk::VtkPropRenderer* openGLrenderer = dynamic_cast( renderer ); if ( openGLrenderer ) { openGLrenderer->WriteSimpleText( name, anchorPoint[0] + 6.0, anchorPoint[1] + 4.0, 0, 0, 0, globalOpacity ); //this is a shadow openGLrenderer->WriteSimpleText( name, anchorPoint[0] + 5.0, anchorPoint[1] + 5.0, m_LineColor[lineDisplayMode][0], m_LineColor[lineDisplayMode][1], m_LineColor[lineDisplayMode][2], globalOpacity ); // If drawing is successful, add approximate height to annotation offset annotationOffset -= 15.0; } } void mitk::PlanarFigureMapper2D::RenderQuantities( mitk::PlanarFigure * planarFigure, mitk::BaseRenderer * renderer, mitk::Point2D anchorPoint, double &annotationOffset, float globalOpacity, PlanarFigureDisplayMode lineDisplayMode ) { std::stringstream quantityString; quantityString.setf( ios::fixed, ios::floatfield ); quantityString.precision( 1 ); bool firstActiveFeature = true; for ( unsigned int i = 0; i < planarFigure->GetNumberOfFeatures(); ++i ) { if( planarFigure->IsFeatureActive(i) && planarFigure->IsFeatureVisible( i ) ) { if ( ! firstActiveFeature ) { quantityString << " x "; } quantityString << planarFigure->GetQuantity( i ) << " "; quantityString << planarFigure->GetFeatureUnit( i ); firstActiveFeature = false; } } mitk::VtkPropRenderer* openGLrenderer = dynamic_cast( renderer ); if ( openGLrenderer ) { openGLrenderer->WriteSimpleText( quantityString.str().c_str(), anchorPoint[0] + 6.0, anchorPoint[1] + 4.0 + annotationOffset, 0, 0, 0, globalOpacity ); //this is a shadow openGLrenderer->WriteSimpleText( quantityString.str().c_str(), anchorPoint[0] + 5.0, anchorPoint[1] + 5.0 + annotationOffset, m_LineColor[lineDisplayMode][0], m_LineColor[lineDisplayMode][1], m_LineColor[lineDisplayMode][2], globalOpacity ); // If drawing is successful, add approximate height to annotation offset annotationOffset -= 15.0; } } void mitk::PlanarFigureMapper2D::RenderLines( PlanarFigureDisplayMode lineDisplayMode, mitk::PlanarFigure * planarFigure, mitk::Point2D &anchorPoint, mitk::PlaneGeometry * planarFigurePlaneGeometry, const mitk::PlaneGeometry * rendererPlaneGeometry, mitk::DisplayGeometry * displayGeometry ) { glLineStipple(1, 0x00FF); // If we want to draw an outline, we do it here if ( m_DrawOutline ) { float* color = m_OutlineColor[lineDisplayMode]; float opacity = m_OutlineOpacity[lineDisplayMode]; // convert to a float array that also contains opacity, faster GL float* colorVector = new float[4]; colorVector[0] = color[0]; colorVector[1] = color[1]; colorVector[2] = color[2]; colorVector[3] = opacity; // set the color and opacity here as it is common for all outlines glColor4fv( colorVector ); glLineWidth(m_OutlineWidth); if (m_DrawDashed) glEnable(GL_LINE_STIPPLE); else glDisable(GL_LINE_STIPPLE); // Draw the outline for all polylines if requested this->DrawMainLines( planarFigure, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); glLineWidth( m_HelperlineWidth ); if (m_DrawHelperDashed) glEnable(GL_LINE_STIPPLE); else glDisable(GL_LINE_STIPPLE); // Draw the outline for all helper objects if requested this->DrawHelperLines( planarFigure, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); // cleanup delete[] colorVector; } // If we want to draw a shadow, we do it here if ( m_DrawShadow ) { // determine the shadow opacity float opacity = m_OutlineOpacity[lineDisplayMode]; float shadowOpacity = 0.0f; if( opacity > 0.2f ) shadowOpacity = opacity - 0.2f; // convert to a float array that also contains opacity, faster GL float* shadow = new float[4]; shadow[0] = 0; shadow[1] = 0; shadow[2] = 0; shadow[3] = shadowOpacity; // set the color and opacity here as it is common for all shadows glColor4fv( shadow ); glLineWidth( m_OutlineWidth * m_ShadowWidthFactor ); if (m_DrawDashed) glEnable(GL_LINE_STIPPLE); else glDisable(GL_LINE_STIPPLE); // Draw the outline for all polylines if requested this->DrawMainLines( planarFigure, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); glLineWidth( m_HelperlineWidth ); if (m_DrawHelperDashed) glEnable(GL_LINE_STIPPLE); else glDisable(GL_LINE_STIPPLE); // Draw the outline for all helper objects if requested this->DrawHelperLines( planarFigure, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); // cleanup delete[] shadow; } // set this in brackets to avoid duplicate variables in the same scope { float* color = m_LineColor[lineDisplayMode]; float opacity = m_LineOpacity[lineDisplayMode]; // convert to a float array that also contains opacity, faster GL float* colorVector = new float[4]; colorVector[0] = color[0]; colorVector[1] = color[1]; colorVector[2] = color[2]; colorVector[3] = opacity; // set the color and opacity here as it is common for all mainlines glColor4fv( colorVector ); glLineWidth( m_LineWidth ); if (m_DrawDashed) glEnable(GL_LINE_STIPPLE); else glDisable(GL_LINE_STIPPLE); // Draw the main line for all polylines this->DrawMainLines( planarFigure, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); float* helperColor = m_HelperlineColor[lineDisplayMode]; float helperOpacity = m_HelperlineOpacity[lineDisplayMode]; // convert to a float array that also contains opacity, faster GL float* helperColorVector = new float[4]; helperColorVector[0] = helperColor[0]; helperColorVector[1] = helperColor[1]; helperColorVector[2] = helperColor[2]; helperColorVector[3] = helperOpacity; // we only set the color for the helperlines as the linewidth is unchanged glColor4fv( helperColorVector ); glLineWidth( m_HelperlineWidth ); if (m_DrawHelperDashed) glEnable(GL_LINE_STIPPLE); else glDisable(GL_LINE_STIPPLE); // Draw helper objects this->DrawHelperLines( planarFigure, anchorPoint, planarFigurePlaneGeometry, rendererPlaneGeometry, displayGeometry ); // cleanup delete[] colorVector; delete[] helperColorVector; } if ( m_DrawDashed || m_DrawHelperDashed ) glDisable(GL_LINE_STIPPLE); } diff --git a/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp b/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp index 10f5872f65..621e7adbce 100644 --- a/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp +++ b/Modules/PlanarFigure/Rendering/mitkPlanarFigureVtkMapper3D.cpp @@ -1,189 +1,189 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigureVtkMapper3D.h" #include #include #include #include #include #include #include mitk::PlanarFigureVtkMapper3D::LocalStorage::LocalStorage() : m_Actor(vtkSmartPointer::New()), m_LastMTime(0) { } mitk::PlanarFigureVtkMapper3D::LocalStorage::~LocalStorage() { } void mitk::PlanarFigureVtkMapper3D::SetDefaultProperties(DataNode*, BaseRenderer*, bool) { } mitk::PlanarFigureVtkMapper3D::PlanarFigureVtkMapper3D() { } mitk::PlanarFigureVtkMapper3D::~PlanarFigureVtkMapper3D() { } void mitk::PlanarFigureVtkMapper3D::ApplyColorAndOpacityProperties(BaseRenderer* renderer, vtkActor* actor) { if (actor == NULL) return; mitk::DataNode* dataNode = this->GetDataNode(); if (dataNode == NULL) return; bool selected = false; dataNode->GetBoolProperty("selected", selected, renderer); float color[3]; dataNode->GetColor(color, renderer, selected ? "planarfigure.selected.line.color" : "color"); float opacity = 1.0f; dataNode->GetOpacity(opacity, renderer); vtkProperty* property = actor->GetProperty(); property->SetColor(color[0], color[1], color[2]); property->SetOpacity(opacity); } void mitk::PlanarFigureVtkMapper3D::ApplyPlanarFigureProperties(BaseRenderer* renderer, vtkActor* actor) { if (actor == NULL) return; mitk::DataNode* dataNode = this->GetDataNode(); if (dataNode == NULL) return; bool render = false; dataNode->GetBoolProperty("planarfigure.3drendering", render); actor->SetVisibility(render); float lineWidth = 1.0f; dataNode->GetFloatProperty("planarfigure.line.width", lineWidth, renderer); vtkProperty* property = actor->GetProperty(); property->SetLineWidth(lineWidth); } void mitk::PlanarFigureVtkMapper3D::GenerateDataForRenderer(BaseRenderer* renderer) { typedef PlanarFigure::PolyLineType PolyLine; DataNode* node = this->GetDataNode(); if (node == NULL) return; PlanarFigure* planarFigure = dynamic_cast(node->GetData()); if (planarFigure == NULL || !planarFigure->IsPlaced()) return; LocalStorage* localStorage = m_LocalStorageHandler.GetLocalStorage(renderer); unsigned long mTime = planarFigure->GetMTime(); if (mTime > localStorage->m_LastMTime) { localStorage->m_LastMTime = mTime; const PlaneGeometry* planeGeometry = dynamic_cast(planarFigure->GetPlaneGeometry()); if (planeGeometry == NULL) return; size_t numPolyLines = planarFigure->GetPolyLinesSize(); if (numPolyLines == 0) return; vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer cells = vtkSmartPointer::New(); vtkIdType baseIndex = 0; for (size_t i = 0; i < numPolyLines; ++i) { PolyLine polyLine = planarFigure->GetPolyLine(i); vtkIdType numPoints = polyLine.size(); if (numPoints < 2) continue; PolyLine::const_iterator polyLineEnd = polyLine.end(); for (PolyLine::const_iterator polyLineIt = polyLine.begin(); polyLineIt != polyLineEnd; ++polyLineIt) { Point3D point; - planeGeometry->Map(polyLineIt->Point, point); + planeGeometry->Map(*polyLineIt, point); points->InsertNextPoint(point.GetDataPointer()); } vtkSmartPointer line = vtkSmartPointer::New(); vtkIdList* pointIds = line->GetPointIds(); if (planarFigure->IsClosed() && numPoints > 2) { pointIds->SetNumberOfIds(numPoints + 1); pointIds->SetId(numPoints, baseIndex); } else { pointIds->SetNumberOfIds(numPoints); } for (vtkIdType j = 0; j < numPoints; ++j) pointIds->SetId(j, baseIndex + j); cells->InsertNextCell(line); baseIndex += points->GetNumberOfPoints(); } vtkSmartPointer polyData = vtkSmartPointer::New(); polyData->SetPoints(points); polyData->SetLines(cells); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputData(polyData); localStorage->m_Actor->SetMapper(mapper); } this->ApplyColorAndOpacityProperties(renderer, localStorage->m_Actor); this->ApplyPlanarFigureProperties(renderer, localStorage->m_Actor); } vtkProp* mitk::PlanarFigureVtkMapper3D::GetVtkProp(BaseRenderer* renderer) { return m_LocalStorageHandler.GetLocalStorage(renderer)->m_Actor; } void mitk::PlanarFigureVtkMapper3D::UpdateVtkTransform(BaseRenderer*) { } diff --git a/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp b/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp index 65f3bf17d7..8482b3611e 100644 --- a/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp +++ b/Modules/PlanarFigure/Testing/mitkPlanarArrowTest.cpp @@ -1,95 +1,95 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include "mitkPlanarArrow.h" #include "mitkPlaneGeometry.h" class mitkPlanarArrowTestClass { public: static void TestPlanarArrowPlacement( mitk::PlanarArrow::Pointer PlanarArrow ) { // Test for correct minimum number of control points in cross-mode MITK_TEST_CONDITION( PlanarArrow->GetMinimumNumberOfControlPoints() == 2, "Minimum number of control points" ); // Test for correct maximum number of control points in cross-mode MITK_TEST_CONDITION( PlanarArrow->GetMaximumNumberOfControlPoints() == 2, "Maximum number of control points" ); // Initial placement of PlanarArrow mitk::Point2D p0; p0[0] = 00.0; p0[1] = 0.0; PlanarArrow->PlaceFigure( p0 ); // Add second control point mitk::Point2D p1; p1[0] = 50.0; p1[1] = 00.0; PlanarArrow->SetControlPoint(1, p1 ); // Test for number of control points MITK_TEST_CONDITION( PlanarArrow->GetNumberOfControlPoints() == 2, "Number of control points after placement" ); // Test for number of polylines const mitk::PlanarFigure::PolyLineType polyLine0 = PlanarArrow->GetPolyLine( 0 ); mitk::PlanarFigure::PolyLineType::const_iterator iter = polyLine0.begin(); MITK_TEST_CONDITION( PlanarArrow->GetPolyLinesSize() == 1, "Number of polylines after placement" ); // Get polylines and check if the generated coordinates are OK - const mitk::Point2D& pp0 = iter->Point; + const mitk::Point2D& pp0 = *iter; iter++; - const mitk::Point2D& pp1 = iter->Point; + const mitk::Point2D& pp1 = *iter; MITK_TEST_CONDITION( (pp0 == p0) && (pp1 == p1), "Correct polyline 1" ); // Test for number of measurement features // none yet } }; /** * mitkPlanarArrowTest tests the methods and behavior of mitk::PlanarArrow with sub-tests: * * 1. Instantiation and basic tests * */ int mitkPlanarArrowTest(int /* argc */, char* /*argv*/[]) { // always start with this! MITK_TEST_BEGIN("PlanarArrow") // create PlaneGeometry on which to place the PlanarArrow mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( 100.0, 100.0 ); // ************************************************************************** // 1. Instantiation and basic tests mitk::PlanarArrow::Pointer PlanarArrow = mitk::PlanarArrow::New(); PlanarArrow->SetPlaneGeometry( planeGeometry ); // first test: did this work? MITK_TEST_CONDITION_REQUIRED( PlanarArrow.IsNotNull(), "Testing instantiation" ); // Test placement of PlanarArrow by control points mitkPlanarArrowTestClass::TestPlanarArrowPlacement( PlanarArrow ); // always end with this! MITK_TEST_END(); } diff --git a/Modules/PlanarFigure/Testing/mitkPlanarCrossTest.cpp b/Modules/PlanarFigure/Testing/mitkPlanarCrossTest.cpp index b7d804974f..50cd628a9f 100644 --- a/Modules/PlanarFigure/Testing/mitkPlanarCrossTest.cpp +++ b/Modules/PlanarFigure/Testing/mitkPlanarCrossTest.cpp @@ -1,417 +1,417 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include "mitkPlanarCross.h" #include "mitkPlaneGeometry.h" class mitkPlanarCrossTestClass { public: static void TestPlanarCrossPlacement( mitk::PlanarCross::Pointer planarCross ) { // Test for correct minimum number of control points in cross-mode MITK_TEST_CONDITION( planarCross->GetMinimumNumberOfControlPoints() == 4, "Minimum number of control points" ); // Test for correct maximum number of control points in cross-mode MITK_TEST_CONDITION( planarCross->GetMaximumNumberOfControlPoints() == 4, "Maximum number of control points" ); // Initial placement of PlanarCross mitk::Point2D p0; p0[0] = 20.0; p0[1] = 20.0; planarCross->PlaceFigure( p0 ); // Add second control point mitk::Point2D p1; p1[0] = 80.0; p1[1] = 80.0; planarCross->SetCurrentControlPoint( p1 ); // Add third control point mitk::Point2D p2; p2[0] = 90.0; p2[1] = 10.0; planarCross->AddControlPoint( p2 ); // Test if helper polyline is generated const mitk::PlanarFigure::PolyLineType helperPolyLine = planarCross->GetHelperPolyLine( 0, 1.0, 100 ); MITK_TEST_CONDITION( planarCross->GetHelperPolyLinesSize() == 1, "Number of helper polylines after placing 3 points" ); // Test if helper polyline is marked as "to be painted" MITK_TEST_CONDITION( planarCross->IsHelperToBePainted( 0 ), "Helper line to be painted after placing 3 points" ); // Test if helper polyline is orthogonal to first line mitk::Vector2D v0 = p1 - p0; v0.Normalize(); // TODO: make it work again //mitk::Vector2D hv = helperPolyLine->ElementAt( 1 ) - helperPolyLine->ElementAt( 0 ); //hv.Normalize(); //MITK_TEST_CONDITION( fabs(v0 * hv) < mitk::eps, "Helper line is orthogonal to first line" ); //// Test if helper polyline is placed correctly //mitk::Vector2D hv1 = helperPolyLine->ElementAt( 1 ) - p2; //hv1.Normalize(); //MITK_TEST_CONDITION( fabs(hv * hv1 - 1.0) < mitk::eps, "Helper line is aligned to third point" ); // Add fourth control point mitk::Point2D p3; p3[0] = 10.0; p3[1] = 90.0; planarCross->AddControlPoint( p3 ); // Test for number of control points MITK_TEST_CONDITION( planarCross->GetNumberOfControlPoints() == 4, "Number of control points after placement" ); // Test if PlanarFigure is closed MITK_TEST_CONDITION( !planarCross->IsClosed(), "Is PlanarFigure closed?" ); // Test if helper polyline is no longer marked as "to be painted" MITK_TEST_CONDITION( planarCross->IsHelperToBePainted( 0 ), "Helper line no longer to be painted after placement of all 4 points" ); // Test for number of polylines const mitk::PlanarFigure::PolyLineType polyLine0 = planarCross->GetPolyLine( 0 ); const mitk::PlanarFigure::PolyLineType polyLine1 = planarCross->GetPolyLine( 1 ); MITK_TEST_CONDITION( planarCross->GetPolyLinesSize() == 2, "Number of polylines after placement" ); mitk::PlanarFigure::PolyLineType::const_iterator iter0 = polyLine0.begin(); mitk::PlanarFigure::PolyLineType::const_iterator iter1 = polyLine1.begin(); // Get polylines and check if the generated coordinates are OK - const mitk::Point2D& pp0 = iter0->Point; + const mitk::Point2D& pp0 = *iter0; iter0++; - const mitk::Point2D& pp1 = iter0->Point; + const mitk::Point2D& pp1 = *iter0; MITK_TEST_CONDITION( ((pp0 == p0) && (pp1 == p1)) || ((pp0 == p1) && (pp1 == p0)), "Correct polyline 1" ); - const mitk::Point2D& pp2 = iter1->Point; + const mitk::Point2D& pp2 = *iter1; iter1++; - const mitk::Point2D& pp3 = iter1->Point; + const mitk::Point2D& pp3 = *iter1; MITK_TEST_CONDITION( ((pp2 == p2) && (pp3 == p3)) || ((pp2 == p3) && (pp3 == p2)), "Correct polyline 2" ); // Test for number of measurement features planarCross->EvaluateFeatures(); MITK_TEST_CONDITION( planarCross->GetNumberOfFeatures() == 2, "Number of measurement features" ); // Test for correct feature evaluation double length0 = sqrt( 80.0 * 80.0 * 2.0 ); MITK_TEST_CONDITION( fabs( planarCross->GetQuantity( 0 ) - length0) < mitk::eps, "Size of longest diameter" ); double length1 = sqrt( 60.0 * 60.0 * 2.0 ); MITK_TEST_CONDITION( fabs( planarCross->GetQuantity( 1 ) - length1) < mitk::eps, "Size of short axis diameter" ); } static void TestPlanarCrossPlacementSingleLine(mitk::PlanarCross::Pointer planarCross) { // Test for correct minimum number of control points in cross-mode MITK_TEST_CONDITION( planarCross->GetMinimumNumberOfControlPoints() == 2, "Minimum number of control points" ); // Test for correct maximum number of control points in cross-mode MITK_TEST_CONDITION( planarCross->GetMaximumNumberOfControlPoints() == 2, "Maximum number of control points" ); // Initial placement of PlanarCross mitk::Point2D p0; p0[0] = 25.0; p0[1] = 10.0; planarCross->PlaceFigure( p0 ); // Add second control point mitk::Point2D p1; p1[0] = 30.0; p1[1] = 60.0; planarCross->SetCurrentControlPoint( p1 ); // Verify that no helper line is drawn MITK_TEST_CONDITION( planarCross->IsHelperToBePainted( 0 ) == false, "No helper line to be painted in single-line mode" ); // Test for number of control points MITK_TEST_CONDITION( planarCross->GetNumberOfControlPoints() == 2, "Number of control points after placement" ); // Test if PlanarFigure is closed MITK_TEST_CONDITION( !planarCross->IsClosed(), "Is PlanarFigure closed?" ); // Test for number of polylines const mitk::PlanarFigure::PolyLineType polyLine0 = planarCross->GetPolyLine( 0 ); mitk::PlanarFigure::PolyLineType::const_iterator iter = polyLine0.begin(); MITK_TEST_CONDITION( planarCross->GetPolyLinesSize() == 1, "Number of polylines after placement" ); // Get polylines and check if the generated coordinates are OK - const mitk::Point2D& pp0 = iter->Point; + const mitk::Point2D& pp0 = *iter; iter++; - const mitk::Point2D& pp1 = iter->Point; + const mitk::Point2D& pp1 = *iter; MITK_TEST_CONDITION( ((pp0 == p0) && (pp1 == p1)) || ((pp0 == p1) && (pp1 == p0)), "Correct polyline 1" ); // Test for number of measurement features planarCross->EvaluateFeatures(); MITK_TEST_CONDITION( planarCross->GetNumberOfFeatures() == 1, "Number of measurement features" ); // Test for correct feature evaluation double length0 = sqrt( 5.0 * 5.0 + 50.0 * 50.0 ); MITK_TEST_CONDITION( fabs( planarCross->GetQuantity( 0 ) - length0) < mitk::eps, "Size of diameter" ); // Test if reset called on single-line PlanarCross returns false (nothing to reset) MITK_TEST_CONDITION( planarCross->ResetOnPointSelect() == false, "Single-line PlanarCross should not be reset on point edit" ); } static void TestPlanarCrossPlacementConstrained(mitk::PlanarCross::Pointer planarCross) { // ************************************************************************** // Place first control point out of bounds (to the left of the image bounds) mitk::Point2D p0; p0[0] = -20.0; p0[1] = 20.0; planarCross->PlaceFigure( p0 ); // Test if constraint has been applied correctly mitk::Point2D cp0 = planarCross->GetControlPoint( 0 ); MITK_TEST_CONDITION( (fabs(cp0[0]) < mitk::eps) && (fabs(cp0[1] - 20.0) < mitk::eps), "Point1 placed and constrained correctly" ); // ************************************************************************** // Add second control point out of bounds (to the top of the image bounds) mitk::Point2D p1; p1[0] = 80.0; p1[1] = 120.0; planarCross->SetCurrentControlPoint( p1 ); // Test if constraint has been applied correctly mitk::Point2D cp1 = planarCross->GetControlPoint( 1 ); MITK_TEST_CONDITION( (fabs(cp1[0] - 80.0) < mitk::eps) && (fabs(cp1[1] - 100.0) < mitk::eps), "Point2 placed and constrained correctly" ); // ************************************************************************** // Add third control point out of bounds (outside of channel defined by first line) mitk::Point2D p2; p2[0] = 100.0; p2[1] = 100.0; planarCross->AddControlPoint( p2 ); // Test if constraint has been applied correctly (100.0, 100.0) must be projected to (90.0, 90.0) mitk::Point2D cp2 = planarCross->GetControlPoint( 2 ); MITK_TEST_CONDITION( (fabs(cp2[0] - 90.0) < mitk::eps) && (fabs(cp2[1] - 90.0) < mitk::eps), "Point3 placed and constrained correctly" ); // Move third control point (within channel defined by first line) p2[0] = 40.0; p2[1] = 20.0; planarCross->SetControlPoint( 2, p2 ); // Test if point is still at this position (no constrained should be applied) cp2 = planarCross->GetControlPoint( 2 ); MITK_TEST_CONDITION( (fabs(cp2[0] - 40.0) < mitk::eps) && (fabs(cp2[1] - 20.0) < mitk::eps), "Point3 moved correctly" ); // ************************************************************************** // Add fourth control point out of bounds (outside of line defined by first line and third point) mitk::Point2D p3; p3[0] = 20.0; p3[1] = 60.0; planarCross->AddControlPoint( p3 ); // Test if constraint has been applied correctly (20.0, 60.0) must be projected to (10.0, 50.0) mitk::Point2D cp3 = planarCross->GetControlPoint( 3 ); MITK_TEST_CONDITION( (fabs(cp3[0] - 10.0) < mitk::eps) && (fabs(cp3[1] - 50.0) < mitk::eps), "Point4 placed and constrained correctly" ); // Move fourth control point (to a position which would result in two non-intersecting line // without the constraint that lines have to intersect) p3[0] = 40.0; p3[1] = 30.0; planarCross->SetControlPoint( 3, p3 ); // Test if constrained point is on the projected intersection point of both lines (20.0/40.0) cp3 = planarCross->GetControlPoint( 3 ); MITK_TEST_CONDITION( (fabs(cp3[0] - 20.0) < mitk::eps) && (fabs(cp3[1] - 40.0) < mitk::eps), "Point4 placed and constrained correctly" ); } static void TestPlanarCrossEdit(mitk::PlanarCross::Pointer planarCross) { // * point move (different points) // --> reset // --> test which point is where / evaluation mitk::Point2D p0 = planarCross->GetControlPoint( 0 ); mitk::Point2D p1 = planarCross->GetControlPoint( 1 ); mitk::Point2D p2 = planarCross->GetControlPoint( 2 ); mitk::Point2D p3 = planarCross->GetControlPoint( 3 ); // ************************************************************************** // Edit control point 0 planarCross->SelectControlPoint( 0 ); // Request reset and check if it is done MITK_TEST_CONDITION( planarCross->ResetOnPointSelect(), "Editing control point 0: Double-line PlanarCross should be reset" ); // Check number of control points MITK_TEST_CONDITION( planarCross->GetNumberOfControlPoints() == 2, "Two control points are left" ); // Check if correct control points have been left MITK_TEST_CONDITION( (planarCross->GetControlPoint( 0 ).EuclideanDistanceTo( p1 ) < mitk::eps) && (planarCross->GetControlPoint( 1 ).EuclideanDistanceTo( p0 ) < mitk::eps), "Reset to expected control points (p1, p0)" ); // Reset planar cross to original values ResetPlanarCross( planarCross, p0, p1, p2, p3 ); // ************************************************************************** // Edit control point 1 planarCross->SelectControlPoint( 1 ); // Request reset and check if it is done MITK_TEST_CONDITION( planarCross->ResetOnPointSelect(), "Editing control point 1: Double-line PlanarCross should be reset" ); // Check number of control points MITK_TEST_CONDITION( planarCross->GetNumberOfControlPoints() == 2, "Two control points are left" ); // Check if correct control points have been left MITK_TEST_CONDITION( (planarCross->GetControlPoint( 0 ).EuclideanDistanceTo( p0 ) < mitk::eps) && (planarCross->GetControlPoint( 1 ).EuclideanDistanceTo( p1 ) < mitk::eps), "Reset to expected control points (p0, p1)" ); // Reset planar cross to original values ResetPlanarCross( planarCross, p0, p1, p2, p3 ); // ************************************************************************** // Edit control point 2 planarCross->SelectControlPoint( 2 ); // Request reset and check if it is done MITK_TEST_CONDITION( planarCross->ResetOnPointSelect(), "Editing control point 2: Double-line PlanarCross should be reset" ); // Check number of control points MITK_TEST_CONDITION( planarCross->GetNumberOfControlPoints() == 2, "Two control points are left" ); // Check if correct control points have been left MITK_TEST_CONDITION( (planarCross->GetControlPoint( 0 ).EuclideanDistanceTo( p3 ) < mitk::eps) && (planarCross->GetControlPoint( 1 ).EuclideanDistanceTo( p2 ) < mitk::eps), "Reset to expected control points (p3, p2)" ); // Reset planar cross to original values ResetPlanarCross( planarCross, p0, p1, p2, p3 ); // ************************************************************************** // Edit control point 3 planarCross->SelectControlPoint( 3 ); // Request reset and check if it is done MITK_TEST_CONDITION( planarCross->ResetOnPointSelect(), "Editing control point 3: Double-line PlanarCross should be reset" ); // Check number of control points MITK_TEST_CONDITION( planarCross->GetNumberOfControlPoints() == 2, "Two control points are left" ); // Check if correct control points have been left MITK_TEST_CONDITION( (planarCross->GetControlPoint( 0 ).EuclideanDistanceTo( p2 ) < mitk::eps) && (planarCross->GetControlPoint( 1 ).EuclideanDistanceTo( p3 ) < mitk::eps), "Reset to expected control points (p2, p3)" ); } static void ResetPlanarCross( mitk::PlanarCross::Pointer planarCross, mitk::Point2D p0, mitk::Point2D p1, mitk::Point2D p2, mitk::Point2D p3 ) { planarCross->SetControlPoint( 0, p0, true ); planarCross->SetControlPoint( 1, p1, true ); planarCross->SetControlPoint( 2, p2, true ); planarCross->SetControlPoint( 3, p3, true ); } }; /** * mitkPlanarCrossTest tests the methods and behavior of mitk::PlanarCross with four sub-tests: * * 1. Double-line mode instantiation and basic tests * 2. Single-line mode instantiation and basic tests * 3. Tests of application of spatial constraints for double-line mode * 4. Tests if editing of PlanarCross works as intended * */ int mitkPlanarCrossTest(int /* argc */, char* /*argv*/[]) { // always start with this! MITK_TEST_BEGIN("PlanarCross") // create PlaneGeometry on which to place the PlanarCross mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( 100.0, 100.0 ); // ************************************************************************** // 1. Double-line mode instantiation and basic tests mitk::PlanarCross::Pointer planarCross = mitk::PlanarCross::New(); planarCross->SetPlaneGeometry( planeGeometry ); // first test: did this work? MITK_TEST_CONDITION_REQUIRED( planarCross.IsNotNull(), "Testing instantiation" ); // test: default cross-mode (not single-line-mode)? MITK_TEST_CONDITION_REQUIRED( !planarCross->GetSingleLineMode(), "Testing default cross mode" ); // Test placement of PlanarCross by control points mitkPlanarCrossTestClass::TestPlanarCrossPlacement( planarCross ); // ************************************************************************** // 2. Single-line mode instantiation and basic tests planarCross = mitk::PlanarCross::New(); planarCross->SingleLineModeOn(); planarCross->SetPlaneGeometry( planeGeometry ); // test: single-line mode? MITK_TEST_CONDITION_REQUIRED( planarCross->GetSingleLineMode(), "Testing activation of single-line mode" ); // Test placement of single-line PlanarCross by control points mitkPlanarCrossTestClass::TestPlanarCrossPlacementSingleLine( planarCross ); // ************************************************************************** // 3. Tests of application of spatial constraints for double-line mode planarCross = mitk::PlanarCross::New(); planarCross->SetPlaneGeometry( planeGeometry ); // Test placement with various out-of-bounds control points (automatic application of // constraints expected) mitkPlanarCrossTestClass::TestPlanarCrossPlacementConstrained( planarCross ); // ************************************************************************** // 4. Tests if editing of PlanarCross works as intended mitkPlanarCrossTestClass::TestPlanarCrossEdit( planarCross ); // always end with this! MITK_TEST_END() } diff --git a/Modules/PlanarFigure/Testing/mitkPlanarPolygonTest.cpp b/Modules/PlanarFigure/Testing/mitkPlanarPolygonTest.cpp index 0ea327c963..4c08fd47ec 100644 --- a/Modules/PlanarFigure/Testing/mitkPlanarPolygonTest.cpp +++ b/Modules/PlanarFigure/Testing/mitkPlanarPolygonTest.cpp @@ -1,151 +1,151 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include "mitkPlanarPolygon.h" #include "mitkPlaneGeometry.h" class mitkPlanarPolygonTestClass { public: static void TestPlanarPolygonPlacement( mitk::PlanarPolygon::Pointer planarPolygon ) { // Test for correct minimum number of control points in cross-mode MITK_TEST_CONDITION( planarPolygon->GetMinimumNumberOfControlPoints() == 3, "Minimum number of control points" ); // Test for correct maximum number of control points in cross-mode MITK_TEST_CONDITION( planarPolygon->GetMaximumNumberOfControlPoints() == 1000, "Maximum number of control points" ); // Initial placement of PlanarPolygon mitk::Point2D p0; p0[0] = 00.0; p0[1] = 0.0; planarPolygon->PlaceFigure( p0 ); // Add second control point mitk::Point2D p1; p1[0] = 50.0; p1[1] = 00.0; planarPolygon->SetControlPoint(1, p1 ); // Add third control point mitk::Point2D p2; p2[0] = 50.0; p2[1] = 50.0; planarPolygon->AddControlPoint( p2 ); // Add fourth control point mitk::Point2D p3; p3[0] = 0.0; p3[1] = 50.0; planarPolygon->AddControlPoint( p3 ); // Test for number of control points MITK_TEST_CONDITION( planarPolygon->GetNumberOfControlPoints() == 4, "Number of control points after placement" ); // Test if PlanarFigure is closed MITK_TEST_CONDITION( planarPolygon->IsClosed(), "planar polygon should not be closed, yet, right?" ); planarPolygon->SetClosed(true); MITK_TEST_CONDITION( planarPolygon->IsClosed(), "planar polygon should be closed after function call, right?" ); // Test for number of polylines const mitk::PlanarFigure::PolyLineType polyLine0 = planarPolygon->GetPolyLine( 0 ); mitk::PlanarFigure::PolyLineType::const_iterator iter = polyLine0.begin(); MITK_TEST_CONDITION( planarPolygon->GetPolyLinesSize() == 1, "Number of polylines after placement" ); // Get polylines and check if the generated coordinates are OK - const mitk::Point2D& pp0 = iter->Point; + const mitk::Point2D& pp0 = *iter; ++iter; - const mitk::Point2D& pp1 = iter->Point; + const mitk::Point2D& pp1 = *iter; MITK_TEST_CONDITION( ((pp0 == p0) && (pp1 == p1)) || ((pp0 == p1) && (pp1 == p0)), "Correct polyline 1" ); // Test for number of measurement features planarPolygon->EvaluateFeatures(); MITK_TEST_CONDITION( planarPolygon->GetNumberOfFeatures() == 2, "Number of measurement features" ); // Test for correct feature evaluation double length0 = 4 * 50.0; // circumference MITK_TEST_CONDITION( fabs( planarPolygon->GetQuantity( 0 ) - length0) < mitk::eps, "Size of longest diameter" ); double length1 = 50.0 * 50.0 ; // area MITK_TEST_CONDITION( fabs( planarPolygon->GetQuantity( 1 ) - length1) < mitk::eps, "Size of short axis diameter" ); } static void TestPlanarPolygonEditing( mitk::PlanarPolygon::Pointer planarPolygon ) { unsigned int initialNumberOfControlPoints = planarPolygon->GetNumberOfControlPoints(); mitk::Point2D pnt; pnt[0] = 75.0; pnt[1] = 25.0; planarPolygon->AddControlPoint( pnt); MITK_TEST_CONDITION( planarPolygon->GetNumberOfControlPoints() == initialNumberOfControlPoints+1, "A new control-point shall be added" ); MITK_TEST_CONDITION( planarPolygon->GetControlPoint( planarPolygon->GetNumberOfControlPoints()-1 ) == pnt, "Control-point shall be added at the end." ); planarPolygon->RemoveControlPoint( 3 ); MITK_TEST_CONDITION( planarPolygon->GetNumberOfControlPoints() == initialNumberOfControlPoints, "A control-point has been removed" ); MITK_TEST_CONDITION( planarPolygon->GetControlPoint( 3 ) == pnt, "It shall be possible to remove any control-point." ); planarPolygon->RemoveControlPoint( 0 ); planarPolygon->RemoveControlPoint( 0 ); planarPolygon->RemoveControlPoint( 0 ); MITK_TEST_CONDITION( planarPolygon->GetNumberOfControlPoints() == 3, "Control-points cannot be removed if only three points remain." ); mitk::Point2D pnt1; pnt1[0] = 33.0; pnt1[1] = 33.0; planarPolygon->AddControlPoint( pnt1, 0 ); MITK_TEST_CONDITION( planarPolygon->GetNumberOfControlPoints() == 4, "A control-point has been added" ); MITK_TEST_CONDITION( planarPolygon->GetControlPoint( 0 ) == pnt1, "It shall be possible to insert a control-point at any position." ); } }; /** * mitkplanarPolygonTest tests the methods and behavior of mitk::PlanarPolygon with sub-tests: * * 1. Instantiation and basic tests, including feature evaluation * */ int mitkPlanarPolygonTest(int /* argc */, char* /*argv*/[]) { // always start with this! MITK_TEST_BEGIN("planarPolygon") // create PlaneGeometry on which to place the planarPolygon mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( 100.0, 100.0 ); // ************************************************************************** // 1. Instantiation and basic tests, including feature evaluation mitk::PlanarPolygon::Pointer planarPolygon = mitk::PlanarPolygon::New(); planarPolygon->SetPlaneGeometry( planeGeometry ); // first test: did this work? MITK_TEST_CONDITION_REQUIRED( planarPolygon.IsNotNull(), "Testing instantiation" ); // Test placement of planarPolygon by control points mitkPlanarPolygonTestClass::TestPlanarPolygonPlacement( planarPolygon ); mitkPlanarPolygonTestClass::TestPlanarPolygonEditing( planarPolygon ); // always end with this! MITK_TEST_END(); } diff --git a/Modules/PlanarFigure/Testing/mitkPlanarSubdivisionPolygonTest.cpp b/Modules/PlanarFigure/Testing/mitkPlanarSubdivisionPolygonTest.cpp index 973796119c..8d1990729c 100644 --- a/Modules/PlanarFigure/Testing/mitkPlanarSubdivisionPolygonTest.cpp +++ b/Modules/PlanarFigure/Testing/mitkPlanarSubdivisionPolygonTest.cpp @@ -1,195 +1,195 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include "mitkPlanarSubdivisionPolygon.h" #include "mitkPlaneGeometry.h" #include "mitkProperties.h" class mitkPlanarSubdivisionPolygonTestClass { public: static void TestPlanarSubdivisionPolygonPlacement( mitk::PlanarSubdivisionPolygon::Pointer planarSubdivisionPolygon ) { // Test for correct minimum number of control points in cross-mode MITK_TEST_CONDITION( planarSubdivisionPolygon->GetMinimumNumberOfControlPoints() == 3, "Minimum number of control points" ); // Test for correct maximum number of control points in cross-mode MITK_TEST_CONDITION( planarSubdivisionPolygon->GetMaximumNumberOfControlPoints() == 1000, "Maximum number of control points" ); // Test for correct rounds of subdivisionPoints MITK_TEST_CONDITION( planarSubdivisionPolygon->GetSubdivisionRounds() == 5, "Subdivision point generation depth" ); // Test for correct tension parameter MITK_TEST_CONDITION( planarSubdivisionPolygon->GetTensionParameter() == 0.0625, "Tension parameter" ); planarSubdivisionPolygon->SetProperty( "initiallyplaced", mitk::BoolProperty::New( true ) ); // Initial placement of planarSubdivisionPolygon mitk::Point2D p0; p0[0] = 25.0; p0[1] = 25.0; planarSubdivisionPolygon->PlaceFigure( p0 ); // Add second control point mitk::Point2D p1; p1[0] = 75.0; p1[1] = 25.0; planarSubdivisionPolygon->SetControlPoint(1, p1 ); // Add third control point mitk::Point2D p2; p2[0] = 75.0; p2[1] = 75.0; planarSubdivisionPolygon->AddControlPoint( p2 ); // Add fourth control point mitk::Point2D p3; p3[0] = 25.0; p3[1] = 75.0; planarSubdivisionPolygon->AddControlPoint( p3 ); // Test for number of control points MITK_TEST_CONDITION( planarSubdivisionPolygon->GetNumberOfControlPoints() == 4, "Number of control points after placement" ); // Test if PlanarFigure is closed MITK_TEST_CONDITION( planarSubdivisionPolygon->IsClosed(), "Test if property 'closed' is set by default" ); // Test for number of polylines const mitk::PlanarFigure::PolyLineType polyLine0 = planarSubdivisionPolygon->GetPolyLine( 0 ); mitk::PlanarFigure::PolyLineType::const_iterator iter = polyLine0.begin(); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetPolyLinesSize() == 1, "Number of polylines after placement" ); // Test if subdivision point count is correct MITK_TEST_CONDITION( polyLine0.size() == 128, "correct number of subdivision points for this depth level" ); // Test if control points are in correct order between subdivision points bool correctPoint = true; iter = polyLine0.begin(); - if( iter->Point != p0 ){ correctPoint = false; } + if( static_cast(*iter) != p0 ){ correctPoint = false; } advance(iter, 32); - if( iter->Point != p1 ){ correctPoint = false; } + if( static_cast(*iter) != p1 ){ correctPoint = false; } advance(iter, 32); - if( iter->Point != p2 ){ correctPoint = false; } + if( static_cast(*iter) != p2 ){ correctPoint = false; } advance(iter, 32); - if( iter->Point != p3 ){ correctPoint = false; } + if( static_cast(*iter) != p3 ){ correctPoint = false; } MITK_TEST_CONDITION( correctPoint, "Test if control points are in correct order in polyline" ); // Test if a picked point has the correct coordinates correctPoint = true; mitk::Point2D testPoint; testPoint[0] = 81.25; testPoint[1] = 48.243; iter = polyLine0.begin(); advance(iter, 47); mitk::ScalarType testEps = 1E-5; - if( (iter->Point[0] - testPoint[0]) + (iter->Point[1] - testPoint[1]) > testEps ){ correctPoint = false; } + if( (static_cast(*iter)[0] - testPoint[0]) + (static_cast(*iter)[1] - testPoint[1]) > testEps ){ correctPoint = false; } testPoint[0] = 39.624; testPoint[1] = 19.3268; iter = polyLine0.begin(); advance(iter, 10); - if( (iter->Point[0] - testPoint[0]) + (iter->Point[1] - testPoint[1]) > testEps ){ correctPoint = false; } + if( (static_cast(*iter)[0] - testPoint[0]) + (static_cast(*iter)[1] - testPoint[1]) > testEps ){ correctPoint = false; } testPoint[0] = 71.2887; testPoint[1] = 77.5248; iter = polyLine0.begin(); advance(iter, 67); - if( (iter->Point[0] - testPoint[0]) + (iter->Point[1] - testPoint[1]) > testEps ){ correctPoint = false; } + if( (static_cast(*iter)[0] - testPoint[0]) + (static_cast(*iter)[1] - testPoint[1]) > testEps ){ correctPoint = false; } MITK_TEST_CONDITION( correctPoint, "Test if subdivision points are calculated correctly" ) // Test for number of measurement features /* Does not work yet planarSubdivisionPolygon->EvaluateFeatures(); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetNumberOfFeatures() == 2, "Number of measurement features" ); // Test for correct feature evaluation double length0 = 4 * 50.0; // circumference MITK_TEST_CONDITION( fabs( planarSubdivisionPolygon->GetQuantity( 0 ) - length0) < mitk::eps, "Size of longest diameter" ); double length1 = 50.0 * 50.0 ; // area MITK_TEST_CONDITION( fabs( planarSubdivisionPolygon->GetQuantity( 1 ) - length1) < mitk::eps, "Size of short axis diameter" ); */ } static void TestPlanarSubdivisionPolygonEditing( mitk::PlanarSubdivisionPolygon::Pointer planarSubdivisionPolygon ) { unsigned int initialNumberOfControlPoints = planarSubdivisionPolygon->GetNumberOfControlPoints(); mitk::Point2D pnt; pnt[0] = 75.0; pnt[1] = 25.0; planarSubdivisionPolygon->AddControlPoint( pnt); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetNumberOfControlPoints() == initialNumberOfControlPoints+1, "A new control-point shall be added" ); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetControlPoint( planarSubdivisionPolygon->GetNumberOfControlPoints()-1 ) == pnt, "Control-point shall be added at the end." ); planarSubdivisionPolygon->RemoveControlPoint( 3 ); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetNumberOfControlPoints() == initialNumberOfControlPoints, "A control-point has been removed" ); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetControlPoint( 3 ) == pnt, "It shall be possible to remove any control-point." ); planarSubdivisionPolygon->RemoveControlPoint( 0 ); planarSubdivisionPolygon->RemoveControlPoint( 0 ); planarSubdivisionPolygon->RemoveControlPoint( 0 ); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetNumberOfControlPoints() == 3, "Control-points cannot be removed if only three points remain." ); mitk::Point2D pnt1; pnt1[0] = 33.0; pnt1[1] = 33.0; planarSubdivisionPolygon->AddControlPoint( pnt1, 0 ); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetNumberOfControlPoints() == 4, "A control-point has been added" ); MITK_TEST_CONDITION( planarSubdivisionPolygon->GetControlPoint( 0 ) == pnt1, "It shall be possible to insert a control-point at any position." ); } }; /** * mitkplanarSubdivisionPolygonTest tests the methods and behavior of mitk::planarSubdivisionPolygon with sub-tests: * * 1. Instantiation and basic tests, including feature evaluation * */ int mitkPlanarSubdivisionPolygonTest(int /* argc */, char* /*argv*/[]) { // always start with this! MITK_TEST_BEGIN("planarSubdivisionPolygon") // create PlaneGeometry on which to place the planarSubdivisionPolygon mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( 100.0, 100.0 ); // ************************************************************************** // 1. Instantiation and basic tests, including feature evaluation mitk::PlanarSubdivisionPolygon::Pointer planarSubdivisionPolygon = mitk::PlanarSubdivisionPolygon::New(); planarSubdivisionPolygon->SetPlaneGeometry( planeGeometry ); // first test: did this work? MITK_TEST_CONDITION_REQUIRED( planarSubdivisionPolygon.IsNotNull(), "Testing instantiation" ); // Test placement of planarSubdivisionPolygon by control points mitkPlanarSubdivisionPolygonTestClass::TestPlanarSubdivisionPolygonPlacement( planarSubdivisionPolygon ); mitkPlanarSubdivisionPolygonTestClass::TestPlanarSubdivisionPolygonEditing( planarSubdivisionPolygon ); // always end with this! MITK_TEST_END(); } diff --git a/Modules/PlanarFigureSegmentation/mitkPlanarFigureSegmentationController.cpp b/Modules/PlanarFigureSegmentation/mitkPlanarFigureSegmentationController.cpp index efc09f30e4..d1f8f5bf40 100644 --- a/Modules/PlanarFigureSegmentation/mitkPlanarFigureSegmentationController.cpp +++ b/Modules/PlanarFigureSegmentation/mitkPlanarFigureSegmentationController.cpp @@ -1,313 +1,312 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigureSegmentationController.h" #include "mitkSurfaceToImageFilter.h" #include #include #include #include #include #include #include "mitkImageWriter.h" #include "mitkSurfaceVtkWriter.h" #include "mitkImageToSurfaceFilter.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" mitk::PlanarFigureSegmentationController::PlanarFigureSegmentationController() : itk::Object() , m_ReduceFilter( NULL ) , m_NormalsFilter( NULL ) , m_DistanceImageCreator( NULL ) , m_ReferenceImage( NULL ) , m_SegmentationAsImage( NULL ) { InitializeFilters(); } mitk::PlanarFigureSegmentationController::~PlanarFigureSegmentationController() { } void mitk::PlanarFigureSegmentationController::SetReferenceImage( mitk::Image::Pointer referenceImage ) { m_ReferenceImage = referenceImage; } void mitk::PlanarFigureSegmentationController::AddPlanarFigure( mitk::PlanarFigure::Pointer planarFigure ) { if ( planarFigure.IsNull() ) return; bool newFigure = true; std::size_t indexOfFigure = 0; for( std::size_t i=0; iCreateSurfaceFromPlanarFigure( planarFigure ); m_SurfaceList.push_back( figureAsSurface ); if (!m_PlanarFigureList.empty()) { indexOfFigure = m_PlanarFigureList.size() -1 ; } } else { figureAsSurface = this->CreateSurfaceFromPlanarFigure( planarFigure ); m_SurfaceList.at(indexOfFigure) = figureAsSurface; } if ( m_ReduceFilter.IsNull() ) { InitializeFilters(); } m_ReduceFilter->SetInput( indexOfFigure, figureAsSurface ); m_NormalsFilter->SetInput( indexOfFigure, m_ReduceFilter->GetOutput( indexOfFigure ) ); m_DistanceImageCreator->SetInput( indexOfFigure, m_NormalsFilter->GetOutput( indexOfFigure ) ); } void mitk::PlanarFigureSegmentationController::RemovePlanarFigure( mitk::PlanarFigure::Pointer planarFigure ) { if ( planarFigure.IsNull() ) return; bool figureFound = false; std::size_t indexOfFigure = 0; for( std::size_t i=0; iRemoveInputs( m_NormalsFilter->GetOutput( indexOfFigure ) ); // m_NormalsFilter->RemoveInput( m_ReduceFilter->GetOutput( indexOfFigure ) ); // m_ReduceFilter->RemoveInput( const_cast(m_ReduceFilter->GetInput(indexOfFigure)) ); } else { // this is not very nice! If the figure that has been removed is NOT the last // one in the list we have to create new filters and add all remaining // inputs again. // // Has to be done as the filters do not work when removing an input // other than the last one. // create new filters InitializeFilters(); // and add all existing surfaces SurfaceListType::iterator surfaceIter = m_SurfaceList.begin(); for ( surfaceIter = m_SurfaceList.begin(); surfaceIter!=m_SurfaceList.end(); surfaceIter++ ) { m_ReduceFilter->SetInput( indexOfFigure, (*surfaceIter) ); m_NormalsFilter->SetInput( indexOfFigure, m_ReduceFilter->GetOutput( indexOfFigure ) ); m_DistanceImageCreator->SetInput( indexOfFigure, m_NormalsFilter->GetOutput( indexOfFigure ) ); } } PlanarFigureListType::iterator whereIter = m_PlanarFigureList.begin(); whereIter += indexOfFigure; m_PlanarFigureList.erase( whereIter ); SurfaceListType::iterator surfaceIter = m_SurfaceList.begin(); surfaceIter += indexOfFigure; m_SurfaceList.erase( surfaceIter ); } template void mitk::PlanarFigureSegmentationController::GetImageBase(itk::Image* input, itk::ImageBase<3>::Pointer& result) { result = input; } mitk::Image::Pointer mitk::PlanarFigureSegmentationController::GetInterpolationResult() { m_SegmentationAsImage = NULL; if ( m_PlanarFigureList.size() == 0 ) { m_SegmentationAsImage = mitk::Image::New(); m_SegmentationAsImage->Initialize(mitk::MakeScalarPixelType() , *m_ReferenceImage->GetTimeGeometry()); return m_SegmentationAsImage; } itk::ImageBase<3>::Pointer itkImage; AccessFixedDimensionByItk_1( m_ReferenceImage.GetPointer(), GetImageBase, 3, itkImage ); m_DistanceImageCreator->SetReferenceImage( itkImage.GetPointer() ); m_ReduceFilter->Update(); m_NormalsFilter->Update(); m_DistanceImageCreator->Update(); mitk::Image::Pointer distanceImage = m_DistanceImageCreator->GetOutput(); // Cleanup the pipeline distanceImage->DisconnectPipeline(); m_DistanceImageCreator = NULL; m_NormalsFilter = NULL; m_ReduceFilter = NULL; itkImage = NULL; // If this bool flag is true, the distanceImage will be written to the // filesystem as nrrd-image and as surface-representation. bool debugOutput(false); if ( debugOutput ) { mitk::ImageWriter::Pointer imageWriter = mitk::ImageWriter::New(); imageWriter->SetInput( distanceImage ); imageWriter->SetExtension( ".nrrd" ); imageWriter->SetFileName( "v:/DistanceImage" ); imageWriter->Update(); } mitk::ImageToSurfaceFilter::Pointer imageToSurfaceFilter = mitk::ImageToSurfaceFilter::New(); imageToSurfaceFilter->SetInput( distanceImage ); imageToSurfaceFilter->SetThreshold( 0 ); imageToSurfaceFilter->Update(); mitk::Surface::Pointer segmentationAsSurface = imageToSurfaceFilter->GetOutput(); // Cleanup the pipeline segmentationAsSurface->DisconnectPipeline(); imageToSurfaceFilter = NULL; if ( debugOutput ) { mitk::SurfaceVtkWriter::Pointer surfaceWriter = mitk::SurfaceVtkWriter::New(); surfaceWriter->SetInput( segmentationAsSurface ); surfaceWriter->SetExtension( ".vtk" ); surfaceWriter->SetFileName( "v:/DistanceImageAsSurface.vtk" ); surfaceWriter->Update(); } mitk::SurfaceToImageFilter::Pointer surfaceToImageFilter = mitk::SurfaceToImageFilter::New(); surfaceToImageFilter->SetInput( segmentationAsSurface ); surfaceToImageFilter->SetImage( m_ReferenceImage ); surfaceToImageFilter->SetMakeOutputBinary(true); surfaceToImageFilter->Update(); m_SegmentationAsImage = surfaceToImageFilter->GetOutput(); // Cleanup the pipeline m_SegmentationAsImage->DisconnectPipeline(); return m_SegmentationAsImage; } mitk::Surface::Pointer mitk::PlanarFigureSegmentationController::CreateSurfaceFromPlanarFigure( mitk::PlanarFigure::Pointer figure ) { if ( figure.IsNull() ) { MITK_ERROR << "Given PlanarFigure is NULL. Please provide valid PlanarFigure."; return NULL; } mitk::Surface::Pointer newSurface = mitk::Surface::New(); vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer polygon = vtkSmartPointer::New(); vtkSmartPointer cells = vtkSmartPointer::New(); vtkSmartPointer polyData = vtkSmartPointer::New(); const mitk::PlaneGeometry* figureGeometry = figure->GetPlaneGeometry(); // Get the polyline mitk::PlanarFigure::PolyLineType planarPolyLine = figure->GetPolyLine(0); mitk::PlanarFigure::PolyLineType::iterator iter; // iterate over the polyline, ... int pointCounter = 0; for( iter = planarPolyLine.begin(); iter != planarPolyLine.end(); iter++ ) { // ... determine the world-coordinates - mitk::Point2D polyLinePoint = iter->Point; mitk::Point3D pointInWorldCoordiantes; - figureGeometry->Map( polyLinePoint, pointInWorldCoordiantes ); + figureGeometry->Map( *iter, pointInWorldCoordiantes ); // and add them as new points to the vtkPoints points->InsertNextPoint( pointInWorldCoordiantes[0], pointInWorldCoordiantes[1], pointInWorldCoordiantes[2] ); ++pointCounter; } // create a polygon with the points of the polyline polygon->GetPointIds()->SetNumberOfIds( pointCounter ); for(int i = 0; i < pointCounter; i++) { polygon->GetPointIds()->SetId(i,i); } // initialize the vtkCellArray and vtkPolyData cells->InsertNextCell(polygon); polyData->SetPoints(points); polyData->SetPolys( cells ); // set the polydata to the surface newSurface->SetVtkPolyData( polyData ); return newSurface; } mitk::PlanarFigureSegmentationController::PlanarFigureListType mitk::PlanarFigureSegmentationController::GetAllPlanarFigures() { return m_PlanarFigureList; } void mitk::PlanarFigureSegmentationController::InitializeFilters() { m_ReduceFilter = mitk::ReduceContourSetFilter::New(); m_ReduceFilter->SetReductionType(ReduceContourSetFilter::NTH_POINT); m_ReduceFilter->SetStepSize( 10 ); m_NormalsFilter = mitk::ComputeContourSetNormalsFilter::New(); m_DistanceImageCreator = mitk::CreateDistanceImageFromSurfaceFilter::New(); } diff --git a/Modules/QtWidgetsExt/QmitkSliceWidget.cpp b/Modules/QtWidgetsExt/QmitkSliceWidget.cpp index b7b074537f..eae1a03b18 100644 --- a/Modules/QtWidgetsExt/QmitkSliceWidget.cpp +++ b/Modules/QtWidgetsExt/QmitkSliceWidget.cpp @@ -1,291 +1,289 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkSliceWidget.h" #include "QmitkStepperAdapter.h" #include "mitkNodePredicateDataType.h" #include #include #include QmitkSliceWidget::QmitkSliceWidget(QWidget* parent, const char* name, Qt::WindowFlags f) : QWidget(parent, f) { this->setupUi(this); if (name != 0) this->setObjectName(name); popUp = new QMenu(this); popUp->addAction("Axial"); popUp->addAction("Frontal"); popUp->addAction("Sagittal"); QObject::connect(popUp, SIGNAL(triggered(QAction*)), this, SLOT(ChangeView(QAction*)) ); setPopUpEnabled(false); m_SlicedGeometry = 0; m_View = mitk::SliceNavigationController::Axial; QHBoxLayout *hlayout = new QHBoxLayout(container); hlayout->setMargin(0); // create widget QString composedName("QmitkSliceWidget::"); if (!this->objectName().isEmpty()) composedName += this->objectName(); else composedName += "QmitkGLWidget"; m_RenderWindow = new QmitkRenderWindow(container, composedName); m_Renderer = m_RenderWindow->GetRenderer(); hlayout->addWidget(m_RenderWindow); new QmitkStepperAdapter(m_NavigatorWidget, m_RenderWindow->GetSliceNavigationController()->GetSlice(), "navigation"); SetLevelWindowEnabled(true); - } mitk::VtkPropRenderer* QmitkSliceWidget::GetRenderer() { return m_Renderer; } QFrame* QmitkSliceWidget::GetSelectionFrame() { return SelectionFrame; } void QmitkSliceWidget::SetDataStorage( mitk::StandaloneDataStorage::Pointer storage) { m_DataStorage = storage; m_Renderer->SetDataStorage(m_DataStorage); } mitk::StandaloneDataStorage* QmitkSliceWidget::GetDataStorage() { return m_DataStorage; } void QmitkSliceWidget::SetData( mitk::DataStorage::SetOfObjects::ConstIterator it) { SetData(it->Value(), m_View); } void QmitkSliceWidget::SetData( mitk::DataStorage::SetOfObjects::ConstIterator it, mitk::SliceNavigationController::ViewDirection view) { SetData(it->Value(), view); } void QmitkSliceWidget::SetData(mitk::DataNode::Pointer node) { try { if (m_DataStorage.IsNotNull()) { m_DataStorage->Add(node); } } catch (...) { } SetData(node, m_View); } void QmitkSliceWidget::SetData(mitk::DataNode::Pointer node, mitk::SliceNavigationController::ViewDirection view) { mitk::Image::Pointer image = dynamic_cast(node->GetData()); if (image.IsNull()) { MITK_WARN << "QmitkSliceWidget data is not an image!"; return; } m_SlicedGeometry = image->GetSlicedGeometry(); this->InitWidget(view); } void QmitkSliceWidget::InitWidget( mitk::SliceNavigationController::ViewDirection viewDirection) { m_View = viewDirection; mitk::SliceNavigationController* controller = m_RenderWindow->GetSliceNavigationController(); if (viewDirection == mitk::SliceNavigationController::Axial) { controller->SetViewDirection( mitk::SliceNavigationController::Axial); } else if (viewDirection == mitk::SliceNavigationController::Frontal) { controller->SetViewDirection(mitk::SliceNavigationController::Frontal); } // init sagittal view else { controller->SetViewDirection(mitk::SliceNavigationController::Sagittal); } if (m_SlicedGeometry.IsNull()) { return; } mitk::BaseGeometry::Pointer geometry = static_cast (m_SlicedGeometry->Clone().GetPointer()); const mitk::BoundingBox::Pointer boundingbox = m_DataStorage->ComputeVisibleBoundingBox(GetRenderer(), NULL); if (boundingbox->GetPoints()->Size() > 0) { //let's see if we have data with a limited live-span ... mitk::TimeBounds timebounds = m_DataStorage->ComputeTimeBounds( GetRenderer(), NULL); + mitk::ProportionalTimeGeometry::Pointer timeGeometry = mitk::ProportionalTimeGeometry::New(); + timeGeometry->Initialize(geometry, 1); + if (timebounds[1] < mitk::ScalarTypeNumericTraits::max()) { - timebounds[1] = timebounds[0] + 1.0f; - geometry->SetTimeBounds(timebounds); + timeGeometry->SetFirstTimePoint(timebounds[0]); + timeGeometry->SetStepDuration(1.0); } - mitk::ProportionalTimeGeometry::Pointer timeGeometry = mitk::ProportionalTimeGeometry::New(); - timeGeometry->Initialize(geometry,1); - if (const_cast (timeGeometry->GetBoundingBoxInWorld())->GetDiagonalLength2() >= mitk::eps) { controller->SetInputWorldTimeGeometry(timeGeometry); controller->Update(); } } GetRenderer()->GetDisplayGeometry()->Fit(); mitk::RenderingManager::GetInstance()->RequestUpdate( GetRenderer()->GetRenderWindow()); } void QmitkSliceWidget::UpdateGL() { GetRenderer()->GetDisplayGeometry()->Fit(); mitk::RenderingManager::GetInstance()->RequestUpdate( GetRenderer()->GetRenderWindow()); } void QmitkSliceWidget::mousePressEvent(QMouseEvent * e) { if (e->button() == Qt::RightButton && popUpEnabled) { popUp->popup(QCursor::pos()); } } void QmitkSliceWidget::wheelEvent(QWheelEvent * e) { int val = m_NavigatorWidget->GetPos(); if (e->orientation() * e->delta() > 0) { m_NavigatorWidget->SetPos(val + 1); } else { if (val > 0) m_NavigatorWidget->SetPos(val - 1); } } void QmitkSliceWidget::ChangeView(QAction* val) { if (val->text() == "Axial") { InitWidget(mitk::SliceNavigationController::Axial); } else if (val->text() == "Frontal") { InitWidget(mitk::SliceNavigationController::Frontal); } else if (val->text() == "Sagittal") { InitWidget(mitk::SliceNavigationController::Sagittal); } } void QmitkSliceWidget::setPopUpEnabled(bool b) { popUpEnabled = b; } QmitkSliderNavigatorWidget* QmitkSliceWidget::GetNavigatorWidget() { return m_NavigatorWidget; } void QmitkSliceWidget::SetLevelWindowEnabled(bool enable) { levelWindow->setEnabled(enable); if (!enable) { levelWindow->setMinimumWidth(0); levelWindow->setMaximumWidth(0); } else { levelWindow->setMinimumWidth(28); levelWindow->setMaximumWidth(28); } } bool QmitkSliceWidget::IsLevelWindowEnabled() { return levelWindow->isEnabled(); } QmitkRenderWindow* QmitkSliceWidget::GetRenderWindow() { return m_RenderWindow; } mitk::SliceNavigationController* QmitkSliceWidget::GetSliceNavigationController() const { return m_RenderWindow->GetSliceNavigationController(); } mitk::CameraRotationController* QmitkSliceWidget::GetCameraRotationController() const { return m_RenderWindow->GetCameraRotationController(); } mitk::BaseController* QmitkSliceWidget::GetController() const { return m_RenderWindow->GetController(); } - diff --git a/Modules/QtWidgetsExt/resources/PlanarEllipse_48.png b/Modules/QtWidgetsExt/resources/PlanarEllipse_48.png new file mode 100644 index 0000000000..58207234b2 Binary files /dev/null and b/Modules/QtWidgetsExt/resources/PlanarEllipse_48.png differ diff --git a/Modules/QtWidgetsExt/resources/PlanarSubdivisionPolygon_48.png b/Modules/QtWidgetsExt/resources/PlanarSubdivisionPolygon_48.png new file mode 100644 index 0000000000..ce89e19058 Binary files /dev/null and b/Modules/QtWidgetsExt/resources/PlanarSubdivisionPolygon_48.png differ diff --git a/Modules/QtWidgetsExt/resources/QtWidgetsExt.qrc b/Modules/QtWidgetsExt/resources/QtWidgetsExt.qrc index de5c63d03e..2d4d6d0fbc 100644 --- a/Modules/QtWidgetsExt/resources/QtWidgetsExt.qrc +++ b/Modules/QtWidgetsExt/resources/QtWidgetsExt.qrc @@ -1,44 +1,46 @@ btnAddPointSet.png btnClear.xpm btnCube.xpm btnCylinder.xpm btnDown.xpm btnEllipsoid.xpm btnLoad.xpm btnMoveDown.png btnMoveUp.png btnPyramid.xpm btnRemovePoint.png btnSave.xpm btnSetPoints.png btnSetPoints.xpm btnSetPointsManually.xpm btnSetSeedPoint.xpm btnSwapSets.png btnUp.xpm cross.png d3.v2.js Histogram.css Histogram.html Histogram.js icon_seedpoint.png Logo_mbiATdkfz_gross.png Logo_mbiATdkfz_small.png logo_mint-medical.png ModuleView.png QmitkStandardViewsDialogBar.xpm PlanarAngle_48.png PlanarBezierCurve_48.png PlanarCircle_48.png PlanarDoubleEllipse_48.png + PlanarEllipse_48.png PlanarFourPointAngle_48.png PlanarLine_48.png PlanarPath_48.png PlanarPolygon_48.png PlanarRectangle_48.png + PlanarSubdivisionPolygon_48.png play.xpm stop.xpm diff --git a/Modules/US/Documentation/doxygen/USModule.dox b/Modules/US/Documentation/doxygen/USModule.dox index 63a0e59742..f656852eab 100644 --- a/Modules/US/Documentation/doxygen/USModule.dox +++ b/Modules/US/Documentation/doxygen/USModule.dox @@ -1,87 +1,124 @@ /** \page USModulePage The Ultrasound Module \section USModulePageOverview Overview The Ultrasound Module provides a microservice based API for ultrasound devices. The main features are:
  • Microservice-enabled life cycle management, allowing other modules to easily consume USDevice-functionality.
  • Handling and processing of ultrasound image data
  • Metadata for ultrasound images
  • USVideoDevice class which allows to connect any ultrasound device with a video-out via a Frame grabber
    • Fast image preprocessing capabilities (Grey Scale Conversion, Cropping) via OpenCV -
    • Advanced image processing functions via mitk filters. +
    • Advanced image processing functions via mitk filters.
  • Connection of API-Enabled devices (specifically the Telemed LogicScan 128 is implemented)
      -
    • Control of API-enabled Devices via MITK (Widgets for basic B mode controls and probe selection are available) +
    • Control of API-enabled Devices via MITK (Widgets for basic B mode controls and probe selection are available)
  • Designed to interact with the \link IGTGeneralModulePage IGT Module \endlink for tracking functionality.
This module requires OpenCV to be enabled in the superbuild options via CMAKE. Its functionality is made available to the User via the \link org_mitk_gui_qt_ultrasound UltrasoundSupport Plugin \endlink \section USDeviceHierarchy Ultrasound Device Hierarchy Ultrasound Devices are managed in a simple hierarchy: \image html USHierarchy.png
  • mitk::USDevice: The common superclass for all ultrasound devices. Deriving from this class will make sure that US-specific GUI-Components will be able to interact with your class. Especially, the Microservice Life cycle is modeled in this Module.
  • mitk::USVideoDevice: This class can be used for every Ultrasound device that is connected to the PC via a Frame grabber or similar Video input device. It offers image preprocessing functionality via OpenCV. The \link org_mitk_gui_qt_ultrasound UltrasoundSupport Plugin \endlink enables the user to create USVideoDevice. There also is a reusable Widget for this Task in the USUI Module.
  • mitk::USApiDevice: This is a work-in-progress class that will contain a common superclass for Devices with API support.
\section USDeviceLifeCycle USDevice Life Cycle Once you a USDevice is constructed, it can be connected via call to mitk::USDevice::Connect(). This will cause the Device to register itself in the Microservice Framework and will make the device available to other Modules, the UltrasoundSupport Plugin and the USDeviceManagerWidget in the USUI Module. The Connect() method is not virtual and should never be overwritten. Instead, override mitk::USDevice::OnConnect(), which will be called during the connection Process and enables you to react to this event. A connected device is available to other modules, but is not acquiring image data. Analogously to Connect, there is a function mitk::USDevice::Activate which will start the image acquisition. Again, this method is not virtual, override mitk::USDevice::OnActivate to react to activation. Matching functions mitk::USDevice::Disconnect(), mitk::USDevice::OnDisconnect, mitk::USDevice::Deactivate, mitk::USDevice::OnDeactivate exist as well. The following diagram illustrates the situation: \image html USLifecycle.png The blue message symbols indicate that the corresponding method of the subclass is called to react to the event. \section USControlInterfaces Control Interfaces for API Devices Capabilities of API-based ultrasound devices are available through control interfaces which are shown below: \image html USControlInterfaces.png The control interfaces mitk::USControlInterfaceProbes and mitk::USControlInterfaceBMode are available, while mitk::USControlInteraceDoppler is empty at the moment. Every sublcass of mitk::USDevice can use an implementation of each of these interfaces, but this is not necessary. The mitk::USVideoDevice for examples uses a custom control interface only, which is a subclass of mitk::USAbstractControlInterface. Each custom control interface needs its own Widget (subclassed of QmitkUSAbstractCustomWidget). For mitk::USControlInterfaceProbes, mitk::USControlInterfaceBMode and mitk::USControlInterfaceDoppler there are Widgets available in the USUI module (QmitkUSControlsProbesWidget, QmitkUSControlsBModeWidget, QmitkUSControlsDopplerWidget) which can be used by plugins. Each Widget must get an object of the corresponding control interface on its constructor call. A class diagram showing how the Widgets are connected to the control interfaces can be seen below: \image html USControlWidgets.png A plugin can use the Widgets by creating a new object of the Widget and setting the corresponding interface object of the mitk::USDevice which should be controlled. How to use custom widgets is described in the class documentation of QmitkUSConcreteCustomWidget. \section USDWidgets Available Widgets There are some Widgets available that can be used for plugin development: a device management Widget, a Widget for creating new mitk::USVideoDevice objects and widgets for the control interfaces of API device. The usage of the Widgets is described in more detail in the \link org_mitk_gui_qt_ultrasound UltrasoundSupport Plugin Documentation\endlink. \subsection USQmitkUSDeviceManagerWidget QmitkUSDeviceManagerWidget The QmitkUSDeviceManagerWidget can view every connected mitk::USDevice and allows the user to activate and deactivate devices. Additionally mitk::USVideoDevice can be created using the QmitkNewVideoDeviceWidget and removed by a corresponding button. \subsection USQmitkNewVideoDeviceWidget QmitkNewVideoDeviceWidget The QmitkNewVideoDeviceWidget allows the user to configure a frame grabber or other video input as a mitk::USVideoDevice. \subsection USControlInterfaceWidgets Control Interface Widgets +\section USHardwareTelemed Controlling API Devices of Telemed + +The features of ultrasound devices of Telemed can be controlled directly via +the Ultrasound Module. At the moment, some controls for the b mode are +implemented. The device used for development was the "Telemed LogicScan 128". A +graphical user interface is integrated into the Ultrasound Plugin. + +\subsection USHardwareTelemedInstall Install the Telemed SDK + +The Telemed SDK cannot be shipped with MITK due to legal issues. Instead it can +be obtained directly from Telemed. MITK was tested with API version 3.9.0 +(2013-02-04). +The following packages must be installed: +
    +
  • Telemed Drivers Package (MITK was tested with version 1.13.7)
  • +
  • Usgfw2 SDK Redistributable (usgfwsetup.exe)
  • +
+ +For MITK the file "usgfw2.tlh" is needed. This file may be available in one of +the examples folders of the SDK. If not it can be generated by compiling one of +the delivered examples (samples_cpp_vs2005). + +\subsection USHardwareTelemedEnable Enable the Telemed API + +To use a Telemed device, activate the corresponding CMake flag: +MITK_USE_US_TELEMED_SDK. After a run of CMake the new CMake variable +MITK_US_TELEMED_SDK_PATH has to be set to a directory containing the header +files of the Telemed SKD (from "SDK\include\USGFWSDK\include") and the file +"usgfw2.tlh" (see previous section). Afterwards MITK can be configured and +build as usual. + +\subsection USHardwareTelemedUse Use a Telemed device + +As soon as the ultrasound module is loaded the device will be made available as +a microservice. It can be got from the service registry then and the Ultrasound +Plugin shows the device as an available ultrasound device. + */ \ No newline at end of file diff --git a/Modules/US/USHardwareTelemed/mitkUSTelemedProbesControls.cpp b/Modules/US/USHardwareTelemed/mitkUSTelemedProbesControls.cpp index 46e401ba51..15a1a1f849 100644 --- a/Modules/US/USHardwareTelemed/mitkUSTelemedProbesControls.cpp +++ b/Modules/US/USHardwareTelemed/mitkUSTelemedProbesControls.cpp @@ -1,247 +1,247 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkUSTelemedProbesControls.h" #include "mitkUSTelemedDevice.h" #include mitk::USTelemedProbesControls::USTelemedProbesControls(itk::SmartPointer device) : mitk::USControlInterfaceProbes(device.GetPointer()), m_IsActive(false), m_TelemedDevice(device), m_ProbesCollection(0), m_Probe(0) { } mitk::USTelemedProbesControls::~USTelemedProbesControls() { SAFE_RELEASE(m_ProbesCollection); } void mitk::USTelemedProbesControls::SetIsActive(bool isActive) { if ( ! m_TelemedDevice ) { MITK_WARN("USTelemedProbesControls")("USControlInterfaceProbes") << "Cannot activate probe controls while device is not set."; return; } if ( isActive && m_ProbesCollection == 0 ) { this->CreateProbesCollection(); this->CreateProbesSet(); } else { } m_IsActive = isActive; } bool mitk::USTelemedProbesControls::GetIsActive() { return m_IsActive; } std::vector mitk::USTelemedProbesControls::GetProbeSet() { // create a new vector of base class (USProbe) objects, because // interface wants a vector of this type std::vector usProbes(m_ProbesSet.size(), 0); for (unsigned int n = 0; n < m_ProbesSet.size(); ++n) { usProbes.at(n) = m_ProbesSet.at(n).GetPointer(); } return usProbes; } void mitk::USTelemedProbesControls::OnSelectProbe(unsigned int index) { if (index >= m_ProbesSet.size()) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Cannot select probe with index " << index << ". Maximum possible index is " << m_ProbesSet.size()-1 << "."; mitkThrow() << "Cannot select probe with index " << index << ". Maximum possible index is " << m_ProbesSet.size()-1 << "."; } m_TelemedDevice->SetActiveDataView(m_ProbesSet.at(index)->GetUsgDataView()); m_SelectedProbeIndex = index; } void mitk::USTelemedProbesControls::OnSelectProbe(mitk::USProbe::Pointer probe) { } mitk::USProbe::Pointer mitk::USTelemedProbesControls::GetSelectedProbe() { if (m_SelectedProbeIndex >= m_ProbesSet.size()) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Cannot get active probe as the current index is" << m_SelectedProbeIndex << ". Maximum possible index is " << m_ProbesSet.size()-1 << "."; mitkThrow() << "Cannot get active probe as the current index is" << m_SelectedProbeIndex << ". Maximum possible index is " << m_ProbesSet.size()-1 << "."; } - return m_ProbesSet.at(m_SelectedProbeIndex); + return m_ProbesSet.at(m_SelectedProbeIndex).GetPointer(); } unsigned int mitk::USTelemedProbesControls::GetProbesCount() const { return m_ProbesSet.size(); } /*void mitk::USTelemedProbesControls::SetTelemedDevice(itk::SmartPointer telemedDevice) { m_TelemedDevice = telemedDevice; }*/ void mitk::USTelemedProbesControls::ProbeRemoved(unsigned int index) { MITK_INFO << "Probe removed..."; if ( m_ProbesSet.size() > index ) { m_ProbesSet.erase(m_ProbesSet.begin() + index); } } void mitk::USTelemedProbesControls::ProbeAdded(unsigned int index) { MITK_INFO << "Probe arrived..."; this->CreateProbesCollection(); this->CreateProbesSet(); // Activate the added probe, if the added probe is the first probe if (m_ProbesSet.size() == 1) { m_TelemedDevice->SetActiveDataView(m_ProbesSet.at(0)->GetUsgDataView()); } } bool mitk::USTelemedProbesControls::CreateProbesCollection() { IUnknown* tmp_obj = NULL; HRESULT hr; // get the main API interface from the Telemed device Usgfw2Lib::IUsgfw2* usgMainInterface = m_TelemedDevice->GetUsgMainInterface(); if ( ! usgMainInterface ) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Main interface of Telemed device must not be null."; mitkThrow() << "Main interface of Telemed device must not be null."; } // get probes collection from Telemed API hr = usgMainInterface->get_ProbesCollection(&tmp_obj); if (FAILED(hr) || ! tmp_obj) { MITK_WARN("USTelemedProbesControls")("USControlInterfaceProbes") << "Error on getting probes collection (" << hr << ")."; return false; } // second step for getting probes collection from Telemed API SAFE_RELEASE(m_ProbesCollection); hr = tmp_obj->QueryInterface(Usgfw2Lib::IID_IUsgCollection,(void**)&m_ProbesCollection); SAFE_RELEASE(tmp_obj); if (FAILED(hr) || ! m_ProbesCollection) { MITK_WARN("USTelemedProbesControls")("USControlInterfaceProbes") << "Error on querying interface for probes collection (" << hr << ")."; return false; } return true; } void mitk::USTelemedProbesControls::CreateProbesSet() { if ( ! m_ProbesCollection) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Cannot get probe set without ProbesCollection being initialized before."; mitkThrow() << "Cannot get probe set without ProbesCollection being initialized before."; } // get number of available probes LONG probes_count = 0; HRESULT hr = m_ProbesCollection->get_Count(&probes_count); if (FAILED(hr)) { mitkThrow() << "Could not get probes count (" << hr << ")."; } if ( ! m_TelemedDevice ) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Telemed device must not be null when creating probes set."; mitkThrow() << "Telemed device must not be null when creating probes set."; } // get the main API interface from the Telemed device Usgfw2Lib::IUsgfw2* usgMainInterface = m_TelemedDevice->GetUsgMainInterface(); if ( ! usgMainInterface ) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Usg main interface must not be null when creating probes set."; mitkThrow() << "Usg main interface must not be null when creating probes set."; } // initialize probes set with new vector m_ProbesSet = std::vector(probes_count, 0); for (unsigned int n = 0; n < probes_count; ++n) { // get the probe item from the API collection IUnknown* tmp_obj = NULL; hr = m_ProbesCollection->Item(n,&tmp_obj); if (FAILED(hr)) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Could not get probe with index " << n << "."; mitkThrow() << "Could not get probe with index " << n << "."; } // convert this item to a probe Usgfw2Lib::IProbe* probe; hr = tmp_obj->QueryInterface(Usgfw2Lib::IID_IProbe,(void**)&probe); if (FAILED(hr)) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Error on querying interface for probe with index "<< n << "."; mitkThrow() << "Error on querying interface for probe with index "<< n << "."; } // create main ultrasound scanning object for selected probe Usgfw2Lib::IUsgDataView* usgDataView; Usgfw2Lib::IUsgDataViewPtr usgDataViewTmp; usgDataViewTmp = usgMainInterface->CreateDataView(probe); usgDataViewTmp->QueryInterface(Usgfw2Lib::IID_IUsgDataView, (void**)&usgDataView); if (! usgDataView) { MITK_ERROR("USTelemedProbesControls")("USControlInterfaceProbes") << "Could not create data view for selected probe."; mitkThrow() << "Could not create data view for selected probe."; } // probe object can be created now from API data m_ProbesSet.at(n) = mitk::USTelemedProbe::New(probe, usgDataView); SAFE_RELEASE(tmp_obj); } } \ No newline at end of file diff --git a/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.cpp b/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.cpp index a651bc37c6..43ad2a7c93 100644 --- a/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.cpp +++ b/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.cpp @@ -1,108 +1,79 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkUSAbstractCustomWidget.h" #include #include std::string QmitkUSAbstractCustomWidget::US_DEVICE_PROPKEY_CLASS() { static std::string s = "ork.mitk.services.UltrasoundCustomWidget.deviceClass"; return s; } QmitkUSAbstractCustomWidget::QmitkUSAbstractCustomWidget(QWidget* parent) : QWidget(parent), m_PrototypeServiceFactory(0), m_IsClonedForQt(false) { } QmitkUSAbstractCustomWidget::~QmitkUSAbstractCustomWidget() { delete m_PrototypeServiceFactory; } void QmitkUSAbstractCustomWidget::SetDevice(mitk::USDevice::Pointer device) { m_Device = device; if ( device ) { this->OnDeviceSet(); } } mitk::USDevice::Pointer QmitkUSAbstractCustomWidget::GetDevice() const { return m_Device; } QmitkUSAbstractCustomWidget* QmitkUSAbstractCustomWidget::CloneForQt(QWidget* parent) const { QmitkUSAbstractCustomWidget* clonedWidget = this->Clone(parent); + clonedWidget->Initialize(); // initialize the Qt stuff of the widget clonedWidget->m_IsClonedForQt = true; // set flag that this object was really cloned return clonedWidget; } -us::ServiceRegistration QmitkUSAbstractCustomWidget::RegisterService(us::ModuleContext* context) -{ - if (this->m_PrototypeServiceFactory) { return us::ServiceRegistration(); } - - // create an us::PrototypeServiceFactory which is user on any following call - // to QmitkUSAbstractCustomWidget::RegisterService(); this factory uses the - // clone method of the concrete subclass which should be created - struct PrototypeFactory : public us::PrototypeServiceFactory - { - QmitkUSAbstractCustomWidget* const m_Prototype; - - PrototypeFactory(QmitkUSAbstractCustomWidget* prototype) - : m_Prototype(prototype) {} - - us::InterfaceMap GetService(us::Module* /*module*/, const us::ServiceRegistrationBase& /*registration*/) - { - return us::MakeInterfaceMap(m_Prototype->Clone()); - } - - void UngetService(us::Module*, const us::ServiceRegistrationBase&, const us::InterfaceMap& service) - { - delete us::ExtractInterface(service); - } - }; - - m_PrototypeServiceFactory = new PrototypeFactory(this); - - return context->RegisterService(this->m_PrototypeServiceFactory, this->GetServiceProperties()); -} - us::ServiceProperties QmitkUSAbstractCustomWidget::GetServiceProperties() const { us::ServiceProperties result; result[QmitkUSAbstractCustomWidget::US_DEVICE_PROPKEY_CLASS()] = this->GetDeviceClass(); return result; } void QmitkUSAbstractCustomWidget::showEvent ( QShowEvent * event ) { // using object from micro service directly in Qt without cloning it first // can cause problems when Qt deletes this object -> throw an exception to // show that object should be cloned before if ( ! m_IsClonedForQt ) { MITK_ERROR << "Object wasn't cloned with CloneForQt() before using as QWidget."; mitkThrow() << "Object wasn't cloned with CloneForQt() before using as QWidget."; } QWidget::showEvent(event); } diff --git a/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.h b/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.h index d98a464d54..b11a549f19 100644 --- a/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.h +++ b/Modules/USUI/Qmitk/QmitkUSAbstractCustomWidget.h @@ -1,155 +1,157 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkUSAbstractCustomWidget_h #define QmitkUSAbstractCustomWidget_h #include #include #include "mitkUSDevice.h" // Microservices #include #include #include #include namespace us { - class PrototypeServiceFactory; + struct PrototypeServiceFactory; class ModuleContext; } /** * \brief Abstract superclass for all custom control widgets of mitk::USDevice classes. * * The custom control widgets are made available using a us::PrototypeServiceFactory. This means that each * concrete subclass should be registered in the microservice by calling * QmitkUSAbstractCustomWidget::RegisterService() on an object. The best place for doing this would be in * the corresponding module or plugin activator. * * Afterwards a copy of the registered object can be obtained from the microservice as shown in the example * below. Do not forget to call QmitkUSAbstractCustomWidget::CloneForQt() on the object received from the * microservice. This is necessary to allow deleting the object as it is necessary in Qt for removing it from * a layout. * * * Subclasses must implement three methods: * - QmitkUSAbstractCustomWidget::OnDeviceSet() -> should handle initialization when mitk:USDevice was set * - QmitkUSAbstractCustomWidget::GetDeviceClass() -> must return device class of corresponding mitk::USDevice * - QmitkUSAbstractCustomWidget::Clone() -> must create a copy of the current object * * * The code to use a custom control widget in a plugin can look like this: * * \code * ctkPluginContext* pluginContext = // get the plugig context * mitk::USDevice device = // get the ultrasound device * * // get service references for ultrasound device * std::string filter = "(ork.mitk.services.UltrasoundCustomWidget.deviceClass=" + device->GetDeviceClass() + ")"; * QString interfaceName ( us_service_interface_iid() ); * QList serviceRefs = pluginContext->getServiceReferences(interfaceName, QString::fromStdString(filter)); * * if (serviceRefs.size() > 0) * { * // get widget from the service and make sure that it is cloned, so that * // it can be deleted if it should be removed from the GUI later * QmitkUSAbstractCustomWidget* widget = pluginContext->getService * (serviceRefs.at(0))->CloneForQt(parentWidget); * // now the widget can be used like any other QWidget * } * \endcode */ class MitkUSUI_EXPORT QmitkUSAbstractCustomWidget : public QWidget { Q_OBJECT public: QmitkUSAbstractCustomWidget(QWidget* parent = 0); virtual ~QmitkUSAbstractCustomWidget(); void SetDevice(mitk::USDevice::Pointer device); mitk::USDevice::Pointer GetDevice() const; /** * \brief Called every time a mitk::USDevice was set with QmitkUSAbstractCustomWidget::SetDevice(). * A sublcass can implement this function to handle initialiation actions * necessary when a device was set. */ virtual void OnDeviceSet() = 0; /** * \brief Subclass must implement this method to return device class of corresponding mitk::USDevice. * * \return same value as mitk::USDevice::GetDeviceClass() of the corresponding mitk::USDevice */ virtual std::string GetDeviceClass() const = 0; /** * \brief Subclass must implement this method to return a pointer to a copy of the object. */ virtual QmitkUSAbstractCustomWidget* Clone(QWidget* parent = 0) const = 0; + /** + * \brief Method for initializing the Qt stuff of the widget (setupUI, connect). + * This method will be called in CloneForQt() and has to be implemented by concrete + * subclasses. + * \warning All Qt initialization stuff belongs into this method rather than in the constructor. + */ + virtual void Initialize() = 0; + /** * \brief Return pointer to copy of the object. * Internally use of QmitkUSAbstractCustomWidget::Clone() with additionaly * setting an internal flag that the object was really cloned. */ QmitkUSAbstractCustomWidget* CloneForQt(QWidget* parent = 0) const; - /** - * \brief Register object as micro service. - * The object will be registered using an us::PrototypeServiceFactory. - */ - us::ServiceRegistration RegisterService(us::ModuleContext* context); - /** * \brief Returns the properties of the micro service. * Properties consist of just the device class of the corresponding * mitk::USDevice. */ us::ServiceProperties GetServiceProperties() const; /** * \brief Overwritten Qt even method. * It is checked if the object was cloned with * QmitkUSAbstractCustomWidget::CloneForQt() before. An exception is thrown * if not. This is done, because using the object from micro service directly * in Qt without cloning it first can cause problems after Qt deleted the * object. * * \throws mitk::Exception */ void showEvent ( QShowEvent * event ); /** * \brief Property key for the class name of corresponding us device object. */ static std::string US_DEVICE_PROPKEY_CLASS(); private: mitk::USDevice::Pointer m_Device; us::PrototypeServiceFactory* m_PrototypeServiceFactory; bool m_IsClonedForQt; }; // This is the microservice declaration. Do not meddle! US_DECLARE_SERVICE_INTERFACE(QmitkUSAbstractCustomWidget, "org.mitk.QmitkUSAbstractCustomWidget") #endif // QmitkUSAbstractCustomWidget_h diff --git a/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.cpp b/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.cpp index b29c41d763..2990ec6359 100644 --- a/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.cpp +++ b/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.cpp @@ -1,121 +1,123 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkUSControlsCustomVideoDeviceWidget.h" #include "ui_QmitkUSControlsCustomVideoDeviceWidget.h" #include #include QmitkUSControlsCustomVideoDeviceWidget::QmitkUSControlsCustomVideoDeviceWidget(QWidget *parent) : QmitkUSAbstractCustomWidget(parent), ui(new Ui::QmitkUSControlsCustomVideoDeviceWidget) { - ui->setupUi(this); - - connect( ui->crop_left, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); - connect( ui->crop_right, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); - connect( ui->crop_top, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); - connect( ui->crop_bot, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); - m_Cropping.left = 0; m_Cropping.top = 0; m_Cropping.right = 0; m_Cropping.bottom = 0; - } QmitkUSControlsCustomVideoDeviceWidget::~QmitkUSControlsCustomVideoDeviceWidget() { delete ui; } std::string QmitkUSControlsCustomVideoDeviceWidget::GetDeviceClass() const { return mitk::USVideoDevice::GetDeviceClassStatic(); } QmitkUSAbstractCustomWidget* QmitkUSControlsCustomVideoDeviceWidget::Clone(QWidget* parent) const { QmitkUSAbstractCustomWidget* clonedWidget = new QmitkUSControlsCustomVideoDeviceWidget(parent); clonedWidget->SetDevice(this->GetDevice()); return clonedWidget; } void QmitkUSControlsCustomVideoDeviceWidget::OnDeviceSet() { m_ControlInterface = dynamic_cast (this->GetDevice()->GetControlInterfaceCustom().GetPointer()); if ( m_ControlInterface.IsNotNull() ) { mitk::USImageVideoSource::USImageCropping cropping = m_ControlInterface->GetCropArea(); ui->crop_left->setValue(cropping.left); ui->crop_right->setValue(cropping.right); ui->crop_bot->setValue(cropping.bottom); ui->crop_top->setValue(cropping.top); } else { MITK_WARN("QmitkUSAbstractCustomWidget")("QmitkUSControlsCustomVideoDeviceWidget") << "Did not get a custom video device control interface."; } ui->crop_left->setEnabled(m_ControlInterface.IsNotNull()); ui->crop_right->setEnabled(m_ControlInterface.IsNotNull()); ui->crop_bot->setEnabled(m_ControlInterface.IsNotNull()); ui->crop_top->setEnabled(m_ControlInterface.IsNotNull()); } +void QmitkUSControlsCustomVideoDeviceWidget::Initialize() +{ + ui->setupUi(this); + + connect( ui->crop_left, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); + connect( ui->crop_right, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); + connect( ui->crop_top, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); + connect( ui->crop_bot, SIGNAL(valueChanged(int)), this, SLOT(OnCropAreaChanged()) ); +} + void QmitkUSControlsCustomVideoDeviceWidget::OnCropAreaChanged() { if ( m_ControlInterface.IsNull() ) { return; } mitk::USImageVideoSource::USImageCropping cropping; cropping.left = ui->crop_left->value(); cropping.top = ui->crop_top->value(); cropping.right = ui->crop_right->value(); cropping.bottom = ui->crop_bot->value(); try { m_ControlInterface->SetCropArea(cropping); m_Cropping = cropping; } catch (mitk::Exception e) { m_ControlInterface->SetCropArea(m_Cropping); // reset to last valid crop //reset values BlockSignalAndSetValue(ui->crop_left, m_Cropping.left); BlockSignalAndSetValue(ui->crop_right, m_Cropping.right); BlockSignalAndSetValue(ui->crop_top, m_Cropping.top); BlockSignalAndSetValue(ui->crop_bot, m_Cropping.bottom); // inform user QMessageBox msgBox; msgBox.setInformativeText("The crop area you specified is invalid.\nPlease make sure that no more pixels are cropped than are available."); msgBox.setStandardButtons(QMessageBox::Ok); msgBox.exec(); MITK_WARN << "User tried to crop beyond limits of the image"; } } void QmitkUSControlsCustomVideoDeviceWidget::BlockSignalAndSetValue(QSpinBox* target, int value) { bool oldState = target->blockSignals(true); target->setValue(value); target->blockSignals(oldState); } diff --git a/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.h b/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.h index 27bfd20bf5..66fcca5357 100644 --- a/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.h +++ b/Modules/USUI/Qmitk/QmitkUSControlsCustomVideoDeviceWidget.h @@ -1,87 +1,89 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkUSControlsCustomVideoDeviceWidget_H #define QmitkUSControlsCustomVideoDeviceWidget_H #include "QmitkUSAbstractCustomWidget.h" #include "mitkUSVideoDeviceCustomControls.h" #include "mitkUSVideoDevice.h" #include namespace Ui { class QmitkUSControlsCustomVideoDeviceWidget; } /** \brief Widget for custom controls of mitk::USVideoDevice. * This class handles the itk::USVideoDeviceCustomControls of video device * objects. */ class QmitkUSControlsCustomVideoDeviceWidget : public QmitkUSAbstractCustomWidget { Q_OBJECT private slots: /** * \brief Called when user changes one of the crop area control elements. */ void OnCropAreaChanged(); public: /** * Constructs widget object. All gui control elements will be disabled until * QmitkUSAbstractCustomWidget::SetDevice() was called. */ explicit QmitkUSControlsCustomVideoDeviceWidget(QWidget *parent = 0); ~QmitkUSControlsCustomVideoDeviceWidget(); /** * Getter for the device class of mitk:USVideoDevice. */ virtual std::string GetDeviceClass() const; /** * Creates new QmitkUSAbstractCustomWidget with the same mitk::USVideoDevice * and the same mitk::USVideoDeviceCustomControls which were set on the * original object. * * This method is just for being calles by the factory. Use * QmitkUSAbstractCustomWidget::CloneForQt() instead, if you want a clone of * an object. */ virtual QmitkUSAbstractCustomWidget* Clone(QWidget* parent = 0) const; /** * Gets control interface from the device which was currently set. Control * elements are according to current crop area of the device. If custom * control interface is null, the control elements stay disabled. */ virtual void OnDeviceSet(); + virtual void Initialize(); + protected: void BlockSignalAndSetValue(QSpinBox* target, int value); mitk::USImageVideoSource::USImageCropping m_Cropping; private: Ui::QmitkUSControlsCustomVideoDeviceWidget* ui; mitk::USVideoDeviceCustomControls::Pointer m_ControlInterface; }; #endif // QmitkUSControlsCustomVideoDeviceWidget_H \ No newline at end of file diff --git a/Modules/USUI/files.cmake b/Modules/USUI/files.cmake index 3935575c6d..d88a79270d 100644 --- a/Modules/USUI/files.cmake +++ b/Modules/USUI/files.cmake @@ -1,35 +1,36 @@ set(CPP_FILES mitkUSUIActivator.cpp + mitkUSUICustomWidgetFactory.cpp Qmitk/QmitkUSDeviceManagerWidget.cpp Qmitk/QmitkUSNewVideoDeviceWidget.cpp Qmitk/QmitkUSControlsBModeWidget.cpp Qmitk/QmitkUSControlsDopplerWidget.cpp Qmitk/QmitkUSControlsProbesWidget.cpp Qmitk/QmitkUSControlsCustomVideoDeviceWidget.cpp Qmitk/QmitkUSAbstractCustomWidget.cpp Qmitk/QmitkComboBoxStepThrough.cpp ) set(UI_FILES Qmitk/QmitkUSDeviceManagerWidgetControls.ui Qmitk/QmitkUSNewVideoDeviceWidgetControls.ui Qmitk/QmitkUSControlsBModeWidget.ui Qmitk/QmitkUSControlsDopplerWidget.ui Qmitk/QmitkUSControlsProbesWidget.ui Qmitk/QmitkUSControlsCustomVideoDeviceWidget.ui ) set(MOC_H_FILES Qmitk/QmitkUSDeviceManagerWidget.h Qmitk/QmitkUSNewVideoDeviceWidget.h Qmitk/QmitkUSControlsBModeWidget.h Qmitk/QmitkUSControlsDopplerWidget.h Qmitk/QmitkUSControlsProbesWidget.h Qmitk/QmitkUSControlsCustomVideoDeviceWidget.h Qmitk/QmitkUSAbstractCustomWidget.h Qmitk/QmitkComboBoxStepThrough.h ) set(QRC_FILES resources/USUI.qrc ) diff --git a/Modules/USUI/mitkUSUIActivator.cpp b/Modules/USUI/mitkUSUIActivator.cpp index 1a3bd67228..ca510835fd 100644 --- a/Modules/USUI/mitkUSUIActivator.cpp +++ b/Modules/USUI/mitkUSUIActivator.cpp @@ -1,38 +1,64 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkUSUIActivator.h" +#include "mitkUSUICustomWidgetFactory.h" +#include "QmitkUSControlsCustomVideoDeviceWidget.h" mitk::USUIActivator::USUIActivator() + : m_CustomWidgetFactory(0), m_CustomVideoDeviceWidget(0) { - } mitk::USUIActivator::~USUIActivator() { + delete m_CustomWidgetFactory; + delete m_CustomVideoDeviceWidget; + if ( m_ServiceRegistration ) { m_ServiceRegistration.Unregister(); } } void mitk::USUIActivator::Load(us::ModuleContext* context) { - m_ServiceRegistration = m_CustomVideoDeviceWidget.RegisterService(context); + // create a custom video device widget, which will be used as + // a prototype for the custom widget factory + if ( ! m_CustomVideoDeviceWidget ) + { + m_CustomVideoDeviceWidget = new QmitkUSControlsCustomVideoDeviceWidget(); + } + + // create a factory for custom widgets, using the video device + // widget as a prototype + if ( ! m_CustomWidgetFactory ) + { + m_CustomWidgetFactory = new mitk::USUICustomWidgetFactory(m_CustomVideoDeviceWidget); + } + + // register the custom widget factory as a microservice + m_ServiceRegistration = m_CustomWidgetFactory->RegisterService(context); } void mitk::USUIActivator::Unload(us::ModuleContext* /*context*/) { m_ServiceRegistration.Unregister(); m_ServiceRegistration = 0; + + delete m_CustomWidgetFactory; + m_CustomWidgetFactory = 0; + + delete m_CustomVideoDeviceWidget; + m_CustomVideoDeviceWidget = 0; } diff --git a/Modules/USUI/mitkUSUIActivator.h b/Modules/USUI/mitkUSUIActivator.h index 474a0f2fdb..1b21583cac 100644 --- a/Modules/USUI/mitkUSUIActivator.h +++ b/Modules/USUI/mitkUSUIActivator.h @@ -1,60 +1,65 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __mitkUSUIActivator_h #define __mitkUSUIActivator_h -#include "QmitkUSControlsCustomVideoDeviceWidget.h" +#include "QmitkUSAbstractCustomWidget.h" // Microservices #include #include +class QmitkUSControlsCustomVideoDeviceWidget; + namespace mitk { + class USUICustomWidgetFactory; + /** * \brief Module activator for the USUI module. * Registers custom widget for mitk::USVideoDevice as microservice. */ class USUIActivator : public us::ModuleActivator { public: USUIActivator(); virtual ~USUIActivator(); /** * Custom video device widget is registered as a micro service on module * load. A plugin can get this widget then when using a * mitk::USVideoDevice. */ void Load(us::ModuleContext* context); /** * Custom video device widget is deregistered from micro service on module * unload. */ void Unload(us::ModuleContext* context); protected: us::ServiceRegistration m_ServiceRegistration; - QmitkUSControlsCustomVideoDeviceWidget m_CustomVideoDeviceWidget; + USUICustomWidgetFactory* m_CustomWidgetFactory; + QmitkUSControlsCustomVideoDeviceWidget* m_CustomVideoDeviceWidget; }; } // namespace mitk US_EXPORT_MODULE_ACTIVATOR(MitkUSUI, mitk::USUIActivator) #endif // __mitkUSUIActivator_h diff --git a/Modules/USUI/mitkUSUICustomWidgetFactory.cpp b/Modules/USUI/mitkUSUICustomWidgetFactory.cpp new file mode 100644 index 0000000000..4067fac200 --- /dev/null +++ b/Modules/USUI/mitkUSUICustomWidgetFactory.cpp @@ -0,0 +1,43 @@ +/*=================================================================== + +The Medical Imaging Interaction Toolkit (MITK) + +Copyright (c) German Cancer Research Center, +Division of Medical and Biological Informatics. +All rights reserved. + +This software is distributed WITHOUT ANY WARRANTY; without +even the implied warranty of MERCHANTABILITY or FITNESS FOR +A PARTICULAR PURPOSE. + +See LICENSE.txt or http://www.mitk.org for details. + +===================================================================*/ + +#include "mitkUSUICustomWidgetFactory.h" + +#include "QmitkUSAbstractCustomWidget.h" + +#include + +mitk::USUICustomWidgetFactory::USUICustomWidgetFactory(QmitkUSAbstractCustomWidget* prototype) + : m_Prototype(prototype) +{ +} + +us::ServiceRegistration mitk::USUICustomWidgetFactory::RegisterService(us::ModuleContext* context) +{ + return context->RegisterService(m_Prototype, m_Prototype->GetServiceProperties()); +} + +us::InterfaceMap mitk::USUICustomWidgetFactory::GetService(us::Module* /*module*/, const us::ServiceRegistrationBase& /*registration*/) +{ + // clone the prototype for returning a uniqe instance + return us::MakeInterfaceMap(m_Prototype->Clone()); +} + +void mitk::USUICustomWidgetFactory::UngetService(us::Module*, const us::ServiceRegistrationBase&, const us::InterfaceMap& service) +{ + // just delete the given service + delete us::ExtractInterface(service); +} diff --git a/Modules/USUI/mitkUSUICustomWidgetFactory.h b/Modules/USUI/mitkUSUICustomWidgetFactory.h new file mode 100644 index 0000000000..768ba27938 --- /dev/null +++ b/Modules/USUI/mitkUSUICustomWidgetFactory.h @@ -0,0 +1,49 @@ +/*=================================================================== + +The Medical Imaging Interaction Toolkit (MITK) + +Copyright (c) German Cancer Research Center, +Division of Medical and Biological Informatics. +All rights reserved. + +This software is distributed WITHOUT ANY WARRANTY; without +even the implied warranty of MERCHANTABILITY or FITNESS FOR +A PARTICULAR PURPOSE. + +See LICENSE.txt or http://www.mitk.org for details. + +===================================================================*/ + +#ifndef MITKUSUICUSTOMWIDGETFACTORY_H +#define MITKUSUICUSTOMWIDGETFACTORY_H + +#include + +class QmitkUSAbstractCustomWidget; + +namespace us { +class ModuleContext; +} + +namespace mitk { +/** + * \brief Prototype service factory for creating unique instances of QmitUSAbstractCustomWidget. + */ +class USUICustomWidgetFactory : public us::PrototypeServiceFactory { +public: + USUICustomWidgetFactory(QmitkUSAbstractCustomWidget* prototype); + + /** + * \brief Registers this factory in the given module context. + */ + us::ServiceRegistration RegisterService(us::ModuleContext* context); + + us::InterfaceMap GetService(us::Module* /*module*/, const us::ServiceRegistrationBase& /*registration*/); + void UngetService(us::Module*, const us::ServiceRegistrationBase&, const us::InterfaceMap& service); + +private: + QmitkUSAbstractCustomWidget* const m_Prototype; +}; +} // namespace mitk + +#endif // MITKUSUICUSTOMWIDGETFACTORY_H diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp index e785e4c247..0ba1b2e187 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkPreprocessingView.cpp @@ -1,852 +1,859 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //#define MBILOG_ENABLE_DEBUG #include "QmitkPreprocessingView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include // itk includes #include "itkTimeProbe.h" #include "itkB0ImageExtractionImageFilter.h" #include "itkB0ImageExtractionToSeparateImageFilter.h" #include "itkBrainMaskExtractionImageFilter.h" #include "itkCastImageFilter.h" #include "itkVectorContainer.h" #include #include #include // Multishell includes #include // Multishell Functors #include #include #include #include // mitk includes #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "mitkProperties.h" #include "mitkVtkResliceInterpolationProperty.h" #include "mitkLookupTable.h" #include "mitkLookupTableProperty.h" #include "mitkTransferFunction.h" #include "mitkTransferFunctionProperty.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include #include #include #include const std::string QmitkPreprocessingView::VIEW_ID = "org.mitk.views.preprocessing"; #define DI_INFO MITK_INFO("DiffusionImaging") typedef float TTensorPixelType; QmitkPreprocessingView::QmitkPreprocessingView() : QmitkFunctionality(), m_Controls(NULL), m_MultiWidget(NULL), m_DiffusionImage(NULL) { } QmitkPreprocessingView::~QmitkPreprocessingView() { } void QmitkPreprocessingView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkPreprocessingViewControls; m_Controls->setupUi(parent); this->CreateConnections(); m_Controls->m_MeasurementFrameTable->horizontalHeader()->setResizeMode(QHeaderView::Stretch); m_Controls->m_MeasurementFrameTable->verticalHeader()->setResizeMode(QHeaderView::Stretch); } } void QmitkPreprocessingView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkPreprocessingView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkPreprocessingView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(m_Controls->m_ButtonAverageGradients), SIGNAL(clicked()), this, SLOT(AverageGradients()) ); connect( (QObject*)(m_Controls->m_ButtonExtractB0), SIGNAL(clicked()), this, SLOT(ExtractB0()) ); connect( (QObject*)(m_Controls->m_ModifyMeasurementFrame), SIGNAL(clicked()), this, SLOT(DoApplyMesurementFrame()) ); connect( (QObject*)(m_Controls->m_ReduceGradientsButton), SIGNAL(clicked()), this, SLOT(DoReduceGradientDirections()) ); connect( (QObject*)(m_Controls->m_ShowGradientsButton), SIGNAL(clicked()), this, SLOT(DoShowGradientDirections()) ); connect( (QObject*)(m_Controls->m_MirrorGradientToHalfSphereButton), SIGNAL(clicked()), this, SLOT(DoHalfSphereGradientDirections()) ); connect( (QObject*)(m_Controls->m_MergeDwisButton), SIGNAL(clicked()), this, SLOT(MergeDwis()) ); connect( (QObject*)(m_Controls->m_AdcSignalAverage), SIGNAL(clicked()), this, SLOT(DoADCAverage()) ); //connect( (QObject*)(m_Controls->m_AdcSignalFit), SIGNAL(clicked()), this, SLOT(DoADCFit()) ); connect( (QObject*)(m_Controls->m_AkcSignalFit), SIGNAL(clicked()), this, SLOT(DoAKCFit()) ); connect( (QObject*)(m_Controls->m_BiExpSignalFit), SIGNAL(clicked()), this, SLOT(DoBiExpFit()) ); connect( (QObject*)(m_Controls->m_B_ValueMap_Rounder_SpinBox), SIGNAL(valueChanged(int)), this, SLOT(UpdateDwiBValueMapRounder(int))); connect( (QObject*)(m_Controls->m_CreateLengthCorrectedDwi), SIGNAL(clicked()), this, SLOT(DoLengthCorrection()) ); connect( (QObject*)(m_Controls->m_CalcAdcButton), SIGNAL(clicked()), this, SLOT(DoAdcCalculation()) ); } } void QmitkPreprocessingView::DoLengthCorrection() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage DiffusionImageType; typedef itk::DwiGradientLengthCorrectionFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetRoundingValue( m_Controls->m_B_ValueMap_Rounder_SpinBox->value()); filter->SetReferenceBValue(m_DiffusionImage->GetReferenceBValue()); filter->SetReferenceGradientDirectionContainer(m_DiffusionImage->GetDirections()); filter->Update(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage( m_DiffusionImage->GetVectorImage()); image->SetReferenceBValue( filter->GetNewBValue() ); image->SetDirections( filter->GetOutputGradientDirectionContainer()); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); imageNode->SetName((name+"_rounded").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } void QmitkPreprocessingView::UpdateDwiBValueMapRounder(int i) { if (m_DiffusionImage.IsNull()) return; //m_DiffusionImage->UpdateBValueMap(); UpdateBValueTableWidget(i); } void QmitkPreprocessingView::CallMultishellToSingleShellFilter(itk::DWIVoxelFunctor * functor, mitk::DiffusionImage::Pointer ImPtr, QString imageName) { typedef itk::RadialMultishellToSingleshellImageFilter FilterType; // filter input parameter const mitk::DiffusionImage::BValueMap &originalShellMap = ImPtr->GetBValueMap(); const mitk::DiffusionImage::ImageType *vectorImage = ImPtr->GetVectorImage(); const mitk::DiffusionImage::GradientDirectionContainerType::Pointer gradientContainer = ImPtr->GetDirections(); const unsigned int &bValue = ImPtr->GetReferenceBValue(); mitk::DataNode::Pointer imageNode = 0; // filter call FilterType::Pointer filter = FilterType::New(); filter->SetInput(vectorImage); filter->SetOriginalGradientDirections(gradientContainer); filter->SetOriginalBValueMap(originalShellMap); filter->SetOriginalBValue(bValue); filter->SetFunctor(functor); filter->Update(); // create new DWI image mitk::DiffusionImage::Pointer outImage = mitk::DiffusionImage::New(); outImage->SetVectorImage( filter->GetOutput() ); outImage->SetReferenceBValue( m_Controls->m_targetBValueSpinBox->value() ); outImage->SetDirections( filter->GetTargetGradientDirections() ); outImage->InitializeFromVectorImage(); imageNode = mitk::DataNode::New(); imageNode->SetData( outImage ); imageNode->SetName(imageName.toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); if(m_Controls->m_OutputRMSErrorImage->isChecked()){ // create new Error image FilterType::ErrorImageType::Pointer errImage = filter->GetErrorImage(); mitk::Image::Pointer mitkErrImage = mitk::Image::New(); mitkErrImage->InitializeByItk(errImage); mitkErrImage->SetVolume(errImage->GetBufferPointer()); imageNode = mitk::DataNode::New(); imageNode->SetData( mitkErrImage ); imageNode->SetName((imageName+"_Error").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } } void QmitkPreprocessingView::DoBiExpFit() { itk::BiExpFitFunctor::Pointer functor = itk::BiExpFitFunctor::New(); for (unsigned int i=0; i::Pointer inImage = dynamic_cast< mitk::DiffusionImage* >(m_SelectedDiffusionNodes.at(i)->GetData()); QString name(m_SelectedDiffusionNodes.at(i)->GetName().c_str()); const mitk::DiffusionImage::BValueMap & originalShellMap = inImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,inImage,name + "_BiExp"); } } void QmitkPreprocessingView::DoAKCFit() { itk::KurtosisFitFunctor::Pointer functor = itk::KurtosisFitFunctor::New(); for (unsigned int i=0; i::Pointer inImage = dynamic_cast< mitk::DiffusionImage* >(m_SelectedDiffusionNodes.at(i)->GetData()); QString name(m_SelectedDiffusionNodes.at(i)->GetName().c_str()); const mitk::DiffusionImage::BValueMap & originalShellMap = inImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,inImage,name + "_AKC"); } } void QmitkPreprocessingView::DoADCFit() { // later } void QmitkPreprocessingView::DoADCAverage() { itk::ADCAverageFunctor::Pointer functor = itk::ADCAverageFunctor::New(); for (unsigned int i=0; i::Pointer inImage = dynamic_cast< mitk::DiffusionImage* >(m_SelectedDiffusionNodes.at(i)->GetData()); QString name(m_SelectedDiffusionNodes.at(i)->GetName().c_str()); const mitk::DiffusionImage::BValueMap & originalShellMap = inImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = originalShellMap.begin(); ++it;/* skip b=0*/ unsigned int s = 0; /*shell index */ vnl_vector bValueList(originalShellMap.size()-1); while(it != originalShellMap.end()) bValueList.put(s++,(it++)->first); const double targetBValue = m_Controls->m_targetBValueSpinBox->value(); functor->setListOfBValues(bValueList); functor->setTargetBValue(targetBValue); CallMultishellToSingleShellFilter(functor,inImage,name + "_ADC"); } } void QmitkPreprocessingView::DoAdcCalculation() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage< DiffusionPixelType > DiffusionImageType; typedef itk::AdcImageFilter< DiffusionPixelType, double > FilterType; for (unsigned int i=0; i(m_SelectedDiffusionNodes.at(i)->GetData()); FilterType::Pointer filter = FilterType::New(); filter->SetInput(inImage->GetVectorImage()); filter->SetGradientDirections(inImage->GetDirections()); filter->SetB_value(inImage->GetReferenceBValue()); filter->Update(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.at(i)->GetName().c_str(); imageNode->SetName((name+"_ADC").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } } void QmitkPreprocessingView::UpdateBValueTableWidget(int i) { foreach(QCheckBox * box, m_ReduceGradientCheckboxes) { m_Controls->m_ReductionFrame->layout()->removeWidget(box); delete box; } foreach(QSpinBox * box, m_ReduceGradientSpinboxes) { m_Controls->m_ReductionFrame->layout()->removeWidget(box); delete box; } m_ReduceGradientCheckboxes.clear(); m_ReduceGradientSpinboxes.clear(); if (m_DiffusionImage.IsNull()) { m_Controls->m_B_ValueMap_TableWidget->clear(); m_Controls->m_B_ValueMap_TableWidget->setRowCount(1); QStringList headerList; headerList << "b-Value" << "Number of gradients"; m_Controls->m_B_ValueMap_TableWidget->setHorizontalHeaderLabels(headerList); m_Controls->m_B_ValueMap_TableWidget->setItem(0,0,new QTableWidgetItem("-")); m_Controls->m_B_ValueMap_TableWidget->setItem(0,1,new QTableWidgetItem("-")); }else{ typedef mitk::DiffusionImage::BValueMap BValueMap; typedef mitk::DiffusionImage::BValueMap::iterator BValueMapIterator; BValueMapIterator it; BValueMap roundedBValueMap = m_DiffusionImage->GetBValueMap(); m_Controls->m_B_ValueMap_TableWidget->clear(); m_Controls->m_B_ValueMap_TableWidget->setRowCount(roundedBValueMap.size() ); QStringList headerList; headerList << "b-Value" << "Number of gradients"; m_Controls->m_B_ValueMap_TableWidget->setHorizontalHeaderLabels(headerList); QCheckBox* checkBox; QSpinBox* spinBox; int i = 0 ; for(it = roundedBValueMap.begin() ;it != roundedBValueMap.end(); it++) { m_Controls->m_B_ValueMap_TableWidget->setItem(i,0,new QTableWidgetItem(QString::number(it->first))); m_Controls->m_B_ValueMap_TableWidget->setItem(i,1,new QTableWidgetItem(QString::number(it->second.size()))); // Reduce Gradients GUI adaption if(roundedBValueMap.size() > 1){ checkBox = new QCheckBox(QString::number(it->first) + " with " + QString::number(it->second.size()) + " directions"); checkBox->setEnabled(true); checkBox->setChecked(true); checkBox->setCheckable(true); m_ReduceGradientCheckboxes.push_back(checkBox); m_Controls->m_ReductionFrame->layout()->addWidget(checkBox); spinBox = new QSpinBox(); spinBox->setMaximum(it->second.size()); spinBox->setValue(std::ceil((float)it->second.size())); spinBox->setMinimum(0); m_ReduceGradientSpinboxes.push_back(spinBox); m_Controls->m_ReductionFrame->layout()->addWidget(spinBox); } i++; } } } void QmitkPreprocessingView::OnSelectionChanged( std::vector nodes ) { bool foundDwiVolume = false; m_DiffusionImage = NULL; m_SelectedDiffusionNodes.clear(); // iterate selection for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() && dynamic_cast*>(node->GetData()) ) { foundDwiVolume = true; m_DiffusionImage = dynamic_cast*>(node->GetData()); m_Controls->m_DiffusionImageLabel->setText(node->GetName().c_str()); m_SelectedDiffusionNodes.push_back(node); } } m_Controls->m_ButtonAverageGradients->setEnabled(foundDwiVolume); m_Controls->m_ButtonExtractB0->setEnabled(foundDwiVolume); m_Controls->m_CheckExtractAll->setEnabled(foundDwiVolume); m_Controls->m_ModifyMeasurementFrame->setEnabled(foundDwiVolume); m_Controls->m_MeasurementFrameTable->setEnabled(foundDwiVolume); m_Controls->m_ReduceGradientsButton->setEnabled(foundDwiVolume); m_Controls->m_ShowGradientsButton->setEnabled(foundDwiVolume); m_Controls->m_MirrorGradientToHalfSphereButton->setEnabled(foundDwiVolume); m_Controls->m_MergeDwisButton->setEnabled(foundDwiVolume); m_Controls->m_B_ValueMap_Rounder_SpinBox->setEnabled(foundDwiVolume); //m_Controls->m_AdcSignalFit->setEnabled(foundDwiVolume); m_Controls->m_AdcSignalAverage->setEnabled(foundDwiVolume); m_Controls->m_AkcSignalFit->setEnabled(foundDwiVolume); m_Controls->m_BiExpSignalFit->setEnabled(foundDwiVolume); m_Controls->m_CreateLengthCorrectedDwi->setEnabled(foundDwiVolume); m_Controls->m_CalcAdcButton->setEnabled(foundDwiVolume); m_Controls->m_targetBValueSpinBox->setEnabled(foundDwiVolume); m_Controls->m_OutputRMSErrorImage->setEnabled(foundDwiVolume); // reset sampling frame to 1 and update all ealted components m_Controls->m_B_ValueMap_Rounder_SpinBox->setValue(1); UpdateBValueTableWidget(m_Controls->m_B_ValueMap_Rounder_SpinBox->value()); if (foundDwiVolume) { m_Controls->m_InputData->setTitle("Input Data"); vnl_matrix_fixed< double, 3, 3 > mf = m_DiffusionImage->GetMeasurementFrame(); for (int r=0; r<3; r++) for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); delete item; item = new QTableWidgetItem(); item->setTextAlignment(Qt::AlignCenter | Qt::AlignVCenter); item->setText(QString::number(mf.get(r,c))); m_Controls->m_MeasurementFrameTable->setItem(r,c,item); } //calculate target bValue for MultishellToSingleShellfilter const mitk::DiffusionImage::BValueMap & bValMap = m_DiffusionImage->GetBValueMap(); mitk::DiffusionImage::BValueMap::const_iterator it = bValMap.begin(); unsigned int targetBVal = 0; while(it != bValMap.end()) targetBVal += (it++)->first; targetBVal /= (float)bValMap.size()-1; m_Controls->m_targetBValueSpinBox->setValue(targetBVal); } else { for (int r=0; r<3; r++) for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); delete item; item = new QTableWidgetItem(); m_Controls->m_MeasurementFrameTable->setItem(r,c,item); } m_Controls->m_DiffusionImageLabel->setText("mandatory"); m_Controls->m_InputData->setTitle("Please Select Input Data"); } } void QmitkPreprocessingView::Activated() { QmitkFunctionality::Activated(); } void QmitkPreprocessingView::Deactivated() { QmitkFunctionality::Deactivated(); } void QmitkPreprocessingView::DoHalfSphereGradientDirections() { GradientDirectionContainerType::Pointer gradientContainer = m_DiffusionImage->GetDirections(); for (unsigned int j=0; jSize(); j++) if (gradientContainer->at(j)[0]<0) gradientContainer->at(j) = -gradientContainer->at(j); m_DiffusionImage->SetDirections(gradientContainer); } void QmitkPreprocessingView::DoApplyMesurementFrame() { if (m_DiffusionImage.IsNull()) return; vnl_matrix_fixed< double, 3, 3 > mf; for (int r=0; r<3; r++) for (int c=0; c<3; c++) { QTableWidgetItem* item = m_Controls->m_MeasurementFrameTable->item(r,c); if (!item) return; mf[r][c] = item->text().toDouble(); } m_DiffusionImage->SetMeasurementFrame(mf); } void QmitkPreprocessingView::DoShowGradientDirections() { if (m_DiffusionImage.IsNull()) return; int maxIndex = 0; unsigned int maxSize = m_DiffusionImage->GetDimension(0); if (maxSizeGetDimension(1)) { maxSize = m_DiffusionImage->GetDimension(1); maxIndex = 1; } if (maxSizeGetDimension(2)) { maxSize = m_DiffusionImage->GetDimension(2); maxIndex = 2; } mitk::Point3D origin = m_DiffusionImage->GetGeometry()->GetOrigin(); mitk::PointSet::Pointer originSet = mitk::PointSet::New(); typedef mitk::DiffusionImage::BValueMap BValueMap; typedef mitk::DiffusionImage::BValueMap::iterator BValueMapIterator; BValueMap bValMap = m_DiffusionImage->GetBValueMap(); GradientDirectionContainerType::Pointer gradientContainer = m_DiffusionImage->GetDirections(); mitk::Geometry3D::Pointer geometry = m_DiffusionImage->GetGeometry(); int shellCount = 1; for(BValueMapIterator it = bValMap.begin(); it!=bValMap.end(); ++it) { mitk::PointSet::Pointer pointset = mitk::PointSet::New(); for (unsigned int j=0; jsecond.size(); j++) { mitk::Point3D ip; vnl_vector_fixed< double, 3 > v = gradientContainer->at(it->second[j]); if (v.magnitude()>mitk::eps) { ip[0] = v[0]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[0]-0.5*geometry->GetSpacing()[0] + geometry->GetSpacing()[0]*m_DiffusionImage->GetDimension(0)/2; ip[1] = v[1]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[1]-0.5*geometry->GetSpacing()[1] + geometry->GetSpacing()[1]*m_DiffusionImage->GetDimension(1)/2; ip[2] = v[2]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[2]-0.5*geometry->GetSpacing()[2] + geometry->GetSpacing()[2]*m_DiffusionImage->GetDimension(2)/2; pointset->InsertPoint(j, ip); } else if (originSet->IsEmpty()) { ip[0] = v[0]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[0]-0.5*geometry->GetSpacing()[0] + geometry->GetSpacing()[0]*m_DiffusionImage->GetDimension(0)/2; ip[1] = v[1]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[1]-0.5*geometry->GetSpacing()[1] + geometry->GetSpacing()[1]*m_DiffusionImage->GetDimension(1)/2; ip[2] = v[2]*maxSize*geometry->GetSpacing()[maxIndex]/2 + origin[2]-0.5*geometry->GetSpacing()[2] + geometry->GetSpacing()[2]*m_DiffusionImage->GetDimension(2)/2; originSet->InsertPoint(j, ip); } } if (it->firstSetData(pointset); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); name += "_Shell_"; name += QString::number(it->first); node->SetName(name.toStdString().c_str()); node->SetProperty("pointsize", mitk::FloatProperty::New((float)maxSize/50)); int b0 = shellCount%2; int b1 = 0; int b2 = 0; if (shellCount>4) b2 = 1; if (shellCount%4 >= 2) b1 = 1; node->SetProperty("color", mitk::ColorProperty::New(b2, b1, b0)); GetDefaultDataStorage()->Add(node, m_SelectedDiffusionNodes.front()); shellCount++; } // add origin to datastorage mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(originSet); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); name += "_Origin"; node->SetName(name.toStdString().c_str()); node->SetProperty("pointsize", mitk::FloatProperty::New((float)maxSize/50)); node->SetProperty("color", mitk::ColorProperty::New(1,1,1)); GetDefaultDataStorage()->Add(node, m_SelectedDiffusionNodes.front()); } void QmitkPreprocessingView::DoReduceGradientDirections() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage DiffusionImageType; typedef itk::ElectrostaticRepulsionDiffusionGradientReductionFilter FilterType; typedef DiffusionImageType::BValueMap BValueMap; // GetShellSelection from GUI BValueMap shellSlectionMap; BValueMap originalShellMap = m_DiffusionImage->GetBValueMap(); std::vector newNumGradientDirections; int shellCounter = 0; foreach(QCheckBox * box , m_ReduceGradientCheckboxes) { if(box->isChecked()) { double BValue = (box->text().split(' ')).at(0).toDouble(); shellSlectionMap[BValue] = originalShellMap[BValue]; newNumGradientDirections.push_back(m_ReduceGradientSpinboxes.at(shellCounter)->value()); } shellCounter++; } if (newNumGradientDirections.empty()) return; GradientDirectionContainerType::Pointer gradientContainer = m_DiffusionImage->GetDirections(); FilterType::Pointer filter = FilterType::New(); filter->SetInput(m_DiffusionImage->GetVectorImage()); filter->SetOriginalGradientDirections(gradientContainer); filter->SetNumGradientDirections(newNumGradientDirections); filter->SetOriginalBValueMap(originalShellMap); filter->SetShellSelectionBValueMap(shellSlectionMap); filter->Update(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage( filter->GetOutput() ); image->SetReferenceBValue(m_DiffusionImage->GetReferenceBValue()); image->SetDirections(filter->GetGradientDirections()); image->SetMeasurementFrame(m_DiffusionImage->GetMeasurementFrame()); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); QList::iterator itSpinBox = m_ReduceGradientSpinboxes.begin(); QList::iterator itCheckBox = m_ReduceGradientCheckboxes.begin(); while(itSpinBox != m_ReduceGradientSpinboxes.end() && itCheckBox != m_ReduceGradientCheckboxes.end()) { name += "_"; if((*itCheckBox)->isChecked()){ name += QString::number((*itSpinBox)->value()); }else { name += QString::number(0); } ++itSpinBox; ++itCheckBox; } imageNode->SetName(name.toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } void QmitkPreprocessingView::MergeDwis() { typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientContainerType; if (m_SelectedDiffusionNodes.size()<2) return; typedef itk::VectorImage DwiImageType; typedef DwiImageType::PixelType DwiPixelType; typedef DwiImageType::RegionType DwiRegionType; typedef std::vector< DwiImageType::Pointer > DwiImageContainerType; typedef std::vector< GradientContainerType::Pointer > GradientListContainerType; DwiImageContainerType imageContainer; GradientListContainerType gradientListContainer; std::vector< double > bValueContainer; QString name = m_SelectedDiffusionNodes.front()->GetName().c_str(); for (unsigned int i=0; i* >( m_SelectedDiffusionNodes.at(i)->GetData() ); if ( dwi.IsNotNull() ) { imageContainer.push_back(dwi->GetVectorImage()); gradientListContainer.push_back(dwi->GetDirections()); bValueContainer.push_back(dwi->GetReferenceBValue()); if (i>0) { name += "+"; name += m_SelectedDiffusionNodes.at(i)->GetName().c_str(); } } } typedef itk::MergeDiffusionImagesFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetImageVolumes(imageContainer); filter->SetGradientLists(gradientListContainer); filter->SetBValues(bValueContainer); filter->Update(); vnl_matrix_fixed< double, 3, 3 > mf; mf.set_identity(); DiffusionImageType::Pointer image = DiffusionImageType::New(); image->SetVectorImage( filter->GetOutput() ); image->SetReferenceBValue(filter->GetB_Value()); image->SetDirections(filter->GetOutputGradients()); image->SetMeasurementFrame(mf); image->InitializeFromVectorImage(); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); imageNode->SetName(name.toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } void QmitkPreprocessingView::ExtractB0() { typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientContainerType; int nrFiles = m_SelectedDiffusionNodes.size(); if (!nrFiles) return; // call the extraction withou averaging if the check-box is checked if( this->m_Controls->m_CheckExtractAll->isChecked() ) { DoExtractBOWithoutAveraging(); return; } mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_SelectedDiffusionNodes.begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_SelectedDiffusionNodes.end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { DiffusionImageType* vols = static_cast( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); // Extract image using found index typedef itk::B0ImageExtractionImageFilter FilterType; FilterType::Pointer filter = FilterType::New(); filter->SetInput(vols->GetVectorImage()); filter->SetDirections(vols->GetDirections()); filter->Update(); mitk::Image::Pointer mitkImage = mitk::Image::New(); mitkImage->InitializeByItk( filter->GetOutput() ); mitkImage->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( mitkImage ); node->SetProperty( "name", mitk::StringProperty::New(nodename + "_B0")); GetDefaultDataStorage()->Add(node); ++itemiter; } } void QmitkPreprocessingView::DoExtractBOWithoutAveraging() { // typedefs typedef mitk::DiffusionImage DiffusionImageType; typedef DiffusionImageType::GradientDirectionContainerType GradientContainerType; typedef itk::B0ImageExtractionToSeparateImageFilter< short, short> FilterType; // check number of selected objects, return if empty int nrFiles = m_SelectedDiffusionNodes.size(); if (!nrFiles) return; mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_SelectedDiffusionNodes.begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_SelectedDiffusionNodes.end() ); while ( itemiter != itemiterend ) // for all items { DiffusionImageType* vols = static_cast( (*itemiter)->GetData()); std::string nodename; (*itemiter)->GetStringProperty("name", nodename); // Extract image using found index FilterType::Pointer filter = FilterType::New(); filter->SetInput(vols->GetVectorImage()); filter->SetDirections(vols->GetDirections()); filter->Update(); mitk::Image::Pointer mitkImage = mitk::Image::New(); mitkImage->InitializeByItk( filter->GetOutput() ); mitkImage->SetImportChannel( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( mitkImage ); node->SetProperty( "name", mitk::StringProperty::New(nodename + "_B0_ALL")); GetDefaultDataStorage()->Add(node); + /*A reinitialization is needed to access the time channels via the ImageNavigationController + The Global-Geometry can not recognize the time channel without a re-init. + (for a new selection in datamanger a automatically updated of the Global-Geometry should be done - if it contains the time channel)*/ + mitk::RenderingManager::GetInstance()->InitializeViews(node->GetData()->GetTimeGeometry(),mitk::RenderingManager::REQUEST_UPDATE_ALL, true); + ++itemiter; } + + } void QmitkPreprocessingView::AverageGradients() { int nrFiles = m_SelectedDiffusionNodes.size(); if (!nrFiles) return; mitk::DataStorage::SetOfObjects::const_iterator itemiter( m_SelectedDiffusionNodes.begin() ); mitk::DataStorage::SetOfObjects::const_iterator itemiterend( m_SelectedDiffusionNodes.end() ); std::vector nodes; while ( itemiter != itemiterend ) // for all items { mitk::DiffusionImage* vols = static_cast*>( (*itemiter)->GetData()); vols->AverageRedundantGradients(m_Controls->m_Blur->value()); ++itemiter; } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp index 023da6fbfb..e37c14e773 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkQBallReconstructionView.cpp @@ -1,977 +1,1007 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //#define MBILOG_ENABLE_DEBUG #include "QmitkQBallReconstructionView.h" #include "mitkDiffusionImagingConfigure.h" // qt includes #include // itk includes #include "itkTimeProbe.h" // mitk includes #include "mitkProgressBar.h" #include "mitkStatusBar.h" #include "mitkNodePredicateDataType.h" #include "QmitkDataStorageComboBox.h" #include "QmitkStdMultiWidget.h" #include "itkDiffusionQballReconstructionImageFilter.h" #include "itkAnalyticalDiffusionQballReconstructionImageFilter.h" #include "itkDiffusionMultiShellQballReconstructionImageFilter.h" #include "itkVectorContainer.h" #include "mitkQBallImage.h" #include "mitkProperties.h" #include "mitkVtkResliceInterpolationProperty.h" #include "mitkLookupTable.h" #include "mitkLookupTableProperty.h" #include "mitkTransferFunction.h" #include "mitkTransferFunctionProperty.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "berryIStructuredSelection.h" #include "berryIWorkbenchWindow.h" #include "berryISelectionService.h" #include const std::string QmitkQBallReconstructionView::VIEW_ID = "org.mitk.views.qballreconstruction"; typedef float TTensorPixelType; const int QmitkQBallReconstructionView::nrconvkernels = 252; struct QbrShellSelection { - QmitkQBallReconstructionView* m_View; - mitk::DataNode * m_Node; - std::string m_NodeName; + QmitkQBallReconstructionView* m_View; + mitk::DataNode * m_Node; + std::string m_NodeName; - std::vector m_CheckBoxes; - QLabel * m_Label; + std::vector m_CheckBoxes; + QLabel * m_Label; - mitk::DiffusionImage * m_Image; - typedef mitk::DiffusionImage::BValueMap BValueMap; + mitk::DiffusionImage * m_Image; + typedef mitk::DiffusionImage::BValueMap BValueMap; - QbrShellSelection(QmitkQBallReconstructionView* view, mitk::DataNode * node) - : m_View(view), - m_Node(node), - m_NodeName(node->GetName()) - { - m_Image = dynamic_cast * > (node->GetData()); - if(!m_Image){MITK_INFO << "QmitkQBallReconstructionView::QbrShellSelection : fail to initialize DiffusionImage "; return;} + QbrShellSelection(QmitkQBallReconstructionView* view, mitk::DataNode * node) + : m_View(view), + m_Node(node), + m_NodeName(node->GetName()) + { + m_Image = dynamic_cast * > (node->GetData()); + if(!m_Image){MITK_INFO << "QmitkQBallReconstructionView::QbrShellSelection : fail to initialize DiffusionImage "; return;} - GenerateCheckboxes(); + GenerateCheckboxes(); - } + } - void GenerateCheckboxes() - { - BValueMap origMap = m_Image->GetBValueMap(); - BValueMap::iterator itStart = origMap.begin(); - itStart++; - BValueMap::iterator itEnd = origMap.end(); + void GenerateCheckboxes() + { + BValueMap origMap = m_Image->GetBValueMap(); + BValueMap::iterator itStart = origMap.begin(); + itStart++; + BValueMap::iterator itEnd = origMap.end(); - m_Label = new QLabel(m_NodeName.c_str()); - m_Label->setVisible(true); - m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(m_Label); + m_Label = new QLabel(m_NodeName.c_str()); + m_Label->setVisible(true); + m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(m_Label); - for(BValueMap::iterator it = itStart ; it!= itEnd; it++) - { - QCheckBox * box = new QCheckBox(QString::number(it->first)); - m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(box); + for(BValueMap::iterator it = itStart ; it!= itEnd; it++) + { + QCheckBox * box = new QCheckBox(QString::number(it->first)); + m_View->m_Controls->m_QBallSelectionBox->layout()->addWidget(box); - box->setChecked(true); - box->setCheckable(true); - // box->setVisible(true); - m_CheckBoxes.push_back(box); - } + box->setChecked(true); + box->setCheckable(true); + // box->setVisible(true); + m_CheckBoxes.push_back(box); } + } - void SetVisible(bool vis) + void SetVisible(bool vis) + { + foreach(QCheckBox * box, m_CheckBoxes) { - foreach(QCheckBox * box, m_CheckBoxes) - { - box->setVisible(vis); - } + box->setVisible(vis); } + } - BValueMap GetBValueSelctionMap() - { - BValueMap inputMap = m_Image->GetBValueMap(); - BValueMap outputMap; - - unsigned int val = 0; - - if(inputMap.find(0) == inputMap.end()){ - MITK_INFO << "QbrShellSelection: return empty BValueMap from GUI Selection"; - return outputMap; - }else{ - outputMap[val] = inputMap[val]; - MITK_INFO << val; - } + BValueMap GetBValueSelctionMap() + { + BValueMap inputMap = m_Image->GetBValueMap(); + BValueMap outputMap; - foreach(QCheckBox * box, m_CheckBoxes) - { - if(box->isChecked()){ - val = box->text().toDouble(); - outputMap[val] = inputMap[val]; - MITK_INFO << val; - } - } + unsigned int val = 0; - return outputMap; + if(inputMap.find(0) == inputMap.end()){ + MITK_INFO << "QbrShellSelection: return empty BValueMap from GUI Selection"; + return outputMap; + }else{ + outputMap[val] = inputMap[val]; + MITK_INFO << val; } - ~QbrShellSelection() + foreach(QCheckBox * box, m_CheckBoxes) { - m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget(m_Label); - delete m_Label; + if(box->isChecked()){ + val = box->text().toDouble(); + outputMap[val] = inputMap[val]; + MITK_INFO << val; + } + } - for(std::vector::iterator it = m_CheckBoxes.begin() ; it!= m_CheckBoxes.end(); it++) - { - m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget((*it)); - delete (*it); - } - m_CheckBoxes.clear(); + return outputMap; + } + + ~QbrShellSelection() + { + m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget(m_Label); + delete m_Label; + + for(std::vector::iterator it = m_CheckBoxes.begin() ; it!= m_CheckBoxes.end(); it++) + { + m_View->m_Controls->m_QBallSelectionBox->layout()->removeWidget((*it)); + delete (*it); } + m_CheckBoxes.clear(); + } }; using namespace berry; struct QbrSelListener : ISelectionListener { - berryObjectMacro(QbrSelListener); + berryObjectMacro(QbrSelListener); - QbrSelListener(QmitkQBallReconstructionView* view) - { - m_View = view; - } + QbrSelListener(QmitkQBallReconstructionView* view) + { + m_View = view; + } + + void DoSelectionChanged(ISelection::ConstPointer selection) + { + // save current selection in member variable + m_View->m_CurrentSelection = selection.Cast(); - void DoSelectionChanged(ISelection::ConstPointer selection) + // do something with the selected items + if(m_View->m_CurrentSelection) { - // save current selection in member variable - m_View->m_CurrentSelection = selection.Cast(); + bool foundDwiVolume = false; + + m_View->m_Controls->m_DiffusionImageLabel->setText("mandatory"); + m_View->m_Controls->m_InputData->setTitle("Please Select Input Data"); - // do something with the selected items - if(m_View->m_CurrentSelection) + QString selected_images = ""; + + mitk::DataStorage::SetOfObjects::Pointer set = + mitk::DataStorage::SetOfObjects::New(); + + int at = 0; + + // iterate selection + for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); + i != m_View->m_CurrentSelection->End(); ++i) + { + + // extract datatree node + if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { - bool foundDwiVolume = false; - - m_View->m_Controls->m_DiffusionImageLabel->setText("mandatory"); - m_View->m_Controls->m_InputData->setTitle("Please Select Input Data"); - - QString selected_images = ""; - - mitk::DataStorage::SetOfObjects::Pointer set = - mitk::DataStorage::SetOfObjects::New(); - - int at = 0; - - // iterate selection - for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); - i != m_View->m_CurrentSelection->End(); ++i) - { - - // extract datatree node - if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) - { - mitk::DataNode::Pointer node = nodeObj->GetDataNode(); - mitk::DiffusionImage* diffusionImage = dynamic_cast * >(node->GetData()); - // only look at interesting types - if(diffusionImage) - { - foundDwiVolume = true; - selected_images += QString(node->GetName().c_str()); - if(i + 1 != m_View->m_CurrentSelection->End()) - selected_images += "\n"; - set->InsertElement(at++, node); - } - } - } - m_View->GenerateShellSelectionUI(set); - m_View->m_Controls->m_DiffusionImageLabel->setText(selected_images); - m_View->m_Controls->m_ButtonStandard->setEnabled(foundDwiVolume); - if (foundDwiVolume) - m_View->m_Controls->m_InputData->setTitle("Input Data"); - else - m_View->m_Controls->m_DiffusionImageLabel->setText("mandatory"); + mitk::DataNode::Pointer node = nodeObj->GetDataNode(); + mitk::DiffusionImage* diffusionImage = dynamic_cast * >(node->GetData()); + // only look at interesting types + if(diffusionImage) + { + foundDwiVolume = true; + selected_images += QString(node->GetName().c_str()); + if(i + 1 != m_View->m_CurrentSelection->End()) + selected_images += "\n"; + set->InsertElement(at++, node); + } } + } + m_View->GenerateShellSelectionUI(set); + m_View->m_Controls->m_DiffusionImageLabel->setText(selected_images); + m_View->m_Controls->m_ButtonStandard->setEnabled(foundDwiVolume); + if (foundDwiVolume) + m_View->m_Controls->m_InputData->setTitle("Input Data"); + else + m_View->m_Controls->m_DiffusionImageLabel->setText("mandatory"); } + } - void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) + void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) + { + // check, if selection comes from datamanager + if (part) { - // check, if selection comes from datamanager - if (part) - { - QString partname(part->GetPartName().c_str()); - if(partname.compare("Data Manager")==0) - { + QString partname(part->GetPartName().c_str()); + if(partname.compare("Data Manager")==0) + { - // apply selection - DoSelectionChanged(selection); + // apply selection + DoSelectionChanged(selection); - } - } + } } + } - QmitkQBallReconstructionView* m_View; + QmitkQBallReconstructionView* m_View; }; // --------------- QmitkQBallReconstructionView----------------- // QmitkQBallReconstructionView::QmitkQBallReconstructionView() - : QmitkFunctionality(), - m_Controls(NULL), - m_MultiWidget(NULL) + : QmitkFunctionality(), + m_Controls(NULL), + m_MultiWidget(NULL) { } QmitkQBallReconstructionView::~QmitkQBallReconstructionView() { - this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->RemovePostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); + this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->RemovePostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); } void QmitkQBallReconstructionView::CreateQtPartControl(QWidget *parent) { - if (!m_Controls) - { - // create GUI widgets - m_Controls = new Ui::QmitkQBallReconstructionViewControls; - m_Controls->setupUi(parent); - this->CreateConnections(); + if (!m_Controls) + { + // create GUI widgets + m_Controls = new Ui::QmitkQBallReconstructionViewControls; + m_Controls->setupUi(parent); + this->CreateConnections(); - m_Controls->m_DiffusionImageLabel->setText("mandatory"); + m_Controls->m_DiffusionImageLabel->setText("mandatory"); - QStringList items; - items << "2" << "4" << "6" << "8" << "10" << "12"; - m_Controls->m_QBallReconstructionMaxLLevelComboBox->addItems(items); - m_Controls->m_QBallReconstructionMaxLLevelComboBox->setCurrentIndex(1); - MethodChoosen(m_Controls->m_QBallReconstructionMethodComboBox->currentIndex()); + QStringList items; + items << "2" << "4" << "6" << "8" << "10" << "12"; + m_Controls->m_QBallReconstructionMaxLLevelComboBox->addItems(items); + m_Controls->m_QBallReconstructionMaxLLevelComboBox->setCurrentIndex(1); + MethodChoosen(m_Controls->m_QBallReconstructionMethodComboBox->currentIndex()); #ifndef DIFFUSION_IMAGING_EXTENDED - m_Controls->m_QBallReconstructionMethodComboBox->removeItem(3); + m_Controls->m_QBallReconstructionMethodComboBox->removeItem(3); #endif - AdvancedCheckboxClicked(); - } + AdvancedCheckboxClicked(); + } - m_SelListener = berry::ISelectionListener::Pointer(new QbrSelListener(this)); - this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); - berry::ISelection::ConstPointer sel( - this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); - m_CurrentSelection = sel.Cast(); - m_SelListener.Cast()->DoSelectionChanged(sel); + m_SelListener = berry::ISelectionListener::Pointer(new QbrSelListener(this)); + this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); + berry::ISelection::ConstPointer sel( + this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); + m_CurrentSelection = sel.Cast(); + m_SelListener.Cast()->DoSelectionChanged(sel); } void QmitkQBallReconstructionView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { - m_MultiWidget = &stdMultiWidget; + m_MultiWidget = &stdMultiWidget; } void QmitkQBallReconstructionView::StdMultiWidgetNotAvailable() { - m_MultiWidget = NULL; + m_MultiWidget = NULL; } void QmitkQBallReconstructionView::CreateConnections() { - if ( m_Controls ) - { - connect( (QObject*)(m_Controls->m_ButtonStandard), SIGNAL(clicked()), this, SLOT(ReconstructStandard()) ); - connect( (QObject*)(m_Controls->m_AdvancedCheckbox), SIGNAL(clicked()), this, SLOT(AdvancedCheckboxClicked()) ); - connect( (QObject*)(m_Controls->m_QBallReconstructionMethodComboBox), SIGNAL(currentIndexChanged(int)), this, SLOT(MethodChoosen(int)) ); + if ( m_Controls ) + { + connect( (QObject*)(m_Controls->m_ButtonStandard), SIGNAL(clicked()), this, SLOT(ReconstructStandard()) ); + connect( (QObject*)(m_Controls->m_AdvancedCheckbox), SIGNAL(clicked()), this, SLOT(AdvancedCheckboxClicked()) ); + connect( (QObject*)(m_Controls->m_QBallReconstructionMethodComboBox), SIGNAL(currentIndexChanged(int)), this, SLOT(MethodChoosen(int)) ); - } + } } void QmitkQBallReconstructionView::OnSelectionChanged( std::vector ) { } void QmitkQBallReconstructionView::Activated() { - QmitkFunctionality::Activated(); + QmitkFunctionality::Activated(); - berry::ISelection::ConstPointer sel( - this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); - m_CurrentSelection = sel.Cast(); - m_SelListener.Cast()->DoSelectionChanged(sel); + berry::ISelection::ConstPointer sel( + this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); + m_CurrentSelection = sel.Cast(); + m_SelListener.Cast()->DoSelectionChanged(sel); } void QmitkQBallReconstructionView::Deactivated() { - QmitkFunctionality::Deactivated(); + QmitkFunctionality::Deactivated(); } void QmitkQBallReconstructionView::ReconstructStandard() { - int index = m_Controls->m_QBallReconstructionMethodComboBox->currentIndex(); + int index = m_Controls->m_QBallReconstructionMethodComboBox->currentIndex(); #ifndef DIFFUSION_IMAGING_EXTENDED - if(index>=3) - { - index = index + 1; - } + if(index>=3) + { + index = index + 1; + } #endif - switch(index) - { - case 0: - { - // Numerical - Reconstruct(0,0); - break; - } - case 1: - { - // Standard - Reconstruct(1,0); - break; - } - case 2: - { - // Solid Angle - Reconstruct(1,6); - break; - } - case 3: - { - // Constrained Solid Angle - Reconstruct(1,7); - break; - } - case 4: - { - // ADC - Reconstruct(1,4); - break; - } - case 5: - { - // Raw Signal - Reconstruct(1,5); - break; - } - case 6: - { - // Q-Ball reconstruction - Reconstruct(2,0); - break; - } - } + switch(index) + { + case 0: + { + // Numerical + Reconstruct(0,0); + break; + } + case 1: + { + // Standard + Reconstruct(1,0); + break; + } + case 2: + { + // Solid Angle + Reconstruct(1,6); + break; + } + case 3: + { + // Constrained Solid Angle + Reconstruct(1,7); + break; + } + case 4: + { + // ADC + Reconstruct(1,4); + break; + } + case 5: + { + // Raw Signal + Reconstruct(1,5); + break; + } + case 6: + { + // Q-Ball reconstruction + Reconstruct(2,0); + break; + } + } } void QmitkQBallReconstructionView::MethodChoosen(int method) { #ifndef DIFFUSION_IMAGING_EXTENDED - if(method>=3) - { - method = method + 1; - } + if(method>=3) + { + method = method + 1; + } #endif - m_Controls->m_QBallSelectionBox->setHidden(true); - m_Controls->m_OutputCoeffsImage->setHidden(true); - - if (method==0) - m_Controls->m_ShFrame->setVisible(false); - else - m_Controls->m_ShFrame->setVisible(true); - - switch(method) - { - case 0: - m_Controls->m_Description->setText("Numerical recon. (Tuch 2004)"); - break; - case 1: - m_Controls->m_Description->setText("Spherical harmonics recon. (Descoteaux 2007)"); - m_Controls->m_OutputCoeffsImage->setHidden(false); - break; - case 2: - m_Controls->m_Description->setText("SH recon. with solid angle consideration (Aganj 2009)"); - m_Controls->m_OutputCoeffsImage->setHidden(false); - break; - case 3: - m_Controls->m_Description->setText("SH solid angle with non-neg. constraint (Goh 2009)"); - break; - case 4: - m_Controls->m_Description->setText("SH recon. of the plain ADC-profiles"); - break; - case 5: - m_Controls->m_Description->setText("SH recon. of the raw diffusion signal"); - break; - case 6: - m_Controls->m_Description->setText("SH recon. of the multi shell diffusion signal (Aganj 2010)"); - m_Controls->m_QBallSelectionBox->setHidden(false); - m_Controls->m_OutputCoeffsImage->setHidden(false); - break; - } + m_Controls->m_QBallSelectionBox->setHidden(true); + m_Controls->m_OutputCoeffsImage->setHidden(true); + + if (method==0) + m_Controls->m_ShFrame->setVisible(false); + else + m_Controls->m_ShFrame->setVisible(true); + + switch(method) + { + case 0: + m_Controls->m_Description->setText("Numerical recon. (Tuch 2004)"); + break; + case 1: + m_Controls->m_Description->setText("Spherical harmonics recon. (Descoteaux 2007)"); + m_Controls->m_OutputCoeffsImage->setHidden(false); + break; + case 2: + m_Controls->m_Description->setText("SH recon. with solid angle consideration (Aganj 2009)"); + m_Controls->m_OutputCoeffsImage->setHidden(false); + break; + case 3: + m_Controls->m_Description->setText("SH solid angle with non-neg. constraint (Goh 2009)"); + break; + case 4: + m_Controls->m_Description->setText("SH recon. of the plain ADC-profiles"); + break; + case 5: + m_Controls->m_Description->setText("SH recon. of the raw diffusion signal"); + break; + case 6: + m_Controls->m_Description->setText("SH recon. of the multi shell diffusion signal (Aganj 2010)"); + m_Controls->m_QBallSelectionBox->setHidden(false); + m_Controls->m_OutputCoeffsImage->setHidden(false); + break; + } } void QmitkQBallReconstructionView::AdvancedCheckboxClicked() { - bool check = m_Controls->m_AdvancedCheckbox->isChecked(); + bool check = m_Controls->m_AdvancedCheckbox->isChecked(); - m_Controls->m_QBallReconstructionMaxLLevelTextLabel_2->setVisible(check); - m_Controls->m_QBallReconstructionMaxLLevelComboBox->setVisible(check); - m_Controls->m_QBallReconstructionLambdaTextLabel_2->setVisible(check); - m_Controls->m_QBallReconstructionLambdaLineEdit->setVisible(check); + m_Controls->m_QBallReconstructionMaxLLevelTextLabel_2->setVisible(check); + m_Controls->m_QBallReconstructionMaxLLevelComboBox->setVisible(check); + m_Controls->m_QBallReconstructionLambdaTextLabel_2->setVisible(check); + m_Controls->m_QBallReconstructionLambdaLineEdit->setVisible(check); - m_Controls->m_QBallReconstructionThresholdLabel_2->setVisible(check); - m_Controls->m_QBallReconstructionThreasholdEdit->setVisible(check); - m_Controls->label_2->setVisible(check); - m_Controls->frame_2->setVisible(check); + m_Controls->m_QBallReconstructionThresholdLabel_2->setVisible(check); + m_Controls->m_QBallReconstructionThreasholdEdit->setVisible(check); + m_Controls->label_2->setVisible(check); + m_Controls->frame_2->setVisible(check); } void QmitkQBallReconstructionView::Reconstruct(int method, int normalization) { - if (m_CurrentSelection) + if (m_CurrentSelection) + { + mitk::DataStorage::SetOfObjects::Pointer set = + mitk::DataStorage::SetOfObjects::New(); + + int at = 0; + for (IStructuredSelection::iterator i = m_CurrentSelection->Begin(); + i != m_CurrentSelection->End(); + ++i) { - mitk::DataStorage::SetOfObjects::Pointer set = - mitk::DataStorage::SetOfObjects::New(); - int at = 0; - for (IStructuredSelection::iterator i = m_CurrentSelection->Begin(); - i != m_CurrentSelection->End(); - ++i) + if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) + { + mitk::DataNode::Pointer node = nodeObj->GetDataNode(); + if(QString("DiffusionImage").compare(node->GetData()->GetNameOfClass())==0) { - - if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) - { - mitk::DataNode::Pointer node = nodeObj->GetDataNode(); - if(QString("DiffusionImage").compare(node->GetData()->GetNameOfClass())==0) - { - set->InsertElement(at++, node); - } - } + set->InsertElement(at++, node); } + } + } - if(method == 0) - { - NumericalQBallReconstruction(set, normalization); - } - else - { + if(method == 0) + { + NumericalQBallReconstruction(set, normalization); + } + else + { #if BOOST_VERSION / 100000 > 0 #if BOOST_VERSION / 100 % 1000 > 34 - if(method == 1) - { - AnalyticalQBallReconstruction(set, normalization); - } - if(method == 2) - { - MultiQBallReconstruction(set); - } + if(method == 1) + { + AnalyticalQBallReconstruction(set, normalization); + } + if(method == 2) + { + MultiQBallReconstruction(set); + } #else - std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; - QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); + std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; + QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); #endif #else - std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; - QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); + std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; + QMessageBox::warning(NULL,"ERROR","Boost 1.35 minimum required"); #endif - } } + } } void QmitkQBallReconstructionView::NumericalQBallReconstruction (mitk::DataStorage::SetOfObjects::Pointer inImages, int normalization) { - try - { - itk::TimeProbe clock; + try + { + itk::TimeProbe clock; - int nrFiles = inImages->size(); - if (!nrFiles) return; + int nrFiles = inImages->size(); + if (!nrFiles) return; - QString status; - mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); + QString status; + mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles); - mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); - mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); + mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); + mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); - while ( itemiter != itemiterend ) // for all items - { + while ( itemiter != itemiterend ) // for all items + { - mitk::DiffusionImage* vols = - static_cast*>( - (*itemiter)->GetData()); - - std::string nodename; - (*itemiter)->GetStringProperty("name", nodename); - - // QBALL RECONSTRUCTION - clock.Start(); - MITK_INFO << "QBall reconstruction "; - mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( - "QBall reconstruction for %s", nodename.c_str()).toAscii()); - - typedef itk::DiffusionQballReconstructionImageFilter - - QballReconstructionImageFilterType; - - QballReconstructionImageFilterType::Pointer filter = - QballReconstructionImageFilterType::New(); - filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); - filter->SetBValue(vols->GetReferenceBValue()); - filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); - - std::string nodePostfix; - switch(normalization) - { - case 0: - { - filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); - nodePostfix = "_Numerical_Qball"; - break; - } - case 1: - { - filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO_B_VALUE); - nodePostfix = "_Numerical_ZeroBvalueNormalization_Qball"; - break; - } - case 2: - { - filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO); - nodePostfix = "_NumericalQball_ZeroNormalization_Qball"; - break; - } - case 3: - { - filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_NONE); - nodePostfix = "_NumericalQball_NoNormalization_Qball"; - break; - } - default: - { - filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); - nodePostfix = "_NumericalQball_Qball"; - } - } - - filter->Update(); - clock.Stop(); - MITK_DEBUG << "took " << clock.GetMean() << "s." ; - - // ODFs TO DATATREE - mitk::QBallImage::Pointer image = mitk::QBallImage::New(); - image->InitializeByItk( filter->GetOutput() ); - image->SetVolume( filter->GetOutput()->GetBufferPointer() ); - mitk::DataNode::Pointer node=mitk::DataNode::New(); - node->SetData( image ); - SetDefaultNodeProperties(node, nodename+nodePostfix); - mitk::ProgressBar::GetInstance()->Progress(); - - GetDefaultDataStorage()->Add(node, *itemiter); - ++itemiter; - } + mitk::DiffusionImage* vols = + static_cast*>( + (*itemiter)->GetData()); - mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); - m_MultiWidget->RequestUpdate(); + std::string nodename; + (*itemiter)->GetStringProperty("name", nodename); - } - catch (itk::ExceptionObject &ex) - { - MITK_INFO << ex ; - QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); - return ; - } + // QBALL RECONSTRUCTION + clock.Start(); + MITK_INFO << "QBall reconstruction "; + mitk::StatusBar::GetInstance()->DisplayText(status.sprintf( + "QBall reconstruction for %s", nodename.c_str()).toAscii()); + + typedef itk::DiffusionQballReconstructionImageFilter + + QballReconstructionImageFilterType; + + QballReconstructionImageFilterType::Pointer filter = + QballReconstructionImageFilterType::New(); + filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); + filter->SetBValue(vols->GetReferenceBValue()); + filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); + + std::string nodePostfix; + switch(normalization) + { + case 0: + { + filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); + nodePostfix = "_Numerical_Qball"; + break; + } + case 1: + { + filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO_B_VALUE); + nodePostfix = "_Numerical_ZeroBvalueNormalization_Qball"; + break; + } + case 2: + { + filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_B_ZERO); + nodePostfix = "_NumericalQball_ZeroNormalization_Qball"; + break; + } + case 3: + { + filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_NONE); + nodePostfix = "_NumericalQball_NoNormalization_Qball"; + break; + } + default: + { + filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD); + nodePostfix = "_NumericalQball_Qball"; + } + } + + filter->Update(); + clock.Stop(); + MITK_DEBUG << "took " << clock.GetMean() << "s." ; + + // ODFs TO DATATREE + mitk::QBallImage::Pointer image = mitk::QBallImage::New(); + image->InitializeByItk( filter->GetOutput() ); + image->SetVolume( filter->GetOutput()->GetBufferPointer() ); + mitk::DataNode::Pointer node=mitk::DataNode::New(); + node->SetData( image ); + SetDefaultNodeProperties(node, nodename+nodePostfix); + mitk::ProgressBar::GetInstance()->Progress(); + + GetDefaultDataStorage()->Add(node, *itemiter); + ++itemiter; + } + + mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); + m_MultiWidget->RequestUpdate(); + + } + catch (itk::ExceptionObject &ex) + { + MITK_INFO << ex ; + QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); + return ; + } } void QmitkQBallReconstructionView::AnalyticalQBallReconstruction( - mitk::DataStorage::SetOfObjects::Pointer inImages, - int normalization) + mitk::DataStorage::SetOfObjects::Pointer inImages, + int normalization) { - try - { - itk::TimeProbe clock; + try + { + itk::TimeProbe clock; + + int nrFiles = inImages->size(); + if (!nrFiles) return; - int nrFiles = inImages->size(); - if (!nrFiles) return; + std::vector lambdas; + float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->value(); + lambdas.push_back(minLambda); + int nLambdas = lambdas.size(); - std::vector lambdas; - float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->value(); - lambdas.push_back(minLambda); - int nLambdas = lambdas.size(); + QString status; + mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); - QString status; - mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); + mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); + mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); - mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); - mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); + std::vector* nodes + = new std::vector(); + while ( itemiter != itemiterend ) // for all items + { + // QBALL RECONSTRUCTION + clock.Start(); + MITK_INFO << "QBall reconstruction "; + mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("QBall reconstruction for %s", (*itemiter)->GetName().c_str()).toAscii()); - std::vector* nodes - = new std::vector(); - while ( itemiter != itemiterend ) // for all items + for(int i=0; im_QBallReconstructionMaxLLevelComboBox->currentIndex()) + { + case 0: + { + TemplatedAnalyticalQBallReconstruction<2>(*itemiter, currentLambda, normalization); + break; + } + case 1: + { + TemplatedAnalyticalQBallReconstruction<4>(*itemiter, currentLambda, normalization); + break; + } + case 2: { - // QBALL RECONSTRUCTION - clock.Start(); - MITK_INFO << "QBall reconstruction "; - mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("QBall reconstruction for %s", (*itemiter)->GetName().c_str()).toAscii()); - - for(int i=0; im_QBallReconstructionMaxLLevelComboBox->currentIndex()) - { - case 0: - { - TemplatedAnalyticalQBallReconstruction<2>(*itemiter, currentLambda, normalization); - break; - } - case 1: - { - TemplatedAnalyticalQBallReconstruction<4>(*itemiter, currentLambda, normalization); - break; - } - case 2: - { - TemplatedAnalyticalQBallReconstruction<6>(*itemiter, currentLambda, normalization); - break; - } - case 3: - { - TemplatedAnalyticalQBallReconstruction<8>(*itemiter, currentLambda, normalization); - break; - } - case 4: - { - TemplatedAnalyticalQBallReconstruction<10>(*itemiter, currentLambda, normalization); - break; - } - case 5: - { - TemplatedAnalyticalQBallReconstruction<12>(*itemiter, currentLambda, normalization); - break; - } - } - clock.Stop(); - MITK_DEBUG << "took " << clock.GetMean() << "s." ; - mitk::ProgressBar::GetInstance()->Progress(); - itemiter++; - } + TemplatedAnalyticalQBallReconstruction<6>(*itemiter, currentLambda, normalization); + break; } + case 3: + { + TemplatedAnalyticalQBallReconstruction<8>(*itemiter, currentLambda, normalization); + break; + } + case 4: + { + TemplatedAnalyticalQBallReconstruction<10>(*itemiter, currentLambda, normalization); + break; + } + case 5: + { + TemplatedAnalyticalQBallReconstruction<12>(*itemiter, currentLambda, normalization); + break; + } + } + clock.Stop(); + MITK_DEBUG << "took " << clock.GetMean() << "s." ; + mitk::ProgressBar::GetInstance()->Progress(); + itemiter++; + } + } - std::vector::iterator nodeIt; - for(nodeIt = nodes->begin(); nodeIt != nodes->end(); ++nodeIt) - GetDefaultDataStorage()->Add(*nodeIt); + std::vector::iterator nodeIt; + for(nodeIt = nodes->begin(); nodeIt != nodes->end(); ++nodeIt) + GetDefaultDataStorage()->Add(*nodeIt); - m_MultiWidget->RequestUpdate(); + m_MultiWidget->RequestUpdate(); - mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); + mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); - } - catch (itk::ExceptionObject &ex) - { - MITK_INFO << ex; - QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); - return; - } + } + catch (itk::ExceptionObject &ex) + { + MITK_INFO << ex; + QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); + return; + } } template void QmitkQBallReconstructionView::TemplatedAnalyticalQBallReconstruction(mitk::DataNode* dataNodePointer, float lambda, int normalization) { - typedef itk::AnalyticalDiffusionQballReconstructionImageFilter - FilterType; - typename FilterType::Pointer filter = FilterType::New(); - - mitk::DiffusionImage* vols = dynamic_cast*>(dataNodePointer->GetData()); - filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); - filter->SetBValue(vols->GetReferenceBValue()); - filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); - filter->SetLambda(lambda); - - std::string nodePostfix; - switch(normalization) - { - case 0: - { - filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); - nodePostfix = "_SphericalHarmonics_Qball"; - break; - } - case 1: - { - filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO_B_VALUE); - nodePostfix = "_SphericalHarmonics_1_Qball"; - break; - } - case 2: - { - filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO); - nodePostfix = "_SphericalHarmonics_2_Qball"; - break; - } - case 3: - { - filter->SetNormalizationMethod(FilterType::QBAR_NONE); - nodePostfix = "_SphericalHarmonics_3_Qball"; - break; - } - case 4: - { - filter->SetNormalizationMethod(FilterType::QBAR_ADC_ONLY); - nodePostfix = "_AdcProfile"; - break; - } - case 5: - { - filter->SetNormalizationMethod(FilterType::QBAR_RAW_SIGNAL); - nodePostfix = "_RawSignal"; - break; - } - case 6: - { - filter->SetNormalizationMethod(FilterType::QBAR_SOLID_ANGLE); - nodePostfix = "_SphericalHarmonics_CSA_Qball"; - break; - } - case 7: - { - filter->SetNormalizationMethod(FilterType::QBAR_NONNEG_SOLID_ANGLE); - nodePostfix = "_SphericalHarmonics_NonNegCSA_Qball"; - break; - } - default: - { - filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); - } - } + typedef itk::AnalyticalDiffusionQballReconstructionImageFilter + FilterType; + typename FilterType::Pointer filter = FilterType::New(); + + mitk::DiffusionImage* vols = dynamic_cast*>(dataNodePointer->GetData()); + filter->SetGradientImage( vols->GetDirections(), vols->GetVectorImage() ); + filter->SetBValue(vols->GetReferenceBValue()); + filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); + filter->SetLambda(lambda); + + std::string nodePostfix; + switch(normalization) + { + case 0: + { + filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); + nodePostfix = "_SphericalHarmonics_Qball"; + break; + } + case 1: + { + filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO_B_VALUE); + nodePostfix = "_SphericalHarmonics_1_Qball"; + break; + } + case 2: + { + filter->SetNormalizationMethod(FilterType::QBAR_B_ZERO); + nodePostfix = "_SphericalHarmonics_2_Qball"; + break; + } + case 3: + { + filter->SetNormalizationMethod(FilterType::QBAR_NONE); + nodePostfix = "_SphericalHarmonics_3_Qball"; + break; + } + case 4: + { + filter->SetNormalizationMethod(FilterType::QBAR_ADC_ONLY); + nodePostfix = "_AdcProfile"; + break; + } + case 5: + { + filter->SetNormalizationMethod(FilterType::QBAR_RAW_SIGNAL); + nodePostfix = "_RawSignal"; + break; + } + case 6: + { + filter->SetNormalizationMethod(FilterType::QBAR_SOLID_ANGLE); + nodePostfix = "_SphericalHarmonics_CSA_Qball"; + break; + } + case 7: + { + filter->SetNormalizationMethod(FilterType::QBAR_NONNEG_SOLID_ANGLE); + nodePostfix = "_SphericalHarmonics_NonNegCSA_Qball"; + break; + } + default: + { + filter->SetNormalizationMethod(FilterType::QBAR_STANDARD); + } + } + + filter->Update(); + + // ODFs TO DATATREE + mitk::QBallImage::Pointer image = mitk::QBallImage::New(); + image->InitializeByItk( filter->GetOutput() ); + image->SetVolume( filter->GetOutput()->GetBufferPointer() ); + mitk::DataNode::Pointer node=mitk::DataNode::New(); + node->SetData( image ); + SetDefaultNodeProperties(node, dataNodePointer->GetName()+nodePostfix); + + GetDefaultDataStorage()->Add(node, dataNodePointer); + + if(m_Controls->m_OutputCoeffsImage->isChecked()) + { + mitk::Image::Pointer coeffsImage = mitk::Image::New(); + coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); + coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); + mitk::DataNode::Pointer coeffsNode=mitk::DataNode::New(); + coeffsNode->SetData( coeffsImage ); + coeffsNode->SetProperty( "name", mitk::StringProperty::New(dataNodePointer->GetName()+"_SH-Coeffs") ); + coeffsNode->SetVisibility(false); + GetDefaultDataStorage()->Add(coeffsNode, node); + } +} - filter->Update(); +void QmitkQBallReconstructionView::MultiQBallReconstruction(mitk::DataStorage::SetOfObjects::Pointer inImages) +{ + try + { + itk::TimeProbe clock; - // ODFs TO DATATREE - mitk::QBallImage::Pointer image = mitk::QBallImage::New(); - image->InitializeByItk( filter->GetOutput() ); - image->SetVolume( filter->GetOutput()->GetBufferPointer() ); - mitk::DataNode::Pointer node=mitk::DataNode::New(); - node->SetData( image ); - SetDefaultNodeProperties(node, dataNodePointer->GetName()+nodePostfix); + int nrFiles = inImages->size(); + if (!nrFiles) return; - GetDefaultDataStorage()->Add(node, dataNodePointer); + std::vector lambdas; + float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->value(); + lambdas.push_back(minLambda); + int nLambdas = lambdas.size(); - if(m_Controls->m_OutputCoeffsImage->isChecked()) - { - mitk::Image::Pointer coeffsImage = mitk::Image::New(); - coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); - coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); - mitk::DataNode::Pointer coeffsNode=mitk::DataNode::New(); - coeffsNode->SetData( coeffsImage ); - coeffsNode->SetProperty( "name", mitk::StringProperty::New(dataNodePointer->GetName()+"_SH-Coeffs") ); - coeffsNode->SetVisibility(false); - GetDefaultDataStorage()->Add(coeffsNode, node); - } -} + QString status; + mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); -void QmitkQBallReconstructionView::MultiQBallReconstruction(mitk::DataStorage::SetOfObjects::Pointer inImages) -{ - try + mitk::DataStorage::SetOfObjects::const_iterator itemiter( inImages->begin() ); + mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); + + while ( itemiter != itemiterend ) // for all items { - itk::TimeProbe clock; + mitk::DataNode* nodePointer = (*itemiter).GetPointer(); + std::string nodename; + (*itemiter)->GetStringProperty("name",nodename); - int nrFiles = inImages->size(); - if (!nrFiles) return; + itemiter++; - std::vector lambdas; - float minLambda = m_Controls->m_QBallReconstructionLambdaLineEdit->value(); - lambdas.push_back(minLambda); - int nLambdas = lambdas.size(); + // QBALL RECONSTRUCTION + clock.Start(); + MITK_INFO << "QBall reconstruction "; + mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("QBall reconstruction for %s", nodename.c_str()).toAscii()); - QString status; - mitk::ProgressBar::GetInstance()->AddStepsToDo(nrFiles*nLambdas); + for(int i=0; ibegin() ); - mitk::DataStorage::SetOfObjects::const_iterator itemiterend( inImages->end() ); + float currentLambda = lambdas[i]; - while ( itemiter != itemiterend ) // for all items + switch(m_Controls->m_QBallReconstructionMaxLLevelComboBox->currentIndex()) + { + case 0: { - mitk::DataNode* nodePointer = (*itemiter).GetPointer(); - std::string nodename; - (*itemiter)->GetStringProperty("name",nodename); - - itemiter++; - - // QBALL RECONSTRUCTION - clock.Start(); - MITK_INFO << "QBall reconstruction "; - mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("QBall reconstruction for %s", nodename.c_str()).toAscii()); - - for(int i=0; im_QBallReconstructionMaxLLevelComboBox->currentIndex()) - { - case 0: - { - TemplatedMultiQBallReconstruction<2>(currentLambda, nodePointer); - break; - } - case 1: - { - TemplatedMultiQBallReconstruction<4>(currentLambda, nodePointer); - break; - } - case 2: - { - TemplatedMultiQBallReconstruction<6>(currentLambda, nodePointer); - break; - } - case 3: - { - TemplatedMultiQBallReconstruction<8>(currentLambda, nodePointer); - break; - } - case 4: - { - TemplatedMultiQBallReconstruction<10>(currentLambda, nodePointer); - break; - } - case 5: - { - TemplatedMultiQBallReconstruction<12>(currentLambda, nodePointer); - break; - } - } - - clock.Stop(); - MITK_DEBUG << "took " << clock.GetMean() << "s." ; - mitk::ProgressBar::GetInstance()->Progress(); - } + TemplatedMultiQBallReconstruction<2>(currentLambda, nodePointer); + break; } - m_MultiWidget->RequestUpdate(); - mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); - } - catch (itk::ExceptionObject &ex) - { - MITK_INFO << ex ; - QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); - return ; - } + case 1: + { + TemplatedMultiQBallReconstruction<4>(currentLambda, nodePointer); + break; + } + case 2: + { + TemplatedMultiQBallReconstruction<6>(currentLambda, nodePointer); + break; + } + case 3: + { + TemplatedMultiQBallReconstruction<8>(currentLambda, nodePointer); + break; + } + case 4: + { + TemplatedMultiQBallReconstruction<10>(currentLambda, nodePointer); + break; + } + case 5: + { + TemplatedMultiQBallReconstruction<12>(currentLambda, nodePointer); + break; + } + } + + clock.Stop(); + MITK_DEBUG << "took " << clock.GetMean() << "s." ; + mitk::ProgressBar::GetInstance()->Progress(); + } + } + m_MultiWidget->RequestUpdate(); + mitk::StatusBar::GetInstance()->DisplayText(status.sprintf("Finished Processing %d Files", nrFiles).toAscii()); + } + catch (itk::ExceptionObject &ex) + { + MITK_INFO << ex ; + QMessageBox::information(0, "Reconstruction not possible:", ex.GetDescription()); + return ; + } } template void QmitkQBallReconstructionView::TemplatedMultiQBallReconstruction(float lambda, mitk::DataNode* dataNodePointer) { - typedef itk::DiffusionMultiShellQballReconstructionImageFilter - FilterType; - typename FilterType::Pointer filter = FilterType::New(); - - std::string nodename; - dataNodePointer->GetStringProperty("name",nodename); - - mitk::DiffusionImage* dwi = dynamic_cast*>(dataNodePointer->GetData()); - - filter->SetBValueMap(m_ShellSelectorMap[dataNodePointer]->GetBValueSelctionMap()); - filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage(), dwi->GetReferenceBValue() ); - filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); - filter->SetLambda(lambda); - filter->Update(); - - // ODFs TO DATATREE - mitk::QBallImage::Pointer image = mitk::QBallImage::New(); - image->InitializeByItk( filter->GetOutput() ); - image->SetVolume( filter->GetOutput()->GetBufferPointer() ); - mitk::DataNode::Pointer node=mitk::DataNode::New(); - node->SetData( image ); - SetDefaultNodeProperties(node, nodename+"_SphericalHarmonics_MultiShell_Qball"); - - GetDefaultDataStorage()->Add(node, dataNodePointer); - - if(m_Controls->m_OutputCoeffsImage->isChecked()) - { - mitk::Image::Pointer coeffsImage = mitk::Image::New(); - coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); - coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); - mitk::DataNode::Pointer coeffsNode=mitk::DataNode::New(); - coeffsNode->SetData( coeffsImage ); - coeffsNode->SetProperty( "name", mitk::StringProperty::New( - QString(nodename.c_str()).append("_SH-Coefficients").toStdString()) ); - coeffsNode->SetVisibility(false); - GetDefaultDataStorage()->Add(coeffsNode, node); - } + typedef itk::DiffusionMultiShellQballReconstructionImageFilter + FilterType; + typename FilterType::Pointer filter = FilterType::New(); + + std::string nodename; + dataNodePointer->GetStringProperty("name",nodename); + + mitk::DiffusionImage* dwi = dynamic_cast*>(dataNodePointer->GetData()); + mitk::DiffusionImage::BValueMap currSelectionMap = m_ShellSelectorMap[dataNodePointer]->GetBValueSelctionMap(); + + if(currSelectionMap.size() != 4 && currSelectionMap.find(0) != currSelectionMap.end()) + { + QMessageBox::information(0, "Reconstruction not possible:" ,QString("Only three shells in a equidistant configuration is supported. (ImageName: " + QString(nodename.c_str()) + ")")); + return; + } + + mitk::DiffusionImage::BValueMap::reverse_iterator it1 = currSelectionMap.rbegin(); + mitk::DiffusionImage::BValueMap::reverse_iterator it2 = currSelectionMap.rbegin(); + ++it2; + + // Get average distance + int avdistance = 0; + for(; it2 != currSelectionMap.rend(); ++it1,++it2) + avdistance += (int)it1->first - (int)it2->first; + avdistance /= currSelectionMap.size()-1; + + // Check if all shells are using the same averae distance + it1 = currSelectionMap.rbegin(); + it2 = currSelectionMap.rbegin(); + ++it2; + for(; it2 != currSelectionMap.rend(); ++it1,++it2) + if(avdistance != (int)it1->first - (int)it2->first) + { + QMessageBox::information(0, "Reconstruction not possible:" ,QString("Selected Shells are not in a equidistant configuration. (ImageName: " + QString(nodename.c_str()) + ")")); + return; + } + + + filter->SetBValueMap(m_ShellSelectorMap[dataNodePointer]->GetBValueSelctionMap()); + filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage(), dwi->GetReferenceBValue() ); + filter->SetThreshold( m_Controls->m_QBallReconstructionThreasholdEdit->value() ); + filter->SetLambda(lambda); + filter->Update(); + + + // ODFs TO DATATREE + mitk::QBallImage::Pointer image = mitk::QBallImage::New(); + image->InitializeByItk( filter->GetOutput() ); + image->SetVolume( filter->GetOutput()->GetBufferPointer() ); + mitk::DataNode::Pointer node=mitk::DataNode::New(); + node->SetData( image ); + SetDefaultNodeProperties(node, nodename+"_SphericalHarmonics_MultiShell_Qball"); + + GetDefaultDataStorage()->Add(node, dataNodePointer); + + if(m_Controls->m_OutputCoeffsImage->isChecked()) + { + mitk::Image::Pointer coeffsImage = mitk::Image::New(); + coeffsImage->InitializeByItk( filter->GetCoefficientImage().GetPointer() ); + coeffsImage->SetVolume( filter->GetCoefficientImage()->GetBufferPointer() ); + mitk::DataNode::Pointer coeffsNode=mitk::DataNode::New(); + coeffsNode->SetData( coeffsImage ); + coeffsNode->SetProperty( "name", mitk::StringProperty::New( + QString(nodename.c_str()).append("_SH-Coefficients").toStdString()) ); + coeffsNode->SetVisibility(false); + GetDefaultDataStorage()->Add(coeffsNode, node); + } } void QmitkQBallReconstructionView::SetDefaultNodeProperties(mitk::DataNode::Pointer node, std::string name) { - node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 500 ) ); - node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); - node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); - node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); - node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); - node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); - node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); - node->SetProperty( "VisibleOdfs", mitk::BoolProperty::New( false ) ); - node->SetProperty ("layer", mitk::IntProperty::New(100)); - node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); - node->SetProperty( "name", mitk::StringProperty::New(name) ); + node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 500 ) ); + node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); + node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); + node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); + node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); + node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); + node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); + node->SetProperty( "VisibleOdfs", mitk::BoolProperty::New( false ) ); + node->SetProperty ("layer", mitk::IntProperty::New(100)); + node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); + node->SetProperty( "name", mitk::StringProperty::New(name) ); } void QmitkQBallReconstructionView::GenerateShellSelectionUI(mitk::DataStorage::SetOfObjects::Pointer set) { - std::map tempMap; - - const mitk::DataStorage::SetOfObjects::iterator setEnd( set->end() ); - mitk::DataStorage::SetOfObjects::iterator NodeIt( set->begin() ); - while(NodeIt != setEnd) - { + std::map tempMap; + const mitk::DataStorage::SetOfObjects::iterator setEnd( set->end() ); + mitk::DataStorage::SetOfObjects::iterator NodeIt( set->begin() ); + while(NodeIt != setEnd) + { - if(m_ShellSelectorMap.find( (*NodeIt).GetPointer() ) != m_ShellSelectorMap.end()) - { - tempMap[(*NodeIt).GetPointer()] = m_ShellSelectorMap[(*NodeIt).GetPointer()]; - m_ShellSelectorMap.erase((*NodeIt).GetPointer()); - }else - { - tempMap[(*NodeIt).GetPointer()] = new QbrShellSelection(this, (*NodeIt) ); - tempMap[(*NodeIt).GetPointer()]->SetVisible(true); - } - NodeIt++; - } - - for(std::map::iterator it = m_ShellSelectorMap.begin(); it != m_ShellSelectorMap.end();it ++) + if(m_ShellSelectorMap.find( (*NodeIt).GetPointer() ) != m_ShellSelectorMap.end()) + { + tempMap[(*NodeIt).GetPointer()] = m_ShellSelectorMap[(*NodeIt).GetPointer()]; + m_ShellSelectorMap.erase((*NodeIt).GetPointer()); + }else { - delete it->second; + tempMap[(*NodeIt).GetPointer()] = new QbrShellSelection(this, (*NodeIt) ); + tempMap[(*NodeIt).GetPointer()]->SetVisible(true); } - m_ShellSelectorMap.clear(); - m_ShellSelectorMap = tempMap; + + NodeIt++; + } + + for(std::map::iterator it = m_ShellSelectorMap.begin(); it != m_ShellSelectorMap.end();it ++) + { + delete it->second; + } + m_ShellSelectorMap.clear(); + m_ShellSelectorMap = tempMap; } diff --git a/Plugins/org.mitk.gui.qt.igtexamples/src/internal/QmitkIGTTrackingLabView.h b/Plugins/org.mitk.gui.qt.igtexamples/src/internal/QmitkIGTTrackingLabView.h index d473143914..9905bf4383 100644 --- a/Plugins/org.mitk.gui.qt.igtexamples/src/internal/QmitkIGTTrackingLabView.h +++ b/Plugins/org.mitk.gui.qt.igtexamples/src/internal/QmitkIGTTrackingLabView.h @@ -1,222 +1,220 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkIGTTrackingLabView_h #define QmitkIGTTrackingLabView_h #include #include #include "ui_QmitkIGTTrackingLabViewControls.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*! \brief QmitkIGTTrackingLabView \warning This class is not yet documented. Use "git blame" and ask the author to provide basic documentation. \sa QmitkFunctionality \ingroup ${plugin_target}_internal */ class QmitkIGTTrackingLabView : public QmitkAbstractView { // this is needed for all Qt objects that should have a Qt meta-object // (everything that derives from QObject and wants to have signal/slots) Q_OBJECT public: static const std::string VIEW_ID; /** \brief default constructor */ QmitkIGTTrackingLabView(); /** \brief default destructor */ virtual ~QmitkIGTTrackingLabView(); virtual void CreateQtPartControl(QWidget *parent); virtual void SetFocus(); protected slots: /** This timer updates the IGT pipline, when nessecary: * 1: if permanent registration is activated, then the permanent * registration filter has to be updated * 2: if the camera view is on it also must be updated * 3: point set recording is based on another filter which needs to be * updated when activated */ void UpdateTimer(); //############## Configuration Step ##################### /** \brief This method sets up the navigation pipeline during initialization. */ void OnSetupNavigation(); /** This method is called when the instrument is selected. * It stores the navigation data of the instrument. */ void OnInstrumentSelected(); /** This method is called when the object marker is selected. * It stores the navigation data of the object marker. */ void OnObjectmarkerSelected(); //############## Initial Registration Step ############## /** \brief This method calls the initial fiducial registration. */ void OnInitialRegistration(); /** \brief This method adds a new fiducial to the tracker fiducials PointSet. */ void OnAddRegistrationTrackingFiducial(); /** \brief This method initializes the registration for the FiducialRegistrationWidget. */ void InitializeRegistration(); //############## Permanent Registration Step ############ /** \brief This method activates the permanent registration based on one tool's position. */ void OnPermanentRegistration(bool on); //############## Pointset Recording Step ################ /** \brief This method starts the PointSet recording. */ void OnPointSetRecording(bool record); //############## Camera View Step ####################### /** \brief This method activates the virtual camera. */ void OnVirtualCamera(bool on); protected: Ui::QmitkIGTTrackingLabViewControls m_Controls; /** \brief This method creates all widgets this bundle needs. */ void CreateBundleWidgets( QWidget* parent ); /** \brief This method creates the SIGNAL SLOT connections. */ void CreateConnections(); /** * Checks if everything is initialized for registration. Gives error messages and returns false if not. */ bool CheckRegistrationInitialization(); /** \brief This method destroys the filter pipeline. */ void DestroyIGTPipeline(); //####################### Members for the IGT pipeline ###################################### // The IGT pipeline is basically initialized in the method OnSetupNavigation(). Further initialization // is done in the methods OnPermanentRegistration(), OnPointSetRecording() and OnVirtualCamera(). // The pipline is updated in the method UpdateTimer(). When the complete pipeline is active, it is // structured as follows: -// -> m_PermanentRegistrationFilter -// / +// ,-> m_PermanentRegistrationFilter // m_Source -> m_Visualizer -// \ -// -> m_VirtualView +// `-> m_VirtualView mitk::TrackingDeviceSource::Pointer m_Source; ///< source that connects to the tracking device mitk::NavigationDataObjectVisualizationFilter::Pointer m_PermanentRegistrationFilter; ///< this filter transforms from tracking coordinates into mitk world coordinates if needed it is interconnected before the FiducialEegistrationFilter mitk::NavigationDataObjectVisualizationFilter::Pointer m_Visualizer; ///< visualization filter mitk::CameraVisualization::Pointer m_VirtualView; ///< filter to update the vtk camera according to the reference navigation data //in addition to the pipeline objects, pointers to the navigation data objects are stored for fast access: mitk::NavigationData::Pointer m_InstrumentNavigationData; ///< navigation data of instrument mitk::NavigationData::Pointer m_ObjectmarkerNavigationData; ///< navigation data of object marker //####################### other members ###################################### QTimer* m_Timer; ///< central timer which updates the IGT pipeline //members for the point set recording mitk::NavigationData::Pointer m_PointSetRecordingNavigationData; mitk::PointSet::Pointer m_PSRecordingPointSet; bool m_PointSetRecording; bool m_PermanentRegistration; bool m_CameraView; //members for initial registration mitk::DataNode::Pointer m_ImageFiducialsDataNode; mitk::DataNode::Pointer m_TrackerFiducialsDataNode; //members for permanent registration mitk::PointSet::Pointer m_PermanentRegistrationSourcePoints; mitk::NavigationData::Pointer m_T_MarkerRel; mitk::NavigationData::Pointer m_T_ObjectReg; mitk::AffineTransform3D::Pointer m_T_ImageReg; mitk::AffineTransform3D::Pointer m_T_ImageGeo; mitk::NavigationData::Pointer m_ObjectmarkerNavigationDataLastUpdate; ///< this is the position of the object marker from the last call of update(); it is used to check the difference and decide if the visualization must be updated //######################## some internal help methods ############################ /** @brief Computes the fiducial registration error out of two sets of fiducials. * The two sets must have the same size and the points must correspond to each other. * @param transform This transform is applied to the image fiducials before the FRE calculation if it is given. * @return Returns the FRE. Returns -1 if there was an error. */ double ComputeFRE(mitk::PointSet::Pointer imageFiducials, mitk::PointSet::Pointer realWorldFiducials, vtkSmartPointer transform = NULL); /** * Checks if the difference between two given transformations is high which means the method returns * true if the difference exeeds the given position and angular threshold. */ bool IsTransformDifferenceHigh(mitk::NavigationData::Pointer transformA, mitk::NavigationData::Pointer transformB, double euclideanDistanceThreshold = .8, double angularDifferenceThreshold = .8); }; #endif // QmitkIGTTrackingLabView_h diff --git a/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagemantStartScreen.png b/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagemantStartScreen.png index 759c88ccf1..44b30bdd24 100644 Binary files a/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagemantStartScreen.png and b/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagemantStartScreen.png differ diff --git a/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagementAddTool.png b/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagementAddTool.png index 03124a951c..c6214c0764 100644 Binary files a/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagementAddTool.png and b/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkIGTTracking_NavigationToolManagementAddTool.png differ diff --git a/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkMITKIGTNavigationToolManager.dox b/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkMITKIGTNavigationToolManager.dox index 06dbdc0955..31bfbb4df8 100644 --- a/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkMITKIGTNavigationToolManager.dox +++ b/Plugins/org.mitk.gui.qt.igttracking/documentation/UserManual/QmitkMITKIGTNavigationToolManager.dox @@ -1,47 +1,55 @@ /** \page org_mitk_views_igtnavigationtoolmanager The MITK-IGT Navigation Tool Manager \image html QmitkIGTTracking_IconNavigationToolManager.png "Icon of the Module" \section QmitkMITKIGTNavigationToolManager Introduction This view allows for creating and editing NavigationToolStorages. These storages contains naviagtion tools of a tracking device, can be saved permanently and used later for any other IGT application. Available sections: - \ref QmitkMITKIGTNavigationToolManager - \ref QmitkMITKIGTNavigationToolManagerToolOverview - \ref QmitkMITKIGTNavigationToolManagerManagingNavigationToolStorage - \ref QmitkMITKIGTNavigationToolManagerAddingEditingNavigationTools \section QmitkMITKIGTNavigationToolManagerToolOverview Navigation Tools Overview A navigation tool of MITK-IGT represents a tracking tool (e.g. an emt sensor or an optically tracked tool) and it's corresponding data, like it's name and it's surface. A navigation tool is a generalized container for any trackable object in combination with it's additional information. Every navigation tool has different properties which are:
  • Name
  • Unique identifier
  • Tool definition file
  • Serial number
  • Surface for visualization
  • Type of tracking device
  • Type of the tool +
  • Tool landmarks
-Note that not all properties are needed for all types of tools. A tool definition file, for example, is only needed by optical tracking tools (e.g. a .rom file for Polaris or a toolfile for the MicronTracker). A tool associated with the aurora system is alwalys identified by it's serial number. You can also detect Aurora tools automatically with the TrackingToolbox view and edit the automatically detected tool storage later with this view. +Note that not all properties are needed for all types of tools. A tool definition file, for example, is only needed by optical tracking tools (e.g. a .rom file for Polaris or a toolfile for the MicronTracker). A tool associated with the aurora system is alwalys identified by it's serial number. You can also detect Aurora tools automatically with the TrackingToolbox view and edit the automatically detected tool storage later with this view. \section QmitkMITKIGTNavigationToolManagerManagingNavigationToolStorage Managing Navigation Tool Storage -In order to create a new storage container, or edit an existing one, you can use the buttons "add", "edit" and "delete" to manage the contained navigation tools. If you click "edit" or "delete" the operation is applied on the currently selected tool, as shown in the screenshot below. If you want to create a new storage container, just start adding tools when you start the program and save the storage container. To edit an existing tool storage container click "load" and add/edit/delete tools. +In order to create edit a tool storage container, you can select one of the available tool storages listed in the upper part of the UI. The list shows all tool storages which are available throug the micro services concept of MITK. The list also shows the current tool storage of the IGT tracking toolbox view if it is active. In addition to the listed tool storages, you can load new storages from the hard disc which will then appear in the list and might be edited as all other storage by simply selecting it in the list. You may also save a selected tool storage to the hard disc or create a new one. + +In the lower part of the UI you always see the list of tools of the tool storage which is currently selected in the upper part. Use the buttons "add", "edit" and "delete" to manage the contained navigation tools. If you click "edit" or "delete" the operation is applied on the currently selected tool, as shown in the screenshot below. \image html QmitkIGTTracking_NavigationToolManagemantStartScreen.png "Screenshot of the main view of NavigationToolManagent" \section QmitkMITKIGTNavigationToolManagerAddingEditingNavigationTools Adding / Editing Navigation Tools -If you add or edit a navigation tool, an input mask, as shown in the screenshot below, appears. The tool identifier is filled automatically, if you change it, remember that it is unique in the current storage. Also, choose a valid surface for every tool, this is nessesary for correct tool visualization. The other information depends on the tracking system type. So choose a tool file for the Polaris or the MicronTracker system and type in a serial number for the Aurora system. Two identical tools with the same serial number are also possible, they are assigned by the order in which they are attached to the device. As long as they also have the same surface, this should not be a problem. +If you add or edit a navigation tool, an input mask, as shown in the screenshot below, appears. The tool identifier is filled automatically, if you change it, remember that it is unique in the current storage. Also, choose a valid surface for every tool, this is nessesary for correct tool visualization. The other information depends on the tracking system type. So choose a tool file for the Polaris or the MicronTracker system and type in a serial number for the Aurora system. Two identical tools with the same serial number are also possible, they are assigned by the order in which they are attached to the device. As long as they also have the same surface as representation, this should not be a problem for most of the use cases. + +The tool type is additional information which is not needed by the tracking device but might be needed by further IGT applications. The same applies to the tool landmarks which might be defined for a tool. There are two different types of landmarks which are designed as described here: -The tool type is additional information which is not needed by the tracking device but might be needed by further IGT applications. +
    +
  • Tool Calibration Landmarks: These landmarks may be used clearly define the tools pose only by using landmarks in the tool coordinate system. E.g., two landmarks for a 5DoF tool and three landmarks for a 6DoF tool. These landmarks may be used, e.g., for a point based registration of a tool from image space to tracking space. +
  • Tool Registration Landmarks: These landmarks are designed for representing defined landmarks on a tools surface. The number of these landmarks might exeed the number of tool calibration landmarks for reasons of redundancy and averaging. They are used for, e.g., manually registering the pose of a tool by visual markers in a CT scan. If you would use these landmarks to do a point based registration from image space to tracking space later, you might overweight the tool because of two many landmarks compared to other markers. +
\image html QmitkIGTTracking_NavigationToolManagementAddTool.png "Screenshot of add/edit navigation tool screen" */ \ No newline at end of file diff --git a/Plugins/org.mitk.gui.qt.igttracking/src/internal/QmitkMITKIGTTrackingToolboxView.cpp b/Plugins/org.mitk.gui.qt.igttracking/src/internal/QmitkMITKIGTTrackingToolboxView.cpp index c6081e312a..9eca91eb8d 100644 --- a/Plugins/org.mitk.gui.qt.igttracking/src/internal/QmitkMITKIGTTrackingToolboxView.cpp +++ b/Plugins/org.mitk.gui.qt.igttracking/src/internal/QmitkMITKIGTTrackingToolboxView.cpp @@ -1,1100 +1,1106 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkMITKIGTTrackingToolboxView.h" #include "QmitkStdMultiWidget.h" // Qt #include #include // MITK #include #include #include #include #include #include #include #include // vtk #include //for exceptions #include #include const std::string QmitkMITKIGTTrackingToolboxView::VIEW_ID = "org.mitk.views.mitkigttrackingtoolbox"; QmitkMITKIGTTrackingToolboxView::QmitkMITKIGTTrackingToolboxView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) { m_TrackingTimer = new QTimer(this); m_tracking = false; m_logging = false; m_loggedFrames = 0; //initialize worker thread m_WorkerThread = new QThread(); m_Worker = new QmitkMITKIGTTrackingToolboxViewWorker(); } QmitkMITKIGTTrackingToolboxView::~QmitkMITKIGTTrackingToolboxView() { -//clean up worker thread -if(m_WorkerThread) delete m_WorkerThread; -if(m_Worker) delete m_Worker; -//remove the tracking volume -this->GetDataStorage()->Remove(m_TrackingVolumeNode); -//remove the tool storage -m_toolStorage->UnRegisterMicroservice(); +try + { + //clean up worker thread + if(m_WorkerThread) {delete m_WorkerThread;} + if(m_Worker) {delete m_Worker;} + //remove the tracking volume + this->GetDataStorage()->Remove(m_TrackingVolumeNode); + //remove the tool storage + if(m_toolStorage) {m_toolStorage->UnRegisterMicroservice();} + if(m_TrackingDeviceSource) {m_TrackingDeviceSource->UnRegisterMicroservice();} + } +catch(std::exception& e) {MITK_WARN << "Unexpected exception during clean up of tracking toolbox view: " << e.what();} +catch(...) {MITK_WARN << "Unexpected unknown error during clean up of tracking toolbox view!";} } void QmitkMITKIGTTrackingToolboxView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkMITKIGTTrackingToolboxViewControls; m_Controls->setupUi( parent ); //create connections connect( m_Controls->m_LoadTools, SIGNAL(clicked()), this, SLOT(OnLoadTools()) ); connect( m_Controls->m_Connect, SIGNAL(clicked()), this, SLOT(OnConnect()) ); connect( m_Controls->m_Disconnect, SIGNAL(clicked()), this, SLOT(OnDisconnect()) ); connect( m_Controls->m_StartTracking, SIGNAL(clicked()), this, SLOT(OnStartTracking()) ); connect( m_Controls->m_StopTracking, SIGNAL(clicked()), this, SLOT(OnStopTracking()) ); connect( m_TrackingTimer, SIGNAL(timeout()), this, SLOT(UpdateTrackingTimer())); connect( m_Controls->m_ChooseFile, SIGNAL(clicked()), this, SLOT(OnChooseFileClicked())); connect( m_Controls->m_StartLogging, SIGNAL(clicked()), this, SLOT(StartLogging())); connect( m_Controls->m_StopLogging, SIGNAL(clicked()), this, SLOT(StopLogging())); connect( m_Controls->m_VolumeSelectionBox, SIGNAL(currentIndexChanged(QString)), this, SLOT(OnTrackingVolumeChanged(QString))); connect( m_Controls->m_ShowTrackingVolume, SIGNAL(clicked()), this, SLOT(OnShowTrackingVolumeChanged())); connect( m_Controls->m_AutoDetectTools, SIGNAL(clicked()), this, SLOT(OnAutoDetectTools())); connect( m_Controls->m_ResetTools, SIGNAL(clicked()), this, SLOT(OnResetTools())); connect( m_Controls->m_AddSingleTool, SIGNAL(clicked()), this, SLOT(OnAddSingleTool())); connect( m_Controls->m_NavigationToolCreationWidget, SIGNAL(NavigationToolFinished()), this, SLOT(OnAddSingleToolFinished())); connect( m_Controls->m_NavigationToolCreationWidget, SIGNAL(Canceled()), this, SLOT(OnAddSingleToolCanceled())); connect( m_Controls->m_csvFormat, SIGNAL(clicked()), this, SLOT(OnToggleFileExtension())); connect( m_Controls->m_xmlFormat, SIGNAL(clicked()), this, SLOT(OnToggleFileExtension())); //connections for the tracking device configuration widget connect( m_Controls->m_configurationWidget, SIGNAL(TrackingDeviceSelectionChanged()), this, SLOT(OnTrackingDeviceChanged())); connect( m_Controls->m_configurationWidget, SIGNAL(ProgressStarted()), this, SLOT(DisableOptionsButtons())); connect( m_Controls->m_configurationWidget, SIGNAL(ProgressStarted()), this, SLOT(DisableTrackingConfigurationButtons())); connect( m_Controls->m_configurationWidget, SIGNAL(ProgressStarted()), this, SLOT(DisableTrackingControls())); connect( m_Controls->m_configurationWidget, SIGNAL(ProgressFinished()), this, SLOT(EnableOptionsButtons())); connect( m_Controls->m_configurationWidget, SIGNAL(ProgressFinished()), this, SLOT(EnableTrackingConfigurationButtons())); connect( m_Controls->m_configurationWidget, SIGNAL(ProgressFinished()), this, SLOT(EnableTrackingControls())); //connect worker thread connect(m_Worker, SIGNAL(AutoDetectToolsFinished(bool,QString)), this, SLOT(OnAutoDetectToolsFinished(bool,QString)) ); connect(m_Worker, SIGNAL(ConnectDeviceFinished(bool,QString)), this, SLOT(OnConnectFinished(bool,QString)) ); connect(m_Worker, SIGNAL(StartTrackingFinished(bool,QString)), this, SLOT(OnStartTrackingFinished(bool,QString)) ); connect(m_Worker, SIGNAL(StopTrackingFinished(bool,QString)), this, SLOT(OnStopTrackingFinished(bool,QString)) ); connect(m_Worker, SIGNAL(DisconnectDeviceFinished(bool,QString)), this, SLOT(OnDisconnectFinished(bool,QString)) ); connect(m_WorkerThread,SIGNAL(started()), m_Worker, SLOT(ThreadFunc()) ); //move the worker to the thread m_Worker->moveToThread(m_WorkerThread); //initialize widgets m_Controls->m_configurationWidget->EnableAdvancedUserControl(false); m_Controls->m_TrackingToolsStatusWidget->SetShowPositions(true); m_Controls->m_TrackingToolsStatusWidget->SetTextAlignment(Qt::AlignLeft); //initialize tracking volume node m_TrackingVolumeNode = mitk::DataNode::New(); m_TrackingVolumeNode->SetName("TrackingVolume"); m_TrackingVolumeNode->SetOpacity(0.25); m_TrackingVolumeNode->SetBoolProperty("Backface Culling",true); mitk::Color red; red.SetRed(1); m_TrackingVolumeNode->SetColor(red); GetDataStorage()->Add(m_TrackingVolumeNode); //initialize buttons m_Controls->m_Connect->setEnabled(true); m_Controls->m_Disconnect->setEnabled(false); m_Controls->m_StartTracking->setEnabled(false); m_Controls->m_StopTracking->setEnabled(false); m_Controls->m_AutoDetectTools->setVisible(false); //only visible if tracking device is Aurora //Update List of available models for selected tool. std::vector Compatibles = mitk::GetDeviceDataForLine( m_Controls->m_configurationWidget->GetTrackingDevice()->GetType()); m_Controls->m_VolumeSelectionBox->clear(); for(int i = 0; i < Compatibles.size(); i++) { m_Controls->m_VolumeSelectionBox->addItem(Compatibles[i].Model.c_str()); } //initialize tool storage m_toolStorage = mitk::NavigationToolStorage::New(GetDataStorage()); m_toolStorage->SetName("TrackingToolbox Default Storage"); m_toolStorage->RegisterAsMicroservice("no tracking device"); //set home directory as default path for logfile m_Controls->m_LoggingFileName->setText(QDir::toNativeSeparators(QDir::homePath()) + QDir::separator() + "logfile.csv"); } } void QmitkMITKIGTTrackingToolboxView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkMITKIGTTrackingToolboxView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkMITKIGTTrackingToolboxView::OnLoadTools() { //read in filename QString filename = QFileDialog::getOpenFileName(NULL,tr("Open Tool Storage"), "/", tr("Tool Storage Files (*.IGTToolStorage)")); if (filename.isNull()) return; //read tool storage from disk std::string errorMessage = ""; mitk::NavigationToolStorageDeserializer::Pointer myDeserializer = mitk::NavigationToolStorageDeserializer::New(GetDataStorage()); // try-catch block for exceptions try { this->ReplaceCurrentToolStorage(myDeserializer->Deserialize(filename.toStdString()),filename.toStdString()); } catch(mitk::IGTException) { std::string errormessage = "Error during deserializing. Problems with file,please check the file?"; QMessageBox::warning(NULL, "IGTPlayer: Error", errormessage.c_str()); return; } if(m_toolStorage->isEmpty()) { errorMessage = myDeserializer->GetErrorMessage(); MessageBox(errorMessage); return; } //update label Poco::Path myPath = Poco::Path(filename.toStdString()); //use this to seperate filename from path QString toolLabel = QString("Loaded Tools: ") + QString::number(m_toolStorage->GetToolCount()) + " Tools from " + myPath.getFileName().c_str(); m_Controls->m_toolLabel->setText(toolLabel); //update tool preview m_Controls->m_TrackingToolsStatusWidget->RemoveStatusLabels(); m_Controls->m_TrackingToolsStatusWidget->PreShowTools(m_toolStorage); } void QmitkMITKIGTTrackingToolboxView::OnResetTools() { this->ReplaceCurrentToolStorage(mitk::NavigationToolStorage::New(GetDataStorage()),"TrackingToolbox Default Storage"); m_Controls->m_TrackingToolsStatusWidget->RemoveStatusLabels(); QString toolLabel = QString("Loaded Tools: "); m_Controls->m_toolLabel->setText(toolLabel); } void QmitkMITKIGTTrackingToolboxView::OnConnect() { MITK_INFO << "Connect Clicked"; //check if everything is ready to start tracking if (this->m_toolStorage.IsNull()) { MessageBox("Error: No Tools Loaded Yet!"); return; } else if (this->m_toolStorage->GetToolCount() == 0) { MessageBox("Error: No Way To Track Without Tools!"); return; } //parse tracking device data mitk::TrackingDeviceData data = mitk::DeviceDataUnspecified; QString qstr = m_Controls->m_VolumeSelectionBox->currentText(); if ( (! qstr.isNull()) || (! qstr.isEmpty()) ) { std::string str = qstr.toStdString(); data = mitk::GetDeviceDataByName(str); //Data will be set later, after device generation } //initialize worker thread m_Worker->SetWorkerMethod(QmitkMITKIGTTrackingToolboxViewWorker::eConnectDevice); m_Worker->SetTrackingDevice(this->m_Controls->m_configurationWidget->GetTrackingDevice()); m_Worker->SetInverseMode(m_Controls->m_InverseMode->isChecked()); m_Worker->SetNavigationToolStorage(this->m_toolStorage); m_Worker->SetTrackingDeviceData(data); //start worker thread m_WorkerThread->start(); //disable buttons this->m_Controls->m_MainWidget->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::OnConnectFinished(bool success, QString errorMessage) { m_WorkerThread->quit(); //enable buttons this->m_Controls->m_MainWidget->setEnabled(true); if (!success) { MITK_WARN << errorMessage.toStdString(); MessageBox(errorMessage.toStdString()); return; } //get data from worker thread m_TrackingDeviceSource = m_Worker->GetTrackingDeviceSource(); m_TrackingDeviceData = m_Worker->GetTrackingDeviceData(); m_ToolVisualizationFilter = m_Worker->GetToolVisualizationFilter(); //enable/disable Buttons m_Controls->m_Disconnect->setEnabled(true); m_Controls->m_StartTracking->setEnabled(true); m_Controls->m_StopTracking->setEnabled(false); m_Controls->m_Connect->setEnabled(false); DisableOptionsButtons(); DisableTrackingConfigurationButtons(); m_Controls->m_configurationWidget->ConfigurationFinished(); m_Controls->m_TrackingControlLabel->setText("Status: connected"); } void QmitkMITKIGTTrackingToolboxView::OnDisconnect() { m_Worker->SetWorkerMethod(QmitkMITKIGTTrackingToolboxViewWorker::eDisconnectDevice); m_WorkerThread->start(); m_Controls->m_MainWidget->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::OnDisconnectFinished(bool success, QString errorMessage) { m_WorkerThread->quit(); m_Controls->m_MainWidget->setEnabled(true); if (!success) { MITK_WARN << errorMessage.toStdString(); MessageBox(errorMessage.toStdString()); return; } //enable/disable Buttons m_Controls->m_Disconnect->setEnabled(false); m_Controls->m_StartTracking->setEnabled(false); m_Controls->m_StopTracking->setEnabled(false); m_Controls->m_Connect->setEnabled(true); EnableOptionsButtons(); EnableTrackingConfigurationButtons(); m_Controls->m_configurationWidget->Reset(); m_Controls->m_TrackingControlLabel->setText("Status: disconnected"); } void QmitkMITKIGTTrackingToolboxView::OnStartTracking() { m_Worker->SetWorkerMethod(QmitkMITKIGTTrackingToolboxViewWorker::eStartTracking); m_WorkerThread->start(); this->m_Controls->m_MainWidget->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::OnStartTrackingFinished(bool success, QString errorMessage) { m_WorkerThread->quit(); this->m_Controls->m_MainWidget->setEnabled(true); if(!success) { MessageBox(errorMessage.toStdString()); MITK_WARN << errorMessage.toStdString(); return; } m_TrackingTimer->start(1000/(m_Controls->m_UpdateRate->value())); m_Controls->m_TrackingControlLabel->setText("Status: tracking"); //connect the tool visualization widget for(int i=0; iGetNumberOfOutputs(); i++) { m_Controls->m_TrackingToolsStatusWidget->AddNavigationData(m_TrackingDeviceSource->GetOutput(i)); } m_Controls->m_TrackingToolsStatusWidget->ShowStatusLabels(); if (m_Controls->m_ShowToolQuaternions->isChecked()) {m_Controls->m_TrackingToolsStatusWidget->SetShowQuaternions(true);} else {m_Controls->m_TrackingToolsStatusWidget->SetShowQuaternions(false);} //show tracking volume this->OnTrackingVolumeChanged(m_Controls->m_VolumeSelectionBox->currentText()); //enable/disable Buttons m_Controls->m_Disconnect->setEnabled(true); m_Controls->m_StartTracking->setEnabled(false); m_Controls->m_StopTracking->setEnabled(true); m_Controls->m_Connect->setEnabled(false); m_tracking = true; this->GlobalReinit(); } void QmitkMITKIGTTrackingToolboxView::OnStopTracking() { if (!m_tracking) return; m_TrackingTimer->stop(); m_Worker->SetWorkerMethod(QmitkMITKIGTTrackingToolboxViewWorker::eStopTracking); m_WorkerThread->start(); m_Controls->m_MainWidget->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::OnStopTrackingFinished(bool success, QString errorMessage) { m_WorkerThread->quit(); m_Controls->m_MainWidget->setEnabled(true); if(!success) { MessageBox(errorMessage.toStdString()); MITK_WARN << errorMessage.toStdString(); return; } m_Controls->m_TrackingControlLabel->setText("Status: connected"); if (m_logging) StopLogging(); m_Controls->m_TrackingToolsStatusWidget->RemoveStatusLabels(); m_Controls->m_TrackingToolsStatusWidget->PreShowTools(m_toolStorage); m_tracking = false; //enable/disable Buttons m_Controls->m_Disconnect->setEnabled(true); m_Controls->m_StartTracking->setEnabled(true); m_Controls->m_StopTracking->setEnabled(false); m_Controls->m_Connect->setEnabled(false); this->GlobalReinit(); } void QmitkMITKIGTTrackingToolboxView::OnTrackingDeviceChanged() { mitk::TrackingDeviceType Type; if (m_Controls->m_configurationWidget->GetTrackingDevice().IsNotNull()) { Type = m_Controls->m_configurationWidget->GetTrackingDevice()->GetType(); //enable controls because device is valid m_Controls->m_TrackingToolsGoupBox->setEnabled(true); m_Controls->m_TrackingControlsGroupBox->setEnabled(true); } else { Type = mitk::TrackingSystemNotSpecified; MessageBox("Error: This tracking device is not included in this project. Please make sure that the device is installed and activated in your MITK build."); m_Controls->m_TrackingToolsGoupBox->setEnabled(false); m_Controls->m_TrackingControlsGroupBox->setEnabled(false); return; } // Code to enable/disable device specific buttons if (Type == mitk::NDIAurora) //Aurora { m_Controls->m_AutoDetectTools->setVisible(true); m_Controls->m_AddSingleTool->setEnabled(false); } else //Polaris or Microntracker { m_Controls->m_AutoDetectTools->setVisible(false); m_Controls->m_AddSingleTool->setEnabled(true); } // Code to select appropriate tracking volume for current type std::vector Compatibles = mitk::GetDeviceDataForLine(Type); m_Controls->m_VolumeSelectionBox->clear(); for(int i = 0; i < Compatibles.size(); i++) { m_Controls->m_VolumeSelectionBox->addItem(Compatibles[i].Model.c_str()); } } void QmitkMITKIGTTrackingToolboxView::OnTrackingVolumeChanged(QString qstr) { if (qstr.isNull()) return; if (qstr.isEmpty()) return; if (m_Controls->m_ShowTrackingVolume->isChecked()) { mitk::TrackingVolumeGenerator::Pointer volumeGenerator = mitk::TrackingVolumeGenerator::New(); std::string str = qstr.toStdString(); mitk::TrackingDeviceData data = mitk::GetDeviceDataByName(str); m_TrackingDeviceData = data; volumeGenerator->SetTrackingDeviceData(data); volumeGenerator->Update(); mitk::Surface::Pointer volumeSurface = volumeGenerator->GetOutput(); m_TrackingVolumeNode->SetData(volumeSurface); GlobalReinit(); } } void QmitkMITKIGTTrackingToolboxView::OnShowTrackingVolumeChanged() { if (m_Controls->m_ShowTrackingVolume->isChecked()) { OnTrackingVolumeChanged(m_Controls->m_VolumeSelectionBox->currentText()); GetDataStorage()->Add(m_TrackingVolumeNode); } else { GetDataStorage()->Remove(m_TrackingVolumeNode); GlobalReinit(); } } void QmitkMITKIGTTrackingToolboxView::OnAutoDetectTools() { if (m_Controls->m_configurationWidget->GetTrackingDevice()->GetType() == mitk::NDIAurora) { DisableTrackingConfigurationButtons(); m_Worker->SetWorkerMethod(QmitkMITKIGTTrackingToolboxViewWorker::eAutoDetectTools); m_Worker->SetTrackingDevice(m_Controls->m_configurationWidget->GetTrackingDevice().GetPointer()); m_Worker->SetDataStorage(this->GetDataStorage()); m_WorkerThread->start(); //disable controls until worker thread is finished this->m_Controls->m_MainWidget->setEnabled(false); } } void QmitkMITKIGTTrackingToolboxView::OnAutoDetectToolsFinished(bool success, QString errorMessage) { m_WorkerThread->quit(); //enable controls again this->m_Controls->m_MainWidget->setEnabled(true); if(!success) { MITK_WARN << errorMessage.toStdString(); MessageBox(errorMessage.toStdString()); EnableTrackingConfigurationButtons(); return; } mitk::NavigationToolStorage::Pointer autoDetectedStorage = m_Worker->GetNavigationToolStorage(); //save detected tools this->ReplaceCurrentToolStorage(autoDetectedStorage,"Autodetected NDI Aurora Storage"); //update label QString toolLabel = QString("Loaded Tools: ") + QString::number(m_toolStorage->GetToolCount()) + " Tools (Auto Detected)"; m_Controls->m_toolLabel->setText(toolLabel); //update tool preview m_Controls->m_TrackingToolsStatusWidget->RemoveStatusLabels(); m_Controls->m_TrackingToolsStatusWidget->PreShowTools(m_toolStorage); EnableTrackingConfigurationButtons(); if (m_toolStorage->GetToolCount()>0) { //ask the user if he wants to save the detected tools QMessageBox msgBox; switch(m_toolStorage->GetToolCount()) { case 1: msgBox.setText("Found one tool!"); break; default: msgBox.setText("Found " + QString::number(m_toolStorage->GetToolCount()) + " tools!"); } msgBox.setInformativeText("Do you want to save this tools as tool storage, so you can load them again?"); msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::No); msgBox.setDefaultButton(QMessageBox::No); int ret = msgBox.exec(); if (ret == 16384) //yes { //ask the user for a filename QString fileName = QFileDialog::getSaveFileName(NULL, tr("Save File"),"/",tr("*.IGTToolStorage")); //check for empty filename if(fileName == "") {return;} mitk::NavigationToolStorageSerializer::Pointer mySerializer = mitk::NavigationToolStorageSerializer::New(); //when Serialize method is used exceptions are thrown, need to be adapted //try-catch block for exception handling in Serializer try { mySerializer->Serialize(fileName.toStdString(),m_toolStorage); } catch(mitk::IGTException) { std::string errormessage = "Error during serialization. Please check the Zip file."; QMessageBox::warning(NULL, "IGTPlayer: Error", errormessage.c_str());} return; } else if (ret == 65536) //no { return; } } } void QmitkMITKIGTTrackingToolboxView::MessageBox(std::string s) { QMessageBox msgBox; msgBox.setText(s.c_str()); msgBox.exec(); } void QmitkMITKIGTTrackingToolboxView::UpdateTrackingTimer() { m_ToolVisualizationFilter->Update(); MITK_DEBUG << "Number of outputs ToolVisualizationFilter: " << m_ToolVisualizationFilter->GetNumberOfIndexedOutputs(); MITK_DEBUG << "Number of inputs ToolVisualizationFilter: " << m_ToolVisualizationFilter->GetNumberOfIndexedInputs(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (m_logging) { this->m_loggingFilter->Update(); m_loggedFrames = this->m_loggingFilter->GetRecordCounter(); this->m_Controls->m_LoggedFramesLabel->setText("Logged Frames: "+QString::number(m_loggedFrames)); //check if logging stopped automatically if((m_loggedFrames>1)&&(!m_loggingFilter->GetRecording())){StopLogging();} } m_Controls->m_TrackingToolsStatusWidget->Refresh(); } void QmitkMITKIGTTrackingToolboxView::OnChooseFileClicked() { QDir currentPath = QFileInfo(m_Controls->m_LoggingFileName->text()).dir(); // if no path was selected (QDir would select current working dir then) or the // selected path does not exist -> use home directory if ( currentPath == QDir() || ! currentPath.exists() ) { currentPath = QDir(QDir::homePath()); } QString filename = QFileDialog::getSaveFileName(NULL,tr("Choose Logging File"), currentPath.absolutePath(), "*.*"); if (filename == "") return; this->m_Controls->m_LoggingFileName->setText(filename); this->OnToggleFileExtension(); } // bug-16470: toggle file extension after clicking on radio button void QmitkMITKIGTTrackingToolboxView::OnToggleFileExtension() { QString currentInputText = this->m_Controls->m_LoggingFileName->text(); QString currentFile = QFileInfo(currentInputText).baseName(); QDir currentPath = QFileInfo(currentInputText).dir(); if(currentFile.isEmpty()) { currentFile = "logfile"; } // Setting currentPath to default home path when currentPath is empty or it does not exist if(currentPath == QDir() || !currentPath.exists()) { currentPath = QDir::homePath(); } // check if csv radio button is clicked if(this->m_Controls->m_csvFormat->isChecked()) { // you needn't add a seperator to the input text when currentpath is the rootpath if(currentPath.isRoot()) { this->m_Controls->m_LoggingFileName->setText(QDir::toNativeSeparators(currentPath.absolutePath()) + currentFile + ".csv"); } else { this->m_Controls->m_LoggingFileName->setText(QDir::toNativeSeparators(currentPath.absolutePath()) + QDir::separator() + currentFile + ".csv"); } } // check if xml radio button is clicked else if(this->m_Controls->m_xmlFormat->isChecked()) { // you needn't add a seperator to the input text when currentpath is the rootpath if(currentPath.isRoot()) { this->m_Controls->m_LoggingFileName->setText(QDir::toNativeSeparators(currentPath.absolutePath()) + currentFile + ".xml"); } else { this->m_Controls->m_LoggingFileName->setText(QDir::toNativeSeparators(currentPath.absolutePath()) + QDir::separator() + currentFile + ".xml"); } } } void QmitkMITKIGTTrackingToolboxView::StartLogging() { if (m_ToolVisualizationFilter.IsNull()) { MessageBox("Cannot activate logging without a connected device. Configure and connect a tracking device first."); return; } if (!m_logging) { //initialize logging filter m_loggingFilter = mitk::NavigationDataRecorder::New(); m_loggingFilter->SetRecordingMode(mitk::NavigationDataRecorder::NormalFile); if (m_Controls->m_xmlFormat->isChecked()) m_loggingFilter->SetOutputFormat(mitk::NavigationDataRecorder::xml); else if (m_Controls->m_csvFormat->isChecked()) m_loggingFilter->SetOutputFormat(mitk::NavigationDataRecorder::csv); std::string filename = m_Controls->m_LoggingFileName->text().toStdString().c_str(); // this part has been changed in order to prevent crash of the program if(!filename.empty()) m_loggingFilter->SetFileName(filename); else if(filename.empty()){ std::string errormessage = "File name has not been set, please set the file name"; mitkThrowException(mitk::IGTIOException)<SetFileName(filename); } if (m_Controls->m_LoggingLimit->isChecked()){m_loggingFilter->SetRecordCountLimit(m_Controls->m_LoggedFramesLimit->value());} //connect filter for(int i=0; iGetNumberOfOutputs(); i++){m_loggingFilter->AddNavigationData(m_ToolVisualizationFilter->GetOutput(i));} //start filter with try-catch block for exceptions try { m_loggingFilter->StartRecording(); } catch(mitk::IGTException) { std::string errormessage = "Error during start recording. Recorder already started recording?"; QMessageBox::warning(NULL, "IGTPlayer: Error", errormessage.c_str()); m_loggingFilter->StopRecording(); return; } //update labels / logging variables this->m_Controls->m_LoggingLabel->setText("Logging ON"); this->m_Controls->m_LoggedFramesLabel->setText("Logged Frames: 0"); m_loggedFrames = 0; m_logging = true; DisableLoggingButtons(); } } void QmitkMITKIGTTrackingToolboxView::StopLogging() { if (m_logging) { //update label this->m_Controls->m_LoggingLabel->setText("Logging OFF"); m_loggingFilter->StopRecording(); m_logging = false; EnableLoggingButtons(); } } void QmitkMITKIGTTrackingToolboxView::OnAddSingleTool() { QString Identifier = "Tool#"; if (m_toolStorage.IsNotNull()) Identifier += QString::number(m_toolStorage->GetToolCount()); else Identifier += "0"; m_Controls->m_NavigationToolCreationWidget->Initialize(GetDataStorage(),Identifier.toStdString()); m_Controls->m_NavigationToolCreationWidget->SetTrackingDeviceType(m_Controls->m_configurationWidget->GetTrackingDevice()->GetType(),false); m_Controls->m_TrackingToolsWidget->setCurrentIndex(1); //disable tracking volume during tool editing lastTrackingVolumeState = m_Controls->m_ShowTrackingVolume->isChecked(); if (lastTrackingVolumeState) m_Controls->m_ShowTrackingVolume->click(); GlobalReinit(); } void QmitkMITKIGTTrackingToolboxView::OnAddSingleToolFinished() { m_Controls->m_TrackingToolsWidget->setCurrentIndex(0); if (this->m_toolStorage.IsNull()) { //this shouldn't happen! MITK_WARN << "No ToolStorage available, cannot add tool, aborting!"; return; } m_toolStorage->AddTool(m_Controls->m_NavigationToolCreationWidget->GetCreatedTool()); m_Controls->m_TrackingToolsStatusWidget->PreShowTools(m_toolStorage); QString toolLabel = QString("Loaded Tools: "); //enable tracking volume again if (lastTrackingVolumeState) m_Controls->m_ShowTrackingVolume->click(); GlobalReinit(); } void QmitkMITKIGTTrackingToolboxView::OnAddSingleToolCanceled() { m_Controls->m_TrackingToolsWidget->setCurrentIndex(0); //enable tracking volume again if (lastTrackingVolumeState) m_Controls->m_ShowTrackingVolume->click(); GlobalReinit(); } void QmitkMITKIGTTrackingToolboxView::GlobalReinit() { // get all nodes that have not set "includeInBoundingBox" to false mitk::NodePredicateNot::Pointer pred = mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("includeInBoundingBox", mitk::BoolProperty::New(false))); mitk::DataStorage::SetOfObjects::ConstPointer rs = this->GetDataStorage()->GetSubset(pred); // calculate bounding geometry of these nodes mitk::TimeGeometry::Pointer bounds = this->GetDataStorage()->ComputeBoundingGeometry3D(rs, "visible"); // initialize the views to the bounding geometry mitk::RenderingManager::GetInstance()->InitializeViews(bounds); } void QmitkMITKIGTTrackingToolboxView::DisableLoggingButtons() { m_Controls->m_StartLogging->setEnabled(false); m_Controls->m_LoggingFileName->setEnabled(false); m_Controls->m_ChooseFile->setEnabled(false); m_Controls->m_LoggingLimit->setEnabled(false); m_Controls->m_LoggedFramesLimit->setEnabled(false); m_Controls->m_csvFormat->setEnabled(false); m_Controls->m_xmlFormat->setEnabled(false); m_Controls->m_StopLogging->setEnabled(true); } void QmitkMITKIGTTrackingToolboxView::EnableLoggingButtons() { m_Controls->m_StartLogging->setEnabled(true); m_Controls->m_LoggingFileName->setEnabled(true); m_Controls->m_ChooseFile->setEnabled(true); m_Controls->m_LoggingLimit->setEnabled(true); m_Controls->m_LoggedFramesLimit->setEnabled(true); m_Controls->m_csvFormat->setEnabled(true); m_Controls->m_xmlFormat->setEnabled(true); m_Controls->m_StopLogging->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::DisableOptionsButtons() { m_Controls->m_ShowTrackingVolume->setEnabled(false); m_Controls->m_UpdateRate->setEnabled(false); m_Controls->m_ShowToolQuaternions->setEnabled(false); m_Controls->m_OptionsUpdateRateLabel->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::EnableOptionsButtons() { m_Controls->m_ShowTrackingVolume->setEnabled(true); m_Controls->m_UpdateRate->setEnabled(true); m_Controls->m_ShowToolQuaternions->setEnabled(true); m_Controls->m_OptionsUpdateRateLabel->setEnabled(true); } void QmitkMITKIGTTrackingToolboxView::EnableTrackingControls() { m_Controls->m_TrackingControlsGroupBox->setEnabled(true); } void QmitkMITKIGTTrackingToolboxView::DisableTrackingControls() { m_Controls->m_TrackingControlsGroupBox->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::EnableTrackingConfigurationButtons() { m_Controls->m_AutoDetectTools->setEnabled(true); if (m_Controls->m_configurationWidget->GetTrackingDevice()->GetType() != mitk::NDIAurora) m_Controls->m_AddSingleTool->setEnabled(true); m_Controls->m_LoadTools->setEnabled(true); m_Controls->m_ResetTools->setEnabled(true); } void QmitkMITKIGTTrackingToolboxView::DisableTrackingConfigurationButtons() { m_Controls->m_AutoDetectTools->setEnabled(false); if (m_Controls->m_configurationWidget->GetTrackingDevice()->GetType() != mitk::NDIAurora) m_Controls->m_AddSingleTool->setEnabled(false); m_Controls->m_LoadTools->setEnabled(false); m_Controls->m_ResetTools->setEnabled(false); } void QmitkMITKIGTTrackingToolboxView::ReplaceCurrentToolStorage(mitk::NavigationToolStorage::Pointer newStorage, std::string newStorageName) { //first: get rid of the old one m_toolStorage->UnLockStorage(); //only to be sure... m_toolStorage->UnRegisterMicroservice(); m_toolStorage = NULL; //now: replace by the new one m_toolStorage = newStorage; m_toolStorage->SetName(newStorageName); m_toolStorage->RegisterAsMicroservice("no tracking device"); } void QmitkMITKIGTTrackingToolboxViewWorker::SetWorkerMethod(WorkerMethod w) { m_WorkerMethod = w; } void QmitkMITKIGTTrackingToolboxViewWorker::SetTrackingDevice(mitk::TrackingDevice::Pointer t) { m_TrackingDevice = t; } void QmitkMITKIGTTrackingToolboxViewWorker::SetDataStorage(mitk::DataStorage::Pointer d) { m_DataStorage = d; } void QmitkMITKIGTTrackingToolboxViewWorker::SetInverseMode(bool mode) { m_InverseMode = mode; } void QmitkMITKIGTTrackingToolboxViewWorker::SetTrackingDeviceData(mitk::TrackingDeviceData d) { m_TrackingDeviceData = d; } void QmitkMITKIGTTrackingToolboxViewWorker::SetNavigationToolStorage(mitk::NavigationToolStorage::Pointer n) { m_NavigationToolStorage = n; } void QmitkMITKIGTTrackingToolboxViewWorker::ThreadFunc() { switch(m_WorkerMethod) { case eAutoDetectTools: this->AutoDetectTools(); break; case eConnectDevice: this->ConnectDevice(); break; case eStartTracking: this->StartTracking(); break; case eStopTracking: this->StopTracking(); break; case eDisconnectDevice: this->DisconnectDevice(); break; default: MITK_WARN << "Undefined worker method was set ... something went wrong!"; break; } } void QmitkMITKIGTTrackingToolboxViewWorker::AutoDetectTools() { mitk::ProgressBar::GetInstance()->AddStepsToDo(4); mitk::NavigationToolStorage::Pointer autoDetectedStorage = mitk::NavigationToolStorage::New(m_DataStorage); mitk::NDITrackingDevice::Pointer currentDevice = dynamic_cast(m_TrackingDevice.GetPointer()); try { currentDevice->OpenConnection(); mitk::ProgressBar::GetInstance()->Progress(); currentDevice->StartTracking(); } catch(mitk::Exception& e) { QString message = QString("Warning, can not auto-detect tools! (") + QString(e.GetDescription()) + QString(")"); //MessageBox(message.toStdString()); //TODO: give message to the user here! MITK_WARN << message.toStdString(); mitk::ProgressBar::GetInstance()->Progress(4); emit AutoDetectToolsFinished(false,message.toStdString().c_str()); return; } for (int i=0; iGetToolCount(); i++) { //create a navigation tool with sphere as surface std::stringstream toolname; toolname << "AutoDetectedTool" << i; mitk::NavigationTool::Pointer newTool = mitk::NavigationTool::New(); newTool->SetSerialNumber(dynamic_cast(currentDevice->GetTool(i))->GetSerialNumber()); newTool->SetIdentifier(toolname.str()); newTool->SetTrackingDeviceType(mitk::NDIAurora); mitk::DataNode::Pointer newNode = mitk::DataNode::New(); mitk::Surface::Pointer mySphere = mitk::Surface::New(); vtkSphereSource *vtkData = vtkSphereSource::New(); vtkData->SetRadius(3.0f); vtkData->SetCenter(0.0, 0.0, 0.0); vtkData->Update(); mySphere->SetVtkPolyData(vtkData->GetOutput()); vtkData->Delete(); newNode->SetData(mySphere); newNode->SetName(toolname.str()); newTool->SetDataNode(newNode); autoDetectedStorage->AddTool(newTool); } m_NavigationToolStorage = autoDetectedStorage; currentDevice->StopTracking(); mitk::ProgressBar::GetInstance()->Progress(); currentDevice->CloseConnection(); emit AutoDetectToolsFinished(true,""); mitk::ProgressBar::GetInstance()->Progress(4); } void QmitkMITKIGTTrackingToolboxViewWorker::ConnectDevice() { std::string message = ""; mitk::ProgressBar::GetInstance()->AddStepsToDo(10); //build the IGT pipeline mitk::TrackingDevice::Pointer trackingDevice = m_TrackingDevice; trackingDevice->SetData(m_TrackingDeviceData); //set device to rotation mode transposed becaus we are working with VNL style quaternions if(m_InverseMode) {trackingDevice->SetRotationMode(mitk::TrackingDevice::RotationTransposed);} //Get Tracking Volume Data mitk::TrackingDeviceData data = m_TrackingDeviceData; mitk::ProgressBar::GetInstance()->Progress(); //Create Navigation Data Source with the factory class mitk::TrackingDeviceSourceConfigurator::Pointer myTrackingDeviceSourceFactory = mitk::TrackingDeviceSourceConfigurator::New(m_NavigationToolStorage,trackingDevice); m_TrackingDeviceSource = myTrackingDeviceSourceFactory->CreateTrackingDeviceSource(m_ToolVisualizationFilter); mitk::ProgressBar::GetInstance()->Progress(); if ( m_TrackingDeviceSource.IsNull() ) { message = std::string("Cannot connect to device: ") + myTrackingDeviceSourceFactory->GetErrorMessage(); emit ConnectDeviceFinished(false,QString(message.c_str())); return; } //set filter to rotation mode transposed becaus we are working with VNL style quaternions if(m_InverseMode) m_ToolVisualizationFilter->SetRotationMode(mitk::NavigationDataObjectVisualizationFilter::RotationTransposed); //First check if the created object is valid if (m_TrackingDeviceSource.IsNull()) { message = myTrackingDeviceSourceFactory->GetErrorMessage(); emit ConnectDeviceFinished(false,QString(message.c_str())); return; } MITK_INFO << "Number of tools: " << m_TrackingDeviceSource->GetNumberOfOutputs(); mitk::ProgressBar::GetInstance()->Progress(); //The tools are maybe reordered after initialization, e.g. in case of auto-detected tools of NDI Aurora mitk::NavigationToolStorage::Pointer toolsInNewOrder = myTrackingDeviceSourceFactory->GetUpdatedNavigationToolStorage(); if ((toolsInNewOrder.IsNotNull()) && (toolsInNewOrder->GetToolCount() > 0)) { //so delete the old tools in wrong order and add them in the right order //we cannot simply replace the tool storage because the new storage is //not correctly initialized with the right data storage m_NavigationToolStorage->DeleteAllTools(); for (int i=0; i < toolsInNewOrder->GetToolCount(); i++) {m_NavigationToolStorage->AddTool(toolsInNewOrder->GetTool(i));} } mitk::ProgressBar::GetInstance()->Progress(); //connect to device try { m_TrackingDeviceSource->Connect(); mitk::ProgressBar::GetInstance()->Progress(); //Microservice registration: m_TrackingDeviceSource->RegisterAsMicroservice(); m_NavigationToolStorage->UnRegisterMicroservice(); m_NavigationToolStorage->RegisterAsMicroservice(m_TrackingDeviceSource->GetMicroserviceID()); m_NavigationToolStorage->LockStorage(); } catch (...) //todo: change to mitk::IGTException { message = "Error on connecting the tracking device."; emit ConnectDeviceFinished(false,QString(message.c_str())); return; } emit ConnectDeviceFinished(true,QString(message.c_str())); mitk::ProgressBar::GetInstance()->Progress(10); } void QmitkMITKIGTTrackingToolboxViewWorker::StartTracking() { QString errorMessage = ""; try { m_TrackingDeviceSource->StartTracking(); } catch (...) //todo: change to mitk::IGTException { errorMessage += "Error while starting the tracking device!"; emit StartTrackingFinished(false,errorMessage); return; } emit StartTrackingFinished(true,errorMessage); } void QmitkMITKIGTTrackingToolboxViewWorker::StopTracking() { try { m_TrackingDeviceSource->StopTracking(); } catch(mitk::Exception& e) { emit StopTrackingFinished(false, e.GetDescription()); } emit StopTrackingFinished(true, ""); } void QmitkMITKIGTTrackingToolboxViewWorker::DisconnectDevice() { try { if (m_TrackingDeviceSource->IsTracking()) {m_TrackingDeviceSource->StopTracking();} m_TrackingDeviceSource->Disconnect(); m_TrackingDeviceSource->UnRegisterMicroservice(); m_NavigationToolStorage->UnLockStorage(); } catch(mitk::Exception& e) { emit DisconnectDeviceFinished(false, e.GetDescription()); } emit DisconnectDeviceFinished(true, ""); } diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/ellipse.png b/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/ellipse.png new file mode 100644 index 0000000000..794c9779ea Binary files /dev/null and b/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/ellipse.png differ diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/measurement.qrc b/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/measurement.qrc index 0ba2667534..e0c10fc710 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/measurement.qrc +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/measurement.qrc @@ -1,17 +1,19 @@ angle.png arrow.png circle.png + ellipse.png four-point-angle.png - line.png - measurement.png - path.png - polygon.png - rectangle.png - text.png + line.png + measurement.png + path.png + polygon.png + rectangle.png + text.png doubleellipse.png beziercurve.png + subdivisionpolygon.png diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/subdivisionpolygon.png b/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/subdivisionpolygon.png new file mode 100644 index 0000000000..1a7e82a5e2 Binary files /dev/null and b/Plugins/org.mitk.gui.qt.measurementtoolbox/resources/subdivisionpolygon.png differ diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.cpp b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.cpp index a064aaf3e3..f9a91fd35e 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.cpp +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.cpp @@ -1,190 +1,201 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkImageStatisticsCalculationThread.h" //QT headers #include #include QmitkImageStatisticsCalculationThread::QmitkImageStatisticsCalculationThread():QThread(), m_StatisticsImage(NULL), m_BinaryMask(NULL), m_PlanarFigureMask(NULL), m_TimeStep(0), - m_IgnoreZeros(false), m_CalculationSuccessful(false), m_StatisticChanged(false) + m_IgnoreZeros(false), m_CalculationSuccessful(false), m_StatisticChanged(false), m_HistogramBinSize(1) { } QmitkImageStatisticsCalculationThread::~QmitkImageStatisticsCalculationThread() { } void QmitkImageStatisticsCalculationThread::Initialize( mitk::Image::Pointer image, mitk::Image::Pointer binaryImage, mitk::PlanarFigure::Pointer planarFig ) { // reset old values if( this->m_StatisticsImage.IsNotNull() ) this->m_StatisticsImage = 0; if( this->m_BinaryMask.IsNotNull() ) this->m_BinaryMask = 0; if( this->m_PlanarFigureMask.IsNotNull()) this->m_PlanarFigureMask = 0; // set new values if passed in if(image.IsNotNull()) this->m_StatisticsImage = image->Clone(); if(binaryImage.IsNotNull()) this->m_BinaryMask = binaryImage->Clone(); if(planarFig.IsNotNull()) this->m_PlanarFigureMask = planarFig->Clone(); } void QmitkImageStatisticsCalculationThread::SetTimeStep( int times ) { this->m_TimeStep = times; } int QmitkImageStatisticsCalculationThread::GetTimeStep() { return this->m_TimeStep; } std::vector QmitkImageStatisticsCalculationThread::GetStatisticsData() { return this->m_StatisticsVector; } mitk::Image::Pointer QmitkImageStatisticsCalculationThread::GetStatisticsImage() { return this->m_StatisticsImage; } void QmitkImageStatisticsCalculationThread::SetIgnoreZeroValueVoxel(bool _arg) { this->m_IgnoreZeros = _arg; } bool QmitkImageStatisticsCalculationThread::GetIgnoreZeroValueVoxel() { return this->m_IgnoreZeros; } +void QmitkImageStatisticsCalculationThread::SetHistogramBinSize(unsigned int size) +{ + this->m_HistogramBinSize = size; +} + +unsigned int QmitkImageStatisticsCalculationThread::GetHistogramBinSize() +{ + return this->m_HistogramBinSize; +} + std::string QmitkImageStatisticsCalculationThread::GetLastErrorMessage() { return m_message; } QmitkImageStatisticsCalculationThread::HistogramType::Pointer QmitkImageStatisticsCalculationThread::GetTimeStepHistogram(unsigned int t) { if (t >= this->m_HistogramVector.size()) return NULL; return this->m_HistogramVector[t]; } bool QmitkImageStatisticsCalculationThread::GetStatisticsChangedFlag() { return m_StatisticChanged; } bool QmitkImageStatisticsCalculationThread::GetStatisticsUpdateSuccessFlag() { return m_CalculationSuccessful; } void QmitkImageStatisticsCalculationThread::run() { bool statisticCalculationSuccessful = true; mitk::ImageStatisticsCalculator::Pointer calculator = mitk::ImageStatisticsCalculator::New(); if(this->m_StatisticsImage.IsNotNull()) { calculator->SetImage(m_StatisticsImage); calculator->SetMaskingModeToNone(); } else { statisticCalculationSuccessful = false; } // Bug 13416 : The ImageStatistics::SetImageMask() method can throw exceptions, i.e. when the dimensionality // of the masked and input image differ, we need to catch them and mark the calculation as failed // the same holds for the ::SetPlanarFigure() try { if(this->m_BinaryMask.IsNotNull()) { calculator->SetImageMask(m_BinaryMask); calculator->SetMaskingModeToImage(); } if(this->m_PlanarFigureMask.IsNotNull()) { calculator->SetPlanarFigure(m_PlanarFigureMask); calculator->SetMaskingModeToPlanarFigure(); } } catch( const itk::ExceptionObject& e) { MITK_ERROR << "ITK Exception:" << e.what(); statisticCalculationSuccessful = false; } bool statisticChanged = false; calculator->SetDoIgnorePixelValue(this->m_IgnoreZeros); calculator->SetIgnorePixelValue(0); + calculator->SetHistogramBinSize( m_HistogramBinSize ); for (unsigned int i = 0; i < m_StatisticsImage->GetTimeSteps(); i++) { try { statisticChanged = calculator->ComputeStatistics(i); } catch ( mitk::Exception& e) { //m_message = e.GetDescription(); MITK_ERROR<< "MITK Exception: " << e.what(); statisticCalculationSuccessful = false; } catch ( const std::runtime_error &e ) { //m_message = "Failure: " + std::string(e.what()); MITK_ERROR<< "Runtime Exception: " << e.what(); statisticCalculationSuccessful = false; } catch ( const std::exception &e ) { //m_message = "Failure: " + std::string(e.what()); MITK_ERROR<< "Standard Exception: " << e.what(); statisticCalculationSuccessful = false; } } this->m_StatisticChanged = statisticChanged; this->m_CalculationSuccessful = statisticCalculationSuccessful; if(statisticCalculationSuccessful) { this->m_StatisticsVector.clear(); this->m_HistogramVector.clear(); for (unsigned int i = 0; i < m_StatisticsImage->GetTimeSteps(); i++) { this->m_StatisticsVector.push_back(calculator->GetStatistics(i)); this->m_HistogramVector.push_back((HistogramType*)calculator->GetHistogram(i)); } } } diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.h b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.h index e97458d351..47195d5592 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.h +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsCalculationThread.h @@ -1,104 +1,111 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QMITKIMAGESTATISTICSCALCULATIONTHREAD_H_INCLUDED #define QMITKIMAGESTATISTICSCALCULATIONTHREAD_H_INCLUDED //QT headers #include #include //mitk headers #include "mitkImage.h" #include "mitkPlanarFigure.h" #include "mitkImageStatisticsCalculator.h" // itk headers #ifndef __itkHistogram_h #include #endif /** /brief This class is executed as background thread for image statistics calculation. * Documentation: This class is derived from QThread and is intended to be used by QmitkImageStatisticsView to run the image statistics calculation in a background thread keepung the gui usable. * \ingroup Plugins/MeasurementToolbox */ class QmitkImageStatisticsCalculationThread : public QThread { Q_OBJECT public: typedef itk::Statistics::Histogram HistogramType; /*! /brief standard constructor. */ QmitkImageStatisticsCalculationThread(); /*! /brief standard destructor. */ ~QmitkImageStatisticsCalculationThread(); /*! /brief Initializes the object with necessary data. */ void Initialize( mitk::Image::Pointer image, mitk::Image::Pointer binaryImage, mitk::PlanarFigure::Pointer planarFig ); /*! /brief returns the calculated image statistics. */ std::vector GetStatisticsData(); /*! /brief */ mitk::Image::Pointer GetStatisticsImage(); /*! /brief Set the time step of the image you want to process. */ void SetTimeStep( int times ); /*! /brief Get the time step of the image you want to process. */ int GetTimeStep(); /*! /brief Set flag to ignore zero valued voxels */ void SetIgnoreZeroValueVoxel( bool _arg ); /*! /brief Get status of zero value voxel ignoring. */ bool GetIgnoreZeroValueVoxel(); /*! + /brief Set bin size for histogram resolution.*/ + void SetHistogramBinSize( unsigned int size); + /*! + /brief Get bin size for histogram resolution.*/ + unsigned int GetHistogramBinSize(); + /*! /brief Returns the histogram of the currently selected time step. */ HistogramType::Pointer GetTimeStepHistogram(unsigned int t = 0); /*! /brief Returns a flag indicating if the statistics have changed during calculation */ bool GetStatisticsChangedFlag(); /*! /brief Returns a flag the indicates if the statistics are updated successfully */ bool GetStatisticsUpdateSuccessFlag(); /*! /brief Method called once the thread is executed. */ void run(); std::string GetLastErrorMessage(); private: //member declaration mitk::Image::Pointer m_StatisticsImage; ///< member variable holds the input image for which the statistics need to be calculated. mitk::Image::Pointer m_BinaryMask; ///< member variable holds the binary mask image for segmentation image statistics calculation. mitk::PlanarFigure::Pointer m_PlanarFigureMask; ///< member variable holds the planar figure for segmentation image statistics calculation. std::vector m_StatisticsVector; ///< member variable holds the result structs. int m_TimeStep; ///< member variable holds the time step for statistics calculation bool m_IgnoreZeros; ///< member variable holds flag to indicate if zero valued voxel should be suppressed + unsigned int m_HistogramBinSize; ///< member variable holds the bin size for histogram resolution. bool m_StatisticChanged; ///< flag set if statistics have changed bool m_CalculationSuccessful; ///< flag set if statistics calculation was successful std::vector m_HistogramVector; ///< member holds the histograms of all time steps. std::string m_message; }; #endif // QMITKIMAGESTATISTICSCALCULATIONTHREAD_H_INCLUDED diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.cpp b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.cpp index 3dff9397d4..abe1deec32 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.cpp +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.cpp @@ -1,897 +1,932 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkImageStatisticsView.h" // Qt includes #include #include // berry includes #include // mitk includes #include "mitkNodePredicateDataType.h" #include "mitkPlanarFigureInteractor.h" // itk includes #include "itksys/SystemTools.hxx" #include #include const std::string QmitkImageStatisticsView::VIEW_ID = "org.mitk.views.imagestatistics"; const int QmitkImageStatisticsView::STAT_TABLE_BASE_HEIGHT = 180; QmitkImageStatisticsView::QmitkImageStatisticsView(QObject* /*parent*/, const char* /*name*/) : m_Controls( NULL ), m_TimeStepperAdapter( NULL ), m_SelectedImage( NULL ), m_SelectedImageMask( NULL ), m_SelectedPlanarFigure( NULL ), m_ImageObserverTag( -1 ), m_ImageMaskObserverTag( -1 ), m_PlanarFigureObserverTag( -1 ), m_TimeObserverTag( -1 ), m_CurrentStatisticsValid( false ), m_StatisticsUpdatePending( false ), m_DataNodeSelectionChanged ( false ), m_Visible(false) { this->m_CalculationThread = new QmitkImageStatisticsCalculationThread; } QmitkImageStatisticsView::~QmitkImageStatisticsView() { if ( m_SelectedImage != NULL ) m_SelectedImage->RemoveObserver( m_ImageObserverTag ); if ( m_SelectedImageMask != NULL ) m_SelectedImageMask->RemoveObserver( m_ImageMaskObserverTag ); if ( m_SelectedPlanarFigure != NULL ) m_SelectedPlanarFigure->RemoveObserver( m_PlanarFigureObserverTag ); while(this->m_CalculationThread->isRunning()) // wait until thread has finished { itksys::SystemTools::Delay(100); } delete this->m_CalculationThread; } void QmitkImageStatisticsView::CreateQtPartControl(QWidget *parent) { if (m_Controls == NULL) { m_Controls = new Ui::QmitkImageStatisticsViewControls; m_Controls->setupUi(parent); this->CreateConnections(); m_Controls->m_ErrorMessageLabel->hide(); m_Controls->m_StatisticsWidgetStack->setCurrentIndex( 0 ); + m_Controls->m_HistogramBinSizeSlider->setTracking(false); } } void QmitkImageStatisticsView::CreateConnections() { if ( m_Controls ) { connect( (QObject*)(this->m_Controls->m_ButtonCopyHistogramToClipboard), SIGNAL(clicked()),(QObject*) this, SLOT(OnClipboardHistogramButtonClicked()) ); connect( (QObject*)(this->m_Controls->m_ButtonCopyStatisticsToClipboard), SIGNAL(clicked()),(QObject*) this, SLOT(OnClipboardStatisticsButtonClicked()) ); connect( (QObject*)(this->m_Controls->m_IgnoreZerosCheckbox), SIGNAL(clicked()),(QObject*) this, SLOT(OnIgnoreZerosCheckboxClicked()) ); connect( (QObject*) this->m_CalculationThread, SIGNAL(finished()),this, SLOT( OnThreadedStatisticsCalculationEnds()),Qt::QueuedConnection); connect( (QObject*) this, SIGNAL(StatisticsUpdate()),this, SLOT( RequestStatisticsUpdate()), Qt::QueuedConnection); connect( (QObject*) this->m_Controls->m_StatisticsTable, SIGNAL(cellDoubleClicked(int,int)),this, SLOT( JumpToCoordinates(int,int)) ); connect( (QObject*) (this->m_Controls->m_barRadioButton), SIGNAL(clicked()), (QObject*) (this->m_Controls->m_JSHistogram), SLOT(OnBarRadioButtonSelected())); connect( (QObject*) (this->m_Controls->m_lineRadioButton), SIGNAL(clicked()), (QObject*) (this->m_Controls->m_JSHistogram), SLOT(OnLineRadioButtonSelected())); + connect( (QObject*) (this->m_Controls->m_HistogramBinSizeSlider), SIGNAL(valueChanged(int)), this, SLOT(OnHistogramBinSizeSliderValueChanged(int))); } } void QmitkImageStatisticsView::PartClosed( berry::IWorkbenchPartReference::Pointer ) { } void QmitkImageStatisticsView::OnTimeChanged(const itk::EventObject& e) { if (this->m_SelectedDataNodes.isEmpty() || this->m_SelectedImage == NULL) return; const mitk::SliceNavigationController::GeometryTimeEvent* timeEvent = dynamic_cast(&e); assert(timeEvent != NULL); unsigned int timestep = timeEvent->GetPos(); if (this->m_SelectedImage->GetTimeSteps() > 1) { for (unsigned int x = 0; x < this->m_Controls->m_StatisticsTable->columnCount(); x++) { for (unsigned int y = 0; y < this->m_Controls->m_StatisticsTable->rowCount(); y++) { QTableWidgetItem* item = this->m_Controls->m_StatisticsTable->item(y, x); if (item == NULL) break; if (x == timestep) { item->setBackgroundColor(Qt::yellow); } else { if (y % 2 == 0) item->setBackground(this->m_Controls->m_StatisticsTable->palette().base()); else item->setBackground(this->m_Controls->m_StatisticsTable->palette().alternateBase()); } } } this->m_Controls->m_StatisticsTable->viewport()->update(); } if ((this->m_SelectedImage->GetTimeSteps() == 1 && timestep == 0) || this->m_SelectedImage->GetTimeSteps() > 1) { // display histogram for selected timestep this->m_Controls->m_JSHistogram->ClearHistogram(); QmitkImageStatisticsCalculationThread::HistogramType::Pointer histogram = this->m_CalculationThread->GetTimeStepHistogram(timestep); if (histogram.IsNotNull()) { this->m_Controls->m_JSHistogram->ComputeHistogram(histogram.GetPointer()); // this->m_Controls->m_JSHistogram->SignalGraphChanged(); // hacky way to make sure the protected SignalGraphChanged() is called if (this->m_Controls->m_JSHistogram->GetUseLineGraph()) { this->m_Controls->m_JSHistogram->OnBarRadioButtonSelected(); this->m_Controls->m_JSHistogram->OnLineRadioButtonSelected(); } else { this->m_Controls->m_JSHistogram->OnLineRadioButtonSelected(); this->m_Controls->m_JSHistogram->OnBarRadioButtonSelected(); } } } } void QmitkImageStatisticsView::JumpToCoordinates(int row ,int col) { if(m_SelectedDataNodes.isEmpty()) { MITK_WARN("QmitkImageStatisticsView") << "No data node selected for statistics calculation." ; return; } mitk::Point3D world; if (row==4) world = m_WorldMinList[col]; else if (row==3) world = m_WorldMaxList[col]; else return; mitk::IRenderWindowPart* part = this->GetRenderWindowPart(); if (part) { part->GetQmitkRenderWindow("axial")->GetSliceNavigationController()->SelectSliceByPoint(world); part->GetQmitkRenderWindow("sagittal")->GetSliceNavigationController()->SelectSliceByPoint(world); part->GetQmitkRenderWindow("coronal")->GetSliceNavigationController()->SelectSliceByPoint(world); mitk::SliceNavigationController::GeometryTimeEvent timeEvent(this->m_SelectedImage->GetTimeGeometry(), col); part->GetQmitkRenderWindow("axial")->GetSliceNavigationController()->SetGeometryTime(timeEvent); } } void QmitkImageStatisticsView::OnIgnoreZerosCheckboxClicked() { emit StatisticsUpdate(); } void QmitkImageStatisticsView::OnClipboardHistogramButtonClicked() { if ( m_CurrentStatisticsValid ) { const unsigned int t = this->GetRenderWindowPart()->GetTimeNavigationController()->GetTime()->GetPos(); typedef mitk::ImageStatisticsCalculator::HistogramType HistogramType; const HistogramType *histogram = this->m_CalculationThread->GetTimeStepHistogram(t).GetPointer(); QString clipboard( "Measurement \t Frequency\n" ); for ( HistogramType::ConstIterator it = histogram->Begin(); it != histogram->End(); ++it ) { - clipboard = clipboard.append( "%L1 \t %L2\n" ) - .arg( it.GetMeasurementVector()[0], 0, 'f', 2 ) - .arg( it.GetFrequency() ); + if( m_Controls->m_HistogramBinSizeSlider->value() == 1) + { + clipboard = clipboard.append( "%L1 \t %L2\n" ) + .arg( it.GetMeasurementVector()[0], 0, 'f', 0 ) + .arg( it.GetFrequency() ); + } + else + { + clipboard = clipboard.append( "%L1 \t %L2\n" ) + .arg( it.GetMeasurementVector()[0], 0, 'f', 2 ) + .arg( it.GetFrequency() ); + } } QApplication::clipboard()->setText( clipboard, QClipboard::Clipboard ); } else { QApplication::clipboard()->clear(); } } void QmitkImageStatisticsView::OnClipboardStatisticsButtonClicked() { QLocale tempLocal; QLocale::setDefault(QLocale(QLocale::English, QLocale::UnitedStates)); if ( this->m_CurrentStatisticsValid ) { const std::vector &statistics = this->m_CalculationThread->GetStatisticsData(); const unsigned int t = this->GetRenderWindowPart()->GetTimeNavigationController()->GetTime()-> GetPos(); // Copy statistics to clipboard ("%Ln" will use the default locale for // number formatting) QString clipboard( "Mean \t StdDev \t RMS \t Max \t Min \t N \t V (mm³)\n" ); clipboard = clipboard.append( "%L1 \t %L2 \t %L3 \t %L4 \t %L5 \t %L6 \t %L7" ) .arg( statistics[t].Mean, 0, 'f', 10 ) .arg( statistics[t].Sigma, 0, 'f', 10 ) .arg( statistics[t].RMS, 0, 'f', 10 ) .arg( statistics[t].Max, 0, 'f', 10 ) .arg( statistics[t].Min, 0, 'f', 10 ) .arg( statistics[t].N ) .arg( m_Controls->m_StatisticsTable->item( 0, 6 )->text().toDouble(), 0, 'f', 10 ); QApplication::clipboard()->setText( clipboard, QClipboard::Clipboard ); } else { QApplication::clipboard()->clear(); } QLocale::setDefault(tempLocal); } void QmitkImageStatisticsView::OnSelectionChanged( berry::IWorkbenchPart::Pointer /*part*/, const QList &selectedNodes ) { if (this->m_Visible) { this->SelectionChanged( selectedNodes ); } else { this->m_DataNodeSelectionChanged = true; } } void QmitkImageStatisticsView::SelectionChanged(const QList &selectedNodes) { if( this->m_StatisticsUpdatePending ) { this->m_DataNodeSelectionChanged = true; return; // not ready for new data now! } if (selectedNodes.size() == this->m_SelectedDataNodes.size()) { int i = 0; for (; i < selectedNodes.size(); ++i) { if (selectedNodes.at(i) != this->m_SelectedDataNodes.at(i)) { break; } } // node selection did not change if (i == selectedNodes.size()) return; } this->ReinitData(); if (selectedNodes.isEmpty()) { m_Controls->m_JSHistogram->ClearHistogram(); m_Controls->m_lineRadioButton->setEnabled(true); m_Controls->m_barRadioButton->setEnabled(true); + m_Controls->m_HistogramBinSizeSlider->setEnabled(true); + m_Controls->m_HistogramBinSizeCaptionLabel->setEnabled(true); + m_Controls->m_HistogramBinSizeLabel->setEnabled(true); m_Controls->m_InfoLabel->setText(QString("")); // m_Controls->horizontalLayout_3->setEnabled(false); m_Controls->groupBox->setEnabled(false); m_Controls->groupBox_3->setEnabled(false); } else { // m_Controls->horizontalLayout_3->setEnabled(true); m_Controls->groupBox->setEnabled(true); m_Controls->groupBox_3->setEnabled(true); } if(selectedNodes.size() == 1 || selectedNodes.size() == 2) { bool isBinary = false; selectedNodes.value(0)->GetBoolProperty("binary",isBinary); if(isBinary) { m_Controls->m_JSHistogram->ClearHistogram(); m_Controls->m_lineRadioButton->setEnabled(true); m_Controls->m_barRadioButton->setEnabled(true); + m_Controls->m_HistogramBinSizeSlider->setEnabled(true); + m_Controls->m_HistogramBinSizeCaptionLabel->setEnabled(true); + m_Controls->m_HistogramBinSizeLabel->setEnabled(true); m_Controls->m_InfoLabel->setText(QString("")); } for (int i= 0; i< selectedNodes.size(); ++i) { this->m_SelectedDataNodes.push_back(selectedNodes.at(i)); } this->m_DataNodeSelectionChanged = false; this->m_Controls->m_ErrorMessageLabel->setText( "" ); this->m_Controls->m_ErrorMessageLabel->hide(); emit StatisticsUpdate(); } else { this->m_DataNodeSelectionChanged = false; } } void QmitkImageStatisticsView::ReinitData() { while( this->m_CalculationThread->isRunning()) // wait until thread has finished { itksys::SystemTools::Delay(100); } if(this->m_SelectedImage != NULL) { this->m_SelectedImage->RemoveObserver( this->m_ImageObserverTag); this->m_SelectedImage = NULL; } if(this->m_SelectedImageMask != NULL) { this->m_SelectedImageMask->RemoveObserver( this->m_ImageMaskObserverTag); this->m_SelectedImageMask = NULL; } if(this->m_SelectedPlanarFigure != NULL) { this->m_SelectedPlanarFigure->RemoveObserver( this->m_PlanarFigureObserverTag); this->m_SelectedPlanarFigure = NULL; } this->m_SelectedDataNodes.clear(); this->m_StatisticsUpdatePending = false; m_Controls->m_ErrorMessageLabel->setText( "" ); m_Controls->m_ErrorMessageLabel->hide(); this->InvalidateStatisticsTableView(); m_Controls->m_JSHistogram->ClearHistogram(); m_Controls->m_StatisticsWidgetStack->setCurrentIndex( 0 ); } void QmitkImageStatisticsView::OnThreadedStatisticsCalculationEnds() { std::stringstream message; message << ""; m_Controls->m_ErrorMessageLabel->setText( message.str().c_str() ); m_Controls->m_ErrorMessageLabel->hide(); this->WriteStatisticsToGUI(); } void QmitkImageStatisticsView::UpdateStatistics() { mitk::IRenderWindowPart* renderPart = this->GetRenderWindowPart(); if ( renderPart == NULL ) { this->m_StatisticsUpdatePending = false; return; } m_WorldMinList.clear(); m_WorldMaxList.clear(); // classify selected nodes mitk::NodePredicateDataType::Pointer imagePredicate = mitk::NodePredicateDataType::New("Image"); std::string maskName = std::string(); std::string maskType = std::string(); unsigned int maskDimension = 0; // reset data from last run ITKCommandType::Pointer changeListener = ITKCommandType::New(); changeListener->SetCallbackFunction( this, &QmitkImageStatisticsView::SelectedDataModified ); mitk::DataNode::Pointer planarFigureNode; for( int i= 0 ; i < this->m_SelectedDataNodes.size(); ++i) { mitk::PlanarFigure::Pointer planarFig = dynamic_cast(this->m_SelectedDataNodes.at(i)->GetData()); if( imagePredicate->CheckNode(this->m_SelectedDataNodes.at(i)) ) { bool isMask = false; this->m_SelectedDataNodes.at(i)->GetPropertyValue("binary", isMask); if( this->m_SelectedImageMask == NULL && isMask) { this->m_SelectedImageMask = dynamic_cast(this->m_SelectedDataNodes.at(i)->GetData()); this->m_ImageMaskObserverTag = this->m_SelectedImageMask->AddObserver(itk::ModifiedEvent(), changeListener); maskName = this->m_SelectedDataNodes.at(i)->GetName(); maskType = m_SelectedImageMask->GetNameOfClass(); maskDimension = 3; } else if( !isMask ) { if(this->m_SelectedImage == NULL) { this->m_SelectedImage = static_cast(this->m_SelectedDataNodes.at(i)->GetData()); this->m_ImageObserverTag = this->m_SelectedImage->AddObserver(itk::ModifiedEvent(), changeListener); } } } else if (planarFig.IsNotNull()) { if(this->m_SelectedPlanarFigure == NULL) { this->m_SelectedPlanarFigure = planarFig; this->m_PlanarFigureObserverTag = this->m_SelectedPlanarFigure->AddObserver(mitk::EndInteractionPlanarFigureEvent(), changeListener); maskName = this->m_SelectedDataNodes.at(i)->GetName(); maskType = this->m_SelectedPlanarFigure->GetNameOfClass(); maskDimension = 2; planarFigureNode = m_SelectedDataNodes.at(i); } } else { std::stringstream message; message << "" << "Invalid data node type!" << ""; m_Controls->m_ErrorMessageLabel->setText( message.str().c_str() ); m_Controls->m_ErrorMessageLabel->show(); } } if(maskName == "") { maskName = "None"; maskType = ""; maskDimension = 0; } if (m_SelectedPlanarFigure != NULL && m_SelectedImage == NULL) { mitk::DataStorage::SetOfObjects::ConstPointer parentSet = this->GetDataStorage()->GetSources(planarFigureNode); for (int i=0; iSize(); i++) { mitk::DataNode::Pointer node = parentSet->ElementAt(i); if( imagePredicate->CheckNode(node) ) { bool isMask = false; node->GetPropertyValue("binary", isMask); if( !isMask ) { if(this->m_SelectedImage == NULL) { this->m_SelectedImage = static_cast(node->GetData()); this->m_ImageObserverTag = this->m_SelectedImage->AddObserver(itk::ModifiedEvent(), changeListener); } } } } } unsigned int timeStep = renderPart->GetTimeNavigationController()->GetTime()->GetPos(); if ( m_SelectedImage != NULL && m_SelectedImage->IsInitialized()) { // Check if a the selected image is a multi-channel image. If yes, statistics // cannot be calculated currently. if ( m_SelectedImage->GetPixelType().GetNumberOfComponents() > 1 ) { std::stringstream message; message << "Multi-component images not supported."; m_Controls->m_ErrorMessageLabel->setText( message.str().c_str() ); m_Controls->m_ErrorMessageLabel->show(); this->InvalidateStatisticsTableView(); m_Controls->m_StatisticsWidgetStack->setCurrentIndex( 0 ); m_Controls->m_JSHistogram->ClearHistogram(); m_CurrentStatisticsValid = false; this->m_StatisticsUpdatePending = false; m_Controls->m_lineRadioButton->setEnabled(true); m_Controls->m_barRadioButton->setEnabled(true); + m_Controls->m_HistogramBinSizeSlider->setEnabled(true); + m_Controls->m_HistogramBinSizeCaptionLabel->setEnabled(true); + m_Controls->m_HistogramBinSizeLabel->setEnabled(true); m_Controls->m_InfoLabel->setText(QString("")); return; } std::stringstream maskLabel; maskLabel << maskName; if ( maskDimension > 0 ) { maskLabel << " [" << maskDimension << "D " << maskType << "]"; } m_Controls->m_SelectedMaskLabel->setText( maskLabel.str().c_str() ); // check time step validity if(m_SelectedImage->GetDimension() <= 3 && timeStep > m_SelectedImage->GetDimension(3)-1) { timeStep = m_SelectedImage->GetDimension(3)-1; } // Add the used mask time step to the mask label so the user knows which mask time step was used // if the image time step is bigger than the total number of mask time steps (see // ImageStatisticsCalculator::ExtractImageAndMask) if (m_SelectedImageMask != NULL) { unsigned int maskTimeStep = timeStep; if (maskTimeStep >= m_SelectedImageMask->GetTimeSteps()) { maskTimeStep = m_SelectedImageMask->GetTimeSteps() - 1; } m_Controls->m_SelectedMaskLabel->setText(m_Controls->m_SelectedMaskLabel->text() + QString(" (t=") + QString::number(maskTimeStep) + QString(")")); } //// initialize thread and trigger it this->m_CalculationThread->SetIgnoreZeroValueVoxel( m_Controls->m_IgnoreZerosCheckbox->isChecked() ); this->m_CalculationThread->Initialize( m_SelectedImage, m_SelectedImageMask, m_SelectedPlanarFigure ); this->m_CalculationThread->SetTimeStep( timeStep ); + this->m_CalculationThread->SetHistogramBinSize(m_Controls->m_HistogramBinSizeSlider->value()); std::stringstream message; message << "Calculating statistics..."; m_Controls->m_ErrorMessageLabel->setText( message.str().c_str() ); m_Controls->m_ErrorMessageLabel->show(); try { // Compute statistics this->m_CalculationThread->start(); } catch ( const mitk::Exception& e) { std::stringstream message; message << "" << e.GetDescription() << ""; m_Controls->m_ErrorMessageLabel->setText( message.str().c_str() ); m_Controls->m_ErrorMessageLabel->show(); this->m_StatisticsUpdatePending = false; } catch ( const std::runtime_error &e ) { // In case of exception, print error message on GUI std::stringstream message; message << "" << e.what() << ""; m_Controls->m_ErrorMessageLabel->setText( message.str().c_str() ); m_Controls->m_ErrorMessageLabel->show(); this->m_StatisticsUpdatePending = false; } catch ( const std::exception &e ) { MITK_ERROR << "Caught exception: " << e.what(); // In case of exception, print error message on GUI std::stringstream message; message << "Error! Unequal Dimensions of Image and Segmentation. No recompute possible "; m_Controls->m_ErrorMessageLabel->setText( message.str().c_str() ); m_Controls->m_ErrorMessageLabel->show(); this->m_StatisticsUpdatePending = false; } } else { this->m_StatisticsUpdatePending = false; } } void QmitkImageStatisticsView::SelectedDataModified() { if( !m_StatisticsUpdatePending ) { emit StatisticsUpdate(); } } void QmitkImageStatisticsView::NodeRemoved(const mitk::DataNode *node) { while(this->m_CalculationThread->isRunning()) // wait until thread has finished { itksys::SystemTools::Delay(100); } if (node->GetData() == m_SelectedImage) { m_SelectedImage = NULL; } } void QmitkImageStatisticsView::RequestStatisticsUpdate() { if ( !m_StatisticsUpdatePending ) { if(this->m_DataNodeSelectionChanged) { this->SelectionChanged(this->GetCurrentSelection()); } else { this->m_StatisticsUpdatePending = true; this->UpdateStatistics(); } } if (this->GetRenderWindowPart()) this->GetRenderWindowPart()->RequestUpdate(); } +void QmitkImageStatisticsView::OnHistogramBinSizeSliderValueChanged(int) +{ + m_Controls->m_HistogramBinSizeLabel->setText( QString::number( m_Controls->m_HistogramBinSizeSlider->value()) ); + this->UpdateStatistics(); +} void QmitkImageStatisticsView::WriteStatisticsToGUI() { m_Controls->m_lineRadioButton->setEnabled(true); m_Controls->m_barRadioButton->setEnabled(true); + m_Controls->m_HistogramBinSizeSlider->setEnabled(true); + m_Controls->m_HistogramBinSizeCaptionLabel->setEnabled(true); + m_Controls->m_HistogramBinSizeLabel->setEnabled(true); m_Controls->m_InfoLabel->setText(QString("")); if(m_DataNodeSelectionChanged) { this->m_StatisticsUpdatePending = false; this->RequestStatisticsUpdate(); return; // stop visualization of results and calculate statistics of new selection } if ( this->m_CalculationThread->GetStatisticsUpdateSuccessFlag()) { if ( this->m_CalculationThread->GetStatisticsChangedFlag() ) { // Do not show any error messages m_Controls->m_ErrorMessageLabel->hide(); m_CurrentStatisticsValid = true; } if (m_Controls->m_barRadioButton->isChecked()) { m_Controls->m_JSHistogram->OnBarRadioButtonSelected(); } m_Controls->m_StatisticsWidgetStack->setCurrentIndex( 0 ); //m_Controls->m_JSHistogram->ComputeHistogram( this->m_CalculationThread->GetTimeStepHistogram(this->m_CalculationThread->GetTimeStep()).GetPointer() ); this->FillStatisticsTableView( this->m_CalculationThread->GetStatisticsData(), this->m_CalculationThread->GetStatisticsImage()); } else { m_Controls->m_SelectedMaskLabel->setText( "None" ); m_Controls->m_ErrorMessageLabel->setText( m_CalculationThread->GetLastErrorMessage().c_str() ); m_Controls->m_ErrorMessageLabel->show(); // Clear statistics and histogram this->InvalidateStatisticsTableView(); m_Controls->m_StatisticsWidgetStack->setCurrentIndex( 0 ); //m_Controls->m_JSHistogram->clearHistogram(); m_CurrentStatisticsValid = false; // If a (non-closed) PlanarFigure is selected, display a line profile widget if ( m_SelectedPlanarFigure != NULL ) { // Check if the (closed) planar figure is out of bounds and so no image mask could be calculated--> Intensity Profile can not be calculated bool outOfBounds = false; if ( m_SelectedPlanarFigure->IsClosed() && m_SelectedImageMask == NULL) { outOfBounds = true; std::stringstream message; message << "Planar figure is outside the images bounds."; m_Controls->m_InfoLabel->setText(message.str().c_str()); } // check whether PlanarFigure is initialized const mitk::PlaneGeometry *planarFigurePlaneGeometry = m_SelectedPlanarFigure->GetPlaneGeometry(); if ( planarFigurePlaneGeometry == NULL || outOfBounds) { // Clear statistics, histogram, and GUI this->InvalidateStatisticsTableView(); m_Controls->m_StatisticsWidgetStack->setCurrentIndex( 0 ); m_Controls->m_JSHistogram->ClearHistogram(); m_CurrentStatisticsValid = false; m_Controls->m_ErrorMessageLabel->hide(); m_Controls->m_SelectedMaskLabel->setText( "None" ); this->m_StatisticsUpdatePending = false; m_Controls->m_lineRadioButton->setEnabled(true); m_Controls->m_barRadioButton->setEnabled(true); + m_Controls->m_HistogramBinSizeSlider->setEnabled(true); + m_Controls->m_HistogramBinSizeCaptionLabel->setEnabled(true); + m_Controls->m_HistogramBinSizeLabel->setEnabled(true); if (!outOfBounds) m_Controls->m_InfoLabel->setText(QString("")); return; } unsigned int timeStep = this->GetRenderWindowPart()->GetTimeNavigationController()->GetTime()->GetPos(); m_Controls->m_JSHistogram->SetImage(this->m_CalculationThread->GetStatisticsImage()); m_Controls->m_JSHistogram->SetPlanarFigure(m_SelectedPlanarFigure); m_Controls->m_JSHistogram->ComputeIntensityProfile(timeStep); m_Controls->m_lineRadioButton->setEnabled(false); m_Controls->m_barRadioButton->setEnabled(false); + m_Controls->m_HistogramBinSizeSlider->setEnabled(false); + m_Controls->m_HistogramBinSizeCaptionLabel->setEnabled(false); + m_Controls->m_HistogramBinSizeLabel->setEnabled(false); std::stringstream message; message << "Only linegraph available for an intesityprofile!"; m_Controls->m_InfoLabel->setText(message.str().c_str()); } } this->m_StatisticsUpdatePending = false; } void QmitkImageStatisticsView::FillStatisticsTableView( const std::vector &s, const mitk::Image *image ) { this->m_Controls->m_StatisticsTable->setColumnCount(image->GetTimeSteps()); this->m_Controls->m_StatisticsTable->horizontalHeader()->setVisible(image->GetTimeSteps() > 1); for (unsigned int t = 0; t < image->GetTimeSteps(); t++) { this->m_Controls->m_StatisticsTable->setHorizontalHeaderItem(t, new QTableWidgetItem(QString::number(t))); if (s[t].MaxIndex.size()==3) { mitk::Point3D index, max, min; index[0] = s[t].MaxIndex[0]; index[1] = s[t].MaxIndex[1]; index[2] = s[t].MaxIndex[2]; m_SelectedImage->GetGeometry()->IndexToWorld(index, max); this->m_WorldMaxList.push_back(max); index[0] = s[t].MinIndex[0]; index[1] = s[t].MinIndex[1]; index[2] = s[t].MinIndex[2]; m_SelectedImage->GetGeometry()->IndexToWorld(index, min); this->m_WorldMinList.push_back(min); } int decimals = 2; mitk::PixelType doublePix = mitk::MakeScalarPixelType< double >(); mitk::PixelType floatPix = mitk::MakeScalarPixelType< float >(); if (image->GetPixelType()==doublePix || image->GetPixelType()==floatPix) decimals = 5; this->m_Controls->m_StatisticsTable->setItem( 0, t, new QTableWidgetItem( QString("%1").arg(s[t].Mean, 0, 'f', decimals) ) ); this->m_Controls->m_StatisticsTable->setItem( 1, t, new QTableWidgetItem( QString("%1").arg(s[t].Sigma, 0, 'f', decimals) ) ); this->m_Controls->m_StatisticsTable->setItem( 2, t, new QTableWidgetItem( QString("%1").arg(s[t].RMS, 0, 'f', decimals) ) ); QString max; max.append(QString("%1").arg(s[t].Max, 0, 'f', decimals)); max += " ("; for (int i=0; im_Controls->m_StatisticsTable->setItem( 3, t, new QTableWidgetItem( max ) ); QString min; min.append(QString("%1").arg(s[t].Min, 0, 'f', decimals)); min += " ("; for (int i=0; im_Controls->m_StatisticsTable->setItem( 4, t, new QTableWidgetItem( min ) ); this->m_Controls->m_StatisticsTable->setItem( 5, t, new QTableWidgetItem( QString("%1").arg(s[t].N) ) ); const mitk::BaseGeometry *geometry = image->GetGeometry(); if ( geometry != NULL ) { const mitk::Vector3D &spacing = image->GetGeometry()->GetSpacing(); double volume = spacing[0] * spacing[1] * spacing[2] * (double) s[t].N; this->m_Controls->m_StatisticsTable->setItem( 6, t, new QTableWidgetItem( QString("%1").arg(volume, 0, 'f', decimals) ) ); } else { this->m_Controls->m_StatisticsTable->setItem( 6, t, new QTableWidgetItem( "NA" ) ); } } this->m_Controls->m_StatisticsTable->resizeColumnsToContents(); int height = STAT_TABLE_BASE_HEIGHT; if (this->m_Controls->m_StatisticsTable->horizontalHeader()->isVisible()) height += this->m_Controls->m_StatisticsTable->horizontalHeader()->height(); if (this->m_Controls->m_StatisticsTable->horizontalScrollBar()->isVisible()) height += this->m_Controls->m_StatisticsTable->horizontalScrollBar()->height(); this->m_Controls->m_StatisticsTable->setMinimumHeight(height); // make sure the current timestep's column is highlighted (and the correct histogram is displayed) unsigned int timestep = this->GetRenderWindowPart()->GetTimeNavigationController()->GetTime()-> GetPos(); mitk::SliceNavigationController::GeometryTimeEvent timeEvent(this->m_SelectedImage->GetTimeGeometry(), timestep); this->OnTimeChanged(timeEvent); } void QmitkImageStatisticsView::InvalidateStatisticsTableView() { this->m_Controls->m_StatisticsTable->horizontalHeader()->setVisible(false); this->m_Controls->m_StatisticsTable->setColumnCount(1); for ( unsigned int i = 0; i < this->m_Controls->m_StatisticsTable->rowCount(); ++i ) { { this->m_Controls->m_StatisticsTable->setItem( i, 0, new QTableWidgetItem( "NA" ) ); } } this->m_Controls->m_StatisticsTable->setMinimumHeight(STAT_TABLE_BASE_HEIGHT); } void QmitkImageStatisticsView::Activated() { } void QmitkImageStatisticsView::Deactivated() { } void QmitkImageStatisticsView::Visible() { m_Visible = true; mitk::IRenderWindowPart* renderWindow = GetRenderWindowPart(); if (renderWindow) { itk::ReceptorMemberCommand::Pointer cmdTimeEvent = itk::ReceptorMemberCommand::New(); cmdTimeEvent->SetCallbackFunction(this, &QmitkImageStatisticsView::OnTimeChanged); // It is sufficient to add the observer to the axial render window since the GeometryTimeEvent // is always triggered by all views. m_TimeObserverTag = renderWindow->GetQmitkRenderWindow("axial")-> GetSliceNavigationController()-> AddObserver(mitk::SliceNavigationController::GeometryTimeEvent(NULL, 0), cmdTimeEvent); } if (m_DataNodeSelectionChanged) { if (this->IsCurrentSelectionValid()) { this->SelectionChanged(this->GetCurrentSelection()); } else { this->SelectionChanged(this->GetDataManagerSelection()); } m_DataNodeSelectionChanged = false; } } void QmitkImageStatisticsView::Hidden() { m_Visible = false; // The slice navigation controller observer is removed here instead of in the destructor. // If it was called in the destructor, the application would freeze because the view's // destructor gets called after the render windows have been destructed. if ( m_TimeObserverTag != NULL ) { mitk::IRenderWindowPart* renderWindow = GetRenderWindowPart(); if (renderWindow) { renderWindow->GetQmitkRenderWindow("axial")->GetSliceNavigationController()-> RemoveObserver( m_TimeObserverTag ); } m_TimeObserverTag = NULL; } } void QmitkImageStatisticsView::SetFocus() { } diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.h b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.h index fbbba0a3f1..a6531f4244 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.h +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsView.h @@ -1,179 +1,182 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkImageStatisticsView_H__INCLUDED #define QmitkImageStatisticsView_H__INCLUDED #include "ui_QmitkImageStatisticsViewControls.h" // Qmitk includes #include #include "QmitkStepperAdapter.h" #include "QmitkImageStatisticsCalculationThread.h" #include // mitk includes #include "mitkImageStatisticsCalculator.h" #include "mitkILifecycleAwarePart.h" #include "mitkPlanarLine.h" /*! \brief QmitkImageStatisticsView is a bundle that allows statistics calculation from images. Three modes are supported: 1. Statistics of one image, 2. Statistics of an image and a segmentation, 3. Statistics of an image and a Planar Figure. The statistics calculation is realized in a seperate thread to keep the gui accessable during calculation. \ingroup Plugins/org.mitk.gui.qt.measurementtoolbox */ class QmitkImageStatisticsView : public QmitkAbstractView, public mitk::ILifecycleAwarePart, public berry::IPartListener { Q_OBJECT private: /*! \ Convenient typedefs */ typedef mitk::DataStorage::SetOfObjects ConstVector; typedef ConstVector::ConstPointer ConstVectorPointer; typedef ConstVector::ConstIterator ConstVectorIterator; typedef std::map< mitk::Image *, mitk::ImageStatisticsCalculator::Pointer > ImageStatisticsMapType; typedef QList SelectedDataNodeVectorType; typedef itk::SimpleMemberCommand< QmitkImageStatisticsView > ITKCommandType; public: /*! \brief default constructor */ QmitkImageStatisticsView(QObject *parent=0, const char *name=0); /*! \brief default destructor */ virtual ~QmitkImageStatisticsView(); /*! \brief method for creating the widget containing the application controls, like sliders, buttons etc. */ virtual void CreateQtPartControl(QWidget *parent); /*! \brief method for creating the connections of main and control widget */ virtual void CreateConnections(); /*! \brief not implemented*/ //bool IsExclusiveFunctionality() const; /*! \brief Is called from the selection mechanism once the data manager selection has changed*/ void OnSelectionChanged( berry::IWorkbenchPart::Pointer part, const QList &nodes ); static const std::string VIEW_ID; static const int STAT_TABLE_BASE_HEIGHT; public slots: /** \brief Called when the statistics update is finished, sets the results to GUI.*/ void OnThreadedStatisticsCalculationEnds(); + /** \brief Update bin size for histogram resolution. */ + void OnHistogramBinSizeSliderValueChanged(int); + protected slots: /** \brief Saves the histogram to the clipboard */ void OnClipboardHistogramButtonClicked(); /** \brief Saves the statistics to the clipboard */ void OnClipboardStatisticsButtonClicked(); /** \brief Indicates if zeros should be excluded from statistics calculation */ void OnIgnoreZerosCheckboxClicked( ); /** \brief Checks if update is possible and calls StatisticsUpdate() possible */ void RequestStatisticsUpdate(); /** \brief Jump to coordinates stored in the double clicked cell */ void JumpToCoordinates(int row, int col); signals: /** \brief Method to set the data to the member and start the threaded statistics update */ void StatisticsUpdate(); protected: /** \brief Writes the calculated statistics to the GUI */ void FillStatisticsTableView( const std::vector &s, const mitk::Image *image ); /** \brief Removes statistics from the GUI */ void InvalidateStatisticsTableView(); /** \brief Recalculate statistics for currently selected image and mask and * update the GUI. */ void UpdateStatistics(); /** \brief Listener for progress events to update progress bar. */ void UpdateProgressBar(); /** \brief Removes any cached images which are no longer referenced elsewhere. */ void RemoveOrphanImages(); /** \brief Computes an Intensity Profile along line and updates the histogram widget with it. */ void ComputeIntensityProfile( mitk::PlanarLine* line ); /** \brief Removes all Observers to images, masks and planar figures and sets corresponding members to zero */ void ClearObservers(); void Activated(); void Deactivated(); void Visible(); void Hidden(); void SetFocus(); /** \brief Method called when itkModifiedEvent is called by selected data. */ void SelectedDataModified(); /** \brief Method called when the data manager selection changes */ void SelectionChanged(const QList &selectedNodes); /** \brief Method called to remove old selection when a new selection is present */ void ReinitData(); /** \brief writes the statistics to the gui*/ void WriteStatisticsToGUI(); void NodeRemoved(const mitk::DataNode *node); /** \brief Is called right before the view closes (before the destructor) */ virtual void PartClosed( berry::IWorkbenchPartReference::Pointer ); /** \brief Is called from the image navigator once the time step has changed */ void OnTimeChanged( const itk::EventObject& ); /** \brief Required for berry::IPartListener */ virtual const char* GetClassName() const { return "QmitkImageStatisticsView"; } /** \brief Required for berry::IPartListener */ virtual Events::Types GetPartEventTypes() const { return Events::CLOSED; } // member variables Ui::QmitkImageStatisticsViewControls *m_Controls; QmitkImageStatisticsCalculationThread* m_CalculationThread; QmitkStepperAdapter* m_TimeStepperAdapter; unsigned int m_CurrentTime; QString m_Clipboard; // Image and mask data mitk::Image* m_SelectedImage; mitk::Image* m_SelectedImageMask; mitk::PlanarFigure* m_SelectedPlanarFigure; // observer tags long m_ImageObserverTag; long m_ImageMaskObserverTag; long m_PlanarFigureObserverTag; long m_TimeObserverTag; SelectedDataNodeVectorType m_SelectedDataNodes; bool m_CurrentStatisticsValid; bool m_StatisticsUpdatePending; bool m_StatisticsIntegrationPending; bool m_DataNodeSelectionChanged; bool m_Visible; std::vector m_WorldMinList; std::vector m_WorldMaxList; }; #endif // QmitkImageStatisticsView_H__INCLUDED diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsViewControls.ui b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsViewControls.ui index 8d685a8c47..169356acdb 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsViewControls.ui +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkImageStatisticsViewControls.ui @@ -1,465 +1,523 @@ QmitkImageStatisticsViewControls true 0 0 - 465 + 281 800 Form - - + + 0 0 Mask: None 2 Qt::Horizontal 40 20 color: rgb(255, 0, 0); Error Message Qt::AutoText - + Ignore zero-valued voxels - + false Statistics 9 9 9 0 0 100 180 16777215 16777215 Qt::ScrollBarAlwaysOff Qt::ScrollBarAsNeeded true true true Qt::DotLine false 7 false false 80 true 80 false true true false 25 25 false false Mean StdDev RMS Max Min N V (mm³) 0 0 0 Copy to Clipboard Qt::Horizontal 40 20 - + false 150 160 Histogram false - - + + + + + + 0 + 0 + + + + + 0 + 0 + + + + + 16777215 + 16777215 + + + + Plot + + + + + + + + + 0 + 0 + + + + + + + Barchart + + + true + + + + + + + + 0 + 0 + + + + + 0 + 0 + + + + Linegraph + + + + + + + Qt::Horizontal + + + + 40 + 20 + + + + + + + + + + + + + 40 + 0 + + + + + 40 + 16777215 + + + + Bin size + + + + + + + + 80 + 16777215 + + + + 1 + + + 5 + + + 0 + + + false + + + Qt::Horizontal + + + QSlider::TicksBelow + + + + + + + + 10 + 0 + + + + + 10 + 16777215 + + + + 1 + + + + + + + Qt::Horizontal + + + + 67 + 20 + + + + + + + + + + + + + + + + + 0 0 0 - + 0 0 Copy to Clipboard Qt::Horizontal 40 20 - - - - - 0 - 0 - - - - - 0 - 50 - - - - - 16777215 - 16777215 - - - - Plot - - - - - 0 - 20 - 411 - 31 - - - - - QLayout::SetDefaultConstraint - - - - - Qt::Horizontal - - - QSizePolicy::Preferred - - - - 10 - 0 - - - - - - - - - 0 - 0 - - - - - - - Use barchart - - - true - - - - - - - - 0 - 0 - - - - - 0 - 0 - - - - Use linegraph - - - - - - - Qt::Horizontal - - - - 40 - 20 - - - - - - - - - - - - - - - - + Qt::Vertical 20 40 QmitkHistogramJSWidget QWidget
QmitkHistogramJSWidget.h
1
diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.cpp b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.cpp index 7830406f1a..2182f387c8 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.cpp +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.cpp @@ -1,911 +1,957 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #define MEASUREMENT_DEBUG MITK_DEBUG("QmitkMeasurementView") << __LINE__ << ": " #include "QmitkMeasurementView.h" #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include "mitkPluginActivator.h" #include "usModuleRegistry.h" template static T* GetService() { ctkPluginContext* context = mitk::PluginActivator::GetContext(); ctkServiceReference serviceRef = context->getServiceReference(); return serviceRef ? context->getService(serviceRef) : NULL; } struct QmitkPlanarFigureData { QmitkPlanarFigureData() : m_Figure(0), m_EndPlacementObserverTag(0), m_SelectObserverTag(0), m_StartInteractionObserverTag(0), m_EndInteractionObserverTag(0) { } mitk::PlanarFigure* m_Figure; unsigned int m_EndPlacementObserverTag; unsigned int m_SelectObserverTag; unsigned int m_StartInteractionObserverTag; unsigned int m_EndInteractionObserverTag; }; struct QmitkMeasurementViewData { QmitkMeasurementViewData() : m_LineCounter(0), m_PathCounter(0), m_AngleCounter(0), - m_FourPointAngleCounter(0), m_EllipseCounter(0), m_DoubleEllipseCounter(0), - m_RectangleCounter(0), m_PolygonCounter(0), m_BezierCurveCounter(0), - m_UnintializedPlanarFigure(false) + m_FourPointAngleCounter(0), m_CircleCounter(0), m_EllipseCounter(0), + m_DoubleEllipseCounter(0), m_RectangleCounter(0), m_PolygonCounter(0), + m_BezierCurveCounter(0), m_SubdivisionPolygonCounter(0), m_UnintializedPlanarFigure(false) { } // internal vars unsigned int m_LineCounter; unsigned int m_PathCounter; unsigned int m_AngleCounter; unsigned int m_FourPointAngleCounter; + unsigned int m_CircleCounter; unsigned int m_EllipseCounter; unsigned int m_DoubleEllipseCounter; unsigned int m_RectangleCounter; unsigned int m_PolygonCounter; unsigned int m_BezierCurveCounter; + unsigned int m_SubdivisionPolygonCounter; QList m_CurrentSelection; std::map m_DataNodeToPlanarFigureData; mitk::WeakPointer m_SelectedImageNode; bool m_UnintializedPlanarFigure; // WIDGETS QWidget* m_Parent; QLabel* m_SelectedImageLabel; QAction* m_DrawLine; QAction* m_DrawPath; QAction* m_DrawAngle; QAction* m_DrawFourPointAngle; - QAction* m_DrawDoubleEllipse; QAction* m_DrawRectangle; QAction* m_DrawPolygon; + QAction* m_DrawCircle; QAction* m_DrawEllipse; + QAction* m_DrawDoubleEllipse; QAction* m_DrawBezierCurve; + QAction* m_DrawSubdivisionPolygon; QToolBar* m_DrawActionsToolBar; QActionGroup* m_DrawActionsGroup; QTextBrowser* m_SelectedPlanarFiguresText; QPushButton* m_CopyToClipboard; QGridLayout* m_Layout; }; const std::string QmitkMeasurementView::VIEW_ID = "org.mitk.views.measurement"; QmitkMeasurementView::QmitkMeasurementView() : d( new QmitkMeasurementViewData ) { } QmitkMeasurementView::~QmitkMeasurementView() { this->RemoveAllInteractors(); delete d; } void QmitkMeasurementView::CreateQtPartControl(QWidget* parent) { d->m_Parent = parent; // image label QLabel* selectedImageLabel = new QLabel("Reference Image: "); d->m_SelectedImageLabel = new QLabel; d->m_SelectedImageLabel->setStyleSheet("font-weight: bold;"); d->m_DrawActionsToolBar = new QToolBar; d->m_DrawActionsGroup = new QActionGroup(this); d->m_DrawActionsGroup->setExclusive(true); //# add actions MEASUREMENT_DEBUG << "Draw Line"; QAction* currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/line.png"), "Draw Line"); currentAction->setCheckable(true); d->m_DrawLine = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); MEASUREMENT_DEBUG << "Draw Path"; currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/path.png"), "Draw Path"); currentAction->setCheckable(true); d->m_DrawPath = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); MEASUREMENT_DEBUG << "Draw Angle"; currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/angle.png"), "Draw Angle"); currentAction->setCheckable(true); d->m_DrawAngle = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); MEASUREMENT_DEBUG << "Draw Four Point Angle"; currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/four-point-angle.png"), "Draw Four Point Angle"); currentAction->setCheckable(true); d->m_DrawFourPointAngle = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); MEASUREMENT_DEBUG << "Draw Circle"; currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/circle.png"), "Draw Circle"); currentAction->setCheckable(true); + d->m_DrawCircle = currentAction; + d->m_DrawActionsToolBar->addAction(currentAction); + d->m_DrawActionsGroup->addAction(currentAction); + + MEASUREMENT_DEBUG << "Draw Ellipse"; + currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/ellipse.png"), "Draw Ellipse"); + currentAction->setCheckable(true); d->m_DrawEllipse = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); + MEASUREMENT_DEBUG << "Draw Double Ellipse"; + currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/doubleellipse.png"), "Draw Double Ellipse"); + currentAction->setCheckable(true); + d->m_DrawDoubleEllipse = currentAction; + d->m_DrawActionsToolBar->addAction(currentAction); + d->m_DrawActionsGroup->addAction(currentAction); + MEASUREMENT_DEBUG << "Draw Rectangle"; currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/rectangle.png"), "Draw Rectangle"); currentAction->setCheckable(true); d->m_DrawRectangle = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); MEASUREMENT_DEBUG << "Draw Polygon"; currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/polygon.png"), "Draw Polygon"); currentAction->setCheckable(true); d->m_DrawPolygon = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); - MEASUREMENT_DEBUG << "Draw Double Ellipse"; - currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/doubleellipse.png"), "Draw Double Ellipse"); + MEASUREMENT_DEBUG << "Draw Bezier Curve"; + currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/beziercurve.png"), "Draw Bezier Curve"); currentAction->setCheckable(true); - d->m_DrawDoubleEllipse = currentAction; + d->m_DrawBezierCurve = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); - MEASUREMENT_DEBUG << "Draw Bezier Curve"; - currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/beziercurve.png"), "Draw Bezier Curve"); + MEASUREMENT_DEBUG << "Draw Subdivision Polygon"; + currentAction = d->m_DrawActionsToolBar->addAction(QIcon(":/measurement/subdivisionpolygon.png"), "Draw Subdivision Polygon"); currentAction->setCheckable(true); - d->m_DrawBezierCurve = currentAction; + d->m_DrawSubdivisionPolygon = currentAction; d->m_DrawActionsToolBar->addAction(currentAction); d->m_DrawActionsGroup->addAction(currentAction); // planar figure details text d->m_SelectedPlanarFiguresText = new QTextBrowser; // copy to clipboard button d->m_CopyToClipboard = new QPushButton("Copy to Clipboard"); d->m_Layout = new QGridLayout; d->m_Layout->addWidget(selectedImageLabel, 0, 0, 1, 1); d->m_Layout->addWidget(d->m_SelectedImageLabel, 0, 1, 1, 1); d->m_Layout->addWidget(d->m_DrawActionsToolBar, 1, 0, 1, 2); d->m_Layout->addWidget(d->m_SelectedPlanarFiguresText, 2, 0, 1, 2); d->m_Layout->addWidget(d->m_CopyToClipboard, 3, 0, 1, 2); d->m_Parent->setLayout(d->m_Layout); // create connections this->CreateConnections(); // readd interactors and observers this->AddAllInteractors(); } void QmitkMeasurementView::CreateConnections() { QObject::connect( d->m_DrawLine, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawLineTriggered(bool) ) ); QObject::connect( d->m_DrawPath, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawPathTriggered(bool) ) ); QObject::connect( d->m_DrawAngle, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawAngleTriggered(bool) ) ); QObject::connect( d->m_DrawFourPointAngle, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawFourPointAngleTriggered(bool) ) ); + QObject::connect( d->m_DrawCircle, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawCircleTriggered(bool) ) ); QObject::connect( d->m_DrawEllipse, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawEllipseTriggered(bool) ) ); QObject::connect( d->m_DrawDoubleEllipse, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawDoubleEllipseTriggered(bool) ) ); QObject::connect( d->m_DrawRectangle, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawRectangleTriggered(bool) ) ); QObject::connect( d->m_DrawPolygon, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawPolygonTriggered(bool) ) ); QObject::connect( d->m_DrawBezierCurve, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawBezierCurveTriggered(bool) ) ); + QObject::connect( d->m_DrawSubdivisionPolygon, SIGNAL( triggered(bool) ), this, SLOT( ActionDrawSubdivisionPolygonTriggered(bool) ) ); QObject::connect( d->m_CopyToClipboard, SIGNAL( clicked(bool) ), this, SLOT( CopyToClipboard(bool) ) ); } void QmitkMeasurementView::NodeAdded( const mitk::DataNode* node ) { // add observer for selection in renderwindow mitk::PlanarFigure* figure = dynamic_cast(node->GetData()); bool isPositionMarker (false); node->GetBoolProperty("isContourMarker", isPositionMarker); if( figure && !isPositionMarker ) { MEASUREMENT_DEBUG << "figure added. will add interactor if needed."; mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetDataInteractor().GetPointer() ); mitk::DataNode* nonConstNode = const_cast( node ); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( nonConstNode ); // nonConstNode->SetBoolProperty( "planarfigure.isextendable", true ); } else { // just to be sure that the interactor is not added twice // mitk::GlobalInteraction::GetInstance()->RemoveInteractor(figureInteractor); } MEASUREMENT_DEBUG << "adding interactor to globalinteraction"; // mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); MEASUREMENT_DEBUG << "will now add observers for planarfigure"; QmitkPlanarFigureData data; data.m_Figure = figure; // add observer for event when figure has been placed typedef itk::SimpleMemberCommand< QmitkMeasurementView > SimpleCommandType; SimpleCommandType::Pointer initializationCommand = SimpleCommandType::New(); initializationCommand->SetCallbackFunction( this, &QmitkMeasurementView::PlanarFigureInitialized ); data.m_EndPlacementObserverTag = figure->AddObserver( mitk::EndPlacementPlanarFigureEvent(), initializationCommand ); // add observer for event when figure is picked (selected) typedef itk::MemberCommand< QmitkMeasurementView > MemberCommandType; MemberCommandType::Pointer selectCommand = MemberCommandType::New(); selectCommand->SetCallbackFunction( this, &QmitkMeasurementView::PlanarFigureSelected ); data.m_SelectObserverTag = figure->AddObserver( mitk::SelectPlanarFigureEvent(), selectCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer startInteractionCommand = SimpleCommandType::New(); startInteractionCommand->SetCallbackFunction( this, &QmitkMeasurementView::DisableCrosshairNavigation); data.m_StartInteractionObserverTag = figure->AddObserver( mitk::StartInteractionPlanarFigureEvent(), startInteractionCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer endInteractionCommand = SimpleCommandType::New(); endInteractionCommand->SetCallbackFunction( this, &QmitkMeasurementView::EnableCrosshairNavigation); data.m_EndInteractionObserverTag = figure->AddObserver( mitk::EndInteractionPlanarFigureEvent(), endInteractionCommand ); // adding to the map of tracked planarfigures d->m_DataNodeToPlanarFigureData[nonConstNode] = data; } this->CheckForTopMostVisibleImage(); } void QmitkMeasurementView::NodeChanged(const mitk::DataNode* node) { // DETERMINE IF WE HAVE TO RENEW OUR DETAILS TEXT (ANY NODE CHANGED IN OUR SELECTION?) bool renewText = false; for( int i=0; i < d->m_CurrentSelection.size(); ++i ) { if( node == d->m_CurrentSelection.at(i) ) { renewText = true; break; } } if(renewText) { MEASUREMENT_DEBUG << "Selected nodes changed. Refreshing text."; this->UpdateMeasurementText(); } this->CheckForTopMostVisibleImage(); } void QmitkMeasurementView::CheckForTopMostVisibleImage(mitk::DataNode* _NodeToNeglect) { d->m_SelectedImageNode = this->DetectTopMostVisibleImage().GetPointer(); if( d->m_SelectedImageNode.GetPointer() == _NodeToNeglect ) d->m_SelectedImageNode = 0; if( d->m_SelectedImageNode.IsNotNull() && d->m_UnintializedPlanarFigure == false ) { MEASUREMENT_DEBUG << "Reference image found"; d->m_SelectedImageLabel->setText( QString::fromStdString( d->m_SelectedImageNode->GetName() ) ); d->m_DrawActionsToolBar->setEnabled(true); MEASUREMENT_DEBUG << "Updating Measurement text"; } else { MEASUREMENT_DEBUG << "No reference image available. Will disable actions for creating new planarfigures"; if( d->m_UnintializedPlanarFigure == false ) d->m_SelectedImageLabel->setText( "No visible image available." ); d->m_DrawActionsToolBar->setEnabled(false); } } void QmitkMeasurementView::NodeRemoved(const mitk::DataNode* node) { MEASUREMENT_DEBUG << "node removed from data storage"; mitk::DataNode* nonConstNode = const_cast(node); std::map::iterator it = d->m_DataNodeToPlanarFigureData.find(nonConstNode); bool isFigureFinished = false; bool isPlaced = false; if( it != d->m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; // remove observers data.m_Figure->RemoveObserver( data.m_EndPlacementObserverTag ); data.m_Figure->RemoveObserver( data.m_SelectObserverTag ); data.m_Figure->RemoveObserver( data.m_StartInteractionObserverTag ); data.m_Figure->RemoveObserver( data.m_EndInteractionObserverTag ); MEASUREMENT_DEBUG << "removing from the list of tracked planar figures"; isFigureFinished = data.m_Figure->GetPropertyList()->GetBoolProperty("initiallyplaced",isPlaced); if (!isFigureFinished) { // if the property does not yet exist or is false, drop the datanode PlanarFigureInitialized(); // normally called when a figure is finished, to reset all buttons } d->m_DataNodeToPlanarFigureData.erase( it ); } mitk::TNodePredicateDataType::Pointer isPlanarFigure = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer nodes = GetDataStorage()->GetDerivations(node,isPlanarFigure); for (unsigned int x = 0; x < nodes->size(); x++) { mitk::PlanarFigure* planarFigure = dynamic_cast (nodes->at(x)->GetData()); if (planarFigure != NULL) { isFigureFinished = planarFigure->GetPropertyList()->GetBoolProperty("initiallyplaced",isPlaced); if (!isFigureFinished) { // if the property does not yet exist or is false, drop the datanode GetDataStorage()->Remove(nodes->at(x)); if( !d->m_DataNodeToPlanarFigureData.empty() ) { std::map::iterator it2 = d->m_DataNodeToPlanarFigureData.find(nodes->at(x)); //check if returned it2 valid if( it2 != d->m_DataNodeToPlanarFigureData.end() ) { d->m_DataNodeToPlanarFigureData.erase( it2 );// removing planar figure from tracked figure list PlanarFigureInitialized(); // normally called when a figure is finished, to reset all buttons EnableCrosshairNavigation(); } } } } } this->CheckForTopMostVisibleImage(nonConstNode); } void QmitkMeasurementView::PlanarFigureSelected( itk::Object* object, const itk::EventObject& ) { MEASUREMENT_DEBUG << "planar figure " << object << " selected"; std::map::iterator it = d->m_DataNodeToPlanarFigureData.begin(); d->m_CurrentSelection.clear(); while( it != d->m_DataNodeToPlanarFigureData.end()) { mitk::DataNode* node = it->first; QmitkPlanarFigureData& data = it->second; if( data.m_Figure == object ) { MITK_DEBUG << "selected node found. enabling selection"; node->SetSelected(true); d->m_CurrentSelection.push_back( node ); } else { node->SetSelected(false); } ++it; } this->UpdateMeasurementText(); this->RequestRenderWindowUpdate(); } void QmitkMeasurementView::PlanarFigureInitialized() { MEASUREMENT_DEBUG << "planar figure initialized"; d->m_UnintializedPlanarFigure = false; d->m_DrawActionsToolBar->setEnabled(true); d->m_DrawLine->setChecked(false); d->m_DrawPath->setChecked(false); d->m_DrawAngle->setChecked(false); d->m_DrawFourPointAngle->setChecked(false); + d->m_DrawCircle->setChecked(false); d->m_DrawEllipse->setChecked(false); + d->m_DrawDoubleEllipse->setChecked(false); d->m_DrawRectangle->setChecked(false); d->m_DrawPolygon->setChecked(false); - d->m_DrawDoubleEllipse->setChecked(false); d->m_DrawBezierCurve->setChecked(false); + d->m_DrawSubdivisionPolygon->setChecked(false); } void QmitkMeasurementView::SetFocus() { d->m_SelectedImageLabel->setFocus(); } void QmitkMeasurementView::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*part*/, const QList &nodes) { MEASUREMENT_DEBUG << "Determine the top most visible image"; MEASUREMENT_DEBUG << "The PlanarFigure interactor will take the currently visible PlaneGeometry from the slice navigation controller"; this->CheckForTopMostVisibleImage(); MEASUREMENT_DEBUG << "refreshing selection and detailed text"; d->m_CurrentSelection = nodes; this->UpdateMeasurementText(); // bug 16600: deselecting all planarfigures by clicking on datamanager when no node is selected if(d->m_CurrentSelection.size() == 0) { mitk::TNodePredicateDataType::Pointer isPlanarFigure = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer planarFigures = this->GetDataStorage()->GetSubset( isPlanarFigure ); // setting all planar figures which are not helper objects not selected for(mitk::DataStorage::SetOfObjects::ConstIterator it=planarFigures->Begin(); it!=planarFigures->End(); it++) { mitk::DataNode* node = it.Value(); bool isHelperObject(false); node->GetBoolProperty("helper object", isHelperObject); if(!isHelperObject) { node->SetSelected(false); } } } for( int i=d->m_CurrentSelection.size()-1; i>= 0; --i) { mitk::DataNode* node = d->m_CurrentSelection.at(i); mitk::PlanarFigure* _PlanarFigure = dynamic_cast (node->GetData()); // the last selected planar figure if (_PlanarFigure && _PlanarFigure->GetPlaneGeometry()) { QmitkRenderWindow* selectedRenderWindow = 0; bool PlanarFigureInitializedWindow = false; mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart()); if(! linkedRenderWindow ) { return; } QmitkRenderWindow* RenderWindow1 = linkedRenderWindow->GetQmitkRenderWindow( "axial") ; QmitkRenderWindow* RenderWindow2 = linkedRenderWindow->GetQmitkRenderWindow( "sagittal") ; QmitkRenderWindow* RenderWindow3 = linkedRenderWindow->GetQmitkRenderWindow( "coronal") ; QmitkRenderWindow* RenderWindow4 = linkedRenderWindow->GetQmitkRenderWindow( "3d") ; if (node->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow1->GetRenderer())) { selectedRenderWindow = RenderWindow1; } if (!selectedRenderWindow && node->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow2->GetRenderer())) { selectedRenderWindow = RenderWindow2; } if (!selectedRenderWindow && node->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow,RenderWindow3->GetRenderer())) { selectedRenderWindow = RenderWindow3; } if (!selectedRenderWindow && node->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, RenderWindow4->GetRenderer())) { selectedRenderWindow = RenderWindow4; } const mitk::PlaneGeometry* _PlaneGeometry = dynamic_cast (_PlanarFigure->GetPlaneGeometry()); mitk::VnlVector normal = _PlaneGeometry->GetNormalVnl(); mitk::PlaneGeometry::ConstPointer _Plane1 = RenderWindow1->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::VnlVector normal1 = _Plane1->GetNormalVnl(); mitk::PlaneGeometry::ConstPointer _Plane2 = RenderWindow2->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::VnlVector normal2 = _Plane2->GetNormalVnl(); mitk::PlaneGeometry::ConstPointer _Plane3 = RenderWindow3->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::VnlVector normal3 = _Plane3->GetNormalVnl(); normal[0] = fabs(normal[0]); normal[1] = fabs(normal[1]); normal[2] = fabs(normal[2]); normal1[0] = fabs(normal1[0]); normal1[1] = fabs(normal1[1]); normal1[2] = fabs(normal1[2]); normal2[0] = fabs(normal2[0]); normal2[1] = fabs(normal2[1]); normal2[2] = fabs(normal2[2]); normal3[0] = fabs(normal3[0]); normal3[1] = fabs(normal3[1]); normal3[2] = fabs(normal3[2]); double ang1 = angle(normal, normal1); double ang2 = angle(normal, normal2); double ang3 = angle(normal, normal3); if(ang1 < ang2 && ang1 < ang3) { selectedRenderWindow = RenderWindow1; } else { if(ang2 < ang3) { selectedRenderWindow = RenderWindow2; } else { selectedRenderWindow = RenderWindow3; } } // re-orient view if (selectedRenderWindow) { const mitk::Point3D& centerP = _PlaneGeometry->GetOrigin(); selectedRenderWindow->GetSliceNavigationController()->ReorientSlices(centerP, _PlaneGeometry->GetNormal()); } } break; } this->RequestRenderWindowUpdate(); } void QmitkMeasurementView::ActionDrawLineTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarLine::Pointer figure = mitk::PlanarLine::New(); QString qString = QString("Line%1").arg(++d->m_LineCounter); this->AddFigureToDataStorage(figure, qString); MEASUREMENT_DEBUG << "PlanarLine initialized..."; } void QmitkMeasurementView::ActionDrawPathTriggered(bool checked) { Q_UNUSED(checked) mitk::IPropertyFilters* propertyFilters = GetService(); if (propertyFilters != NULL) { mitk::PropertyFilter filter; filter.AddEntry("ClosedPlanarPolygon", mitk::PropertyFilter::Blacklist); propertyFilters->AddFilter(filter, "PlanarPolygon"); } mitk::PlanarPolygon::Pointer figure = mitk::PlanarPolygon::New(); figure->ClosedOff(); QString qString = QString("Path%1").arg(++d->m_PathCounter); mitk::DataNode::Pointer node = this->AddFigureToDataStorage(figure, qString); mitk::BoolProperty::Pointer closedProperty = mitk::BoolProperty::New( false ); node->SetProperty("ClosedPlanarPolygon", closedProperty); node->SetProperty("planarfigure.isextendable",mitk::BoolProperty::New(true)); MEASUREMENT_DEBUG << "PlanarPath initialized..."; } void QmitkMeasurementView::ActionDrawAngleTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarAngle::Pointer figure = mitk::PlanarAngle::New(); QString qString = QString("Angle%1").arg(++d->m_AngleCounter); this->AddFigureToDataStorage(figure, qString); MEASUREMENT_DEBUG << "PlanarAngle initialized..."; } void QmitkMeasurementView::ActionDrawFourPointAngleTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarFourPointAngle::Pointer figure = mitk::PlanarFourPointAngle::New(); QString qString = QString("Four Point Angle%1").arg(++d->m_FourPointAngleCounter); this->AddFigureToDataStorage(figure, qString); MEASUREMENT_DEBUG << "PlanarFourPointAngle initialized..."; } -void QmitkMeasurementView::ActionDrawEllipseTriggered(bool checked) +void QmitkMeasurementView::ActionDrawCircleTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarCircle::Pointer figure = mitk::PlanarCircle::New(); - QString qString = QString("Circle%1").arg(++d->m_EllipseCounter); + QString qString = QString("Circle%1").arg(++d->m_CircleCounter); this->AddFigureToDataStorage(figure, qString); MEASUREMENT_DEBUG << "PlanarCircle initialized..."; } +void QmitkMeasurementView::ActionDrawEllipseTriggered(bool checked) +{ + Q_UNUSED(checked) + + mitk::PlanarEllipse::Pointer figure = mitk::PlanarEllipse::New(); + QString qString = QString("Ellipse%1").arg(++d->m_EllipseCounter); + this->AddFigureToDataStorage(figure, qString); + + MEASUREMENT_DEBUG << "PlanarEllipse initialized..."; +} + void QmitkMeasurementView::ActionDrawDoubleEllipseTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarDoubleEllipse::Pointer figure = mitk::PlanarDoubleEllipse::New(); QString qString = QString("DoubleEllipse%1").arg(++d->m_DoubleEllipseCounter); this->AddFigureToDataStorage(figure, qString); MEASUREMENT_DEBUG << "PlanarDoubleEllipse initialized..."; } void QmitkMeasurementView::ActionDrawBezierCurveTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarBezierCurve::Pointer figure = mitk::PlanarBezierCurve::New(); QString qString = QString("BezierCurve%1").arg(++d->m_BezierCurveCounter); this->AddFigureToDataStorage(figure, qString); MEASUREMENT_DEBUG << "PlanarBezierCurve initialized..."; } +void QmitkMeasurementView::ActionDrawSubdivisionPolygonTriggered(bool checked) +{ + Q_UNUSED(checked) + + mitk::PlanarSubdivisionPolygon::Pointer figure = mitk::PlanarSubdivisionPolygon::New(); + QString qString = QString("SubdivisionPolygon%1").arg(++d->m_SubdivisionPolygonCounter); + this->AddFigureToDataStorage(figure, qString); + + MEASUREMENT_DEBUG << "PlanarSubdivisionPolygon initialized..."; +} + void QmitkMeasurementView::ActionDrawRectangleTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarRectangle::Pointer figure = mitk::PlanarRectangle::New(); QString qString = QString("Rectangle%1").arg(++d->m_RectangleCounter); this->AddFigureToDataStorage(figure, qString); MEASUREMENT_DEBUG << "PlanarRectangle initialized..."; } void QmitkMeasurementView::ActionDrawPolygonTriggered(bool checked) { Q_UNUSED(checked) mitk::PlanarPolygon::Pointer figure = mitk::PlanarPolygon::New(); figure->ClosedOn(); QString qString = QString("Polygon%1").arg(++d->m_PolygonCounter); mitk::DataNode::Pointer node = this->AddFigureToDataStorage(figure, qString); node->SetProperty("planarfigure.isextendable",mitk::BoolProperty::New(true)); MEASUREMENT_DEBUG << "PlanarPolygon initialized..."; } void QmitkMeasurementView::CopyToClipboard( bool checked ) { Q_UNUSED(checked) MEASUREMENT_DEBUG << "Copying current Text to clipboard..."; QString clipboardText = d->m_SelectedPlanarFiguresText->toPlainText(); QApplication::clipboard()->setText(clipboardText, QClipboard::Clipboard); } mitk::DataNode::Pointer QmitkMeasurementView::AddFigureToDataStorage( mitk::PlanarFigure* figure, const QString& name) { // add as MEASUREMENT_DEBUG << "Adding new figure to datastorage..."; if( d->m_SelectedImageNode.IsNull() ) { MITK_ERROR << "No reference image available"; return 0; } mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetName(name.toStdString()); newNode->SetData(figure); // set as selected newNode->SetSelected( true ); this->GetDataStorage()->Add(newNode, d->m_SelectedImageNode); // set all others in selection as deselected for( int i=0; im_CurrentSelection.size(); ++i) d->m_CurrentSelection.at(i)->SetSelected(false); d->m_CurrentSelection.clear(); d->m_CurrentSelection.push_back( newNode ); this->UpdateMeasurementText(); this->DisableCrosshairNavigation(); d->m_DrawActionsToolBar->setEnabled(false); d->m_UnintializedPlanarFigure = true; return newNode; } void QmitkMeasurementView::UpdateMeasurementText() { d->m_SelectedPlanarFiguresText->clear(); QString infoText; QString plainInfoText; int j = 1; mitk::PlanarFigure* _PlanarFigure = 0; mitk::PlanarAngle* planarAngle = 0; mitk::PlanarFourPointAngle* planarFourPointAngle = 0; mitk::DataNode::Pointer node = 0; for (int i=0; im_CurrentSelection.size(); ++i, ++j) { plainInfoText.clear(); node = d->m_CurrentSelection.at(i); _PlanarFigure = dynamic_cast (node->GetData()); if( !_PlanarFigure ) continue; if(j>1) infoText.append("
"); infoText.append(QString("%1
").arg(QString::fromStdString( node->GetName()))); plainInfoText.append(QString("%1").arg(QString::fromStdString( node->GetName()))); planarAngle = dynamic_cast (_PlanarFigure); if(!planarAngle) { planarFourPointAngle = dynamic_cast (_PlanarFigure); } double featureQuantity = 0.0; for (unsigned int k = 0; k < _PlanarFigure->GetNumberOfFeatures(); ++k) { if ( !_PlanarFigure->IsFeatureActive( k ) ) continue; featureQuantity = _PlanarFigure->GetQuantity(k); if ((planarAngle && k == planarAngle->FEATURE_ID_ANGLE) || (planarFourPointAngle && k == planarFourPointAngle->FEATURE_ID_ANGLE)) featureQuantity = featureQuantity * 180 / vnl_math::pi; infoText.append( QString("%1: %2 %3") .arg(QString( _PlanarFigure->GetFeatureName(k))) .arg(featureQuantity, 0, 'f', 2) .arg(QString(_PlanarFigure->GetFeatureUnit(k)))); plainInfoText.append( QString("\n%1: %2 %3") .arg(QString(_PlanarFigure->GetFeatureName(k))) .arg( featureQuantity, 0, 'f', 2) .arg(QString( _PlanarFigure->GetFeatureUnit(k)))); if(k+1 != _PlanarFigure->GetNumberOfFeatures()) infoText.append("
"); } if (j != d->m_CurrentSelection.size()) infoText.append("
"); } d->m_SelectedPlanarFiguresText->setHtml(infoText); } void QmitkMeasurementView::AddAllInteractors() { MEASUREMENT_DEBUG << "Adding interactors and observers to all planar figures"; mitk::DataStorage::SetOfObjects::ConstPointer planarFigures = this->GetAllPlanarFigures(); for(mitk::DataStorage::SetOfObjects::ConstIterator it=planarFigures->Begin(); it!=planarFigures->End(); it++) { this->NodeAdded( it.Value() ); } } void QmitkMeasurementView::RemoveAllInteractors() { MEASUREMENT_DEBUG << "Removing interactors and observers from all planar figures"; mitk::DataStorage::SetOfObjects::ConstPointer planarFigures = this->GetAllPlanarFigures(); for(mitk::DataStorage::SetOfObjects::ConstIterator it=planarFigures->Begin(); it!=planarFigures->End(); it++) { this->NodeRemoved( it.Value() ); } } mitk::DataNode::Pointer QmitkMeasurementView::DetectTopMostVisibleImage() { // get all images from the data storage which are not a segmentation mitk::TNodePredicateDataType::Pointer isImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateProperty::Pointer isBinary = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateNot::Pointer isNotBinary = mitk::NodePredicateNot::New( isBinary ); mitk::NodePredicateAnd::Pointer isNormalImage = mitk::NodePredicateAnd::New( isImage, isNotBinary ); mitk::DataStorage::SetOfObjects::ConstPointer Images = this->GetDataStorage()->GetSubset( isNormalImage ); mitk::DataNode::Pointer currentNode; int maxLayer = itk::NumericTraits::min(); // iterate over selection for (mitk::DataStorage::SetOfObjects::ConstIterator sofIt = Images->Begin(); sofIt != Images->End(); ++sofIt) { mitk::DataNode::Pointer node = sofIt->Value(); if ( node.IsNull() ) continue; if (node->IsVisible(NULL) == false) continue; // we also do not want to assign planar figures to helper objects ( even if they are of type image ) if (node->GetProperty("helper object")) continue; int layer = 0; node->GetIntProperty("layer", layer); if ( layer < maxLayer ) { continue; } else { maxLayer = layer; currentNode = node; } } return currentNode; } void QmitkMeasurementView::EnableCrosshairNavigation() { MEASUREMENT_DEBUG << "EnableCrosshairNavigation"; // enable the crosshair navigation if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MEASUREMENT_DEBUG << "enabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(true); linkedRenderWindow->EnableSlicingPlanes(true); } } void QmitkMeasurementView::DisableCrosshairNavigation() { MEASUREMENT_DEBUG << "DisableCrosshairNavigation"; // disable the crosshair navigation during the drawing if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MEASUREMENT_DEBUG << "disabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(false); linkedRenderWindow->EnableSlicingPlanes(false); } } mitk::DataStorage::SetOfObjects::ConstPointer QmitkMeasurementView::GetAllPlanarFigures() const { mitk::TNodePredicateDataType::Pointer isPlanarFigure = mitk::TNodePredicateDataType::New(); mitk::NodePredicateProperty::Pointer isNotHelperObject = mitk::NodePredicateProperty::New("helper object", mitk::BoolProperty::New(false)); mitk::NodePredicateAnd::Pointer isNotHelperButPlanarFigure = mitk::NodePredicateAnd::New( isPlanarFigure, isNotHelperObject ); return this->GetDataStorage()->GetSubset( isPlanarFigure ); } diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.h b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.h index 23ee65621b..4a272ce02e 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.h +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/src/internal/QmitkMeasurementView.h @@ -1,88 +1,90 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QMITK_MEASUREMENT_H__INCLUDED #define QMITK_MEASUREMENT_H__INCLUDED #include #include /// forward declarations struct QmitkMeasurementViewData; namespace mitk { class PlanarFigure; } /// /// A view for doing measurements in digital images by means of /// mitk::Planarfigures which can represent drawing primitives (Lines, circles, ...). /// The view consists of only three main elements: /// 1. A toolbar for activating PlanarFigure drawing /// 2. A textbrowser which shows details for the selected PlanarFigures /// 3. A button for copying all details to the clipboard /// class QmitkMeasurementView : public QmitkAbstractView { Q_OBJECT public: static const std::string VIEW_ID; QmitkMeasurementView(); virtual ~QmitkMeasurementView(); void CreateQtPartControl(QWidget* parent); void SetFocus(); virtual void OnSelectionChanged(berry::IWorkbenchPart::Pointer part, const QList &nodes); void NodeAdded(const mitk::DataNode* node); void NodeChanged(const mitk::DataNode* node); void NodeRemoved(const mitk::DataNode* node); void PlanarFigureSelected( itk::Object* object, const itk::EventObject& ); protected slots: ///# draw actions void ActionDrawLineTriggered( bool checked = false ); void ActionDrawPathTriggered( bool checked = false ); void ActionDrawAngleTriggered( bool checked = false ); void ActionDrawFourPointAngleTriggered( bool checked = false ); + void ActionDrawCircleTriggered( bool checked = false ); void ActionDrawEllipseTriggered( bool checked = false ); void ActionDrawDoubleEllipseTriggered( bool checked = false ); void ActionDrawRectangleTriggered( bool checked = false ); void ActionDrawPolygonTriggered( bool checked = false ); void ActionDrawBezierCurveTriggered( bool checked = false ); + void ActionDrawSubdivisionPolygonTriggered( bool checked = false ); void CopyToClipboard( bool checked = false ); private: void CreateConnections(); mitk::DataNode::Pointer AddFigureToDataStorage(mitk::PlanarFigure* figure, const QString& name); void UpdateMeasurementText(); void AddAllInteractors(); void RemoveAllInteractors(); mitk::DataNode::Pointer DetectTopMostVisibleImage(); void EnableCrosshairNavigation(); void DisableCrosshairNavigation(); void PlanarFigureInitialized(); void CheckForTopMostVisibleImage(mitk::DataNode* _NodeToNeglect=0); mitk::DataStorage::SetOfObjects::ConstPointer GetAllPlanarFigures() const; QmitkMeasurementViewData* d; }; #endif // QMITK_MEASUREMENT_H__INCLUDED diff --git a/Plugins/org.mitk.planarfigure/src/internal/mitkPlanarFigureActivator.cpp b/Plugins/org.mitk.planarfigure/src/internal/mitkPlanarFigureActivator.cpp index b3618a7b94..5cb9e6022d 100644 --- a/Plugins/org.mitk.planarfigure/src/internal/mitkPlanarFigureActivator.cpp +++ b/Plugins/org.mitk.planarfigure/src/internal/mitkPlanarFigureActivator.cpp @@ -1,75 +1,83 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigureActivator.h" #include "mitkPlanarFigureObjectFactory.h" #include "QmitkNodeDescriptorManager.h" #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateProperty.h" #include "mitkNodePredicateAnd.h" #include void mitk::PlanarFigureActivator::start(ctkPluginContext* /*context*/) { QmitkNodeDescriptorManager* descriptorManager = QmitkNodeDescriptorManager::GetInstance(); // Adding "PlanarLine" mitk::NodePredicateDataType::Pointer isPlanarLine = mitk::NodePredicateDataType::New("PlanarLine"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarLine"), QString(":/QtWidgetsExt/PlanarLine_48.png"), isPlanarLine, descriptorManager)); // Adding "PlanarCircle" mitk::NodePredicateDataType::Pointer isPlanarCircle = mitk::NodePredicateDataType::New("PlanarCircle"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarCircle"), QString(":/QtWidgetsExt/PlanarCircle_48.png"), isPlanarCircle, descriptorManager)); + // Adding "PlanarEllipse" + mitk::NodePredicateDataType::Pointer isPlanarEllipse = mitk::NodePredicateDataType::New("PlanarEllipse"); + descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarEllipse"), QString(":/QtWidgetsExt/PlanarEllipse_48.png"), isPlanarEllipse, descriptorManager)); + // Adding "PlanarAngle" mitk::NodePredicateDataType::Pointer isPlanarAngle = mitk::NodePredicateDataType::New("PlanarAngle"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarAngle"), QString(":/QtWidgetsExt/PlanarAngle_48.png"), isPlanarAngle, descriptorManager)); // Adding "PlanarFourPointAngle" mitk::NodePredicateDataType::Pointer isPlanarFourPointAngle = mitk::NodePredicateDataType::New("PlanarFourPointAngle"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarFourPointAngle"), QString(":/QtWidgetsExt/PlanarFourPointAngle_48.png"), isPlanarFourPointAngle, descriptorManager)); // Adding "PlanarRectangle" mitk::NodePredicateDataType::Pointer isPlanarRectangle = mitk::NodePredicateDataType::New("PlanarRectangle"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarRectangle"), QString(":/QtWidgetsExt/PlanarRectangle_48.png"), isPlanarRectangle, descriptorManager)); // Adding "PlanarPolygon" mitk::NodePredicateDataType::Pointer isPlanarPolygon = mitk::NodePredicateDataType::New("PlanarPolygon"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarPolygon"), QString(":/QtWidgetsExt/PlanarPolygon_48.png"), isPlanarPolygon, descriptorManager)); // Adding "PlanarPath" mitk::NodePredicateProperty::Pointer isNotClosedPolygon = mitk::NodePredicateProperty::New("ClosedPlanarPolygon", mitk::BoolProperty::New(false)); mitk::NodePredicateAnd::Pointer isPlanarPath = mitk::NodePredicateAnd::New(isNotClosedPolygon, isPlanarPolygon); descriptorManager->AddDescriptor(new QmitkNodeDescriptor(QObject::tr("PlanarPath"), QString(":/QtWidgetsExt/PlanarPath_48.png"), isPlanarPath, descriptorManager)); // Adding "PlanarDoubleEllipse" mitk::NodePredicateDataType::Pointer isPlanarDoubleEllipse = mitk::NodePredicateDataType::New("PlanarDoubleEllipse"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor("PlanarDoubleEllipse", ":/QtWidgetsExt/PlanarDoubleEllipse_48.png", isPlanarDoubleEllipse, descriptorManager)); // Adding "PlanarBezierCurve" mitk::NodePredicateDataType::Pointer isPlanarBezierCurve = mitk::NodePredicateDataType::New("PlanarBezierCurve"); descriptorManager->AddDescriptor(new QmitkNodeDescriptor("PlanarBezierCurve", ":/QtWidgetsExt/PlanarBezierCurve_48.png", isPlanarBezierCurve, descriptorManager)); + + // Adding "PlanarSubdivisionPolygon" + mitk::NodePredicateDataType::Pointer isPlanarSubdivisionPolygon = mitk::NodePredicateDataType::New("PlanarSubdivisionPolygon"); + descriptorManager->AddDescriptor(new QmitkNodeDescriptor("PlanarSubdivisionPolygon", ":/QtWidgetsExt/PlanarSubdivisionPolygon_48.png", isPlanarSubdivisionPolygon, descriptorManager)); } void mitk::PlanarFigureActivator::stop(ctkPluginContext* /*context*/) { } Q_EXPORT_PLUGIN2(org_mitk_planarfigure, mitk::PlanarFigureActivator)