diff --git a/Core/Code/IO/mitkDicomSeriesReader.cpp b/Core/Code/IO/mitkDicomSeriesReader.cpp index e9df10bb1f..3a2850facd 100644 --- a/Core/Code/IO/mitkDicomSeriesReader.cpp +++ b/Core/Code/IO/mitkDicomSeriesReader.cpp @@ -1,2229 +1,2368 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // uncomment for learning more about the internal sorting mechanisms //#define MBILOG_ENABLE_DEBUG #include #include #include #include #include #include #include #include #include #include #include "mitkProperties.h" namespace mitk { typedef itk::GDCMSeriesFileNames DcmFileNamesGeneratorType; DicomSeriesReader::ImageBlockDescriptor::ImageBlockDescriptor() :m_HasGantryTiltCorrected(false) ,m_HasMultipleTimePoints(false) ,m_IsMultiFrameImage(false) { } DicomSeriesReader::ImageBlockDescriptor::~ImageBlockDescriptor() { // nothing } DicomSeriesReader::ImageBlockDescriptor::ImageBlockDescriptor(const StringContainer& files) :m_HasGantryTiltCorrected(false) ,m_HasMultipleTimePoints(false) ,m_IsMultiFrameImage(false) { m_Filenames = files; } void DicomSeriesReader::ImageBlockDescriptor::AddFile(const std::string& filename) { m_Filenames.push_back( filename ); } void DicomSeriesReader::ImageBlockDescriptor::AddFiles(const StringContainer& files) { m_Filenames.insert( m_Filenames.end(), files.begin(), files.end() ); } DicomSeriesReader::StringContainer DicomSeriesReader::ImageBlockDescriptor::GetFilenames() const { return m_Filenames; } std::string DicomSeriesReader::ImageBlockDescriptor::GetImageBlockUID() const { return m_ImageBlockUID; } std::string DicomSeriesReader::ImageBlockDescriptor::GetSeriesInstanceUID() const { return m_SeriesInstanceUID; } std::string DicomSeriesReader::ImageBlockDescriptor::GetModality() const { return m_Modality; } std::string DicomSeriesReader::ImageBlockDescriptor::GetSOPClassUIDAsString() const { gdcm::UIDs uidKnowledge; uidKnowledge.SetFromUID( m_SOPClassUID.c_str() ); return uidKnowledge.GetName(); } std::string DicomSeriesReader::ImageBlockDescriptor::GetSOPClassUID() const { return m_SOPClassUID; } bool DicomSeriesReader::ImageBlockDescriptor::IsMultiFrameImage() const { return m_IsMultiFrameImage; } DicomSeriesReader::ReaderImplementationLevel DicomSeriesReader::ImageBlockDescriptor::GetReaderImplementationLevel() const { if ( this->IsMultiFrameImage() ) return ReaderImplementationLevel_Unsupported; gdcm::UIDs uidKnowledge; uidKnowledge.SetFromUID( m_SOPClassUID.c_str() ); gdcm::UIDs::TSType uid = uidKnowledge; switch (uid) { case gdcm::UIDs::CTImageStorage: case gdcm::UIDs::MRImageStorage: case gdcm::UIDs::PositronEmissionTomographyImageStorage: case gdcm::UIDs::ComputedRadiographyImageStorage: case gdcm::UIDs::DigitalXRayImageStorageForPresentation: case gdcm::UIDs::DigitalXRayImageStorageForProcessing: return ReaderImplementationLevel_Supported; case gdcm::UIDs::NuclearMedicineImageStorage: return ReaderImplementationLevel_PartlySupported; case gdcm::UIDs::SecondaryCaptureImageStorage: return ReaderImplementationLevel_Implemented; default: return ReaderImplementationLevel_Unsupported; } } std::string DicomSeriesReader::ReaderImplementationLevelToString( const ReaderImplementationLevel& enumValue ) { switch (enumValue) { case ReaderImplementationLevel_Supported: return "Supported"; case ReaderImplementationLevel_PartlySupported: return "PartlySupported"; case ReaderImplementationLevel_Implemented: return "Implemented"; case ReaderImplementationLevel_Unsupported: return "Unsupported"; default: return ""; }; } std::string DicomSeriesReader::PixelSpacingInterpretationToString( const PixelSpacingInterpretation& enumValue ) { switch (enumValue) { case PixelSpacingInterpretation_SpacingInPatient: return "In Patient"; case PixelSpacingInterpretation_SpacingAtDetector: return "At Detector"; case PixelSpacingInterpretation_SpacingUnknown: return "Unknown spacing"; default: return ""; }; } bool DicomSeriesReader::ImageBlockDescriptor::HasGantryTiltCorrected() const { return m_HasGantryTiltCorrected; } /* PS defined IPS defined PS==IPS 0 0 --> UNKNOWN spacing, loader will invent 0 1 --> spacing as at detector surface 1 0 --> spacing as in patient 1 1 0 --> detector surface spacing CORRECTED for geometrical magnifications: spacing as in patient 1 1 1 --> detector surface spacing NOT corrected for geometrical magnifications: spacing as at detector */ DicomSeriesReader::PixelSpacingInterpretation DicomSeriesReader::ImageBlockDescriptor::GetPixelSpacingType() const { if (m_PixelSpacing.empty()) { if (m_ImagerPixelSpacing.empty()) { return PixelSpacingInterpretation_SpacingUnknown; } else { return PixelSpacingInterpretation_SpacingAtDetector; } } else // Pixel Spacing defined { if (m_ImagerPixelSpacing.empty()) { return PixelSpacingInterpretation_SpacingInPatient; } else if (m_PixelSpacing != m_ImagerPixelSpacing) { return PixelSpacingInterpretation_SpacingInPatient; } else { return PixelSpacingInterpretation_SpacingAtDetector; } } } bool DicomSeriesReader::ImageBlockDescriptor::PixelSpacingRelatesToPatient() const { return GetPixelSpacingType() == PixelSpacingInterpretation_SpacingInPatient; } bool DicomSeriesReader::ImageBlockDescriptor::PixelSpacingRelatesToDetector() const { return GetPixelSpacingType() == PixelSpacingInterpretation_SpacingAtDetector; } bool DicomSeriesReader::ImageBlockDescriptor::PixelSpacingIsUnknown() const { return GetPixelSpacingType() == PixelSpacingInterpretation_SpacingUnknown; } void DicomSeriesReader::ImageBlockDescriptor::SetPixelSpacingInformation(const std::string& pixelSpacing, const std::string& imagerPixelSpacing) { m_PixelSpacing = pixelSpacing; m_ImagerPixelSpacing = imagerPixelSpacing; } void DicomSeriesReader::ImageBlockDescriptor::GetDesiredMITKImagePixelSpacing( float& spacingX, float& spacingY) const { // preference for "in patient" pixel spacing if ( !DICOMStringToSpacing( m_PixelSpacing, spacingX, spacingY ) ) { // fallback to "on detector" spacing if ( !DICOMStringToSpacing( m_ImagerPixelSpacing, spacingX, spacingY ) ) { // last resort: invent something spacingX = spacingY = 1.0; } } } bool DicomSeriesReader::ImageBlockDescriptor::HasMultipleTimePoints() const { return m_HasMultipleTimePoints; } void DicomSeriesReader::ImageBlockDescriptor::SetImageBlockUID(const std::string& uid) { m_ImageBlockUID = uid; } void DicomSeriesReader::ImageBlockDescriptor::SetSeriesInstanceUID(const std::string& uid) { m_SeriesInstanceUID = uid; } void DicomSeriesReader::ImageBlockDescriptor::SetModality(const std::string& modality) { m_Modality = modality; } void DicomSeriesReader::ImageBlockDescriptor::SetNumberOfFrames(const std::string& numberOfFrames) { m_IsMultiFrameImage = !numberOfFrames.empty(); } void DicomSeriesReader::ImageBlockDescriptor::SetSOPClassUID(const std::string& sopClassUID) { m_SOPClassUID = sopClassUID; } void DicomSeriesReader::ImageBlockDescriptor::SetHasGantryTiltCorrected(bool on) { m_HasGantryTiltCorrected = on; } void DicomSeriesReader::ImageBlockDescriptor::SetHasMultipleTimePoints(bool on) { m_HasMultipleTimePoints = on; } DicomSeriesReader::SliceGroupingAnalysisResult::SliceGroupingAnalysisResult() :m_GantryTilt(false) { } DicomSeriesReader::StringContainer DicomSeriesReader::SliceGroupingAnalysisResult::GetBlockFilenames() { return m_GroupedFiles; } DicomSeriesReader::StringContainer DicomSeriesReader::SliceGroupingAnalysisResult::GetUnsortedFilenames() { return m_UnsortedFiles; } bool DicomSeriesReader::SliceGroupingAnalysisResult::ContainsGantryTilt() { return m_GantryTilt; } void DicomSeriesReader::SliceGroupingAnalysisResult::AddFileToSortedBlock(const std::string& filename) { m_GroupedFiles.push_back( filename ); } void DicomSeriesReader::SliceGroupingAnalysisResult::AddFileToUnsortedBlock(const std::string& filename) { m_UnsortedFiles.push_back( filename ); } void DicomSeriesReader::SliceGroupingAnalysisResult::AddFilesToUnsortedBlock(const StringContainer& filenames) { m_UnsortedFiles.insert( m_UnsortedFiles.end(), filenames.begin(), filenames.end() ); } void DicomSeriesReader::SliceGroupingAnalysisResult::FlagGantryTilt() { m_GantryTilt = true; } void DicomSeriesReader::SliceGroupingAnalysisResult::UndoPrematureGrouping() { assert( !m_GroupedFiles.empty() ); m_UnsortedFiles.insert( m_UnsortedFiles.begin(), m_GroupedFiles.back() ); m_GroupedFiles.pop_back(); } const DicomSeriesReader::TagToPropertyMapType& DicomSeriesReader::GetDICOMTagsToMITKPropertyMap() { static bool initialized = false; static TagToPropertyMapType dictionary; if (!initialized) { /* Selection criteria: - no sequences because we cannot represent that - nothing animal related (specied, breed registration number), MITK focusses on human medical image processing. - only general attributes so far When extending this, we should make use of a real dictionary (GDCM/DCMTK and lookup the tag names there) */ // Patient module dictionary["0010|0010"] = "dicom.patient.PatientsName"; dictionary["0010|0020"] = "dicom.patient.PatientID"; dictionary["0010|0030"] = "dicom.patient.PatientsBirthDate"; dictionary["0010|0040"] = "dicom.patient.PatientsSex"; dictionary["0010|0032"] = "dicom.patient.PatientsBirthTime"; dictionary["0010|1000"] = "dicom.patient.OtherPatientIDs"; dictionary["0010|1001"] = "dicom.patient.OtherPatientNames"; dictionary["0010|2160"] = "dicom.patient.EthnicGroup"; dictionary["0010|4000"] = "dicom.patient.PatientComments"; dictionary["0012|0062"] = "dicom.patient.PatientIdentityRemoved"; dictionary["0012|0063"] = "dicom.patient.DeIdentificationMethod"; // General Study module dictionary["0020|000d"] = "dicom.study.StudyInstanceUID"; dictionary["0008|0020"] = "dicom.study.StudyDate"; dictionary["0008|0030"] = "dicom.study.StudyTime"; dictionary["0008|0090"] = "dicom.study.ReferringPhysiciansName"; dictionary["0020|0010"] = "dicom.study.StudyID"; dictionary["0008|0050"] = "dicom.study.AccessionNumber"; dictionary["0008|1030"] = "dicom.study.StudyDescription"; dictionary["0008|1048"] = "dicom.study.PhysiciansOfRecord"; dictionary["0008|1060"] = "dicom.study.NameOfPhysicianReadingStudy"; // General Series module dictionary["0008|0060"] = "dicom.series.Modality"; dictionary["0020|000e"] = "dicom.series.SeriesInstanceUID"; dictionary["0020|0011"] = "dicom.series.SeriesNumber"; dictionary["0020|0060"] = "dicom.series.Laterality"; dictionary["0008|0021"] = "dicom.series.SeriesDate"; dictionary["0008|0031"] = "dicom.series.SeriesTime"; dictionary["0008|1050"] = "dicom.series.PerformingPhysiciansName"; dictionary["0018|1030"] = "dicom.series.ProtocolName"; dictionary["0008|103e"] = "dicom.series.SeriesDescription"; dictionary["0008|1070"] = "dicom.series.OperatorsName"; dictionary["0018|0015"] = "dicom.series.BodyPartExamined"; dictionary["0018|5100"] = "dicom.series.PatientPosition"; dictionary["0028|0108"] = "dicom.series.SmallestPixelValueInSeries"; dictionary["0028|0109"] = "dicom.series.LargestPixelValueInSeries"; // VOI LUT module dictionary["0028|1050"] = "dicom.voilut.WindowCenter"; dictionary["0028|1051"] = "dicom.voilut.WindowWidth"; dictionary["0028|1055"] = "dicom.voilut.WindowCenterAndWidthExplanation"; // Image Pixel module dictionary["0028|0004"] = "dicom.pixel.PhotometricInterpretation"; dictionary["0028|0010"] = "dicom.pixel.Rows"; dictionary["0028|0011"] = "dicom.pixel.Columns"; // Image Plane module dictionary["0028|0030"] = "dicom.PixelSpacing"; dictionary["0018|1164"] = "dicom.ImagerPixelSpacing"; initialized = true; } return dictionary; } DataNode::Pointer DicomSeriesReader::LoadDicomSeries(const StringContainer &filenames, bool sort, bool check_4d, bool correctTilt, UpdateCallBackMethod callback, Image::Pointer preLoadedImageBlock) { DataNode::Pointer node = DataNode::New(); if (DicomSeriesReader::LoadDicomSeries(filenames, *node, sort, check_4d, correctTilt, callback, preLoadedImageBlock)) { if( filenames.empty() ) { return NULL; } return node; } else { return NULL; } } bool DicomSeriesReader::LoadDicomSeries( const StringContainer &filenames, DataNode &node, bool sort, bool check_4d, bool correctTilt, UpdateCallBackMethod callback, Image::Pointer preLoadedImageBlock) { if( filenames.empty() ) { MITK_DEBUG << "Calling LoadDicomSeries with empty filename string container. Probably invalid application logic."; node.SetData(NULL); return true; // this is not actually an error but the result is very simple } DcmIoType::Pointer io = DcmIoType::New(); try { if (io->CanReadFile(filenames.front().c_str())) { io->SetFileName(filenames.front().c_str()); io->ReadImageInformation(); if (io->GetPixelType() == itk::ImageIOBase::SCALAR || io->GetPixelType() == itk::ImageIOBase::RGB) { LoadDicom(filenames, node, sort, check_4d, correctTilt, callback, preLoadedImageBlock); } if (node.GetData()) { return true; } } } catch(itk::MemoryAllocationError& e) { MITK_ERROR << "Out of memory. Cannot load DICOM series: " << e.what(); } catch(std::exception& e) { MITK_ERROR << "Error encountered when loading DICOM series:" << e.what(); } catch(...) { MITK_ERROR << "Unspecified error encountered when loading DICOM series."; } return false; } bool DicomSeriesReader::IsDicom(const std::string &filename) { DcmIoType::Pointer io = DcmIoType::New(); return io->CanReadFile(filename.c_str()); } bool DicomSeriesReader::IsPhilips3DDicom(const std::string &filename) { DcmIoType::Pointer io = DcmIoType::New(); if (io->CanReadFile(filename.c_str())) { //Look at header Tag 3001,0010 if it is "Philips3D" gdcm::Reader reader; reader.SetFileName(filename.c_str()); reader.Read(); gdcm::DataSet &data_set = reader.GetFile().GetDataSet(); gdcm::StringFilter sf; sf.SetFile(reader.GetFile()); if (data_set.FindDataElement(gdcm::Tag(0x3001, 0x0010)) && (sf.ToString(gdcm::Tag(0x3001, 0x0010)) == "Philips3D ")) { return true; } } return false; } bool DicomSeriesReader::ReadPhilips3DDicom(const std::string &filename, mitk::Image::Pointer output_image) { // Now get PhilipsSpecific Tags gdcm::PixmapReader reader; reader.SetFileName(filename.c_str()); reader.Read(); gdcm::DataSet &data_set = reader.GetFile().GetDataSet(); gdcm::StringFilter sf; sf.SetFile(reader.GetFile()); gdcm::Attribute<0x0028,0x0011> dimTagX; // coloumns || sagittal gdcm::Attribute<0x3001,0x1001, gdcm::VR::UL, gdcm::VM::VM1> dimTagZ; //I have no idea what is VM1. // (Philips specific) // axial gdcm::Attribute<0x0028,0x0010> dimTagY; // rows || coronal gdcm::Attribute<0x0028,0x0008> dimTagT; // how many frames gdcm::Attribute<0x0018,0x602c> spaceTagX; // Spacing in X , unit is "physicalTagx" (usually centimeter) gdcm::Attribute<0x0018,0x602e> spaceTagY; gdcm::Attribute<0x3001,0x1003, gdcm::VR::FD, gdcm::VM::VM1> spaceTagZ; // (Philips specific) gdcm::Attribute<0x0018,0x6024> physicalTagX; // if 3, then spacing params are centimeter gdcm::Attribute<0x0018,0x6026> physicalTagY; gdcm::Attribute<0x3001,0x1002, gdcm::VR::US, gdcm::VM::VM1> physicalTagZ; // (Philips specific) dimTagX.Set(data_set); dimTagY.Set(data_set); dimTagZ.Set(data_set); dimTagT.Set(data_set); spaceTagX.Set(data_set); spaceTagY.Set(data_set); spaceTagZ.Set(data_set); physicalTagX.Set(data_set); physicalTagY.Set(data_set); physicalTagZ.Set(data_set); unsigned int dimX = dimTagX.GetValue(), dimY = dimTagY.GetValue(), dimZ = dimTagZ.GetValue(), dimT = dimTagT.GetValue(), physicalX = physicalTagX.GetValue(), physicalY = physicalTagY.GetValue(), physicalZ = physicalTagZ.GetValue(); float spaceX = spaceTagX.GetValue(), spaceY = spaceTagY.GetValue(), spaceZ = spaceTagZ.GetValue(); if (physicalX == 3) // spacing parameter in cm, have to convert it to mm. spaceX = spaceX * 10; if (physicalY == 3) // spacing parameter in cm, have to convert it to mm. spaceY = spaceY * 10; if (physicalZ == 3) // spacing parameter in cm, have to convert it to mm. spaceZ = spaceZ * 10; // Ok, got all necessary Tags! // Now read Pixeldata (7fe0,0010) X x Y x Z x T Elements const gdcm::Pixmap &pixels = reader.GetPixmap(); gdcm::RAWCodec codec; codec.SetPhotometricInterpretation(gdcm::PhotometricInterpretation::MONOCHROME2); codec.SetPixelFormat(pixels.GetPixelFormat()); codec.SetPlanarConfiguration(0); gdcm::DataElement out; codec.Decode(data_set.GetDataElement(gdcm::Tag(0x7fe0, 0x0010)), out); const gdcm::ByteValue *bv = out.GetByteValue(); const char *new_pixels = bv->GetPointer(); // Create MITK Image + Geometry typedef itk::Image ImageType; //Pixeltype might be different sometimes? Maybe read it out from header ImageType::RegionType myRegion; ImageType::SizeType mySize; ImageType::IndexType myIndex; ImageType::SpacingType mySpacing; ImageType::Pointer imageItk = ImageType::New(); mySpacing[0] = spaceX; mySpacing[1] = spaceY; mySpacing[2] = spaceZ; mySpacing[3] = 1; myIndex[0] = 0; myIndex[1] = 0; myIndex[2] = 0; myIndex[3] = 0; mySize[0] = dimX; mySize[1] = dimY; mySize[2] = dimZ; mySize[3] = dimT; myRegion.SetSize( mySize); myRegion.SetIndex( myIndex ); imageItk->SetSpacing(mySpacing); imageItk->SetRegions( myRegion); imageItk->Allocate(); imageItk->FillBuffer(0); itk::ImageRegionIterator iterator(imageItk, imageItk->GetLargestPossibleRegion()); iterator.GoToBegin(); unsigned long pixCount = 0; unsigned long planeSize = dimX*dimY; unsigned long planeCount = 0; unsigned long timeCount = 0; unsigned long numberOfSlices = dimZ; while (!iterator.IsAtEnd()) { unsigned long adressedPixel = pixCount + (numberOfSlices-1-planeCount)*planeSize // add offset to adress the first pixel of current plane + timeCount*numberOfSlices*planeSize; // add time offset iterator.Set( new_pixels[ adressedPixel ] ); pixCount++; ++iterator; if (pixCount == planeSize) { pixCount = 0; planeCount++; } if (planeCount == numberOfSlices) { planeCount = 0; timeCount++; } if (timeCount == dimT) { break; } } mitk::CastToMitkImage(imageItk, output_image); return true; // actually never returns false yet.. but exception possible } DicomSeriesReader::GantryTiltInformation::GantryTiltInformation() : m_ShiftUp(0.0) , m_ShiftRight(0.0) , m_ShiftNormal(0.0) , m_ITKAssumedSliceSpacing(0.0) , m_NumberOfSlicesApart(1) { } #define doublepoint(x) \ Point3Dd x; \ x[0] = x ## f[0]; \ x[1] = x ## f[1]; \ x[2] = x ## f[2]; #define doublevector(x) \ Vector3Dd x; \ x[0] = x ## f[0]; \ x[1] = x ## f[1]; \ x[2] = x ## f[2]; DicomSeriesReader::GantryTiltInformation::GantryTiltInformation( const Point3D& origin1f, const Point3D& origin2f, const Vector3D& rightf, const Vector3D& upf, unsigned int numberOfSlicesApart) : m_ShiftUp(0.0) , m_ShiftRight(0.0) , m_ShiftNormal(0.0) , m_NumberOfSlicesApart(numberOfSlicesApart) { assert(numberOfSlicesApart); doublepoint(origin1); doublepoint(origin2); doublevector(right); doublevector(up); // determine if slice 1 (imagePosition1 and imageOrientation1) and slice 2 can be in one orthogonal slice stack: // calculate a line from origin 1, directed along the normal of slice (calculated as the cross product of orientation 1) // check if this line passes through origin 2 /* Determine if line (imagePosition2 + l * normal) contains imagePosition1. Done by calculating the distance of imagePosition1 from line (imagePosition2 + l *normal) E.g. http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html squared distance = | (pointAlongNormal - origin2) x (origin2 - origin1) | ^ 2 / |pointAlongNormal - origin2| ^ 2 ( x meaning the cross product ) */ Vector3Dd normal = itk::CrossProduct(right, up); Point3Dd pointAlongNormal = origin2 + normal; double numerator = itk::CrossProduct( pointAlongNormal - origin2 , origin2 - origin1 ).GetSquaredNorm(); double denominator = (pointAlongNormal - origin2).GetSquaredNorm(); double distance = sqrt(numerator / denominator); if ( distance > 0.001 ) // mitk::eps is too small; 1/1000 of a mm should be enough to detect tilt { MITK_DEBUG << " Series seems to contain a tilted (or sheared) geometry"; MITK_DEBUG << " Distance of expected slice origin from actual slice origin: " << distance; MITK_DEBUG << " ==> storing this shift for later analysis:"; MITK_DEBUG << " v right: " << right; MITK_DEBUG << " v up: " << up; MITK_DEBUG << " v normal: " << normal; Point3Dd projectionRight = projectPointOnLine( origin1, origin2, right ); Point3Dd projectionNormal = projectPointOnLine( origin1, origin2, normal ); m_ShiftRight = (projectionRight - origin2).GetNorm(); m_ShiftNormal = (projectionNormal - origin2).GetNorm(); /* now also check to which side the image is shifted. Calculation e.g. from http://mathworld.wolfram.com/Point-PlaneDistance.html */ Point3Dd testPoint = origin1; Vector3Dd planeNormal = up; double signedDistance = ( planeNormal[0] * testPoint[0] + planeNormal[1] * testPoint[1] + planeNormal[2] * testPoint[2] - ( planeNormal[0] * origin2[0] + planeNormal[1] * origin2[1] + planeNormal[2] * origin2[2] ) ) / sqrt( planeNormal[0] * planeNormal[0] + planeNormal[1] * planeNormal[1] + planeNormal[2] * planeNormal[2] ); m_ShiftUp = signedDistance; m_ITKAssumedSliceSpacing = (origin2 - origin1).GetNorm(); // How do we now this is assumed? See header documentation for ITK code references //double itkAssumedSliceSpacing = sqrt( m_ShiftUp * m_ShiftUp + m_ShiftNormal * m_ShiftNormal ); MITK_DEBUG << " shift normal: " << m_ShiftNormal; MITK_DEBUG << " shift normal assumed by ITK: " << m_ITKAssumedSliceSpacing; MITK_DEBUG << " shift up: " << m_ShiftUp; MITK_DEBUG << " shift right: " << m_ShiftRight; MITK_DEBUG << " tilt angle (deg): " << atan( m_ShiftUp / m_ShiftNormal ) * 180.0 / 3.1415926535; } } Point3D DicomSeriesReader::GantryTiltInformation::projectPointOnLine( Point3Dd p, Point3Dd lineOrigin, Vector3Dd lineDirection ) { /** See illustration at http://mo.mathematik.uni-stuttgart.de/inhalt/aussage/aussage472/ vector(lineOrigin,p) = normal * ( innerproduct((p - lineOrigin),normal) / squared-length(normal) ) */ Vector3Dd lineOriginToP = p - lineOrigin; double innerProduct = lineOriginToP * lineDirection; double factor = innerProduct / lineDirection.GetSquaredNorm(); Point3Dd projection = lineOrigin + factor * lineDirection; return projection; } double DicomSeriesReader::GantryTiltInformation::GetTiltCorrectedAdditionalSize() const { return fabs(m_ShiftUp); } double DicomSeriesReader::GantryTiltInformation::GetTiltAngleInDegrees() const { return atan( fabs(m_ShiftUp) / m_ShiftNormal ) * 180.0 / 3.1415926535; } double DicomSeriesReader::GantryTiltInformation::GetMatrixCoefficientForCorrectionInWorldCoordinates() const { // so many mm need to be shifted per slice! return m_ShiftUp / static_cast(m_NumberOfSlicesApart); } double DicomSeriesReader::GantryTiltInformation::GetRealZSpacing() const { return m_ShiftNormal / static_cast(m_NumberOfSlicesApart); } bool DicomSeriesReader::GantryTiltInformation::IsSheared() const { return ( fabs(m_ShiftRight) > 0.001 || fabs(m_ShiftUp) > 0.001); } bool DicomSeriesReader::GantryTiltInformation::IsRegularGantryTilt() const { return ( fabs(m_ShiftRight) < 0.001 && fabs(m_ShiftUp) > 0.001); } std::string DicomSeriesReader::ConstCharStarToString(const char* s) { return s ? std::string(s) : std::string(); } bool DicomSeriesReader::DICOMStringToSpacing(const std::string& s, float& spacingX, float& spacingY) { bool successful = false; std::istringstream spacingReader(s); std::string spacing; if ( std::getline( spacingReader, spacing, '\\' ) ) { spacingY = atof( spacing.c_str() ); if ( std::getline( spacingReader, spacing, '\\' ) ) { spacingX = atof( spacing.c_str() ); successful = true; } } return successful; } Point3D DicomSeriesReader::DICOMStringToPoint3D(const std::string& s, bool& successful) { Point3D p; successful = true; std::istringstream originReader(s); std::string coordinate; unsigned int dim(0); while( std::getline( originReader, coordinate, '\\' ) && dim < 3) { p[dim++]= atof(coordinate.c_str()); } if (dim && dim != 3) { successful = false; MITK_ERROR << "Reader implementation made wrong assumption on tag (0020,0032). Found " << dim << " instead of 3 values."; } else if (dim == 0) { successful = false; p.Fill(0.0); // assume default (0,0,0) } return p; } void DicomSeriesReader::DICOMStringToOrientationVectors(const std::string& s, Vector3D& right, Vector3D& up, bool& successful) { successful = true; std::istringstream orientationReader(s); std::string coordinate; unsigned int dim(0); while( std::getline( orientationReader, coordinate, '\\' ) && dim < 6 ) { if (dim<3) { right[dim++] = atof(coordinate.c_str()); } else { up[dim++ - 3] = atof(coordinate.c_str()); } } if (dim && dim != 6) { successful = false; MITK_ERROR << "Reader implementation made wrong assumption on tag (0020,0037). Found " << dim << " instead of 6 values."; } else if (dim == 0) { // fill with defaults right.Fill(0.0); right[0] = 1.0; up.Fill(0.0); up[1] = 1.0; successful = false; } } DicomSeriesReader::SliceGroupingAnalysisResult DicomSeriesReader::AnalyzeFileForITKImageSeriesReaderSpacingAssumption( const StringContainer& files, bool groupImagesWithGantryTilt, const gdcm::Scanner::MappingType& tagValueMappings_) { // result.first = files that fit ITK's assumption // result.second = files that do not fit, should be run through AnalyzeFileForITKImageSeriesReaderSpacingAssumption() again SliceGroupingAnalysisResult result; // we const_cast here, because I could not use a map.at(), which would make the code much more readable gdcm::Scanner::MappingType& tagValueMappings = const_cast(tagValueMappings_); const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); // Image Position (Patient) const gdcm::Tag tagImageOrientation(0x0020, 0x0037); // Image Orientation const gdcm::Tag tagGantryTilt(0x0018, 0x1120); // gantry tilt Vector3D fromFirstToSecondOrigin; fromFirstToSecondOrigin.Fill(0.0); bool fromFirstToSecondOriginInitialized(false); Point3D thisOrigin; thisOrigin.Fill(0.0f); Point3D lastOrigin; lastOrigin.Fill(0.0f); Point3D lastDifferentOrigin; lastDifferentOrigin.Fill(0.0f); bool lastOriginInitialized(false); MITK_DEBUG << "--------------------------------------------------------------------------------"; MITK_DEBUG << "Analyzing files for z-spacing assumption of ITK's ImageSeriesReader (group tilted: " << groupImagesWithGantryTilt << ")"; unsigned int fileIndex(0); for (StringContainer::const_iterator fileIter = files.begin(); fileIter != files.end(); ++fileIter, ++fileIndex) { bool fileFitsIntoPattern(false); std::string thisOriginString; // Read tag value into point3D. PLEASE replace this by appropriate GDCM code if you figure out how to do that thisOriginString = ConstCharStarToString( tagValueMappings[fileIter->c_str()][tagImagePositionPatient] ); if (thisOriginString.empty()) { // don't let such files be in a common group. Everything without position information will be loaded as a single slice: // with standard DICOM files this can happen to: CR, DX, SC MITK_DEBUG << " ==> Sort away " << *fileIter << " for later analysis (no position information)"; // we already have one occupying this position if ( result.GetBlockFilenames().empty() ) // nothing WITH position information yet { // ==> this is a group of its own, stop processing, come back later result.AddFileToSortedBlock( *fileIter ); StringContainer remainingFiles; remainingFiles.insert( remainingFiles.end(), fileIter+1, files.end() ); result.AddFilesToUnsortedBlock( remainingFiles ); fileFitsIntoPattern = false; break; // no files anymore } else { // ==> this does not match, consider later result.AddFileToUnsortedBlock( *fileIter ); fileFitsIntoPattern = false; continue; // next file } } bool ignoredConversionError(-42); // hard to get here, no graceful way to react thisOrigin = DICOMStringToPoint3D( thisOriginString, ignoredConversionError ); MITK_DEBUG << " " << fileIndex << " " << *fileIter << " at " /* << thisOriginString */ << "(" << thisOrigin[0] << "," << thisOrigin[1] << "," << thisOrigin[2] << ")"; if ( lastOriginInitialized && (thisOrigin == lastOrigin) ) { MITK_DEBUG << " ==> Sort away " << *fileIter << " for separate time step"; // we already have one occupying this position result.AddFileToUnsortedBlock( *fileIter ); fileFitsIntoPattern = false; } else { if (!fromFirstToSecondOriginInitialized && lastOriginInitialized) // calculate vector as soon as possible when we get a new position { fromFirstToSecondOrigin = thisOrigin - lastDifferentOrigin; fromFirstToSecondOriginInitialized = true; // Here we calculate if this slice and the previous one are well aligned, // i.e. we test if the previous origin is on a line through the current // origin, directed into the normal direction of the current slice. // If this is NOT the case, then we have a data set with a TILTED GANTRY geometry, // which cannot be simply loaded into a single mitk::Image at the moment. // For this case, we flag this finding in the result and DicomSeriesReader // can correct for that later. Vector3D right; right.Fill(0.0); Vector3D up; right.Fill(0.0); // might be down as well, but it is just a name at this point DICOMStringToOrientationVectors( tagValueMappings[fileIter->c_str()][tagImageOrientation], right, up, ignoredConversionError ); GantryTiltInformation tiltInfo( lastDifferentOrigin, thisOrigin, right, up, 1 ); if ( tiltInfo.IsSheared() ) // mitk::eps is too small; 1/1000 of a mm should be enough to detect tilt { /* optimistic approach, accepting gantry tilt: save file for later, check all further files */ // at this point we have TWO slices analyzed! if they are the only two files, we still split, because there is no third to verify our tilting assumption. // later with a third being available, we must check if the initial tilting vector is still valid. if yes, continue. // if NO, we need to split the already sorted part (result.first) and the currently analyzed file (*fileIter) // tell apart gantry tilt from overall skewedness // sort out irregularly sheared slices, that IS NOT tilting if ( groupImagesWithGantryTilt && tiltInfo.IsRegularGantryTilt() ) { // check if this is at least roughly the same angle as recorded in DICOM tags if ( tagValueMappings[fileIter->c_str()].find(tagGantryTilt) != tagValueMappings[fileIter->c_str()].end() ) { // read value, compare to calculated angle std::string tiltStr = ConstCharStarToString( tagValueMappings[fileIter->c_str()][tagGantryTilt] ); double angle = atof(tiltStr.c_str()); MITK_DEBUG << "Comparing recorded tilt angle " << angle << " against calculated value " << tiltInfo.GetTiltAngleInDegrees(); // TODO we probably want the signs correct, too (that depends: this is just a rough check, nothing serious) if ( fabs(angle) - tiltInfo.GetTiltAngleInDegrees() > 0.25) { result.AddFileToUnsortedBlock( *fileIter ); // sort away for further analysis fileFitsIntoPattern = false; } else // tilt angle from header is less than 0.25 degrees different from what we calculated, assume this is fine { result.FlagGantryTilt(); result.AddFileToSortedBlock(*fileIter); // this file is good for current block fileFitsIntoPattern = true; } } else // we cannot check the calculated tilt angle against the one from the dicom header (so we assume we are right) { result.FlagGantryTilt(); result.AddFileToSortedBlock(*fileIter); // this file is good for current block fileFitsIntoPattern = true; } } else // caller does not want tilt compensation OR shearing is more complicated than tilt { result.AddFileToUnsortedBlock( *fileIter ); // sort away for further analysis fileFitsIntoPattern = false; } } else // not sheared { result.AddFileToSortedBlock(*fileIter); // this file is good for current block fileFitsIntoPattern = true; } } else if (fromFirstToSecondOriginInitialized) // we already know the offset between slices { Point3D assumedOrigin = lastDifferentOrigin + fromFirstToSecondOrigin; Vector3D originError = assumedOrigin - thisOrigin; double norm = originError.GetNorm(); double toleratedError(0.005); // max. 1/10mm error when measurement crosses 20 slices in z direction if (norm > toleratedError) { MITK_DEBUG << " File does not fit into the inter-slice distance pattern (diff = " << norm << ", allowed " << toleratedError << ")."; MITK_DEBUG << " Expected position (" << assumedOrigin[0] << "," << assumedOrigin[1] << "," << assumedOrigin[2] << "), got position (" << thisOrigin[0] << "," << thisOrigin[1] << "," << thisOrigin[2] << ")"; MITK_DEBUG << " ==> Sort away " << *fileIter << " for later analysis"; // At this point we know we deviated from the expectation of ITK's ImageSeriesReader // We split the input file list at this point, i.e. all files up to this one (excluding it) // are returned as group 1, the remaining files (including the faulty one) are group 2 /* Optimistic approach: check if any of the remaining slices fits in */ result.AddFileToUnsortedBlock( *fileIter ); // sort away for further analysis fileFitsIntoPattern = false; } else { result.AddFileToSortedBlock(*fileIter); // this file is good for current block fileFitsIntoPattern = true; } } else // this should be the very first slice { result.AddFileToSortedBlock(*fileIter); // this file is good for current block fileFitsIntoPattern = true; } } // record current origin for reference in later iterations if ( !lastOriginInitialized || ( fileFitsIntoPattern && (thisOrigin != lastOrigin) ) ) { lastDifferentOrigin = thisOrigin; } lastOrigin = thisOrigin; lastOriginInitialized = true; } if ( result.ContainsGantryTilt() ) { // check here how many files were grouped. // IF it was only two files AND we assume tiltedness (e.g. save "distance") // THEN we would want to also split the two previous files (simple) because // we don't have any reason to assume they belong together if ( result.GetBlockFilenames().size() == 2 ) { result.UndoPrematureGrouping(); } } return result; } DicomSeriesReader::FileNamesGrouping DicomSeriesReader::GetSeries(const StringContainer& files, bool groupImagesWithGantryTilt, const StringContainer &restrictions) { return GetSeries(files, true, groupImagesWithGantryTilt, restrictions); } DicomSeriesReader::FileNamesGrouping DicomSeriesReader::GetSeries(const StringContainer& files, bool sortTo3DPlust, bool groupImagesWithGantryTilt, const StringContainer& /*restrictions*/) { /** assumption about this method: returns a map of uid-like-key --> list(filename) each entry should contain filenames that have images of same - series instance uid (automatically done by GDCMSeriesFileNames - 0020,0037 image orientation (patient) - 0028,0030 pixel spacing (x,y) - 0018,0050 slice thickness */ // use GDCM directly, itk::GDCMSeriesFileNames does not work with GDCM 2 // PART I: scan files for sorting relevant DICOM tags, // separate images that differ in any of those // attributes (they cannot possibly form a 3D block) // scan for relevant tags in dicom files gdcm::Scanner scanner; const gdcm::Tag tagSOPClassUID(0x0008, 0x0016); // SOP class UID scanner.AddTag( tagSOPClassUID ); const gdcm::Tag tagSeriesInstanceUID(0x0020,0x000e); // Series Instance UID scanner.AddTag( tagSeriesInstanceUID ); const gdcm::Tag tagImageOrientation(0x0020, 0x0037); // image orientation scanner.AddTag( tagImageOrientation ); const gdcm::Tag tagPixelSpacing(0x0028, 0x0030); // pixel spacing scanner.AddTag( tagPixelSpacing ); const gdcm::Tag tagImagerPixelSpacing(0x0018, 0x1164); // imager pixel spacing scanner.AddTag( tagImagerPixelSpacing ); const gdcm::Tag tagSliceThickness(0x0018, 0x0050); // slice thickness scanner.AddTag( tagSliceThickness ); const gdcm::Tag tagNumberOfRows(0x0028, 0x0010); // number rows scanner.AddTag( tagNumberOfRows ); const gdcm::Tag tagNumberOfColumns(0x0028, 0x0011); // number cols scanner.AddTag( tagNumberOfColumns ); const gdcm::Tag tagGantryTilt(0x0018, 0x1120); // gantry tilt scanner.AddTag( tagGantryTilt ); const gdcm::Tag tagModality(0x0008, 0x0060); // modality scanner.AddTag( tagModality ); const gdcm::Tag tagNumberOfFrames(0x0028, 0x0008); // number of frames scanner.AddTag( tagNumberOfFrames ); // additional tags read in this scan to allow later analysis // THESE tag are not used for initial separating of files const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); // Image Position (Patient) scanner.AddTag( tagImagePositionPatient ); // TODO add further restrictions from arguments (when anybody asks for it) FileNamesGrouping result; // let GDCM scan files if ( !scanner.Scan( files ) ) { MITK_ERROR << "gdcm::Scanner failed when scanning " << files.size() << " input files."; return result; } // assign files IDs that will separate them for loading into image blocks for (gdcm::Scanner::ConstIterator fileIter = scanner.Begin(); fileIter != scanner.End(); ++fileIter) { if ( std::string(fileIter->first).empty() ) continue; // TODO understand why Scanner has empty string entries if ( std::string(fileIter->first) == std::string("DICOMDIR") ) continue; /* sort out multi-frame if ( scanner.GetValue( fileIter->first , tagNumberOfFrames ) ) { MITK_INFO << "Ignoring " << fileIter->first << " because we cannot handle multi-frame images."; continue; } */ // we const_cast here, because I could not use a map.at() function in CreateMoreUniqueSeriesIdentifier. // doing the same thing with find would make the code less readable. Since we forget the Scanner results // anyway after this function, we can simply tolerate empty map entries introduced by bad operator[] access std::string moreUniqueSeriesId = CreateMoreUniqueSeriesIdentifier( const_cast(fileIter->second) ); result[ moreUniqueSeriesId ].AddFile( fileIter->first ); } // PART II: sort slices spatially (or at least consistently if this is NOT possible, see method) for ( FileNamesGrouping::const_iterator groupIter = result.begin(); groupIter != result.end(); ++groupIter ) { try { result[ groupIter->first ] = ImageBlockDescriptor( SortSeriesSlices( groupIter->second.GetFilenames() ) ); // sort each slice group spatially } catch(...) { MITK_ERROR << "Caught something."; } } // PART III: analyze pre-sorted images for valid blocks (i.e. blocks of equal z-spacing), // separate into multiple blocks if necessary. // // Analysis performs the following steps: // * imitate itk::ImageSeriesReader: use the distance between the first two images as z-spacing // * check what images actually fulfill ITK's z-spacing assumption // * separate all images that fail the test into new blocks, re-iterate analysis for these blocks // * this includes images which DO NOT PROVIDE spatial information, i.e. all images w/o ImagePositionPatient will be loaded separately FileNamesGrouping groupsOf3DPlusTBlocks; // final result of this function for ( FileNamesGrouping::const_iterator groupIter = result.begin(); groupIter != result.end(); ++groupIter ) { FileNamesGrouping groupsOf3DBlocks; // intermediate result for only this group(!) std::map mapOf3DBlockAnalysisResults; StringContainer filesStillToAnalyze = groupIter->second.GetFilenames(); std::string groupUID = groupIter->first; unsigned int subgroup(0); MITK_DEBUG << "Analyze group " << groupUID; while (!filesStillToAnalyze.empty()) // repeat until all files are grouped somehow { SliceGroupingAnalysisResult analysisResult = AnalyzeFileForITKImageSeriesReaderSpacingAssumption( filesStillToAnalyze, groupImagesWithGantryTilt, scanner.GetMappings() ); // enhance the UID for additional groups std::stringstream newGroupUID; newGroupUID << groupUID << '.' << subgroup; ImageBlockDescriptor thisBlock( analysisResult.GetBlockFilenames() ); std::string firstFileInBlock = thisBlock.GetFilenames().front(); thisBlock.SetImageBlockUID( newGroupUID.str() ); thisBlock.SetSeriesInstanceUID( DicomSeriesReader::ConstCharStarToString( scanner.GetValue( firstFileInBlock.c_str(), tagSeriesInstanceUID ) ) ); thisBlock.SetHasGantryTiltCorrected( analysisResult.ContainsGantryTilt() ); thisBlock.SetSOPClassUID( DicomSeriesReader::ConstCharStarToString( scanner.GetValue( firstFileInBlock.c_str(), tagSOPClassUID ) ) ); thisBlock.SetNumberOfFrames( ConstCharStarToString( scanner.GetValue( firstFileInBlock.c_str(), tagNumberOfFrames ) ) ); thisBlock.SetModality( DicomSeriesReader::ConstCharStarToString( scanner.GetValue( firstFileInBlock.c_str(), tagModality ) ) ); thisBlock.SetPixelSpacingInformation( DicomSeriesReader::ConstCharStarToString( scanner.GetValue( firstFileInBlock.c_str(), tagPixelSpacing ) ), DicomSeriesReader::ConstCharStarToString( scanner.GetValue( firstFileInBlock.c_str(), tagImagerPixelSpacing ) ) ); thisBlock.SetHasMultipleTimePoints( false ); groupsOf3DBlocks[ newGroupUID.str() ] = thisBlock; //MITK_DEBUG << "Result: sorted 3D group " << newGroupUID.str() << " with " << groupsOf3DBlocks[ newGroupUID.str() ].GetFilenames().size() << " files"; MITK_DEBUG << "Result: sorted 3D group with " << groupsOf3DBlocks[ newGroupUID.str() ].GetFilenames().size() << " files"; StringContainer debugOutputFiles = analysisResult.GetBlockFilenames(); for (StringContainer::const_iterator siter = debugOutputFiles.begin(); siter != debugOutputFiles.end(); ++siter) MITK_DEBUG << " IN " << *siter; ++subgroup; filesStillToAnalyze = analysisResult.GetUnsortedFilenames(); // remember what needs further analysis for (StringContainer::const_iterator siter = filesStillToAnalyze.begin(); siter != filesStillToAnalyze.end(); ++siter) MITK_DEBUG << " OUT " << *siter; } // end of grouping, now post-process groups // PART IV: attempt to group blocks to 3D+t blocks if requested // inspect entries of groupsOf3DBlocks // - if number of files is identical to previous entry, collect for 3D+t block // - as soon as number of files changes from previous entry, record collected blocks as 3D+t block, start a new one, continue // decide whether or not to group 3D blocks into 3D+t blocks where possible if ( !sortTo3DPlust ) { // copy 3D blocks to output groupsOf3DPlusTBlocks.insert( groupsOf3DBlocks.begin(), groupsOf3DBlocks.end() ); } else { // sort 3D+t (as described in "PART IV") MITK_DEBUG << "================================================================================"; MITK_DEBUG << "3D+t analysis:"; unsigned int numberOfFilesInPreviousBlock(0); std::string previousBlockKey; for ( FileNamesGrouping::const_iterator block3DIter = groupsOf3DBlocks.begin(); block3DIter != groupsOf3DBlocks.end(); ++block3DIter ) { unsigned int numberOfFilesInThisBlock = block3DIter->second.GetFilenames().size(); std::string thisBlockKey = block3DIter->first; if (numberOfFilesInPreviousBlock == 0) { numberOfFilesInPreviousBlock = numberOfFilesInThisBlock; groupsOf3DPlusTBlocks[thisBlockKey] = block3DIter->second; MITK_DEBUG << " 3D+t group " << thisBlockKey; previousBlockKey = thisBlockKey; } else { bool identicalOrigins; try { // check whether this and the previous block share a comon origin // TODO should be safe, but a little try/catch or other error handling wouldn't hurt const char *origin_value = scanner.GetValue( groupsOf3DBlocks[thisBlockKey].GetFilenames().front().c_str(), tagImagePositionPatient ), *previous_origin_value = scanner.GetValue( groupsOf3DBlocks[previousBlockKey].GetFilenames().front().c_str(), tagImagePositionPatient ), *destination_value = scanner.GetValue( groupsOf3DBlocks[thisBlockKey].GetFilenames().back().c_str(), tagImagePositionPatient ), *previous_destination_value = scanner.GetValue( groupsOf3DBlocks[previousBlockKey].GetFilenames().back().c_str(), tagImagePositionPatient ); if (!origin_value || !previous_origin_value || !destination_value || !previous_destination_value) { identicalOrigins = false; } else { std::string thisOriginString = ConstCharStarToString( origin_value ); std::string previousOriginString = ConstCharStarToString( previous_origin_value ); // also compare last origin, because this might differ if z-spacing is different std::string thisDestinationString = ConstCharStarToString( destination_value ); std::string previousDestinationString = ConstCharStarToString( previous_destination_value ); identicalOrigins = ( (thisOriginString == previousOriginString) && (thisDestinationString == previousDestinationString) ); } } catch(...) { identicalOrigins = false; } if (identicalOrigins && (numberOfFilesInPreviousBlock == numberOfFilesInThisBlock)) { // group with previous block groupsOf3DPlusTBlocks[previousBlockKey].AddFiles( block3DIter->second.GetFilenames() ); groupsOf3DPlusTBlocks[previousBlockKey].SetHasMultipleTimePoints(true); MITK_DEBUG << " --> group enhanced with another timestep"; } else { // start a new block groupsOf3DPlusTBlocks[thisBlockKey] = block3DIter->second; int numberOfTimeSteps = groupsOf3DPlusTBlocks[previousBlockKey].GetFilenames().size() / numberOfFilesInPreviousBlock; MITK_DEBUG << " ==> group closed with " << numberOfTimeSteps << " time steps"; previousBlockKey = thisBlockKey; MITK_DEBUG << " 3D+t group " << thisBlockKey << " started"; } } numberOfFilesInPreviousBlock = numberOfFilesInThisBlock; } } } MITK_DEBUG << "================================================================================"; MITK_DEBUG << "Summary: "; for ( FileNamesGrouping::const_iterator groupIter = groupsOf3DPlusTBlocks.begin(); groupIter != groupsOf3DPlusTBlocks.end(); ++groupIter ) { ImageBlockDescriptor block = groupIter->second; MITK_DEBUG << " " << block.GetFilenames().size() << " '" << block.GetModality() << "' images (" << block.GetSOPClassUIDAsString() << ") in volume " << block.GetImageBlockUID(); MITK_DEBUG << " (gantry tilt : " << (block.HasGantryTiltCorrected()?"Yes":"No") << "; " "pixel spacing : " << PixelSpacingInterpretationToString( block.GetPixelSpacingType() ) << "; " "3D+t: " << (block.HasMultipleTimePoints()?"Yes":"No") << "; " "reader support: " << ReaderImplementationLevelToString( block.GetReaderImplementationLevel() ) << ")"; StringContainer debugOutputFiles = block.GetFilenames(); for (StringContainer::const_iterator siter = debugOutputFiles.begin(); siter != debugOutputFiles.end(); ++siter) MITK_DEBUG << " F " << *siter; } MITK_DEBUG << "================================================================================"; return groupsOf3DPlusTBlocks; } DicomSeriesReader::FileNamesGrouping DicomSeriesReader::GetSeries(const std::string &dir, bool groupImagesWithGantryTilt, const StringContainer &restrictions) { gdcm::Directory directoryLister; directoryLister.Load( dir.c_str(), false ); // non-recursive return GetSeries(directoryLister.GetFilenames(), groupImagesWithGantryTilt, restrictions); } std::string DicomSeriesReader::CreateSeriesIdentifierPart( gdcm::Scanner::TagToValue& tagValueMap, const gdcm::Tag& tag ) { std::string result; try { result = IDifyTagValue( tagValueMap[ tag ] ? tagValueMap[ tag ] : std::string("") ); } catch (std::exception&) { // we are happy with even nothing, this will just group images of a series //MITK_WARN << "Could not access tag " << tag << ": " << e.what(); } return result; } std::string DicomSeriesReader::CreateMoreUniqueSeriesIdentifier( gdcm::Scanner::TagToValue& tagValueMap ) { const gdcm::Tag tagSeriesInstanceUID(0x0020,0x000e); // Series Instance UID const gdcm::Tag tagImageOrientation(0x0020, 0x0037); // image orientation const gdcm::Tag tagPixelSpacing(0x0028, 0x0030); // pixel spacing const gdcm::Tag tagImagerPixelSpacing(0x0018, 0x1164); // imager pixel spacing const gdcm::Tag tagSliceThickness(0x0018, 0x0050); // slice thickness const gdcm::Tag tagNumberOfRows(0x0028, 0x0010); // number rows const gdcm::Tag tagNumberOfColumns(0x0028, 0x0011); // number cols const gdcm::Tag tagNumberOfFrames(0x0028, 0x0008); // number of frames const char* tagSeriesInstanceUid = tagValueMap[tagSeriesInstanceUID]; if (!tagSeriesInstanceUid) { mitkThrow() << "CreateMoreUniqueSeriesIdentifier() could not access series instance UID. Something is seriously wrong with this image, so stopping here."; } std::string constructedID = tagSeriesInstanceUid; constructedID += CreateSeriesIdentifierPart( tagValueMap, tagNumberOfRows ); constructedID += CreateSeriesIdentifierPart( tagValueMap, tagNumberOfColumns ); constructedID += CreateSeriesIdentifierPart( tagValueMap, tagPixelSpacing ); constructedID += CreateSeriesIdentifierPart( tagValueMap, tagImagerPixelSpacing ); constructedID += CreateSeriesIdentifierPart( tagValueMap, tagSliceThickness ); constructedID += CreateSeriesIdentifierPart( tagValueMap, tagNumberOfFrames ); // be a bit tolerant for orienatation, let only the first few digits matter (http://bugs.mitk.org/show_bug.cgi?id=12263) // NOT constructedID += CreateSeriesIdentifierPart( tagValueMap, tagImageOrientation ); if (tagValueMap.find(tagImageOrientation) != tagValueMap.end()) { bool conversionError(false); Vector3D right; right.Fill(0.0); Vector3D up; right.Fill(0.0); DICOMStringToOrientationVectors( tagValueMap[tagImageOrientation], right, up, conversionError ); //string newstring sprintf(simplifiedOrientationString, "%.3f\\%.3f\\%.3f\\%.3f\\%.3f\\%.3f", right[0], right[1], right[2], up[0], up[1], up[2]); std::ostringstream ss; ss.setf(std::ios::fixed, std::ios::floatfield); ss.precision(5); ss << right[0] << "\\" << right[1] << "\\" << right[2] << "\\" << up[0] << "\\" << up[1] << "\\" << up[2]; std::string simplifiedOrientationString(ss.str()); constructedID += IDifyTagValue( simplifiedOrientationString ); } constructedID.resize( constructedID.length() - 1 ); // cut of trailing '.' return constructedID; } std::string DicomSeriesReader::IDifyTagValue(const std::string& value) { std::string IDifiedValue( value ); if (value.empty()) throw std::logic_error("IDifyTagValue() illegaly called with empty tag value"); // Eliminate non-alnum characters, including whitespace... // that may have been introduced by concats. for(std::size_t i=0; i= 'a' && IDifiedValue[i] <= 'z') || (IDifiedValue[i] >= '0' && IDifiedValue[i] <= '9') || (IDifiedValue[i] >= 'A' && IDifiedValue[i] <= 'Z'))) { IDifiedValue.erase(i, 1); } } IDifiedValue += "."; return IDifiedValue; } DicomSeriesReader::StringContainer DicomSeriesReader::GetSeries(const std::string &dir, const std::string &series_uid, bool groupImagesWithGantryTilt, const StringContainer &restrictions) { FileNamesGrouping allSeries = GetSeries(dir, groupImagesWithGantryTilt, restrictions); StringContainer resultingFileList; for ( FileNamesGrouping::const_iterator idIter = allSeries.begin(); idIter != allSeries.end(); ++idIter ) { if ( idIter->first.find( series_uid ) == 0 ) // this ID starts with given series_uid { return idIter->second.GetFilenames(); } } return resultingFileList; } DicomSeriesReader::StringContainer DicomSeriesReader::SortSeriesSlices(const StringContainer &unsortedFilenames) { /* we CAN expect a group of equal - series instance uid - image orientation - pixel spacing - imager pixel spacing - slice thickness - number of rows/columns (each piece of information except the rows/columns might be missing) sorting with GdcmSortFunction tries its best by sorting by spatial position and more hints (acquisition number, acquisition time, trigger time) but will always produce a sorting by falling back to SOP Instance UID. */ gdcm::Sorter sorter; sorter.SetSortFunction(DicomSeriesReader::GdcmSortFunction); try { if (sorter.Sort(unsortedFilenames)) { return sorter.GetFilenames(); } else { MITK_WARN << "Sorting error. Leaving series unsorted."; return unsortedFilenames; } } catch(std::logic_error&) { MITK_WARN << "Sorting error. Leaving series unsorted."; return unsortedFilenames; } } bool DicomSeriesReader::GdcmSortFunction(const gdcm::DataSet &ds1, const gdcm::DataSet &ds2) { // This method MUST accept missing location and position information (and all else, too) // because we cannot rely on anything // (restriction on the sentence before: we have to provide consistent sorting, so we // rely on the minimum information all DICOM files need to provide: SOP Instance UID) /* we CAN expect a group of equal - series instance uid - image orientation - pixel spacing - imager pixel spacing - slice thickness - number of rows/columns */ static const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); // Image Position (Patient) static const gdcm::Tag tagImageOrientation(0x0020, 0x0037); // Image Orientation // see if we have Image Position and Orientation if ( ds1.FindDataElement(tagImagePositionPatient) && ds1.FindDataElement(tagImageOrientation) && ds2.FindDataElement(tagImagePositionPatient) && ds2.FindDataElement(tagImageOrientation) ) { gdcm::Attribute<0x0020,0x0032> image_pos1; // Image Position (Patient) gdcm::Attribute<0x0020,0x0037> image_orientation1; // Image Orientation (Patient) image_pos1.Set(ds1); image_orientation1.Set(ds1); gdcm::Attribute<0x0020,0x0032> image_pos2; gdcm::Attribute<0x0020,0x0037> image_orientation2; image_pos2.Set(ds2); image_orientation2.Set(ds2); /* we tolerate very small differences in image orientation, since we got to know about acquisitions where these values change across a single series (7th decimal digit) (http://bugs.mitk.org/show_bug.cgi?id=12263) still, we want to check if our assumption of 'almost equal' orientations is valid */ for (unsigned int dim = 0; dim < 6; ++dim) { if ( fabs(image_orientation2[dim] - image_orientation1[dim]) > 0.0001 ) { MITK_ERROR << "Dicom images have different orientations."; throw std::logic_error("Dicom images have different orientations. Call GetSeries() first to separate images."); } } double normal[3]; normal[0] = image_orientation1[1] * image_orientation1[5] - image_orientation1[2] * image_orientation1[4]; normal[1] = image_orientation1[2] * image_orientation1[3] - image_orientation1[0] * image_orientation1[5]; normal[2] = image_orientation1[0] * image_orientation1[4] - image_orientation1[1] * image_orientation1[3]; double dist1 = 0.0, dist2 = 0.0; // this computes the distance from world origin (0,0,0) ALONG THE NORMAL of the image planes for (unsigned char i = 0u; i < 3u; ++i) { dist1 += normal[i] * image_pos1[i]; dist2 += normal[i] * image_pos2[i]; } // if we can sort by just comparing the distance, we do exactly that if ( fabs(dist1 - dist2) >= mitk::eps) { // default: compare position return dist1 < dist2; } else // we need to check more properties to distinguish slices { // try to sort by Acquisition Number static const gdcm::Tag tagAcquisitionNumber(0x0020, 0x0012); if (ds1.FindDataElement(tagAcquisitionNumber) && ds2.FindDataElement(tagAcquisitionNumber)) { gdcm::Attribute<0x0020,0x0012> acquisition_number1; // Acquisition number gdcm::Attribute<0x0020,0x0012> acquisition_number2; acquisition_number1.Set(ds1); acquisition_number2.Set(ds2); if (acquisition_number1 != acquisition_number2) { return acquisition_number1 < acquisition_number2; } else // neither position nor acquisition number are good for sorting, so check more { // try to sort by Acquisition Time static const gdcm::Tag tagAcquisitionTime(0x0008, 0x0032); if (ds1.FindDataElement(tagAcquisitionTime) && ds2.FindDataElement(tagAcquisitionTime)) { gdcm::Attribute<0x0008,0x0032> acquisition_time1; // Acquisition time gdcm::Attribute<0x0008,0x0032> acquisition_time2; acquisition_time1.Set(ds1); acquisition_time2.Set(ds2); if (acquisition_time1 != acquisition_time2) { return acquisition_time1 < acquisition_time2; } else // we gave up on image position, acquisition number and acquisition time now { // let's try trigger time static const gdcm::Tag tagTriggerTime(0x0018, 0x1060); if (ds1.FindDataElement(tagTriggerTime) && ds2.FindDataElement(tagTriggerTime)) { gdcm::Attribute<0x0018,0x1060> trigger_time1; // Trigger time gdcm::Attribute<0x0018,0x1060> trigger_time2; trigger_time1.Set(ds1); trigger_time2.Set(ds2); if (trigger_time1 != trigger_time2) { return trigger_time1 < trigger_time2; } // ELSE! // for this and many previous ifs we fall through if nothing lets us sort } // . } // . } // . } } } } // . // LAST RESORT: all valuable information for sorting is missing. // Sort by some meaningless but unique identifiers to satisfy the sort function static const gdcm::Tag tagSOPInstanceUID(0x0008, 0x0018); if (ds1.FindDataElement(tagSOPInstanceUID) && ds2.FindDataElement(tagSOPInstanceUID)) { MITK_DEBUG << "Dicom images are missing attributes for a meaningful sorting, falling back to SOP instance UID comparison."; gdcm::Attribute<0x0008,0x0018> SOPInstanceUID1; // SOP instance UID is mandatory and unique gdcm::Attribute<0x0008,0x0018> SOPInstanceUID2; SOPInstanceUID1.Set(ds1); SOPInstanceUID2.Set(ds2); return SOPInstanceUID1 < SOPInstanceUID2; } else { // no DICOM file should really come down here, this should only be reached with unskillful and unlucky manipulation of files std::string error_message("Malformed DICOM images, which do not even contain a SOP Instance UID."); MITK_ERROR << error_message; throw std::logic_error( error_message ); } } std::string DicomSeriesReader::GetConfigurationString() { std::stringstream configuration; configuration << "MITK_USE_GDCMIO: "; configuration << "true"; configuration << "\n"; configuration << "GDCM_VERSION: "; #ifdef GDCM_MAJOR_VERSION configuration << GDCM_VERSION; #endif //configuration << "\n"; return configuration.str(); } void DicomSeriesReader::CopyMetaDataToImageProperties(StringContainer filenames, const gdcm::Scanner::MappingType &tagValueMappings_, DcmIoType *io, const ImageBlockDescriptor& blockInfo, Image *image) { std::list imageBlock; imageBlock.push_back(filenames); CopyMetaDataToImageProperties(imageBlock, tagValueMappings_, io, blockInfo, image); } void DicomSeriesReader::CopyMetaDataToImageProperties( std::list imageBlock, const gdcm::Scanner::MappingType& tagValueMappings_, DcmIoType* io, const ImageBlockDescriptor& blockInfo, Image* image) { if (!io || !image) return; StringLookupTable filesForSlices; StringLookupTable sliceLocationForSlices; StringLookupTable instanceNumberForSlices; StringLookupTable SOPInstanceNumberForSlices; gdcm::Scanner::MappingType& tagValueMappings = const_cast(tagValueMappings_); //DICOM tags which should be added to the image properties const gdcm::Tag tagSliceLocation(0x0020, 0x1041); // slice location const gdcm::Tag tagInstanceNumber(0x0020, 0x0013); // (image) instance number const gdcm::Tag tagSOPInstanceNumber(0x0008, 0x0018); // SOP instance number unsigned int timeStep(0); std::string propertyKeySliceLocation = "dicom.image.0020.1041"; std::string propertyKeyInstanceNumber = "dicom.image.0020.0013"; std::string propertyKeySOPInstanceNumber = "dicom.image.0008.0018"; // tags for each image for ( std::list::iterator i = imageBlock.begin(); i != imageBlock.end(); i++, timeStep++ ) { const StringContainer& files = (*i); unsigned int slice(0); for ( StringContainer::const_iterator fIter = files.begin(); fIter != files.end(); ++fIter, ++slice ) { filesForSlices.SetTableValue( slice, *fIter ); gdcm::Scanner::TagToValue tagValueMapForFile = tagValueMappings[fIter->c_str()]; if(tagValueMapForFile.find(tagSliceLocation) != tagValueMapForFile.end()) sliceLocationForSlices.SetTableValue(slice, tagValueMapForFile[tagSliceLocation]); if(tagValueMapForFile.find(tagInstanceNumber) != tagValueMapForFile.end()) instanceNumberForSlices.SetTableValue(slice, tagValueMapForFile[tagInstanceNumber]); if(tagValueMapForFile.find(tagSOPInstanceNumber) != tagValueMapForFile.end()) SOPInstanceNumberForSlices.SetTableValue(slice, tagValueMapForFile[tagSOPInstanceNumber]); } image->SetProperty( "files", StringLookupTableProperty::New( filesForSlices ) ); //If more than one time step add postfix ".t" + timestep if(timeStep != 0) { std::ostringstream postfix; postfix << ".t" << timeStep; propertyKeySliceLocation.append(postfix.str()); propertyKeyInstanceNumber.append(postfix.str()); propertyKeySOPInstanceNumber.append(postfix.str()); } image->SetProperty( propertyKeySliceLocation.c_str(), StringLookupTableProperty::New( sliceLocationForSlices ) ); image->SetProperty( propertyKeyInstanceNumber.c_str(), StringLookupTableProperty::New( instanceNumberForSlices ) ); image->SetProperty( propertyKeySOPInstanceNumber.c_str(), StringLookupTableProperty::New( SOPInstanceNumberForSlices ) ); } // Copy tags for series, study, patient level (leave interpretation to application). // These properties will be copied to the DataNode by DicomSeriesReader. // tags for the series (we just use the one that ITK copied to its dictionary (proably that of the last slice) const itk::MetaDataDictionary& dict = io->GetMetaDataDictionary(); const TagToPropertyMapType& propertyLookup = DicomSeriesReader::GetDICOMTagsToMITKPropertyMap(); itk::MetaDataDictionary::ConstIterator dictIter = dict.Begin(); while ( dictIter != dict.End() ) { //MITK_DEBUG << "Key " << dictIter->first; std::string value; if ( itk::ExposeMetaData( dict, dictIter->first, value ) ) { //MITK_DEBUG << "Value " << value; TagToPropertyMapType::const_iterator valuePosition = propertyLookup.find( dictIter->first ); if ( valuePosition != propertyLookup.end() ) { std::string propertyKey = valuePosition->second; //MITK_DEBUG << "--> " << propertyKey; image->SetProperty( propertyKey.c_str(), StringProperty::New(value) ); } } else { MITK_WARN << "Tag " << dictIter->first << " not read as string as expected. Ignoring..." ; } ++dictIter; } // copy imageblockdescriptor as properties image->SetProperty("dicomseriesreader.SOPClass", StringProperty::New(blockInfo.GetSOPClassUIDAsString())); image->SetProperty("dicomseriesreader.ReaderImplementationLevelString", StringProperty::New(ReaderImplementationLevelToString( blockInfo.GetReaderImplementationLevel() ))); image->SetProperty("dicomseriesreader.ReaderImplementationLevel", GenericProperty::New( blockInfo.GetReaderImplementationLevel() )); image->SetProperty("dicomseriesreader.PixelSpacingInterpretationString", StringProperty::New(PixelSpacingInterpretationToString( blockInfo.GetPixelSpacingType() ))); image->SetProperty("dicomseriesreader.PixelSpacingInterpretation", GenericProperty::New(blockInfo.GetPixelSpacingType())); image->SetProperty("dicomseriesreader.MultiFrameImage", BoolProperty::New(blockInfo.IsMultiFrameImage())); image->SetProperty("dicomseriesreader.GantyTiltCorrected", BoolProperty::New(blockInfo.HasGantryTiltCorrected())); image->SetProperty("dicomseriesreader.3D+t", BoolProperty::New(blockInfo.HasMultipleTimePoints())); } void DicomSeriesReader::FixSpacingInformation( mitk::Image* image, const ImageBlockDescriptor& imageBlockDescriptor ) { // spacing provided by ITK/GDCM Vector3D imageSpacing = image->GetGeometry()->GetSpacing(); ScalarType imageSpacingX = imageSpacing[0]; ScalarType imageSpacingY = imageSpacing[1]; // spacing as desired by MITK (preference for "in patient", else "on detector", or "1.0/1.0") ScalarType desiredSpacingX = imageSpacingX; ScalarType desiredSpacingY = imageSpacingY; imageBlockDescriptor.GetDesiredMITKImagePixelSpacing( desiredSpacingX, desiredSpacingY ); MITK_DEBUG << "Loaded spacing: " << imageSpacingX << "/" << imageSpacingY; MITK_DEBUG << "Corrected spacing: " << desiredSpacingX << "/" << desiredSpacingY; imageSpacing[0] = desiredSpacingX; imageSpacing[1] = desiredSpacingY; image->GetGeometry()->SetSpacing( imageSpacing ); } void DicomSeriesReader::LoadDicom(const StringContainer &filenames, DataNode &node, bool sort, bool load4D, bool correctTilt, UpdateCallBackMethod callback, Image::Pointer preLoadedImageBlock) { const char* previousCLocale = setlocale(LC_NUMERIC, NULL); setlocale(LC_NUMERIC, "C"); std::locale previousCppLocale( std::cin.getloc() ); std::locale l( "C" ); std::cin.imbue(l); ImageBlockDescriptor imageBlockDescriptor; const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); // Image Position (Patient) const gdcm::Tag tagImageOrientation(0x0020, 0x0037); // Image Orientation const gdcm::Tag tagSeriesInstanceUID(0x0020, 0x000e); // Series Instance UID const gdcm::Tag tagSOPClassUID(0x0008, 0x0016); // SOP class UID const gdcm::Tag tagModality(0x0008, 0x0060); // modality const gdcm::Tag tagPixelSpacing(0x0028, 0x0030); // pixel spacing const gdcm::Tag tagImagerPixelSpacing(0x0018, 0x1164); // imager pixel spacing const gdcm::Tag tagNumberOfFrames(0x0028, 0x0008); // number of frames try { Image::Pointer image = preLoadedImageBlock.IsNull() ? Image::New() : preLoadedImageBlock; CallbackCommand *command = callback ? new CallbackCommand(callback) : 0; bool initialize_node = false; /* special case for Philips 3D+t ultrasound images */ if ( DicomSeriesReader::IsPhilips3DDicom(filenames.front().c_str()) ) { // TODO what about imageBlockDescriptor? // TODO what about preLoadedImageBlock? ReadPhilips3DDicom(filenames.front().c_str(), image); initialize_node = true; } else { /* default case: assume "normal" image blocks, possibly 3D+t */ bool canLoadAs4D(true); gdcm::Scanner scanner; ScanForSliceInformation(filenames, scanner); // need non-const access for map gdcm::Scanner::MappingType& tagValueMappings = const_cast(scanner.GetMappings()); std::list imageBlocks = SortIntoBlocksFor3DplusT( filenames, tagValueMappings, sort, canLoadAs4D ); unsigned int volume_count = imageBlocks.size(); imageBlockDescriptor.SetSeriesInstanceUID( DicomSeriesReader::ConstCharStarToString( scanner.GetValue( filenames.front().c_str(), tagSeriesInstanceUID ) ) ); imageBlockDescriptor.SetSOPClassUID( DicomSeriesReader::ConstCharStarToString( scanner.GetValue( filenames.front().c_str(), tagSOPClassUID ) ) ); imageBlockDescriptor.SetModality( DicomSeriesReader::ConstCharStarToString( scanner.GetValue( filenames.front().c_str(), tagModality ) ) ); imageBlockDescriptor.SetNumberOfFrames( ConstCharStarToString( scanner.GetValue( filenames.front().c_str(), tagNumberOfFrames ) ) ); imageBlockDescriptor.SetPixelSpacingInformation( ConstCharStarToString( scanner.GetValue( filenames.front().c_str(), tagPixelSpacing ) ), ConstCharStarToString( scanner.GetValue( filenames.front().c_str(), tagImagerPixelSpacing ) ) ); GantryTiltInformation tiltInfo; // check possibility of a single slice with many timesteps. In this case, don't check for tilt, no second slice possible if ( !imageBlocks.empty() && imageBlocks.front().size() > 1 && correctTilt) { // check tiltedness here, potentially fixup ITK's loading result by shifting slice contents // check first and last position slice from tags, make some calculations to detect tilt std::string firstFilename(imageBlocks.front().front()); // calculate from first and last slice to minimize rounding errors std::string secondFilename(imageBlocks.front().back()); std::string imagePosition1( ConstCharStarToString( tagValueMappings[ firstFilename.c_str() ][ tagImagePositionPatient ] ) ); std::string imageOrientation( ConstCharStarToString( tagValueMappings[ firstFilename.c_str() ][ tagImageOrientation ] ) ); std::string imagePosition2( ConstCharStarToString( tagValueMappings[secondFilename.c_str() ][ tagImagePositionPatient ] ) ); bool ignoredConversionError(-42); // hard to get here, no graceful way to react Point3D origin1( DICOMStringToPoint3D( imagePosition1, ignoredConversionError ) ); Point3D origin2( DICOMStringToPoint3D( imagePosition2, ignoredConversionError ) ); Vector3D right; right.Fill(0.0); Vector3D up; right.Fill(0.0); // might be down as well, but it is just a name at this point DICOMStringToOrientationVectors( imageOrientation, right, up, ignoredConversionError ); tiltInfo = GantryTiltInformation ( origin1, origin2, right, up, filenames.size()-1 ); correctTilt = tiltInfo.IsSheared() && tiltInfo.IsRegularGantryTilt(); } else { correctTilt = false; // we CANNOT do that } imageBlockDescriptor.SetHasGantryTiltCorrected( correctTilt ); if (volume_count == 1 || !canLoadAs4D || !load4D) { DcmIoType::Pointer io; image = MultiplexLoadDICOMByITK( imageBlocks.front(), correctTilt, tiltInfo, io, command, preLoadedImageBlock ); // load first 3D block imageBlockDescriptor.AddFiles(imageBlocks.front()); // only the first part is loaded imageBlockDescriptor.SetHasMultipleTimePoints( false ); FixSpacingInformation( image, imageBlockDescriptor ); CopyMetaDataToImageProperties( imageBlocks.front(), scanner.GetMappings(), io, imageBlockDescriptor, image); initialize_node = true; } else if (volume_count > 1) { imageBlockDescriptor.AddFiles(filenames); // all is loaded imageBlockDescriptor.SetHasMultipleTimePoints( true ); DcmIoType::Pointer io; image = MultiplexLoadDICOMByITK4D( imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command, preLoadedImageBlock ); initialize_node = true; } } if (initialize_node) { // forward some image properties to node node.GetPropertyList()->ConcatenatePropertyList( image->GetPropertyList(), true ); node.SetData( image ); setlocale(LC_NUMERIC, previousCLocale); std::cin.imbue(previousCppLocale); } MITK_DEBUG << "--------------------------------------------------------------------------------"; MITK_DEBUG << "DICOM files loaded (from series UID " << imageBlockDescriptor.GetSeriesInstanceUID() << "):"; MITK_DEBUG << " " << imageBlockDescriptor.GetFilenames().size() << " '" << imageBlockDescriptor.GetModality() << "' files (" << imageBlockDescriptor.GetSOPClassUIDAsString() << ") loaded into 1 mitk::Image"; MITK_DEBUG << " multi-frame: " << (imageBlockDescriptor.IsMultiFrameImage()?"Yes":"No"); MITK_DEBUG << " reader support: " << ReaderImplementationLevelToString(imageBlockDescriptor.GetReaderImplementationLevel()); MITK_DEBUG << " pixel spacing type: " << PixelSpacingInterpretationToString( imageBlockDescriptor.GetPixelSpacingType() ) << " " << image->GetGeometry()->GetSpacing()[0] << "/" << image->GetGeometry()->GetSpacing()[0]; MITK_DEBUG << " gantry tilt corrected: " << (imageBlockDescriptor.HasGantryTiltCorrected()?"Yes":"No"); MITK_DEBUG << " 3D+t: " << (imageBlockDescriptor.HasMultipleTimePoints()?"Yes":"No"); MITK_DEBUG << "--------------------------------------------------------------------------------"; } catch (std::exception& e) { // reset locale then throw up setlocale(LC_NUMERIC, previousCLocale); std::cin.imbue(previousCppLocale); MITK_DEBUG << "Caught exception in DicomSeriesReader::LoadDicom"; throw e; } } +void +DicomSeriesReader::ScanForSliceInformation(const StringContainer &filenames, gdcm::Scanner& scanner) +{ + const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); //Image position (Patient) + scanner.AddTag(tagImagePositionPatient); + + const gdcm::Tag tagSeriesInstanceUID(0x0020, 0x000e); // Series Instance UID + scanner.AddTag(tagSeriesInstanceUID); + + const gdcm::Tag tagImageOrientation(0x0020,0x0037); //Image orientation + scanner.AddTag(tagImageOrientation); + + const gdcm::Tag tagSliceLocation(0x0020, 0x1041); // slice location + scanner.AddTag( tagSliceLocation ); + + const gdcm::Tag tagInstanceNumber(0x0020, 0x0013); // (image) instance number + scanner.AddTag( tagInstanceNumber ); + + const gdcm::Tag tagSOPInstanceNumber(0x0008, 0x0018); // SOP instance number + scanner.AddTag( tagSOPInstanceNumber ); + + const gdcm::Tag tagPixelSpacing(0x0028, 0x0030); // Pixel Spacing + scanner.AddTag( tagPixelSpacing ); + + const gdcm::Tag tagImagerPixelSpacing(0x0018, 0x1164); // Imager Pixel Spacing + scanner.AddTag( tagImagerPixelSpacing ); + + const gdcm::Tag tagModality(0x0008, 0x0060); // Modality + scanner.AddTag( tagModality ); + + const gdcm::Tag tagSOPClassUID(0x0008, 0x0016); // SOP Class UID + scanner.AddTag( tagSOPClassUID ); + + const gdcm::Tag tagNumberOfFrames(0x0028, 0x0008); // number of frames + scanner.AddTag( tagNumberOfFrames ); + + scanner.Scan(filenames); // make available image information for each file +} + +std::list +DicomSeriesReader::SortIntoBlocksFor3DplusT( + const StringContainer& presortedFilenames, + const gdcm::Scanner::MappingType& tagValueMappings, + bool /*sort*/, + bool& canLoadAs4D ) +{ + std::list imageBlocks; + + // ignore sort request, because most likely re-sorting is now needed due to changes in GetSeries(bug #8022) + StringContainer sorted_filenames = DicomSeriesReader::SortSeriesSlices(presortedFilenames); + + std::string firstPosition; + unsigned int numberOfBlocks(0); // number of 3D image blocks + + static const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); //Image position (Patient) + + // loop files to determine number of image blocks + for (StringContainer::const_iterator fileIter = sorted_filenames.begin(); + fileIter != sorted_filenames.end(); + ++fileIter) + { + gdcm::Scanner::TagToValue tagToValueMap = tagValueMappings.find( fileIter->c_str() )->second; + + if(tagToValueMap.find(tagImagePositionPatient) == tagToValueMap.end()) + { + // we expect to get images w/ missing position information ONLY as separated blocks. + assert( presortedFilenames.size() == 1 ); + numberOfBlocks = 1; + break; + } + + std::string position = tagToValueMap.find(tagImagePositionPatient)->second; + MITK_DEBUG << " " << *fileIter << " at " << position; + if (firstPosition.empty()) + { + firstPosition = position; + } + + if ( position == firstPosition ) + { + ++numberOfBlocks; + } + else + { + break; // enough information to know the number of image blocks + } + } + + MITK_DEBUG << " ==> Assuming " << numberOfBlocks << " time steps"; + + if (numberOfBlocks == 0) return imageBlocks; // only possible if called with no files + + + // loop files to sort them into image blocks + unsigned int numberOfExpectedSlices(0); + for (unsigned int block = 0; block < numberOfBlocks; ++block) + { + StringContainer filesOfCurrentBlock; + + for ( StringContainer::const_iterator fileIter = sorted_filenames.begin() + block; + fileIter != sorted_filenames.end(); + //fileIter += numberOfBlocks) // TODO shouldn't this work? give invalid iterators on first attempts + ) + { + filesOfCurrentBlock.push_back( *fileIter ); + for (unsigned int b = 0; b < numberOfBlocks; ++b) + { + if (fileIter != sorted_filenames.end()) + ++fileIter; + } + } + + imageBlocks.push_back(filesOfCurrentBlock); + + if (block == 0) + { + numberOfExpectedSlices = filesOfCurrentBlock.size(); + } + else + { + if (filesOfCurrentBlock.size() != numberOfExpectedSlices) + { + MITK_WARN << "DicomSeriesReader expected " << numberOfBlocks + << " image blocks of " + << numberOfExpectedSlices + << " images each. Block " + << block + << " got " + << filesOfCurrentBlock.size() + << " instead. Cannot load this as 3D+t"; // TODO implement recovery (load as many slices 3D+t as much as possible) + canLoadAs4D = false; + } + } + } + + return imageBlocks; +} + + Image::Pointer DicomSeriesReader ::MultiplexLoadDICOMByITKScalar(const StringContainer& filenames, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock) { switch (io->GetComponentType()) { case DcmIoType::UCHAR: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::CHAR: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::USHORT: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::SHORT: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::UINT: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::INT: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::ULONG: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::LONG: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::FLOAT: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::DOUBLE: return LoadDICOMByITK(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); default: MITK_ERROR << "Found unsupported DICOM scalar pixel type: (enum value) " << io->GetComponentType(); return NULL; } } Image::Pointer DicomSeriesReader ::MultiplexLoadDICOMByITKRGBPixel(const StringContainer& filenames, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock) { switch (io->GetComponentType()) { case DcmIoType::UCHAR: return LoadDICOMByITK< itk::RGBPixel >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::CHAR: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::USHORT: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::SHORT: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::UINT: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::INT: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::ULONG: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::LONG: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::FLOAT: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::DOUBLE: return LoadDICOMByITK >(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); default: MITK_ERROR << "Found unsupported DICOM scalar pixel type: (enum value) " << io->GetComponentType(); return NULL; } } Image::Pointer DicomSeriesReader ::MultiplexLoadDICOMByITK(const StringContainer& filenames, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock) { io = DcmIoType::New(); io->SetFileName(filenames.front().c_str()); io->ReadImageInformation(); if (io->GetPixelType() == itk::ImageIOBase::SCALAR) { return MultiplexLoadDICOMByITKScalar(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); } else if (io->GetPixelType() == itk::ImageIOBase::RGB) { return MultiplexLoadDICOMByITKRGBPixel(filenames, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); } else { return NULL; } } Image::Pointer DicomSeriesReader ::MultiplexLoadDICOMByITK4DScalar( std::list& imageBlocks, ImageBlockDescriptor imageBlockDescriptor, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock) { switch (io->GetComponentType()) { case DcmIoType::UCHAR: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::CHAR: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::USHORT: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::SHORT: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::UINT: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::INT: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::ULONG: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::LONG: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::FLOAT: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::DOUBLE: return LoadDICOMByITK4D(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); default: MITK_ERROR << "Found unsupported DICOM scalar pixel type: (enum value) " << io->GetComponentType(); return NULL; } } Image::Pointer DicomSeriesReader ::MultiplexLoadDICOMByITK4DRGBPixel( std::list& imageBlocks, ImageBlockDescriptor imageBlockDescriptor, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock) { switch (io->GetComponentType()) { case DcmIoType::UCHAR: return LoadDICOMByITK4D< itk::RGBPixel >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::CHAR: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::USHORT: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::SHORT: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::UINT: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::INT: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::ULONG: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::LONG: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::FLOAT: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); case DcmIoType::DOUBLE: return LoadDICOMByITK4D >(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); default: MITK_ERROR << "Found unsupported DICOM scalar pixel type: (enum value) " << io->GetComponentType(); return NULL; } } Image::Pointer DicomSeriesReader ::MultiplexLoadDICOMByITK4D( std::list& imageBlocks, ImageBlockDescriptor imageBlockDescriptor, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock) { io = DcmIoType::New(); io->SetFileName(imageBlocks.front().front().c_str()); io->ReadImageInformation(); if (io->GetPixelType() == itk::ImageIOBase::SCALAR) { return MultiplexLoadDICOMByITK4DScalar(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); } else if (io->GetPixelType() == itk::ImageIOBase::RGB) { return MultiplexLoadDICOMByITK4DRGBPixel(imageBlocks, imageBlockDescriptor, correctTilt, tiltInfo, io, command ,preLoadedImageBlock); } else { return NULL; } } } // end namespace mitk #include diff --git a/Core/Code/IO/mitkDicomSeriesReader.txx b/Core/Code/IO/mitkDicomSeriesReader.txx index d860ec2410..ec4058551c 100644 --- a/Core/Code/IO/mitkDicomSeriesReader.txx +++ b/Core/Code/IO/mitkDicomSeriesReader.txx @@ -1,435 +1,296 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKDICOMSERIESREADER_TXX_ #define MITKDICOMSERIESREADER_TXX_ #include #include #include #include #include #include #include #include namespace mitk { template Image::Pointer DicomSeriesReader::LoadDICOMByITK4D( std::list& imageBlocks, ImageBlockDescriptor imageBlockDescriptor, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock ) { mitk::Image::Pointer image = mitk::Image::New(); // It is 3D+t! Read it and store into mitk image typedef itk::Image ImageType; typedef itk::ImageSeriesReader ReaderType; typename ReaderType::Pointer reader = ReaderType::New(); reader->SetImageIO(io); reader->ReverseOrderOff(); if (command) { reader->AddObserver(itk::ProgressEvent(), command); } unsigned int act_volume = 1u; if (preLoadedImageBlock.IsNull()) { reader->SetFileNames(imageBlocks.front()); reader->Update(); typename ImageType::Pointer readVolume = reader->GetOutput(); // if we detected that the images are from a tilted gantry acquisition, we need to push some pixels into the right position if (correctTilt) { readVolume = InPlaceFixUpTiltedGeometry( reader->GetOutput(), tiltInfo ); } unsigned int volume_count = imageBlocks.size(); image->InitializeByItk( readVolume.GetPointer(), 1, volume_count); image->SetImportVolume( readVolume->GetBufferPointer(), 0u); FixSpacingInformation( image, imageBlockDescriptor ); } else { StringContainer fakeList; fakeList.push_back( imageBlocks.front().front() ); reader->SetFileNames(fakeList); // only ONE first filename to get MetaDataDictionary image = preLoadedImageBlock; } gdcm::Scanner scanner; ScanForSliceInformation(imageBlockDescriptor.GetFilenames(), scanner); CopyMetaDataToImageProperties( imageBlocks, scanner.GetMappings(), io, imageBlockDescriptor, image); MITK_DEBUG << "Volume dimension: [" << image->GetDimension(0) << ", " << image->GetDimension(1) << ", " << image->GetDimension(2) << ", " << image->GetDimension(3) << "]"; MITK_DEBUG << "Volume spacing: [" << image->GetGeometry()->GetSpacing()[0] << ", " << image->GetGeometry()->GetSpacing()[1] << ", " << image->GetGeometry()->GetSpacing()[2] << "]"; if ( preLoadedImageBlock.IsNull() ) { for (std::list::iterator df_it = ++imageBlocks.begin(); df_it != imageBlocks.end(); ++df_it) { reader->SetFileNames(*df_it); reader->Update(); typename ImageType::Pointer readVolume = reader->GetOutput(); if (correctTilt) { readVolume = InPlaceFixUpTiltedGeometry( reader->GetOutput(), tiltInfo ); } image->SetImportVolume(readVolume->GetBufferPointer(), act_volume++); } } return image; } template Image::Pointer DicomSeriesReader::LoadDICOMByITK( const StringContainer& filenames, bool correctTilt, const GantryTiltInformation& tiltInfo, DcmIoType::Pointer& io, CallbackCommand* command, Image::Pointer preLoadedImageBlock ) { /******** Normal Case, 3D (also for GDCM < 2 usable) ***************/ mitk::Image::Pointer image = mitk::Image::New(); typedef itk::Image ImageType; typedef itk::ImageSeriesReader ReaderType; io = DcmIoType::New(); typename ReaderType::Pointer reader = ReaderType::New(); reader->SetImageIO(io); reader->ReverseOrderOff(); if (command) { reader->AddObserver(itk::ProgressEvent(), command); } if (preLoadedImageBlock.IsNull()) { reader->SetFileNames(filenames); reader->Update(); typename ImageType::Pointer readVolume = reader->GetOutput(); // if we detected that the images are from a tilted gantry acquisition, we need to push some pixels into the right position if (correctTilt) { readVolume = InPlaceFixUpTiltedGeometry( reader->GetOutput(), tiltInfo ); } image->InitializeByItk(readVolume.GetPointer()); image->SetImportVolume(readVolume->GetBufferPointer()); } else { image = preLoadedImageBlock; StringContainer fakeList; fakeList.push_back( filenames.front() ); reader->SetFileNames( fakeList ); // we always need to load at least one file to get the MetaDataDictionary reader->Update(); } MITK_DEBUG << "Volume dimension: [" << image->GetDimension(0) << ", " << image->GetDimension(1) << ", " << image->GetDimension(2) << "]"; MITK_DEBUG << "Volume spacing: [" << image->GetGeometry()->GetSpacing()[0] << ", " << image->GetGeometry()->GetSpacing()[1] << ", " << image->GetGeometry()->GetSpacing()[2] << "]"; return image; } -void -DicomSeriesReader::ScanForSliceInformation(const StringContainer &filenames, gdcm::Scanner& scanner) -{ - const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); //Image position (Patient) - scanner.AddTag(tagImagePositionPatient); - - const gdcm::Tag tagSeriesInstanceUID(0x0020, 0x000e); // Series Instance UID - scanner.AddTag(tagSeriesInstanceUID); - - const gdcm::Tag tagImageOrientation(0x0020,0x0037); //Image orientation - scanner.AddTag(tagImageOrientation); - - const gdcm::Tag tagSliceLocation(0x0020, 0x1041); // slice location - scanner.AddTag( tagSliceLocation ); - - const gdcm::Tag tagInstanceNumber(0x0020, 0x0013); // (image) instance number - scanner.AddTag( tagInstanceNumber ); - - const gdcm::Tag tagSOPInstanceNumber(0x0008, 0x0018); // SOP instance number - scanner.AddTag( tagSOPInstanceNumber ); - - const gdcm::Tag tagPixelSpacing(0x0028, 0x0030); // Pixel Spacing - scanner.AddTag( tagPixelSpacing ); - - const gdcm::Tag tagImagerPixelSpacing(0x0018, 0x1164); // Imager Pixel Spacing - scanner.AddTag( tagImagerPixelSpacing ); - - const gdcm::Tag tagModality(0x0008, 0x0060); // Modality - scanner.AddTag( tagModality ); - - const gdcm::Tag tagSOPClassUID(0x0008, 0x0016); // SOP Class UID - scanner.AddTag( tagSOPClassUID ); - - const gdcm::Tag tagNumberOfFrames(0x0028, 0x0008); // number of frames - scanner.AddTag( tagNumberOfFrames ); - - scanner.Scan(filenames); // make available image information for each file -} - -std::list -DicomSeriesReader::SortIntoBlocksFor3DplusT( - const StringContainer& presortedFilenames, - const gdcm::Scanner::MappingType& tagValueMappings, - bool /*sort*/, - bool& canLoadAs4D ) -{ - std::list imageBlocks; - - // ignore sort request, because most likely re-sorting is now needed due to changes in GetSeries(bug #8022) - StringContainer sorted_filenames = DicomSeriesReader::SortSeriesSlices(presortedFilenames); - - std::string firstPosition; - unsigned int numberOfBlocks(0); // number of 3D image blocks - - static const gdcm::Tag tagImagePositionPatient(0x0020,0x0032); //Image position (Patient) - - // loop files to determine number of image blocks - for (StringContainer::const_iterator fileIter = sorted_filenames.begin(); - fileIter != sorted_filenames.end(); - ++fileIter) - { - gdcm::Scanner::TagToValue tagToValueMap = tagValueMappings.find( fileIter->c_str() )->second; - - if(tagToValueMap.find(tagImagePositionPatient) == tagToValueMap.end()) - { - // we expect to get images w/ missing position information ONLY as separated blocks. - assert( presortedFilenames.size() == 1 ); - numberOfBlocks = 1; - break; - } - - std::string position = tagToValueMap.find(tagImagePositionPatient)->second; - MITK_DEBUG << " " << *fileIter << " at " << position; - if (firstPosition.empty()) - { - firstPosition = position; - } - - if ( position == firstPosition ) - { - ++numberOfBlocks; - } - else - { - break; // enough information to know the number of image blocks - } - } - - MITK_DEBUG << " ==> Assuming " << numberOfBlocks << " time steps"; - - if (numberOfBlocks == 0) return imageBlocks; // only possible if called with no files - - - // loop files to sort them into image blocks - unsigned int numberOfExpectedSlices(0); - for (unsigned int block = 0; block < numberOfBlocks; ++block) - { - StringContainer filesOfCurrentBlock; - - for ( StringContainer::const_iterator fileIter = sorted_filenames.begin() + block; - fileIter != sorted_filenames.end(); - //fileIter += numberOfBlocks) // TODO shouldn't this work? give invalid iterators on first attempts - ) - { - filesOfCurrentBlock.push_back( *fileIter ); - for (unsigned int b = 0; b < numberOfBlocks; ++b) - { - if (fileIter != sorted_filenames.end()) - ++fileIter; - } - } - - imageBlocks.push_back(filesOfCurrentBlock); - - if (block == 0) - { - numberOfExpectedSlices = filesOfCurrentBlock.size(); - } - else - { - if (filesOfCurrentBlock.size() != numberOfExpectedSlices) - { - MITK_WARN << "DicomSeriesReader expected " << numberOfBlocks - << " image blocks of " - << numberOfExpectedSlices - << " images each. Block " - << block - << " got " - << filesOfCurrentBlock.size() - << " instead. Cannot load this as 3D+t"; // TODO implement recovery (load as many slices 3D+t as much as possible) - canLoadAs4D = false; - } - } - } - - return imageBlocks; -} - template typename ImageType::Pointer DicomSeriesReader::InPlaceFixUpTiltedGeometry( ImageType* input, const GantryTiltInformation& tiltInfo ) { typedef itk::ResampleImageFilter ResampleFilterType; typename ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput( input ); /* Transform for a point is - transform from actual position to index coordinates - apply a shear that undoes the gantry tilt - transform back into world coordinates Anybody who does this in a simpler way: don't forget to write up how and why your solution works */ typedef itk::ScalableAffineTransform< double, ImageType::ImageDimension > TransformType; typename TransformType::Pointer transformShear = TransformType::New(); /** - apply a shear and spacing correction to the image block that corrects the ITK reader's error - ITK ignores the shear and loads slices into an orthogonal volume - ITK calculates the spacing from the origin distance, which is more than the actual spacing with gantry tilt images - to undo the effect - we have calculated some information in tiltInfo: - the shift in Y direction that is added with each additional slice is the most important information - the Y-shift is calculated in mm world coordinates - we apply a shearing transformation to the ITK-read image volume - to do this locally, - we transform the image volume back to origin and "normal" orientation by applying the inverse of its transform (this brings us into the image's "index coordinate" system) - we apply a shear with the Y-shift factor put into a unit transform at row 1, col 2 - we transform the image volume back to its actual position (from index to world coordinates) - we lastly apply modify the image spacing in z direction by replacing this number with the correctly calulcated inter-slice distance */ ScalarType factor = tiltInfo.GetMatrixCoefficientForCorrectionInWorldCoordinates() / input->GetSpacing()[1]; // row 1, column 2 corrects shear in parallel to Y axis, proportional to distance in Z direction transformShear->Shear( 1, 2, factor ); typename TransformType::Pointer imageIndexToWorld = TransformType::New(); imageIndexToWorld->SetOffset( input->GetOrigin().GetVectorFromOrigin() ); typename TransformType::MatrixType indexToWorldMatrix; indexToWorldMatrix = input->GetDirection(); typename ImageType::DirectionType scale; for ( unsigned int i = 0; i < ImageType::ImageDimension; i++ ) { scale[i][i] = input->GetSpacing()[i]; } indexToWorldMatrix *= scale; imageIndexToWorld->SetMatrix( indexToWorldMatrix ); typename TransformType::Pointer imageWorldToIndex = TransformType::New(); imageIndexToWorld->GetInverse( imageWorldToIndex ); typename TransformType::Pointer gantryTiltCorrection = TransformType::New(); gantryTiltCorrection->Compose( imageWorldToIndex ); gantryTiltCorrection->Compose( transformShear ); gantryTiltCorrection->Compose( imageIndexToWorld ); resampler->SetTransform( gantryTiltCorrection ); typedef itk::LinearInterpolateImageFunction< ImageType, double > InterpolatorType; typename InterpolatorType::Pointer interpolator = InterpolatorType::New(); resampler->SetInterpolator( interpolator ); /* This would be the right place to invent a meaningful value for positions outside of the image. For CT, HU -1000 might be meaningful, but a general solution seems not possible. Even for CT, -1000 would only look natural for many not all images. */ // TODO use (0028,0120) Pixel Padding Value if present resampler->SetDefaultPixelValue( itk::NumericTraits< typename ImageType::PixelType >::min() ); // adjust size in Y direction! (maybe just transform the outer last pixel to see how much space we would need resampler->SetOutputParametersFromImage( input ); // we basically need the same image again, just sheared // if tilt positive, then we need additional pixels BELOW origin, otherwise we need pixels behind the end of the block // in any case we need more size to accomodate shifted slices typename ImageType::SizeType largerSize = resampler->GetSize(); // now the resampler already holds the input image's size. largerSize[1] += static_cast(tiltInfo.GetTiltCorrectedAdditionalSize() / input->GetSpacing()[1]+ 2.0); resampler->SetSize( largerSize ); // in SOME cases this additional size is below/behind origin if ( tiltInfo.GetMatrixCoefficientForCorrectionInWorldCoordinates() > 0.0 ) { typename ImageType::DirectionType imageDirection = input->GetDirection(); Vector3D yDirection; yDirection[0] = imageDirection[0][1]; yDirection[1] = imageDirection[1][1]; yDirection[2] = imageDirection[2][1]; yDirection.Normalize(); typename ImageType::PointType shiftedOrigin; shiftedOrigin = input->GetOrigin(); // add some pixels to make everything fit shiftedOrigin[0] -= yDirection[0] * (tiltInfo.GetTiltCorrectedAdditionalSize() + 1.0 * input->GetSpacing()[1]); shiftedOrigin[1] -= yDirection[1] * (tiltInfo.GetTiltCorrectedAdditionalSize() + 1.0 * input->GetSpacing()[1]); shiftedOrigin[2] -= yDirection[2] * (tiltInfo.GetTiltCorrectedAdditionalSize() + 1.0 * input->GetSpacing()[1]); resampler->SetOutputOrigin( shiftedOrigin ); } resampler->Update(); typename ImageType::Pointer result = resampler->GetOutput(); // ImageSeriesReader calculates z spacing as the distance between the first two origins. // This is not correct in case of gantry tilt, so we set our calculated spacing. typename ImageType::SpacingType correctedSpacing = result->GetSpacing(); correctedSpacing[2] = tiltInfo.GetRealZSpacing(); result->SetSpacing( correctedSpacing ); return result; } - } #endif