diff --git a/Plugins/org.mitk.gui.qt.measurementtoolbox/documentation/UserManual/QmitkMeasurement.dox b/Plugins/org.mitk.gui.qt.measurementtoolbox/documentation/UserManual/QmitkMeasurement.dox index 03ddcf8678..613a057372 100644 --- a/Plugins/org.mitk.gui.qt.measurementtoolbox/documentation/UserManual/QmitkMeasurement.dox +++ b/Plugins/org.mitk.gui.qt.measurementtoolbox/documentation/UserManual/QmitkMeasurement.dox @@ -1,120 +1,126 @@ /** \page org_mitk_views_measurement The Measurement View \imageMacro{QmitkMeasurementToolbox_MeasurementIcon.png,"Icon of the Measurement View",2.00} \section QmitkMeasurementUserManualOverview Overview -The Measurement view enables the user to interact with 2D images or single slices of 3D image stacks and planar figure data types. It allows to measure distances, angels, pathes and several geometric figures on a dataset. +The Measurement view enables the user to interact with 2D images or single slices of 3D image stacks and planar figure data types. It allows to measure distances, angels, pathes and several geometric figures on a dataset. \tableofcontents The workflow to use this view is: \imageMacro{QmitkMeasurementToolbox_Workflow.png,"",16.00} The workflow is repeatedly useable with the same or different measurement figures, which are correlated to the choosen image and can be saved together with it for future use. On pressing the Measurement icon (see picture below the page title) in the view button line the basic appearance of the view is as follws. \imageMacro{QmitkMeasurementToolbox_BasicScreenEdited.jpg,"",16.00} The standard working plane is "Axial" but the other standard viewplanes ("Saggital" and "Coronal") are also valid for measurements. To swap between the view planes refer to the application user manual. \section QmitkMeasurementUserManualFeatures Features -The view as it is depicted below offers the following features in the order of apperance on the image from top to bottom: +The view as it is depicted below offers the following features in the order of apperance on the image from top to bottom: + \imageMacro{QmitkMeasurementToolbox_MeasurementView.jpg,"",7.60} + The first information is the selected image's name (here: DICOM-MRI-Image) followed by the measurement figures button line with the seven measurement figures. From left to right the buttons are connected with the following functions: \subsection SubOne Draw Line Draws a line between two set points and returns the distance between these points. \subsection SubTwo Draw Path Draws a path between several set points (two and more) and calculates the circumference, that is all line's length summed up. Add the final point by double left click. \subsection SubThree Draw Angle -Draws two lines from three set points connected in the second set point and returns the inner angle at the second point. +Draws two lines from three set points connected in the second set point and returns the inner angle at the second point. \subsection SubFour Draw Four Point Angle Draws two lines that may but must not intersect from four set points. The returned angle is the one depicted in the icon. \subsection SubFive Draw Circle Draws a circle by setting two points, whereas the first set point is the center and the second the radius of the circle. The measured values are the radius and the included area. \subsection SubSix Draw Rectangle -Draws a rectangle by setting two points at the opposing edges of the rectangle starting with the upper left edge. The measured values are the circumference and the included area. +Draws a rectangle by setting two points at the opposing edges of the rectangle starting with the upper left edge. The measured values are the circumference and the included area. \subsection SubSeven Draw Polygon Draws a polygon by setting three or more points. The measured values are the circumference and the included area. Add the final point by double left click. -Below the buttonline the statistics window is situated, it displays the results of the actual measurements from the selected measurement figures. The content of the statistics window can be copied to the clipboard with the correspondig button for further use in a table calculation programm (e.g. Open Office Calc etc.). +Below the buttonline the statistics window is situated, it displays the results of the actual measurements from the selected measurement figures. The content of the statistics window can be copied to the clipboard with the correspondig button for further use in a table calculation programm (e.g. Open Office Calc etc.). \imageMacro{QmitkMeasurementToolbox_ImageProcessed.jpg,"",7.56} The last row contains again a button line to swap from the measurement perspective (activated in the image) to other supported MITK perspectives. - + \section QmitkMeasurementUserManualUsage Usage This Section is subdivided into four subsections:
  1. Add an image
  2. Work with measurement figures
  3. Save the image with measurement information
  4. Remove measurement figures or image
Let's start with subsection 1 \subsection One Add an image -There are two possible ways to add an image to the programm. One is to grap the image with left mouse click from your prefered file browser and simply drag&drop it to the View Plane field. The other way is to use the +There are two possible ways to add an image to the programm. One is to grap the image with left mouse click from your prefered file browser and simply drag&drop it to the View Plane field. The other way is to use the \imageMacro{QmitkMeasurementToolbox_OpenButton.png,"",2.01} -button in the upper left corner of the application. A dialog window appears showing the file tree of the computer. Navigate to the wanted file and select it with the left mouse click. Afterwards just use the dialog's open button. +button in the upper left corner of the application. A dialog window appears showing the file tree of the computer. Navigate to the wanted file and select it with the left mouse click. Afterwards just use the dialog's open button. The wanted image appears in the View Plane and in the Data Manager the images name appears as a new tree node. Now the image is loaded it can be adjusted in the usual way ( zoom in/out: right mouse button + moving the mouse up and down, moving the image: press mouse wheel and move the mouse to the wished direction, scroll through the slices( only on 3D images): scroll mouse wheel up and down). \imageMacro{QmitkMeasurementToolbox_ImageLoadedScreen.jpg,"",16.00} -After the image is loaded the image's name appears in the Data Manager. By left-clicking on the image name the buttonline becomes activated. +After the image is loaded the image's name appears in the Data Manager. By left-clicking on the image name the buttonline becomes activated. \subsection Two Work with measurement figures -The measurement view comes with seven measurement figures(see picture below), that can be applied to the images. +The measurement view comes with seven measurement figures(see picture below), that can be applied to the images. + \imageMacro{QmitkMeasurementToolbox_MeasurementFigureButtonLine.jpg,"",7.22} -The results of the measurement with each of these figures is shown in the statistics window and in the lower right corner of the view plane. + +The results of the measurement with each of these figures is shown in the statistics window and in the lower right corner of the view plane. + \imageMacro{QmitkMeasurementToolbox_ImageProcessedScreen.jpg,"",6.96} + When applying more then one measurement figure to the image the actual measurement figure is depicted in red and the displayed values belong to this measurement figure. All measurement figures become part of the Data Manager as a node of the image tree. \subsection Three Save the image with measurement information After applying the wanted measurement figures the entire scene consisting of the image and the measurement figures can be saved for future use. Therefore just click the right mouse button when over the image item in the Data Manager and choose the item "Save" in the opening item list. Following to that a save dialog appears where the path to the save folder can be set. Afterwards just accept your choice with the save button. \subsection Four Remove measurement figures or image If the single measurement figures or the image is not needed any longer, it can be removed solely or as an entire group. The image can't be removed without simultaneously removing all the dependent measurement figures that belong to the image tree in the Data Manager. To remove just select the wanted items in the data manager list by left-click on it or if several items wanted to be removed left click on all wanted by simultaneously holding the ctrl-button pressed. For more detailed usage of the save/remove functionality refer to the Data Manager User Manual. ",16.00} */ diff --git a/Plugins/org.mitk.gui.qt.toftutorial/documentation/Manual/Manual.dox b/Plugins/org.mitk.gui.qt.toftutorial/documentation/Manual/Manual.dox index 5154385490..2b5d2dda30 100644 --- a/Plugins/org.mitk.gui.qt.toftutorial/documentation/Manual/Manual.dox +++ b/Plugins/org.mitk.gui.qt.toftutorial/documentation/Manual/Manual.dox @@ -1,13 +1,13 @@ /** \page org_toftutorial ToFTutorial -\imageMacro{icon.png,"Icon of ToFTutorial",16} +\imageMacro{icon.png,"Icon of ToFTutorial",2} Available sections: - \ref ToFTutorialOverview \section ToFTutorialOverview This is the description for the ToFTutorial. */ diff --git a/Plugins/org.mitk.gui.qt.volumevisualization/documentation/UserManual/QmitkVolumeVisualization.dox b/Plugins/org.mitk.gui.qt.volumevisualization/documentation/UserManual/QmitkVolumeVisualization.dox index 5276bd51a8..87b5e157ab 100644 --- a/Plugins/org.mitk.gui.qt.volumevisualization/documentation/UserManual/QmitkVolumeVisualization.dox +++ b/Plugins/org.mitk.gui.qt.volumevisualization/documentation/UserManual/QmitkVolumeVisualization.dox @@ -1,143 +1,151 @@ /** \page org_mitk_views_volumevisualization The Volume Visualization Plugin \imageMacro{QmitkVolumeVisualization_Icon.png,"Icon of the Volume Visualization Plugin",2.00} \tableofcontents \section QVV_Overview Overview The Volume Visualization Plugin is a basic tool for visualizing three dimensional medical images. MITK provides generic transfer function presets for medical CT data. These functions, that map the gray-value to color and opacity, can be interactively edited. Additionally, there are controls to quickly generate common used transfer function shapes like the threshold and bell curve to help identify a range of grey-values. \imageMacro{QmitkVolumeVisualization_Overview.png,"",16.00} \section QVV_EnableVRPage Enable Volume Rendering \subsection QVV_LoadingImage Loading an image into the application Load an image into the application by Volume Visualization imposes following restrictions on images: \subsection QVV_EnableVR Enable Volumerendering \imageMacro{QmitkVolumeVisualization_Checkboxen.png,"",8.21} Select an image in datamanager and click on the checkbox left of "Volumerendering". Please be patient, while the image is prepared for rendering, which can take up to a half minute. \subsection QVV_LODGPU The LOD & GPU checkboxes Volume Rendering requires a lot of computing resources including processor, memory and graphics card. To run volume rendering on smaller platforms, enable the LOD checkbox (level-of-detail rendering). Level-of-detail first renders a lower quality preview to increase interactivity. If the user stops to interact a normal quality rendering is issued. The GPU checkbox tries to use computing resources on the graphics card to accelerate volume rendering. It requires a powerful graphics card and OpenGL hardware support for shaders, but achieves much higher frame rates than software-rendering. \section QVV_PresetPage Applying premade presets \subsection QVV_Preset Internal presets There are some internal presets given, that can be used with normal CT data (given in Houndsfield units). A large set of medical data has been tested with that presets, but it may not suit on some special cases. Click on the "Preset" tab for using internal or custom presets. \imageMacro{QmitkVolumeVisualization_InternalPresets.png,"",8.30} \subsection QVV_CustomPreset Saving and loading custom presets After creating or editing a transferfunction (see \ref QVV_Editing or \ref QVV_ThresholdBell), the custom transferfunction can be stored and later retrieved on the filesystem. Click "Save" (respectively "Load") button to save (load) the threshold-, color- and gradient function combined in a single .xml file. \section QVV_ThresholdBell Interactively create transferfunctions Beside the possibility to directly edit the transferfunctions (\ref QVV_Editing), a one-click generation of two commonly known shapes is given. Both generators have two parameters, that can be modified by first clicking on the cross and then moving the mouse up/down and left/right. The first parameter "center" (controlled by horizontal movement of the mouse) specifies the gravalue where the center of the shape will be located. The second parameter "width" (controlled by vertical movement of the mouse) specifies the width (or steepness) of the shape. \subsection Threshold Click on the "Threshold" tab to active the threshold function generator. + \imageMacro{QmitkVolumeVisualization_Threshold.png,"",8.21} + A threshold shape begins with zero and raises to one across the "center" parameter. Lower widths results in steeper threshold functions. \subsection Bell Click on the "Bell" tab to active the threshold function generator. + \imageMacro{QmitkVolumeVisualization_Bell.png,"",8.23} + A threshold shape begins with zero and raises to one at the "center" parameter and the lowers agains to zero. The "width" parameter correspondens to the width of the bell. \section QVV_Editing Customize transferfunctions in detail \subsection QVV_Navigate Choosing grayvalue interval to edit \imageMacro{QmitkVolumeVisualization_Slider.png,"",8.23} + To navigate across the grayvalue range or to zoom in some ranges use the "range"-slider. All three function editors have in common following: There are three transferfunctions to customize: \subsection QVV_GO Grayvalue -> Opacity \imageMacro{QmitkVolumeVisualization_Opacity.png,"grayvalues will be mapped to opacity.",8.04} + An opacity of 0 means total transparent, an opacity of 1 means total opaque. \subsection QVV_GC Grayvalue -> Color \imageMacro{QmitkVolumeVisualization_Color.png,"grayvalues will be mapped to color.",8.81} + The color transferfunction editor also allows by double-clicking a point to change its color. \subsection QVV_GGO Grayvalue and Gradient -> Opacity \imageMacro{QmitkVolumeVisualization_Gradient.png,"",8.85} + Here the influence of the gradient is controllable at specific grayvalues. */