diff --git a/Modules/BoundingShape/src/Rendering/mitkBoundingShapeVtkMapper2D.cpp b/Modules/BoundingShape/src/Rendering/mitkBoundingShapeVtkMapper2D.cpp index 9898853add..d90db09654 100644 --- a/Modules/BoundingShape/src/Rendering/mitkBoundingShapeVtkMapper2D.cpp +++ b/Modules/BoundingShape/src/Rendering/mitkBoundingShapeVtkMapper2D.cpp @@ -1,468 +1,471 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for detailocalStorage. ===================================================================*/ #include "../DataManagement/mitkBoundingShapeUtil.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static vtkSmartPointer CreateHandle() { auto handle = vtkSmartPointer::New(); handle->SetPhiResolution(8); handle->SetThetaResolution(16); return handle; } namespace mitk { class BoundingShapeVtkMapper2D::Impl { public: Impl() { Point3D initialPoint; initialPoint.Fill(0); for (int i = 0; i < 6; ++i) HandlePropertyList.push_back(Handle(initialPoint, i, GetHandleIndices(i))); } std::vector HandlePropertyList; mitk::LocalStorageHandler LocalStorageHandler; }; } mitk::BoundingShapeVtkMapper2D::LocalStorage::LocalStorage() : m_Actor(vtkSmartPointer::New()), m_HandleActor(vtkSmartPointer::New()), m_SelectedHandleActor(vtkSmartPointer::New()), m_Mapper(vtkSmartPointer::New()), m_HandleMapper(vtkSmartPointer::New()), m_SelectedHandleMapper(vtkSmartPointer::New()), m_Cutter(vtkSmartPointer::New()), m_CuttingPlane(vtkSmartPointer::New()), m_LastSliceNumber(0), m_PropAssembly(vtkSmartPointer::New()), m_ZoomFactor(1.0) { m_Actor->SetMapper(m_Mapper); m_Actor->GetProperty()->SetOpacity(0.3); m_Actor->VisibilityOn(); m_HandleActor->SetMapper(m_HandleMapper); m_HandleActor->VisibilityOn(); m_SelectedHandleActor->VisibilityOn(); m_SelectedHandleActor->GetProperty()->SetColor(0, 1.0, 0); m_SelectedHandleActor->SetMapper(m_SelectedHandleMapper); vtkCoordinate *tcoord = vtkCoordinate::New(); tcoord->SetCoordinateSystemToWorld(); m_SelectedHandleMapper->SetTransformCoordinate(tcoord); tcoord->Delete(); m_Cutter->SetCutFunction(m_CuttingPlane); for (int i = 0; i < 6; ++i) m_Handles.push_back(CreateHandle()); m_PropAssembly->AddPart(m_Actor); m_PropAssembly->AddPart(m_HandleActor); m_PropAssembly->VisibilityOn(); } bool mitk::BoundingShapeVtkMapper2D::LocalStorage::IsUpdateRequired(mitk::BaseRenderer *renderer, mitk::Mapper *mapper, mitk::DataNode *dataNode) { const mitk::PlaneGeometry *worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); if (m_LastGenerateDataTime < worldGeometry->GetMTime()) return true; unsigned int sliceNumber = renderer->GetSlice(); - + if (m_LastSliceNumber != sliceNumber) return true; if (mapper && m_LastGenerateDataTime < mapper->GetMTime()) return true; if (dataNode) { if (m_LastGenerateDataTime < dataNode->GetMTime()) return true; mitk::BaseData *data = dataNode->GetData(); if (data && m_LastGenerateDataTime < data->GetMTime()) return true; } return false; } mitk::BoundingShapeVtkMapper2D::LocalStorage::~LocalStorage() { } void mitk::BoundingShapeVtkMapper2D::Update(mitk::BaseRenderer *renderer) { this->GenerateDataForRenderer(renderer); } void mitk::BoundingShapeVtkMapper2D::SetDefaultProperties(DataNode *node, BaseRenderer *renderer, bool overwrite) { Superclass::SetDefaultProperties(node, renderer, overwrite); } mitk::BoundingShapeVtkMapper2D::BoundingShapeVtkMapper2D() : m_Impl(new Impl) { } mitk::BoundingShapeVtkMapper2D::~BoundingShapeVtkMapper2D() { delete m_Impl; } void mitk::BoundingShapeVtkMapper2D::GenerateDataForRenderer(BaseRenderer *renderer) { const DataNode::Pointer node = GetDataNode(); if (node == nullptr) return; LocalStorage *localStorage = m_Impl->LocalStorageHandler.GetLocalStorage(renderer); // either update if GeometryData was modified or if the zooming was performed bool needGenerateData = localStorage->IsUpdateRequired( renderer, this, GetDataNode()); // true; // localStorage->GetLastGenerateDataTime() < node->GetMTime() || // localStorage->GetLastGenerateDataTime() < node->GetData()->GetMTime(); // //localStorage->IsGenerateDataRequired(renderer, this, GetDataNode()); double scale = renderer->GetScaleFactorMMPerDisplayUnit(); if (std::abs(scale - localStorage->m_ZoomFactor) > 0.001) { localStorage->m_ZoomFactor = scale; needGenerateData = true; } if (needGenerateData) { + bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if (!visible) { localStorage->m_Actor->VisibilityOff(); return; } GeometryData::Pointer shape = static_cast(node->GetData()); if (shape == nullptr) return; mitk::BaseGeometry::Pointer geometry = shape->GetGeometry(); mitk::Vector3D spacing = geometry->GetSpacing(); // calculate cornerpoints and extent from geometry with visualization offset std::vector cornerPoints = GetCornerPoints(geometry, true); Point3D p0 = cornerPoints[0]; Point3D p1 = cornerPoints[1]; Point3D p2 = cornerPoints[2]; Point3D p4 = cornerPoints[4]; Point3D extent; extent[0] = sqrt((p0[0] - p4[0]) * (p0[0] - p4[0]) + (p0[1] - p4[1]) * (p0[1] - p4[1]) + (p0[2] - p4[2]) * (p0[2] - p4[2])); extent[1] = sqrt((p0[0] - p2[0]) * (p0[0] - p2[0]) + (p0[1] - p2[1]) * (p0[1] - p2[1]) + (p0[2] - p2[2]) * (p0[2] - p2[2])); extent[2] = sqrt((p0[0] - p1[0]) * (p0[0] - p1[0]) + (p0[1] - p1[1]) * (p0[1] - p1[1]) + (p0[2] - p1[2]) * (p0[2] - p1[2])); // calculate center based on half way of the distance between two opposing cornerpoints mitk::Point3D center = CalcAvgPoint(cornerPoints[7], cornerPoints[0]); if (m_Impl->HandlePropertyList.size() == 6) { // set handle positions Point3D pointLeft = CalcAvgPoint(cornerPoints[5], cornerPoints[6]); Point3D pointRight = CalcAvgPoint(cornerPoints[1], cornerPoints[2]); Point3D pointTop = CalcAvgPoint(cornerPoints[0], cornerPoints[6]); Point3D pointBottom = CalcAvgPoint(cornerPoints[7], cornerPoints[1]); Point3D pointFront = CalcAvgPoint(cornerPoints[2], cornerPoints[7]); Point3D pointBack = CalcAvgPoint(cornerPoints[4], cornerPoints[1]); m_Impl->HandlePropertyList[0].SetPosition(pointLeft); m_Impl->HandlePropertyList[1].SetPosition(pointRight); m_Impl->HandlePropertyList[2].SetPosition(pointTop); m_Impl->HandlePropertyList[3].SetPosition(pointBottom); m_Impl->HandlePropertyList[4].SetPosition(pointFront); m_Impl->HandlePropertyList[5].SetPosition(pointBack); } // caculate face normals - double result0[3], result1[3], result2[3]; + double cubeFaceNormal0[3], cubeFaceNormal1[3], cubeFaceNormal2[3]; double a[3], b[3]; a[0] = (cornerPoints[5][0] - cornerPoints[6][0]); a[1] = (cornerPoints[5][1] - cornerPoints[6][1]); a[2] = (cornerPoints[5][2] - cornerPoints[6][2]); b[0] = (cornerPoints[5][0] - cornerPoints[4][0]); b[1] = (cornerPoints[5][1] - cornerPoints[4][1]); b[2] = (cornerPoints[5][2] - cornerPoints[4][2]); - vtkMath::Cross(a, b, result0); + vtkMath::Cross(a, b, cubeFaceNormal0); a[0] = (cornerPoints[0][0] - cornerPoints[6][0]); a[1] = (cornerPoints[0][1] - cornerPoints[6][1]); a[2] = (cornerPoints[0][2] - cornerPoints[6][2]); b[0] = (cornerPoints[0][0] - cornerPoints[2][0]); b[1] = (cornerPoints[0][1] - cornerPoints[2][1]); b[2] = (cornerPoints[0][2] - cornerPoints[2][2]); - vtkMath::Cross(a, b, result1); + vtkMath::Cross(a, b, cubeFaceNormal1); a[0] = (cornerPoints[2][0] - cornerPoints[7][0]); a[1] = (cornerPoints[2][1] - cornerPoints[7][1]); a[2] = (cornerPoints[2][2] - cornerPoints[7][2]); b[0] = (cornerPoints[2][0] - cornerPoints[6][0]); b[1] = (cornerPoints[2][1] - cornerPoints[6][1]); b[2] = (cornerPoints[2][2] - cornerPoints[6][2]); - vtkMath::Cross(a, b, result2); + vtkMath::Cross(a, b, cubeFaceNormal2); - vtkMath::Normalize(result0); - vtkMath::Normalize(result1); - vtkMath::Normalize(result2); + vtkMath::Normalize(cubeFaceNormal0); + vtkMath::Normalize(cubeFaceNormal1); + vtkMath::Normalize(cubeFaceNormal2); // create cube for rendering bounding box auto cube = vtkCubeSource::New(); cube->SetXLength(extent[0] / spacing[0]); cube->SetYLength(extent[1] / spacing[1]); cube->SetZLength(extent[2] / spacing[2]); // calculates translation based on offset+extent not on the transformation matrix vtkSmartPointer imageTransform = geometry->GetVtkTransform()->GetMatrix(); auto translation = vtkSmartPointer::New(); translation->Translate(center[0] - imageTransform->GetElement(0, 3), center[1] - imageTransform->GetElement(1, 3), center[2] - imageTransform->GetElement(2, 3)); auto transform = vtkSmartPointer::New(); transform->SetMatrix(imageTransform); transform->PostMultiply(); transform->Concatenate(translation); transform->Update(); cube->Update(); auto transformFilter = vtkSmartPointer::New(); transformFilter->SetInputData(cube->GetOutput()); transformFilter->SetTransform(transform); transformFilter->Update(); cube->Delete(); vtkSmartPointer polydata = transformFilter->GetPolyDataOutput(); if (polydata == nullptr || (polydata->GetNumberOfPoints() < 1)) { localStorage->m_Actor->VisibilityOff(); localStorage->m_HandleActor->VisibilityOff(); localStorage->m_SelectedHandleActor->VisibilityOff(); return; } // estimate current image plane to decide whether the cube is visible or not const PlaneGeometry *planeGeometry = renderer->GetCurrentWorldPlaneGeometry(); if ((planeGeometry == nullptr) || (!planeGeometry->IsValid()) || (!planeGeometry->HasReferenceGeometry())) return; double origin[3]; origin[0] = planeGeometry->GetOrigin()[0]; origin[1] = planeGeometry->GetOrigin()[1]; origin[2] = planeGeometry->GetOrigin()[2]; - double normal[3]; - normal[0] = planeGeometry->GetNormal()[0]; - normal[1] = planeGeometry->GetNormal()[1]; - normal[2] = planeGeometry->GetNormal()[2]; + double displayPlaneNormal[3]; + displayPlaneNormal[0] = planeGeometry->GetNormal()[0]; + displayPlaneNormal[1] = planeGeometry->GetNormal()[1]; + displayPlaneNormal[2] = planeGeometry->GetNormal()[2]; + vtkMath::Normalize(displayPlaneNormal); - // MITK_INFO << "normal1 " << normal[0] << " " << normal[1] << " " << normal[2]; localStorage->m_CuttingPlane->SetOrigin(origin); - localStorage->m_CuttingPlane->SetNormal(normal); + localStorage->m_CuttingPlane->SetNormal(displayPlaneNormal); // add cube polydata to local storage localStorage->m_Cutter->SetInputData(polydata); localStorage->m_Cutter->SetGenerateCutScalars(1); localStorage->m_Cutter->Update(); if (localStorage->m_PropAssembly->GetParts()->IsItemPresent(localStorage->m_HandleActor)) localStorage->m_PropAssembly->RemovePart(localStorage->m_HandleActor); if (localStorage->m_PropAssembly->GetParts()->IsItemPresent(localStorage->m_Actor)) localStorage->m_PropAssembly->RemovePart(localStorage->m_Actor); vtkCoordinate *tcoord = vtkCoordinate::New(); tcoord->SetCoordinateSystemToWorld(); localStorage->m_HandleMapper->SetTransformCoordinate(tcoord); tcoord->Delete(); if (localStorage->m_Cutter->GetOutput()->GetNumberOfPoints() > 0) // if plane is visible in the renderwindow { mitk::DoubleProperty::Pointer handleSizeProperty = dynamic_cast(this->GetDataNode()->GetProperty("Bounding Shape.Handle Size Factor")); ScalarType initialHandleSize; if (handleSizeProperty != nullptr) initialHandleSize = handleSizeProperty->GetValue(); else initialHandleSize = 1.0 / 40.0; mitk::Point2D displaySize = renderer->GetDisplaySizeInMM(); double handleSize = ((displaySize[0] + displaySize[1]) / 2.0) * initialHandleSize; auto appendPoly = vtkSmartPointer::New(); - unsigned int i = 0; + unsigned int handleIdx = 0; // add handles and their assigned properties to the local storage mitk::IntProperty::Pointer activeHandleId = dynamic_cast(node->GetProperty("Bounding Shape.Active Handle ID")); + double angle0 = std::abs(vtkMath::DegreesFromRadians(vtkMath::AngleBetweenVectors(displayPlaneNormal, cubeFaceNormal0))); + if (angle0 > 179.0) angle0 -= 180.0; + double angle1 = std::abs(vtkMath::DegreesFromRadians(vtkMath::AngleBetweenVectors(displayPlaneNormal, cubeFaceNormal1))); + if (angle1 > 179.0) angle1 -= 180.0; + double angle2 = std::abs(vtkMath::DegreesFromRadians(vtkMath::AngleBetweenVectors(displayPlaneNormal, cubeFaceNormal2))); + if (angle2 > 179.0) angle2 -= 180.0; + bool visible = false; bool selected = false; - for (auto handle : localStorage->m_Handles) + for (auto& handle : localStorage->m_Handles) { - Point3D handleCenter = m_Impl->HandlePropertyList[i].GetPosition(); + Point3D handleCenter = m_Impl->HandlePropertyList[handleIdx].GetPosition(); handle->SetRadius(handleSize); handle->SetCenter(handleCenter[0], handleCenter[1], handleCenter[2]); - vtkMath::Normalize(normal); - double angle = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result0))); - double angle1 = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result1))); - double angle2 = vtkMath::DegreesFromRadians(acos(vtkMath::Dot(normal, result2))); - // show handles only if the corresponding face is aligned to the render window - if ((((std::abs(angle - 0) < 0.001) || (std::abs(angle - 180) < 0.001)) && i != 0 && i != 1) || - (((std::abs(angle1 - 0) < 0.001) || (std::abs(angle1 - 180) < 0.001)) && i != 2 && i != 3) || - (((std::abs(angle2 - 0) < 0.001) || (std::abs(angle2 - 180) < 0.001)) && i != 4 && i != 5)) + if ( (handleIdx != 0 && handleIdx != 1 && std::abs(angle0) < 0.1) || // handles 0 and 1 + (handleIdx != 2 && handleIdx != 3 && std::abs(angle1) < 0.1) || // handles 2 and 3 + (handleIdx != 4 && handleIdx != 5 && std::abs(angle2) < 0.1) ) // handles 4 and 5 { if (activeHandleId == nullptr) { appendPoly->AddInputConnection(handle->GetOutputPort()); } else { - if ((activeHandleId->GetValue() != m_Impl->HandlePropertyList[i].GetIndex())) + if ((activeHandleId->GetValue() != m_Impl->HandlePropertyList[handleIdx].GetIndex())) { appendPoly->AddInputConnection(handle->GetOutputPort()); } else { handle->Update(); localStorage->m_SelectedHandleMapper->SetInputData(handle->GetOutput()); localStorage->m_SelectedHandleActor->VisibilityOn(); selected = true; } } visible = true; } - i++; + ++handleIdx; } if (visible) { appendPoly->Update(); } else { localStorage->m_HandleActor->VisibilityOff(); localStorage->m_SelectedHandleActor->VisibilityOff(); } auto stripper = vtkSmartPointer::New(); stripper->SetInputData(localStorage->m_Cutter->GetOutput()); stripper->Update(); auto cutPolyData = vtkSmartPointer::New(); cutPolyData->SetPoints(stripper->GetOutput()->GetPoints()); cutPolyData->SetPolys(stripper->GetOutput()->GetLines()); localStorage->m_Actor->GetMapper()->SetInputDataObject(cutPolyData); mitk::ColorProperty::Pointer selectedColor = dynamic_cast(node->GetProperty("color")); if (selectedColor != nullptr) { mitk::Color color = selectedColor->GetColor(); localStorage->m_Actor->GetProperty()->SetColor(color[0], color[1], color[2]); } if (activeHandleId != nullptr) { localStorage->m_HandleActor->GetProperty()->SetColor(1, 0, 0); } else { localStorage->m_HandleActor->GetProperty()->SetColor(1, 1, 1); } localStorage->m_HandleActor->GetMapper()->SetInputDataObject(appendPoly->GetOutput()); // add parts to the overall storage localStorage->m_PropAssembly->AddPart(localStorage->m_Actor); localStorage->m_PropAssembly->AddPart(localStorage->m_HandleActor); if (selected) { localStorage->m_PropAssembly->AddPart(localStorage->m_SelectedHandleActor); } localStorage->m_PropAssembly->VisibilityOn(); localStorage->m_Actor->VisibilityOn(); localStorage->m_HandleActor->VisibilityOn(); } else { localStorage->m_PropAssembly->VisibilityOff(); localStorage->m_Actor->VisibilityOff(); localStorage->m_HandleActor->VisibilityOff(); localStorage->m_SelectedHandleActor->VisibilityOff(); localStorage->UpdateGenerateDataTime(); } localStorage->UpdateGenerateDataTime(); } } vtkProp *mitk::BoundingShapeVtkMapper2D::GetVtkProp(BaseRenderer *renderer) { return m_Impl->LocalStorageHandler.GetLocalStorage(renderer)->m_PropAssembly; } void mitk::BoundingShapeVtkMapper2D::ApplyColorAndOpacityProperties(BaseRenderer *, vtkActor *) { }