diff --git a/Core/Code/Rendering/mitkImageVtkMapper2D.cpp b/Core/Code/Rendering/mitkImageVtkMapper2D.cpp index a5881b1e31..5f03646059 100644 --- a/Core/Code/Rendering/mitkImageVtkMapper2D.cpp +++ b/Core/Code/Rendering/mitkImageVtkMapper2D.cpp @@ -1,1229 +1,1290 @@ /*========================================================================= Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ //TODO remove these if possible #include //MITK #include #include #include #include #include #include #include #include #include #include #include #include //MITK Rendering #include "mitkImageVtkMapper2D.h" #include "mitkVtkPropRenderer.h" #include "vtkMitkThickSlicesFilter.h" //VTK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include //ITK #include int mitk::ImageVtkMapper2D::numRenderer = 0; //Number of renderers data is stored for. mitk::ImageVtkMapper2D::ImageVtkMapper2D() { m_VtkBased = true; } mitk::ImageVtkMapper2D::~ImageVtkMapper2D() { this->Clear(); this->InvokeEvent( itk::DeleteEvent() ); //TODO <- what is this doing exactly? } void mitk::ImageVtkMapper2D::AdjustCamera(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //activate parallel projection for 2D renderer->GetVtkRenderer()->GetActiveCamera()->SetParallelProjection(true); const mitk::DisplayGeometry* displayGeometry = renderer->GetDisplayGeometry(); double imageHeightInMM = localStorage->m_ReslicedImage->GetDimensions()[1]; //the height of the current slice in mm double displayHeightInMM = displayGeometry->GetSizeInMM()[1]; //the display height in mm (gets smaller when you zoom in) - double zoomFactor = displayHeightInMM/imageHeightInMM; //determine how much of the image can be displayed +// double zoomFactor = displayHeightInMM/imageHeightInMM; //determine how much of the image can be displayed + double zoomFactor = imageHeightInMM/displayHeightInMM; //determine how much of the image can be displayed Vector2D displayGeometryOriginInMM = displayGeometry->GetOriginInMM(); //top left of the render window Vector2D displayGeometryCenterInMM = displayGeometryOriginInMM + displayGeometry->GetSizeInMM()/2; //center of the render window //Scale the rendered object: //The image is scaled by a single factor, because in an orthographic projection sizes //are preserved (so you cannot scale X and Y axis with different parameters). The //parameter sets the size of the total display-volume. If you set this to the image //height, the image plus a border with the size of the image will be rendered. //Therefore, the size is imageHeightInMM / 2. renderer->GetVtkRenderer()->GetActiveCamera()->SetParallelScale(imageHeightInMM / 2); //zooming with the factor calculated by dividing displayHeight through imegeHeight. The factor is inverse, because the VTK zoom method is working inversely. - renderer->GetVtkRenderer()->GetActiveCamera()->Zoom(1/zoomFactor); + renderer->GetVtkRenderer()->GetActiveCamera()->Zoom(zoomFactor); //the center of the view-plane double viewPlaneCenter[3]; viewPlaneCenter[0] = displayGeometryCenterInMM[0]; viewPlaneCenter[1] = displayGeometryCenterInMM[1]; viewPlaneCenter[2] = 0.0; //the view-plane is located in the XY-plane with Z=0.0 //define which direction is "up" for the ciamera (like default for vtk (0.0, 1.0, 0.0) double cameraUp[3]; cameraUp[0] = 0.0; cameraUp[1] = 1.0; cameraUp[2] = 0.0; //the position of the camera (center[0], center[1], 1000) double cameraPosition[3]; cameraPosition[0] = viewPlaneCenter[0]; cameraPosition[1] = viewPlaneCenter[1]; cameraPosition[2] = viewPlaneCenter[2] + 1000.0; //Reason for 1000 => VTK seems to calculate the clipping planes wrong for Z=1 //set the camera corresponding to the textured plane vtkSmartPointer camera = renderer->GetVtkRenderer()->GetActiveCamera(); if (camera) { camera->SetPosition( cameraPosition ); //set the camera position on the textured plane normal (in our case this is the view plane normal) camera->SetFocalPoint( viewPlaneCenter ); //set the focal point to the center of the textured plane camera->SetViewUp( cameraUp ); //set the view-up for the camera } //reset the clipping range TODO why? really needed if everything is correct? renderer->GetVtkRenderer()->ResetCameraClippingRange(); } //set the two points defining the textured plane according to the dimension and spacing void mitk::ImageVtkMapper2D::GeneratePlane(mitk::BaseRenderer* renderer, mitk::ScalarType spacing[2]) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); //set the origin to (0; 0; 0), because the default origin can be anywhere localStorage->m_Plane->SetOrigin(0.0, 0.0, 0.0); //These two points define the axes of the plane in combination with the origin (0/0/0). //Point 1 is the x-axis and point 2 the y-axis. //Each plane is transformed according to the view (transversal, coronal and saggital) afterwards. localStorage->m_Plane->SetPoint1((localStorage->m_ReslicedImage->GetDimensions()[0])*spacing[0], 0.0, 0.0); localStorage->m_Plane->SetPoint2(0.0, (localStorage->m_ReslicedImage->GetDimensions()[1])*spacing[1], 0.0); } const mitk::Image* mitk::ImageVtkMapper2D::GetInput( void ) { return static_cast< const mitk::Image * >( this->GetData() ); } vtkProp* mitk::ImageVtkMapper2D::GetVtkProp(mitk::BaseRenderer* renderer) { //return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_Actor; } void mitk::ImageVtkMapper2D::MitkRenderOverlay(BaseRenderer* renderer) { if ( this->IsVisible(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); } } void mitk::ImageVtkMapper2D::MitkRenderOpaqueGeometry(BaseRenderer* renderer) { if ( this->IsVisible( renderer )==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); } } void mitk::ImageVtkMapper2D::MitkRenderTranslucentGeometry(BaseRenderer* renderer) { if ( this->IsVisible(renderer)==false ) return; //TODO is it possible to have a visible BaseRenderer AND an invisible VtkRenderer??? if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); } } void mitk::ImageVtkMapper2D::MitkRenderVolumetricGeometry(BaseRenderer* renderer) { if(IsVisible(renderer)==false) return; //TODO is it possible to have a visible BaseRenderer AND an invisible VtkRenderer??? if ( GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderVolumetricGeometry(renderer->GetVtkRenderer()); } void mitk::ImageVtkMapper2D::GenerateData( mitk::BaseRenderer *renderer ) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); bool visible = IsVisible(renderer); if(visible==false) { localStorage->m_Actor->VisibilityOff(); return; } mitk::Image *input = const_cast< mitk::Image * >( this->GetInput() ); input->Update(); if ( input == NULL ) { return; } RendererInfo &rendererInfo = this->AccessRendererInfo( renderer ); rendererInfo.Squeeze(); //TODO ApplyProperties is called here? Control flow correct? // this->ApplyProperties( renderer ); const Geometry2D *worldGeometry = renderer->GetCurrentWorldGeometry2D(); if( ( worldGeometry == NULL ) || ( !worldGeometry->IsValid() ) || ( !worldGeometry->GetReferenceGeometry() )) { return; } // check if there is something to display. if ( ! input->IsVolumeSet( this->GetTimestep() ) ) return; Image::RegionType requestedRegion = input->GetLargestPossibleRegion(); requestedRegion.SetIndex( 3, this->GetTimestep() ); requestedRegion.SetSize( 3, 1 ); requestedRegion.SetSize( 4, 1 ); input->SetRequestedRegion( &requestedRegion ); input->Update(); vtkImageData* inputData = input->GetVtkImageData( this->GetTimestep() ); if ( inputData == NULL ) { return; } vtkFloatingPointType spacing[3]; inputData->GetSpacing( spacing ); // how big the area is in physical coordinates: widthInMM x heightInMM pixels mitk::ScalarType widthInMM, heightInMM; // where we want to sample Point3D origin; Vector3D right, bottom, normal; Vector3D rightInIndex, bottomInIndex; // take transform of input image into account const TimeSlicedGeometry *inputTimeGeometry = input->GetTimeSlicedGeometry(); const Geometry3D* inputGeometry = inputTimeGeometry->GetGeometry3D( this->GetTimestep() ); //Spacing of the slice ScalarType mmPerPixel[2]; // Bounds information for reslicing (only reuqired if reference geometry // is present) vtkFloatingPointType bounds[6]; bool boundsInitialized = false; for ( int i = 0; i < 6; ++i ) { bounds[i] = 0.0; } // Do we have a simple PlaneGeometry? if ( dynamic_cast< const PlaneGeometry * >( worldGeometry ) != NULL ) { const PlaneGeometry *planeGeometry = static_cast< const PlaneGeometry * >( worldGeometry ); origin = planeGeometry->GetOrigin(); right = planeGeometry->GetAxisVector( 0 ); bottom = planeGeometry->GetAxisVector( 1 ); normal = planeGeometry->GetNormal(); bool inPlaneResampleExtentByGeometry = false; GetDataNode()->GetBoolProperty( "in plane resample extent by geometry", inPlaneResampleExtentByGeometry, renderer ); if ( inPlaneResampleExtentByGeometry ) { // Resampling grid corresponds to the current world geometry. This // means that the spacing of the output 2D image depends on the // currently selected world geometry, and *not* on the image itself. rendererInfo.m_Extent[0] = worldGeometry->GetExtent( 0 ); rendererInfo.m_Extent[1] = worldGeometry->GetExtent( 1 ); } else { // Resampling grid corresponds to the input geometry. This means that // the spacing of the output 2D image is directly derived from the // associated input image, regardless of the currently selected world // geometry. inputGeometry->WorldToIndex( origin, right, rightInIndex ); inputGeometry->WorldToIndex( origin, bottom, bottomInIndex ); rendererInfo.m_Extent[0] = rightInIndex.GetNorm(); rendererInfo.m_Extent[1] = bottomInIndex.GetNorm(); } // Get the extent of the current world geometry and calculate resampling // spacing therefrom. widthInMM = worldGeometry->GetExtentInMM( 0 ); heightInMM = worldGeometry->GetExtentInMM( 1 ); mmPerPixel[0] = widthInMM / rendererInfo.m_Extent[0]; mmPerPixel[1] = heightInMM / rendererInfo.m_Extent[1]; right.Normalize(); bottom.Normalize(); normal.Normalize(); origin += right * ( mmPerPixel[0] * 0.5 ); origin += bottom * ( mmPerPixel[1] * 0.5 ); widthInMM -= mmPerPixel[0]; heightInMM -= mmPerPixel[1]; // Use inverse transform of the input geometry for reslicing the 3D image rendererInfo.m_Reslicer->SetResliceTransform( inputGeometry->GetVtkTransform()->GetLinearInverse() ); // Set background level to TRANSLUCENT (see Geometry2DDataVtkMapper3D) rendererInfo.m_Reslicer->SetBackgroundLevel( -32768 ); // If a reference geometry does exist (as would usually be the case for // PlaneGeometry), store it in rendererInfo so that we have access to it // in Paint. // // Note: this is currently not strictly required, but could facilitate // correct plane clipping. if ( worldGeometry->GetReferenceGeometry() ) { rendererInfo.m_ReferenceGeometry = worldGeometry->GetReferenceGeometry(); // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. boundsInitialized = this->CalculateClippedPlaneBounds( rendererInfo.m_ReferenceGeometry, planeGeometry, bounds ); + MITK_INFO << "boundsinitialized " << boundsInitialized; } } - // Do we have an AbstractTransformGeometry? else if ( dynamic_cast< const AbstractTransformGeometry * >( worldGeometry ) ) { const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * >(worldGeometry); rendererInfo.m_Extent[0] = abstractGeometry->GetParametricExtent(0); rendererInfo.m_Extent[1] = abstractGeometry->GetParametricExtent(1); widthInMM = abstractGeometry->GetParametricExtentInMM(0); heightInMM = abstractGeometry->GetParametricExtentInMM(1); mmPerPixel[0] = widthInMM / rendererInfo.m_Extent[0]; mmPerPixel[1] = heightInMM / rendererInfo.m_Extent[1]; origin = abstractGeometry->GetPlane()->GetOrigin(); right = abstractGeometry->GetPlane()->GetAxisVector(0); right.Normalize(); bottom = abstractGeometry->GetPlane()->GetAxisVector(1); bottom.Normalize(); normal = abstractGeometry->GetPlane()->GetNormal(); normal.Normalize(); // Use a combination of the InputGeometry *and* the possible non-rigid // AbstractTransformGeometry for reslicing the 3D Image vtkGeneralTransform *composedResliceTransform = vtkGeneralTransform::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( inputGeometry->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); rendererInfo.m_Reslicer->SetResliceTransform( composedResliceTransform ); composedResliceTransform->UnRegister( NULL ); // decrease RC // Set background level to BLACK instead of translucent, to avoid // boundary artifacts (see Geometry2DDataVtkMapper3D) rendererInfo.m_Reslicer->SetBackgroundLevel( -1023 ); } else { return; } // Make sure that the image to display has a certain minimum size. if ( (rendererInfo.m_Extent[0] <= 2) && (rendererInfo.m_Extent[1] <= 2) ) { return; } // Initialize the interpolation mode for resampling; switch to nearest // neighbor if the input image is too small. if ( (input->GetDimension() >= 3) && (input->GetDimension(2) > 1) ) { VtkResliceInterpolationProperty *resliceInterpolationProperty; this->GetDataNode()->GetProperty( resliceInterpolationProperty, "reslice interpolation" ); int interpolationMode = VTK_RESLICE_NEAREST; if ( resliceInterpolationProperty != NULL ) { interpolationMode = resliceInterpolationProperty->GetInterpolation(); } switch ( interpolationMode ) { case VTK_RESLICE_NEAREST: rendererInfo.m_Reslicer->SetInterpolationModeToNearestNeighbor(); break; case VTK_RESLICE_LINEAR: rendererInfo.m_Reslicer->SetInterpolationModeToLinear(); break; case VTK_RESLICE_CUBIC: rendererInfo.m_Reslicer->SetInterpolationModeToCubic(); break; } } else { rendererInfo.m_Reslicer->SetInterpolationModeToNearestNeighbor(); } int thickSlicesMode = 0; int thickSlicesNum = 1; // Thick slices parameters if( inputData->GetNumberOfScalarComponents() == 1 ) // for now only single component are allowed { DataNode *dn=renderer->GetCurrentWorldGeometry2DNode(); if(dn) { ResliceMethodProperty *resliceMethodEnumProperty=0; if( dn->GetProperty( resliceMethodEnumProperty, "reslice.thickslices" ) && resliceMethodEnumProperty ) thickSlicesMode = resliceMethodEnumProperty->GetValueAsId(); IntProperty *intProperty=0; if( dn->GetProperty( intProperty, "reslice.thickslices.num" ) && intProperty ) { thickSlicesNum = intProperty->GetValue(); if(thickSlicesNum < 1) thickSlicesNum=1; if(thickSlicesNum > 10) thickSlicesNum=10; } } else { MITK_WARN << "no associated widget plane data tree node found"; } } rendererInfo.m_UnitSpacingImageFilter->SetInput( inputData ); rendererInfo.m_Reslicer->SetInput( rendererInfo.m_UnitSpacingImageFilter->GetOutput() ); rendererInfo.m_PixelsPerMM[0] = 1.0 / mmPerPixel[0]; rendererInfo.m_PixelsPerMM[1] = 1.0 / mmPerPixel[1]; //calulate the originArray and the orientations for the reslice-filter double originArray[3]; itk2vtk( origin, originArray ); rendererInfo.m_Reslicer->SetResliceAxesOrigin( originArray ); double cosines[9]; // direction of the X-axis of the sampled result vnl2vtk( right.Get_vnl_vector(), cosines ); // direction of the Y-axis of the sampled result vnl2vtk( bottom.Get_vnl_vector(), cosines + 3 ); // normal of the plane vnl2vtk( normal.Get_vnl_vector(), cosines + 6 ); rendererInfo.m_Reslicer->SetResliceAxesDirectionCosines( cosines ); int xMin, xMax, yMin, yMax; if ( boundsInitialized ) { // Calculate output extent (integer values) xMin = static_cast< int >( bounds[0] / mmPerPixel[0] + 0.5 ); xMax = static_cast< int >( bounds[1] / mmPerPixel[0] + 0.5 ); yMin = static_cast< int >( bounds[2] / mmPerPixel[1] + 0.5 ); yMax = static_cast< int >( bounds[3] / mmPerPixel[1] + 0.5 ); // Calculate the extent by which the maximal plane (due to plane rotation) // overlaps the regular plane size. rendererInfo.m_Overlap[0] = -xMin; rendererInfo.m_Overlap[1] = -yMin; } else { // If no reference geometry is available, we also don't know about the // maximum plane size; so the overlap is just ignored rendererInfo.m_Overlap.Fill( 0.0 ); xMin = yMin = 0; xMax = static_cast< int >( rendererInfo.m_Extent[0] - rendererInfo.m_PixelsPerMM[0] + 0.5); yMax = static_cast< int >( rendererInfo.m_Extent[1] - rendererInfo.m_PixelsPerMM[1] + 0.5); } // Disallow huge dimensions if ( (xMax-xMin) * (yMax-yMin) > 4096*4096 ) { return; } // Calculate dataset spacing in plane z direction (NOT spacing of current // world geometry) double dataZSpacing = 1.0; normal.Normalize(); Vector3D normInIndex; inputGeometry->WorldToIndex( origin, normal, normInIndex ); if(thickSlicesMode > 0) { dataZSpacing = 1.0 / normInIndex.GetNorm(); rendererInfo.m_Reslicer->SetOutputDimensionality( 3 ); rendererInfo.m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, -thickSlicesNum, 0+thickSlicesNum ); } else { rendererInfo.m_Reslicer->SetOutputDimensionality( 2 ); rendererInfo.m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, 0, 0 ); } rendererInfo.m_Reslicer->SetOutputOrigin( 0.0, 0.0, 0.0 ); rendererInfo.m_Reslicer->SetOutputSpacing( mmPerPixel[0], mmPerPixel[1], dataZSpacing ); // xMax and yMax are meant exclusive until now, whereas // SetOutputExtent wants an inclusive bound. Thus, we need // to subtract 1. // Do the reslicing. Modified() is called to make sure that the reslicer is // executed even though the input geometry information did not change; this // is necessary when the input /em data, but not the /em geometry changes. // The reslicing result is used both for 2D and for 3D mapping. 2D mapping // currently uses PIC data structures, while 3D mapping uses VTK data. Thus, // the reslicing result needs to be stored twice. // 1. Check the result vtkImageData* reslicedImage = 0; if(thickSlicesMode>0) { rendererInfo.m_TSFilter->SetThickSliceMode( thickSlicesMode-1 ); rendererInfo.m_TSFilter->SetInput( rendererInfo.m_Reslicer->GetOutput() ); rendererInfo.m_TSFilter->Modified(); rendererInfo.m_TSFilter->Update(); reslicedImage = rendererInfo.m_TSFilter->GetOutput(); } else { rendererInfo.m_Reslicer->Modified(); rendererInfo.m_Reslicer->Update(); reslicedImage = rendererInfo.m_Reslicer->GetOutput(); } if((reslicedImage == NULL) || (reslicedImage->GetDataDimension() < 1)) { MITK_WARN << "reslicer returned empty image"; return; } bool imageIs2D = true; // 3. Store the result in a VTK image if ( imageIs2D ) { if ( rendererInfo.m_Image == NULL ) { rendererInfo.m_Image = vtkImageData::New(); } rendererInfo.m_Image->DeepCopy( reslicedImage ); rendererInfo.m_Image->Update(); } else { if ( rendererInfo.m_Image != NULL ) { rendererInfo.m_Image->Delete(); } rendererInfo.m_Image = NULL; } //TODO how does the reslicer know for which render window it is reslicing for? //set the current slice for the localStorage localStorage->m_ReslicedImage = reslicedImage; //set the current slice as texture for the plane localStorage->m_Texture->SetInput(localStorage->m_ReslicedImage); //apply the properties after the slice was set this->ApplyProperties( renderer ); //set the size textured plane this->GeneratePlane( renderer, mmPerPixel ); //turn the light out in the scene in order to render correct grey values. TODO How to turn it on if you need it? renderer->GetVtkRenderer()->RemoveAllLights(); //remove the VTK interaction renderer->GetVtkRenderer()->GetRenderWindow()->SetInteractor(NULL); //get the transformation matrix of the reslicer in order to render the slice as transversal, coronal or saggital vtkSmartPointer trans = vtkSmartPointer::New(); vtkSmartPointer matrix = rendererInfo.m_Reslicer->GetResliceAxes(); trans->SetMatrix(matrix); localStorage->m_TransformMatrix = matrix; //transform the plane to the corresponding view (transversal, coronal or saggital) localStorage->m_TransformFilter->SetTransform(trans); localStorage->m_TransformFilter->SetInputConnection(localStorage->m_Plane->GetOutputPort()); localStorage->m_TransformFilter->Update(); localStorage->m_Mapper->SetInputConnection(localStorage->m_TransformFilter->GetOutputPort()); //set up the camera to view the transformed plane this->AdjustCamera( renderer ); //TODO remove this later static int counter = 0; if(counter < 3) { mitk::Surface::Pointer surf = mitk::Surface::New(); surf->SetVtkPolyData(localStorage->m_Mapper->GetInput()); surf->Update(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(surf); renderer->GetDataStorage()->Add(node); counter++; } //TODO remove this later renderer->GetVtkRenderer()->SetBackground(1, 1, 1); //Transform the camera to the current position (transveral, coronal and saggital plane). //This is necessary, because the vtkTransformFilter does not manipulate the vtkCamera. //(Without not all three planes would be visible). renderer->GetVtkRenderer()->GetActiveCamera()->ApplyTransform(trans); // We have been modified rendererInfo.m_LastUpdateTime.Modified(); } bool mitk::ImageVtkMapper2D::LineIntersectZero( vtkPoints *points, int p1, int p2, vtkFloatingPointType *bounds ) { vtkFloatingPointType point1[3]; vtkFloatingPointType point2[3]; points->GetPoint( p1, point1 ); points->GetPoint( p2, point2 ); if ( (point1[2] * point2[2] <= 0.0) && (point1[2] != point2[2]) ) { double x, y; x = ( point1[0] * point2[2] - point1[2] * point2[0] ) / ( point2[2] - point1[2] ); y = ( point1[1] * point2[2] - point1[2] * point2[1] ) / ( point2[2] - point1[2] ); if ( x < bounds[0] ) { bounds[0] = x; } if ( x > bounds[1] ) { bounds[1] = x; } if ( y < bounds[2] ) { bounds[2] = y; } if ( y > bounds[3] ) { bounds[3] = y; } bounds[4] = bounds[5] = 0.0; return true; } return false; } bool mitk::ImageVtkMapper2D::CalculateClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ) { // Clip the plane with the bounding geometry. To do so, the corner points // of the bounding box are transformed by the inverse transformation // matrix, and the transformed bounding box edges derived therefrom are // clipped with the plane z=0. The resulting min/max values are taken as // bounds for the image reslicer. const mitk::BoundingBox *boundingBox = boundingGeometry->GetBoundingBox(); mitk::BoundingBox::PointType bbMin = boundingBox->GetMinimum(); mitk::BoundingBox::PointType bbMax = boundingBox->GetMaximum(); mitk::BoundingBox::PointType bbCenter = boundingBox->GetCenter(); vtkPoints *points = vtkPoints::New(); if(boundingGeometry->GetImageGeometry()) { points->InsertPoint( 0, bbMin[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 1, bbMin[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 2, bbMin[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 3, bbMin[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 4, bbMax[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 5, bbMax[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 6, bbMax[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 7, bbMax[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); } else { points->InsertPoint( 0, bbMin[0], bbMin[1], bbMin[2] ); points->InsertPoint( 1, bbMin[0], bbMin[1], bbMax[2] ); points->InsertPoint( 2, bbMin[0], bbMax[1], bbMax[2] ); points->InsertPoint( 3, bbMin[0], bbMax[1], bbMin[2] ); points->InsertPoint( 4, bbMax[0], bbMin[1], bbMin[2] ); points->InsertPoint( 5, bbMax[0], bbMin[1], bbMax[2] ); points->InsertPoint( 6, bbMax[0], bbMax[1], bbMax[2] ); points->InsertPoint( 7, bbMax[0], bbMax[1], bbMin[2] ); } vtkPoints *newPoints = vtkPoints::New(); vtkTransform *transform = vtkTransform::New(); transform->Identity(); transform->Concatenate( planeGeometry->GetVtkTransform()->GetLinearInverse() ); transform->Concatenate( boundingGeometry->GetVtkTransform() ); transform->TransformPoints( points, newPoints ); bounds[0] = bounds[2] = 10000000.0; bounds[1] = bounds[3] = -10000000.0; bounds[4] = bounds[5] = 0.0; this->LineIntersectZero( newPoints, 0, 1, bounds ); this->LineIntersectZero( newPoints, 1, 2, bounds ); this->LineIntersectZero( newPoints, 2, 3, bounds ); this->LineIntersectZero( newPoints, 3, 0, bounds ); this->LineIntersectZero( newPoints, 0, 4, bounds ); this->LineIntersectZero( newPoints, 1, 5, bounds ); this->LineIntersectZero( newPoints, 2, 6, bounds ); this->LineIntersectZero( newPoints, 3, 7, bounds ); this->LineIntersectZero( newPoints, 4, 5, bounds ); this->LineIntersectZero( newPoints, 5, 6, bounds ); this->LineIntersectZero( newPoints, 6, 7, bounds ); this->LineIntersectZero( newPoints, 7, 4, bounds ); // clean up vtk data points->Delete(); newPoints->Delete(); transform->Delete(); if ( (bounds[0] > 9999999.0) || (bounds[2] > 9999999.0) || (bounds[1] < -9999999.0) || (bounds[3] < -9999999.0) ) { return false; } else { // The resulting bounds must be adjusted by the plane spacing, since we // we have so far dealt with index coordinates const float *planeSpacing = planeGeometry->GetFloatSpacing(); bounds[0] *= planeSpacing[0]; bounds[1] *= planeSpacing[0]; bounds[2] *= planeSpacing[1]; bounds[3] *= planeSpacing[1]; bounds[4] *= planeSpacing[2]; bounds[5] *= planeSpacing[2]; return true; } } void mitk::ImageVtkMapper2D::GenerateAllData() { RendererInfoMap::iterator it, end = m_RendererInfo.end(); for ( it = m_RendererInfo.begin(); it != end; ++it) { this->Update( it->first ); } } void mitk::ImageVtkMapper2D::Clear() { RendererInfoMap::iterator it, end = m_RendererInfo.end(); for ( it = m_RendererInfo.begin(); it != end; ++it ) { it->second.RemoveObserver(); it->second.Squeeze(); } m_RendererInfo.clear(); } void mitk::ImageVtkMapper2D::ApplyProperties(mitk::BaseRenderer* renderer) { //get the current localStorage for the corresponding renderer LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); ScalarType windowMin = 0.0; ScalarType windowMax = 255.0; //get the level window LevelWindow levelWindow; GetLevelWindow(levelWindow, renderer); windowMin = levelWindow.GetLowerWindowBound(); windowMax = levelWindow.GetUpperWindowBound(); //set up the lookuptable with the level window range localStorage->m_LookupTable->SetSaturationRange( 0.0, 0.0 ); localStorage->m_LookupTable->SetHueRange( 0.0, 0.0 ); localStorage->m_LookupTable->SetValueRange( 0.0, 1.0 ); localStorage->m_LookupTable->SetRange( windowMin, windowMax ); localStorage->m_LookupTable->Build(); //set the lookuptable for the texture localStorage->m_Texture->SetLookupTable( localStorage->m_LookupTable ); // check for interpolation properties bool textureInterpolation = false; GetDataNode()->GetBoolProperty( "texture interpolation", textureInterpolation, renderer ); if(textureInterpolation) { //texture interpolation on localStorage->m_Texture->InterpolateOn(); } else { //texture interpolation off localStorage->m_Texture->InterpolateOff(); } //do not repeat the texture (the image) localStorage->m_Texture->RepeatOff(); //get the opacity and set it for the actor float opacity = 0; GetOpacity(opacity, renderer); localStorage->m_Actor->GetProperty()->SetOpacity(opacity); //get the color and set it for the actor float rgb[3] = { 1.0f, 1.0f, 1.0f }; GetColor( rgb, renderer ); double rgbConv[3] = {(double)rgb[0], (double)rgb[1], (double)rgb[2]}; localStorage->m_Actor->GetProperty()->SetColor(rgbConv); - localStorage->m_Actor->GetProperty()->Modified(); - // m_VtkActor->SetUserTransform(transform); + bool binary = false; + this->GetDataNode()->GetBoolProperty( "binary", binary, renderer ); + if( binary ) + { + localStorage->m_Texture->MapColorScalarsThroughLookupTableOn(); + +// vtkSmartPointer lookupTable = +// vtkSmartPointer::New(); +// lookupTable->SetNumberOfTableValues(2); +// lookupTable->SetRange(0.0,1.0); +// lookupTable->SetTableValue( 0, 0.0, 0.0, 0.0, 0.0 ); //label 0 is transparent +// lookupTable->SetTableValue( 1, 0.0, 1.0, 0.0, 1.0 ); //label 1 is opaque and green +// lookupTable->Build(); + +// vtkSmartPointer mapTransparency = +// vtkSmartPointer::New(); +// mapTransparency->SetLookupTable(lookupTable); +// mapTransparency->SetInput(localStorage->m_ReslicedImage); +// mapTransparency->PassAlphaToOutputOn(); + +// localStorage->m_Texture->SetInputConnection(mapTransparency->GetOutputPort()); + } + else + { + localStorage->m_Texture->MapColorScalarsThroughLookupTableOff(); + } + - // RendererInfo &rendererInfo = this->AccessRendererInfo( renderer ); - // iil4mitkPicImage *image = rendererInfo.Get_iil4mitkImage(); - // assert( image != NULL ); + ///#################### mein versuch +// bool binary = false; +// this->GetDataNode()->GetBoolProperty( "binary", binary, renderer ); + +// if ( binary ) +// { +// vtkSmartPointer image = localStorage->m_ReslicedImage;; +// { +// // Specify the size of the image data +// // image->SetNumberOfScalarComponents(4); +// // image->SetScalarTypeToUnsignedChar(); + +// MITK_INFO << "scalar type " << image->GetScalarTypeAsString(); + +// int* dims = image->GetDimensions(); + +// MITK_INFO << "dims " << dims[0] << " " << dims[1]; + +// // Fill every entry of the image with "2" +// for (int y = 0; y < dims[1]; y++) +// { +// for (int x = 0; x < dims[0]; x++) +// { +// unsigned char* pixel = static_cast(image->GetScalarPointer(x,y,0)); +// // MITK_INFO << "pixe " << (int)pixel[0] << " " << (int)pixel[1] << " " << (int)pixel[2] << " " << (int)pixel[3]; +// if(pixel[0]>0 || pixel[1]>0 || pixel[2]>0) +// { +// pixel[3] = 255; +// } +// else +// { +// pixel[3] = 0; +// } +// } +// } +// } +// } // float opacity = 1.0f; // // check for color prop and use it for rendering if it exists // // binary image hovering & binary image selection // bool hover = false; // bool selected = false; // GetDataNode()->GetBoolProperty("binaryimage.ishovering", hover, renderer); // GetDataNode()->GetBoolProperty("selected", selected, renderer); // if(hover && !selected) // { // mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty // ("binaryimage.hoveringcolor", renderer)); // if(colorprop.IsNotNull()) // memcpy(rgba, colorprop->GetColor().GetDataPointer(), 3*sizeof(float)); // else // GetColor( rgba, renderer ); // } // if(selected) // { // mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty // ("binaryimage.selectedcolor", renderer)); // if(colorprop.IsNotNull()) // memcpy(rgba, colorprop->GetColor().GetDataPointer(), 3*sizeof(float)); // else // GetColor( rgba, renderer ); // } // if(!hover && !selected) // { // GetColor( rgba, renderer ); // } // // check for opacity prop and use it for rendering if it exists // GetOpacity( opacity, renderer ); // rgba[3] = opacity; // // check for interpolation properties // bool textureInterpolation = false; // GetDataNode()->GetBoolProperty( // "texture interpolation", textureInterpolation, renderer // ); // rendererInfo.m_TextureInterpolation = textureInterpolation; // mitk::LevelWindow levelWindow; // mitk::LevelWindow opacLevelWindow; // bool binary = false; // this->GetDataNode()->GetBoolProperty( "binary", binary, renderer ); // if ( binary ) // { // image->setExtrema(0, 1); // image->setOpacityExtrema( 0.0, 255.0 ); // image->setBinary(true); // bool binaryOutline = false; // if ( this->GetInput()->GetPixelType().GetBpe() <= 8 ) // { // if (this->GetDataNode()->GetBoolProperty( "outline binary", binaryOutline, renderer )) // { // image->setOutline(binaryOutline); // float binaryOutlineWidth(1.0); // if (this->GetDataNode()->GetFloatProperty( "outline width", binaryOutlineWidth, renderer )) // { // image->setOutlineWidth(binaryOutlineWidth); // } // } // } // else // { // MITK_WARN << "Type of all binary images should be (un)signed char. Outline does not work on other pixel types!"; // } // } // else // { // if( !this->GetLevelWindow( levelWindow, renderer, "levelWindow" ) ) // { // this->GetLevelWindow( levelWindow, renderer ); // } // image->setExtrema( levelWindow.GetLowerWindowBound(), levelWindow.GetUpperWindowBound() ); // // obtain opacity level window // if( this->GetLevelWindow( opacLevelWindow, renderer, "opaclevelwindow" ) ) // { // image->setOpacityExtrema( opacLevelWindow.GetLowerWindowBound(), opacLevelWindow.GetUpperWindowBound() ); // } // else // { // image->setOpacityExtrema( 0.0, 255.0 ); // } // } // bool useColor = false; // GetDataNode()->GetBoolProperty( "use color", useColor, renderer ); // mitk::LookupTableProperty::Pointer LookupTableProp; // if ( !useColor ) // { // LookupTableProp = dynamic_cast( // this->GetDataNode()->GetProperty("LookupTable")); // if ( LookupTableProp.IsNull() ) // { // useColor = true; // } // } // if ( useColor || binary ) // { // // If lookup table use is NOT requested (or we have a binary image...): // m_iil4mitkMode = iil4mitkImage::INTENSITY_ALPHA; // image->setColor( rgba[0], rgba[1], rgba[2], rgba[3] ); // } // else // { // // If lookup table use is requested: // m_iil4mitkMode = iil4mitkImage::COLOR_ALPHA; // // only update the lut, when the properties have changed... // if ( LookupTableProp->GetLookupTable()->GetMTime() // <= this->GetDataNode()->GetPropertyList()->GetMTime() ) // { // LookupTableProp->GetLookupTable()->ChangeOpacityForAll( opacity ); // LookupTableProp->GetLookupTable()->ChangeOpacity(0, 0.0); // } // image->setColors(LookupTableProp->GetLookupTable()->GetRawLookupTable()); // } } void mitk::ImageVtkMapper2D::Update(mitk::BaseRenderer* renderer) { if ( !this->IsVisible( renderer ) ) { return; } mitk::Image* data = const_cast( this->GetInput() ); if ( data == NULL ) { return; } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep( renderer ); // Check if time step is valid const TimeSlicedGeometry *dataTimeGeometry = data->GetTimeSlicedGeometry(); if ( ( dataTimeGeometry == NULL ) || ( dataTimeGeometry->GetTimeSteps() == 0 ) || ( !dataTimeGeometry->IsValidTime( this->GetTimestep() ) ) ) { return; } const DataNode *node = this->GetDataNode(); RendererInfo& rendererInfo = AccessRendererInfo( renderer ); data->UpdateOutputInformation(); //check if something important has changed and we need to rerender if ( (rendererInfo.m_LastUpdateTime < node->GetMTime()) //was the node modified? || (rendererInfo.m_LastUpdateTime < data->GetPipelineMTime()) //Was the data modified? || (rendererInfo.m_LastUpdateTime < renderer->GetCurrentWorldGeometry2DUpdateTime()) //was the geometry modified? || (rendererInfo.m_LastUpdateTime < renderer->GetDisplayGeometryUpdateTime()) // TODO this does not work || (rendererInfo.m_LastUpdateTime < renderer->GetDisplayGeometry()->GetMTime()) //was the display geometry modified? e.g. zooming, panning || (rendererInfo.m_LastUpdateTime < renderer->GetCurrentWorldGeometry2D()->GetMTime()) || (rendererInfo.m_LastUpdateTime < node->GetPropertyList()->GetMTime()) //was a property modified? || (rendererInfo.m_LastUpdateTime < node->GetPropertyList(renderer)->GetMTime()) ) { this->GenerateData( renderer ); } // since we have checked that nothing important has changed, we can set // m_LastUpdateTime to the current time rendererInfo.m_LastUpdateTime.Modified(); } void mitk::ImageVtkMapper2D::DeleteRendererCallback( itk::Object *object, const itk::EventObject & ) { mitk::BaseRenderer *renderer = dynamic_cast< mitk::BaseRenderer* >( object ); if ( renderer ) { m_RendererInfo.erase( renderer ); } } mitk::ImageVtkMapper2D::RendererInfo::RendererInfo() : m_RendererID(-1), m_Renderer(NULL), m_UnitSpacingImageFilter( NULL ), m_Reslicer( NULL ), m_TSFilter( NULL ), m_Image(NULL), m_ReferenceGeometry(NULL), m_TextureInterpolation(true), m_ObserverID( 0 ) { m_PixelsPerMM.Fill(0); }; mitk::ImageVtkMapper2D::RendererInfo::~RendererInfo() { this->Squeeze(); if ( m_UnitSpacingImageFilter != NULL ) { m_UnitSpacingImageFilter->Delete(); } if ( m_Reslicer != NULL ) { m_Reslicer->Delete(); } if ( m_TSFilter != NULL ) { m_TSFilter->Delete(); } if ( m_Image != NULL ) { m_Image->Delete(); } } void mitk::ImageVtkMapper2D::RendererInfo::Squeeze() { if ( m_Image != NULL ) { m_Image->Delete(); m_Image = NULL; } } void mitk::ImageVtkMapper2D::RendererInfo::RemoveObserver() { if ( m_ObserverID != 0 ) { // m_ObserverID has to be decreased by one. Was incremented by one after creation to make the test m_ObserverID != 0 possible. m_Renderer->RemoveObserver( m_ObserverID-1 ); } } void mitk::ImageVtkMapper2D::RendererInfo::Initialize( int rendererID, mitk::BaseRenderer *renderer, unsigned long observerID ) { // increase ID by one to avoid 0 ID, has to be decreased before remove of the observer m_ObserverID = observerID+1; assert(rendererID>=0); assert(m_RendererID<0); m_RendererID = rendererID; m_Renderer = renderer; m_Image = vtkImageData::New(); m_Reslicer = vtkImageReslice::New(); m_TSFilter = vtkMitkThickSlicesFilter::New(); m_Reslicer->ReleaseDataFlagOn(); m_TSFilter->ReleaseDataFlagOn(); m_UnitSpacingImageFilter = vtkImageChangeInformation::New(); m_UnitSpacingImageFilter->SetOutputSpacing( 1.0, 1.0, 1.0 ); } void mitk::ImageVtkMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { mitk::Image::Pointer image = dynamic_cast(node->GetData()); // Properties common for both images and segmentations node->AddProperty( "use color", mitk::BoolProperty::New( true ), renderer, overwrite ); node->AddProperty( "outline binary", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty( "outline width", mitk::FloatProperty::New( 1.0 ), renderer, overwrite ); if(image->IsRotated()) node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_CUBIC) ); else node->AddProperty( "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ); node->AddProperty( "texture interpolation", mitk::BoolProperty::New( mitk::DataNodeFactory::m_TextureInterpolationActive ) ); // set to user configurable default value (see global options) node->AddProperty( "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ); node->AddProperty( "bounding box", mitk::BoolProperty::New( false ) ); bool isBinaryImage(false); if ( ! node->GetBoolProperty("binary", isBinaryImage) ) { // ok, property is not set, use heuristic to determine if this // is a binary image mitk::Image::Pointer centralSliceImage; ScalarType minValue = 0.0; ScalarType maxValue = 0.0; ScalarType min2ndValue = 0.0; ScalarType max2ndValue = 0.0; mitk::ImageSliceSelector::Pointer sliceSelector = mitk::ImageSliceSelector::New(); sliceSelector->SetInput(image); sliceSelector->SetSliceNr(image->GetDimension(2)/2); sliceSelector->SetTimeNr(image->GetDimension(3)/2); sliceSelector->SetChannelNr(image->GetDimension(4)/2); sliceSelector->Update(); centralSliceImage = sliceSelector->GetOutput(); if ( centralSliceImage.IsNotNull() && centralSliceImage->IsInitialized() ) { minValue = centralSliceImage->GetScalarValueMin(); maxValue = centralSliceImage->GetScalarValueMax(); min2ndValue = centralSliceImage->GetScalarValue2ndMin(); max2ndValue = centralSliceImage->GetScalarValue2ndMax(); } if ( minValue == maxValue ) { // centralSlice is strange, lets look at all data minValue = image->GetScalarValueMin(); maxValue = image->GetScalarValueMaxNoRecompute(); min2ndValue = image->GetScalarValue2ndMinNoRecompute(); max2ndValue = image->GetScalarValue2ndMaxNoRecompute(); } isBinaryImage = ( maxValue == min2ndValue && minValue == max2ndValue ); } // some more properties specific for a binary... if (isBinaryImage) { node->AddProperty( "opacity", mitk::FloatProperty::New(0.3f), renderer, overwrite ); node->AddProperty( "color", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.selectedcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.selectedannotationcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.hoveringcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binaryimage.hoveringannotationcolor", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ); node->AddProperty( "binary", mitk::BoolProperty::New( true ), renderer, overwrite ); node->AddProperty("layer", mitk::IntProperty::New(10), renderer, overwrite); } else //...or image type object { node->AddProperty( "opacity", mitk::FloatProperty::New(1.0f), renderer, overwrite ); node->AddProperty( "color", ColorProperty::New(1.0,1.0,1.0), renderer, overwrite ); node->AddProperty( "binary", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty("layer", mitk::IntProperty::New(0), renderer, overwrite); } if(image.IsNotNull() && image->IsInitialized()) { if((overwrite) || (node->GetProperty("levelwindow", renderer)==NULL)) { mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); mitk::LevelWindow levelwindow; levelwindow.SetAuto( image, true, true ); levWinProp->SetLevelWindow( levelwindow ); node->SetProperty( "levelwindow", levWinProp, renderer ); } if(((overwrite) || (node->GetProperty("opaclevelwindow", renderer)==NULL)) && (image->GetPixelType().GetItkTypeId() && *(image->GetPixelType().GetItkTypeId()) == typeid(itk::RGBAPixel))) { mitk::LevelWindow opaclevwin; opaclevwin.SetRangeMinMax(0,255); opaclevwin.SetWindowBounds(0,255); mitk::LevelWindowProperty::Pointer prop = mitk::LevelWindowProperty::New(opaclevwin); node->SetProperty( "opaclevelwindow", prop, renderer ); } if((overwrite) || (node->GetProperty("LookupTable", renderer)==NULL)) { // add a default rainbow lookup table for color mapping mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); vtkLookupTable* vtkLut = mitkLut->GetVtkLookupTable(); vtkLut->SetHueRange(0.6667, 0.0); vtkLut->SetTableRange(0.0, 20.0); vtkLut->Build(); mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); mitkLutProp->SetLookupTable(mitkLut); node->SetProperty( "LookupTable", mitkLutProp ); } } Superclass::SetDefaultProperties(node, renderer, overwrite); }