diff --git a/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp index 5b6e1922d8..858495fcae 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.cpp @@ -1,882 +1,896 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp #define __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #if BOOST_VERSION / 100000 > 0 #if BOOST_VERSION / 100 % 1000 > 34 #include #endif #endif #include "itkPointShell.h" namespace itk { #define QBALL_ANAL_RECON_PI M_PI template< class T, class TG, class TO, int L, int NODF> AnalyticalDiffusionQballReconstructionImageFilter ::AnalyticalDiffusionQballReconstructionImageFilter() : m_GradientDirectionContainer(NULL), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(1.0), m_Lambda(0.0), m_DirectionsDuplicated(false) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> typename itk::AnalyticalDiffusionQballReconstructionImageFilter< TReferenceImagePixelType,TGradientImagePixelType,TOdfPixelType, NOrderL,NrOdfDirections>::OdfPixelType itk::AnalyticalDiffusionQballReconstructionImageFilter ::Normalize( OdfPixelType odf, typename NumericTraits::AccumulateType b0 ) { switch( m_NormalizationMethod ) { case QBAR_STANDARD: { TOdfPixelType sum = 0; for(int i=0; i0) odf /= sum; return odf; break; } case QBAR_B_ZERO_B_VALUE: { for(int i=0; i0) odf /= sum; break; } case QBAR_NONNEG_SOLID_ANGLE: { break; } } return odf; } template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> vnl_vector itk::AnalyticalDiffusionQballReconstructionImageFilter ::PreNormalize( vnl_vector vec, typename NumericTraits::AccumulateType b0 ) { switch( m_NormalizationMethod ) { case QBAR_STANDARD: { return vec; break; } case QBAR_B_ZERO_B_VALUE: { int n = vec.size(); for(int i=0; i= b0f) vec[i] = b0f - 0.001; vec[i] = log(-log(vec[i]/b0f)); } return vec; break; } } return vec; } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::BeforeThreadedGenerateData() { // If we have more than 2 inputs, then each input, except the first is a // gradient image. The number of gradient images must match the number of // gradient directions. //const unsigned int numberOfInputs = this->GetNumberOfInputs(); // There need to be at least 6 gradient directions to be able to compute the // tensor basis if( m_NumberOfGradientDirections < 6 ) { itkExceptionMacro( << "At least 6 gradient directions are required" ); } // Input must be an itk::VectorImage. std::string gradientImageClassName( this->ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) { itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. " << "But its of type: " << gradientImageClassName ); } this->ComputeReconstructionMatrix(); - m_BZeroImage = BZeroImageType::New(); typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); + + m_BZeroImage = BZeroImageType::New(); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); m_ODFSumImage = BZeroImageType::New(); m_ODFSumImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_ODFSumImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_ODFSumImage->SetDirection( img->GetDirection() ); // Set the image direction m_ODFSumImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_ODFSumImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_ODFSumImage->Allocate(); + m_CoefficientImage = CoefficientImageType::New(); + m_CoefficientImage->SetSpacing( img->GetSpacing() ); // Set the image spacing + m_CoefficientImage->SetOrigin( img->GetOrigin() ); // Set the image origin + m_CoefficientImage->SetDirection( img->GetDirection() ); // Set the image direction + m_CoefficientImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); + m_CoefficientImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); + m_CoefficientImage->Allocate(); + if(m_NormalizationMethod == QBAR_SOLID_ANGLE || m_NormalizationMethod == QBAR_NONNEG_SOLID_ANGLE) { m_Lambda = 0.0; } } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, int ) { typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); - ImageRegionIterator< BlaImage > oit3(m_ODFSumImage, outputRegionForThread); + ImageRegionIterator< FloatImageType > oit3(m_ODFSumImage, outputRegionForThread); oit3.GoToBegin(); + ImageRegionIterator< CoefficientImageType > oit4(m_CoefficientImage, outputRegionForThread); + oit4.GoToBegin(); + typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; typedef typename GradientImagesType::PixelType GradientVectorType; typename GradientImagesType::Pointer gradientImagePointer = NULL; // Would have liked a dynamic_cast here, but seems SGI doesn't like it // The enum will ensure that an inappropriate cast is not done gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); // Compute the indicies of the baseline images and gradient images std::vector baselineind; // contains the indicies of // the baseline images std::vector gradientind; // contains the indicies of // the gradient images for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() <= 0.0) { baselineind.push_back(gdcit.Index()); } else { gradientind.push_back(gdcit.Index()); } } if( m_DirectionsDuplicated ) { int gradIndSize = gradientind.size(); for(int i=0; i::AccumulateType b0 = NumericTraits::Zero; // Average the baseline image pixels for(unsigned int i = 0; i < baselineind.size(); ++i) { b0 += b[baselineind[i]]; } b0 /= this->m_NumberOfBaselineImages; OdfPixelType odf(0.0); + typename CoefficientImageType::PixelType coeffPixel(0.0); vnl_vector B(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for( unsigned int i = 0; i< m_NumberOfGradientDirections; i++ ) { B[i] = static_cast(b[gradientind[i]]); } B = PreNormalize(B, b0); if(m_NormalizationMethod == QBAR_SOLID_ANGLE) { vnl_vector coeffs(m_NumberCoefficients); coeffs = ( (*m_CoeffReconstructionMatrix) * B ); coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = ( (*m_SphericalHarmonicBasisMatrix) * coeffs ).data_block(); + coeffPixel = coeffs.data_block(); } else if(m_NormalizationMethod == QBAR_NONNEG_SOLID_ANGLE) { /** this would be the place to implement a non-negative * solver for quadratic programming problem: * min .5*|| Bc-s ||^2 subject to -CLPc <= 4*pi*ones * (refer to MICCAI 2009 Goh et al. "Estimating ODFs with PDF constraints") * .5*|| Bc-s ||^2 == .5*c'B'Bc - x'B's + .5*s's */ itkExceptionMacro( << "Nonnegative Solid Angle not yet implemented"); } else { odf = ( (*m_ReconstructionMatrix) * B ).data_block(); } odf = Normalize(odf, b0); } oit.Set( odf ); - ++oit; oit2.Set( b0 ); float sum = 0; for (int k=0; k void AnalyticalDiffusionQballReconstructionImageFilter ::tofile2(vnl_matrix *pA, std::string fname) { vnl_matrix A = (*pA); ofstream myfile; std::locale C("C"); std::locale originalLocale = myfile.getloc(); myfile.imbue(C); myfile.open (fname.c_str()); myfile << "A1=["; for(int i=0; i double AnalyticalDiffusionQballReconstructionImageFilter ::factorial(int number) { if(number <= 1) return 1; double result = 1.0; for(int i=1; i<=number; i++) result *= i; return result; } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::Cart2Sph(double x, double y, double z, double *cart) { double phi, th, rad; rad = sqrt(x*x+y*y+z*z); th = atan2(z,sqrt(x*x+y*y)); phi = atan2(y,x); th = -th+QBALL_ANAL_RECON_PI/2; phi = -phi+QBALL_ANAL_RECON_PI; cart[0] = phi; cart[1] = th; cart[2] = rad; } template< class T, class TG, class TO, int L, int NODF> double AnalyticalDiffusionQballReconstructionImageFilter ::legendre0(int l) { if( l%2 != 0 ) { return 0; } else { double prod1 = 1.0; for(int i=1;i double AnalyticalDiffusionQballReconstructionImageFilter ::spherical_harmonic(int m,int l,double theta,double phi, bool complexPart) { if( theta < 0 || theta > QBALL_ANAL_RECON_PI ) { std::cout << "bad range" << std::endl; return 0; } if( phi < 0 || phi > 2*QBALL_ANAL_RECON_PI ) { std::cout << "bad range" << std::endl; return 0; } double pml = 0; double fac1 = factorial(l+m); double fac2 = factorial(l-m); if( m<0 ) { #if BOOST_VERSION / 100000 > 0 #if BOOST_VERSION / 100 % 1000 > 34 pml = ::boost::math::legendre_p(l, -m, cos(theta)); #else std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; #endif #else std::cout << "ERROR: Boost 1.35 minimum required" << std::endl; #endif double mypow = pow(-1.0,-m); double myfac = (fac1/fac2); pml *= mypow*myfac; } else { #if BOOST_VERSION / 100000 > 0 #if BOOST_VERSION / 100 % 1000 > 34 pml = ::boost::math::legendre_p(l, m, cos(theta)); #endif #endif } //std::cout << "legendre(" << l << "," << m << "," << cos(theta) << ") = " << pml << std::endl; double retval = sqrt(((2.0*(double)l+1.0)/(4.0*QBALL_ANAL_RECON_PI))*(fac2/fac1)) * pml; if( !complexPart ) { retval *= cos(m*phi); } else { retval *= sin(m*phi); } //std::cout << retval << std::endl; return retval; } template< class T, class TG, class TO, int L, int NODF> double AnalyticalDiffusionQballReconstructionImageFilter ::Yj(int m, int k, double theta, double phi) { if( -k <= m && m < 0 ) { return sqrt(2.0) * spherical_harmonic(m,k,theta,phi,false); } if( m == 0 ) return spherical_harmonic(0,k,theta,phi,false); if( 0 < m && m <= k ) { return sqrt(2.0) * spherical_harmonic(m,k,theta,phi,true); } return 0; } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::ComputeReconstructionMatrix() { //for(int i=-6;i<7;i++) // std::cout << boost::math::legendre_p(6, i, 0.65657) << std::endl; if( m_NumberOfGradientDirections < 6 ) { itkExceptionMacro( << "Not enough gradient directions supplied. Need to supply at least 6" ); } { // check for duplicate diffusion gradients bool warning = false; for(GradientDirectionContainerType::ConstIterator gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { for(GradientDirectionContainerType::ConstIterator gdcit2 = this->m_GradientDirectionContainer->Begin(); gdcit2 != this->m_GradientDirectionContainer->End(); ++gdcit2) { if(gdcit1.Value() == gdcit2.Value() && gdcit1.Index() != gdcit2.Index()) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); warning = true; break; } } if (warning) break; } // handle acquisition schemes where only half of the spherical // shell is sampled by the gradient directions. In this case, // each gradient direction is duplicated in negative direction. vnl_vector centerMass(3); centerMass.fill(0.0); int count = 0; for(GradientDirectionContainerType::ConstIterator gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { if(gdcit1.Value().one_norm() > 0.0) { centerMass += gdcit1.Value(); count ++; } } centerMass /= count; if(centerMass.two_norm() > 0.1) { m_DirectionsDuplicated = true; m_NumberOfGradientDirections *= 2; } } vnl_matrix *Q = new vnl_matrix(3, m_NumberOfGradientDirections); { int i = 0; for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() > 0.0) { double x = gdcit.Value().get(0); double y = gdcit.Value().get(1); double z = gdcit.Value().get(2); double cart[3]; Cart2Sph(x,y,z,cart); (*Q)(0,i) = cart[0]; (*Q)(1,i) = cart[1]; (*Q)(2,i++) = cart[2]; } } if(m_DirectionsDuplicated) { for(GradientDirectionContainerType::ConstIterator gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() > 0.0) { double x = gdcit.Value().get(0); double y = gdcit.Value().get(1); double z = gdcit.Value().get(2); double cart[3]; Cart2Sph(x,y,z,cart); (*Q)(0,i) = cart[0]; (*Q)(1,i) = cart[1]; (*Q)(2,i++) = cart[2]; } } } } int l = L; m_NumberCoefficients = (int)(l*l + l + 2.0)/2.0 + l; vnl_matrix* B = new vnl_matrix(m_NumberOfGradientDirections,m_NumberCoefficients); vnl_matrix* _L = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); _L->fill(0.0); vnl_matrix* LL = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); LL->fill(0.0); vnl_matrix* P = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); P->fill(0.0); vnl_matrix* Inv = new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients); P->fill(0.0); vnl_vector* lj = new vnl_vector(m_NumberCoefficients); m_LP = new vnl_vector(m_NumberCoefficients); for(unsigned int i=0; i(B->transpose()); //tofile2(&m_B_t,"m_B_t"); vnl_matrix B_t_B = (*m_B_t) * (*B); //tofile2(&B_t_B,"B_t_B"); vnl_matrix lambdaLL(m_NumberCoefficients,m_NumberCoefficients); lambdaLL.update((*LL)); lambdaLL *= m_Lambda; //tofile2(&lambdaLL,"lLL"); vnl_matrix tmp( B_t_B + lambdaLL); vnl_matrix_inverse *pseudoInverse = new vnl_matrix_inverse( tmp ); (*Inv) = pseudoInverse->pinverse(); //tofile2(Inv,"Inv"); vnl_matrix temp((*Inv) * (*m_B_t)); double fac1 = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); switch(m_NormalizationMethod) { case QBAR_ADC_ONLY: case QBAR_RAW_SIGNAL: break; case QBAR_STANDARD: case QBAR_B_ZERO_B_VALUE: case QBAR_B_ZERO: case QBAR_NONE: temp = (*P) * temp; break; case QBAR_SOLID_ANGLE: temp = fac1 * (*P) * (*_L) * temp; break; case QBAR_NONNEG_SOLID_ANGLE: break; } //tofile2(&temp,"A"); m_CoeffReconstructionMatrix = new vnl_matrix(m_NumberCoefficients,m_NumberOfGradientDirections); for(int i=0; iodfs later int NOdfDirections = NODF; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); m_SphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,m_NumberCoefficients); vnl_matrix* sphericalHarmonicBasisMatrix2 = new vnl_matrix(NOdfDirections,m_NumberCoefficients); for(int i=0; i(NOdfDirections,m_NumberOfGradientDirections); *m_ReconstructionMatrix = (*m_SphericalHarmonicBasisMatrix) * (*m_CoeffReconstructionMatrix); } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { this->m_GradientDirectionContainer = gradientDirection; unsigned int numImages = gradientDirection->Size(); this->m_NumberOfBaselineImages = 0; for(GradientDirectionContainerType::Iterator it = this->m_GradientDirectionContainer->Begin(); it != this->m_GradientDirectionContainer->End(); it++) { if(it.Value().one_norm() <= 0.0) { this->m_NumberOfBaselineImages++; } else // Normalize non-zero gradient directions { it.Value() = it.Value() / it.Value().two_norm(); } } this->m_NumberOfGradientDirections = numImages - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); } template< class T, class TG, class TO, int L, int NODF> void AnalyticalDiffusionQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) { os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; } else { os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; } os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkAnalyticalDiffusionQballReconstructionImageFilter_cpp diff --git a/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h b/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h index 1c89d2c9a2..da1e1904b9 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h +++ b/Modules/DiffusionImaging/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h @@ -1,300 +1,303 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkAnalyticalDiffusionQballReconstructionImageFilter_h_ #define __itkAnalyticalDiffusionQballReconstructionImageFilter_h_ #include "itkImageToImageFilter.h" #include "vnl/vnl_vector_fixed.h" #include "vnl/vnl_matrix.h" #include "vnl/algo/vnl_svd.h" #include "itkVectorContainer.h" #include "itkVectorImage.h" namespace itk{ /** \class AnalyticalDiffusionQballReconstructionImageFilter - * \brief This class takes as input one or more reference image (acquired in the + * \brief This class takes as input one or more reference image (acquired in the * absence of diffusion sensitizing gradients) and 'n' diffusion - * weighted images and their gradient directions and computes an image of + * weighted images and their gradient directions and computes an image of * orientation distribution function coefficients in a spherical harmonic basis. * * \par Inputs and Usage * \par - * When you have the 'n' gradient and one or more reference images in a single + * When you have the 'n' gradient and one or more reference images in a single * multi-component image (VectorImage), you can specify the images as * \code * filter->SetGradientImage( directionsContainer, vectorImage ); * \endcode * Note that this method is used to specify both the reference and gradient images. - * This is convenient when the DWI images are read in using the - * NRRD - * format. Like the Nrrd format, the reference images are those components of the + * This is convenient when the DWI images are read in using the + * NRRD + * format. Like the Nrrd format, the reference images are those components of the * vectorImage whose gradient direction is (0,0,0). If more than one reference image * is present, they are averaged prior to the reconstruction. * * \par Outputs * The output image is an image of vectors that must be understood as ODFs: * \code * Image< Vector< TPixelType, OdfNrDirections >, 3 > * \endcode * * \par Parameters - * \li Threshold - Threshold on the reference image data. The output ODF will - * be a null pdf for pixels in the reference image that have a value less + * \li Threshold - Threshold on the reference image data. The output ODF will + * be a null pdf for pixels in the reference image that have a value less * than this. * \li BValue - See the documentation of SetBValue(). - * \li At least 6 gradient images must be specified for the filter to be able + * \li At least 6 gradient images must be specified for the filter to be able * to run. If the input gradient directions g_i are majorly sampled on one half * of the sqhere, then each input image I_i will be duplicated and assign -g_i * in order to guarantee stability of the algorithm. * \li OdfDirections - directions of resulting orientation distribution function * \li EquatorNrSamplingPoints - number of sampling points on equator when * performing Funk Radeon Transform (FRT) * \li BasisFunctionCenters - the centers of the basis functions are used for * the sRBF (spherical radial basis functions interpolation). If not set, they * will be defaulted to equal m_EquatorNrSamplingPoints - * + * * \par Template parameters - * The class is templated over - * \li the pixel type of the reference and gradient images - * (expected to be scalar data types) + * The class is templated over + * \li the pixel type of the reference and gradient images + * (expected to be scalar data types) * \li the internal representation of the ODF pixels (double, float etc). * \li the number of OdfDirections * \li the number of basis function centers for the sRBF - * + * * \par References: - * \li[1] + * \li[1] * Tuch DS, * "Q-ball imaging", Magn Reson Med. 2004 Dec;52(6):1358-72. - * + * */ -template< class TReferenceImagePixelType, +template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> class AnalyticalDiffusionQballReconstructionImageFilter : - public ImageToImageFilter< Image< TReferenceImagePixelType, 3 >, + public ImageToImageFilter< Image< TReferenceImagePixelType, 3 >, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > { public: enum Normalization { QBAR_STANDARD, QBAR_B_ZERO_B_VALUE, QBAR_B_ZERO, QBAR_NONE, QBAR_ADC_ONLY, QBAR_RAW_SIGNAL, QBAR_SOLID_ANGLE, QBAR_NONNEG_SOLID_ANGLE }; typedef AnalyticalDiffusionQballReconstructionImageFilter Self; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; - typedef ImageToImageFilter< Image< TReferenceImagePixelType, 3>, + typedef ImageToImageFilter< Image< TReferenceImagePixelType, 3>, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > Superclass; - + /** Method for creation through the object factory. */ - itkNewMacro(Self); + itkNewMacro(Self); /** Runtime information support. */ - itkTypeMacro(AnalyticalDiffusionQballReconstructionImageFilter, + itkTypeMacro(AnalyticalDiffusionQballReconstructionImageFilter, ImageToImageFilter); - + typedef TReferenceImagePixelType ReferencePixelType; typedef TGradientImagePixelType GradientPixelType; - typedef Vector< TOdfPixelType, NrOdfDirections > - OdfPixelType; + typedef Vector< TOdfPixelType, NrOdfDirections > OdfPixelType; + + typedef TOdfPixelType BZeroPixelType; - /** Reference image data, This image is aquired in the absence + /** Reference image data, This image is aquired in the absence * of a diffusion sensitizing field gradient */ - typedef typename Superclass::InputImageType ReferenceImageType; - - typedef Image< OdfPixelType, 3 > OdfImageType; + typedef typename Superclass::InputImageType ReferenceImageType; - typedef OdfImageType OutputImageType; + typedef Image< OdfPixelType, 3 > OdfImageType; - typedef TOdfPixelType BZeroPixelType; + typedef OdfImageType OutputImageType; - typedef Image< BZeroPixelType, 3 > BZeroImageType; + typedef Image< Vector< TOdfPixelType, NOrderL >, 3 > CoefficientImageType; + + typedef Image< BZeroPixelType, 3 > BZeroImageType; typedef typename Superclass::OutputImageRegionType OutputImageRegionType; /** Typedef defining one (of the many) gradient images. */ typedef Image< GradientPixelType, 3 > GradientImageType; - /** An alternative typedef defining one (of the many) gradient images. - * It will be assumed that the vectorImage has the same dimension as the + /** An alternative typedef defining one (of the many) gradient images. + * It will be assumed that the vectorImage has the same dimension as the * Reference image and a vector length parameter of \c n (number of * gradient directions)*/ typedef VectorImage< GradientPixelType, 3 > GradientImagesType; /** Holds the ODF reconstruction matrix */ typedef vnl_matrix< TOdfPixelType >* OdfReconstructionMatrixType; - + typedef vnl_matrix< double > CoefficientMatrixType; /** Holds each magnetic field gradient used to acquire one DWImage */ typedef vnl_vector_fixed< double, 3 > GradientDirectionType; /** Container to hold gradient directions of the 'n' DW measurements */ - typedef VectorContainer< unsigned int, + typedef VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType; - + /** set method to add gradient directions and its corresponding - * image. The image here is a VectorImage. The user is expected to pass the - * gradient directions in a container. The ith element of the container - * corresponds to the gradient direction of the ith component image the + * image. The image here is a VectorImage. The user is expected to pass the + * gradient directions in a container. The ith element of the container + * corresponds to the gradient direction of the ith component image the * VectorImage. For the baseline image, a vector of all zeros * should be set.*/ - void SetGradientImage( GradientDirectionContainerType *, + void SetGradientImage( GradientDirectionContainerType *, const GradientImagesType *image); - + /** Get reference image */ - virtual ReferenceImageType * GetReferenceImage() + virtual ReferenceImageType * GetReferenceImage() { return ( static_cast< ReferenceImageType *>(this->ProcessObject::GetInput(0)) ); } /** Return the gradient direction. idx is 0 based */ virtual GradientDirectionType GetGradientDirection( unsigned int idx) const { if( idx >= m_NumberOfGradientDirections ) { itkExceptionMacro( << "Gradient direction " << idx << "does not exist" ); } return m_GradientDirectionContainer->ElementAt( idx+1 ); } static void tofile2(vnl_matrix *A, std::string fname); static double factorial(int number); static void Cart2Sph(double x, double y, double z, double* cart); static double legendre0(int l); static double spherical_harmonic(int m,int l,double theta,double phi, bool complexPart); static double Yj(int m, int k, double theta, double phi); OdfPixelType Normalize(OdfPixelType odf, typename NumericTraits::AccumulateType b0 ); vnl_vector PreNormalize( vnl_vector vec, typename NumericTraits::AccumulateType b0 ); /** Threshold on the reference image data. The output ODF will be a null * pdf for pixels in the reference image that have a value less than this * threshold. */ itkSetMacro( Threshold, ReferencePixelType ); itkGetMacro( Threshold, ReferencePixelType ); itkSetMacro( NormalizationMethod, Normalization); itkGetMacro( NormalizationMethod, Normalization ); - typedef Image BlaImage; + typedef Image FloatImageType; itkGetMacro( BZeroImage, typename BZeroImageType::Pointer); - itkGetMacro( ODFSumImage, typename BlaImage::Pointer); + itkGetMacro( ODFSumImage, typename FloatImageType::Pointer); + itkGetMacro( CoefficientImage, typename CoefficientImageType::Pointer); itkSetMacro( BValue, TOdfPixelType); #ifdef GetBValue #undef GetBValue #endif itkGetConstReferenceMacro( BValue, TOdfPixelType); itkSetMacro( Lambda, double ); itkGetMacro( Lambda, double ); #ifdef ITK_USE_CONCEPT_CHECKING /** Begin concept checking */ itkConceptMacro(ReferenceEqualityComparableCheck, (Concept::EqualityComparable)); itkConceptMacro(TensorEqualityComparableCheck, (Concept::EqualityComparable)); itkConceptMacro(GradientConvertibleToDoubleCheck, (Concept::Convertible)); itkConceptMacro(DoubleConvertibleToTensorCheck, (Concept::Convertible)); itkConceptMacro(GradientReferenceAdditiveOperatorsCheck, (Concept::AdditiveOperators)); itkConceptMacro(ReferenceOStreamWritableCheck, (Concept::OStreamWritable)); itkConceptMacro(TensorOStreamWritableCheck, (Concept::OStreamWritable)); /** End concept checking */ #endif protected: AnalyticalDiffusionQballReconstructionImageFilter(); ~AnalyticalDiffusionQballReconstructionImageFilter() {}; void PrintSelf(std::ostream& os, Indent indent) const; void ComputeReconstructionMatrix(); - + void BeforeThreadedGenerateData(); - void ThreadedGenerateData( const + void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, int); - + private: - + OdfReconstructionMatrixType m_ReconstructionMatrix; - + OdfReconstructionMatrixType m_CoeffReconstructionMatrix; OdfReconstructionMatrixType m_SphericalHarmonicBasisMatrix; /** container to hold gradient directions */ GradientDirectionContainerType::Pointer m_GradientDirectionContainer; /** Number of gradient measurements */ unsigned int m_NumberOfGradientDirections; /** Number of baseline images */ unsigned int m_NumberOfBaselineImages; /** Threshold on the reference image data */ ReferencePixelType m_Threshold; /** LeBihan's b-value for normalizing tensors */ TOdfPixelType m_BValue; typename BZeroImageType::Pointer m_BZeroImage; double m_Lambda; bool m_DirectionsDuplicated; Normalization m_NormalizationMethod; int m_NumberCoefficients; vnl_matrix* m_B_t; vnl_vector* m_LP; - BlaImage::Pointer m_ODFSumImage; + FloatImageType::Pointer m_ODFSumImage; + typename CoefficientImageType::Pointer m_CoefficientImage; }; } #ifndef ITK_MANUAL_INSTANTIATION #include "itkAnalyticalDiffusionQballReconstructionImageFilter.cpp" #endif #endif //__itkAnalyticalDiffusionQballReconstructionImageFilter_h_