diff --git a/Modules/Core/include/mitkPlaneGeometry.h b/Modules/Core/include/mitkPlaneGeometry.h index 7e61246ac8..c160a76632 100644 --- a/Modules/Core/include/mitkPlaneGeometry.h +++ b/Modules/Core/include/mitkPlaneGeometry.h @@ -1,614 +1,614 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ /** * \brief Describes the geometry of a plane object * * Describes a two-dimensional manifold, i.e., to put it simply, * an object that can be described using a 2D coordinate-system. * * PlaneGeometry can map points between 3D world coordinates * (in mm) and the described 2D coordinate-system (in mm) by first projecting * the 3D point onto the 2D manifold and then calculating the 2D-coordinates * (in mm). These 2D-mm-coordinates can be further converted into * 2D-unit-coordinates (e.g., pixels), giving a parameter representation of * the object with parameter values inside a rectangle * (e.g., [0,0]..[width, height]), which is the bounding box (bounding range * in z-direction always [0]..[1]). * * A PlaneGeometry describes the 2D representation within a 3D object (derived from BaseGeometry). For example, * a single CT-image (slice) is 2D in the sense that you can access the * pixels using 2D-coordinates, but is also 3D, as the pixels are really * voxels, thus have an extension (thickness) in the 3rd dimension. * * * Optionally, a reference BaseGeometry can be specified, which usually would * be the geometry associated with the underlying dataset. This is currently * used for calculating the intersection of inclined / rotated planes * (represented as PlaneGeometry) with the bounding box of the associated * BaseGeometry. * * \warning The PlaneGeometry are not necessarily up-to-date and not even * initialized. As described in the previous paragraph, one of the * Generate-/Copy-/UpdateOutputInformation methods have to initialize it. * mitk::BaseData::GetPlaneGeometry() makes sure, that the PlaneGeometry is * up-to-date before returning it (by setting the update extent appropriately * and calling UpdateOutputInformation). * * Rule: everything is in mm (or ms for temporal information) if not * stated otherwise. * \ingroup Geometry */ #ifndef PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include "mitkBaseGeometry.h" #include "mitkRestorePlanePositionOperation.h" #include #include namespace mitk { template class Line; typedef Line Line3D; class PlaneGeometry; /** \deprecatedSince{2014_10} This class is deprecated. Please use PlaneGeometry instead. */ DEPRECATED(typedef PlaneGeometry Geometry2D); /** * \brief Describes a two-dimensional, rectangular plane * * \ingroup Geometry */ class MITKCORE_EXPORT PlaneGeometry : public BaseGeometry { public: mitkClassMacro(PlaneGeometry, BaseGeometry); /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self); itkCloneMacro(Self); enum PlaneOrientation { Axial, Sagittal, - Frontal, // also known as "Coronal" in mitk. + Coronal, None // This defines the PlaneGeometry for the 3D renderWindow which // curiously also needs a PlaneGeometry. This should be reconsidered some time. }; virtual void IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const; virtual void WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point2D) is not used. If possible, please use void IndexToWorld(const // mitk::Vector2D& vec_units, mitk::Vector2D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Point2D &atPt2d_untis, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point2D) is not used. If possible, please use void WorldToIndex(const // mitk::Vector2D& vec_mm, mitk::Vector2D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \warning A former version of this method created a geometry with unit * spacing. For unit spacing use * * \code * // for in-plane unit spacing: * thisgeometry->SetSizeInUnits(thisgeometry->GetExtentInMM(0), * thisgeometry->GetExtentInMM(1)); * // additionally, for unit spacing in normal direction (former version * // did not do this): * thisgeometry->SetExtentInMM(2, 1.0); * \endcode */ virtual void InitializeStandardPlane(const BaseGeometry *geometry3D, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \param geometry3D * \param top if \a true, create plane at top, otherwise at bottom * (for PlaneOrientation Axial, for other plane locations respectively) * \param planeorientation * \param frontside * \param rotated */ virtual void InitializeStandardPlane(const BaseGeometry *geometry3D, bool top, PlaneOrientation planeorientation = Axial, bool frontside = true, bool rotated = false); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a transform (default: identity) * given width and height in units. * * \a Rotated means rotated by 180 degrees (1/2 rotation) within the plane. * Rotation by 90 degrees (1/4 rotation) is not implemented as of now. * * \a Frontside/Backside: * Viewed from below = frontside in the axial case; * (radiologist's view versus neuro-surgeon's view, see: * http://www.itk.org/Wiki/images/e/ed/DICOM-OrientationDiagram-Radiologist-vs-NeuroSurgeon.png ) * Viewed from front = frontside in the coronal case; * Viewed from left = frontside in the sagittal case. * * \a Cave/Caution: Currently only RPI, LAI, LPS and RAS in the three standard planes are covered, * i.e. 12 cases of 144: 3 standard planes * 48 coordinate orientations = 144 cases. */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const AffineTransform3D *transform = nullptr, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize plane with orientation \a planeorientation * (default: axial) given width, height and spacing. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const Vector3D &spacing, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize plane by width and height in pixels, right-/down-vector * (itk) to describe orientation in world-space (vectors will be normalized) * and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing before * they are set in the matrix. * * This overloaded version of InitializeStandardPlane() creates only righthanded * coordinate orientations, unless spacing contains 1 or 3 negative entries. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by width and height in pixels, * right-/down-vector (vnl) to describe orientation in world-space (vectors * will be normalized) and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing * before they are set in the matrix. * * This overloaded version of InitializeStandardPlane() creates only righthanded * coordinate orientations, unless spacing contains 1 or 3 negative entries. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by right-/down-vector (itk) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane(const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by right-/down-vector (vnl) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane(const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by origin and normal (size is 1.0 mm in * all directions, direction of right-/down-vector valid but * undefined). * \warning This function can only produce righthanded coordinate orientation, not lefthanded. */ virtual void InitializePlane(const Point3D &origin, const Vector3D &normal); /** * \brief Initialize plane by right-/down-vector. * * \warning The vectors are set into the matrix as they are, * \em without normalization! * This function creates a righthanded IndexToWorldTransform, * only a negative thickness could still make it lefthanded. */ void SetMatrixByVectors(const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness = 1.0); /** * \brief Check if matrix is a rotation matrix: * - determinant is 1? * - R*R^T is ID? * Output warning otherwise. */ static bool CheckRotationMatrix(AffineTransform3D *transform, double epsilon=1e-6); /** * \brief Normal of the plane * */ Vector3D GetNormal() const; /** * \brief Normal of the plane as VnlVector * */ VnlVector GetNormalVnl() const; virtual ScalarType SignedDistance(const Point3D &pt3d_mm) const; /** * \brief Calculates, whether a point is below or above the plane. There are two different *calculation methods, with or without consideration of the bounding box. */ virtual bool IsAbove(const Point3D &pt3d_mm, bool considerBoundingBox = false) const; /** * \brief Distance of the point from the plane * (bounding-box \em not considered) * */ ScalarType DistanceFromPlane(const Point3D &pt3d_mm) const; /** * \brief Signed distance of the point from the plane * (bounding-box \em not considered) * * > 0 : point is in the direction of the direction vector. */ inline ScalarType SignedDistanceFromPlane(const Point3D &pt3d_mm) const { ScalarType len = GetNormalVnl().two_norm(); if (len == 0) return 0; return (pt3d_mm - GetOrigin()) * GetNormal() / len; } /** * \brief Distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ ScalarType DistanceFromPlane(const PlaneGeometry *plane) const { return fabs(SignedDistanceFromPlane(plane)); } /** * \brief Signed distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ inline ScalarType SignedDistanceFromPlane(const PlaneGeometry *plane) const { if (IsParallel(plane)) { return SignedDistance(plane->GetOrigin()); } return 0; } /** * \brief Calculate the intersecting line of two planes * * \return \a true planes are intersecting * \return \a false planes do not intersect */ bool IntersectionLine(const PlaneGeometry *plane, Line3D &crossline) const; /** * \brief Calculate two points where another plane intersects the border of this plane * * \return number of intersection points (0..2). First interection point (if existing) * is returned in \a lineFrom, second in \a lineTo. */ unsigned int IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo) const; /** * \brief Calculate the angle between two planes * * \return angle in radiants */ double Angle(const PlaneGeometry *plane) const; /** * \brief Calculate the angle between the plane and a line * * \return angle in radiants */ double Angle(const Line3D &line) const; /** * \brief Calculate intersection point between the plane and a line * * \param line * \param intersectionPoint intersection point * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPoint(const Line3D &line, Point3D &intersectionPoint) const; /** * \brief Calculate line parameter of intersection point between the * plane and a line * * \param line * \param t parameter of line: intersection point is * line.GetPoint()+t*line.GetDirection() * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPointParam(const Line3D &line, double &t) const; /** * \brief Returns whether the plane is parallel to another plane * * @return true iff the normal vectors both point to the same or exactly oposit direction */ bool IsParallel(const PlaneGeometry *plane) const; /** * \brief Returns whether the point is on the plane * (bounding-box \em not considered) */ bool IsOnPlane(const Point3D &point) const; /** * \brief Returns whether the line is on the plane * (bounding-box \em not considered) */ bool IsOnPlane(const Line3D &line) const; /** * \brief Returns whether the plane is on the plane * (bounding-box \em not considered) * * @return true if the normal vector of the planes point to the same or the exactly oposit direction and * the distance of the planes is < eps * */ bool IsOnPlane(const PlaneGeometry *plane) const; /** * \brief Returns the lot from the point to the plane */ Point3D ProjectPointOntoPlane(const Point3D &pt) const; itk::LightObject::Pointer InternalClone() const override; /** Implements operation to re-orient the plane */ void ExecuteOperation(Operation *operation) override; /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 2D point in mm (\a pt2d_mm). * * The result is a 2D point in mm (\a pt2d_mm) relative to the upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Point3D &pt3d_mm, mitk::Point3D * &projectedPt3d_mm) */ virtual bool Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const; /** * \brief Converts a 2D point given in mm (\a pt2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D point in mm, \a pt3d_mm). * * To convert a 2D point given in units (e.g., pixels in case of an * image) into a 2D point given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const; /** * \brief Set the width and height of this 2D-geometry in units by calling * SetBounds. This does \a not change the extent in mm! * * For an image, this is the number of pixels in x-/y-direction. * \note In contrast to calling SetBounds directly, this does \a not change * the extent in mm! */ virtual void SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height); /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 3D point in mm (\a projectedPt3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 2D vector in mm (\a vec2d_mm). * * The result is a 2D vector in mm (\a vec2d_mm) relative to the * upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D * &projectedVec3d_mm) */ virtual bool Map(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const; /** * \brief Converts a 2D vector given in mm (\a vec2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D vector in mm, \a vec3d_mm). * * To convert a 2D vector given in units (e.g., pixels in case of an * image) into a 2D vector given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * DEPRECATED. Use Project(vector,vector) instead * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Distance of the point from the geometry * (bounding-box \em not considered) * */ inline ScalarType Distance(const Point3D &pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } /** * \brief Set the geometrical frame of reference in which this PlaneGeometry * is placed. * * This would usually be the BaseGeometry of the underlying dataset, but * setting it is optional. */ void SetReferenceGeometry(const mitk::BaseGeometry *geometry); /** * \brief Get the geometrical frame of reference for this PlaneGeometry. */ const BaseGeometry *GetReferenceGeometry() const; bool HasReferenceGeometry() const; static std::vector< int > CalculateDominantAxes(mitk::AffineTransform3D::MatrixType::InternalMatrixType& rotation_matrix); protected: PlaneGeometry(); PlaneGeometry(const PlaneGeometry &other); ~PlaneGeometry() override; void PrintSelf(std::ostream &os, itk::Indent indent) const override; const mitk::BaseGeometry *m_ReferenceGeometry; //##Documentation //## @brief PreSetSpacing //## //## These virtual function allows a different beahiour in subclasses. //## Do implement them in every subclass of BaseGeometry. If not needed, use //## {Superclass::PreSetSpacing();}; void PreSetSpacing(const mitk::Vector3D &aSpacing) override { Superclass::PreSetSpacing(aSpacing); }; //##Documentation //## @brief CheckBounds //## //## This function is called in SetBounds. Assertions can be implemented in this function (see PlaneGeometry.cpp). //## If you implement this function in a subclass, make sure, that all classes were your class inherits from //## have an implementation of CheckBounds //## (e.g. inheritance BaseGeometry <- A <- B. Implementation of CheckBounds in class B needs implementation in A as // well!) void CheckBounds(const BoundsArrayType &bounds) override; //##Documentation //## @brief CheckIndexToWorldTransform //## //## This function is called in SetIndexToWorldTransform. Assertions can be implemented in this function (see // PlaneGeometry.cpp). //## In Subclasses of BaseGeometry, implement own conditions or call Superclass::CheckBounds(bounds);. void CheckIndexToWorldTransform(mitk::AffineTransform3D *transform) override; private: /** * \brief Compares plane with another plane: \a true if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator==(const PlaneGeometry *) const { return false; }; /** * \brief Compares plane with another plane: \a false if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator!=(const PlaneGeometry *) const { return false; }; }; } // namespace mitk #endif /* PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Modules/Core/src/Controllers/mitkSliceNavigationController.cpp b/Modules/Core/src/Controllers/mitkSliceNavigationController.cpp index 825fa1ac43..65ac9ae5ad 100644 --- a/Modules/Core/src/Controllers/mitkSliceNavigationController.cpp +++ b/Modules/Core/src/Controllers/mitkSliceNavigationController.cpp @@ -1,656 +1,656 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSliceNavigationController.h" #include "mitkAction.h" #include "mitkBaseRenderer.h" #include "mitkCrosshairPositionEvent.h" #include "mitkInteractionConst.h" #include "mitkOperation.h" #include "mitkOperationActor.h" #include "mitkPlaneGeometry.h" #include "mitkProportionalTimeGeometry.h" #include "mitkArbitraryTimeGeometry.h" #include "mitkRenderingManager.h" #include "mitkSlicedGeometry3D.h" #include "mitkVtkPropRenderer.h" #include "mitkImage.h" #include "mitkImagePixelReadAccessor.h" #include "mitkInteractionConst.h" #include "mitkNodePredicateDataType.h" #include "mitkOperationEvent.h" #include "mitkPixelTypeMultiplex.h" #include "mitkPlaneOperation.h" #include "mitkPointOperation.h" #include "mitkStatusBar.h" #include "mitkUndoController.h" #include "mitkApplyTransformMatrixOperation.h" #include "mitkMemoryUtilities.h" #include namespace mitk { SliceNavigationController::SliceNavigationController() : BaseController(), m_InputWorldGeometry3D( mitk::BaseGeometry::ConstPointer() ), m_InputWorldTimeGeometry( mitk::TimeGeometry::ConstPointer() ), m_CreatedWorldGeometry( mitk::TimeGeometry::Pointer() ), m_ViewDirection(Axial), m_DefaultViewDirection(Axial), m_RenderingManager( mitk::RenderingManager::Pointer() ), m_Renderer( nullptr ), m_Top(false), m_FrontSide(false), m_Rotated(false), m_BlockUpdate(false), m_SliceLocked(false), m_SliceRotationLocked(false), m_OldPos(0) { typedef itk::SimpleMemberCommand SNCCommandType; SNCCommandType::Pointer sliceStepperChangedCommand, timeStepperChangedCommand; sliceStepperChangedCommand = SNCCommandType::New(); timeStepperChangedCommand = SNCCommandType::New(); sliceStepperChangedCommand->SetCallbackFunction(this, &SliceNavigationController::SendSlice); timeStepperChangedCommand->SetCallbackFunction(this, &SliceNavigationController::SendTime); m_Slice->AddObserver(itk::ModifiedEvent(), sliceStepperChangedCommand); m_Time->AddObserver(itk::ModifiedEvent(), timeStepperChangedCommand); m_Slice->SetUnitName("mm"); m_Time->SetUnitName("ms"); m_Top = false; m_FrontSide = false; m_Rotated = false; } SliceNavigationController::~SliceNavigationController() {} void SliceNavigationController::SetInputWorldGeometry3D(const BaseGeometry *geometry) { if ( geometry != nullptr ) { if (geometry->GetBoundingBox()->GetDiagonalLength2() < eps) { itkWarningMacro("setting an empty bounding-box"); geometry = nullptr; } } if (m_InputWorldGeometry3D != geometry) { m_InputWorldGeometry3D = geometry; m_InputWorldTimeGeometry = mitk::TimeGeometry::ConstPointer(); this->Modified(); } } void SliceNavigationController::SetInputWorldTimeGeometry(const TimeGeometry *geometry) { if ( geometry != nullptr ) { if (geometry->GetBoundingBoxInWorld()->GetDiagonalLength2() < eps) { itkWarningMacro("setting an empty bounding-box"); geometry = nullptr; } } if (m_InputWorldTimeGeometry != geometry) { m_InputWorldTimeGeometry = geometry; m_InputWorldGeometry3D = mitk::BaseGeometry::ConstPointer(); this->Modified(); } } void SliceNavigationController::SetViewDirectionToDefault() { m_ViewDirection = m_DefaultViewDirection; } const char *SliceNavigationController::GetViewDirectionAsString() const { const char *viewDirectionString; switch (m_ViewDirection) { case SliceNavigationController::Axial: viewDirectionString = "Axial"; break; case SliceNavigationController::Sagittal: viewDirectionString = "Sagittal"; break; case SliceNavigationController::Coronal: viewDirectionString = "Coronal"; break; case SliceNavigationController::Original: viewDirectionString = "Original"; break; default: viewDirectionString = "No View Direction Available"; break; } return viewDirectionString; } void SliceNavigationController::Update() { if (!m_BlockUpdate) { if (m_ViewDirection == Sagittal) { this->Update(Sagittal, true, true, false); } else if (m_ViewDirection == Coronal) { this->Update(Coronal, false, true, false); } else if (m_ViewDirection == Axial) { this->Update(Axial, false, false, true); } else { this->Update(m_ViewDirection); } } } void SliceNavigationController::Update(SliceNavigationController::ViewDirection viewDirection, bool top, bool frontside, bool rotated) { TimeGeometry::ConstPointer worldTimeGeometry = m_InputWorldTimeGeometry; if (m_BlockUpdate || (m_InputWorldTimeGeometry.IsNull() && m_InputWorldGeometry3D.IsNull()) || ((worldTimeGeometry.IsNotNull()) && (worldTimeGeometry->CountTimeSteps() == 0))) { return; } m_BlockUpdate = true; if (m_InputWorldTimeGeometry.IsNotNull() && m_LastUpdateTime < m_InputWorldTimeGeometry->GetMTime()) { Modified(); } if (m_InputWorldGeometry3D.IsNotNull() && m_LastUpdateTime < m_InputWorldGeometry3D->GetMTime()) { Modified(); } this->SetViewDirection(viewDirection); this->SetTop(top); this->SetFrontSide(frontside); this->SetRotated(rotated); if (m_LastUpdateTime < GetMTime()) { m_LastUpdateTime = GetMTime(); // initialize the viewplane SlicedGeometry3D::Pointer slicedWorldGeometry = SlicedGeometry3D::Pointer(); BaseGeometry::ConstPointer currentGeometry = BaseGeometry::ConstPointer(); if (m_InputWorldTimeGeometry.IsNotNull()) if (m_InputWorldTimeGeometry->IsValidTimeStep(GetTime()->GetPos())) currentGeometry = m_InputWorldTimeGeometry->GetGeometryForTimeStep(GetTime()->GetPos()); else currentGeometry = m_InputWorldTimeGeometry->GetGeometryForTimeStep(0); else currentGeometry = m_InputWorldGeometry3D; m_CreatedWorldGeometry = mitk::TimeGeometry::Pointer(); switch (viewDirection) { case Original: if (worldTimeGeometry.IsNotNull()) { m_CreatedWorldGeometry = worldTimeGeometry->Clone(); worldTimeGeometry = m_CreatedWorldGeometry.GetPointer(); slicedWorldGeometry = dynamic_cast( m_CreatedWorldGeometry->GetGeometryForTimeStep(this->GetTime()->GetPos()).GetPointer()); if (slicedWorldGeometry.IsNotNull()) { break; } } else { const auto *worldSlicedGeometry = dynamic_cast(currentGeometry.GetPointer()); if ( worldSlicedGeometry != nullptr ) { slicedWorldGeometry = static_cast(currentGeometry->Clone().GetPointer()); break; } } slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes(currentGeometry, PlaneGeometry::None, top, frontside, rotated); slicedWorldGeometry->SetSliceNavigationController(this); break; case Axial: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes(currentGeometry, PlaneGeometry::Axial, top, frontside, rotated); slicedWorldGeometry->SetSliceNavigationController(this); break; case Coronal: slicedWorldGeometry = SlicedGeometry3D::New(); - slicedWorldGeometry->InitializePlanes(currentGeometry, PlaneGeometry::Frontal, top, frontside, rotated); + slicedWorldGeometry->InitializePlanes(currentGeometry, PlaneGeometry::Coronal, top, frontside, rotated); slicedWorldGeometry->SetSliceNavigationController(this); break; case Sagittal: slicedWorldGeometry = SlicedGeometry3D::New(); slicedWorldGeometry->InitializePlanes(currentGeometry, PlaneGeometry::Sagittal, top, frontside, rotated); slicedWorldGeometry->SetSliceNavigationController(this); break; default: itkExceptionMacro("unknown ViewDirection"); } m_Slice->SetPos(0); m_Slice->SetSteps((int)slicedWorldGeometry->GetSlices()); if ( worldTimeGeometry.IsNull() ) { auto createdTimeGeometry = ProportionalTimeGeometry::New(); createdTimeGeometry->Initialize( slicedWorldGeometry, 1 ); m_CreatedWorldGeometry = createdTimeGeometry; m_Time->SetSteps(0); m_Time->SetPos(0); m_Time->InvalidateRange(); } else { m_BlockUpdate = true; m_Time->SetSteps(worldTimeGeometry->CountTimeSteps()); m_Time->SetPos(0); const TimeBounds &timeBounds = worldTimeGeometry->GetTimeBounds(); m_Time->SetRange(timeBounds[0], timeBounds[1]); m_BlockUpdate = false; const auto currentTemporalPosition = this->GetTime()->GetPos(); assert( worldTimeGeometry->GetGeometryForTimeStep( currentTemporalPosition ).IsNotNull() ); if ( dynamic_cast( worldTimeGeometry.GetPointer() ) != nullptr ) { const TimePointType minimumTimePoint = worldTimeGeometry->TimeStepToTimePoint( currentTemporalPosition ); const TimePointType stepDuration = worldTimeGeometry->TimeStepToTimePoint( currentTemporalPosition + 1 ) - minimumTimePoint; auto createdTimeGeometry = ProportionalTimeGeometry::New(); createdTimeGeometry->Initialize( slicedWorldGeometry, worldTimeGeometry->CountTimeSteps() ); createdTimeGeometry->SetFirstTimePoint( minimumTimePoint ); createdTimeGeometry->SetStepDuration( stepDuration ); m_CreatedWorldGeometry = createdTimeGeometry; } else { auto createdTimeGeometry = mitk::ArbitraryTimeGeometry::New(); const TimeStepType numberOfTimeSteps = worldTimeGeometry->CountTimeSteps(); createdTimeGeometry->ReserveSpaceForGeometries( numberOfTimeSteps ); for ( TimeStepType i = 0; i < numberOfTimeSteps; ++i ) { const BaseGeometry::Pointer clonedGeometry = slicedWorldGeometry->Clone().GetPointer(); const auto bounds = worldTimeGeometry->GetTimeBounds( i ); createdTimeGeometry->AppendNewTimeStep( clonedGeometry, bounds[0], bounds[1]); } createdTimeGeometry->Update(); m_CreatedWorldGeometry = createdTimeGeometry; } } } // unblock update; we may do this now, because if m_BlockUpdate was already // true before this method was entered, then we will never come here. m_BlockUpdate = false; // Send the geometry. Do this even if nothing was changed, because maybe // Update() was only called to re-send the old geometry and time/slice data. this->SendCreatedWorldGeometry(); this->SendSlice(); this->SendTime(); // Adjust the stepper range of slice stepper according to geometry this->AdjustSliceStepperRange(); } void SliceNavigationController::SendCreatedWorldGeometry() { // Send the geometry. Do this even if nothing was changed, because maybe // Update() was only called to re-send the old geometry. if (!m_BlockUpdate) { this->InvokeEvent(GeometrySendEvent(m_CreatedWorldGeometry, 0)); } } void SliceNavigationController::SendCreatedWorldGeometryUpdate() { if (!m_BlockUpdate) { this->InvokeEvent(GeometryUpdateEvent(m_CreatedWorldGeometry, m_Slice->GetPos())); } } void SliceNavigationController::SendSlice() { if (!m_BlockUpdate) { if (m_CreatedWorldGeometry.IsNotNull()) { this->InvokeEvent(GeometrySliceEvent(m_CreatedWorldGeometry, m_Slice->GetPos())); RenderingManager::GetInstance()->RequestUpdateAll(); } } } void SliceNavigationController::SendTime() { if (!m_BlockUpdate) { if (m_CreatedWorldGeometry.IsNotNull()) { this->InvokeEvent(GeometryTimeEvent(m_CreatedWorldGeometry, m_Time->GetPos())); RenderingManager::GetInstance()->RequestUpdateAll(); } } } void SliceNavigationController::SetGeometry(const itk::EventObject &) {} void SliceNavigationController::SetGeometryTime(const itk::EventObject &geometryTimeEvent) { if (m_CreatedWorldGeometry.IsNull()) { return; } const auto *timeEvent = dynamic_cast< const SliceNavigationController::GeometryTimeEvent * >(&geometryTimeEvent); assert( timeEvent != nullptr ); TimeGeometry *timeGeometry = timeEvent->GetTimeGeometry(); assert( timeGeometry != nullptr ); auto timeStep = (int)timeEvent->GetPos(); ScalarType timeInMS; timeInMS = timeGeometry->TimeStepToTimePoint(timeStep); timeStep = m_CreatedWorldGeometry->TimePointToTimeStep(timeInMS); this->GetTime()->SetPos(timeStep); } void SliceNavigationController::SetGeometrySlice(const itk::EventObject &geometrySliceEvent) { const auto *sliceEvent = dynamic_cast(&geometrySliceEvent); assert(sliceEvent!=nullptr); this->GetSlice()->SetPos(sliceEvent->GetPos()); } void SliceNavigationController::SelectSliceByPoint(const Point3D &point) { if (m_CreatedWorldGeometry.IsNull()) { return; } //@todo add time to PositionEvent and use here!! SlicedGeometry3D *slicedWorldGeometry = dynamic_cast( m_CreatedWorldGeometry->GetGeometryForTimeStep(this->GetTime()->GetPos()).GetPointer()); if (slicedWorldGeometry) { int bestSlice = -1; double bestDistance = itk::NumericTraits::max(); int s, slices; slices = slicedWorldGeometry->GetSlices(); if (slicedWorldGeometry->GetEvenlySpaced()) { mitk::PlaneGeometry *plane = slicedWorldGeometry->GetPlaneGeometry(0); const Vector3D &direction = slicedWorldGeometry->GetDirectionVector(); Point3D projectedPoint; plane->Project(point, projectedPoint); // Check whether the point is somewhere within the slice stack volume; // otherwise, the default slice (0) will be selected if (direction[0] * (point[0] - projectedPoint[0]) + direction[1] * (point[1] - projectedPoint[1]) + direction[2] * (point[2] - projectedPoint[2]) >= 0) { bestSlice = (int)(plane->Distance(point) / slicedWorldGeometry->GetSpacing()[2] + 0.5); } } else { Point3D projectedPoint; for (s = 0; s < slices; ++s) { slicedWorldGeometry->GetPlaneGeometry(s)->Project(point, projectedPoint); const Vector3D distance = projectedPoint - point; ScalarType currentDistance = distance.GetSquaredNorm(); if (currentDistance < bestDistance) { bestDistance = currentDistance; bestSlice = s; } } } if (bestSlice >= 0) { this->GetSlice()->SetPos(bestSlice); } else { this->GetSlice()->SetPos(0); } this->SendCreatedWorldGeometryUpdate(); // send crosshair event SetCrosshairEvent.Send(point); } } void SliceNavigationController::ReorientSlices(const Point3D &point, const Vector3D &normal) { if (m_CreatedWorldGeometry.IsNull()) { return; } PlaneOperation op(OpORIENT, point, normal); m_CreatedWorldGeometry->ExecuteOperation(&op); this->SendCreatedWorldGeometryUpdate(); } void SliceNavigationController::ReorientSlices(const mitk::Point3D &point, const mitk::Vector3D &axisVec0, const mitk::Vector3D &axisVec1) { if (m_CreatedWorldGeometry) { PlaneOperation op(OpORIENT, point, axisVec0, axisVec1); m_CreatedWorldGeometry->ExecuteOperation(&op); this->SendCreatedWorldGeometryUpdate(); } } mitk::TimeGeometry *SliceNavigationController::GetCreatedWorldGeometry() { return m_CreatedWorldGeometry; } const mitk::BaseGeometry *SliceNavigationController::GetCurrentGeometry3D() { if (m_CreatedWorldGeometry.IsNotNull()) { return m_CreatedWorldGeometry->GetGeometryForTimeStep(this->GetTime()->GetPos()); } else { return nullptr; } } const mitk::PlaneGeometry *SliceNavigationController::GetCurrentPlaneGeometry() { const auto *slicedGeometry = dynamic_cast(this->GetCurrentGeometry3D()); if (slicedGeometry) { const mitk::PlaneGeometry *planeGeometry = (slicedGeometry->GetPlaneGeometry(this->GetSlice()->GetPos())); return planeGeometry; } else { return nullptr; } } void SliceNavigationController::SetRenderer(BaseRenderer *renderer) { m_Renderer = renderer; } BaseRenderer *SliceNavigationController::GetRenderer() const { return m_Renderer; } void SliceNavigationController::AdjustSliceStepperRange() { const auto *slicedGeometry = dynamic_cast(this->GetCurrentGeometry3D()); const Vector3D &direction = slicedGeometry->GetDirectionVector(); int c = 0; int i, k = 0; for (i = 0; i < 3; ++i) { if (fabs(direction[i]) < 0.000000001) { ++c; } else { k = i; } } if (c == 2) { ScalarType min = slicedGeometry->GetOrigin()[k]; ScalarType max = min + slicedGeometry->GetExtentInMM(k); m_Slice->SetRange(min, max); } else { m_Slice->InvalidateRange(); } } void SliceNavigationController::ExecuteOperation(Operation *operation) { // switch on type // - select best slice for a given point // - rotate created world geometry according to Operation->SomeInfo() if (!operation || m_CreatedWorldGeometry.IsNull()) { return; } switch (operation->GetOperationType()) { case OpMOVE: // should be a point operation { if (!m_SliceLocked) // do not move the cross position { // select a slice auto *po = dynamic_cast(operation); if (po && po->GetIndex() == -1) { this->SelectSliceByPoint(po->GetPoint()); } else if (po && po->GetIndex() != -1) // undo case because index != -1, index holds the old position of this slice { this->GetSlice()->SetPos(po->GetIndex()); } } break; } case OpRESTOREPLANEPOSITION: { m_CreatedWorldGeometry->ExecuteOperation(operation); this->SendCreatedWorldGeometryUpdate(); break; } case OpAPPLYTRANSFORMMATRIX: { m_CreatedWorldGeometry->ExecuteOperation(operation); this->SendCreatedWorldGeometryUpdate(); break; } default: { // do nothing break; } } } TimeStepType SliceNavigationController::GetSelectedTimeStep() const { return this->GetTime()->GetPos(); } TimePointType SliceNavigationController::GetSelectedTimePoint() const { auto timeStep = this->GetSelectedTimeStep(); if (m_CreatedWorldGeometry.IsNull()) { return 0.0; } if (!m_CreatedWorldGeometry->IsValidTimeStep(timeStep)) { mitkThrow() << "SliceNavigationController is in an invalid state. It has a time step" << "selected that is not covered by its time geometry. Selected time step: " << timeStep << "; TimeGeometry steps count: " << m_CreatedWorldGeometry->CountTimeSteps(); } return m_CreatedWorldGeometry->TimeStepToTimePoint(timeStep); } } // namespace diff --git a/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp b/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp index 013c257025..23de6936dd 100644 --- a/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp +++ b/Modules/Core/src/DataManagement/mitkPlaneGeometry.cpp @@ -1,973 +1,972 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkPlaneGeometry.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include "mitkPlaneOperation.h" #include #include #include namespace mitk { PlaneGeometry::PlaneGeometry() : Superclass(), m_ReferenceGeometry(nullptr) { Initialize(); } PlaneGeometry::~PlaneGeometry() {} PlaneGeometry::PlaneGeometry(const PlaneGeometry &other) : Superclass(other), m_ReferenceGeometry(other.m_ReferenceGeometry) { } bool PlaneGeometry::CheckRotationMatrix(mitk::AffineTransform3D *transform, double epsilon) { bool rotation = true; auto matrix = transform->GetMatrix().GetVnlMatrix(); matrix.normalize_columns(); auto det = vnl_determinant(matrix); if (fabs(det-1.0) > epsilon) { MITK_WARN << "Invalid rotation matrix! Determinant != 1 (" << det << ")"; rotation = false; } vnl_matrix_fixed id; id.set_identity(); auto should_be_id = matrix*matrix.transpose(); should_be_id -= id; auto max = should_be_id.absolute_value_max(); if (max > epsilon) { MITK_WARN << "Invalid rotation matrix! R*R^T != ID. Max value: " << max << " (should be 0)"; rotation = false; } return rotation; } void PlaneGeometry::CheckIndexToWorldTransform(mitk::AffineTransform3D *transform) { this->CheckRotationMatrix(transform); } void PlaneGeometry::CheckBounds(const BoundingBox::BoundsArrayType &bounds) { // error: unused parameter 'bounds' // this happens in release mode, where the assert macro is defined empty // hence we "use" the parameter: (void)bounds; // currently the unit rectangle must be starting at the origin [0,0] assert(bounds[0] == 0); assert(bounds[2] == 0); // the unit rectangle must be two-dimensional assert(bounds[1] > 0); assert(bounds[3] > 0); } void PlaneGeometry::IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const { pt_mm[0] = GetExtentInMM(0) / GetExtent(0) * pt_units[0]; pt_mm[1] = GetExtentInMM(1) / GetExtent(1) * pt_units[1]; } void PlaneGeometry::WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const { pt_units[0] = pt_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); pt_units[1] = pt_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::IndexToWorld(const Point2D & /*atPt2d_units*/, const Vector2D &vec_units, Vector2D &vec_mm) const { MITK_WARN << "Warning! Call of the deprecated function PlaneGeometry::IndexToWorld(point, vec, vec). Use " "PlaneGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void PlaneGeometry::IndexToWorld(const Vector2D &vec_units, Vector2D &vec_mm) const { vec_mm[0] = (GetExtentInMM(0) / GetExtent(0)) * vec_units[0]; vec_mm[1] = (GetExtentInMM(1) / GetExtent(1)) * vec_units[1]; } void PlaneGeometry::WorldToIndex(const Point2D & /*atPt2d_mm*/, const Vector2D &vec_mm, Vector2D &vec_units) const { MITK_WARN << "Warning! Call of the deprecated function PlaneGeometry::WorldToIndex(point, vec, vec). Use " "PlaneGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void PlaneGeometry::WorldToIndex(const Vector2D &vec_mm, Vector2D &vec_units) const { vec_units[0] = vec_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); vec_units[1] = vec_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const Vector3D &spacing, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated, bool top) { AffineTransform3D::Pointer transform; transform = AffineTransform3D::New(); AffineTransform3D::MatrixType matrix; AffineTransform3D::MatrixType::InternalMatrixType &vnlmatrix = matrix.GetVnlMatrix(); vnlmatrix.set_identity(); vnlmatrix(0, 0) = spacing[0]; vnlmatrix(1, 1) = spacing[1]; vnlmatrix(2, 2) = spacing[2]; transform->SetIdentity(); transform->SetMatrix(matrix); InitializeStandardPlane(width, height, transform.GetPointer(), planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, mitk::ScalarType height, const AffineTransform3D *transform /* = nullptr */, PlaneGeometry::PlaneOrientation planeorientation /* = Axial */, mitk::ScalarType zPosition /* = 0 */, bool frontside /* = true */, bool rotated /* = false */, bool top /* = true */) { Superclass::Initialize(); /// construct standard view. // We define at the moment "frontside" as: axial from above, // coronal from front (nose), saggital from right. // TODO: Double check with medicals doctors or radiologists [ ]. // We define the orientation in patient's view, e.g. LAI is in a axial cut // (parallel to the triangle ear-ear-nose): // first axis: To the left ear of the patient // seecond axis: To the nose of the patient // third axis: To the legs of the patient. // Options are: L/R left/right; A/P anterior/posterior; I/S inferior/superior // (AKA caudal/cranial). // We note on all cases in the following switch block r.h. for right handed // or l.h. for left handed to describe the different cases. // However, which system is chosen is defined at the end of the switch block. // CAVE / be careful: the vectors right and bottom are relative to the plane // and do NOT describe e.g. the right side of the patient. Point3D origin; /** Bottom means downwards, DV means Direction Vector. Both relative to the image! */ VnlVector rightDV(3), bottomDV(3); /** Origin of this plane is by default a zero vector and implicitly in the top-left corner: */ origin.Fill(0); /** This is different to all definitions in MITK, except the QT mouse clicks. * But it is like this here and we don't want to change a running system. * Just be aware, that IN THIS FUNCTION we define the origin at the top left (e.g. your screen). */ /** NormalDirection defines which axis (i.e. column index in the transform matrix) * is perpendicular to the plane: */ int normalDirection; switch (planeorientation) // Switch through our limited choice of standard planes: { case None: /** Orientation 'None' shall be done like the axial plane orientation, * for whatever reasons. */ case Axial: if (frontside) // Radiologist's view from below. A cut along the triangle ear-ear-nose. { if (rotated == false) /** Origin in the top-left corner, x=[1; 0; 0], y=[0; 1; 0], z=[0; 0; 1], * origin=[0,0,zpos]: LAI (r.h.) * * 0---rightDV----> | * | | * | Picture of a finite, rectangular plane | * | ( insert LOLCAT-scan here ^_^ ) | * | | * v _________________________________________| * */ { FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else // Origin rotated to the bottom-right corner, x=[-1; 0; 0], y=[0; -1; 0], z=[0; 0; 1], // origin=[w,h,zpos]: RPI (r.h.) { // Caveat emptor: Still using top-left as origin of index coordinate system! FillVector3D(origin, width, height, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } else // 'Backside, not frontside.' Neuro-Surgeons's view from above patient. { if (rotated == false) // x=[-1; 0; 0], y=[0; 1; 0], z=[0; 0; 1], origin=[w,0,zpos]: RAS (r.h.) { FillVector3D(origin, width, 0, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else // Origin in the bottom-left corner, x=[1; 0; 0], y=[0; -1; 0], z=[0; 0; 1], // origin=[0,h,zpos]: LPS (r.h.) { FillVector3D(origin, 0, height, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } normalDirection = 2; // That is S=Superior=z=third_axis=middlefinger in righthanded LPS-system. break; - // Frontal is known as Coronal in mitk. Plane cuts through patient's ear-ear-heel-heel: - case Frontal: + case Coronal: // Coronal=Frontal plane; cuts through patient's ear-ear-heel-heel: if (frontside) { if (rotated == false) // x=[1; 0; 0], y=[0; 0; 1], z=[0; 1; 0], origin=[0,zpos,0]: LAI (r.h.) { FillVector3D(origin, 0, zPosition, 0); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[-1;0;0], y=[0;0;-1], z=[0;1;0], origin=[w,zpos,h]: RAS (r.h.) { FillVector3D(origin, width, zPosition, height); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if (rotated == false) // x=[-1;0;0], y=[0;0;1], z=[0;1;0], origin=[w,zpos,0]: RPI (r.h.) { FillVector3D(origin, width, zPosition, 0); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[1;0;0], y=[0;1;0], z=[0;0;-1], origin=[0,zpos,h]: LPS (r.h.) { FillVector3D(origin, 0, zPosition, height); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 1; // Normal vector = posterior direction. break; case Sagittal: // Sagittal=Medial plane, the symmetry-plane mirroring your face. if (frontside) { if (rotated == false) // x=[0;1;0], y=[0;0;1], z=[1;0;0], origin=[zpos,0,0]: LAI (r.h.) { FillVector3D(origin, zPosition, 0, 0); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[0;-1;0], y=[0;0;-1], z=[1;0;0], origin=[zpos,w,h]: LPS (r.h.) { FillVector3D(origin, zPosition, width, height); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if (rotated == false) // x=[0;-1;0], y=[0;0;1], z=[1;0;0], origin=[zpos,w,0]: RPI (r.h.) { FillVector3D(origin, zPosition, width, 0); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[0;1;0], y=[0;0;-1], z=[1;0;0], origin=[zpos,0,h]: RAS (r.h.) { FillVector3D(origin, zPosition, 0, height); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 0; // Normal vector = Lateral direction: Left in a LPS-system. break; default: itkExceptionMacro("unknown PlaneOrientation"); } VnlVector normal(3); FillVector3D(normal, 0, 0, 0); normal[normalDirection] = top ? 1 : -1; if ( transform != nullptr ) { origin = transform->TransformPoint( origin ); rightDV = transform->TransformVector( rightDV ).as_ref(); bottomDV = transform->TransformVector( bottomDV ).as_ref(); normal = transform->TransformVector( normal ).as_ref(); } ScalarType bounds[6] = {0, width, 0, height, 0, 1}; this->SetBounds(bounds); AffineTransform3D::Pointer planeTransform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV.as_ref()); matrix.GetVnlMatrix().set_column(1, bottomDV.as_ref()); matrix.GetVnlMatrix().set_column(2, normal.as_ref()); planeTransform->SetMatrix(matrix); planeTransform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); this->SetIndexToWorldTransform(planeTransform); this->SetOrigin(origin); } std::vector< int > PlaneGeometry::CalculateDominantAxes(mitk::AffineTransform3D::MatrixType::InternalMatrixType& rotation_matrix) { std::vector< int > axes; bool dominant_axis_error = false; for (int i = 0; i < 3; ++i) { int dominantAxis = itk::Function::Max3( rotation_matrix[0][i], rotation_matrix[1][i], rotation_matrix[2][i] ); for (int j=0; jSetReferenceGeometry(geometry3D); ScalarType width, height; // Inspired by: // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 mitk::AffineTransform3D::MatrixType matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetTranspose(); /// The index of the sagittal, coronal and axial axes in the reference geometry. auto axes = CalculateDominantAxes(inverseMatrix); /// The direction of the sagittal, coronal and axial axes in the reference geometry. /// +1 means that the direction is straight, i.e. greater index translates to greater /// world coordinate. -1 means that the direction is inverted. int directions[3]; ScalarType extents[3]; ScalarType spacings[3]; for (int i=0; i<3; ++i) { int dominantAxis = axes.at(i); directions[i] = itk::Function::Sign(inverseMatrix[dominantAxis][i]); extents[i] = geometry3D->GetExtent(dominantAxis); spacings[i] = geometry3D->GetSpacing()[dominantAxis]; } // matrix(column) = inverseTransformMatrix(row) * flippedAxes * spacing matrix[0][0] = inverseMatrix[axes[0]][0] * directions[0] * spacings[0]; matrix[1][0] = inverseMatrix[axes[0]][1] * directions[0] * spacings[0]; matrix[2][0] = inverseMatrix[axes[0]][2] * directions[0] * spacings[0]; matrix[0][1] = inverseMatrix[axes[1]][0] * directions[1] * spacings[1]; matrix[1][1] = inverseMatrix[axes[1]][1] * directions[1] * spacings[1]; matrix[2][1] = inverseMatrix[axes[1]][2] * directions[1] * spacings[1]; matrix[0][2] = inverseMatrix[axes[2]][0] * directions[2] * spacings[2]; matrix[1][2] = inverseMatrix[axes[2]][1] * directions[2] * spacings[2]; matrix[2][2] = inverseMatrix[axes[2]][2] * directions[2] * spacings[2]; /// The "world origin" is the corner with the lowest physical coordinates. /// We use it as a reference point so that we get the correct anatomical /// orientations. Point3D worldOrigin = geometry3D->GetOrigin(); for (int i = 0; i < 3; ++i) { /// The distance of the plane origin from the world origin in voxels. double offset = directions[i] > 0 ? 0.0 : extents[i]; if (geometry3D->GetImageGeometry()) { offset += directions[i] * 0.5; } for (int j = 0; j < 3; ++j) { worldOrigin[j] -= offset * matrix[j][i]; } } switch(planeorientation) { case None: /** Orientation 'None' shall be done like the axial plane orientation, * for whatever reasons. */ case Axial: width = extents[0]; height = extents[1]; break; - case Frontal: + case Coronal: width = extents[0]; height = extents[2]; break; case Sagittal: width = extents[1]; height = extents[2]; break; default: itkExceptionMacro("unknown PlaneOrientation"); } ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); AffineTransform3D::Pointer transform = AffineTransform3D::New(); transform->SetMatrix(matrix); transform->SetOffset(worldOrigin.GetVectorFromOrigin()); InitializeStandardPlane( width, height, transform, planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane( const BaseGeometry *geometry3D, bool top, PlaneOrientation planeorientation, bool frontside, bool rotated) { /// The index of the sagittal, coronal and axial axes in world coordinate system. int worldAxis; switch(planeorientation) { case None: /** Orientation 'None' shall be done like the axial plane orientation, * for whatever reasons. */ case Axial: worldAxis = 2; break; - case Frontal: + case Coronal: worldAxis = 1; break; case Sagittal: worldAxis = 0; break; default: itkExceptionMacro("unknown PlaneOrientation"); } // Inspired by: // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 mitk::AffineTransform3D::ConstPointer affineTransform = geometry3D->GetIndexToWorldTransform(); mitk::AffineTransform3D::MatrixType matrix = affineTransform->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetInverse(); /// The index of the sagittal, coronal and axial axes in the reference geometry. int dominantAxis = CalculateDominantAxes(inverseMatrix).at(worldAxis); ScalarType zPosition = top ? 0.5 : geometry3D->GetExtent(dominantAxis) - 0.5; InitializeStandardPlane(geometry3D, planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane(const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing) { InitializeStandardPlane(rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing); } void PlaneGeometry::InitializeStandardPlane(const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing) { ScalarType width = rightVector.two_norm(); ScalarType height = downVector.two_norm(); InitializeStandardPlane(width, height, rightVector, downVector, spacing); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing) { InitializeStandardPlane(width, height, rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing) { assert(width > 0); assert(height > 0); VnlVector rightDV = rightVector; rightDV.normalize(); VnlVector downDV = downVector; downDV.normalize(); VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); // Crossproduct vnl_cross_3d is always righthanded, but that is okay here // because in this method we create a new IndexToWorldTransform and // spacing with 1 or 3 negative components could still make it lefthanded. if (spacing != nullptr) { rightDV *= (*spacing)[0]; downDV *= (*spacing)[1]; normal *= (*spacing)[2]; } AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, downDV); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); ScalarType bounds[6] = {0, width, 0, height, 0, 1}; this->SetBounds(bounds); this->SetIndexToWorldTransform(transform); } void PlaneGeometry::InitializePlane(const Point3D &origin, const Vector3D &normal) { VnlVector rightVectorVnl(3), downVectorVnl; if (Equal(normal[1], 0.0f) == false) { FillVector3D(rightVectorVnl, 1.0f, -normal[0] / normal[1], 0.0f); rightVectorVnl.normalize(); } else { FillVector3D(rightVectorVnl, 0.0f, 1.0f, 0.0f); } downVectorVnl = vnl_cross_3d(normal.GetVnlVector(), rightVectorVnl); downVectorVnl.normalize(); // Crossproduct vnl_cross_3d is always righthanded. InitializeStandardPlane(rightVectorVnl, downVectorVnl); SetOrigin(origin); } void PlaneGeometry::SetMatrixByVectors(const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness /* = 1.0 */) { VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); normal *= thickness; // Crossproduct vnl_cross_3d is always righthanded, but that is okay here // because in this method we create a new IndexToWorldTransform and // a negative thickness could still make it lefthanded. AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightVector); matrix.GetVnlMatrix().set_column(1, downVector); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); SetIndexToWorldTransform(transform); } Vector3D PlaneGeometry::GetNormal() const { Vector3D frontToBack; frontToBack.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).as_ref()); return frontToBack; } VnlVector PlaneGeometry::GetNormalVnl() const { return this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).as_ref(); } ScalarType PlaneGeometry::DistanceFromPlane(const Point3D &pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } ScalarType PlaneGeometry::SignedDistance(const Point3D &pt3d_mm) const { return SignedDistanceFromPlane(pt3d_mm); } bool PlaneGeometry::IsAbove(const Point3D &pt3d_mm, bool considerBoundingBox) const { if (considerBoundingBox) { Point3D pt3d_units; BaseGeometry::WorldToIndex(pt3d_mm, pt3d_units); return (pt3d_units[2] > this->GetBoundingBox()->GetBounds()[4]); } else return SignedDistanceFromPlane(pt3d_mm) > 0; } bool PlaneGeometry::IntersectionLine(const PlaneGeometry* plane, Line3D& crossline) const { Vector3D normal = this->GetNormal(); normal.Normalize(); Vector3D planeNormal = plane->GetNormal(); planeNormal.Normalize(); Vector3D direction = itk::CrossProduct(normal, planeNormal); if (direction.GetSquaredNorm() < eps) return false; crossline.SetDirection(direction); double N1dN2 = normal * planeNormal; double determinant = 1.0 - N1dN2 * N1dN2; Vector3D origin = this->GetOrigin().GetVectorFromOrigin(); Vector3D planeOrigin = plane->GetOrigin().GetVectorFromOrigin(); double d1 = normal * origin; double d2 = planeNormal * planeOrigin; double c1 = (d1 - d2 * N1dN2) / determinant; double c2 = (d2 - d1 * N1dN2) / determinant; Vector3D p = normal * c1 + planeNormal * c2; crossline.GetPoint()[0] = p.GetVnlVector()[0]; crossline.GetPoint()[1] = p.GetVnlVector()[1]; crossline.GetPoint()[2] = p.GetVnlVector()[2]; return true; } unsigned int PlaneGeometry::IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo) const { Line3D crossline; if (this->IntersectionLine(plane, crossline) == false) return 0; Point2D point2; Vector2D direction2; this->Map(crossline.GetPoint(), point2); this->Map(crossline.GetPoint(), crossline.GetDirection(), direction2); return Line3D::RectangleLineIntersection( 0, 0, GetExtentInMM(0), GetExtentInMM(1), point2, direction2, lineFrom, lineTo); } double PlaneGeometry::Angle(const PlaneGeometry *plane) const { return angle(plane->GetMatrixColumn(2), GetMatrixColumn(2)); } double PlaneGeometry::Angle(const Line3D &line) const { return vnl_math::pi_over_2 - angle(line.GetDirection().GetVnlVector(), GetMatrixColumn(2)); } bool PlaneGeometry::IntersectionPoint(const Line3D &line, Point3D &intersectionPoint) const { Vector3D planeNormal = this->GetNormal(); planeNormal.Normalize(); Vector3D lineDirection = line.GetDirection(); lineDirection.Normalize(); double t = planeNormal * lineDirection; if (fabs(t) < eps) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = (planeNormal * diff) / t; intersectionPoint = line.GetPoint() + lineDirection * t; return true; } bool PlaneGeometry::IntersectionPointParam(const Line3D &line, double &t) const { Vector3D planeNormal = this->GetNormal(); Vector3D lineDirection = line.GetDirection(); t = planeNormal * lineDirection; if (fabs(t) < eps) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = (planeNormal * diff) / t; return true; } bool PlaneGeometry::IsParallel(const PlaneGeometry *plane) const { return ((Angle(plane) < 10.0 * mitk::sqrteps) || (Angle(plane) > (vnl_math::pi - 10.0 * sqrteps))); } bool PlaneGeometry::IsOnPlane(const Point3D &point) const { return Distance(point) < eps; } bool PlaneGeometry::IsOnPlane(const Line3D &line) const { return ((Distance(line.GetPoint()) < eps) && (Distance(line.GetPoint2()) < eps)); } bool PlaneGeometry::IsOnPlane(const PlaneGeometry *plane) const { return (IsParallel(plane) && (Distance(plane->GetOrigin()) < eps)); } Point3D PlaneGeometry::ProjectPointOntoPlane(const Point3D &pt) const { ScalarType len = this->GetNormalVnl().two_norm(); return pt - this->GetNormal() * this->SignedDistanceFromPlane(pt) / len; } itk::LightObject::Pointer PlaneGeometry::InternalClone() const { Self::Pointer newGeometry = new PlaneGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void PlaneGeometry::ExecuteOperation(Operation *operation) { vtkTransform *transform = vtkTransform::New(); transform->SetMatrix(this->GetVtkMatrix()); switch (operation->GetOperationType()) { case OpORIENT: { auto *planeOp = dynamic_cast(operation); if (planeOp == nullptr) { return; } Point3D center = planeOp->GetPoint(); Vector3D orientationVector = planeOp->GetNormal(); Vector3D defaultVector; FillVector3D(defaultVector, 0.0, 0.0, 1.0); Vector3D rotationAxis = itk::CrossProduct(orientationVector, defaultVector); // double rotationAngle = acos( orientationVector[2] / orientationVector.GetNorm() ); double rotationAngle = atan2((double)rotationAxis.GetNorm(), (double)(orientationVector * defaultVector)); rotationAngle *= 180.0 / vnl_math::pi; transform->PostMultiply(); transform->Identity(); transform->Translate(center[0], center[1], center[2]); transform->RotateWXYZ(rotationAngle, rotationAxis[0], rotationAxis[1], rotationAxis[2]); transform->Translate(-center[0], -center[1], -center[2]); break; } case OpRESTOREPLANEPOSITION: { auto *op = dynamic_cast(operation); if (op == nullptr) { return; } AffineTransform3D::Pointer transform2 = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(0)); matrix.GetVnlMatrix().set_column(1, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(1)); matrix.GetVnlMatrix().set_column(2, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(2)); transform2->SetMatrix(matrix); Vector3D offset = op->GetTransform()->GetOffset(); transform2->SetOffset(offset); this->SetIndexToWorldTransform(transform2); ScalarType bounds[6] = {0, op->GetWidth(), 0, op->GetHeight(), 0, 1}; this->SetBounds(bounds); this->Modified(); transform->Delete(); return; } default: Superclass::ExecuteOperation(operation); transform->Delete(); return; } this->SetVtkMatrixDeepCopy(transform); this->Modified(); transform->Delete(); } void PlaneGeometry::PrintSelf(std::ostream &os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << " ScaleFactorMMPerUnitX: " << GetExtentInMM(0) / GetExtent(0) << std::endl; os << indent << " ScaleFactorMMPerUnitY: " << GetExtentInMM(1) / GetExtent(1) << std::endl; os << indent << " Normal: " << GetNormal() << std::endl; } bool PlaneGeometry::Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const { assert(this->IsBoundingBoxNull() == false); Point3D pt3d_units; Superclass::WorldToIndex(pt3d_mm, pt3d_units); pt2d_mm[0] = pt3d_units[0] * GetExtentInMM(0) / GetExtent(0); pt2d_mm[1] = pt3d_units[1] * GetExtentInMM(1) / GetExtent(1); pt3d_units[2] = 0; return this->GetBoundingBox()->IsInside(pt3d_units); } void PlaneGeometry::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { // pt2d_mm is measured from the origin of the world geometry (at leats it called form BaseRendere::Mouse...Event) Point3D pt3d_units; pt3d_units[0] = pt2d_mm[0] / (GetExtentInMM(0) / GetExtent(0)); pt3d_units[1] = pt2d_mm[1] / (GetExtentInMM(1) / GetExtent(1)); pt3d_units[2] = 0; // pt3d_units is a continuos index. We divided it with the Scale Factor (= spacing in x and y) to convert it from mm // to index units. // pt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); // now we convert the 3d index to a 3D world point in mm. We could have used IndexToWorld as well as // GetITW->Transform... } void PlaneGeometry::SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height) { ScalarType bounds[6] = {0, width, 0, height, 0, 1}; ScalarType extent, newextentInMM; if (GetExtent(0) > 0) { extent = GetExtent(0); if (width > extent) newextentInMM = GetExtentInMM(0) / width * extent; else newextentInMM = GetExtentInMM(0) * extent / width; SetExtentInMM(0, newextentInMM); } if (GetExtent(1) > 0) { extent = GetExtent(1); if (width > extent) newextentInMM = GetExtentInMM(1) / height * extent; else newextentInMM = GetExtentInMM(1) * extent / height; SetExtentInMM(1, newextentInMM); } SetBounds(bounds); } bool PlaneGeometry::Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(this->IsBoundingBoxNull() == false); Point3D pt3d_units; Superclass::WorldToIndex(pt3d_mm, pt3d_units); pt3d_units[2] = 0; projectedPt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); return this->GetBoundingBox()->IsInside(pt3d_units); } bool PlaneGeometry::Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { assert(this->IsBoundingBoxNull() == false); Vector3D vec3d_units; Superclass::WorldToIndex(vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); return true; } bool PlaneGeometry::Project(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { MITK_WARN << "Deprecated function! Call Project(vec3D,vec3D) instead."; assert(this->IsBoundingBoxNull() == false); Vector3D vec3d_units; Superclass::WorldToIndex(atPt3d_mm, vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); Point3D pt3d_units; Superclass::WorldToIndex(atPt3d_mm, pt3d_units); return this->GetBoundingBox()->IsInside(pt3d_units); } bool PlaneGeometry::Map(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { Point2D pt2d_mm_start, pt2d_mm_end; Point3D pt3d_mm_end; bool inside = Map(atPt3d_mm, pt2d_mm_start); pt3d_mm_end = atPt3d_mm + vec3d_mm; inside &= Map(pt3d_mm_end, pt2d_mm_end); vec2d_mm = pt2d_mm_end - pt2d_mm_start; return inside; } void PlaneGeometry::Map(const mitk::Point2D & /*atPt2d_mm*/, const mitk::Vector2D & /*vec2d_mm*/, mitk::Vector3D & /*vec3d_mm*/) const { //@todo implement parallel to the other Map method! assert(false); } void PlaneGeometry::SetReferenceGeometry(const mitk::BaseGeometry *geometry) { m_ReferenceGeometry = geometry; } const mitk::BaseGeometry *PlaneGeometry::GetReferenceGeometry() const { return m_ReferenceGeometry; } bool PlaneGeometry::HasReferenceGeometry() const { return (m_ReferenceGeometry != nullptr); } } // namespace diff --git a/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp b/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp index 45461ae52e..ace7603c62 100644 --- a/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp +++ b/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp @@ -1,962 +1,962 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include "mitkSlicedGeometry3D.h" #include "mitkAbstractTransformGeometry.h" #include "mitkApplyTransformMatrixOperation.h" #include "mitkInteractionConst.h" #include "mitkPlaneGeometry.h" #include "mitkPlaneOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkRotationOperation.h" #include "mitkSliceNavigationController.h" const mitk::ScalarType PI = 3.14159265359; mitk::SlicedGeometry3D::SlicedGeometry3D() : m_EvenlySpaced(true), m_Slices(0), m_ReferenceGeometry(nullptr), m_SliceNavigationController(nullptr) { m_DirectionVector.Fill(0); this->InitializeSlicedGeometry(m_Slices); } mitk::SlicedGeometry3D::SlicedGeometry3D(const SlicedGeometry3D &other) : Superclass(other), m_EvenlySpaced(other.m_EvenlySpaced), m_Slices(other.m_Slices), m_ReferenceGeometry(other.m_ReferenceGeometry), m_SliceNavigationController(other.m_SliceNavigationController) { m_DirectionVector.Fill(0); SetSpacing(other.GetSpacing()); SetDirectionVector(other.GetDirectionVector()); if (m_EvenlySpaced) { assert(!other.m_PlaneGeometries.empty() && "This may happen when you use one of the old Initialize methods, which had a bool parameter that is implicitly casted to the number of slices now."); PlaneGeometry::Pointer geometry = other.m_PlaneGeometries[0]->Clone(); assert(geometry.IsNotNull()); SetPlaneGeometry(geometry, 0); } else { unsigned int s; for (s = 0; s < other.m_Slices; ++s) { if (other.m_PlaneGeometries[s].IsNull()) { assert(other.m_EvenlySpaced); m_PlaneGeometries[s] = nullptr; } else { PlaneGeometry *geometry2D = other.m_PlaneGeometries[s]->Clone(); assert(geometry2D != nullptr); SetPlaneGeometry(geometry2D, s); } } } } mitk::SlicedGeometry3D::~SlicedGeometry3D() { } mitk::PlaneGeometry *mitk::SlicedGeometry3D::GetPlaneGeometry(int s) const { mitk::PlaneGeometry::Pointer geometry2D = nullptr; if (this->IsValidSlice(s)) { geometry2D = m_PlaneGeometries[s]; // If (a) m_EvenlySpaced==true, (b) we don't have a PlaneGeometry stored // for the requested slice, and (c) the first slice (s=0) // is a PlaneGeometry instance, then we calculate the geometry of the // requested as the plane of the first slice shifted by m_Spacing[2]*s // in the direction of m_DirectionVector. if ((m_EvenlySpaced) && (geometry2D.IsNull())) { PlaneGeometry *firstSlice = m_PlaneGeometries[0]; if (firstSlice != nullptr && dynamic_cast(m_PlaneGeometries[0].GetPointer()) == nullptr) { if ((m_DirectionVector[0] == 0.0) && (m_DirectionVector[1] == 0.0) && (m_DirectionVector[2] == 0.0)) { m_DirectionVector = firstSlice->GetNormal(); m_DirectionVector.Normalize(); } Vector3D direction; direction = m_DirectionVector * this->GetSpacing()[2]; mitk::PlaneGeometry::Pointer requestedslice; requestedslice = static_cast(firstSlice->Clone().GetPointer()); requestedslice->SetOrigin(requestedslice->GetOrigin() + direction * s); geometry2D = requestedslice; m_PlaneGeometries[s] = geometry2D; } } return geometry2D; } else { return nullptr; } } const mitk::BoundingBox *mitk::SlicedGeometry3D::GetBoundingBox() const { assert(this->IsBoundingBoxNull() == false); return Superclass::GetBoundingBox(); } bool mitk::SlicedGeometry3D::SetPlaneGeometry(mitk::PlaneGeometry *geometry2D, int s) { if (this->IsValidSlice(s)) { m_PlaneGeometries[s] = geometry2D; m_PlaneGeometries[s]->SetReferenceGeometry(m_ReferenceGeometry); return true; } return false; } void mitk::SlicedGeometry3D::InitializeSlicedGeometry(unsigned int slices) { Superclass::Initialize(); m_Slices = slices; PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); Vector3D spacing; spacing.Fill(1.0); this->SetSpacing(spacing); m_DirectionVector.Fill(0); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced(mitk::PlaneGeometry *geometry2D, unsigned int slices) { assert(geometry2D != nullptr); this->InitializeEvenlySpaced(geometry2D, geometry2D->GetExtentInMM(2) / geometry2D->GetExtent(2), slices); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced(mitk::PlaneGeometry *geometry2D, mitk::ScalarType zSpacing, unsigned int slices) { assert(geometry2D != nullptr); assert(geometry2D->GetExtent(0) > 0); assert(geometry2D->GetExtent(1) > 0); geometry2D->Register(); Superclass::Initialize(); m_Slices = slices; BoundingBox::BoundsArrayType bounds = geometry2D->GetBounds(); bounds[4] = 0; bounds[5] = slices; // clear and reserve PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); Vector3D directionVector = geometry2D->GetAxisVector(2); directionVector.Normalize(); directionVector *= zSpacing; // Normally we should use the following four lines to create a copy of // the transform contrained in geometry2D, because it may not be changed // by us. But we know that SetSpacing creates a new transform without // changing the old (coming from geometry2D), so we can use the fifth // line instead. We check this at (**). // // AffineTransform3D::Pointer transform = AffineTransform3D::New(); // transform->SetMatrix(geometry2D->GetIndexToWorldTransform()->GetMatrix()); // transform->SetOffset(geometry2D->GetIndexToWorldTransform()->GetOffset()); // SetIndexToWorldTransform(transform); this->SetIndexToWorldTransform(geometry2D->GetIndexToWorldTransform()); mitk::Vector3D spacing; FillVector3D(spacing, geometry2D->GetExtentInMM(0) / bounds[1], geometry2D->GetExtentInMM(1) / bounds[3], zSpacing); this->SetDirectionVector(directionVector); this->SetBounds(bounds); this->SetPlaneGeometry(geometry2D, 0); this->SetSpacing(spacing, true); this->SetEvenlySpaced(); // this->SetTimeBounds( geometry2D->GetTimeBounds() ); assert(this->GetIndexToWorldTransform() != geometry2D->GetIndexToWorldTransform()); // (**) see above. this->SetFrameOfReferenceID(geometry2D->GetFrameOfReferenceID()); this->SetImageGeometry(geometry2D->GetImageGeometry()); geometry2D->UnRegister(); } void mitk::SlicedGeometry3D::InitializePlanes(const mitk::BaseGeometry *geometry3D, mitk::PlaneGeometry::PlaneOrientation planeorientation, bool top, bool frontside, bool rotated) { m_ReferenceGeometry = geometry3D; PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane(geometry3D, top, planeorientation, frontside, rotated); int worldAxis = planeorientation == PlaneGeometry::Sagittal ? 0 : - planeorientation == PlaneGeometry::Frontal ? 1 : 2; + planeorientation == PlaneGeometry::Coronal ? 1 : 2; // Inspired by: // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 mitk::AffineTransform3D::MatrixType matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetTranspose(); int dominantAxis = planeGeometry->CalculateDominantAxes(inverseMatrix).at(worldAxis); ScalarType viewSpacing = geometry3D->GetSpacing()[dominantAxis]; /// Although the double value returned by GetExtent() holds a round number, /// you need to add 0.5 to safely convert it to unsigned it. I have seen a /// case when the result was less by one without this. auto slices = static_cast(geometry3D->GetExtent(dominantAxis) + 0.5); if ( slices == 0 && geometry3D->GetExtent(dominantAxis) > 0) { // require at least one slice if there is _some_ extent slices = 1; } #ifndef NDEBUG int upDirection = itk::Function::Sign(inverseMatrix[dominantAxis][worldAxis]); /// The normal vector of an imaginary plane that points from the world origin (bottom left back /// corner or the world, with the lowest physical coordinates) towards the inside of the volume, /// along the renderer axis. Length is the slice thickness. Vector3D worldPlaneNormal = inverseMatrix.get_row(dominantAxis) * (upDirection * viewSpacing); /// The normal of the standard plane geometry just created. Vector3D standardPlaneNormal = planeGeometry->GetNormal(); /// The standard plane must be parallel to the 'world plane'. The normal of the standard plane /// must point against the world plane if and only if 'top' is 'false'. The length of the /// standard plane normal must be equal to the slice thickness. assert((standardPlaneNormal - (top ? 1.0 : -1.0) * worldPlaneNormal).GetSquaredNorm() < 0.000001); #endif this->InitializeEvenlySpaced(planeGeometry, viewSpacing, slices); #ifndef NDEBUG /// The standard plane normal and the z axis vector of the sliced geometry must point in /// the same direction. Vector3D zAxisVector = this->GetAxisVector(2); Vector3D upscaledStandardPlaneNormal = standardPlaneNormal; upscaledStandardPlaneNormal *= slices; assert((zAxisVector - upscaledStandardPlaneNormal).GetSquaredNorm() < 0.000001); /// You can use this test is to check the handedness of the coordinate system of the current /// geometry. In principle, you can use either left- or right-handed coordinate systems, but /// you normally want it to be consistent, that is the handedness should be the same across /// the renderers of the same viewer. // ScalarType det = vnl_det(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix()); // MITK_DEBUG << "world axis: " << worldAxis << (det > 0 ? " ; right-handed" : " ; left-handed"); #endif } void mitk::SlicedGeometry3D::ReinitializePlanes(const Point3D ¢er, const Point3D &referencePoint) { // Need a reference frame to align the rotated planes if (!m_ReferenceGeometry) { return; } // Get first plane of plane stack PlaneGeometry *firstPlane = m_PlaneGeometries[0]; // If plane stack is empty, exit if (!firstPlane || dynamic_cast(firstPlane)) { return; } // Calculate the "directed" spacing when taking the plane (defined by its axes // vectors and normal) as the reference coordinate frame. // // This is done by calculating the radius of the ellipsoid defined by the // original volume spacing axes, in the direction of the respective axis of the // reference frame. mitk::Vector3D axis0 = firstPlane->GetAxisVector(0); mitk::Vector3D axis1 = firstPlane->GetAxisVector(1); mitk::Vector3D normal = firstPlane->GetNormal(); normal.Normalize(); Vector3D spacing; spacing[0] = this->CalculateSpacing(axis0); spacing[1] = this->CalculateSpacing(axis1); spacing[2] = this->CalculateSpacing(normal); Superclass::SetSpacing(spacing); // Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above. ScalarType directedExtent = std::abs(m_ReferenceGeometry->GetExtentInMM(0) * normal[0]) + std::abs(m_ReferenceGeometry->GetExtentInMM(1) * normal[1]) + std::abs(m_ReferenceGeometry->GetExtentInMM(2) * normal[2]); if (directedExtent >= spacing[2]) { m_Slices = static_cast(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } // The origin of our "first plane" needs to be adapted to this new extent. // To achieve this, we first calculate the current distance to the volume's // center, and then shift the origin in the direction of the normal by the // difference between this distance and half of the new extent. double centerOfRotationDistance = firstPlane->SignedDistanceFromPlane(center); if (centerOfRotationDistance > 0) { firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * (centerOfRotationDistance - directedExtent / 2.0)); m_DirectionVector = normal; } else { firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * (directedExtent / 2.0 + centerOfRotationDistance)); m_DirectionVector = -normal; } // Now we adjust this distance according with respect to the given reference // point: we need to make sure that the point is touched by one slice of the // new slice stack. double referencePointDistance = firstPlane->SignedDistanceFromPlane(referencePoint); auto referencePointSlice = static_cast(referencePointDistance / spacing[2]); double alignmentValue = referencePointDistance / spacing[2] - referencePointSlice; firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * alignmentValue * spacing[2]); // Finally, we can clear the previous geometry stack and initialize it with // our re-initialized "first plane". m_PlaneGeometries.assign(m_Slices, PlaneGeometry::Pointer(nullptr)); if (m_Slices > 0) { m_PlaneGeometries[0] = firstPlane; } // Reinitialize SNC with new number of slices m_SliceNavigationController->GetSlice()->SetSteps(m_Slices); this->Modified(); } double mitk::SlicedGeometry3D::CalculateSpacing(const mitk::Vector3D &d) const { // Need the spacing of the underlying dataset / geometry if (!m_ReferenceGeometry) { return 1.0; } const mitk::Vector3D &spacing = m_ReferenceGeometry->GetSpacing(); return SlicedGeometry3D::CalculateSpacing(spacing, d); } double mitk::SlicedGeometry3D::CalculateSpacing(const mitk::Vector3D &spacing, const mitk::Vector3D &d) { // The following can be derived from the ellipsoid equation // // 1 = x^2/a^2 + y^2/b^2 + z^2/c^2 // // where (a,b,c) = spacing of original volume (ellipsoid radii) // and (x,y,z) = scaled coordinates of vector d (according to ellipsoid) // double scaling = d[0] * d[0] / (spacing[0] * spacing[0]) + d[1] * d[1] / (spacing[1] * spacing[1]) + d[2] * d[2] / (spacing[2] * spacing[2]); scaling = sqrt(scaling); return (sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]) / scaling); } mitk::Vector3D mitk::SlicedGeometry3D::AdjustNormal(const mitk::Vector3D &normal) const { TransformType::Pointer inverse = TransformType::New(); m_ReferenceGeometry->GetIndexToWorldTransform()->GetInverse(inverse); Vector3D transformedNormal = inverse->TransformVector(normal); transformedNormal.Normalize(); return transformedNormal; } void mitk::SlicedGeometry3D::SetImageGeometry(const bool isAnImageGeometry) { Superclass::SetImageGeometry(isAnImageGeometry); unsigned int s; for (s = 0; s < m_Slices; ++s) { mitk::BaseGeometry *geometry = m_PlaneGeometries[s]; if (geometry != nullptr) { geometry->SetImageGeometry(isAnImageGeometry); } } } void mitk::SlicedGeometry3D::ChangeImageGeometryConsideringOriginOffset(const bool isAnImageGeometry) { unsigned int s; for (s = 0; s < m_Slices; ++s) { mitk::BaseGeometry *geometry = m_PlaneGeometries[s]; if (geometry != nullptr) { geometry->ChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } } Superclass::ChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } bool mitk::SlicedGeometry3D::IsValidSlice(int s) const { return ((s >= 0) && (s < (int)m_Slices)); } const mitk::BaseGeometry *mitk::SlicedGeometry3D::GetReferenceGeometry() const { return m_ReferenceGeometry; } void mitk::SlicedGeometry3D::SetReferenceGeometry(const BaseGeometry *referenceGeometry) { m_ReferenceGeometry = referenceGeometry; std::vector::iterator it; for (it = m_PlaneGeometries.begin(); it != m_PlaneGeometries.end(); ++it) { (*it)->SetReferenceGeometry(referenceGeometry); } } bool mitk::SlicedGeometry3D::HasReferenceGeometry() const { return ( m_ReferenceGeometry != nullptr ); } void mitk::SlicedGeometry3D::PreSetSpacing(const mitk::Vector3D &aSpacing) { bool hasEvenlySpacedPlaneGeometry = false; mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; BoundingBox::BoundsArrayType bounds; // Check for valid spacing if (!(aSpacing[0] > 0 && aSpacing[1] > 0 && aSpacing[2] > 0)) { mitkThrow() << "You try to set a spacing with at least one element equal or " "smaller to \"0\". This might lead to a crash during rendering. Please double" " check your data!"; } // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if ((m_EvenlySpaced) && (m_PlaneGeometries.size() > 0)) { const PlaneGeometry *planeGeometry = m_PlaneGeometries[0]; if (planeGeometry && !dynamic_cast(planeGeometry)) { this->WorldToIndex(planeGeometry->GetOrigin(), origin); this->WorldToIndex(planeGeometry->GetAxisVector(0), rightDV); this->WorldToIndex(planeGeometry->GetAxisVector(1), bottomDV); bounds = planeGeometry->GetBounds(); hasEvenlySpacedPlaneGeometry = true; } } BaseGeometry::_SetSpacing(aSpacing); mitk::PlaneGeometry::Pointer firstGeometry; // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if (hasEvenlySpacedPlaneGeometry) { // create planeGeometry according to new spacing this->IndexToWorld(origin, origin); this->IndexToWorld(rightDV, rightDV); this->IndexToWorld(bottomDV, bottomDV); mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->SetImageGeometry(this->GetImageGeometry()); planeGeometry->SetReferenceGeometry(m_ReferenceGeometry); // Store spacing, as Initialize... needs a pointer mitk::Vector3D lokalSpacing = this->GetSpacing(); planeGeometry->InitializeStandardPlane(rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &lokalSpacing); planeGeometry->SetOrigin(origin); planeGeometry->SetBounds(bounds); firstGeometry = planeGeometry; } else if ((m_EvenlySpaced) && (m_PlaneGeometries.size() > 0)) { firstGeometry = m_PlaneGeometries[0].GetPointer(); } // clear and reserve PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); if (m_Slices > 0) { m_PlaneGeometries[0] = firstGeometry; } this->Modified(); } void mitk::SlicedGeometry3D::SetSliceNavigationController(SliceNavigationController *snc) { m_SliceNavigationController = snc; } mitk::SliceNavigationController *mitk::SlicedGeometry3D::GetSliceNavigationController() { return m_SliceNavigationController; } void mitk::SlicedGeometry3D::SetEvenlySpaced(bool on) { if (m_EvenlySpaced != on) { m_EvenlySpaced = on; this->Modified(); } } void mitk::SlicedGeometry3D::SetDirectionVector(const mitk::Vector3D &directionVector) { Vector3D newDir = directionVector; newDir.Normalize(); if (newDir != m_DirectionVector) { m_DirectionVector = newDir; this->Modified(); } } // void // mitk::SlicedGeometry3D::SetTimeBounds( const mitk::TimeBounds& timebounds ) //{ // Superclass::SetTimeBounds( timebounds ); // // unsigned int s; // for ( s = 0; s < m_Slices; ++s ) // { // if(m_Geometry2Ds[s].IsNotNull()) // { // m_Geometry2Ds[s]->SetTimeBounds( timebounds ); // } // } // m_TimeBounds = timebounds; //} itk::LightObject::Pointer mitk::SlicedGeometry3D::InternalClone() const { Self::Pointer newGeometry = new SlicedGeometry3D(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::SlicedGeometry3D::PrintSelf(std::ostream &os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << " EvenlySpaced: " << m_EvenlySpaced << std::endl; if (m_EvenlySpaced) { os << indent << " DirectionVector: " << m_DirectionVector << std::endl; } os << indent << " Slices: " << m_Slices << std::endl; os << std::endl; os << indent << " GetPlaneGeometry(0): "; if (this->GetPlaneGeometry(0) == nullptr) { os << "nullptr" << std::endl; } else { this->GetPlaneGeometry(0)->Print(os, indent); } } void mitk::SlicedGeometry3D::ExecuteOperation(Operation *operation) { PlaneGeometry::Pointer geometry2D; ApplyTransformMatrixOperation *applyMatrixOp; Point3D center; switch (operation->GetOperationType()) { case OpNOTHING: break; case OpROTATE: if (m_EvenlySpaced) { // Need a reference frame to align the rotation if (m_ReferenceGeometry) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Save first slice PlaneGeometry::Pointer geometry2D = m_PlaneGeometries[0]; auto *rotOp = dynamic_cast(operation); // Generate a RotationOperation using the dataset center instead of // the supplied rotation center. This is necessary so that the rotated // zero-plane does not shift away. The supplied center is instead used // to adjust the slice stack afterwards. Point3D center = m_ReferenceGeometry->GetCenter(); RotationOperation centeredRotation( rotOp->GetOperationType(), center, rotOp->GetVectorOfRotation(), rotOp->GetAngleOfRotation()); // Rotate first slice geometry2D->ExecuteOperation(¢eredRotation); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes(center, rotOp->GetCenterOfRotation()); geometry2D->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(rotOp->GetCenterOfRotation()); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation(¢eredRotation); } else { // we also have to consider the case, that there is no reference geometry available. if (m_PlaneGeometries.size() > 0) { // Reach through to all slices in my container for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { // Test for empty slices, which can happen if evenly spaced geometry if ((*iter).IsNotNull()) { (*iter)->ExecuteOperation(operation); } } // rotate overall geometry auto *rotOp = dynamic_cast(operation); BaseGeometry::ExecuteOperation(rotOp); } } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpORIENT: if (m_EvenlySpaced) { // get operation data auto *planeOp = dynamic_cast(operation); // Get first slice PlaneGeometry::Pointer planeGeometry = m_PlaneGeometries[0]; // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation. If not all avaialble, stop here if (!m_ReferenceGeometry || (!planeGeometry || dynamic_cast(planeGeometry.GetPointer())) || !planeOp) { break; } // General Behavior: // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // // 1st Step: Reorient Normal Vector of first plane // Point3D center = planeOp->GetPoint(); // m_ReferenceGeometry->GetCenter(); mitk::Vector3D currentNormal = planeGeometry->GetNormal(); mitk::Vector3D newNormal; if (planeOp->AreAxisDefined()) { // If planeOp was defined by one centerpoint and two axis vectors newNormal = CrossProduct(planeOp->GetAxisVec0(), planeOp->GetAxisVec1()); } else { // If planeOp was defined by one centerpoint and one normal vector newNormal = planeOp->GetNormal(); } // Get Rotation axis und angle currentNormal.Normalize(); newNormal.Normalize(); ScalarType rotationAngle = angle(currentNormal.GetVnlVector(), newNormal.GetVnlVector()); rotationAngle *= 180.0 / vnl_math::pi; // from rad to deg Vector3D rotationAxis = itk::CrossProduct(currentNormal, newNormal); if (std::abs(rotationAngle - 180) < mitk::eps) { // current Normal and desired normal are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis should be ANY vector that is 90� to current Normal mitk::Vector3D helpNormal; helpNormal = currentNormal; helpNormal[0] += 1; helpNormal[1] -= 1; helpNormal[2] += 1; helpNormal.Normalize(); rotationAxis = itk::CrossProduct(helpNormal, currentNormal); } RotationOperation centeredRotation(mitk::OpROTATE, center, rotationAxis, rotationAngle); // Rotate first slice planeGeometry->ExecuteOperation(¢eredRotation); // Reinitialize planes and select slice, if my rotations are all done. if (!planeOp->AreAxisDefined()) { // Clear the slice stack and adjust it according to the center of // rotation and plane position (see documentation of ReinitializePlanes) this->ReinitializePlanes(center, planeOp->GetPoint()); planeGeometry->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(planeOp->GetPoint()); m_SliceNavigationController->AdjustSliceStepperRange(); } } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation(¢eredRotation); // // 2nd step. If axis vectors were defined, rotate the plane around its normal to fit these // if (planeOp->AreAxisDefined()) { mitk::Vector3D vecAxixNew = planeOp->GetAxisVec0(); vecAxixNew.Normalize(); mitk::Vector3D VecAxisCurr = planeGeometry->GetAxisVector(0); VecAxisCurr.Normalize(); ScalarType rotationAngle = angle(VecAxisCurr.GetVnlVector(), vecAxixNew.GetVnlVector()); rotationAngle = rotationAngle * 180 / PI; // Rad to Deg // we rotate around the normal of the plane, but we do not know, if we need to rotate clockwise // or anti-clockwise. So we rotate around the crossproduct of old and new Axisvector. // Since both axis vectors lie in the plane, the crossproduct is the planes normal or the negative planes // normal rotationAxis = itk::CrossProduct(VecAxisCurr, vecAxixNew); if (std::abs(rotationAngle - 180) < mitk::eps) { // current axisVec and desired axisVec are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis can be just plane Normal. (have to rotate by 180�) rotationAxis = newNormal; } // Perfom Rotation mitk::RotationOperation op(mitk::OpROTATE, center, rotationAxis, rotationAngle); planeGeometry->ExecuteOperation(&op); // Apply changes on first slice to whole slice stack this->ReinitializePlanes(center, planeOp->GetPoint()); planeGeometry->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(planeOp->GetPoint()); m_SliceNavigationController->AdjustSliceStepperRange(); } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation(&op); } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpRESTOREPLANEPOSITION: if (m_EvenlySpaced) { // Save first slice PlaneGeometry::Pointer planeGeometry = m_PlaneGeometries[0]; auto *restorePlaneOp = dynamic_cast(operation); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation if (m_ReferenceGeometry && (planeGeometry && dynamic_cast(planeGeometry.GetPointer()) == nullptr) && restorePlaneOp) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Rotate first slice planeGeometry->ExecuteOperation(restorePlaneOp); m_DirectionVector = restorePlaneOp->GetDirectionVector(); double centerOfRotationDistance = planeGeometry->SignedDistanceFromPlane(m_ReferenceGeometry->GetCenter()); if (centerOfRotationDistance <= 0) { m_DirectionVector = -m_DirectionVector; } Vector3D spacing = restorePlaneOp->GetSpacing(); Superclass::SetSpacing(spacing); // /*Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above.*/ ScalarType directedExtent = std::abs(m_ReferenceGeometry->GetExtentInMM(0) * m_DirectionVector[0]) + std::abs(m_ReferenceGeometry->GetExtentInMM(1) * m_DirectionVector[1]) + std::abs(m_ReferenceGeometry->GetExtentInMM(2) * m_DirectionVector[2]); if (directedExtent >= spacing[2]) { m_Slices = static_cast(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } m_PlaneGeometries.assign(m_Slices, PlaneGeometry::Pointer(nullptr)); if (m_Slices > 0) { m_PlaneGeometries[0] = planeGeometry; } m_SliceNavigationController->GetSlice()->SetSteps(m_Slices); this->Modified(); // End Reinitialization if (m_SliceNavigationController) { m_SliceNavigationController->GetSlice()->SetPos(restorePlaneOp->GetPos()); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation(restorePlaneOp); } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpAPPLYTRANSFORMMATRIX: // Clear all generated geometries and then transform only the first slice. // The other slices will be re-generated on demand // Save first slice geometry2D = m_PlaneGeometries[0]; applyMatrixOp = dynamic_cast(operation); // Apply transformation to first plane geometry2D->ExecuteOperation(applyMatrixOp); // Generate a ApplyTransformMatrixOperation using the dataset center instead of // the supplied rotation center. The supplied center is instead used to adjust the // slice stack afterwards (see OpROTATE). center = m_ReferenceGeometry->GetCenter(); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes(center, applyMatrixOp->GetReferencePoint()); BaseGeometry::ExecuteOperation(applyMatrixOp); break; default: // let handle by base class if we don't do anything BaseGeometry::ExecuteOperation(operation); } this->Modified(); } diff --git a/Modules/Core/test/mitkExtractSliceFilterTest.cpp b/Modules/Core/test/mitkExtractSliceFilterTest.cpp index ce21ea7eef..c9ad18006c 100644 --- a/Modules/Core/test/mitkExtractSliceFilterTest.cpp +++ b/Modules/Core/test/mitkExtractSliceFilterTest.cpp @@ -1,1069 +1,1069 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // use this to create the test volume on the fly #define CREATE_VOLUME // use this to save the created volume //#define SAVE_VOLUME // use this to calculate the error from the sphere mathematical model to our pixel based one //#define CALC_TESTFAILURE_DEVIATION // use this to render an oblique slice through a specified image //#define SHOW_SLICE_IN_RENDER_WINDOW // use this to have infos printed in mbilog //#define EXTRACTOR_DEBUG /*these are the deviations calculated by the function CalcTestFailureDeviation (see for details)*/ #define Testfailure_Deviation_Mean_128 0.853842 #define Testfailure_Deviation_Volume_128 0.145184 #define Testfailure_Deviation_Diameter_128 1.5625 #define Testfailure_Deviation_Mean_256 0.397693 #define Testfailure_Deviation_Volume_256 0.0141357 #define Testfailure_Deviation_Diameter_256 0.78125 #define Testfailure_Deviation_Mean_512 0.205277 #define Testfailure_Deviation_Volume_512 0.01993 #define Testfailure_Deviation_Diameter_512 0.390625 class mitkExtractSliceFilterTestClass { public: static void TestSlice(mitk::PlaneGeometry *planeGeometry, std::string testname) { TestPlane = planeGeometry; TestName = testname; mitk::ScalarType centerCoordValue = TestvolumeSize / 2.0; mitk::ScalarType center[3] = {centerCoordValue, centerCoordValue, centerCoordValue}; mitk::Point3D centerIndex(center); double radius = TestvolumeSize / 4.0; if (TestPlane->Distance(centerIndex) >= radius) return; // outside sphere // feed ExtractSliceFilter mitk::ExtractSliceFilter::Pointer slicer = mitk::ExtractSliceFilter::New(); slicer->SetInput(TestVolume); slicer->SetWorldGeometry(TestPlane); slicer->Update(); MITK_TEST_CONDITION_REQUIRED(slicer->GetOutput() != nullptr, "Extractor returned a slice"); mitk::Image::Pointer reslicedImage = slicer->GetOutput(); AccessFixedDimensionByItk(reslicedImage, TestSphereRadiusByItk, 2); AccessFixedDimensionByItk(reslicedImage, TestSphereAreaByItk, 2); /* double devArea, devDiameter; if(TestvolumeSize == 128.0){ devArea = Testfailure_Deviation_Volume_128; devDiameter = Testfailure_Deviation_Diameter_128; } else if(TestvolumeSize == 256.0){devArea = Testfailure_Deviation_Volume_256; devDiameter = Testfailure_Deviation_Diameter_256;} else if (TestvolumeSize == 512.0){devArea = Testfailure_Deviation_Volume_512; devDiameter = Testfailure_Deviation_Diameter_512;} else{devArea = Testfailure_Deviation_Volume_128; devDiameter = Testfailure_Deviation_Diameter_128;} */ std::string areatestName = TestName.append(" area"); std::string diametertestName = TestName.append(" testing diameter"); // TODO think about the deviation, 1% makes no sense at all MITK_TEST_CONDITION(std::abs(100 - testResults.percentageAreaCalcToPixel) < 1, areatestName); MITK_TEST_CONDITION(std::abs(100 - testResults.percentageRadiusToPixel) < 1, diametertestName); #ifdef EXTRACTOR_DEBUG MITK_INFO << TestName << " >>> " << "planeDistanceToSphereCenter: " << testResults.planeDistanceToSphereCenter; MITK_INFO << "area in pixels: " << testResults.areaInPixel << " <-> area in mm: " << testResults.areaCalculated << " = " << testResults.percentageAreaCalcToPixel << "%"; MITK_INFO << "calculated diameter: " << testResults.diameterCalculated << " <-> diameter in mm: " << testResults.diameterInMM << " <-> diameter in pixel: " << testResults.diameterInPixel << " = " << testResults.percentageRadiusToPixel << "%"; #endif } /* * get the radius of the slice of a sphere based on pixel distance from edge to edge of the circle. */ template static void TestSphereRadiusByItk(itk::Image *inputImage) { typedef itk::Image InputImageType; // set the index to the middle of the image's edge at x and y axis typename InputImageType::IndexType currentIndexX; currentIndexX[0] = (int)(TestvolumeSize / 2.0); currentIndexX[1] = 0; typename InputImageType::IndexType currentIndexY; currentIndexY[0] = 0; currentIndexY[1] = (int)(TestvolumeSize / 2.0); // remember the last pixel value double lastValueX = inputImage->GetPixel(currentIndexX); double lastValueY = inputImage->GetPixel(currentIndexY); // storage for the index marks std::vector indicesX; std::vector indicesY; /*Get four indices on the edge of the circle*/ while (currentIndexX[1] < TestvolumeSize && currentIndexX[0] < TestvolumeSize) { // move x direction currentIndexX[1] += 1; // move y direction currentIndexY[0] += 1; if (inputImage->GetPixel(currentIndexX) > lastValueX) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexX[0]; markIndex[1] = currentIndexX[1]; indicesX.push_back(markIndex); } else if (inputImage->GetPixel(currentIndexX) < lastValueX) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexX[0]; markIndex[1] = currentIndexX[1] - 1; // value inside the sphere indicesX.push_back(markIndex); } if (inputImage->GetPixel(currentIndexY) > lastValueY) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexY[0]; markIndex[1] = currentIndexY[1]; indicesY.push_back(markIndex); } else if (inputImage->GetPixel(currentIndexY) < lastValueY) { // mark the current index typename InputImageType::IndexType markIndex; markIndex[0] = currentIndexY[0]; markIndex[1] = currentIndexY[1] - 1; // value inside the sphere indicesY.push_back(markIndex); } // found both marks? if (indicesX.size() == 2 && indicesY.size() == 2) break; // the new 'last' values lastValueX = inputImage->GetPixel(currentIndexX); lastValueY = inputImage->GetPixel(currentIndexY); } /* *If we are here we found the four marks on the edge of the circle. *For the case our plane is rotated and shifted, we have to calculate the center of the circle, *else the center is the intersection of both straight lines between the marks. *When we have the center, the diameter of the circle will be checked to the reference value(math!). */ // each distance from the first mark of each direction to the center of the straight line between the marks double distanceToCenterX = std::abs(indicesX[0][1] - indicesX[1][1]) / 2.0; // double distanceToCenterY = std::abs(indicesY[0][0] - indicesY[1][0]) / 2.0; // the center of the straight lines typename InputImageType::IndexType centerX; // typename InputImageType::IndexType centerY; centerX[0] = indicesX[0][0]; centerX[1] = indicesX[0][1] + distanceToCenterX; // TODO think about implicit cast to int. this is not the real center of the image, which could be between two // pixels // centerY[0] = indicesY[0][0] + distanceToCenterY; // centerY[1] = inidcesY[0][1]; typename InputImageType::IndexType currentIndex(centerX); lastValueX = inputImage->GetPixel(currentIndex); long sumpixels = 0; std::vector diameterIndices; // move up while (currentIndex[1] < TestvolumeSize) { currentIndex[1] += 1; if (inputImage->GetPixel(currentIndex) != lastValueX) { typename InputImageType::IndexType markIndex; markIndex[0] = currentIndex[0]; markIndex[1] = currentIndex[1] - 1; diameterIndices.push_back(markIndex); break; } sumpixels++; lastValueX = inputImage->GetPixel(currentIndex); } currentIndex[1] -= sumpixels; // move back to center to go in the other direction lastValueX = inputImage->GetPixel(currentIndex); // move down while (currentIndex[1] >= 0) { currentIndex[1] -= 1; if (inputImage->GetPixel(currentIndex) != lastValueX) { typename InputImageType::IndexType markIndex; markIndex[0] = currentIndex[0]; markIndex[1] = currentIndex[1]; // outside sphere because we want to calculate the distance from edge to edge diameterIndices.push_back(markIndex); break; } sumpixels++; lastValueX = inputImage->GetPixel(currentIndex); } /* *Now sumpixels should be the apromximate diameter of the circle. This is checked with the calculated diameter from *the plane transformation(math). */ mitk::Point3D volumeCenter; volumeCenter[0] = volumeCenter[1] = volumeCenter[2] = TestvolumeSize / 2.0; double planeDistanceToSphereCenter = TestPlane->Distance(volumeCenter); double sphereRadius = TestvolumeSize / 4.0; // calculate the radius of the circle cut from the sphere by the plane double diameter = 2.0 * std::sqrt(std::pow(sphereRadius, 2) - std::pow(planeDistanceToSphereCenter, 2)); double percentageRadiusToPixel = 100 / diameter * sumpixels; /* *calculate the radius in mm by the both marks of the center line by using the world coordinates */ // get the points as 3D coordinates mitk::Vector3D diameterPointRight, diameterPointLeft; diameterPointRight[2] = diameterPointLeft[2] = 0.0; diameterPointLeft[0] = diameterIndices[0][0]; diameterPointLeft[1] = diameterIndices[0][1]; diameterPointRight[0] = diameterIndices[1][0]; diameterPointRight[1] = diameterIndices[1][1]; // transform to worldcoordinates TestVolume->GetGeometry()->IndexToWorld(diameterPointLeft, diameterPointLeft); TestVolume->GetGeometry()->IndexToWorld(diameterPointRight, diameterPointRight); // euklidian distance double diameterInMM = ((diameterPointLeft * -1.0) + diameterPointRight).GetNorm(); testResults.diameterInMM = diameterInMM; testResults.diameterCalculated = diameter; testResults.diameterInPixel = sumpixels; testResults.percentageRadiusToPixel = percentageRadiusToPixel; testResults.planeDistanceToSphereCenter = planeDistanceToSphereCenter; } /*brute force the area pixel by pixel*/ template static void TestSphereAreaByItk(itk::Image *inputImage) { typedef itk::Image InputImageType; typedef itk::ImageRegionConstIterator ImageIterator; ImageIterator imageIterator(inputImage, inputImage->GetLargestPossibleRegion()); imageIterator.GoToBegin(); int sumPixelsInArea = 0; while (!imageIterator.IsAtEnd()) { if (inputImage->GetPixel(imageIterator.GetIndex()) == pixelValueSet) sumPixelsInArea++; ++imageIterator; } mitk::Point3D volumeCenter; volumeCenter[0] = volumeCenter[1] = volumeCenter[2] = TestvolumeSize / 2.0; double planeDistanceToSphereCenter = TestPlane->Distance(volumeCenter); double sphereRadius = TestvolumeSize / 4.0; // calculate the radius of the circle cut from the sphere by the plane double radius = std::sqrt(std::pow(sphereRadius, 2) - std::pow(planeDistanceToSphereCenter, 2)); double areaInMM = 3.14159265358979 * std::pow(radius, 2); testResults.areaCalculated = areaInMM; testResults.areaInPixel = sumPixelsInArea; testResults.percentageAreaCalcToPixel = 100 / areaInMM * sumPixelsInArea; } /* * random a voxel. define plane through this voxel. reslice at the plane. compare the pixel vaues of the voxel * in the volume with the pixel value in the resliced image. * there are some indice shifting problems which causes the test to fail for oblique planes. seems like the chosen * worldcoordinate is not corrresponding to the index in the 2D image. and so the pixel values are not the same as * expected. */ static void PixelvalueBasedTest() { /* setup itk image */ typedef itk::Image ImageType; typedef itk::ImageRegionConstIterator ImageIterator; ImageType::Pointer image = ImageType::New(); ImageType::IndexType start; start[0] = start[1] = start[2] = 0; ImageType::SizeType size; size[0] = size[1] = size[2] = 32; ImageType::RegionType imgRegion; imgRegion.SetSize(size); imgRegion.SetIndex(start); image->SetRegions(imgRegion); image->SetSpacing(1.0); image->Allocate(); ImageIterator imageIterator(image, image->GetLargestPossibleRegion()); imageIterator.GoToBegin(); unsigned short pixelValue = 0; // fill the image with distinct values while (!imageIterator.IsAtEnd()) { image->SetPixel(imageIterator.GetIndex(), pixelValue); ++imageIterator; ++pixelValue; } /* end setup itk image */ mitk::Image::Pointer imageInMitk; CastToMitkImage(image, imageInMitk); /*mitk::ImageWriter::Pointer writer = mitk::ImageWriter::New(); writer->SetInput(imageInMitk); std::string file = "C:\\Users\\schroedt\\Desktop\\cube.nrrd"; writer->SetFileName(file); writer->Update();*/ - PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Frontal); + PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Coronal); PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Sagittal); PixelvalueBasedTestByPlane(imageInMitk, mitk::PlaneGeometry::Axial); } static void PixelvalueBasedTestByPlane(mitk::Image *imageInMitk, mitk::PlaneGeometry::PlaneOrientation orientation) { typedef itk::Image ImageType; // set the seed of the rand function srand((unsigned)time(nullptr)); /* setup a random orthogonal plane */ int sliceindex = 17; // rand() % 32; bool isFrontside = true; bool isRotated = false; if (orientation == mitk::PlaneGeometry::Axial) { /*isFrontside = false; isRotated = true;*/ } mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); plane->InitializeStandardPlane(imageInMitk->GetGeometry(), orientation, sliceindex, isFrontside, isRotated); mitk::Point3D origin = plane->GetOrigin(); mitk::Vector3D normal; normal = plane->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 plane->SetOrigin(origin); // we dont need this any more, because we are only testing orthogonal planes /*mitk::Vector3D rotationVector; rotationVector[0] = randFloat(); rotationVector[1] = randFloat(); rotationVector[2] = randFloat(); float degree = randFloat() * 180.0; mitk::RotationOperation* op = new mitk::RotationOperation(mitk::OpROTATE, plane->GetCenter(), rotationVector, degree); plane->ExecuteOperation(op); delete op;*/ /* end setup plane */ /* define a point in the 3D volume. * add the two axis vectors of the plane (each multiplied with a * random number) to the origin. now the two random numbers * become our index coordinates in the 2D image, because the * length of the axis vectors is 1. */ mitk::Point3D planeOrigin = plane->GetOrigin(); mitk::Vector3D axis0, axis1; axis0 = plane->GetAxisVector(0); axis1 = plane->GetAxisVector(1); axis0.Normalize(); axis1.Normalize(); unsigned char n1 = 7; // rand() % 32; unsigned char n2 = 13; // rand() % 32; mitk::Point3D testPoint3DInWorld; testPoint3DInWorld = planeOrigin + (axis0 * n1) + (axis1 * n2); // get the index of the point in the 3D volume ImageType::IndexType testPoint3DInIndex; imageInMitk->GetGeometry()->WorldToIndex(testPoint3DInWorld, testPoint3DInIndex); itk::Index<3> testPoint2DInIndex; /* end define a point in the 3D volume.*/ // do reslicing at the plane mitk::ExtractSliceFilter::Pointer slicer = mitk::ExtractSliceFilter::New(); slicer->SetInput(imageInMitk); slicer->SetWorldGeometry(plane); slicer->Update(); mitk::Image::Pointer slice = slicer->GetOutput(); // Get TestPoiont3D as Index in Slice slice->GetGeometry()->WorldToIndex(testPoint3DInWorld, testPoint2DInIndex); mitk::Point3D p, sliceIndexToWorld, imageIndexToWorld; p[0] = testPoint2DInIndex[0]; p[1] = testPoint2DInIndex[1]; p[2] = testPoint2DInIndex[2]; slice->GetGeometry()->IndexToWorld(p, sliceIndexToWorld); p[0] = testPoint3DInIndex[0]; p[1] = testPoint3DInIndex[1]; p[2] = testPoint3DInIndex[2]; imageInMitk->GetGeometry()->IndexToWorld(p, imageIndexToWorld); itk::Index<2> testPoint2DIn2DIndex; testPoint2DIn2DIndex[0] = testPoint2DInIndex[0]; testPoint2DIn2DIndex[1] = testPoint2DInIndex[1]; typedef mitk::ImagePixelReadAccessor VolumeReadAccessorType; typedef mitk::ImagePixelReadAccessor SliceReadAccessorType; VolumeReadAccessorType VolumeReadAccessor(imageInMitk); SliceReadAccessorType SliceReadAccessor(slice); // compare the pixelvalues of the defined point in the 3D volume with the value of the resliced image unsigned short valueAt3DVolume = VolumeReadAccessor.GetPixelByIndex(testPoint3DInIndex); unsigned short valueAtSlice = SliceReadAccessor.GetPixelByIndex(testPoint2DIn2DIndex); // valueAt3DVolume == valueAtSlice is not always working. because of rounding errors // indices are shifted MITK_TEST_CONDITION(valueAt3DVolume == valueAtSlice, "comparing pixelvalues for orthogonal plane"); vtkSmartPointer imageInVtk = imageInMitk->GetVtkImageData(); vtkSmartPointer sliceInVtk = slice->GetVtkImageData(); double PixelvalueByMitkOutput = sliceInVtk->GetScalarComponentAsDouble(n1, n2, 0, 0); // double valueVTKinImage = imageInVtk->GetScalarComponentAsDouble(testPoint3DInIndex[0], testPoint3DInIndex[1], // testPoint3DInIndex[2], 0); /* Test that everything is working equally if vtkoutput is used instead of the default output * from mitk ImageToImageFilter */ mitk::ExtractSliceFilter::Pointer slicerWithVtkOutput = mitk::ExtractSliceFilter::New(); slicerWithVtkOutput->SetInput(imageInMitk); slicerWithVtkOutput->SetWorldGeometry(plane); slicerWithVtkOutput->SetVtkOutputRequest(true); slicerWithVtkOutput->Update(); vtkSmartPointer vtkImageByVtkOutput = slicerWithVtkOutput->GetVtkOutput(); double PixelvalueByVtkOutput = vtkImageByVtkOutput->GetScalarComponentAsDouble(n1, n2, 0, 0); MITK_TEST_CONDITION(PixelvalueByMitkOutput == PixelvalueByVtkOutput, "testing convertion of image output vtk->mitk by reslicer"); /*================ mbilog outputs ===========================*/ #ifdef EXTRACTOR_DEBUG MITK_INFO << "\n" << "TESTINFO index: " << sliceindex << " orientation: " << orientation << " frontside: " << isFrontside << " rotated: " << isRotated; MITK_INFO << "\n" << "slice index to world: " << sliceIndexToWorld; MITK_INFO << "\n" << "image index to world: " << imageIndexToWorld; MITK_INFO << "\n" << "vtk: slice: " << PixelvalueByMitkOutput << ", image: " << valueVTKinImage; MITK_INFO << "\n" << "testPoint3D InWorld" << testPoint3DInWorld << " is " << testPoint2DInIndex << " in 2D"; MITK_INFO << "\n" << "randoms: " << ((int)n1) << ", " << ((int)n2); MITK_INFO << "\n" << "point is inside plane: " << plane->IsInside(testPoint3DInWorld) << " and volume: " << imageInMitk->GetGeometry()->IsInside(testPoint3DInWorld); MITK_INFO << "\n" << "volume idx: " << testPoint3DInIndex << " = " << valueAt3DVolume; MITK_INFO << "\n" << "volume world: " << testPoint3DInWorld << " = " << valueAt3DVolumeByWorld; MITK_INFO << "\n" << "slice idx: " << testPoint2DInIndex << " = " << valueAtSlice; itk::Index<3> curr; curr[0] = curr[1] = curr[2] = 0; for (int i = 0; i < 32; ++i) { for (int j = 0; j < 32; ++j) { ++curr[1]; if (SliceReadAccessor.GetPixelByIndex(curr) == valueAt3DVolume) { MITK_INFO << "\n" << valueAt3DVolume << " MATCHED mitk " << curr; } } curr[1] = 0; ++curr[0]; } typedef itk::Image Image2DType; Image2DType::Pointer img = Image2DType::New(); CastToItkImage(slice, img); typedef itk::ImageRegionConstIterator Iterator2D; Iterator2D iter(img, img->GetLargestPossibleRegion()); iter.GoToBegin(); while (!iter.IsAtEnd()) { if (img->GetPixel(iter.GetIndex()) == valueAt3DVolume) MITK_INFO << "\n" << valueAt3DVolume << " MATCHED itk " << iter.GetIndex(); ++iter; } #endif // EXTRACTOR_DEBUG } /* random a float value */ static float randFloat() { return (((float)rand() + 1.0) / ((float)RAND_MAX + 1.0)) + (((float)rand() + 1.0) / ((float)RAND_MAX + 1.0)) / ((float)RAND_MAX + 1.0); } /* create a sphere with the size of the given testVolumeSize*/ static void InitializeTestVolume() { #ifdef CREATE_VOLUME // do sphere creation ItkVolumeGeneration(); #ifdef SAVE_VOLUME // save in file mitk::ImageWriter::Pointer writer = mitk::ImageWriter::New(); writer->SetInput(TestVolume); std::string file; std::ostringstream filename; filename << "C:\\home\\schroedt\\MITK\\Modules\\ImageExtraction\\Testing\\Data\\sphere_"; filename << TestvolumeSize; filename << ".nrrd"; file = filename.str(); writer->SetFileName(file); writer->Update(); #endif // SAVE_VOLUME #endif #ifndef CREATE_VOLUME // read from file mitk::StandardFileLocations::Pointer locator = mitk::StandardFileLocations::GetInstance(); std::string filename = locator->FindFile("sphere_512.nrrd.mhd", "Modules/ImageExtraction/Testing/Data"); TestVolume = mitk::IOUtil::Load(filename); #endif #ifdef CALC_TESTFAILURE_DEVIATION // get the TestFailureDeviation in % AccessFixedDimensionByItk(TestVolume, CalcTestFailureDeviation, 3); #endif } // the test result of the sphere reslice struct SliceProperties { double planeDistanceToSphereCenter; double diameterInMM; double diameterInPixel; double diameterCalculated; double percentageRadiusToPixel; double areaCalculated; double areaInPixel; double percentageAreaCalcToPixel; }; static mitk::Image::Pointer TestVolume; static double TestvolumeSize; static mitk::PlaneGeometry::Pointer TestPlane; static std::string TestName; static unsigned char pixelValueSet; static SliceProperties testResults; static double TestFailureDeviation; private: /* * Generate a sphere with a radius of TestvolumeSize / 4.0 */ static void ItkVolumeGeneration() { typedef itk::Image TestVolumeType; typedef itk::ImageRegionConstIterator ImageIterator; TestVolumeType::Pointer sphereImage = TestVolumeType::New(); TestVolumeType::IndexType start; start[0] = start[1] = start[2] = 0; TestVolumeType::SizeType size; size[0] = size[1] = size[2] = TestvolumeSize; TestVolumeType::RegionType imgRegion; imgRegion.SetSize(size); imgRegion.SetIndex(start); sphereImage->SetRegions(imgRegion); sphereImage->SetSpacing(1.0); sphereImage->Allocate(); sphereImage->FillBuffer(0); mitk::Vector3D center; center[0] = center[1] = center[2] = TestvolumeSize / 2.0; double radius = TestvolumeSize / 4.0; double pixelValue = pixelValueSet; ImageIterator imageIterator(sphereImage, sphereImage->GetLargestPossibleRegion()); imageIterator.GoToBegin(); mitk::Vector3D currentVoxelInIndex; while (!imageIterator.IsAtEnd()) { currentVoxelInIndex[0] = imageIterator.GetIndex()[0]; currentVoxelInIndex[1] = imageIterator.GetIndex()[1]; currentVoxelInIndex[2] = imageIterator.GetIndex()[2]; double distanceToCenter = (center + (currentVoxelInIndex * -1.0)).GetNorm(); // if distance to center is smaller then the radius of the sphere if (distanceToCenter < radius) { sphereImage->SetPixel(imageIterator.GetIndex(), pixelValue); } ++imageIterator; } CastToMitkImage(sphereImage, TestVolume); } /* calculate the devation of the voxel object to the mathematical sphere object. * this is use to make a statement about the accuracy of the resliced image, eg. the circle's diameter or area. */ template static void CalcTestFailureDeviation(itk::Image *inputImage) { typedef itk::Image InputImageType; typedef itk::ImageRegionConstIterator ImageIterator; ImageIterator iterator(inputImage, inputImage->GetLargestPossibleRegion()); iterator.GoToBegin(); int volumeInPixel = 0; while (!iterator.IsAtEnd()) { if (inputImage->GetPixel(iterator.GetIndex()) == pixelValueSet) volumeInPixel++; ++iterator; } double diameter = TestvolumeSize / 2.0; double volumeCalculated = (1.0 / 6.0) * 3.14159265358979 * std::pow(diameter, 3); double volumeDeviation = std::abs(100 - (100 / volumeCalculated * volumeInPixel)); typename InputImageType::IndexType index; index[0] = index[1] = TestvolumeSize / 2.0; index[2] = 0; int sumpixels = 0; while (index[2] < TestvolumeSize) { if (inputImage->GetPixel(index) == pixelValueSet) sumpixels++; index[2] += 1; } double diameterDeviation = std::abs(100 - (100 / diameter * sumpixels)); #ifdef DEBUG MITK_INFO << "volume deviation: " << volumeDeviation << " diameter deviation:" << diameterDeviation; #endif mitkExtractSliceFilterTestClass::TestFailureDeviation = (volumeDeviation + diameterDeviation) / 2.0; } }; /*================ #END class ================*/ /*================#BEGIN Instanciation of members ================*/ mitk::Image::Pointer mitkExtractSliceFilterTestClass::TestVolume = mitk::Image::New(); double mitkExtractSliceFilterTestClass::TestvolumeSize = 256.0; mitk::PlaneGeometry::Pointer mitkExtractSliceFilterTestClass::TestPlane = mitk::PlaneGeometry::New(); std::string mitkExtractSliceFilterTestClass::TestName = ""; unsigned char mitkExtractSliceFilterTestClass::pixelValueSet = 255; mitkExtractSliceFilterTestClass::SliceProperties mitkExtractSliceFilterTestClass::testResults = { -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0}; double mitkExtractSliceFilterTestClass::TestFailureDeviation = 0.0; /*================ #END Instanciation of members ================*/ /*================ #BEGIN test main ================*/ int mitkExtractSliceFilterTest(int /*argc*/, char * /*argv*/ []) { MITK_TEST_BEGIN("mitkExtractSliceFilterTest") // pixelvalue based testing mitkExtractSliceFilterTestClass::PixelvalueBasedTest(); // initialize sphere test volume mitkExtractSliceFilterTestClass::InitializeTestVolume(); mitk::Vector3D spacing = mitkExtractSliceFilterTestClass::TestVolume->GetGeometry()->GetSpacing(); // the center of the sphere = center of image double sphereCenter = mitkExtractSliceFilterTestClass::TestvolumeSize / 2.0; double planeSize = mitkExtractSliceFilterTestClass::TestvolumeSize; /* axial plane */ mitk::PlaneGeometry::Pointer geometryAxial = mitk::PlaneGeometry::New(); geometryAxial->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Axial, sphereCenter, false, true); geometryAxial->ChangeImageGeometryConsideringOriginOffset(true); mitk::Point3D origin = geometryAxial->GetOrigin(); mitk::Vector3D normal; normal = geometryAxial->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // geometryAxial->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometryAxial, "Testing axial plane"); /* end axial plane */ /* sagittal plane */ mitk::PlaneGeometry::Pointer geometrySagital = mitk::PlaneGeometry::New(); geometrySagital->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, sphereCenter, true, false); geometrySagital->ChangeImageGeometryConsideringOriginOffset(true); origin = geometrySagital->GetOrigin(); normal = geometrySagital->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // geometrySagital->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometrySagital, "Testing sagittal plane"); /* sagittal plane */ /* sagittal shifted plane */ mitk::PlaneGeometry::Pointer geometrySagitalShifted = mitk::PlaneGeometry::New(); geometrySagitalShifted->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, (sphereCenter - 14), true, false); geometrySagitalShifted->ChangeImageGeometryConsideringOriginOffset(true); origin = geometrySagitalShifted->GetOrigin(); normal = geometrySagitalShifted->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // geometrySagitalShifted->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometrySagitalShifted, "Testing sagittal plane shifted"); /* end sagittal shifted plane */ /* coronal plane */ mitk::PlaneGeometry::Pointer geometryCoronal = mitk::PlaneGeometry::New(); geometryCoronal->InitializeStandardPlane( - planeSize, planeSize, spacing, mitk::PlaneGeometry::Frontal, sphereCenter, true, false); + planeSize, planeSize, spacing, mitk::PlaneGeometry::Coronal, sphereCenter, true, false); geometryCoronal->ChangeImageGeometryConsideringOriginOffset(true); origin = geometryCoronal->GetOrigin(); normal = geometryCoronal->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // geometryCoronal->SetOrigin(origin); mitkExtractSliceFilterTestClass::TestSlice(geometryCoronal, "Testing coronal plane"); /* end coronal plane */ /* oblique plane */ mitk::PlaneGeometry::Pointer obliquePlane = mitk::PlaneGeometry::New(); obliquePlane->InitializeStandardPlane( planeSize, planeSize, spacing, mitk::PlaneGeometry::Sagittal, sphereCenter, true, false); obliquePlane->ChangeImageGeometryConsideringOriginOffset(true); origin = obliquePlane->GetOrigin(); normal = obliquePlane->GetNormal(); normal.Normalize(); origin += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 // obliquePlane->SetOrigin(origin); mitk::Vector3D rotationVector; rotationVector[0] = 0.2; rotationVector[1] = 0.4; rotationVector[2] = 0.62; float degree = 37.0; mitk::RotationOperation *op = new mitk::RotationOperation(mitk::OpROTATE, obliquePlane->GetCenter(), rotationVector, degree); obliquePlane->ExecuteOperation(op); delete op; mitkExtractSliceFilterTestClass::TestSlice(obliquePlane, "Testing oblique plane"); /* end oblique plane */ #ifdef SHOW_SLICE_IN_RENDER_WINDOW /*================ #BEGIN vtk render code ================*/ // set reslicer for renderwindow mitk::Image::Pointer pic = mitk::IOUtil::Load(filename); vtkSmartPointer slicer = vtkSmartPointer::New(); slicer->SetInput(pic->GetVtkImageData()); mitk::PlaneGeometry::Pointer obliquePl = mitk::PlaneGeometry::New(); obliquePl->InitializeStandardPlane( pic->GetGeometry(), mitk::PlaneGeometry::Sagittal, pic->GetGeometry()->GetCenter()[0], true, false); obliquePl->ChangeImageGeometryConsideringOriginOffset(true); mitk::Point3D origin2 = obliquePl->GetOrigin(); mitk::Vector3D n; n = obliquePl->GetNormal(); n.Normalize(); origin2 += n * 0.5; // pixelspacing is 1, so half the spacing is 0.5 obliquePl->SetOrigin(origin2); mitk::Vector3D rotation; rotation[0] = 0.534307; rotation[1] = 0.000439605; rotation[2] = 0.423017; MITK_INFO << rotation; mitk::RotationOperation *operation = new mitk::RotationOperation(mitk::OpROTATE, obliquePl->GetCenter(), rotationVector, degree); obliquePl->ExecuteOperation(operation); delete operation; double origin[3]; origin[0] = obliquePl->GetOrigin()[0]; origin[1] = obliquePl->GetOrigin()[1]; origin[2] = obliquePl->GetOrigin()[2]; slicer->SetResliceAxesOrigin(origin); mitk::Vector3D right, bottom, normal; right = obliquePl->GetAxisVector(0); bottom = obliquePl->GetAxisVector(1); normal = obliquePl->GetNormal(); right.Normalize(); bottom.Normalize(); normal.Normalize(); double cosines[9]; mitk::vnl2vtk(right.GetVnlVector(), cosines); // x mitk::vnl2vtk(bottom.GetVnlVector(), cosines + 3); // y mitk::vnl2vtk(normal.GetVnlVector(), cosines + 6); // n slicer->SetResliceAxesDirectionCosines(cosines); slicer->SetOutputDimensionality(2); slicer->Update(); // set vtk renderwindow vtkSmartPointer vtkPlane = vtkSmartPointer::New(); vtkPlane->SetOrigin(0.0, 0.0, 0.0); // These two points define the axes of the plane in combination with the origin. // Point 1 is the x-axis and point 2 the y-axis. // Each plane is transformed according to the view (axial, coronal and saggital) afterwards. vtkPlane->SetPoint1(1.0, 0.0, 0.0); // P1: (xMax, yMin, depth) vtkPlane->SetPoint2(0.0, 1.0, 0.0); // P2: (xMin, yMax, depth) // these are not the correct values for all slices, only a square plane by now vtkSmartPointer imageMapper = vtkSmartPointer::New(); imageMapper->SetInputConnection(vtkPlane->GetOutputPort()); vtkSmartPointer lookupTable = vtkSmartPointer::New(); // built a default lookuptable lookupTable->SetRampToLinear(); lookupTable->SetSaturationRange(0.0, 0.0); lookupTable->SetHueRange(0.0, 0.0); lookupTable->SetValueRange(0.0, 1.0); lookupTable->Build(); // map all black values to transparent lookupTable->SetTableValue(0, 0.0, 0.0, 0.0, 0.0); lookupTable->SetRange(-255.0, 255.0); // lookupTable->SetRange(-1022.0, 1184.0);//pic3D range vtkSmartPointer texture = vtkSmartPointer::New(); texture->SetInput(slicer->GetOutput()); texture->SetLookupTable(lookupTable); texture->SetMapColorScalarsThroughLookupTable(true); vtkSmartPointer imageActor = vtkSmartPointer::New(); imageActor->SetMapper(imageMapper); imageActor->SetTexture(texture); // Setup renderers vtkSmartPointer renderer = vtkSmartPointer::New(); renderer->AddActor(imageActor); // Setup render window vtkSmartPointer renderWindow = vtkSmartPointer::New(); renderWindow->AddRenderer(renderer); // Setup render window interactor vtkSmartPointer renderWindowInteractor = vtkSmartPointer::New(); vtkSmartPointer style = vtkSmartPointer::New(); renderWindowInteractor->SetInteractorStyle(style); // Render and start interaction renderWindowInteractor->SetRenderWindow(renderWindow); // renderer->AddViewProp(imageActor); renderWindow->Render(); renderWindowInteractor->Start(); // always end with this! /*================ #END vtk render code ================*/ #endif // SHOW_SLICE_IN_RENDER_WINDOW MITK_TEST_END() } diff --git a/Modules/Core/test/mitkPlaneGeometryDataMapper2DTest.cpp b/Modules/Core/test/mitkPlaneGeometryDataMapper2DTest.cpp index 20c5313823..40c94aeff0 100644 --- a/Modules/Core/test/mitkPlaneGeometryDataMapper2DTest.cpp +++ b/Modules/Core/test/mitkPlaneGeometryDataMapper2DTest.cpp @@ -1,98 +1,98 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include "mitkRenderingTestHelper.h" #include "mitkTestingMacros.h" #include #include // VTK #include mitk::DataNode::Pointer addPlaneToDataStorage(mitk::RenderingTestHelper &renderingHelper, mitk::Image *image, mitk::PlaneGeometry::PlaneOrientation orientation, mitk::ScalarType zPos) { auto geometry = mitk::PlaneGeometry::New(); geometry->InitializeStandardPlane(image->GetGeometry(), orientation, zPos); auto geometryData = mitk::PlaneGeometryData::New(); geometryData->SetPlaneGeometry(geometry); auto node = mitk::DataNode::New(); node->SetData(geometryData); renderingHelper.AddNodeToStorage(node); return node; } int mitkPlaneGeometryDataMapper2DTest(int argc, char *argv[]) { try { mitk::RenderingTestHelper openGlTest(640, 480); } catch (const mitk::TestNotRunException &e) { MITK_WARN << "Test not run: " << e.GetDescription(); return 77; } // load all arguments into a datastorage, take last argument as reference rendering // setup a renderwindow of fixed size X*Y // render the datastorage // compare rendering to reference image MITK_TEST_BEGIN("mitkPlaneGeometryDataMapper2DTest") mitk::RenderingTestHelper renderingHelper(640, 480, argc, argv); auto image = static_cast( renderingHelper.GetDataStorage()->GetNode(mitk::TNodePredicateDataType::New())->GetData()); auto zCoord = image->GetGeometry()->GetBoundingBox()->GetCenter()[0]; addPlaneToDataStorage(renderingHelper, image, mitk::PlaneGeometry::Sagittal, zCoord); - addPlaneToDataStorage(renderingHelper, image, mitk::PlaneGeometry::Frontal, zCoord); + addPlaneToDataStorage(renderingHelper, image, mitk::PlaneGeometry::Coronal, zCoord); auto planeNode = addPlaneToDataStorage(renderingHelper, image, mitk::PlaneGeometry::Sagittal, zCoord); auto planeGeometry = static_cast(planeNode->GetData())->GetPlaneGeometry(); auto transform = mitk::AffineTransform3D::New(); mitk::Vector3D rotationAxis; rotationAxis.Fill(0.0); rotationAxis[2] = 1; transform->Rotate3D(rotationAxis, vnl_math::pi_over_4); planeGeometry->Compose(transform); auto bounds = planeGeometry->GetBounds(); bounds[1] /= 3; planeGeometry->SetBounds(bounds); planeGeometry->SetReferenceGeometry(nullptr); planeNode->SetIntProperty("Crosshair.Gap Size", 4); //### Usage of CompareRenderWindowAgainstReference: See docu of mitkRrenderingTestHelper MITK_TEST_CONDITION(renderingHelper.CompareRenderWindowAgainstReference(argc, argv, 1) == true, "CompareRenderWindowAgainstReference test result positive?"); // use this to generate a reference screenshot or save the file: if (false) { renderingHelper.SaveReferenceScreenShot("output.png"); } MITK_TEST_END(); } diff --git a/Modules/Core/test/mitkPlaneGeometryTest.cpp b/Modules/Core/test/mitkPlaneGeometryTest.cpp index 0307e36536..04cf7efc73 100644 --- a/Modules/Core/test/mitkPlaneGeometryTest.cpp +++ b/Modules/Core/test/mitkPlaneGeometryTest.cpp @@ -1,1093 +1,1093 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkAffineTransform3D.h" #include "mitkBaseGeometry.h" #include "mitkGeometry3D.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include "mitkPlaneGeometry.h" #include "mitkRotationOperation.h" #include "mitkSlicedGeometry3D.h" #include "mitkThinPlateSplineCurvedGeometry.h" #include #include #include #include #include #include #include #include static const mitk::ScalarType testEps = 1E-9; // the epsilon used in this test == at least float precision. class mitkPlaneGeometryTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkPlaneGeometryTestSuite); MITK_TEST(TestInitializeStandardPlane); MITK_TEST(TestProjectPointOntoPlane); MITK_TEST(TestPlaneGeometryCloning); MITK_TEST(TestInheritance); MITK_TEST(TestSetExtendInMM); MITK_TEST(TestRotate); MITK_TEST(TestClone); MITK_TEST(TestPlaneComparison); MITK_TEST(TestAxialInitialization); - MITK_TEST(TestFrontalInitialization); + MITK_TEST(TestCoronalInitialization); MITK_TEST(TestSaggitalInitialization); MITK_TEST(TestLefthandedCoordinateSystem); MITK_TEST(TestDominantAxesError); MITK_TEST(TestCheckRotationMatrix); // Currently commented out, see See bug 15990 // MITK_TEST(testPlaneGeometryInitializeOrder); MITK_TEST(TestIntersectionPoint); MITK_TEST(TestCase1210); CPPUNIT_TEST_SUITE_END(); private: // private test members that are initialized by setUp() mitk::PlaneGeometry::Pointer planegeometry; mitk::Point3D origin; mitk::Vector3D right, bottom, normal, spacing; mitk::ScalarType width, height; mitk::ScalarType widthInMM, heightInMM, thicknessInMM; public: void setUp() override { planegeometry = mitk::PlaneGeometry::New(); width = 100; widthInMM = width; height = 200; heightInMM = height; thicknessInMM = 1.0; mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); mitk::FillVector3D(normal, 0, 0, thicknessInMM); mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right, bottom); planegeometry->SetOrigin(origin); planegeometry->SetSpacing(spacing); } void tearDown() override {} // This test verifies inheritance behaviour, this test will fail if the behaviour changes in the future void TestInheritance() { mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); mitk::Geometry3D::Pointer g3d = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Planegeometry should not be castable to Geometry 3D", g3d.IsNull()); mitk::BaseGeometry::Pointer base = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Planegeometry should be castable to BaseGeometry", base.IsNotNull()); g3d = mitk::Geometry3D::New(); base = dynamic_cast(g3d.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Geometry3D should be castable to BaseGeometry", base.IsNotNull()); mitk::SlicedGeometry3D::Pointer sliced = mitk::SlicedGeometry3D::New(); g3d = dynamic_cast(sliced.GetPointer()); CPPUNIT_ASSERT_MESSAGE("SlicedGeometry3D should not be castable to Geometry3D", g3d.IsNull()); mitk::ThinPlateSplineCurvedGeometry::Pointer thin = mitk::ThinPlateSplineCurvedGeometry::New(); plane = dynamic_cast(thin.GetPointer()); CPPUNIT_ASSERT_MESSAGE("AbstractTransformGeometry should be castable to PlaneGeometry", plane.IsNotNull()); plane = mitk::PlaneGeometry::New(); mitk::AbstractTransformGeometry::Pointer atg = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("PlaneGeometry should not be castable to AbstractTransofrmGeometry", atg.IsNull()); } void TestDominantAxesError() { auto image = mitk::IOUtil::Load(GetTestDataFilePath("NotQuiteARotationMatrix.nrrd")); auto matrix = image->GetGeometry()->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().transpose(); std::vector< int > axes = mitk::PlaneGeometry::CalculateDominantAxes(matrix); CPPUNIT_ASSERT_MESSAGE("Domiant axes cannot be determined in this dataset. Output should be default ordering.", axes.at(0)==0 && axes.at(1)==1 && axes.at(2)==2); } void TestCheckRotationMatrix() { auto image = mitk::IOUtil::Load(GetTestDataFilePath("NotQuiteARotationMatrix.nrrd")); bool is_rotation = mitk::PlaneGeometry::CheckRotationMatrix(image->GetGeometry()->GetIndexToWorldTransform(), 1e-8); CPPUNIT_ASSERT_MESSAGE("Since the test data matrix is not quite a rotation matrix, this should be detected.", !is_rotation); } void TestLefthandedCoordinateSystem() { /** * @brief This method tests InitializeStandardPlane() and IndexToWorld() * with a left-handed coordinate orientation or indexToWorldMatrix. * * Of course this test does not use standard Parameters, which are right-handed. * See also discussion of bug #11477: http://bugs.mitk.org/show_bug.cgi?id=11477 */ planegeometry = mitk::PlaneGeometry::New(); width = 100; widthInMM = 5; height = 200; heightInMM = 3; thicknessInMM = 1.0; mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); // This one negative sign results in lefthanded coordinate orientation and det(matrix) < 0. mitk::FillVector3D(normal, 0, 0, -thicknessInMM); mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix; mitk::AffineTransform3D::MatrixType::InternalMatrixType &vnl_matrix = matrix.GetVnlMatrix(); vnl_matrix.set_column(0, right); vnl_matrix.set_column(1, bottom); vnl_matrix.set_column(2, normal); // making sure that we didn't screw up this special test case or else fail deadly: assert(vnl_determinant(vnl_matrix) < 0.0); transform->SetIdentity(); transform->SetMatrix(matrix); planegeometry->InitializeStandardPlane(width, height, transform); // Crux of the matter. CPPUNIT_ASSERT_MESSAGE( "Testing if IndexToWorldMatrix is correct after InitializeStandardPlane( width, height, transform ) ", mitk::MatrixEqualElementWise(planegeometry->GetIndexToWorldTransform()->GetMatrix(), matrix)); mitk::Point3D p_index; p_index[0] = 10.; p_index[1] = 10.; p_index[2] = 0.; mitk::Point3D p_world; mitk::Point3D p_expectedResult; p_expectedResult[0] = 50.; p_expectedResult[1] = 30.; p_expectedResult[2] = 0.; ((mitk::BaseGeometry::Pointer)planegeometry)->IndexToWorld(p_index, p_world); // Crux of the matter. CPPUNIT_ASSERT_MESSAGE("Testing if IndexToWorld(a,b) function works correctly with lefthanded matrix ", mitk::Equal(p_world, p_expectedResult, testEps)); } // See bug 1210 // Test does not use standard Parameters void TestCase1210() { mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; mitk::Vector3D right, down, spacing; mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, 1.015625, 1.015625, 1.1999969482421875); mitk::FillVector3D(down, 1.4012984643248170709237295832899161312802619418765e-45, 0, 0); mitk::FillVector3D(spacing, 0, 1.4713633875410579244699160624544119378442750389703e-43, 9.2806360452222355258639080851310540729807238879469e-32); std::cout << "Testing InitializeStandardPlane(rightVector, downVector, spacing = nullptr): " << std::endl; CPPUNIT_ASSERT_NO_THROW(planegeometry->InitializeStandardPlane(right, down, &spacing)); /* std::cout << "Testing width, height and thickness (in units): "; if((mitk::Equal(planegeometry->GetExtent(0),width)==false) || (mitk::Equal(planegeometry->GetExtent(1),height)==false) || (mitk::Equal(planegeometry->GetExtent(2),1)==false) ) { std::cout<<"[FAILED]"<GetExtentInMM(0),widthInMM)==false) || (mitk::Equal(planegeometry->GetExtentInMM(1),heightInMM)==false) || (mitk::Equal(planegeometry->GetExtentInMM(2),thicknessInMM)==false) ) { std::cout<<"[FAILED]"< 0. * */ // Test does not use standard Parameters void TestIntersectionPoint() { // init plane with its parameter mitk::PlaneGeometry::Pointer myPlaneGeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; origin[0] = 0.0; origin[1] = 2.0; origin[2] = 0.0; mitk::Vector3D normal; normal[0] = 0.0; normal[1] = 1.0; normal[2] = 0.0; myPlaneGeometry->InitializePlane(origin, normal); // generate points and line for intersection testing // point distance of given line > 1 mitk::Point3D pointP1; pointP1[0] = 2.0; pointP1[1] = 1.0; pointP1[2] = 0.0; mitk::Point3D pointP2; pointP2[0] = 2.0; pointP2[1] = 4.0; pointP2[2] = 0.0; mitk::Vector3D lineDirection; lineDirection[0] = pointP2[0] - pointP1[0]; lineDirection[1] = pointP2[1] - pointP1[1]; lineDirection[2] = pointP2[2] - pointP1[2]; mitk::Line3D xingline(pointP1, lineDirection); mitk::Point3D calcXingPoint; myPlaneGeometry->IntersectionPoint(xingline, calcXingPoint); // point distance of given line < 1 mitk::Point3D pointP3; pointP3[0] = 2.0; pointP3[1] = 2.2; pointP3[2] = 0.0; mitk::Point3D pointP4; pointP4[0] = 2.0; pointP4[1] = 1.7; pointP4[2] = 0.0; mitk::Vector3D lineDirection2; lineDirection2[0] = pointP4[0] - pointP3[0]; lineDirection2[1] = pointP4[1] - pointP3[1]; lineDirection2[2] = pointP4[2] - pointP3[2]; mitk::Line3D xingline2(pointP3, lineDirection2); mitk::Point3D calcXingPoint2; myPlaneGeometry->IntersectionPoint(xingline2, calcXingPoint2); // intersection points must be the same CPPUNIT_ASSERT_MESSAGE("Failed to calculate Intersection Point", calcXingPoint == calcXingPoint2); } /** * @brief This method tests method ProjectPointOntoPlane. * * See also bug #3409. */ // Test does not use standard Parameters void TestProjectPointOntoPlane() { mitk::PlaneGeometry::Pointer myPlaneGeometry = mitk::PlaneGeometry::New(); // create normal mitk::Vector3D normal; normal[0] = 0.0; normal[1] = 0.0; normal[2] = 1.0; // create origin mitk::Point3D origin; origin[0] = -27.582859; origin[1] = 50; origin[2] = 200.27742; // initialize plane geometry myPlaneGeometry->InitializePlane(origin, normal); // output to descripe the test std::cout << "Testing PlaneGeometry according to bug #3409" << std::endl; std::cout << "Our normal is: " << normal << std::endl; std::cout << "So ALL projected points should have exactly the same z-value!" << std::endl; // create a number of points mitk::Point3D myPoints[5]; myPoints[0][0] = -27.582859; myPoints[0][1] = 50.00; myPoints[0][2] = 200.27742; myPoints[1][0] = -26.58662; myPoints[1][1] = 50.00; myPoints[1][2] = 200.19026; myPoints[2][0] = -26.58662; myPoints[2][1] = 50.00; myPoints[2][2] = 200.33124; myPoints[3][0] = 104.58662; myPoints[3][1] = 452.12313; myPoints[3][2] = 866.41236; myPoints[4][0] = -207.58662; myPoints[4][1] = 312.00; myPoints[4][2] = -300.12346; // project points onto plane mitk::Point3D myProjectedPoints[5]; for (unsigned int i = 0; i < 5; ++i) { myProjectedPoints[i] = myPlaneGeometry->ProjectPointOntoPlane(myPoints[i]); } // compare z-values with z-value of plane (should be equal) bool allPointsOnPlane = true; for (auto &myProjectedPoint : myProjectedPoints) { if (fabs(myProjectedPoint[2] - origin[2]) > mitk::sqrteps) { allPointsOnPlane = false; } } CPPUNIT_ASSERT_MESSAGE("All points lie not on the same plane", allPointsOnPlane); } void TestPlaneGeometryCloning() { mitk::PlaneGeometry::Pointer geometry2D = createPlaneGeometry(); try { mitk::PlaneGeometry::Pointer clone = geometry2D->Clone(); itk::Matrix matrix = clone->GetIndexToWorldTransform()->GetMatrix(); CPPUNIT_ASSERT_MESSAGE("Test if matrix element exists...", matrix[0][0] == 31); double origin = geometry2D->GetOrigin()[0]; CPPUNIT_ASSERT_MESSAGE("First Point of origin as expected...", mitk::Equal(origin, 8)); double spacing = geometry2D->GetSpacing()[0]; CPPUNIT_ASSERT_MESSAGE("First Point of spacing as expected...", mitk::Equal(spacing, 31)); } catch (...) { CPPUNIT_FAIL("Error during access on a member of cloned geometry"); } // direction [row] [coloum] MITK_TEST_OUTPUT(<< "Casting a rotated 2D ITK Image to a MITK Image and check if Geometry is still same"); } void TestPlaneGeometryInitializeOrder() { mitk::Vector3D mySpacing; mySpacing[0] = 31; mySpacing[1] = 0.1; mySpacing[2] = 5.4; mitk::Point3D myOrigin; myOrigin[0] = 8; myOrigin[1] = 9; myOrigin[2] = 10; mitk::AffineTransform3D::Pointer myTransform = mitk::AffineTransform3D::New(); itk::Matrix transMatrix; transMatrix.Fill(0); transMatrix[0][0] = 1; transMatrix[1][1] = 2; transMatrix[2][2] = 4; myTransform->SetMatrix(transMatrix); mitk::PlaneGeometry::Pointer geometry2D1 = mitk::PlaneGeometry::New(); geometry2D1->SetIndexToWorldTransform(myTransform); geometry2D1->SetSpacing(mySpacing); geometry2D1->SetOrigin(myOrigin); mitk::PlaneGeometry::Pointer geometry2D2 = mitk::PlaneGeometry::New(); geometry2D2->SetSpacing(mySpacing); geometry2D2->SetOrigin(myOrigin); geometry2D2->SetIndexToWorldTransform(myTransform); mitk::PlaneGeometry::Pointer geometry2D3 = mitk::PlaneGeometry::New(); geometry2D3->SetIndexToWorldTransform(myTransform); geometry2D3->SetSpacing(mySpacing); geometry2D3->SetOrigin(myOrigin); geometry2D3->SetIndexToWorldTransform(myTransform); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 1 matches that of Geometry 2.", mitk::Equal(geometry2D1->GetOrigin(), geometry2D2->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 1 match those of Geometry 3.", mitk::Equal(geometry2D1->GetOrigin(), geometry2D3->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 2 match those of Geometry 3.", mitk::Equal(geometry2D2->GetOrigin(), geometry2D3->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 1 match those of Geometry 2.", mitk::Equal(geometry2D1->GetSpacing(), geometry2D2->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 1 match those of Geometry 3.", mitk::Equal(geometry2D1->GetSpacing(), geometry2D3->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 2 match those of Geometry 3.", mitk::Equal(geometry2D2->GetSpacing(), geometry2D3->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 1 match those of Geometry 2.", compareMatrix(geometry2D1->GetIndexToWorldTransform()->GetMatrix(), geometry2D2->GetIndexToWorldTransform()->GetMatrix())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 1 match those of Geometry 3.", compareMatrix(geometry2D1->GetIndexToWorldTransform()->GetMatrix(), geometry2D3->GetIndexToWorldTransform()->GetMatrix())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 2 match those of Geometry 3.", compareMatrix(geometry2D2->GetIndexToWorldTransform()->GetMatrix(), geometry2D3->GetIndexToWorldTransform()->GetMatrix())); } void TestInitializeStandardPlane() { CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: width", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: height", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: depth", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: width in mm", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: heght in mm", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: depth in mm", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorRight", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorBottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorNormal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mitk::Vector3D spacing; thicknessInMM = 1.5; normal.Normalize(); normal *= thicknessInMM; mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right.GetVnlVector(), bottom.GetVnlVector(), &spacing); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: width", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: height", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: depth", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: width in mm", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: height in mm", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: depth in mm", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorRight", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorBottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorNormal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); ; } void TestSetExtendInMM() { normal.Normalize(); normal *= thicknessInMM; planegeometry->SetExtentInMM(2, thicknessInMM); CPPUNIT_ASSERT_MESSAGE("Testing SetExtentInMM(2, ...), querying by GetExtentInMM(2): ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetExtentInMM(2, ...), querying by GetAxisVector(2) and comparing to normal: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); planegeometry->SetOrigin(origin); CPPUNIT_ASSERT_MESSAGE("Testing SetOrigin", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Right", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestRotate() { // Changing the IndexToWorldTransform to a rotated version by SetIndexToWorldTransform() (keep origin): mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = planegeometry->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::VnlVector axis(3); mitk::FillVector3D(axis, 1.0, 1.0, 1.0); axis.normalize(); vnl_quaternion rotation(axis, 0.223); vnlmatrix = rotation.rotation_matrix_transpose() * vnlmatrix; mitk::Matrix3D matrix; matrix = vnlmatrix; transform->SetMatrix(matrix); transform->SetOffset(planegeometry->GetIndexToWorldTransform()->GetOffset()); right.SetVnlVector(rotation.rotation_matrix_transpose() * right.GetVnlVector()); bottom.SetVnlVector(rotation.rotation_matrix_transpose() * bottom.GetVnlVector()); normal.SetVnlVector(rotation.rotation_matrix_transpose() * normal.GetVnlVector()); planegeometry->SetIndexToWorldTransform(transform); // The origin changed,because m_Origin=m_IndexToWorldTransform->GetOffset()+GetAxisVector(2)*0.5 // and the AxisVector changes due to the rotation. In other words: the rotation was done around // the corner of the box, not around the planes origin. Now change it to a rotation around // the origin, simply by re-setting the origin to the original one: planegeometry->SetOrigin(origin); CPPUNIT_ASSERT_MESSAGE("Testing whether SetIndexToWorldTransform kept origin: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); mitk::Point2D point; point[0] = 4; point[1] = 3; mitk::Point2D dummy; planegeometry->WorldToIndex(point, dummy); planegeometry->IndexToWorld(dummy, dummy); CPPUNIT_ASSERT_MESSAGE("Testing consistency of index and world coordinates.", dummy == point); CPPUNIT_ASSERT_MESSAGE("Testing width of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: right ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(0).GetNorm(), planegeometry->GetExtentInMM(0), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(1).GetNorm(), planegeometry->GetExtentInMM(1), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(2).GetNorm(), planegeometry->GetExtentInMM(2), testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); width *= 2; height *= 3; planegeometry->SetSizeInUnits(width, height); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: right ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(0).GetNorm(), planegeometry->GetExtentInMM(0), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(1).GetNorm(), planegeometry->GetExtentInMM(1), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(2).GetNorm(), planegeometry->GetExtentInMM(2), testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestClone() { mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); // Cave: Statement below is negated! CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry.IsNull()) || (clonedplanegeometry->GetReferenceCount() != 1))); CPPUNIT_ASSERT_MESSAGE("Testing origin of cloned version: ", mitk::Equal(clonedplanegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing extent (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: right", mitk::Equal(clonedplanegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: bottom", mitk::Equal(clonedplanegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: normal", mitk::Equal(clonedplanegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(clonedplanegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestSaggitalInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); mitk::PlaneGeometry::Pointer clonedplanegeometry = planegeometry->Clone(); // Testing InitializeStandardPlane(clonedplanegeometry, planeorientation = Sagittal, zPosition = 0, frontside=true): planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::PlaneGeometry::Sagittal); mitk::Vector3D newright, newbottom, newnormal; mitk::ScalarType newthicknessInMM; newright = bottom; newthicknessInMM = widthInMM / width * 1.0; // extent in normal direction is 1; newnormal = right; newnormal.Normalize(); newnormal *= newthicknessInMM; newbottom = normal; newbottom.Normalize(); newbottom *= thicknessInMM; CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagitally initialized version:", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0, testEps)); // ok, corner was fine, so we can dare to believe the origin is ok. origin = planegeometry->GetOrigin(); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagitally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagitally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagitally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagitally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagitally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagitally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagitally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagitally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagitally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), newnormal, testEps)); mappingTests2D(planegeometry, height, 1, heightInMM, thicknessInMM, origin, newright, newbottom); // set origin back to the one of the axial slice: origin = clonedplanegeometry->GetOrigin(); // Testing backside initialization: InitializeStandardPlane(clonedplanegeometry, planeorientation = Axial, zPosition // = 0, frontside=false, rotated=true): planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::PlaneGeometry::Axial, 0, false, true); mitk::Point3D backsideorigin; backsideorigin = origin + clonedplanegeometry->GetAxisVector(1); //+clonedplanegeometry->GetAxisVector(2); CPPUNIT_ASSERT_MESSAGE("Testing origin of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetOrigin(), backsideorigin, testEps)); mitk::Point3D backsidecornerpoint0; backsidecornerpoint0 = cornerpoint0 + clonedplanegeometry->GetAxisVector(1); //+clonedplanegeometry->GetAxisVector(2); CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagitally initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), backsidecornerpoint0, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), -bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, backsideorigin, right, -bottom); } - void TestFrontalInitialization() + void TestCoronalInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); //-------- mitk::Vector3D newright, newbottom, newnormal; mitk::ScalarType newthicknessInMM; - // Testing InitializeStandardPlane(clonedplanegeometry, planeorientation = Frontal, zPosition = 0, frontside=true) - planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::PlaneGeometry::Frontal); + // Testing InitializeStandardPlane(clonedplanegeometry, planeorientation = Coronal, zPosition = 0, frontside=true) + planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::PlaneGeometry::Coronal); newright = right; newbottom = normal; newbottom.Normalize(); newbottom *= thicknessInMM; newthicknessInMM = heightInMM / height * 1.0 /*extent in normal direction is 1*/; newnormal = -bottom; newnormal.Normalize(); newnormal *= newthicknessInMM; - CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of coronally initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0, testEps)); // ok, corner was fine, so we can dare to believe the origin is ok. origin = planegeometry->GetOrigin(); - CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), 1, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing thickness (in units) of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing thickness (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, width, 1, widthInMM, thicknessInMM, origin, newright, newbottom); // Changing plane to in-plane unit spacing using SetSizeInUnits: planegeometry->SetSizeInUnits(planegeometry->GetExtentInMM(0), planegeometry->GetExtentInMM(1)); - CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in units) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in units) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in units) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in mm) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in mm) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in mm) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, widthInMM, thicknessInMM, widthInMM, thicknessInMM, origin, newright, newbottom); // Changing plane to unit spacing also in normal direction using SetExtentInMM(2, 1.0): planegeometry->SetExtentInMM(2, 1.0); newnormal.Normalize(); - CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in units) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in units) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in units) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in mm) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in mm) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( - "Testing width, height and thickness (in mm) of unit spaced, frontally initialized version: ", + "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), 1.0, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); - CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, frontally initialized version: ", + CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, widthInMM, thicknessInMM, widthInMM, thicknessInMM, origin, newright, newbottom); } void TestAxialInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); // Clone, move, rotate and test for 'IsParallel' and 'IsOnPlane' mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry.IsNull()) || (clonedplanegeometry->GetReferenceCount() != 1))); std::cout << "Testing InitializeStandardPlane(clonedplanegeometry, planeorientation = Axial, zPosition = 0, " "frontside=true): " << std::endl; planegeometry->InitializeStandardPlane(clonedplanegeometry); CPPUNIT_ASSERT_MESSAGE("Testing origin of axially initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin)); CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of axially initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0)); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of axially initialized version (should be same as in mm due to " "unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of axially initialized version (should be same as in mm due to " "unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in units) of axially initialized version (should be same as in mm due " "to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestPlaneComparison() { // Clone, move, rotate and test for 'IsParallel' and 'IsOnPlane' mitk::PlaneGeometry::Pointer clonedplanegeometry2 = dynamic_cast(planegeometry->Clone().GetPointer()); CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry2.IsNull()) || (clonedplanegeometry2->GetReferenceCount() != 1))); CPPUNIT_ASSERT_MESSAGE("Testing wheter original and clone are at the same position", clonedplanegeometry2->IsOnPlane(planegeometry.GetPointer())); CPPUNIT_ASSERT_MESSAGE(" Asserting that origin is on the plane cloned plane:", clonedplanegeometry2->IsOnPlane(origin)); mitk::VnlVector newaxis(3); mitk::FillVector3D(newaxis, 1.0, 1.0, 1.0); newaxis.normalize(); vnl_quaternion rotation2(newaxis, 0.0); mitk::Vector3D clonednormal = clonedplanegeometry2->GetNormal(); mitk::Point3D clonedorigin = clonedplanegeometry2->GetOrigin(); auto planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 180.0); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE(" Asserting that a flipped plane is still on the original plane: ", clonedplanegeometry2->IsOnPlane(planegeometry.GetPointer())); clonedorigin += clonednormal; clonedplanegeometry2->SetOrigin(clonedorigin); CPPUNIT_ASSERT_MESSAGE("Testing if the translated (cloned, flipped) plane is parallel to its origin plane: ", clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 0.5); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-paralell plane gets recognized as not paralell [rotation +0.5 degree] : ", !clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), -1.0); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-paralell plane gets recognized as not paralell [rotation -0.5 degree] : ", !clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 360.5); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-paralell plane gets recognized as paralell [rotation 360 degree] : ", clonedplanegeometry2->IsParallel(planegeometry)); } private: // helper Methods for the Tests mitk::PlaneGeometry::Pointer createPlaneGeometry() { mitk::Vector3D mySpacing; mySpacing[0] = 31; mySpacing[1] = 0.1; mySpacing[2] = 5.4; mitk::Point3D myOrigin; myOrigin[0] = 8; myOrigin[1] = 9; myOrigin[2] = 10; mitk::AffineTransform3D::Pointer myTransform = mitk::AffineTransform3D::New(); itk::Matrix transMatrix; transMatrix.Fill(0); transMatrix[0][0] = 1; transMatrix[1][1] = 2; transMatrix[2][2] = 4; myTransform->SetMatrix(transMatrix); mitk::PlaneGeometry::Pointer geometry2D = mitk::PlaneGeometry::New(); geometry2D->SetIndexToWorldTransform(myTransform); geometry2D->SetSpacing(mySpacing); geometry2D->SetOrigin(myOrigin); return geometry2D; } bool compareMatrix(itk::Matrix left, itk::Matrix right) { bool equal = true; for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) equal &= mitk::Equal(left[i][j], right[i][j]); return equal; } /** * This function tests for correct mapping and is called several times from other tests **/ void mappingTests2D(const mitk::PlaneGeometry *planegeometry, const mitk::ScalarType &width, const mitk::ScalarType &height, const mitk::ScalarType &widthInMM, const mitk::ScalarType &heightInMM, const mitk::Point3D &origin, const mitk::Vector3D &right, const mitk::Vector3D &bottom) { std::cout << "Testing mapping Map(pt2d_mm(x=widthInMM/2.3,y=heightInMM/2.5), pt3d_mm) and compare with expected: "; mitk::Point2D pt2d_mm; mitk::Point3D pt3d_mm, expected_pt3d_mm; pt2d_mm[0] = widthInMM / 2.3; pt2d_mm[1] = heightInMM / 2.5; expected_pt3d_mm = origin + right * (pt2d_mm[0] / right.GetNorm()) + bottom * (pt2d_mm[1] / bottom.GetNorm()); planegeometry->Map(pt2d_mm, pt3d_mm); CPPUNIT_ASSERT_MESSAGE( "Testing mapping Map(pt2d_mm(x=widthInMM/2.3,y=heightInMM/2.5), pt3d_mm) and compare with expected", mitk::Equal(pt3d_mm, expected_pt3d_mm, testEps)); std::cout << "Testing mapping Map(pt3d_mm, pt2d_mm) and compare with expected: "; mitk::Point2D testpt2d_mm; planegeometry->Map(pt3d_mm, testpt2d_mm); std::cout << std::setprecision(12) << "Expected pt2d_mm " << pt2d_mm << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_mm " << testpt2d_mm << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing mapping Map(pt3d_mm, pt2d_mm) and compare with expected", mitk::Equal(pt2d_mm, testpt2d_mm, 10 * mitk::eps)); std::cout << "Testing IndexToWorld(pt2d_units, pt2d_mm) and compare with expected: "; mitk::Point2D pt2d_units; pt2d_units[0] = width / 2.0; pt2d_units[1] = height / 2.0; pt2d_mm[0] = widthInMM / 2.0; pt2d_mm[1] = heightInMM / 2.0; planegeometry->IndexToWorld(pt2d_units, testpt2d_mm); std::cout << std::setprecision(12) << "Expected pt2d_mm " << pt2d_mm << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_mm " << testpt2d_mm << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing IndexToWorld(pt2d_units, pt2d_mm) and compare with expected: ", mitk::Equal(pt2d_mm, testpt2d_mm, 10 * mitk::eps)); std::cout << "Testing WorldToIndex(pt2d_mm, pt2d_units) and compare with expected: "; mitk::Point2D testpt2d_units; planegeometry->WorldToIndex(pt2d_mm, testpt2d_units); std::cout << std::setprecision(12) << "Expected pt2d_units " << pt2d_units << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_units " << testpt2d_units << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing WorldToIndex(pt2d_mm, pt2d_units) and compare with expected:", mitk::Equal(pt2d_units, testpt2d_units, 10 * mitk::eps)); } }; MITK_TEST_SUITE_REGISTRATION(mitkPlaneGeometry) diff --git a/Modules/Core/test/mitkPlanePositionManagerTest.cpp b/Modules/Core/test/mitkPlanePositionManagerTest.cpp index dbb23f8049..98c49de80a 100644 --- a/Modules/Core/test/mitkPlanePositionManagerTest.cpp +++ b/Modules/Core/test/mitkPlanePositionManagerTest.cpp @@ -1,272 +1,272 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkBaseProperty.h" #include "mitkDataNode.h" #include "mitkGeometry3D.h" #include "mitkImage.h" #include "mitkInteractionConst.h" #include "mitkPlaneGeometry.h" #include "mitkPlanePositionManager.h" #include "mitkRotationOperation.h" #include "mitkSliceNavigationController.h" #include "mitkStandaloneDataStorage.h" #include "mitkStringProperty.h" #include "mitkSurface.h" #include "mitkTestingMacros.h" #include "usGetModuleContext.h" #include "usModuleContext.h" #include "usServiceReference.h" #include "vnl/vnl_vector.h" std::vector m_Geometries; std::vector m_SliceIndices; mitk::PlanePositionManagerService *m_Service; int SetUpBeforeTest() { // Getting Service us::ServiceReference serviceRef = us::GetModuleContext()->GetServiceReference(); m_Service = us::GetModuleContext()->GetService(serviceRef); if (m_Service == nullptr) return EXIT_FAILURE; // Creating different Geometries m_Geometries.reserve(100); mitk::PlaneGeometry::PlaneOrientation views[] = { - mitk::PlaneGeometry::Axial, mitk::PlaneGeometry::Sagittal, mitk::PlaneGeometry::Frontal}; + mitk::PlaneGeometry::Axial, mitk::PlaneGeometry::Sagittal, mitk::PlaneGeometry::Coronal}; for (unsigned int i = 0; i < 100; ++i) { mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); mitk::ScalarType width = 256 + (0.01 * i); mitk::ScalarType height = 256 + (0.002 * i); mitk::Vector3D right; mitk::Vector3D down; right[0] = 1; right[1] = i; right[2] = 0.5; down[0] = i * 0.02; down[1] = 1; down[2] = i * 0.03; mitk::Vector3D spacing; mitk::FillVector3D(spacing, 1.0 * 0.02 * i, 1.0 * 0.15 * i, 1.0); mitk::Vector3D rightVector; mitk::FillVector3D(rightVector, 0.02 * (i + 1), 0 + (0.05 * i), 1.0); mitk::Vector3D downVector; mitk::FillVector3D(downVector, 1, 3 - 0.01 * i, 0.0345 * i); vnl_vector normal = vnl_cross_3d(rightVector.GetVnlVector(), downVector.GetVnlVector()); normal.normalize(); normal *= 1.5; mitk::Vector3D origin; origin.Fill(1); origin[0] = 12 + 0.03 * i; mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); mitk::Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightVector.GetVnlVector()); matrix.GetVnlMatrix().set_column(1, downVector.GetVnlVector()); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(origin); plane->InitializeStandardPlane(width, height, transform, views[i % 3], i, true, false); m_Geometries.push_back(plane); } return EXIT_SUCCESS; } int testAddPlanePosition() { MITK_TEST_OUTPUT(<< "Starting Test: ######### A d d P l a n e P o s i t i o n #########"); MITK_TEST_CONDITION(m_Service != nullptr, "Testing getting of PlanePositionManagerService"); unsigned int currentID(m_Service->AddNewPlanePosition(m_Geometries.at(0), 0)); bool error = ((m_Service->GetNumberOfPlanePositions() != 1) || (currentID != 0)); if (error) { MITK_TEST_CONDITION(m_Service->GetNumberOfPlanePositions() == 1, "Checking for correct number of planepositions"); MITK_TEST_CONDITION(currentID == 0, "Testing for correct ID"); return EXIT_FAILURE; } // Adding new planes for (unsigned int i = 1; i < m_Geometries.size(); ++i) { unsigned int newID = m_Service->AddNewPlanePosition(m_Geometries.at(i), i); error = ((m_Service->GetNumberOfPlanePositions() != i + 1) || (newID != (currentID + 1))); if (error) { MITK_TEST_CONDITION(m_Service->GetNumberOfPlanePositions() == i + 1, "Checking for correct number of planepositions"); MITK_TEST_CONDITION(newID == (currentID + 1), "Testing for correct ID"); MITK_TEST_OUTPUT(<< "New: " << newID << " Last: " << currentID); return EXIT_FAILURE; } currentID = newID; } unsigned int numberOfPlanePos = m_Service->GetNumberOfPlanePositions(); // Adding existing planes -> nothing should change for (unsigned int i = 0; i < (m_Geometries.size() - 1) * 0.5; ++i) { unsigned int newID = m_Service->AddNewPlanePosition(m_Geometries.at(i * 2), i * 2); error = ((m_Service->GetNumberOfPlanePositions() != numberOfPlanePos) || (newID != i * 2)); if (error) { MITK_TEST_CONDITION(m_Service->GetNumberOfPlanePositions() == numberOfPlanePos, "Checking for correct number of planepositions"); MITK_TEST_CONDITION(newID == i * 2, "Testing for correct ID"); return EXIT_FAILURE; } } return EXIT_SUCCESS; } int testGetPlanePosition() { bool error(true); MITK_TEST_OUTPUT(<< "Starting Test: ######### G e t P l a n e P o s i t i o n #########"); // Testing for existing planepositions for (unsigned int i = 0; i < m_Geometries.size(); ++i) { auto plane = m_Geometries.at(i); auto op = m_Service->GetPlanePosition(i); error = (!mitk::Equal(op->GetHeight(), plane->GetExtent(1)) || !mitk::Equal(op->GetWidth(), plane->GetExtent(0)) || !mitk::Equal(op->GetSpacing(), plane->GetSpacing()) || !mitk::Equal(op->GetTransform()->GetOffset(), plane->GetIndexToWorldTransform()->GetOffset()) || !mitk::Equal(op->GetDirectionVector().GetVnlVector(), plane->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).normalize().as_ref()) || !mitk::MatrixEqualElementWise(op->GetTransform()->GetMatrix(), plane->GetIndexToWorldTransform()->GetMatrix())); if (error) { MITK_TEST_OUTPUT(<< "Iteration: " << i) MITK_TEST_CONDITION( mitk::Equal(op->GetHeight(), plane->GetExtent(1)) && mitk::Equal(op->GetWidth(), plane->GetExtent(0)), "Checking for correct extent"); MITK_TEST_CONDITION(mitk::Equal(op->GetSpacing(), plane->GetSpacing()), "Checking for correct spacing"); MITK_TEST_CONDITION(mitk::Equal(op->GetTransform()->GetOffset(), plane->GetIndexToWorldTransform()->GetOffset()), "Checking for correct offset"); MITK_INFO << "Op: " << op->GetDirectionVector() << " plane: " << plane->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2) << "\n"; MITK_TEST_CONDITION(mitk::Equal(op->GetDirectionVector().GetVnlVector(), plane->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).as_ref()), "Checking for correct direction"); MITK_TEST_CONDITION( mitk::MatrixEqualElementWise(op->GetTransform()->GetMatrix(), plane->GetIndexToWorldTransform()->GetMatrix()), "Checking for correct matrix"); return EXIT_FAILURE; } } // Testing for not existing planepositions error = (m_Service->GetPlanePosition(100000000) != nullptr || m_Service->GetPlanePosition(-1) != nullptr); if (error) { MITK_TEST_CONDITION(m_Service->GetPlanePosition(100000000) == nullptr, "Trying to get non existing pos"); MITK_TEST_CONDITION(m_Service->GetPlanePosition(-1) == nullptr, "Trying to get non existing pos"); return EXIT_FAILURE; } return EXIT_SUCCESS; } int testRemovePlanePosition() { MITK_TEST_OUTPUT(<< "Starting Test: ######### R e m o v e P l a n e P o s i t i o n #########"); unsigned int size = m_Service->GetNumberOfPlanePositions(); // Testing for invalid IDs bool removed = m_Service->RemovePlanePosition(-1); removed = m_Service->RemovePlanePosition(1000000); unsigned int size2 = m_Service->GetNumberOfPlanePositions(); if (removed) { MITK_TEST_CONDITION(removed == false, "Testing remove not existing planepositions"); MITK_TEST_CONDITION(size == size2, "Testing remove not existing planepositions"); return EXIT_FAILURE; } // Testing for valid IDs for (unsigned int i = 0; i < m_Geometries.size() * 0.5; i++) { removed = m_Service->RemovePlanePosition(i); unsigned int size2 = m_Service->GetNumberOfPlanePositions(); removed = (size2 == (size - (i + 1))); if (!removed) { MITK_TEST_CONDITION(removed == true, "Testing remove existing planepositions"); MITK_TEST_CONDITION(size == (size - i + 1), "Testing remove existing planepositions"); return EXIT_FAILURE; } } return EXIT_SUCCESS; } int testRemoveAll() { MITK_TEST_OUTPUT(<< "Starting Test: ######### R e m o v e A l l #########"); unsigned int numPos = m_Service->GetNumberOfPlanePositions(); MITK_INFO << numPos; m_Service->RemoveAllPlanePositions(); bool error(true); error = (m_Service->GetNumberOfPlanePositions() != 0 || m_Service->GetPlanePosition(60) != nullptr); if (error) { MITK_TEST_CONDITION(m_Service->GetNumberOfPlanePositions() == 0, "Testing remove all pos"); MITK_TEST_CONDITION(m_Service->GetPlanePosition(60) == nullptr, "Testing remove all pos"); return EXIT_FAILURE; } return EXIT_SUCCESS; } int mitkPlanePositionManagerTest(int, char *[]) { MITK_TEST_BEGIN("PlanePositionManager"); SetUpBeforeTest(); int result; MITK_TEST_CONDITION_REQUIRED((result = testAddPlanePosition()) == EXIT_SUCCESS, ""); MITK_TEST_CONDITION_REQUIRED((result = testGetPlanePosition()) == EXIT_SUCCESS, ""); MITK_TEST_CONDITION_REQUIRED((result = testRemovePlanePosition()) == EXIT_SUCCESS, ""); MITK_TEST_CONDITION_REQUIRED((result = testRemoveAll()) == EXIT_SUCCESS, ""); MITK_TEST_END(); } diff --git a/Modules/Core/test/mitkRotatedSlice4DTest.cpp b/Modules/Core/test/mitkRotatedSlice4DTest.cpp index 474bf3f5dd..22da8a8bfa 100644 --- a/Modules/Core/test/mitkRotatedSlice4DTest.cpp +++ b/Modules/Core/test/mitkRotatedSlice4DTest.cpp @@ -1,84 +1,84 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkExtractSliceFilter.h" #include "mitkIOUtil.h" #include "mitkImagePixelReadAccessor.h" #include "mitkImageTimeSelector.h" #include "mitkInteractionConst.h" #include "mitkRotationOperation.h" #include "mitkTestingMacros.h" #include /* * The mitkRotatedSlice4DTest loads a 4D image and extracts a specifically rotated slice in each time step's volume. */ int mitkRotatedSlice4DTest(int, char *argv[]) { MITK_TEST_BEGIN("mitkRotatedSlice4DTest"); std::string filename = argv[1]; // load 4D image mitk::Image::Pointer image4D = mitk::IOUtil::Load(filename); // check inputs if (image4D.IsNull()) { MITK_INFO << "Could not load the file"; return false; } auto numTimeSteps = std::min(2, static_cast(image4D->GetTimeSteps())); for (int ts = 0; ts < numTimeSteps; ++ts) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(image4D); timeSelector->SetTimeNr(ts); timeSelector->Update(); mitk::Image::Pointer image3D = timeSelector->GetOutput(); int sliceNumber = std::min(5, static_cast(image3D->GetSlicedGeometry()->GetSlices())); mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); - plane->InitializeStandardPlane(image3D->GetGeometry(), mitk::PlaneGeometry::Frontal, sliceNumber, true, false); + plane->InitializeStandardPlane(image3D->GetGeometry(), mitk::PlaneGeometry::Coronal, sliceNumber, true, false); // rotate about an arbitrary point and axis... float angle = 30; mitk::Point3D point; point.Fill(sliceNumber); mitk::Vector3D rotationAxis; rotationAxis[0] = 1; rotationAxis[1] = 2; rotationAxis[2] = 3; rotationAxis.Normalize(); // Create Rotation Operation auto *op = new mitk::RotationOperation(mitk::OpROTATE, point, rotationAxis, angle); plane->ExecuteOperation(op); delete op; // Now extract mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(); extractor->SetInput(image3D); extractor->SetWorldGeometry(plane); extractor->Update(); mitk::Image::Pointer extractedPlane; extractedPlane = extractor->GetOutput(); std::stringstream ss; ss << " : Valid slice in timestep " << ts; MITK_TEST_CONDITION_REQUIRED(extractedPlane.IsNotNull(), ss.str().c_str()); } MITK_TEST_END(); } diff --git a/Modules/ImageExtraction/mitkExtractImageFilter.cpp b/Modules/ImageExtraction/mitkExtractImageFilter.cpp index 1115c6ebd2..807fc7665c 100644 --- a/Modules/ImageExtraction/mitkExtractImageFilter.cpp +++ b/Modules/ImageExtraction/mitkExtractImageFilter.cpp @@ -1,259 +1,259 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkExtractImageFilter.h" #include "mitkITKImageImport.h" #include "mitkImageCast.h" #include "mitkImageTimeSelector.h" #include "mitkPlaneGeometry.h" #include #include mitk::ExtractImageFilter::ExtractImageFilter() : m_SliceIndex(0), m_SliceDimension(0), m_TimeStep(0), m_DirectionCollapseToStrategy(DIRECTIONCOLLAPSETOGUESS) { MITK_WARN << "Class ExtractImageFilter is deprecated! Use ExtractSliceFilter instead."; } mitk::ExtractImageFilter::~ExtractImageFilter() { } void mitk::ExtractImageFilter::GenerateData() { Image::ConstPointer input = ImageToImageFilter::GetInput(0); if ((input->GetDimension() > 4) || (input->GetDimension() < 2)) { MITK_ERROR << "mitk::ExtractImageFilter:GenerateData works only with 3D and 3D+t images, sorry." << std::endl; itkExceptionMacro("mitk::ExtractImageFilter works only with 3D and 3D+t images, sorry."); return; } else if (input->GetDimension() == 4) { mitk::ImageTimeSelector::Pointer timeSelector = ImageTimeSelector::New(); timeSelector->SetInput(input); timeSelector->SetTimeNr(m_TimeStep); timeSelector->UpdateLargestPossibleRegion(); input = timeSelector->GetOutput(); } else if (input->GetDimension() == 2) { Image::Pointer resultImage = ImageToImageFilter::GetOutput(); resultImage = const_cast(input.GetPointer()); ImageToImageFilter::SetNthOutput(0, resultImage); return; } if (m_SliceDimension >= input->GetDimension()) { MITK_ERROR << "mitk::ExtractImageFilter:GenerateData m_SliceDimension == " << m_SliceDimension << " makes no sense with an " << input->GetDimension() << "D image." << std::endl; itkExceptionMacro("This is not a sensible value for m_SliceDimension."); return; } AccessFixedDimensionByItk(input, ItkImageProcessing, 3); // set a nice geometry for display and point transformations BaseGeometry *inputImageGeometry = ImageToImageFilter::GetInput(0)->GetGeometry(); if (!inputImageGeometry) { MITK_ERROR << "In ExtractImageFilter::ItkImageProcessing: Input image has no geometry!" << std::endl; return; } PlaneGeometry::PlaneOrientation orientation = PlaneGeometry::Axial; switch (m_SliceDimension) { default: case 2: orientation = PlaneGeometry::Axial; break; case 1: - orientation = PlaneGeometry::Frontal; + orientation = PlaneGeometry::Coronal; break; case 0: orientation = PlaneGeometry::Sagittal; break; } PlaneGeometry::Pointer planeGeometry = PlaneGeometry::New(); planeGeometry->InitializeStandardPlane(inputImageGeometry, orientation, (ScalarType)m_SliceIndex, true, false); Image::Pointer resultImage = ImageToImageFilter::GetOutput(); planeGeometry->ChangeImageGeometryConsideringOriginOffset(true); resultImage->SetGeometry(planeGeometry); } template void mitk::ExtractImageFilter::ItkImageProcessing(const itk::Image *itkImage) { // use the itk::ExtractImageFilter to get a 2D image typedef itk::Image ImageType3D; typedef itk::Image ImageType2D; typedef itk::ExtractImageFilter ExtractImageFilterType; typename ImageType3D::RegionType inSliceRegion = itkImage->GetLargestPossibleRegion(); inSliceRegion.SetSize(m_SliceDimension, 0); typename ExtractImageFilterType::Pointer sliceExtractor = ExtractImageFilterType::New(); typename ExtractImageFilterType::DirectionCollapseStrategyEnum collapseStrategy; switch (m_DirectionCollapseToStrategy) { case DIRECTIONCOLLAPSETOUNKOWN: collapseStrategy = ExtractImageFilterType::DirectionCollapseStrategyEnum::DIRECTIONCOLLAPSETOUNKOWN; break; case DIRECTIONCOLLAPSETOIDENTITY: collapseStrategy = ExtractImageFilterType::DirectionCollapseStrategyEnum::DIRECTIONCOLLAPSETOIDENTITY; break; case DIRECTIONCOLLAPSETOSUBMATRIX: collapseStrategy = ExtractImageFilterType::DirectionCollapseStrategyEnum::DIRECTIONCOLLAPSETOSUBMATRIX; break; case DIRECTIONCOLLAPSETOGUESS: default: collapseStrategy = ExtractImageFilterType::DirectionCollapseStrategyEnum::DIRECTIONCOLLAPSETOGUESS; break; } sliceExtractor->SetDirectionCollapseToStrategy(collapseStrategy); sliceExtractor->SetInput(itkImage); inSliceRegion.SetIndex(m_SliceDimension, m_SliceIndex); sliceExtractor->SetExtractionRegion(inSliceRegion); // calculate the output sliceExtractor->UpdateLargestPossibleRegion(); typename ImageType2D::Pointer slice = sliceExtractor->GetOutput(); // re-import to MITK Image::Pointer resultImage = ImageToImageFilter::GetOutput(); GrabItkImageMemory(slice, resultImage, nullptr, false); } /* * What is the input requested region that is required to produce the output * requested region? By default, the largest possible region is always * required but this is overridden in many subclasses. For instance, for an * image processing filter where an output pixel is a simple function of an * input pixel, the input requested region will be set to the output * requested region. For an image processing filter where an output pixel is * a function of the pixels in a neighborhood of an input pixel, then the * input requested region will need to be larger than the output requested * region (to avoid introducing artificial boundary conditions). This * function should never request an input region that is outside the the * input largest possible region (i.e. implementations of this method should * crop the input requested region at the boundaries of the input largest * possible region). */ void mitk::ExtractImageFilter::GenerateInputRequestedRegion() { Superclass::GenerateInputRequestedRegion(); ImageToImageFilter::InputImagePointer input = dynamic_cast(this->GetInput()); Image::Pointer output = this->GetOutput(); if (input->GetDimension() == 2) { input->SetRequestedRegionToLargestPossibleRegion(); return; } Image::RegionType requestedRegion; requestedRegion = output->GetRequestedRegion(); requestedRegion.SetIndex(0, 0); requestedRegion.SetIndex(1, 0); requestedRegion.SetIndex(2, 0); requestedRegion.SetSize(0, input->GetDimension(0)); requestedRegion.SetSize(1, input->GetDimension(1)); requestedRegion.SetSize(2, input->GetDimension(2)); requestedRegion.SetIndex(m_SliceDimension, m_SliceIndex); // only one slice needed requestedRegion.SetSize(m_SliceDimension, 1); input->SetRequestedRegion(&requestedRegion); } /* * Generate the information decribing the output data. The default * implementation of this method will copy information from the input to the * output. A filter may override this method if its output will have different * information than its input. For instance, a filter that shrinks an image will * need to provide an implementation for this method that changes the spacing of * the pixels. Such filters should call their superclass' implementation of this * method prior to changing the information values they need (i.e. * GenerateOutputInformation() should call * Superclass::GenerateOutputInformation() prior to changing the information. */ void mitk::ExtractImageFilter::GenerateOutputInformation() { Image::Pointer output = this->GetOutput(); Image::ConstPointer input = this->GetInput(); if (input.IsNull()) return; if (m_SliceDimension >= input->GetDimension() && input->GetDimension() != 2) { MITK_ERROR << "mitk::ExtractImageFilter:GenerateOutputInformation m_SliceDimension == " << m_SliceDimension << " makes no sense with an " << input->GetDimension() << "D image." << std::endl; itkExceptionMacro("This is not a sensible value for m_SliceDimension."); return; } unsigned int sliceDimension(m_SliceDimension); if (input->GetDimension() == 2) { sliceDimension = 2; } unsigned int tmpDimensions[2]; switch (sliceDimension) { default: case 2: // orientation = PlaneGeometry::Axial; tmpDimensions[0] = input->GetDimension(0); tmpDimensions[1] = input->GetDimension(1); break; case 1: - // orientation = PlaneGeometry::Frontal; + // orientation = PlaneGeometry::Coronal; tmpDimensions[0] = input->GetDimension(0); tmpDimensions[1] = input->GetDimension(2); break; case 0: // orientation = PlaneGeometry::Sagittal; tmpDimensions[0] = input->GetDimension(1); tmpDimensions[1] = input->GetDimension(2); break; } output->Initialize(input->GetPixelType(), 2, tmpDimensions, 1 /*input->GetNumberOfChannels()*/); // initialize the spacing of the output /* Vector3D spacing = input->GetSlicedGeometry()->GetSpacing(); if(input->GetDimension()>=2) spacing[2]=spacing[1]; else spacing[2] = 1.0; output->GetSlicedGeometry()->SetSpacing(spacing); */ output->SetPropertyList(input->GetPropertyList()->Clone()); } diff --git a/Modules/Segmentation/Algorithms/mitkContourModelSetToImageFilter.cpp b/Modules/Segmentation/Algorithms/mitkContourModelSetToImageFilter.cpp index 3a2d7f7262..5dfd573cd4 100644 --- a/Modules/Segmentation/Algorithms/mitkContourModelSetToImageFilter.cpp +++ b/Modules/Segmentation/Algorithms/mitkContourModelSetToImageFilter.cpp @@ -1,271 +1,271 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkContourModelSetToImageFilter.h" #include #include #include #include #include #include #include mitk::ContourModelSetToImageFilter::ContourModelSetToImageFilter() : m_MakeOutputBinary(true), m_TimeStep(0), m_ReferenceImage(nullptr) { // Create the output. itk::DataObject::Pointer output = this->MakeOutput(0); Superclass::SetNumberOfRequiredInputs(1); Superclass::SetNumberOfRequiredOutputs(1); Superclass::SetNthOutput(0, output); } mitk::ContourModelSetToImageFilter::~ContourModelSetToImageFilter() { } void mitk::ContourModelSetToImageFilter::GenerateInputRequestedRegion() { mitk::Image *output = this->GetOutput(); if ((output->IsInitialized() == false)) return; GenerateTimeInInputRegion(output, const_cast(m_ReferenceImage)); } void mitk::ContourModelSetToImageFilter::GenerateOutputInformation() { mitk::Image::Pointer output = this->GetOutput(); itkDebugMacro(<< "GenerateOutputInformation()"); if ((m_ReferenceImage == nullptr) || (m_ReferenceImage->IsInitialized() == false) || (m_ReferenceImage->GetTimeGeometry() == nullptr)) return; if (m_MakeOutputBinary) { output->Initialize(mitk::MakeScalarPixelType(), *m_ReferenceImage->GetTimeGeometry(), 1); } else { output->Initialize(m_ReferenceImage->GetPixelType(), *m_ReferenceImage->GetTimeGeometry()); } output->SetPropertyList(m_ReferenceImage->GetPropertyList()->Clone()); } itk::DataObject::Pointer mitk::ContourModelSetToImageFilter::MakeOutput(DataObjectPointerArraySizeType /*idx*/) { return OutputType::New().GetPointer(); } itk::DataObject::Pointer mitk::ContourModelSetToImageFilter::MakeOutput(const DataObjectIdentifierType &name) { itkDebugMacro("MakeOutput(" << name << ")"); if (this->IsIndexedOutputName(name)) { return this->MakeOutput(this->MakeIndexFromOutputName(name)); } return OutputType::New().GetPointer(); } const mitk::ContourModelSet *mitk::ContourModelSetToImageFilter::GetInput(void) { if (this->GetNumberOfInputs() < 1) { return nullptr; } return static_cast(this->ProcessObject::GetInput(0)); } void mitk::ContourModelSetToImageFilter::SetInput(const ContourModelSet *input) { // Process object is not const-correct so the const_cast is required here this->ProcessObject::SetNthInput(0, const_cast(input)); } void mitk::ContourModelSetToImageFilter::SetImage(const mitk::Image *refImage) { m_ReferenceImage = refImage; } const mitk::Image *mitk::ContourModelSetToImageFilter::GetImage(void) { return m_ReferenceImage; } void mitk::ContourModelSetToImageFilter::GenerateData() { auto *contourSet = const_cast(this->GetInput()); // Initializing progressbar unsigned int num_contours = contourSet->GetContourModelList()->size(); mitk::ProgressBar::GetInstance()->AddStepsToDo(num_contours); // Assure that the volume data of the output is set (fill volume with zeros) this->InitializeOutputEmpty(); mitk::Image::Pointer outputImage = const_cast(this->GetOutput()); if (outputImage.IsNull() || outputImage->IsInitialized() == false || !outputImage->IsVolumeSet(m_TimeStep)) { mitkThrow() << "Error creating output for specified image!"; } if (!contourSet || contourSet->GetContourModelList()->size() == 0) { mitkThrow() << "No contours specified!"; } mitk::BaseGeometry *outputImageGeo = outputImage->GetGeometry(m_TimeStep); // Create mitkVtkImageOverwrite which is needed to write the slice back into the volume vtkSmartPointer reslice = vtkSmartPointer::New(); // Create ExtractSliceFilter for extracting the corresponding slices from the volume mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput(outputImage); extractor->SetTimeStep(m_TimeStep); extractor->SetResliceTransformByGeometry(outputImageGeo); // Fill each contour of the contourmodelset into the image auto it = contourSet->Begin(); auto end = contourSet->End(); while (it != end) { mitk::ContourModel *contour = it->GetPointer(); // 1. Create slice geometry using the contour points mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); mitk::Point3D point3D, tempPoint; mitk::Vector3D normal; mitk::Image::Pointer slice; int sliceIndex; bool isFrontside = true; bool isRotated = false; // Determine plane orientation point3D = contour->GetVertexAt(0)->Coordinates; tempPoint = contour->GetVertexAt(contour->GetNumberOfVertices() * 0.25)->Coordinates; mitk::Vector3D vec = point3D - tempPoint; vec.Normalize(); outputImageGeo->WorldToIndex(point3D, point3D); mitk::PlaneGeometry::PlaneOrientation orientation; if (mitk::Equal(vec[0], 0)) { orientation = mitk::PlaneGeometry::Sagittal; sliceIndex = point3D[0]; } else if (mitk::Equal(vec[1], 0)) { - orientation = mitk::PlaneGeometry::Frontal; + orientation = mitk::PlaneGeometry::Coronal; sliceIndex = point3D[1]; } else if (mitk::Equal(vec[2], 0)) { orientation = mitk::PlaneGeometry::Axial; sliceIndex = point3D[2]; } else { // TODO Maybe rotate geometry to extract slice? MITK_ERROR - << "Cannot detect correct slice number! Only axial, sagittal and frontal oriented contours are supported!"; + << "Cannot detect correct slice number! Only axial, sagittal and coronal oriented contours are supported!"; return; } // Initialize plane using the detected orientation plane->InitializeStandardPlane(outputImageGeo, orientation, sliceIndex, isFrontside, isRotated); point3D = plane->GetOrigin(); normal = plane->GetNormal(); normal.Normalize(); point3D += normal * 0.5; // pixelspacing is 1, so half the spacing is 0.5 plane->SetOrigin(point3D); // 2. Extract slice at the given position extractor->SetWorldGeometry(plane); extractor->SetVtkOutputRequest(false); reslice->SetOverwriteMode(false); extractor->Modified(); extractor->Update(); slice = extractor->GetOutput(); slice->DisconnectPipeline(); // 3. Fill contour into slice mitk::ContourModel::Pointer projectedContour = mitk::ContourModelUtils::ProjectContourTo2DSlice(slice, contour); mitk::ContourModelUtils::FillContourInSlice(projectedContour, slice, outputImage); // 4. Write slice back into image volume reslice->SetInputSlice(slice->GetVtkImageData()); // set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); extractor->Modified(); extractor->Update(); reslice->SetInputSlice(nullptr); // Progress mitk::ProgressBar::GetInstance()->Progress(); ++it; } outputImage->Modified(); outputImage->GetVtkImageData()->Modified(); } void mitk::ContourModelSetToImageFilter::InitializeOutputEmpty() { // Initialize the output's volume with zeros mitk::Image *output = this->GetOutput(); unsigned int byteSize = output->GetPixelType().GetSize(); if (output->GetDimension() < 4) { for (unsigned int dim = 0; dim < output->GetDimension(); ++dim) { byteSize *= output->GetDimension(dim); } mitk::ImageWriteAccessor writeAccess(output, output->GetVolumeData(0)); memset(writeAccess.GetData(), 0, byteSize); } else { // if we have a time-resolved image we need to set memory to 0 for each time step for (unsigned int dim = 0; dim < 3; ++dim) { byteSize *= output->GetDimension(dim); } for (unsigned int volumeNumber = 0; volumeNumber < output->GetDimension(3); volumeNumber++) { mitk::ImageWriteAccessor writeAccess(output, output->GetVolumeData(volumeNumber)); memset(writeAccess.GetData(), 0, byteSize); } } }