diff --git a/Modules/DiffusionCore/IODataStructures/mitkFiberBundle.cpp b/Modules/DiffusionCore/IODataStructures/mitkFiberBundle.cpp index 0059159..2b52d5a 100644 --- a/Modules/DiffusionCore/IODataStructures/mitkFiberBundle.cpp +++ b/Modules/DiffusionCore/IODataStructures/mitkFiberBundle.cpp @@ -1,2849 +1,2849 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkFiberBundle.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char* mitk::FiberBundle::FIBER_ID_ARRAY = "Fiber_IDs"; mitk::FiberBundle::FiberBundle( vtkPolyData* fiberPolyData ) : m_NumFibers(0) { m_TrackVisHeader.hdr_size = 0; m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberPolyData = vtkSmartPointer::New(); if (fiberPolyData != nullptr) m_FiberPolyData = fiberPolyData; else { this->m_FiberPolyData->SetPoints(vtkSmartPointer::New()); this->m_FiberPolyData->SetLines(vtkSmartPointer::New()); } this->UpdateFiberGeometry(); this->GenerateFiberIds(); this->ColorFibersByOrientation(); } mitk::FiberBundle::~FiberBundle() { } mitk::FiberBundle::Pointer mitk::FiberBundle::GetDeepCopy() { mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(m_FiberPolyData); newFib->SetFiberColors(this->m_FiberColors); newFib->SetFiberWeights(this->m_FiberWeights); newFib->SetTrackVisHeader(this->GetTrackVisHeader()); return newFib; } vtkSmartPointer mitk::FiberBundle::GeneratePolyDataByIds(std::vector fiberIds, vtkSmartPointer weights) { vtkSmartPointer newFiberPolyData = vtkSmartPointer::New(); vtkSmartPointer newLineSet = vtkSmartPointer::New(); vtkSmartPointer newPointSet = vtkSmartPointer::New(); weights->SetNumberOfValues(fiberIds.size()); int counter = 0; auto finIt = fiberIds.begin(); while ( finIt != fiberIds.end() ) { if (*finIt>GetNumFibers()){ MITK_INFO << "FiberID can not be negative or >NumFibers!!! check id Extraction!" << *finIt; break; } vtkSmartPointer fiber = m_FiberIdDataSet->GetCell(*finIt);//->DeepCopy(fiber); vtkSmartPointer fibPoints = fiber->GetPoints(); vtkSmartPointer newFiber = vtkSmartPointer::New(); newFiber->GetPointIds()->SetNumberOfIds( fibPoints->GetNumberOfPoints() ); for(int i=0; iGetNumberOfPoints(); i++) { newFiber->GetPointIds()->SetId(i, newPointSet->GetNumberOfPoints()); newPointSet->InsertNextPoint(fibPoints->GetPoint(i)[0], fibPoints->GetPoint(i)[1], fibPoints->GetPoint(i)[2]); } weights->InsertValue(counter, this->GetFiberWeight(*finIt)); newLineSet->InsertNextCell(newFiber); ++finIt; ++counter; } newFiberPolyData->SetPoints(newPointSet); newFiberPolyData->SetLines(newLineSet); return newFiberPolyData; } // merge two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::AddBundles(std::vector< mitk::FiberBundle::Pointer > fibs) { vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); auto num_weights = this->GetNumFibers(); for (auto fib : fibs) num_weights += fib->GetNumFibers(); weights->SetNumberOfValues(num_weights); unsigned int counter = 0; for (unsigned int i=0; iGetNumberOfCells(); ++i) { vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (unsigned int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } for (auto fib : fibs) { // add new fiber bundle for (unsigned int i=0; iGetFiberPolyData()->GetNumberOfCells(); i++) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (unsigned int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, fib->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); newFib->SetFiberWeights(weights); return newFib; } // merge two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::AddBundle(mitk::FiberBundle* fib) { if (fib==nullptr) return this->GetDeepCopy(); MITK_INFO << "Adding fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); weights->SetNumberOfValues(this->GetNumFibers()+fib->GetNumFibers()); unsigned int counter = 0; for (unsigned int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (unsigned int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // add new fiber bundle for (unsigned int i=0; iGetFiberPolyData()->GetNumberOfCells(); i++) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (unsigned int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, fib->GetFiberWeight(i)); vNewLines->InsertNextCell(container); counter++; } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); newFib->SetFiberWeights(weights); return newFib; } // Only retain fibers with a weight larger than the specified threshold mitk::FiberBundle::Pointer mitk::FiberBundle::FilterByWeights(float weight_thr, bool invert) { vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); std::vector weights; for (unsigned int i=0; iGetNumFibers(); i++) { if ( (invert && this->GetFiberWeight(i)>weight_thr) || (!invert && this->GetFiberWeight(i)<=weight_thr)) continue; vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); weights.push_back(this->GetFiberWeight(i)); } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); for (unsigned int i=0; iSetFiberWeight(i, weights.at(i)); newFib->SetTrackVisHeader(this->GetTrackVisHeader()); return newFib; } // Only retain a subsample of the fibers mitk::FiberBundle::Pointer mitk::FiberBundle::SubsampleFibers(float factor, bool random_seed) { vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); unsigned int new_num_fibs = static_cast(std::round(this->GetNumFibers()*factor)); MITK_INFO << "Subsampling fibers with factor " << factor << "(" << new_num_fibs << "/" << this->GetNumFibers() << ")"; // add current fiber bundle vtkSmartPointer weights = vtkSmartPointer::New(); weights->SetNumberOfValues(new_num_fibs); std::vector< unsigned int > ids; for (unsigned int i=0; iGetNumFibers(); i++) ids.push_back(i); if (random_seed) std::srand(static_cast(std::time(nullptr))); else std::srand(0); std::random_device rd; std::mt19937 g(rd()); std::shuffle(ids.begin(), ids.end(), g); unsigned int counter = 0; for (unsigned int i=0; iGetCell(ids.at(i)); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p); vtkIdType id = vNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } weights->InsertValue(counter, this->GetFiberWeight(ids.at(i))); vNewLines->InsertNextCell(container); counter++; } // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(vNewPolyData); newFib->SetFiberWeights(weights); newFib->SetTrackVisHeader(this->GetTrackVisHeader()); return newFib; } // subtract two fiber bundles mitk::FiberBundle::Pointer mitk::FiberBundle::SubtractBundle(mitk::FiberBundle* fib) { if (fib==nullptr) return this->GetDeepCopy(); MITK_INFO << "Subtracting fibers"; vtkSmartPointer vNewPolyData = vtkSmartPointer::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); std::vector< std::vector< itk::Point > > points1; for(unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; itk::Point start = mitk::imv::GetItkPoint(points->GetPoint(0)); itk::Point end = mitk::imv::GetItkPoint(points->GetPoint(numPoints-1)); points1.push_back( {start, end} ); } std::vector< std::vector< itk::Point > > points2; for(unsigned int i=0; iGetNumFibers(); i++ ) { vtkCell* cell = fib->GetFiberPolyData()->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; itk::Point start =mitk::imv::GetItkPoint(points->GetPoint(0)); itk::Point end =mitk::imv::GetItkPoint(points->GetPoint(numPoints-1)); points2.push_back( {start, end} ); } // int progress = 0; std::vector< int > ids; #pragma omp parallel for for (int i=0; i(points1.size()); i++) { bool match = false; for (unsigned int j=0; j(i)); auto v2 = points2.at(j); float dist=0; for (unsigned int c=0; cGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (points==nullptr || numPoints<=0) continue; vtkSmartPointer container = vtkSmartPointer::New(); for( int j=0; jInsertNextPoint(points->GetPoint(j)); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); } if(vNewLines->GetNumberOfCells()==0) return mitk::FiberBundle::New(); // initialize PolyData vNewPolyData->SetPoints(vNewPoints); vNewPolyData->SetLines(vNewLines); // initialize fiber bundle return mitk::FiberBundle::New(vNewPolyData); } /* * set PolyData (additional flag to recompute fiber geometry, default = true) */ void mitk::FiberBundle::SetFiberPolyData(vtkSmartPointer fiberPD, bool updateGeometry) { if (fiberPD == nullptr) this->m_FiberPolyData = vtkSmartPointer::New(); else { m_FiberPolyData->CopyStructure(fiberPD); // m_FiberPolyData->DeepCopy(fiberPD); } m_NumFibers = static_cast(m_FiberPolyData->GetNumberOfLines()); if (updateGeometry) UpdateFiberGeometry(); GenerateFiberIds(); ColorFibersByOrientation(); } /* * return vtkPolyData */ vtkSmartPointer mitk::FiberBundle::GetFiberPolyData() const { return m_FiberPolyData; } void mitk::FiberBundle::ColorFibersByLength(bool opacity, bool weight_fibers, mitk::LookupTable::LookupTableType type) { if (m_MaxFiberLength<=0) return; auto numOfPoints = this->GetNumberOfPoints(); //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(numOfPoints * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); auto numOfFibers = m_FiberPolyData->GetNumberOfLines(); if (numOfFibers < 1) return; mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); mitkLookup->SetType(type); if (type!=mitk::LookupTable::MULTILABEL) mitkLookup->GetVtkLookupTable()->SetTableRange(m_MinFiberLength, m_MaxFiberLength); unsigned int count = 0; for (unsigned int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); float l = m_FiberLengths.at(i)/m_MaxFiberLength; double color[3]; mitkLookup->GetColor(m_FiberLengths.at(i), color); for (int j=0; j(255.0 * color[0]); rgba[1] = static_cast(255.0 * color[1]); rgba[2] = static_cast(255.0 * color[2]); if (opacity) rgba[3] = static_cast(255.0f * l); else rgba[3] = static_cast(255.0); m_FiberColors->InsertTypedTuple(cell->GetPointId(j), rgba); count++; } if (weight_fibers) this->SetFiberWeight(i, m_FiberLengths.at(i)); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorSinglePoint(int f_idx, int p_idx, double rgb[3]) { // vtkPoints* extrPoints = m_FiberPolyData->GetPoints(); // vtkIdType numOfPoints = 0; // if (extrPoints!=nullptr) // numOfPoints = extrPoints->GetNumberOfPoints(); // //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; // m_FiberColors = vtkSmartPointer::New(); // m_FiberColors->Allocate(numOfPoints * 4); // m_FiberColors->SetNumberOfComponents(4); // m_FiberColors->SetName("FIBER_COLORS"); // auto numOfFibers = m_FiberPolyData->GetNumberOfLines(); // if (numOfFibers < 1) // return; // /* extract single fibers of fiberBundle */ // vtkCellArray* fiberList = m_FiberPolyData->GetLines(); // fiberList->InitTraversal(); // for (int fi=0; fiGetNextCell(num_points, idList); // fiberList->GetCell(f_idx, num_points, idList); vtkCell* cell = m_FiberPolyData->GetCell(f_idx); // /* single fiber checkpoints: is number of points valid */ // if (p_idx < num_points) // { rgba[0] = static_cast(255.0 * rgb[0]); rgba[1] = static_cast(255.0 * rgb[1]); rgba[2] = static_cast(255.0 * rgb[2]); rgba[3] = 255; m_FiberColors->InsertTypedTuple(cell->GetPointId(p_idx), rgba); // } // } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorFibersByOrientation() { //===== FOR WRITING A TEST ======================== // colorT size == tupelComponents * tupelElements // compare color results // to cover this code 100% also PolyData needed, where colorarray already exists // + one fiber with exactly 1 point // + one fiber with 0 points //================================================= vtkPoints* extrPoints = m_FiberPolyData->GetPoints(); vtkIdType numOfPoints = 0; if (extrPoints!=nullptr) numOfPoints = extrPoints->GetNumberOfPoints(); //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(numOfPoints * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); auto numOfFibers = m_FiberPolyData->GetNumberOfLines(); if (numOfFibers < 1) return; /* extract single fibers of fiberBundle */ vtkCellArray* fiberList = m_FiberPolyData->GetLines(); fiberList->InitTraversal(); for (int fi=0; fiGetNextCell(pointsPerFiber, idList); /* single fiber checkpoints: is number of points valid */ if (pointsPerFiber > 1) { /* operate on points of single fiber */ for (int i=0; i 0) { /* The color value of the current point is influenced by the previous point and next point. */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; vnl_vector_fixed< double, 3 > diff; diff = (diff1 - diff2) / 2.0; diff.normalize(); rgba[0] = static_cast(255.0 * std::fabs(diff[0])); rgba[1] = static_cast(255.0 * std::fabs(diff[1])); rgba[2] = static_cast(255.0 * std::fabs(diff[2])); rgba[3] = static_cast(255.0); } else if (i==0) { /* First point has no previous point, therefore only diff1 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > nextPntvtk(extrPoints->GetPoint(idList[i+1])[0], extrPoints->GetPoint(idList[i+1])[1], extrPoints->GetPoint(idList[i+1])[2]); vnl_vector_fixed< double, 3 > diff1; diff1 = currentPntvtk - nextPntvtk; diff1.normalize(); rgba[0] = static_cast(255.0 * std::fabs(diff1[0])); rgba[1] = static_cast(255.0 * std::fabs(diff1[1])); rgba[2] = static_cast(255.0 * std::fabs(diff1[2])); rgba[3] = static_cast(255.0); } else if (i==pointsPerFiber-1) { /* Last point has no next point, therefore only diff2 is taken */ vnl_vector_fixed< double, 3 > currentPntvtk(extrPoints->GetPoint(idList[i])[0], extrPoints->GetPoint(idList[i])[1],extrPoints->GetPoint(idList[i])[2]); vnl_vector_fixed< double, 3 > prevPntvtk(extrPoints->GetPoint(idList[i-1])[0], extrPoints->GetPoint(idList[i-1])[1], extrPoints->GetPoint(idList[i-1])[2]); vnl_vector_fixed< double, 3 > diff2; diff2 = currentPntvtk - prevPntvtk; diff2.normalize(); rgba[0] = static_cast(255.0 * std::fabs(diff2[0])); rgba[1] = static_cast(255.0 * std::fabs(diff2[1])); rgba[2] = static_cast(255.0 * std::fabs(diff2[2])); rgba[3] = static_cast(255.0); } m_FiberColors->InsertTypedTuple(idList[i], rgba); } } else if (pointsPerFiber == 1) { /* a single point does not define a fiber (use vertex mechanisms instead */ continue; } else { MITK_DEBUG << "Fiber with 0 points detected... please check your tractography algorithm!" ; continue; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorFibersByCurvature(bool opacity, bool weight_fibers, mitk::LookupTable::LookupTableType type) { double window = 5; //colors and alpha value for each single point, RGBA = 4 components unsigned char rgba[4] = {0,0,0,0}; m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); std::vector< double > values; double min = 1; double max = 0; MITK_INFO << "Coloring fibers by curvature"; boost::timer::progress_display disp(static_cast(m_FiberPolyData->GetNumberOfCells())); for (int i=0; iGetNumberOfCells(); i++) { ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); double mean_curv = 0; // calculate curvatures for (int j=0; j > vectors; vnl_vector_fixed< double, 3 > meanV; meanV.fill(0.0); while(dist1) { double p1[3]; points->GetPoint(c-1, p1); double p2[3]; points->GetPoint(c, p2); vnl_vector_fixed< double, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); meanV += v; c--; } c = j; dist = 0; while(distGetPoint(c, p1); double p2[3]; points->GetPoint(c+1, p2); vnl_vector_fixed< double, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); meanV += v; c++; } meanV.normalize(); double dev = 0; for (unsigned int c=0; c1.0) angle = 1.0; if (angle<-1.0) angle = -1.0; dev += acos(angle)*180/itk::Math::pi; } if (vectors.size()>0) dev /= vectors.size(); if (weight_fibers) mean_curv += dev; dev = 1.0-dev/180.0; values.push_back(dev); if (devmax) max = dev; } if (weight_fibers) this->SetFiberWeight(i, mean_curv/numPoints); } mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); mitkLookup->SetType(type); if (type!=mitk::LookupTable::MULTILABEL) mitkLookup->GetVtkLookupTable()->SetTableRange(min, max); unsigned int count = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); for (int j=0; jGetColor(dev, color); rgba[0] = static_cast(255.0 * color[0]); rgba[1] = static_cast(255.0 * color[1]); rgba[2] = static_cast(255.0 * color[2]); if (opacity) rgba[3] = static_cast(255.0f * dev/max); else rgba[3] = static_cast(255.0); m_FiberColors->InsertTypedTuple(cell->GetPointId(j), rgba); count++; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::SetFiberOpacity(vtkDoubleArray* FAValArray) { for(long i=0; iGetNumberOfTuples(); i++) { double faValue = FAValArray->GetValue(i); faValue = faValue * 255.0; m_FiberColors->SetComponent(i,3, static_cast(faValue) ); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ResetFiberOpacity() { for(long i=0; iGetNumberOfTuples(); i++) m_FiberColors->SetComponent(i,3, 255.0 ); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorFibersByScalarMap(mitk::Image::Pointer FAimage, bool opacity, bool weight_fibers, mitk::LookupTable::LookupTableType type, double max_cap, bool interpolate) { if (FAimage->GetPixelType().GetComponentTypeAsString()=="unsigned char" || FAimage->GetPixelType().GetComponentTypeAsString()=="char" || FAimage->GetPixelType().GetComponentTypeAsString()=="long" || FAimage->GetPixelType().GetComponentTypeAsString()=="unsigned long" || FAimage->GetPixelType().GetComponentTypeAsString()=="short" || FAimage->GetPixelType().GetComponentTypeAsString()=="unsigned short" || FAimage->GetPixelType().GetComponentTypeAsString()=="unsigned int" || FAimage->GetPixelType().GetComponentTypeAsString()=="int") { typedef itk::Image ImageType; ImageType::Pointer itkImage = ImageType::New(); CastToItkImage(FAimage, itkImage); ColorFibersByScalarMap(itkImage, opacity, weight_fibers, type, max_cap, interpolate ); } else { typedef itk::Image ImageType; ImageType::Pointer itkImage = ImageType::New(); CastToItkImage(FAimage, itkImage); ColorFibersByScalarMap(itkImage, opacity, weight_fibers, type, max_cap, interpolate ); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } template -void mitk::FiberBundle::ColorFibersByScalarMap(typename itk::Image::Pointer image, bool opacity, bool weight_fibers, mitk::LookupTable::LookupTableType type, double max_cap, bool interpolate) +void mitk::FiberBundle::ColorFibersByScalarMap(typename itk::Image::Pointer image, bool opacity, bool weight_fibers, mitk::LookupTable::LookupTableType type, double , bool interpolate) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); unsigned char rgba[4] = {0,0,0,0}; vtkPoints* pointSet = m_FiberPolyData->GetPoints(); if (type==mitk::LookupTable::MULTILABEL) interpolate = false; auto interpolator = itk::LinearInterpolateImageFunction< itk::Image, float >::New(); interpolator->SetInputImage(image); double min = 999999; double max = -999999; for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); double mean_val = 0; for (int j=0; jGetPoint(j, p); auto pixelValue = mitk::imv::GetImageValue(mitk::imv::GetItkPoint(p), interpolate, interpolator); if (pixelValue>max) max = pixelValue; if (pixelValueSetFiberWeight(i, mean_val/numPoints); } mitk::LookupTable::Pointer mitkLookup = mitk::LookupTable::New(); mitkLookup->SetType(type); - if (type!=mitk::LookupTable::MULTILABEL) - mitkLookup->GetVtkLookupTable()->SetTableRange(min, max*max_cap); +// if (type!=mitk::LookupTable::MULTILABEL) +// mitkLookup->GetVtkLookupTable()->SetTableRange(min, max*max_cap); for(long i=0; iGetNumberOfPoints(); ++i) { itk::Point px; px[0] = pointSet->GetPoint(i)[0]; px[1] = pointSet->GetPoint(i)[1]; px[2] = pointSet->GetPoint(i)[2]; auto pixelValue = mitk::imv::GetImageValue(px, interpolate, interpolator); double color[3]; mitkLookup->GetColor(pixelValue, color); rgba[0] = static_cast(255.0 * color[0]); rgba[1] = static_cast(255.0 * color[1]); rgba[2] = static_cast(255.0 * color[2]); if (opacity) rgba[3] = static_cast(255.0 * pixelValue); else rgba[3] = static_cast(255.0); m_FiberColors->InsertTypedTuple(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::ColorFibersByFiberWeights(bool opacity, mitk::LookupTable::LookupTableType type) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); unsigned char rgba[4] = {0,0,0,0}; unsigned int counter = 0; float max = -999999; float min = 999999; for (unsigned int i=0; iGetFiberWeight(i); if (weight>max) max = weight; if (weightSetType(type); if (type!=mitk::LookupTable::MULTILABEL) mitkLookup->GetVtkLookupTable()->SetTableRange(min, max); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); auto weight = this->GetFiberWeight(i); double color[3]; mitkLookup->GetColor(weight, color); for (int j=0; j(255.0 * color[0]); rgba[1] = static_cast(255.0 * color[1]); rgba[2] = static_cast(255.0 * color[2]); if (opacity) rgba[3] = static_cast(255.0f * weight/max); else rgba[3] = static_cast(255.0); m_FiberColors->InsertTypedTuple(counter, rgba); counter++; } } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::SetFiberColors(float r, float g, float b, float alpha) { m_FiberColors = vtkSmartPointer::New(); m_FiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); m_FiberColors->SetNumberOfComponents(4); m_FiberColors->SetName("FIBER_COLORS"); unsigned char rgba[4] = {0,0,0,0}; for(long i=0; iGetNumberOfPoints(); ++i) { rgba[0] = static_cast(r); rgba[1] = static_cast(g); rgba[2] = static_cast(b); rgba[3] = static_cast(alpha); m_FiberColors->InsertTypedTuple(i, rgba); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } void mitk::FiberBundle::GenerateFiberIds() { if (m_FiberPolyData == nullptr) return; vtkSmartPointer idFiberFilter = vtkSmartPointer::New(); idFiberFilter->SetInputData(m_FiberPolyData); idFiberFilter->CellIdsOn(); // idFiberFilter->PointIdsOn(); // point id's are not needed idFiberFilter->SetCellIdsArrayName(FIBER_ID_ARRAY); idFiberFilter->FieldDataOn(); idFiberFilter->Update(); m_FiberIdDataSet = idFiberFilter->GetOutput(); } float mitk::FiberBundle::GetNumEpFractionInMask(ItkUcharImgType* mask, bool different_label) { vtkSmartPointer PolyData = m_FiberPolyData; MITK_INFO << "Calculating EP-Fraction"; boost::timer::progress_display disp(m_NumFibers); unsigned int in_mask = 0; for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); itk::Point startVertex =mitk::imv::GetItkPoint(points->GetPoint(0)); itk::Index<3> startIndex; mask->TransformPhysicalPointToIndex(startVertex, startIndex); itk::Point endVertex =mitk::imv::GetItkPoint(points->GetPoint(numPoints-1)); itk::Index<3> endIndex; mask->TransformPhysicalPointToIndex(endVertex, endIndex); if (mask->GetLargestPossibleRegion().IsInside(startIndex) && mask->GetLargestPossibleRegion().IsInside(endIndex)) { float v1 = mask->GetPixel(startIndex); if (v1 < 0.5f) continue; float v2 = mask->GetPixel(startIndex); if (v2 < 0.5f) continue; if (!different_label) ++in_mask; else if (fabs(v1-v2)>0.00001f) ++in_mask; } } return float(in_mask)/m_NumFibers; } std::tuple mitk::FiberBundle::GetDirectionalOverlap(ItkUcharImgType* mask, mitk::PeakImage::ItkPeakImageType* peak_image) { vtkSmartPointer PolyData = m_FiberPolyData; MITK_INFO << "Calculating overlap"; auto spacing = mask->GetSpacing(); boost::timer::progress_display disp(m_NumFibers); double length_sum = 0; double in_mask_length = 0; double aligned_length = 0; for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; j startVertex =mitk::imv::GetItkPoint(points->GetPoint(j)); itk::Index<3> startIndex; itk::ContinuousIndex startIndexCont; mask->TransformPhysicalPointToIndex(startVertex, startIndex); mask->TransformPhysicalPointToContinuousIndex(startVertex, startIndexCont); itk::Point endVertex =mitk::imv::GetItkPoint(points->GetPoint(j + 1)); itk::Index<3> endIndex; itk::ContinuousIndex endIndexCont; mask->TransformPhysicalPointToIndex(endVertex, endIndex); mask->TransformPhysicalPointToContinuousIndex(endVertex, endIndexCont); vnl_vector_fixed< float, 3 > fdir; fdir[0] = endVertex[0] - startVertex[0]; fdir[1] = endVertex[1] - startVertex[1]; fdir[2] = endVertex[2] - startVertex[2]; fdir.normalize(); std::vector< std::pair< itk::Index<3>, double > > segments = mitk::imv::IntersectImage(spacing, startIndex, endIndex, startIndexCont, endIndexCont); for (std::pair< itk::Index<3>, double > segment : segments) { if ( mask->GetLargestPossibleRegion().IsInside(segment.first) && mask->GetPixel(segment.first) > 0 ) { in_mask_length += segment.second; mitk::PeakImage::ItkPeakImageType::IndexType idx4; idx4[0] = segment.first[0]; idx4[1] = segment.first[1]; idx4[2] = segment.first[2]; vnl_vector_fixed< float, 3 > peak; idx4[3] = 0; peak[0] = peak_image->GetPixel(idx4); idx4[3] = 1; peak[1] = peak_image->GetPixel(idx4); idx4[3] = 2; peak[2] = peak_image->GetPixel(idx4); if (std::isnan(peak[0]) || std::isnan(peak[1]) || std::isnan(peak[2]) || peak.magnitude()<0.0001f) continue; peak.normalize(); double f = 1.0 - std::acos(std::fabs(static_cast(dot_product(fdir, peak)))) * 2.0/itk::Math::pi; aligned_length += segment.second * f; } length_sum += segment.second; } } } if (length_sum<=0.0001) { MITK_INFO << "Fiber length sum is zero!"; return std::make_tuple(0,0); } return std::make_tuple(aligned_length/length_sum, in_mask_length/length_sum); } float mitk::FiberBundle::GetOverlap(ItkUcharImgType* mask) { vtkSmartPointer PolyData = m_FiberPolyData; MITK_INFO << "Calculating overlap"; auto spacing = mask->GetSpacing(); boost::timer::progress_display disp(m_NumFibers); double length_sum = 0; double in_mask_length = 0; for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; j startVertex =mitk::imv::GetItkPoint(points->GetPoint(j)); itk::Index<3> startIndex; itk::ContinuousIndex startIndexCont; mask->TransformPhysicalPointToIndex(startVertex, startIndex); mask->TransformPhysicalPointToContinuousIndex(startVertex, startIndexCont); itk::Point endVertex =mitk::imv::GetItkPoint(points->GetPoint(j + 1)); itk::Index<3> endIndex; itk::ContinuousIndex endIndexCont; mask->TransformPhysicalPointToIndex(endVertex, endIndex); mask->TransformPhysicalPointToContinuousIndex(endVertex, endIndexCont); std::vector< std::pair< itk::Index<3>, double > > segments = mitk::imv::IntersectImage(spacing, startIndex, endIndex, startIndexCont, endIndexCont); for (std::pair< itk::Index<3>, double > segment : segments) { if ( mask->GetLargestPossibleRegion().IsInside(segment.first) && mask->GetPixel(segment.first) > 0 ) in_mask_length += segment.second; length_sum += segment.second; } } } if (length_sum<=0.000001) { MITK_INFO << "Fiber length sum is zero!"; return 0; } return static_cast(in_mask_length/length_sum); } mitk::FiberBundle::Pointer mitk::FiberBundle::RemoveFibersOutside(ItkUcharImgType* mask, bool invert) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); std::vector< float > fib_weights; MITK_INFO << "Cutting fibers"; boost::timer::progress_display disp(m_NumFibers); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); int newNumPoints = 0; if (numPoints>1) { for (int j=0; j itkP =mitk::imv::GetItkPoint(points->GetPoint(j)); itk::Index<3> idx; mask->TransformPhysicalPointToIndex(itkP, idx); bool inside = false; if ( mask->GetLargestPossibleRegion().IsInside(idx) && mask->GetPixel(idx)!=0 ) inside = true; if (inside && !invert) { vtkIdType id = vtkNewPoints->InsertNextPoint(itkP.GetDataPointer()); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if ( !inside && invert ) { vtkIdType id = vtkNewPoints->InsertNextPoint(itkP.GetDataPointer()); container->GetPointIds()->InsertNextId(id); newNumPoints++; } else if (newNumPoints>1) { fib_weights.push_back(this->GetFiberWeight(i)); vtkNewCells->InsertNextCell(container); newNumPoints = 0; container = vtkSmartPointer::New(); } else { newNumPoints = 0; container = vtkSmartPointer::New(); } } if (newNumPoints>1) { fib_weights.push_back(this->GetFiberWeight(i)); vtkNewCells->InsertNextCell(container); } } } vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(static_cast(fib_weights.size())); if (vtkNewCells->GetNumberOfCells()<=0) return nullptr; for (unsigned int i=0; iGetNumberOfValues(); i++) newFiberWeights->SetValue(i, fib_weights.at(i)); // vtkSmartPointer newFiberColors = vtkSmartPointer::New(); // newFiberColors->Allocate(m_FiberPolyData->GetNumberOfPoints() * 4); // newFiberColors->SetNumberOfComponents(4); // newFiberColors->SetName("FIBER_COLORS"); // unsigned char rgba[4] = {0,0,0,0}; // for(long i=0; iGetNumberOfPoints(); ++i) // { // rgba[0] = (unsigned char) r; // rgba[1] = (unsigned char) g; // rgba[2] = (unsigned char) b; // rgba[3] = (unsigned char) alpha; // m_FiberColors->InsertTypedTuple(i, rgba); // } vtkSmartPointer newPolyData = vtkSmartPointer::New(); newPolyData->SetPoints(vtkNewPoints); newPolyData->SetLines(vtkNewCells); mitk::FiberBundle::Pointer newFib = mitk::FiberBundle::New(newPolyData); newFib->SetFiberWeights(newFiberWeights); // newFib->Compress(0.1); newFib->SetTrackVisHeader(this->GetTrackVisHeader()); return newFib; } mitk::FiberBundle::Pointer mitk::FiberBundle::ExtractFiberSubset(DataNode* roi, DataStorage* storage) { if (roi==nullptr || !(dynamic_cast(roi->GetData()) || dynamic_cast(roi->GetData())) ) return nullptr; std::vector tmp = ExtractFiberIdSubset(roi, storage); if (tmp.size()<=0) return mitk::FiberBundle::New(); vtkSmartPointer weights = vtkSmartPointer::New(); vtkSmartPointer pTmp = GeneratePolyDataByIds(tmp, weights); mitk::FiberBundle::Pointer fib = mitk::FiberBundle::New(pTmp); fib->SetFiberWeights(weights); fib->SetTrackVisHeader(this->GetTrackVisHeader()); return fib; } std::vector mitk::FiberBundle::ExtractFiberIdSubset(DataNode *roi, DataStorage* storage) { std::vector result; if (roi==nullptr || roi->GetData()==nullptr) return result; mitk::PlanarFigureComposite::Pointer pfc = dynamic_cast(roi->GetData()); if (!pfc.IsNull()) // handle composite { DataStorage::SetOfObjects::ConstPointer children = storage->GetDerivations(roi); if (children->size()==0) return result; switch (pfc->getOperationType()) { case 0: // AND { MITK_INFO << "AND"; result = this->ExtractFiberIdSubset(children->ElementAt(0), storage); std::vector::iterator it; for (unsigned int i=1; iSize(); ++i) { std::vector inRoi = this->ExtractFiberIdSubset(children->ElementAt(i), storage); std::vector rest(std::min(result.size(),inRoi.size())); it = std::set_intersection(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( static_cast(it - rest.begin()) ); result = rest; } break; } case 1: // OR { MITK_INFO << "OR"; result = ExtractFiberIdSubset(children->ElementAt(0), storage); std::vector::iterator it; for (unsigned int i=1; iSize(); ++i) { it = result.end(); std::vector inRoi = ExtractFiberIdSubset(children->ElementAt(i), storage); result.insert(it, inRoi.begin(), inRoi.end()); } // remove duplicates sort(result.begin(), result.end()); it = unique(result.begin(), result.end()); result.resize( static_cast(it - result.begin()) ); break; } case 2: // NOT { MITK_INFO << "NOT"; for(unsigned int i=0; iGetNumFibers(); i++) result.push_back(i); std::vector::iterator it; for (unsigned int i=0; iSize(); ++i) { std::vector inRoi = ExtractFiberIdSubset(children->ElementAt(i), storage); std::vector rest(result.size()-inRoi.size()); it = std::set_difference(result.begin(), result.end(), inRoi.begin(), inRoi.end(), rest.begin() ); rest.resize( static_cast(it - rest.begin()) ); result = rest; } break; } } } else if ( dynamic_cast(roi->GetData()) ) // actual extraction { if ( dynamic_cast(roi->GetData()) ) { mitk::PlanarFigure::Pointer planarPoly = dynamic_cast(roi->GetData()); //create vtkPolygon using controlpoints from planarFigure polygon vtkSmartPointer polygonVtk = vtkSmartPointer::New(); for (unsigned int i=0; iGetNumberOfControlPoints(); ++i) { itk::Point p = planarPoly->GetWorldControlPoint(i); vtkIdType id = polygonVtk->GetPoints()->InsertNextPoint(p[0], p[1], p[2] ); polygonVtk->GetPointIds()->InsertNextId(id); } MITK_INFO << "Extracting with polygon"; boost::timer::progress_display disp(m_NumFibers); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); double tolerance = 0.001; // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection double pcoords[3] = {0,0,0}; int subId = 0; int iD = polygonVtk->IntersectWithLine(p1, p2, tolerance, t, x, pcoords, subId); if (iD!=0) { result.push_back(i); break; } } } } else if ( dynamic_cast(roi->GetData()) ) { mitk::PlanarFigure::Pointer planarFigure = dynamic_cast(roi->GetData()); Vector3D planeNormal = planarFigure->GetPlaneGeometry()->GetNormal(); planeNormal.Normalize(); //calculate circle radius mitk::Point3D V1w = planarFigure->GetWorldControlPoint(0); //centerPoint mitk::Point3D V2w = planarFigure->GetWorldControlPoint(1); //radiusPoint double radius = V1w.EuclideanDistanceTo(V2w); radius *= radius; MITK_INFO << "Extracting with circle"; boost::timer::progress_display disp(m_NumFibers); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, p1); double p2[3] = {0,0,0}; points->GetPoint(j+1, p2); // Outputs double t = 0; // Parametric coordinate of intersection (0 (corresponding to p1) to 1 (corresponding to p2)) double x[3] = {0,0,0}; // The coordinate of the intersection int iD = vtkPlane::IntersectWithLine(p1,p2,planeNormal.GetDataPointer(),V1w.GetDataPointer(),t,x); if (iD!=0) { double dist = (x[0]-V1w[0])*(x[0]-V1w[0])+(x[1]-V1w[1])*(x[1]-V1w[1])+(x[2]-V1w[2])*(x[2]-V1w[2]); if( dist <= radius) { result.push_back(i); break; } } } } } return result; } return result; } void mitk::FiberBundle::UpdateFiberGeometry() { vtkSmartPointer cleaner = vtkSmartPointer::New(); cleaner->SetInputData(m_FiberPolyData); cleaner->PointMergingOff(); cleaner->Update(); m_FiberPolyData = cleaner->GetOutput(); m_FiberLengths.clear(); m_MeanFiberLength = 0; m_MedianFiberLength = 0; m_LengthStDev = 0; m_NumFibers = static_cast(m_FiberPolyData->GetNumberOfCells()); if (m_FiberColors==nullptr || m_FiberColors->GetNumberOfTuples()!=m_FiberPolyData->GetNumberOfPoints()) this->ColorFibersByOrientation(); if (m_FiberWeights->GetNumberOfValues()!=m_NumFibers) { m_FiberWeights = vtkSmartPointer::New(); m_FiberWeights->SetName("FIBER_WEIGHTS"); m_FiberWeights->SetNumberOfValues(m_NumFibers); this->SetFiberWeights(1); } if (m_NumFibers<=0) // no fibers present; apply default geometry { m_MinFiberLength = 0; m_MaxFiberLength = 0; mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetImageGeometry(false); float b[] = {0, 1, 0, 1, 0, 1}; geometry->SetFloatBounds(b); SetGeometry(geometry); return; } double b[6]; m_FiberPolyData->GetBounds(b); // calculate statistics for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); auto p = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); float length = 0; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); double dist = std::sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])+(p1[2]-p2[2])*(p1[2]-p2[2])); length += static_cast(dist); } m_FiberLengths.push_back(length); m_MeanFiberLength += length; if (i==0) { m_MinFiberLength = length; m_MaxFiberLength = length; } else { if (lengthm_MaxFiberLength) m_MaxFiberLength = length; } } m_MeanFiberLength /= m_NumFibers; std::vector< float > sortedLengths = m_FiberLengths; std::sort(sortedLengths.begin(), sortedLengths.end()); for (unsigned int i=0; i1) m_LengthStDev /= (m_NumFibers-1); else m_LengthStDev = 0; m_LengthStDev = std::sqrt(m_LengthStDev); m_MedianFiberLength = sortedLengths.at(m_NumFibers/2); mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetFloatBounds(b); this->SetGeometry(geometry); GetTrackVisHeader(); m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } float mitk::FiberBundle::GetFiberWeight(unsigned int fiber) const { return m_FiberWeights->GetValue(fiber); } void mitk::FiberBundle::SetFiberWeights(float newWeight) { for (int i=0; iGetNumberOfValues(); i++) m_FiberWeights->SetValue(i, newWeight); } void mitk::FiberBundle::SetFiberWeights(vtkSmartPointer weights) { if (m_NumFibers!=weights->GetNumberOfValues()) { MITK_INFO << "Weights array not equal to number of fibers! " << weights->GetNumberOfValues() << " vs " << m_NumFibers; return; } for (int i=0; iGetNumberOfValues(); i++) m_FiberWeights->SetValue(i, weights->GetValue(i)); m_FiberWeights->SetName("FIBER_WEIGHTS"); } void mitk::FiberBundle::SetFiberWeight(unsigned int fiber, float weight) { m_FiberWeights->SetValue(fiber, weight); } void mitk::FiberBundle::SetFiberColors(vtkSmartPointer fiberColors) { for(long i=0; iGetNumberOfPoints(); ++i) { unsigned char source[4] = {0,0,0,0}; fiberColors->GetTypedTuple(i, source); unsigned char target[4] = {0,0,0,0}; target[0] = source[0]; target[1] = source[1]; target[2] = source[2]; target[3] = source[3]; m_FiberColors->InsertTypedTuple(i, target); } m_UpdateTime3D.Modified(); m_UpdateTime2D.Modified(); } itk::Matrix< double, 3, 3 > mitk::FiberBundle::TransformMatrix(itk::Matrix< double, 3, 3 > m, double rx, double ry, double rz) { rx = rx*itk::Math::pi/180; ry = ry*itk::Math::pi/180; rz = rz*itk::Math::pi/180; itk::Matrix< double, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(rx); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(rx); rotX[2][1] = -rotX[1][2]; itk::Matrix< double, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(ry); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(ry); rotY[2][0] = -rotY[0][2]; itk::Matrix< double, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(rz); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(rz); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< double, 3, 3 > rot = rotZ*rotY*rotX; m = rot*m; return m; } void mitk::FiberBundle::TransformFibers(itk::ScalableAffineTransform< mitk::ScalarType >::Pointer transform) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; j p =mitk::imv::GetItkPoint(points->GetPoint(j)); p = transform->TransformPoint(p); vtkIdType id = vtkNewPoints->InsertNextPoint(p.GetDataPointer()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::TransformFibers(double rx, double ry, double rz, double tx, double ty, double tz) { vnl_matrix_fixed< double, 3, 3 > rot = mitk::imv::GetRotationMatrixVnl(rx, ry, rz); mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rot*dir; dir[0] += center[0]+tx; dir[1] += center[1]+ty; dir[2] += center[2]+tz; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::RotateAroundAxis(double x, double y, double z) { x = x*itk::Math::pi/180; y = y*itk::Math::pi/180; z = z*itk::Math::pi/180; vnl_matrix_fixed< double, 3, 3 > rotX; rotX.set_identity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; vnl_matrix_fixed< double, 3, 3 > rotY; rotY.set_identity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; vnl_matrix_fixed< double, 3, 3 > rotZ; rotZ.set_identity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; mitk::BaseGeometry::Pointer geom = this->GetGeometry(); mitk::Point3D center = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vnl_vector_fixed< double, 3 > dir; dir[0] = p[0]-center[0]; dir[1] = p[1]-center[1]; dir[2] = p[2]-center[2]; dir = rotZ*rotY*rotX*dir; dir[0] += center[0]; dir[1] += center[1]; dir[2] += center[2]; vtkIdType id = vtkNewPoints->InsertNextPoint(dir.data_block()); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); auto colors = GetFiberColors(); this->SetFiberPolyData(m_FiberPolyData, true); SetFiberColors(colors); } void mitk::FiberBundle::ScaleFibers(double x, double y, double z, bool subtractCenter) { MITK_INFO << "Scaling fibers"; boost::timer::progress_display disp(m_NumFibers); mitk::BaseGeometry* geom = this->GetGeometry(); mitk::Point3D c = geom->GetCenter(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); if (subtractCenter) { p[0] -= c[0]; p[1] -= c[1]; p[2] -= c[2]; } p[0] *= x; p[1] *= y; p[2] *= z; if (subtractCenter) { p[0] += c[0]; p[1] += c[1]; p[2] += c[2]; } vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::TranslateFibers(double x, double y, double z) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); p[0] += x; p[1] += y; p[2] += z; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::MirrorFibers(unsigned int axis) { if (axis>2) return; MITK_INFO << "Mirroring fibers"; boost::timer::progress_display disp(m_NumFibers); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); p[axis] = -p[axis]; vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::RemoveDir(vnl_vector_fixed dir, double threshold) { dir.normalize(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); boost::timer::progress_display disp(static_cast(m_FiberPolyData->GetNumberOfCells())); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); bool discard = false; for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); vnl_vector_fixed< double, 3 > v1; v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; if (v1.magnitude()>0.001) { v1.normalize(); if (fabs(dot_product(v1,dir))>threshold) { discard = true; break; } } } if (!discard) { for (int j=0; jGetPoint(j, p1); vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); // UpdateColorCoding(); // UpdateFiberGeometry(); } bool mitk::FiberBundle::ApplyCurvatureThreshold(float minRadius, bool deleteFibers) { if (minRadius<0) return true; vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Applying curvature threshold"; boost::timer::progress_display disp(static_cast(m_FiberPolyData->GetNumberOfCells())); for (int i=0; iGetNumberOfCells(); i++) { ++disp ; vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); // calculate curvatures vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j, p1); double p2[3]; points->GetPoint(j+1, p2); double p3[3]; points->GetPoint(j+2, p3); vnl_vector_fixed< float, 3 > v1, v2, v3; v1[0] = static_cast(p2[0]-p1[0]); v1[1] = static_cast(p2[1]-p1[1]); v1[2] = static_cast(p2[2]-p1[2]); v2[0] = static_cast(p3[0]-p2[0]); v2[1] = static_cast(p3[1]-p2[1]); v2[2] = static_cast(p3[2]-p2[2]); v3[0] = static_cast(p1[0]-p3[0]); v3[1] = static_cast(p1[1]-p3[1]); v3[2] = static_cast(p1[2]-p3[2]); float a = v1.magnitude(); float b = v2.magnitude(); float c = v3.magnitude(); float r = a*b*c/std::sqrt((a+b+c)*(a+b-c)*(b+c-a)*(a-b+c)); // radius of triangle via Heron's formula (area of triangle) vtkIdType id = vtkNewPoints->InsertNextPoint(p1); container->GetPointIds()->InsertNextId(id); if (deleteFibers && rInsertNextCell(container); container = vtkSmartPointer::New(); } else if (j==numPoints-3) { id = vtkNewPoints->InsertNextPoint(p2); container->GetPointIds()->InsertNextId(id); id = vtkNewPoints->InsertNextPoint(p3); container->GetPointIds()->InsertNextId(id); vtkNewCells->InsertNextCell(container); } } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundle::RemoveShortFibers(float lengthInMM) { MITK_INFO << "Removing short fibers"; if (lengthInMM<=0 || lengthInMMm_MaxFiberLength) // can't remove all fibers { MITK_WARN << "Process aborted. No fibers would be left!"; return false; } vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); float min = m_MaxFiberLength; boost::timer::progress_display disp(m_NumFibers); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)>=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); if (m_FiberLengths.at(i)GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } bool mitk::FiberBundle::RemoveLongFibers(float lengthInMM) { if (lengthInMM<=0 || lengthInMM>m_MaxFiberLength) return true; if (lengthInMM vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Removing long fibers"; boost::timer::progress_display disp(m_NumFibers); for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (m_FiberLengths.at(i)<=lengthInMM) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = vtkNewPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()<=0) return false; m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); return true; } void mitk::FiberBundle::ResampleSpline(float pointDistance, double tension, double continuity, double bias ) { if (pointDistance<=0) return; vtkSmartPointer vtkSmoothPoints = vtkSmartPointer::New(); //in smoothpoints the interpolated points representing a fiber are stored. //in vtkcells all polylines are stored, actually all id's of them are stored vtkSmartPointer vtkSmoothCells = vtkSmartPointer::New(); //cellcontainer for smoothed lines MITK_INFO << "Smoothing fibers"; vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); std::vector< vtkSmartPointer > resampled_streamlines; resampled_streamlines.resize(m_NumFibers); boost::timer::progress_display disp(m_NumFibers); #pragma omp parallel for for (int i=0; i(m_NumFibers); i++) { vtkSmartPointer newPoints = vtkSmartPointer::New(); float length = 0; #pragma omp critical { length = m_FiberLengths.at(static_cast(i)); ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jInsertNextPoint(points->GetPoint(j)); } int sampling = static_cast(std::ceil(length/pointDistance)); vtkSmartPointer xSpline = vtkSmartPointer::New(); vtkSmartPointer ySpline = vtkSmartPointer::New(); vtkSmartPointer zSpline = vtkSmartPointer::New(); xSpline->SetDefaultBias(bias); xSpline->SetDefaultTension(tension); xSpline->SetDefaultContinuity(continuity); ySpline->SetDefaultBias(bias); ySpline->SetDefaultTension(tension); ySpline->SetDefaultContinuity(continuity); zSpline->SetDefaultBias(bias); zSpline->SetDefaultTension(tension); zSpline->SetDefaultContinuity(continuity); vtkSmartPointer spline = vtkSmartPointer::New(); spline->SetXSpline(xSpline); spline->SetYSpline(ySpline); spline->SetZSpline(zSpline); spline->SetPoints(newPoints); vtkSmartPointer functionSource = vtkSmartPointer::New(); functionSource->SetParametricFunction(spline); functionSource->SetUResolution(sampling); functionSource->SetVResolution(sampling); functionSource->SetWResolution(sampling); functionSource->Update(); vtkPolyData* outputFunction = functionSource->GetOutput(); vtkPoints* tmpSmoothPnts = outputFunction->GetPoints(); //smoothPoints of current fiber vtkSmartPointer smoothLine = vtkSmartPointer::New(); #pragma omp critical { for (int j=0; jGetNumberOfPoints(); j++) { vtkIdType id = vtkSmoothPoints->InsertNextPoint(tmpSmoothPnts->GetPoint(j)); smoothLine->GetPointIds()->InsertNextId(id); } resampled_streamlines[static_cast(i)] = smoothLine; } } for (auto container : resampled_streamlines) { vtkSmoothCells->InsertNextCell(container); } m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkSmoothPoints); m_FiberPolyData->SetLines(vtkSmoothCells); this->SetFiberPolyData(m_FiberPolyData, true); } void mitk::FiberBundle::ResampleSpline(float pointDistance) { ResampleSpline(pointDistance, 0, 0, 0 ); } unsigned int mitk::FiberBundle::GetNumberOfPoints() const { unsigned int points = 0; for (int i=0; iGetNumberOfCells(); i++) { vtkCell* cell = m_FiberPolyData->GetCell(i); points += cell->GetNumberOfPoints(); } return points; } void mitk::FiberBundle::Compress(float error) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Compressing fibers with max. error " << error << "mm"; unsigned int numRemovedPoints = 0; boost::timer::progress_display disp(static_cast(m_FiberPolyData->GetNumberOfCells())); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); #pragma omp parallel for for (int i=0; i(m_FiberPolyData->GetNumberOfCells()); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; float weight = 1; #pragma omp critical { ++disp; weight = m_FiberWeights->GetValue(i); vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } // calculate curvatures auto numPoints = vertices.size(); std::vector< int > removedPoints; removedPoints.resize(numPoints, 0); removedPoints[0]=-1; removedPoints[numPoints-1]=-1; vtkSmartPointer container = vtkSmartPointer::New(); unsigned int remCounter = 0; bool pointFound = true; while (pointFound) { pointFound = false; double minError = static_cast(error); unsigned int removeIndex = 0; for (unsigned int j=0; j candV = vertices.at(j); int validP = -1; vnl_vector_fixed< double, 3 > pred; for (int k=static_cast(j)-1; k>=0; k--) if (removedPoints[static_cast(k)]<=0) { pred = vertices.at(static_cast(k)); validP = k; break; } int validS = -1; vnl_vector_fixed< double, 3 > succ; for (unsigned int k=j+1; k(k); break; } if (validP>=0 && validS>=0) { double a = (candV-pred).magnitude(); double b = (candV-succ).magnitude(); double c = (pred-succ).magnitude(); double s=0.5*(a+b+c); double hc=(2.0/c)*sqrt(fabs(s*(s-a)*(s-b)*(s-c))); if (hcInsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } #pragma omp critical { newFiberWeights->SetValue(vtkNewCells->GetNumberOfCells(), weight); numRemovedPoints += remCounter; vtkNewCells->InsertNextCell(container); } } if (vtkNewCells->GetNumberOfCells()>0) { MITK_INFO << "Removed points: " << numRemovedPoints; SetFiberWeights(newFiberWeights); m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } void mitk::FiberBundle::ResampleToNumPoints(unsigned int targetPoints) { if (targetPoints<2) mitkThrow() << "Minimum two points required for resampling!"; MITK_INFO << "Resampling fibers (number of points " << targetPoints << ")"; bool unequal_fibs = true; while (unequal_fibs) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); unequal_fibs = false; for (unsigned int i=0; iGetNumberOfCells(); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; float weight = 1; double seg_len = 0; { weight = m_FiberWeights->GetValue(i); vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); if (numPoints!=targetPoints) seg_len = static_cast(this->GetFiberLength(i)/(targetPoints-1)); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } vtkSmartPointer container = vtkSmartPointer::New(); vnl_vector_fixed< double, 3 > lastV = vertices.at(0); { vtkIdType id = vtkNewPoints->InsertNextPoint(lastV.data_block()); container->GetPointIds()->InsertNextId(id); } for (unsigned int j=1; j vec = vertices.at(j) - lastV; double new_dist = vec.magnitude(); if (new_dist >= seg_len && seg_len>0) { vnl_vector_fixed< double, 3 > newV = lastV; if ( new_dist-seg_len <= mitk::eps ) { vec.normalize(); newV += vec * seg_len; } else { // intersection between sphere (radius 'pointDistance', center 'lastV') and line (direction 'd' and point 'p') vnl_vector_fixed< double, 3 > p = vertices.at(j-1); vnl_vector_fixed< double, 3 > d = vertices.at(j) - p; double a = d[0]*d[0] + d[1]*d[1] + d[2]*d[2]; double b = 2 * (d[0] * (p[0] - lastV[0]) + d[1] * (p[1] - lastV[1]) + d[2] * (p[2] - lastV[2])); double c = (p[0] - lastV[0])*(p[0] - lastV[0]) + (p[1] - lastV[1])*(p[1] - lastV[1]) + (p[2] - lastV[2])*(p[2] - lastV[2]) - seg_len*seg_len; double v1 =(-b + std::sqrt(b*b-4*a*c))/(2*a); double v2 =(-b - std::sqrt(b*b-4*a*c))/(2*a); if (v1>0) newV = p + d * v1; else if (v2>0) newV = p + d * v2; else MITK_INFO << "ERROR1 - linear resampling"; j--; } //#pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(newV.data_block()); container->GetPointIds()->InsertNextId(id); } lastV = newV; } else if ( (j==vertices.size()-1 && new_dist>0.0001) || seg_len<=0.0000001) { //#pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } //#pragma omp critical { newFiberWeights->SetValue(vtkNewCells->GetNumberOfCells(), weight); vtkNewCells->InsertNextCell(container); if (container->GetNumberOfPoints()!=targetPoints) unequal_fibs = true; } } if (vtkNewCells->GetNumberOfCells()>0) { SetFiberWeights(newFiberWeights); m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } } void mitk::FiberBundle::ResampleLinear(double pointDistance) { vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); vtkSmartPointer vtkNewCells = vtkSmartPointer::New(); MITK_INFO << "Resampling fibers (linear)"; boost::timer::progress_display disp(static_cast(m_FiberPolyData->GetNumberOfCells())); vtkSmartPointer newFiberWeights = vtkSmartPointer::New(); newFiberWeights->SetName("FIBER_WEIGHTS"); newFiberWeights->SetNumberOfValues(m_NumFibers); std::vector< vtkSmartPointer > resampled_streamlines; resampled_streamlines.resize(static_cast(m_FiberPolyData->GetNumberOfCells())); #pragma omp parallel for for (int i=0; i(m_FiberPolyData->GetNumberOfCells()); i++) { std::vector< vnl_vector_fixed< double, 3 > > vertices; #pragma omp critical { ++disp; vtkCell* cell = m_FiberPolyData->GetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); for (int j=0; jGetPoint(j, cand); vnl_vector_fixed< double, 3 > candV; candV[0]=cand[0]; candV[1]=cand[1]; candV[2]=cand[2]; vertices.push_back(candV); } } vtkSmartPointer container = vtkSmartPointer::New(); vnl_vector_fixed< double, 3 > lastV = vertices.at(0); #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(lastV.data_block()); container->GetPointIds()->InsertNextId(id); } for (unsigned int j=1; j vec = vertices.at(j) - lastV; double new_dist = vec.magnitude(); if (new_dist >= pointDistance) { vnl_vector_fixed< double, 3 > newV = lastV; if ( new_dist-pointDistance <= mitk::eps ) { vec.normalize(); newV += vec * pointDistance; } else { // intersection between sphere (radius 'pointDistance', center 'lastV') and line (direction 'd' and point 'p') vnl_vector_fixed< double, 3 > p = vertices.at(j-1); vnl_vector_fixed< double, 3 > d = vertices.at(j) - p; double a = d[0]*d[0] + d[1]*d[1] + d[2]*d[2]; double b = 2 * (d[0] * (p[0] - lastV[0]) + d[1] * (p[1] - lastV[1]) + d[2] * (p[2] - lastV[2])); double c = (p[0] - lastV[0])*(p[0] - lastV[0]) + (p[1] - lastV[1])*(p[1] - lastV[1]) + (p[2] - lastV[2])*(p[2] - lastV[2]) - pointDistance*pointDistance; double v1 =(-b + std::sqrt(b*b-4*a*c))/(2*a); double v2 =(-b - std::sqrt(b*b-4*a*c))/(2*a); if (v1>0) newV = p + d * v1; else if (v2>0) newV = p + d * v2; else MITK_INFO << "ERROR1 - linear resampling"; j--; } #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(newV.data_block()); container->GetPointIds()->InsertNextId(id); } lastV = newV; } else if (j==vertices.size()-1 && new_dist>0.0001) { #pragma omp critical { vtkIdType id = vtkNewPoints->InsertNextPoint(vertices.at(j).data_block()); container->GetPointIds()->InsertNextId(id); } } } #pragma omp critical { resampled_streamlines[static_cast(i)] = container; } } for (auto container : resampled_streamlines) { vtkNewCells->InsertNextCell(container); } if (vtkNewCells->GetNumberOfCells()>0) { m_FiberPolyData = vtkSmartPointer::New(); m_FiberPolyData->SetPoints(vtkNewPoints); m_FiberPolyData->SetLines(vtkNewCells); this->SetFiberPolyData(m_FiberPolyData, true); } } // reapply selected colorcoding in case PolyData structure has changed bool mitk::FiberBundle::Equals(mitk::FiberBundle* fib, double eps) { if (fib==nullptr) { MITK_INFO << "Reference bundle is nullptr!"; return false; } if (m_NumFibers!=fib->GetNumFibers()) { MITK_INFO << "Unequal number of fibers!"; MITK_INFO << m_NumFibers << " vs. " << fib->GetNumFibers(); return false; } for (unsigned int i=0; iGetCell(i); auto numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); vtkCell* cell2 = fib->GetFiberPolyData()->GetCell(i); auto numPoints2 = cell2->GetNumberOfPoints(); vtkPoints* points2 = cell2->GetPoints(); if (numPoints2!=numPoints) { MITK_INFO << "Unequal number of points in fiber " << i << "!"; MITK_INFO << numPoints2 << " vs. " << numPoints; return false; } for (int j=0; jGetPoint(j); double* p2 = points2->GetPoint(j); if (fabs(p1[0]-p2[0])>eps || fabs(p1[1]-p2[1])>eps || fabs(p1[2]-p2[2])>eps) { MITK_INFO << "Unequal points in fiber " << i << " at position " << j << "!"; MITK_INFO << "p1: " << p1[0] << ", " << p1[1] << ", " << p1[2]; MITK_INFO << "p2: " << p2[0] << ", " << p2[1] << ", " << p2[2]; return false; } } } return true; } void mitk::FiberBundle::PrintSelf(std::ostream &os, itk::Indent indent) const { os << indent << "Number of fibers: " << this->GetNumFibers() << std::endl; os << indent << "Min. fiber length: " << this->GetMinFiberLength() << std::endl; os << indent << "Max. fiber length: " << this->GetMaxFiberLength() << std::endl; os << indent << "Mean fiber length: " << this->GetMeanFiberLength() << std::endl; os << indent << "Median fiber length: " << this->GetMedianFiberLength() << std::endl; os << indent << "STDEV fiber length: " << this->GetLengthStDev() << std::endl; os << indent << "Number of points: " << this->GetNumberOfPoints() << std::endl; os << indent << "Extent x: " << this->GetGeometry()->GetExtentInMM(0) << "mm" << std::endl; os << indent << "Extent y: " << this->GetGeometry()->GetExtentInMM(1) << "mm" << std::endl; os << indent << "Extent z: " << this->GetGeometry()->GetExtentInMM(2) << "mm" << std::endl; os << indent << "Diagonal: " << this->GetGeometry()->GetDiagonalLength() << "mm" << std::endl; os << "\nReference geometry:" << std::endl; os << indent << "Size: [" << std::defaultfloat << m_TrackVisHeader.dim[0] << " " << m_TrackVisHeader.dim[1] << " " << m_TrackVisHeader.dim[2] << "]" << std::endl; os << indent << "Voxel size: [" << m_TrackVisHeader.voxel_size[0] << " " << m_TrackVisHeader.voxel_size[1] << " " << m_TrackVisHeader.voxel_size[2] << "]" << std::endl; os << indent << "Origin: [" << m_TrackVisHeader.origin[0] << " " << m_TrackVisHeader.origin[1] << " " << m_TrackVisHeader.origin[2] << "]" << std::endl; os << indent << "Matrix: " << std::scientific << std::endl; os << indent << "[[" << m_TrackVisHeader.vox_to_ras[0][0] << ", " << m_TrackVisHeader.vox_to_ras[0][1] << ", " << m_TrackVisHeader.vox_to_ras[0][2] << ", " << m_TrackVisHeader.vox_to_ras[0][3] << "]" << std::endl; os << indent << " [" << m_TrackVisHeader.vox_to_ras[1][0] << ", " << m_TrackVisHeader.vox_to_ras[1][1] << ", " << m_TrackVisHeader.vox_to_ras[1][2] << ", " << m_TrackVisHeader.vox_to_ras[1][3] << "]" << std::endl; os << indent << " [" << m_TrackVisHeader.vox_to_ras[2][0] << ", " << m_TrackVisHeader.vox_to_ras[2][1] << ", " << m_TrackVisHeader.vox_to_ras[2][2] << ", " << m_TrackVisHeader.vox_to_ras[2][3] << "]" << std::endl; os << indent << " [" << m_TrackVisHeader.vox_to_ras[3][0] << ", " << m_TrackVisHeader.vox_to_ras[3][1] << ", " << m_TrackVisHeader.vox_to_ras[3][2] << ", " << m_TrackVisHeader.vox_to_ras[3][3] << "]]" << std::defaultfloat << std::endl; if (m_FiberWeights!=nullptr) { std::vector< float > weights; for (int i=0; iGetSize(); i++) weights.push_back(m_FiberWeights->GetValue(i)); std::sort(weights.begin(), weights.end()); os << "\nFiber weight statistics" << std::endl; os << indent << "Min: " << weights.front() << std::endl; os << indent << "1% quantile: " << weights.at(static_cast(weights.size()*0.01)) << std::endl; os << indent << "5% quantile: " << weights.at(static_cast(weights.size()*0.05)) << std::endl; os << indent << "25% quantile: " << weights.at(static_cast(weights.size()*0.25)) << std::endl; os << indent << "Median: " << weights.at(static_cast(weights.size()*0.5)) << std::endl; os << indent << "75% quantile: " << weights.at(static_cast(weights.size()*0.75)) << std::endl; os << indent << "95% quantile: " << weights.at(static_cast(weights.size()*0.95)) << std::endl; os << indent << "99% quantile: " << weights.at(static_cast(weights.size()*0.99)) << std::endl; os << indent << "Max: " << weights.back() << std::endl; } else os << indent << "\n\nNo fiber weight array found." << std::endl; Superclass::PrintSelf(os, 0); } mitk::FiberBundle::TrackVis_header mitk::FiberBundle::GetTrackVisHeader() { if (m_TrackVisHeader.hdr_size==0) { mitk::Geometry3D::Pointer geom = dynamic_cast(this->GetGeometry()); SetTrackVisHeader(geom); } return m_TrackVisHeader; } void mitk::FiberBundle::SetTrackVisHeader(const mitk::FiberBundle::TrackVis_header &TrackVisHeader) { m_TrackVisHeader = TrackVisHeader; } void mitk::FiberBundle::SetTrackVisHeader(mitk::BaseGeometry* geometry) { vtkSmartPointer< vtkMatrix4x4 > matrix = vtkSmartPointer< vtkMatrix4x4 >::New(); matrix->Identity(); if (geometry==nullptr) return; for(int i=0; i<3 ;i++) { m_TrackVisHeader.dim[i] = geometry->GetExtent(i); m_TrackVisHeader.voxel_size[i] = geometry->GetSpacing()[i]; m_TrackVisHeader.origin[i] = geometry->GetOrigin()[i]; matrix = geometry->GetVtkMatrix(); } for (int i=0; i<4; ++i) for (int j=0; j<4; ++j) m_TrackVisHeader.vox_to_ras[i][j] = matrix->GetElement(i, j); m_TrackVisHeader.n_scalars = 0; m_TrackVisHeader.n_properties = 0; sprintf(m_TrackVisHeader.voxel_order,"RAS"); m_TrackVisHeader.image_orientation_patient[0] = 1.0; m_TrackVisHeader.image_orientation_patient[1] = 0.0; m_TrackVisHeader.image_orientation_patient[2] = 0.0; m_TrackVisHeader.image_orientation_patient[3] = 0.0; m_TrackVisHeader.image_orientation_patient[4] = 1.0; m_TrackVisHeader.image_orientation_patient[5] = 0.0; m_TrackVisHeader.pad1[0] = 0; m_TrackVisHeader.pad1[1] = 0; m_TrackVisHeader.pad2[0] = 0; m_TrackVisHeader.pad2[1] = 0; m_TrackVisHeader.invert_x = 0; m_TrackVisHeader.invert_y = 0; m_TrackVisHeader.invert_z = 0; m_TrackVisHeader.swap_xy = 0; m_TrackVisHeader.swap_yz = 0; m_TrackVisHeader.swap_zx = 0; m_TrackVisHeader.n_count = 0; m_TrackVisHeader.version = 2; m_TrackVisHeader.hdr_size = 1000; std::string id = "TRACK"; strcpy(m_TrackVisHeader.id_string, id.c_str()); } /* ESSENTIAL IMPLEMENTATION OF SUPERCLASS METHODS */ void mitk::FiberBundle::UpdateOutputInformation() { } void mitk::FiberBundle::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::FiberBundle::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::FiberBundle::VerifyRequestedRegion() { return true; } void mitk::FiberBundle::SetRequestedRegion(const itk::DataObject* ) { } diff --git a/Modules/DiffusionIO/ReaderWriter/mitkFiberBundleTrackVisReader.cpp b/Modules/DiffusionIO/ReaderWriter/mitkFiberBundleTrackVisReader.cpp index 1b22f33..dfa927c 100644 --- a/Modules/DiffusionIO/ReaderWriter/mitkFiberBundleTrackVisReader.cpp +++ b/Modules/DiffusionIO/ReaderWriter/mitkFiberBundleTrackVisReader.cpp @@ -1,100 +1,100 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkFiberBundleTrackVisReader.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mitkDiffusionIOMimeTypes.h" mitk::FiberBundleTrackVisReader::FiberBundleTrackVisReader() : mitk::AbstractFileReader( mitk::DiffusionIOMimeTypes::FIBERBUNDLE_TRK_MIMETYPE_NAME(), "TrackVis Fiber Bundle Reader" ) { Options defaultOptions; defaultOptions["Apply index to world transform stored in the TRK header"] = true; defaultOptions["Print header"] = true; - defaultOptions["Flip x"] = false; + defaultOptions["Flip x"] = true; defaultOptions["Flip y"] = false; defaultOptions["Flip z"] = false; this->SetDefaultOptions(defaultOptions); m_ServiceReg = this->RegisterService(); } mitk::FiberBundleTrackVisReader::FiberBundleTrackVisReader(const FiberBundleTrackVisReader &other) :mitk::AbstractFileReader(other) { } mitk::FiberBundleTrackVisReader * mitk::FiberBundleTrackVisReader::Clone() const { return new FiberBundleTrackVisReader(*this); } std::vector > mitk::FiberBundleTrackVisReader::DoRead() { std::vector > result; try { const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, nullptr ); setlocale(LC_ALL, locale.c_str()); std::string filename = this->GetInputLocation(); MITK_INFO << "Loading tractogram (TrackVis format): " << itksys::SystemTools::GetFilenameName(filename); std::string ext = itksys::SystemTools::GetFilenameLastExtension(filename); ext = itksys::SystemTools::LowerCase(ext); if (ext==".trk") { Options options = this->GetOptions(); bool apply_matrix = us::any_cast(options["Apply index to world transform stored in the TRK header"]); bool flip_x = us::any_cast(options["Flip x"]); bool flip_y = us::any_cast(options["Flip y"]); bool flip_z = us::any_cast(options["Flip z"]); bool print_header = us::any_cast(options["Print header"]); FiberBundle::Pointer mitk_fib = FiberBundle::New(); TrackVisFiberReader reader; reader.open(this->GetInputLocation().c_str()); reader.read(mitk_fib.GetPointer(), apply_matrix, flip_x, flip_y, flip_z, print_header); result.push_back(mitk_fib.GetPointer()); return result; } setlocale(LC_ALL, currLocale.c_str()); MITK_INFO << "Fiber bundle read"; } catch(...) { throw; } return result; }