diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp index 6134a80..441f54f 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkControlVisualizationPropertiesView.cpp @@ -1,1250 +1,1250 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, -Division of Medical and Biological Informatics. +Division of Medical Image Computing. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkControlVisualizationPropertiesView.h" #include "mitkNodePredicateDataType.h" #include "mitkDataNodeObject.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkResliceMethodProperty.h" #include "mitkRenderingManager.h" #include "mitkImageCast.h" #include "mitkShImage.h" #include "mitkPlanarFigure.h" #include "mitkFiberBundle.h" #include "QmitkDataStorageComboBox.h" #include "mitkPlanarFigureInteractor.h" #include #include #include #include #include #include "usModuleRegistry.h" #include #include #include "mitkPlaneGeometry.h" #include #include #include #include #include "berryIWorkbenchWindow.h" #include "berryIWorkbenchPage.h" #include "berryISelectionService.h" #include "berryConstants.h" #include "berryPlatformUI.h" #include "itkRGBAPixel.h" #include #include "qwidgetaction.h" #include "qcolordialog.h" #include #include #include #include #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) const std::string QmitkControlVisualizationPropertiesView::VIEW_ID = "org.mitk.views.controlvisualizationpropertiesview"; using namespace berry; QmitkControlVisualizationPropertiesView::QmitkControlVisualizationPropertiesView() : QmitkAbstractView(), m_Controls(nullptr), m_CurrentSelection(nullptr), m_IconTexOFF(new QIcon(":/QmitkDiffusionImaging/texIntOFFIcon.png")), m_IconTexON(new QIcon(":/QmitkDiffusionImaging/texIntONIcon.png")), m_IconGlyOFF_T(new QIcon(":/QmitkDiffusionImaging/glyphsoff_T.png")), m_IconGlyON_T(new QIcon(":/QmitkDiffusionImaging/glyphson_T.png")), m_IconGlyOFF_C(new QIcon(":/QmitkDiffusionImaging/glyphsoff_C.png")), m_IconGlyON_C(new QIcon(":/QmitkDiffusionImaging/glyphson_C.png")), m_IconGlyOFF_S(new QIcon(":/QmitkDiffusionImaging/glyphsoff_S.png")), m_IconGlyON_S(new QIcon(":/QmitkDiffusionImaging/glyphson_S.png")), m_GlyIsOn_T(false), m_GlyIsOn_C(false), m_GlyIsOn_S(false), m_CurrentThickSlicesMode(1), m_CurrentThickSlicesNum(0), m_CurrentPickingNode(nullptr), m_ColorPropertyObserverTag(0), m_OpacityPropertyObserverTag(0) { m_MyMenu = nullptr; auto numThread = itk::MultiThreader::GetGlobalMaximumNumberOfThreads(); itk::MultiThreader::SetGlobalDefaultNumberOfThreads(numThread); } QmitkControlVisualizationPropertiesView::~QmitkControlVisualizationPropertiesView() { } void QmitkControlVisualizationPropertiesView::SetTs(int currentThickSlicesMode, int num, std::string render_window) { if (auto renderWindowPart = this->GetRenderWindowPart(mitk::WorkbenchUtil::IRenderWindowPartStrategy::OPEN)) { mitk::BaseRenderer::Pointer renderer = renderWindowPart->GetQmitkRenderWindow(QString(render_window.c_str()))->GetRenderer(); renderer->GetCurrentWorldPlaneGeometryNode()->SetProperty("reslice.thickslices.num", mitk::IntProperty::New(num)); if(num>0) { renderer->GetCurrentWorldPlaneGeometryNode()->SetProperty("reslice.thickslices", mitk::ResliceMethodProperty::New(currentThickSlicesMode)); renderer->GetCurrentWorldPlaneGeometryNode()->SetProperty("reslice.thickslices.showarea", mitk::BoolProperty::New(true)); } else { renderer->GetCurrentWorldPlaneGeometryNode()->SetProperty("reslice.thickslices", mitk::ResliceMethodProperty::New(0)); renderer->GetCurrentWorldPlaneGeometryNode()->SetProperty("reslice.thickslices.showarea", mitk::BoolProperty::New(false)); } renderer->SendUpdateSlice(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::OnThickSlicesModeSelected( QAction* action ) { m_CurrentThickSlicesMode = action->data().toInt(); switch( m_CurrentThickSlicesMode ) { case 0: return; case 1: this->m_Controls->m_TSMenu->setText("MIP"); break; case 2: this->m_Controls->m_TSMenu->setText("SUM"); break; case 3: this->m_Controls->m_TSMenu->setText("WEIGH"); break; default: return; } SetTs(m_CurrentThickSlicesMode, m_CurrentThickSlicesNum, "axial"); SetTs(m_CurrentThickSlicesMode, m_CurrentThickSlicesNum, "sagittal"); SetTs(m_CurrentThickSlicesMode, m_CurrentThickSlicesNum, "coronal"); } void QmitkControlVisualizationPropertiesView::OnTSNumChanged( int num ) { m_CurrentThickSlicesNum = num; SetTs(m_CurrentThickSlicesMode, m_CurrentThickSlicesNum, "axial"); SetTs(m_CurrentThickSlicesMode, m_CurrentThickSlicesNum, "sagittal"); SetTs(m_CurrentThickSlicesMode, m_CurrentThickSlicesNum, "coronal"); m_TSLabel->setText(QString::number( num*2 + 1 )); } void QmitkControlVisualizationPropertiesView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkControlVisualizationPropertiesViewControls; m_Controls->setupUi(parent); this->CreateConnections(); // hide warning (ODFs in rotated planes) m_Controls->m_lblRotatedPlanesWarning->hide(); m_MyMenu = new QMenu(parent); m_Controls->m_TSMenu->setMenu( m_MyMenu ); QIcon iconFiberFade(":/QmitkDiffusionImaging/MapperEfx2D.png"); m_Controls->m_FiberFading2D->setIcon(iconFiberFade); m_Controls->m_NormalizationFrame->setVisible(false); m_Controls->m_Crosshair->setVisible(false); mitk::IRenderWindowPart* renderWindow = this->GetRenderWindowPart(); if (renderWindow) { m_SliceChangeListener.RenderWindowPartActivated(renderWindow); connect(&m_SliceChangeListener, SIGNAL(SliceChanged()), this, SLOT(OnSliceChanged())); } connect(m_Controls->m_SetColor1, SIGNAL(clicked()), this, SLOT(SetColor())); connect(m_Controls->m_SetColor2, SIGNAL(clicked()), this, SLOT(SetColor())); } } void QmitkControlVisualizationPropertiesView::SetColor() { if(m_SelectedNode) { QColor c = QColorDialog::getColor(); if (c.isValid()) { float rgb[3]; rgb[0] = static_cast(c.redF()); rgb[1] = static_cast(c.greenF()); rgb[2] = static_cast(c.blueF()); m_SelectedNode->SetColor(rgb); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void QmitkControlVisualizationPropertiesView::SetFocus() { m_Controls->m_TSMenu->setFocus(); } void QmitkControlVisualizationPropertiesView::SliceRotation(const itk::EventObject&) { // test if plane rotated if( m_GlyIsOn_T || m_GlyIsOn_C || m_GlyIsOn_S ) { if( this->IsPlaneRotated() ) { // show label m_Controls->m_lblRotatedPlanesWarning->show(); } else { //hide label m_Controls->m_lblRotatedPlanesWarning->hide(); } } } void QmitkControlVisualizationPropertiesView::NodeRemoved(const mitk::DataNode* /*node*/) { } #include void QmitkControlVisualizationPropertiesView::CreateConnections() { if ( m_Controls ) { connect( static_cast(m_Controls->m_VisibleOdfsON_T), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_T()) ); connect( static_cast(m_Controls->m_VisibleOdfsON_S), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_S()) ); connect( static_cast(m_Controls->m_VisibleOdfsON_C), SIGNAL(clicked()), this, SLOT(VisibleOdfsON_C()) ); connect( static_cast(m_Controls->m_ShowMaxNumber), SIGNAL(editingFinished()), this, SLOT(ShowMaxNumberChanged()) ); connect( static_cast(m_Controls->m_NormalizationDropdown), SIGNAL(currentIndexChanged(int)), this, SLOT(NormalizationDropdownChanged(int)) ); connect( static_cast(m_Controls->m_ScalingFactor), SIGNAL(valueChanged(double)), this, SLOT(ScalingFactorChanged(double)) ); connect( static_cast(m_Controls->m_AdditionalScaling), SIGNAL(currentIndexChanged(int)), this, SLOT(AdditionalScaling(int)) ); connect(static_cast(m_Controls->m_ResetColoring), SIGNAL(clicked()), static_cast(this), SLOT(ResetColoring())); connect(static_cast(m_Controls->m_ResetColoring2), SIGNAL(clicked()), static_cast(this), SLOT(ResetColoring())); connect(static_cast(m_Controls->m_FiberFading2D), SIGNAL(clicked()), static_cast(this), SLOT( Fiber2DfadingEFX() ) ); connect(static_cast(m_Controls->m_FiberThicknessSlider), SIGNAL(sliderReleased()), static_cast(this), SLOT( FiberSlicingThickness2D() ) ); connect(static_cast(m_Controls->m_FiberThicknessSlider), SIGNAL(valueChanged(int)), static_cast(this), SLOT( FiberSlicingUpdateLabel(int) )); connect(static_cast(m_Controls->m_Crosshair), SIGNAL(clicked()), static_cast(this), SLOT(SetInteractor())); connect(static_cast(m_Controls->m_LineWidth), SIGNAL(editingFinished()), static_cast(this), SLOT(LineWidthChanged())); connect(static_cast(m_Controls->m_TubeWidth), SIGNAL(editingFinished()), static_cast(this), SLOT(TubeRadiusChanged())); connect(static_cast(m_Controls->m_RibbonWidth), SIGNAL(editingFinished()), static_cast(this), SLOT(RibbonWidthChanged())); connect( static_cast(m_Controls->m_OdfColorBox), SIGNAL(currentIndexChanged(int)), static_cast(this), SLOT(OnColourisationModeChanged() ) ); connect(static_cast(m_Controls->m_Clip0), SIGNAL(toggled(bool)), static_cast(this), SLOT(Toggle3DClipping(bool))); connect(static_cast(m_Controls->m_Clip1), SIGNAL(toggled(bool)), static_cast(this), SLOT(Toggle3DClipping(bool))); connect(static_cast(m_Controls->m_Clip2), SIGNAL(toggled(bool)), static_cast(this), SLOT(Toggle3DClipping(bool))); connect(static_cast(m_Controls->m_Clip3), SIGNAL(toggled(bool)), static_cast(this), SLOT(Toggle3DClipping(bool))); connect(static_cast(m_Controls->m_FlipClipBox), SIGNAL(stateChanged(int)), static_cast(this), SLOT(Toggle3DClipping())); connect(static_cast(m_Controls->m_Enable3dPeaks), SIGNAL(stateChanged(int)), static_cast(this), SLOT(Toggle3DPeaks())); connect(static_cast(m_Controls->m_FlipPeaksButton), SIGNAL(clicked()), static_cast(this), SLOT(FlipPeaks())); m_Controls->m_BundleControlsFrame->setVisible(false); m_Controls->m_ImageControlsFrame->setVisible(false); m_Controls->m_PeakImageFrame->setVisible(false); m_Controls->m_lblRotatedPlanesWarning->setVisible(false); m_Controls->m_3DClippingBox->setVisible(false); } } // set diffusion image channel to b0 volume void QmitkControlVisualizationPropertiesView::NodeAdded(const mitk::DataNode *node) { mitk::DataNode* notConst = const_cast(node); bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(node->GetData())) ); if (isDiffusionImage) { mitk::Image::Pointer dimg = dynamic_cast(notConst->GetData()); // if there is no b0 image in the dataset, the GetB0Indices() returns a vector of size 0 // and hence we cannot set the Property directly to .front() int displayChannelPropertyValue = 0; mitk::DiffusionPropertyHelper::BValueMapType map = mitk::DiffusionPropertyHelper::GetBValueMap(dimg); if( map[0].size() > 0) { displayChannelPropertyValue = map[0].front(); } notConst->SetIntProperty("DisplayChannel", displayChannelPropertyValue ); } } /* OnSelectionChanged is registered to SelectionService, therefore no need to implement SelectionService Listener explicitly */ void QmitkControlVisualizationPropertiesView::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*part*/, const QList& nodes) { m_Controls->m_BundleControlsFrame->setVisible(false); m_Controls->m_ImageControlsFrame->setVisible(false); m_Controls->m_PeakImageFrame->setVisible(false); m_Controls->m_3DClippingBox->setVisible(false); m_Controls->m_FlipClipBox->setVisible(false); m_Controls->m_Enable3dPeaks->setVisible(false); if (nodes.size()>1) // only do stuff if one node is selected return; m_Controls->m_NumberGlyphsFrame->setVisible(false); m_Controls->m_GlyphFrame->setVisible(false); m_Controls->m_TSMenu->setVisible(false); m_SelectedNode = nullptr; int numOdfImages = 0; for (mitk::DataNode::Pointer node: nodes) { if(node.IsNull()) continue; mitk::BaseData* nodeData = node->GetData(); if(nodeData == nullptr) continue; m_SelectedNode = node; if (dynamic_cast(nodeData)) { m_Controls->m_PeakImageFrame->setVisible(true); if (m_Color.IsNotNull()) m_Color->RemoveObserver(m_ColorPropertyObserverTag); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SetCustomColor ); m_Color = dynamic_cast(node->GetProperty("color", nullptr)); if (m_Color.IsNotNull()) m_ColorPropertyObserverTag = m_Color->AddObserver( itk::ModifiedEvent(), command ); int ClippingPlaneId = -1; m_SelectedNode->GetPropertyValue("3DClippingPlaneId",ClippingPlaneId); switch(ClippingPlaneId) { case 0: m_Controls->m_Clip0->setChecked(1); break; case 1: m_Controls->m_Clip1->setChecked(1); break; case 2: m_Controls->m_Clip2->setChecked(1); break; case 3: m_Controls->m_Clip3->setChecked(1); break; default : m_Controls->m_Clip0->setChecked(1); } m_Controls->m_Enable3dPeaks->setVisible(true); m_Controls->m_3DClippingBox->setVisible(true); } else if (dynamic_cast(nodeData)) { int ClippingPlaneId = -1; m_SelectedNode->GetPropertyValue("3DClippingPlaneId",ClippingPlaneId); switch(ClippingPlaneId) { case 0: m_Controls->m_Clip0->setChecked(1); break; case 1: m_Controls->m_Clip1->setChecked(1); break; case 2: m_Controls->m_Clip2->setChecked(1); break; case 3: m_Controls->m_Clip3->setChecked(1); break; default : m_Controls->m_Clip0->setChecked(1); } // handle fiber property observers if (m_Color.IsNotNull()) m_Color->RemoveObserver(m_ColorPropertyObserverTag); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkControlVisualizationPropertiesView::SetCustomColor ); m_Color = dynamic_cast(node->GetProperty("color", nullptr)); if (m_Color.IsNotNull()) m_ColorPropertyObserverTag = m_Color->AddObserver( itk::ModifiedEvent(), command ); m_Controls->m_FlipClipBox->setVisible(true); m_Controls->m_3DClippingBox->setVisible(true); m_Controls->m_BundleControlsFrame->setVisible(true); if(m_CurrentPickingNode != 0 && node.GetPointer() != m_CurrentPickingNode) { m_Controls->m_Crosshair->setEnabled(false); } else { m_Controls->m_Crosshair->setEnabled(true); } int width; node->GetIntProperty("shape.linewidth", width); m_Controls->m_LineWidth->setValue(width); float radius; node->GetFloatProperty("shape.tuberadius", radius); m_Controls->m_TubeWidth->setValue(radius); float range; node->GetFloatProperty("Fiber2DSliceThickness",range); mitk::FiberBundle::Pointer fib = dynamic_cast(node->GetData()); mitk::BaseGeometry::Pointer geo = fib->GetGeometry(); mitk::ScalarType max = geo->GetExtentInMM(0); max = std::max(max, geo->GetExtentInMM(1)); max = std::max(max, geo->GetExtentInMM(2)); m_Controls->m_FiberThicknessSlider->setMaximum(max * 10); m_Controls->m_FiberThicknessSlider->setValue(range * 10); } else if(dynamic_cast(nodeData) || dynamic_cast(nodeData) || dynamic_cast(nodeData)) { m_Controls->m_ImageControlsFrame->setVisible(true); m_Controls->m_NumberGlyphsFrame->setVisible(true); m_Controls->m_GlyphFrame->setVisible(true); m_Controls->m_NormalizationFrame->setVisible(true); if(m_NodeUsedForOdfVisualization.IsNotNull()) { m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", false); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", false); } m_NodeUsedForOdfVisualization = node; m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); if (dynamic_cast(nodeData)) { m_Controls->m_NormalizationDropdown->setVisible(false); m_Controls->m_NormalizationLabel->setVisible(false); } else { m_Controls->m_NormalizationDropdown->setVisible(true); m_Controls->m_NormalizationLabel->setVisible(true); } int val; node->GetIntProperty("ShowMaxNumber", val); m_Controls->m_ShowMaxNumber->setValue(val); m_Controls->m_NormalizationDropdown->setCurrentIndex(dynamic_cast(node->GetProperty("Normalization"))->GetValueAsId()); float fval; node->GetFloatProperty("Scaling",fval); m_Controls->m_ScalingFactor->setValue(fval); m_Controls->m_AdditionalScaling->setCurrentIndex(dynamic_cast(node->GetProperty("ScaleBy"))->GetValueAsId()); bool switchTensorViewValue = false; node->GetBoolProperty( "DiffusionCore.Rendering.OdfVtkMapper.SwitchTensorView", switchTensorViewValue ); bool colourisationModeBit = false; node->GetBoolProperty("DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", colourisationModeBit ); m_Controls->m_OdfColorBox->setCurrentIndex(colourisationModeBit); numOdfImages++; } else if(dynamic_cast(nodeData)) { PlanarFigureFocus(); } else if( dynamic_cast(nodeData) ) { m_Controls->m_ImageControlsFrame->setVisible(true); m_Controls->m_TSMenu->setVisible(true); } } if( nodes.empty() ) { return; } mitk::DataNode::Pointer node = nodes.at(0); if( node.IsNull() ) { return; } QMenu *myMenu = m_MyMenu; myMenu->clear(); QActionGroup* thickSlicesActionGroup = new QActionGroup(myMenu); thickSlicesActionGroup->setExclusive(true); int currentTSMode = 0; { mitk::ResliceMethodProperty::Pointer m = dynamic_cast(node->GetProperty( "reslice.thickslices" )); if( m.IsNotNull() ) currentTSMode = m->GetValueAsId(); } int maxTS = 30; for (auto node: nodes) { mitk::Image* image = dynamic_cast(node->GetData()); if (image) { int size = std::max(image->GetDimension(0), std::max(image->GetDimension(1), image->GetDimension(2))); if (size>maxTS) { maxTS=size; } } } maxTS /= 2; int currentNum = 0; { mitk::IntProperty::Pointer m = dynamic_cast(node->GetProperty( "reslice.thickslices.num" )); if( m.IsNotNull() ) { currentNum = m->GetValue(); if(currentNum < 0) { currentNum = 0; } if(currentNum > maxTS) { currentNum = maxTS; } } } if(currentTSMode==0) { currentNum=0; } QSlider *m_TSSlider = new QSlider(myMenu); m_TSSlider->setMinimum(0); m_TSSlider->setMaximum(maxTS-1); m_TSSlider->setValue(currentNum); m_TSSlider->setOrientation(Qt::Horizontal); connect( m_TSSlider, SIGNAL( valueChanged(int) ), this, SLOT( OnTSNumChanged(int) ) ); QHBoxLayout* _TSLayout = new QHBoxLayout; _TSLayout->setContentsMargins(4,4,4,4); _TSLayout->addWidget(m_TSSlider); _TSLayout->addWidget(m_TSLabel=new QLabel(QString::number(currentNum*2+1),myMenu)); QWidget* _TSWidget = new QWidget; _TSWidget->setLayout(_TSLayout); QActionGroup* thickSliceModeActionGroup = new QActionGroup(myMenu); thickSliceModeActionGroup->setExclusive(true); QWidgetAction *m_TSSliderAction = new QWidgetAction(myMenu); m_TSSliderAction->setDefaultWidget(_TSWidget); myMenu->addAction(m_TSSliderAction); QAction* mipThickSlicesAction = new QAction(myMenu); mipThickSlicesAction->setActionGroup(thickSliceModeActionGroup); mipThickSlicesAction->setText("MIP (max. intensity proj.)"); mipThickSlicesAction->setCheckable(true); mipThickSlicesAction->setChecked(m_CurrentThickSlicesMode==1); mipThickSlicesAction->setData(1); myMenu->addAction( mipThickSlicesAction ); QAction* sumThickSlicesAction = new QAction(myMenu); sumThickSlicesAction->setActionGroup(thickSliceModeActionGroup); sumThickSlicesAction->setText("SUM (sum intensity proj.)"); sumThickSlicesAction->setCheckable(true); sumThickSlicesAction->setChecked(m_CurrentThickSlicesMode==2); sumThickSlicesAction->setData(2); myMenu->addAction( sumThickSlicesAction ); QAction* weightedThickSlicesAction = new QAction(myMenu); weightedThickSlicesAction->setActionGroup(thickSliceModeActionGroup); weightedThickSlicesAction->setText("WEIGHTED (gaussian proj.)"); weightedThickSlicesAction->setCheckable(true); weightedThickSlicesAction->setChecked(m_CurrentThickSlicesMode==3); weightedThickSlicesAction->setData(3); myMenu->addAction( weightedThickSlicesAction ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); connect( thickSliceModeActionGroup, SIGNAL(triggered(QAction*)), this, SLOT(OnThickSlicesModeSelected(QAction*)) ); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_S() { m_GlyIsOn_S = m_Controls->m_VisibleOdfsON_S->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is nullptr"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_S", m_GlyIsOn_S); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::Visible() { mitk::IRenderWindowPart* renderWindow = this->GetRenderWindowPart(); if (renderWindow) { m_SliceChangeListener.RenderWindowPartActivated(renderWindow); connect(&m_SliceChangeListener, SIGNAL(SliceChanged()), this, SLOT(OnSliceChanged())); } } void QmitkControlVisualizationPropertiesView::Hidden() { } void QmitkControlVisualizationPropertiesView::Activated() { mitk::IRenderWindowPart* renderWindow = this->GetRenderWindowPart(); if (renderWindow) { m_SliceChangeListener.RenderWindowPartActivated(renderWindow); connect(&m_SliceChangeListener, SIGNAL(SliceChanged()), this, SLOT(OnSliceChanged())); } } void QmitkControlVisualizationPropertiesView::Deactivated() { } void QmitkControlVisualizationPropertiesView::FlipPeaks() { if (m_SelectedNode.IsNull() || dynamic_cast(m_SelectedNode->GetData())==nullptr) return; std::string name = m_SelectedNode->GetName(); mitk::Image::Pointer image = dynamic_cast(m_SelectedNode->GetData()); typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(image); caster->Update(); mitk::PeakImage::ItkPeakImageType::Pointer itkImg = caster->GetOutput(); itk::FlipPeaksFilter< float >::Pointer flipper = itk::FlipPeaksFilter< float >::New(); flipper->SetInput(itkImg); flipper->SetFlipX(m_Controls->m_FlipPeaksX->isChecked()); flipper->SetFlipY(m_Controls->m_FlipPeaksY->isChecked()); flipper->SetFlipZ(m_Controls->m_FlipPeaksZ->isChecked()); flipper->Update(); mitk::Image::Pointer resultImage = dynamic_cast(mitk::PeakImage::New().GetPointer()); mitk::CastToMitkImage(flipper->GetOutput(), resultImage); resultImage->SetVolume(flipper->GetOutput()->GetBufferPointer()); m_SelectedNode->SetData(resultImage); m_SelectedNode->SetName(name); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::Toggle3DPeaks() { if (m_SelectedNode.IsNull() || dynamic_cast(m_SelectedNode->GetData())==nullptr) return; bool enabled = false; m_SelectedNode->GetBoolProperty("Enable3DPeaks", enabled); m_SelectedNode->SetBoolProperty( "Enable3DPeaks", !enabled ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::Toggle3DClipping(bool enabled) { if (!enabled || m_SelectedNode.IsNull() || (dynamic_cast(m_SelectedNode->GetData())==nullptr && dynamic_cast(m_SelectedNode->GetData())==nullptr)) return; m_SelectedNode->SetBoolProperty( "3DClippingPlaneFlip", m_Controls->m_FlipClipBox->isChecked() ); if (m_Controls->m_Clip0->isChecked()) { m_SelectedNode->SetIntProperty( "3DClippingPlaneId", 0 ); Set3DClippingPlane(true, m_SelectedNode, ""); } else if (m_Controls->m_Clip1->isChecked()) { m_SelectedNode->SetIntProperty( "3DClippingPlaneId", 1 ); Set3DClippingPlane(false, m_SelectedNode, "axial"); } else if (m_Controls->m_Clip2->isChecked()) { m_SelectedNode->SetIntProperty( "3DClippingPlaneId", 2 ); Set3DClippingPlane(false, m_SelectedNode, "sagittal"); } else if (m_Controls->m_Clip3->isChecked()) { m_SelectedNode->SetIntProperty( "3DClippingPlaneId", 3 ); Set3DClippingPlane(false, m_SelectedNode, "coronal"); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::OnSliceChanged() { mitk::DataStorage::SetOfObjects::ConstPointer nodes = this->GetDataStorage()->GetAll(); for (unsigned int i=0; iSize(); ++i) { mitk::DataNode::Pointer node = nodes->GetElement(i); int plane_id = -1; node->GetIntProperty("3DClippingPlaneId", plane_id); if (plane_id==1) Set3DClippingPlane(false, node, "axial"); else if (plane_id==2) Set3DClippingPlane(false, node, "sagittal"); else if (plane_id==3) Set3DClippingPlane(false, node, "coronal"); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::Set3DClippingPlane(bool disable, mitk::DataNode* node, std::string plane) { mitk::IRenderWindowPart* renderWindow = this->GetRenderWindowPart(); if (renderWindow && node && (dynamic_cast(node->GetData()) || dynamic_cast(node->GetData()))) { mitk::Vector3D planeNormal; planeNormal.Fill(0.0); mitk::Point3D planeOrigin; planeOrigin.Fill(0.0); if (!disable) { mitk::SliceNavigationController* slicer = renderWindow->GetQmitkRenderWindow(QString(plane.c_str()))->GetSliceNavigationController(); mitk::PlaneGeometry::ConstPointer planeGeo = slicer->GetCurrentPlaneGeometry(); planeOrigin = this->GetRenderWindowPart()->GetSelectedPosition(); planeNormal = planeGeo->GetNormal(); } node->SetProperty( "3DClipping", mitk::ClippingProperty::New( planeOrigin, planeNormal ) ); if (dynamic_cast(node->GetData())) dynamic_cast(node->GetData())->RequestUpdate(); else mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_T() { m_GlyIsOn_T = m_Controls->m_VisibleOdfsON_T->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is nullptr"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_T", m_GlyIsOn_T); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::VisibleOdfsON_C() { m_GlyIsOn_C = m_Controls->m_VisibleOdfsON_C->isChecked(); if (m_NodeUsedForOdfVisualization.IsNull()) { MITK_WARN << "ODF visualization activated but m_NodeUsedForOdfVisualization is nullptr"; return; } m_NodeUsedForOdfVisualization->SetBoolProperty("VisibleOdfs_C", m_GlyIsOn_C); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } bool QmitkControlVisualizationPropertiesView::IsPlaneRotated() { mitk::Image* currentImage = dynamic_cast( m_NodeUsedForOdfVisualization->GetData() ); if( currentImage == nullptr ) { MITK_ERROR << " Casting problems. Returning false"; return false; } mitk::Vector3D imageNormal0 = currentImage->GetSlicedGeometry()->GetAxisVector(0); mitk::Vector3D imageNormal1 = currentImage->GetSlicedGeometry()->GetAxisVector(1); mitk::Vector3D imageNormal2 = currentImage->GetSlicedGeometry()->GetAxisVector(2); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); auto renderWindowPart = this->GetRenderWindowPart(); double eps = 0.000001; // for all 2D renderwindows of the render window part check alignment { mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast ( renderWindowPart->GetQmitkRenderWindow("axial")->GetRenderer()->GetCurrentWorldPlaneGeometry() ); if (displayPlane.IsNull()) { return false; } mitk::Vector3D normal = displayPlane->GetNormal(); normal.Normalize(); int test = 0; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal0.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal1.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal2.GetVnlVector()))-1) > eps ) { test++; } if (test==3) { return true; } } { mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast ( renderWindowPart->GetQmitkRenderWindow("sagittal")->GetRenderer()->GetCurrentWorldPlaneGeometry() ); if (displayPlane.IsNull()) { return false; } mitk::Vector3D normal = displayPlane->GetNormal(); normal.Normalize(); int test = 0; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal0.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal1.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal2.GetVnlVector()))-1) > eps ) { test++; } if (test==3) { return true; } } { mitk::PlaneGeometry::ConstPointer displayPlane = dynamic_cast ( renderWindowPart->GetQmitkRenderWindow("coronal")->GetRenderer()->GetCurrentWorldPlaneGeometry() ); if (displayPlane.IsNull()) { return false; } mitk::Vector3D normal = displayPlane->GetNormal(); normal.Normalize(); int test = 0; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal0.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal1.GetVnlVector()))-1) > eps ) { test++; } if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal2.GetVnlVector()))-1) > eps ) { test++; } if (test==3) { return true; } } return false; } void QmitkControlVisualizationPropertiesView::ShowMaxNumberChanged() { int maxNr = m_Controls->m_ShowMaxNumber->value(); if ( maxNr < 1 ) { m_Controls->m_ShowMaxNumber->setValue( 1 ); maxNr = 1; } if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetIntProperty("ShowMaxNumber", maxNr); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::NormalizationDropdownChanged(int normDropdown) { typedef mitk::OdfNormalizationMethodProperty PropType; PropType::Pointer normMeth = PropType::New(); switch(normDropdown) { case 0: normMeth->SetNormalizationToMinMax(); break; case 1: normMeth->SetNormalizationToMax(); break; case 2: normMeth->SetNormalizationToNone(); break; case 3: normMeth->SetNormalizationToGlobalMax(); break; default: normMeth->SetNormalizationToMinMax(); } if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetProperty("Normalization", normMeth.GetPointer()); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::ScalingFactorChanged(double scalingFactor) { if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetFloatProperty("Scaling", scalingFactor); } if (auto renderWindowPart = this->GetRenderWindowPart()) { renderWindowPart->RequestUpdate(); } } void QmitkControlVisualizationPropertiesView::AdditionalScaling(int additionalScaling) { typedef mitk::OdfScaleByProperty PropType; PropType::Pointer scaleBy = PropType::New(); switch(additionalScaling) { case 0: scaleBy->SetScaleByNothing(); break; case 1: scaleBy->SetScaleByGFA(); //m_Controls->params_frame->setVisible(true); break; default: scaleBy->SetScaleByNothing(); } if ( dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) || dynamic_cast(m_SelectedNode->GetData()) ) { m_SelectedNode->SetProperty("ScaleBy", scaleBy.GetPointer()); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkControlVisualizationPropertiesView::Fiber2DfadingEFX() { if (m_SelectedNode && dynamic_cast(m_SelectedNode->GetData()) ) { bool currentMode; m_SelectedNode->GetBoolProperty("Fiber2DfadeEFX", currentMode); m_SelectedNode->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(!currentMode)); dynamic_cast(m_SelectedNode->GetData())->RequestUpdate2D(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingThickness2D() { if (m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float fibThickness = m_Controls->m_FiberThicknessSlider->value() * 0.1; float currentThickness = 0; m_SelectedNode->GetFloatProperty("Fiber2DSliceThickness", currentThickness); if ( fabs(fibThickness-currentThickness) < 0.001 ) { return; } m_SelectedNode->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(fibThickness)); dynamic_cast(m_SelectedNode->GetData())->RequestUpdate2D(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::FiberSlicingUpdateLabel(int value) { QString label = "Range %1 mm"; label = label.arg(value * 0.1); m_Controls->label_range->setText(label); FiberSlicingThickness2D(); } void QmitkControlVisualizationPropertiesView::SetCustomColor(const itk::EventObject& /*e*/) { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float color[3]; m_SelectedNode->GetColor(color); mitk::FiberBundle::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->SetFiberColors(color[0]*255, color[1]*255, color[2]*255); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else if (m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float color[3]; m_SelectedNode->GetColor(color); mitk::PeakImage::Pointer img = dynamic_cast(m_SelectedNode->GetData()); img->SetCustomColor(color[0]*255, color[1]*255, color[2]*255); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::ResetColoring() { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { mitk::FiberBundle::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->ColorFibersByOrientation(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { mitk::PeakImage::Pointer fib = dynamic_cast(m_SelectedNode->GetData()); fib->ColorByOrientation(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::PlanarFigureFocus() { if(m_SelectedNode) { mitk::PlanarFigure* _PlanarFigure = 0; _PlanarFigure = dynamic_cast (m_SelectedNode->GetData()); if (_PlanarFigure && _PlanarFigure->GetPlaneGeometry()) { QmitkRenderWindow* selectedRenderWindow = 0; bool PlanarFigureInitializedWindow = false; auto renderWindowPart = this->GetRenderWindowPart(mitk::WorkbenchUtil::IRenderWindowPartStrategy::OPEN); QmitkRenderWindow* axialRenderWindow = renderWindowPart->GetQmitkRenderWindow("axial"); if (m_SelectedNode->GetBoolProperty("PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, axialRenderWindow->GetRenderer())) { selectedRenderWindow = axialRenderWindow; } QmitkRenderWindow* sagittalRenderWindow = renderWindowPart->GetQmitkRenderWindow("sagittal"); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, sagittalRenderWindow->GetRenderer())) { selectedRenderWindow = sagittalRenderWindow; } QmitkRenderWindow* coronalRenderWindow = renderWindowPart->GetQmitkRenderWindow("coronal"); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, coronalRenderWindow->GetRenderer())) { selectedRenderWindow = coronalRenderWindow; } QmitkRenderWindow* _3DRenderWindow = renderWindowPart->GetQmitkRenderWindow("3d"); if (!selectedRenderWindow && m_SelectedNode->GetBoolProperty( "PlanarFigureInitializedWindow", PlanarFigureInitializedWindow, _3DRenderWindow->GetRenderer())) { selectedRenderWindow = _3DRenderWindow; } const mitk::PlaneGeometry* _PlaneGeometry = _PlanarFigure->GetPlaneGeometry(); mitk::VnlVector normal = _PlaneGeometry->GetNormalVnl(); mitk::PlaneGeometry::ConstPointer worldGeometry1 = axialRenderWindow->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry::ConstPointer _Plane1 = dynamic_cast( worldGeometry1.GetPointer() ); mitk::VnlVector normal1 = _Plane1->GetNormalVnl(); mitk::PlaneGeometry::ConstPointer worldGeometry2 = sagittalRenderWindow->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry::ConstPointer _Plane2 = dynamic_cast( worldGeometry2.GetPointer() ); mitk::VnlVector normal2 = _Plane2->GetNormalVnl(); mitk::PlaneGeometry::ConstPointer worldGeometry3 = coronalRenderWindow->GetRenderer()->GetCurrentWorldPlaneGeometry(); mitk::PlaneGeometry::ConstPointer _Plane3 = dynamic_cast( worldGeometry3.GetPointer() ); mitk::VnlVector normal3 = _Plane3->GetNormalVnl(); normal[0] = fabs(normal[0]); normal[1] = fabs(normal[1]); normal[2] = fabs(normal[2]); normal1[0] = fabs(normal1[0]); normal1[1] = fabs(normal1[1]); normal1[2] = fabs(normal1[2]); normal2[0] = fabs(normal2[0]); normal2[1] = fabs(normal2[1]); normal2[2] = fabs(normal2[2]); normal3[0] = fabs(normal3[0]); normal3[1] = fabs(normal3[1]); normal3[2] = fabs(normal3[2]); double ang1 = angle(normal, normal1); double ang2 = angle(normal, normal2); double ang3 = angle(normal, normal3); if(ang1 < ang2 && ang1 < ang3) { selectedRenderWindow = axialRenderWindow; } else { if(ang2 < ang3) { selectedRenderWindow = sagittalRenderWindow; } else { selectedRenderWindow = coronalRenderWindow; } } // make node visible if (selectedRenderWindow) { const mitk::Point3D& centerP = _PlaneGeometry->GetOrigin(); selectedRenderWindow->GetSliceNavigationController()->ReorientSlices( centerP, _PlaneGeometry->GetNormal()); } } // set interactor for new node (if not already set) mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(m_SelectedNode->GetDataInteractor().GetPointer()); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New(); us::Module* planarFigureModule = us::ModuleRegistry::GetModule( "MitkPlanarFigure" ); figureInteractor->LoadStateMachine("PlanarFigureInteraction.xml", planarFigureModule ); figureInteractor->SetEventConfig( "PlanarFigureConfig.xml", planarFigureModule ); figureInteractor->SetDataNode( m_SelectedNode ); } m_SelectedNode->SetProperty("planarfigure.iseditable",mitk::BoolProperty::New(true)); } } void QmitkControlVisualizationPropertiesView::SetInteractor() { // BUG 19179 // typedef std::vector Container; // Container _NodeSet = this->GetDataManagerSelection(); // mitk::DataNode* node = 0; // mitk::FiberBundle* bundle = 0; // mitk::FiberBundleInteractor::Pointer bundleInteractor = 0; // // finally add all nodes to the model // for(Container::const_iterator it=_NodeSet.begin(); it!=_NodeSet.end() // ; it++) // { // node = const_cast(*it); // bundle = dynamic_cast(node->GetData()); // if(bundle) // { // bundleInteractor = dynamic_cast(node->GetInteractor()); // if(bundleInteractor.IsNotNull()) // mitk::GlobalInteraction::GetInstance()->RemoveInteractor(bundleInteractor); // if(!m_Controls->m_Crosshair->isChecked()) // { // m_Controls->m_Crosshair->setChecked(false); // this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::ArrowCursor); // m_CurrentPickingNode = 0; // } // else // { // m_Controls->m_Crosshair->setChecked(true); // bundleInteractor = mitk::FiberBundleInteractor::New("FiberBundleInteractor", node); // mitk::GlobalInteraction::GetInstance()->AddInteractor(bundleInteractor); // this->GetActiveStdMultiWidget()->GetRenderWindow4()->setCursor(Qt::CrossCursor); // m_CurrentPickingNode = node; // } // } // } } void QmitkControlVisualizationPropertiesView::TubeRadiusChanged() { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float newRadius = m_Controls->m_TubeWidth->value(); m_SelectedNode->SetFloatProperty("shape.tuberadius", newRadius); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::RibbonWidthChanged() { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { float newWidth = m_Controls->m_RibbonWidth->value(); m_SelectedNode->SetFloatProperty("shape.ribbonwidth", newWidth); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::LineWidthChanged() { if(m_SelectedNode && dynamic_cast(m_SelectedNode->GetData())) { auto newWidth = m_Controls->m_LineWidth->value(); float currentWidth = 0; m_SelectedNode->SetFloatProperty("shape.linewidth", currentWidth); if (currentWidth==newWidth) return; m_SelectedNode->SetFloatProperty("shape.linewidth", newWidth); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkControlVisualizationPropertiesView::Welcome() { berry::PlatformUI::GetWorkbench()->GetIntroManager() ->ShowIntro(GetSite()->GetWorkbenchWindow(), false); } void QmitkControlVisualizationPropertiesView::OnColourisationModeChanged() { if( m_SelectedNode && m_NodeUsedForOdfVisualization.IsNotNull() ) { m_SelectedNode->SetProperty( "DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", mitk::BoolProperty::New( m_Controls->m_OdfColorBox->currentIndex() ) ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } else { MITK_DEBUG << "QmitkControlVisualizationPropertiesView::OnColourisationModeChanged() was called but m_NodeUsedForOdfVisualization was Null."; } } diff --git a/Modules/DiffusionCore/PythonRequirements.txt b/PythonRequirements.txt similarity index 100% rename from Modules/DiffusionCore/PythonRequirements.txt rename to PythonRequirements.txt diff --git a/README.md b/README.md index 129a285..b2ab696 100644 --- a/README.md +++ b/README.md @@ -1,251 +1,239 @@ MITK Diffusion ============== Copyright © German Cancer Research Center (DKFZ), [Division of Medical Image Computing (MIC)](https://www.dkfz.de/en/mic/index.php). Please make sure that your usage of this code is in compliance with the code [license](https://github.com/MIC-DKFZ/MITK-Diffusion/blob/master/LICENSE.txt). The MITK Diffusion application [[1,2]](#References) offers a selection of image analysis algorithms for the processing of diffusion-weighted MR images. It encompasses the research of the Division of Medical Image Computing at the German Cancer Research Center (DKFZ). * [Downloads](#Downloads) * [Requirements](#Requirements) * [Features](#Features) * [Related Links](#Related-Links) * [Image Gallery](#Image-Gallery) * [Building MITK Diffusion from source](#Building-MITK-Diffusion-from-source) * [User Manual](http://docs.mitk.org/nightly/org_mitk_gui_qt_diffusionimaging.html) * [Report a Bug](https://phabricator.mitk.org/maniphest/task/edit/form/29/) * [References](#References) * [Contact](#Contact) ## Downloads **Nightly Ubuntu and Windows installers: [ftp://ftp.dkfz-heidelberg.de/outgoing/MitkDiffusion](https://bit.ly/2S1QfC8)** Please also have a look at the [requirements](#Requirements) for running MITK Diffusion with all its features successfully! The installers come as executable setup wizards that install MITK Diffusion on your system or alternatively as simple .tar.gz or .zip archive where you can execute MITK Diffusion and the command line apps "manually". Should there be no new installer for a while, please [contact](#Contact) us and report the issue. If you encounter any bugs, please report them in our [bugtracking](https://phabricator.mitk.org/maniphest/task/edit/form/29/) system or use the [MITK-users mailing list](http://mitk.org/wiki/MITK_Mailinglist). We are grateful for any feedback! ### Requirements -* **For Ubuntu users**: - * Install Python 3.X: `sudo apt install python3 python3-pip` - * Download Python requirements file: [PythonRequirements.txt](https://github.com/MIC-DKFZ/MITK-Diffusion/tree/master/Modules/DiffusionCore/PythonRequirements.txt) - * Install Python requirements: `pip3 install -r PythonRequirements.txt` + * Install Python 3.X: `sudo apt install python3 python3-pip` (Ubuntu) or from https://www.python.org/downloads/windows/ (Windows) + * Download our Python requirements file: [PythonRequirements.txt](https://github.com/MIC-DKFZ/MITK-Diffusion/tree/master/PythonRequirements.txt) + * Install the Python requirements: `pip3 install -r PythonRequirements.txt` * If your are behind a proxy use `pip3 --proxy install -r PythonRequirements.txt` - * **Requirements for all deep-learning based functionalities**: - * Affected functionalities: - * Brain extraction - * TractSeg - * Pytorch: https://pytorch.org/ (version 0.4.0) * **For Windows users**: * MITK Diffusion requires the Microsoft Visual C++ 2017 Redistributable to be installed on the system. The MITK Diffusion installer automatically installs this redistributable for you if not already present on the system, but it needs administrative privileges to do so. So to install the redistributable, **run the MITK Diffusion installer as administrator**. - * Install python 3 from https://www.python.org/downloads/windows/ - * **Requirements for all deep-learning based functionalities**: - * Affected functionalities: - * Brain extraction - * TractSeg - * Pytorch: https://pytorch.org/ (version 0.4.0) ## Features **Support for most established image formats** * Images: DICOM, NIFTI, NRRD (peak and SH images compatible with MRtrix) * Tractograms: fib/vtk, tck and trk. **Image preprocessing** * Registration * Head-motion correction * Denoising * Skull stripping and brain mask segmentation (Linux only) * Resampling, cropping, flipping and merging * Header modifications * Single volume extraction **Diffusion gradient/b-value processing** * b-value rounding * Gradient direction flipping * Gradient direction subsampling * Averaging of gradient directions/volumes * Gradient direction and b-value visualization **ODF reconstruction and signal modelling** * Tensor and Q-ball reconstruction * Other reconstructions via Dipy wrapping (CSD, 3D SHORE, SFM) (Linux only) * ODF peak calculation * MRtrix or camino results can be imported **Quantification of diffusion-weighted/tensor/ODF images** * Intravoxel Incoherent Motion (IVIM) and diffusion kurtosis analysis * Calculation of many other derived indices such as ADC, MD, GFA, FA, RA, AD, RD * Image statistics **Segmentation** * Automatic white matter bundle segmentation (TractSeg) [[3]](#References) (Linux only) * Automatic brain mask segmentation (Linux only) * Manual image segmentation and operations on segmentations * SOON: automatic brain tissue segmentation **Fiber tractography** * Global tractography [[4]](#References) * Streamline tractography * Interactive (similar to [[5]](#References)) or seed image based * Deterministic or probabilistic * Peak, ODF, tensor and raw dMRI based. The latter one in conjunction with machine learning based tractography [[6]](#References) * Various possibilities for anatomical constraints. * Tractography priors in form of additional peak images, e.g. obtained using TractSeg **Fiber processing** * Tract dissection (parcellation or ROI based) * Tract filtering by * length * curvature * direction * weight * density * Tract resampling and compression * Tract transformation * Mirroring * Rotating and translating * Registration (apply transform of previously performed image registration) * Tract coloring * Curvature * Length * Weight * Scalar map (e.g. FA) * Other operations * Join * Subtract * Copy * Fiber clustering [[7]](#References) * Fiber fitting and weighting similar to SIFT2 and LiFE [[8,9]](#References) * Principal direction extraction (fibers --> peaks) * Tract derived images: * Tract density images * Tract endpoint images * Tract envelopes **Fiberfox dMRI simulations** [[10]](#References) * Multi-compartment signal modeling * Simulation of the k-space acquisition including * Compartment specific relaxation effects * Artifacts such as noise, spikes, ghosts, aliasing, distortions, signal drift, head motion, eddy currents and Gibbs ringing * Definition of important acquisition parameters such as bvalues and gradient directions, TE, TR, dwell time, partial Fourier, ... * Manual definition of fiber configurations, e.g. for evaluation purposes * Automatic generation of random fiber configurations **Other features** * Brain network statistics and visualization (connectomics) * Interactive Python console (Linux only) * Integrated screenshot maker * Command line tools for most functionalities ## Related Links * Great python package for logging your (MITK) command line experiments: * https://github.com/MIC-DKFZ/cmdint * `pip3 install cmdint` * TractSeg reference data of 72 semiautomatically defined bundles in 105 HCP subjects: https://zenodo.org/record/1285152 * TractSeg python package: https://github.com/MIC-DKFZ/TractSeg * Simulated dMRI images and ground truth of random fiber phantoms in various configurations: https://doi.org/10.5281/zenodo.2533250 * ISMRM 2015 Tractography Challenge Data: https://doi.org/10.5281/zenodo.572345 & https://doi.org/10.5281/zenodo.1007149 ## Image Gallery ![](http://mitk.org/images/8/8f/MitkDiffusion.png) Screenshot of the MITK Diffusion Welcome Screen


![](http://mitk.org/images/0/09/ScalarMaps.png) Scalar map visualization


![](http://mitk.org/images/3/3b/Data_Tensors.png) Tensor Visualization


![](http://mitk.org/images/5/5c/Data_ODF.png) ODF visualization


![](http://mitk.org/images/7/73/Data_Peaks.png) Peak visualization (uniform white coloring)


![](http://mitk.org/images/6/68/StreamlineTractography.png) Interactive tractography in MITK Diffusion. The tractogram updates automatically on parameter change and movement of the spherical seed region.


![](http://mitk.org/images/3/3a/Extraction_1.png) Tract dissection using manually drawn ROIs.


![](http://mitk.org/images/f/f5/FiberFit.png) Automatic streamline weighting (similar to SIFT2 or LiFE)


![](http://mitk.org/images/3/33/Fiberfox.png) Illustration of the dMRI phantom simulation process using Fiberfox.


\ Illustration of simulated dMRI images with various artifacts (a bit excessive for illustration purposes): eddy current distortions (1), motion and spike (2), intensity drift (3), motion, eddy and noise (4), ringing (5), B0 inhomogeneity distortions (6), from left to right.


![](http://mitk.org/images/0/08/RandomFibers_Example.png) Automatically generated random fiber configuration for Fiberfox simulations.


## Building MITK Diffusion from source * Install [Qt](https://www.qt.io/ Qt) on your system (>= 5.11.1). * Clone MITK from [github](https://github.com/MIC-DKFZ/MITK-Diffusion.git) using [Git version control](https://git-scm.com/). * Clone MITK Diffusion from [github](https://github.com/MITK/MITK.git). * Configure the MITK Superbuild using [CMake](https://cmake.org/) (>= 3.14.5). * Choose the MITK source code directory and an empty binary directory. * Click "Configure". * Set the option MITK_EXTENSION_DIRS to "/path/to/my/mitk-diffusion-repository". * Click "Configure". * Set the option MITK_BUILD_CONFIGURATION to "DiffusionRelease". * Click "Generate". * macOS specifics: * Use python 3.**6**, since python 3.**7** leads to build errors on macOS. * The cmake variables for python 3 might need to be set manually. It is probably enough to specify PYTHON_EXECUTABLE. * Openmp needs to be installed manually since it is not included in apple clang anymore: "brew install libomp" should do the trick. It might be necessary to set the corresponding make variables later in the MITK build manually: * OpenMP_CXX_FLAGS: -Xpreprocessor -fopenmp -I"/path/to/python3/includes/" * OpenMP_C_FLAGS: -Xpreprocessor -fopenmp -I"/path/to/python3/includes/" * OpenMPCXX_LIB_NAMES: libomp * OpenMPC_LIB_NAMES: libomp * OpenMP_libomp_LIBRARY: /path/to/libomp.dylib * Build the project * Linux/maxOS: Open a console window, navigate to the build folder and type "make -j8" (optionally supply the number threads to be used for a parallel build with -j). * Windows (requires visual studio): Open the MITK Superbuild solution file and build all projects. * The build may take some time and should yield the binaries in "your_build_folder/MITK-build/bin" More detailed build instructions can be found in the [documentation](http://docs.mitk.org/nightly/BuildInstructionsPage.html). Continuous integration: http://cdash.mitk.org/index.php?project=MITK&display=project ## References All publications of the Division of Medical Image Computing can be found [https://www.dkfz.de/en/mic/publications/ here]. [1] Fritzsche, Klaus H., Peter F. Neher, Ignaz Reicht, Thomas van Bruggen, Caspar Goch, Marco Reisert, Marco Nolden, et al. “MITK Diffusion Imaging.” Methods of Information in Medicine 51, no. 5 (2012): 441. [2] Fritzsche, K., and H.-P. Meinzer. “MITK-DI A New Diffusion Imaging Component for MITK.” In Bildverarbeitung Für Die Medizin, n.d. [3] Wasserthal, Jakob, Peter Neher, and Klaus H. Maier-Hein. “TractSeg - Fast and Accurate White Matter Tract Segmentation.” NeuroImage 183 (August 4, 2018): 239–53. [4] Neher, P. F., B. Stieltjes, M. Reisert, I. Reicht, H.P. Meinzer, and K. Maier-Hein. “MITK Global Tractography.” In SPIE Medical Imaging: Image Processing, 2012. [5] Chamberland, M., K. Whittingstall, D. Fortin, D. Mathieu, und M. Descoteaux. „Real-time multi-peak tractography for instantaneous connectivity display“. Front Neuroinform 8 (2014): 59. doi:10.3389/fninf.2014.00059. [6] Neher, Peter F., Marc-Alexandre Côté, Jean-Christophe Houde, Maxime Descoteaux, and Klaus H. Maier-Hein. “Fiber Tractography Using Machine Learning.” NeuroImage. Accessed July 17, 2017. doi:10.1016/j.neuroimage.2017.07.028. [7] Garyfallidis, Eleftherios, Matthew Brett, Marta Morgado Correia, Guy B. Williams, and Ian Nimmo-Smith. “QuickBundles, a Method for Tractography Simplification.” Frontiers in Neuroscience 6 (2012). [8] Smith, Robert E., Jacques-Donald Tournier, Fernando Calamante, and Alan Connelly. “SIFT2: Enabling Dense Quantitative Assessment of Brain White Matter Connectivity Using Streamlines Tractography.” NeuroImage 119, no. Supplement C (October 1, 2015): 338–51. [9] Pestilli, Franco, Jason D. Yeatman, Ariel Rokem, Kendrick N. Kay, and Brian A. Wandell. “Evaluation and Statistical Inference for Human Connectomes.” Nature Methods 11, no. 10 (October 2014): 1058–63. [10] Neher, Peter F., Frederik B. Laun, Bram Stieltjes, and Klaus H. Maier-Hein. “Fiberfox: Facilitating the Creation of Realistic White Matter Software Phantoms.” Magnetic Resonance in Medicine 72, no. 5 (November 2014): 1460–70. doi:10.1002/mrm.25045. ## Contact If you have questions about the application or if you would like to give us feedback, don't hesitate to contact us using [our mailing list](http://mitk.org/wiki/MITK_Mailinglist) or, for questions that are of no interest for the community, [directly](https://www.dkfz.de/en/mic/team/people/Peter_Neher.html).