diff --git a/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp b/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp index 451c60bd3c..7ad21d0566 100644 --- a/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp +++ b/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.cpp @@ -1,781 +1,795 @@ /*========================================================================= Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkIVIMView.h" #include "QmitkStdMultiWidget.h" // qt #include "qmessagebox.h" #include "qclipboard.h" // mitk #include "mitkDiffusionImage.h" #include "mitkImageCast.h" // itk #include "itkScalarImageToHistogramGenerator.h" #include "itkRegionOfInterestImageFilter.h" #include "itkImageRegionConstIteratorWithIndex.h" // itk/mitk #include "itkDiffusionIntravoxelIncoherentMotionReconstructionImageFilter.h" #include "itkRegularizedIVIMReconstructionFilter.h" #include "mitkImageCast.h" const std::string QmitkIVIMView::VIEW_ID = "org.mitk.views.ivim"; QmitkIVIMView::QmitkIVIMView() : QmitkFunctionality() , m_Controls( 0 ) - , m_MultiWidget( NULL ) + , m_MultiWidget( NULL ), + m_Active(false) { } QmitkIVIMView::~QmitkIVIMView() { } void QmitkIVIMView::CreateQtPartControl( QWidget *parent ) { + // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkIVIMViewControls; m_Controls->setupUi( parent ); connect( m_Controls->m_ButtonStart, SIGNAL(clicked()), this, SLOT(FittIVIMStart()) ); connect( m_Controls->m_ButtonAutoThres, SIGNAL(clicked()), this, SLOT(AutoThreshold()) ); connect( m_Controls->m_MethodCombo, SIGNAL(currentIndexChanged(int)), this, SLOT(MethodCombo(int)) ); connect( m_Controls->m_DStarSlider, SIGNAL(valueChanged(int)), this, SLOT(DStarSlider(int)) ); connect( m_Controls->m_BThreshSlider, SIGNAL(valueChanged(int)), this, SLOT(BThreshSlider(int)) ); connect( m_Controls->m_S0ThreshSlider, SIGNAL(valueChanged(int)), this, SLOT(S0ThreshSlider(int)) ); connect( m_Controls->m_NumItSlider, SIGNAL(valueChanged(int)), this, SLOT(NumItsSlider(int)) ); connect( m_Controls->m_LambdaSlider, SIGNAL(valueChanged(int)), this, SLOT(LambdaSlider(int)) ); connect( m_Controls->m_DisplayResultsCheckbox, SIGNAL(clicked()), this, SLOT(Checkbox()) ); connect( m_Controls->m_CheckDStar, SIGNAL(clicked()), this, SLOT(Checkbox()) ); connect( m_Controls->m_CheckD, SIGNAL(clicked()), this, SLOT(Checkbox()) ); connect( m_Controls->m_Checkf, SIGNAL(clicked()), this, SLOT(Checkbox()) ); connect( m_Controls->m_ChooseMethod, SIGNAL(clicked()), this, SLOT(ChooseMethod()) ); connect( m_Controls->m_CurveClipboard, SIGNAL(clicked()), this, SLOT(ClipboardCurveButtonClicked()) ); connect( m_Controls->m_ValuesClipboard, SIGNAL(clicked()), this, SLOT(ClipboardStatisticsButtonClicked()) ); } QString dstar = QString::number(m_Controls->m_DStarSlider->value()/1000.0); m_Controls->m_DStarLabel->setText(dstar); QString bthresh = QString::number(m_Controls->m_BThreshSlider->value()*5.0); m_Controls->m_BThreshLabel->setText(bthresh); QString s0thresh = QString::number(m_Controls->m_S0ThreshSlider->value()*0.5); m_Controls->m_S0ThreshLabel->setText(s0thresh); QString numits = QString::number(m_Controls->m_NumItSlider->value()); m_Controls->m_NumItsLabel->setText(numits); QString lambda = QString::number(m_Controls->m_LambdaSlider->value()*.00001); m_Controls->m_LambdaLabel->setText(lambda); m_Controls->m_VisualizeResultsWidget->setVisible(m_Controls->m_DisplayResultsCheckbox->isChecked()); m_Controls->m_MethodCombo->setVisible(m_Controls->m_ChooseMethod->isChecked()); // m_Controls->m_ADCBValues->setVisible(m_Controls->m_CheckADC->isChecked()); MethodCombo(m_Controls->m_MethodCombo->currentIndex()); } void QmitkIVIMView::Checkbox() { m_Controls->m_VisualizeResultsWidget->setVisible(m_Controls->m_DisplayResultsCheckbox->isChecked()); // m_Controls->m_ADCBValues->setVisible(m_Controls->m_CheckADC->isChecked()); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::MethodCombo(int val) { switch(val) { case 0: m_Controls->dstar->setVisible(false); m_Controls->thres->setVisible(false); m_Controls->thres_2->setVisible(true); m_Controls->m_RegFrame->setVisible(false); break; case 1: m_Controls->dstar->setVisible(true); m_Controls->thres->setVisible(false); m_Controls->thres_2->setVisible(true); m_Controls->m_RegFrame->setVisible(false); break; case 2: m_Controls->dstar->setVisible(false); m_Controls->thres->setVisible(true); m_Controls->thres_2->setVisible(true); m_Controls->m_RegFrame->setVisible(false); break; case 3: m_Controls->dstar->setVisible(false); m_Controls->thres->setVisible(true); m_Controls->thres_2->setVisible(true); m_Controls->m_RegFrame->setVisible(false); break; case 4: m_Controls->dstar->setVisible(false); m_Controls->thres->setVisible(true); m_Controls->thres_2->setVisible(true); m_Controls->m_RegFrame->setVisible(true); break; } itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::DStarSlider (int val) { QString sval = QString::number(val/1000.0); m_Controls->m_DStarLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::BThreshSlider (int val) { QString sval = QString::number(val*5.0); m_Controls->m_BThreshLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::S0ThreshSlider (int val) { QString sval = QString::number(val*0.5); m_Controls->m_S0ThreshLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::NumItsSlider (int val) { QString sval = QString::number(val); m_Controls->m_NumItsLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::LambdaSlider (int val) { QString sval = QString::number(val*.00001); m_Controls->m_LambdaLabel->setText(sval); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkIVIMView::OnSliceChanged ); m_SliceObserverTag1 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkIVIMView::OnSliceChanged ); m_SliceObserverTag2 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkIVIMView::OnSliceChanged ); m_SliceObserverTag3 = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } } void QmitkIVIMView::StdMultiWidgetNotAvailable() { { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag1 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag2 ); } { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); slicer->RemoveObserver( m_SliceObserverTag3 ); } m_MultiWidget = NULL; } void QmitkIVIMView::OnSelectionChanged( std::vector nodes ) { bool foundOneDiffusionImage = false; // iterate all selected objects, adjust warning visibility for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if( node.IsNotNull() ) { mitk::DiffusionImage* img = dynamic_cast*>(node->GetData()); if( img ) { if(!foundOneDiffusionImage ) { foundOneDiffusionImage = true; } else { foundOneDiffusionImage = false; } } } } // m_Controls->m_ADCBValues->setVisible( foundOneDiffusionImage && m_Controls->m_CheckADC->isChecked() ); m_Controls->m_ButtonStart->setEnabled( foundOneDiffusionImage ); m_Controls->m_ButtonAutoThres->setEnabled( foundOneDiffusionImage ); m_Controls->m_ControlsFrame->setEnabled( foundOneDiffusionImage ); m_Controls->m_BottomControlsFrame->setEnabled( foundOneDiffusionImage ); itk::StartEvent dummy; OnSliceChanged(dummy); } void QmitkIVIMView::AutoThreshold() { std::vector nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; if (!nodes.front()) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, "Template", "Please load and select a diffusion image before starting image processing."); return; } typedef mitk::DiffusionImage DiffImgType; DiffImgType* dimg = dynamic_cast(nodes.front()->GetData()); if (!dimg) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, "Template", "No valid diffusion image was found."); return; } // find bzero index int index = -1; DiffImgType::GradientDirectionContainerType::Pointer directions = dimg->GetDirections(); for(DiffImgType::GradientDirectionContainerType::ConstIterator it = directions->Begin(); it != directions->End(); ++it) { index++; DiffImgType::GradientDirectionType g = it.Value(); if(g[0] == 0 && g[1] == 0 && g[2] == 0 ) break; } typedef itk::VectorImage VecImgType; VecImgType::Pointer vecimg = dimg->GetVectorImage(); int vecLength = vecimg->GetVectorLength(); index = index > vecLength-1 ? vecLength-1 : index; MITK_INFO << "Performing Histogram Analysis on Channel" << index; typedef itk::Image ImgType; ImgType::Pointer img = ImgType::New(); mitk::CastToItkImage(dimg, img); itk::ImageRegionIterator itw (img, img->GetLargestPossibleRegion() ); itw = itw.Begin(); itk::ImageRegionConstIterator itr (vecimg, vecimg->GetLargestPossibleRegion() ); itr = itr.Begin(); while(!itr.IsAtEnd()) { itw.Set(itr.Get().GetElement(index)); ++itr; ++itw; } typedef itk::Statistics::ScalarImageToHistogramGenerator< ImgType > HistogramGeneratorType; typedef HistogramGeneratorType::HistogramType HistogramType; HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( img ); histogramGenerator->SetMarginalScale( 10 ); // Defines y-margin width of histogram histogramGenerator->SetNumberOfBins( 100 ); // CT range [-1024, +2048] --> bin size 4 values histogramGenerator->SetHistogramMin( dimg->GetScalarValueMin() ); histogramGenerator->SetHistogramMax( dimg->GetScalarValueMax() * .5 ); histogramGenerator->Compute(); HistogramType::ConstIterator iter = histogramGenerator->GetOutput()->Begin(); float maxFreq = 0; float maxValue = 0; while ( iter != histogramGenerator->GetOutput()->End() ) { if(iter.GetFrequency() > maxFreq) { maxFreq = iter.GetFrequency(); maxValue = iter.GetMeasurementVector()[0]; } ++iter; } maxValue *= 2; int sliderPos = maxValue * 2; m_Controls->m_S0ThreshSlider->setValue(sliderPos); S0ThreshSlider(sliderPos); } void QmitkIVIMView::FittIVIMStart() { std::vector nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; if (!nodes.front()) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, "Template", "Please load and select a diffusion image before starting image processing."); return; } mitk::DiffusionImage* img = dynamic_cast*>( nodes.front()->GetData()); if (!img) { // Nothing selected. Inform the user and return QMessageBox::information( NULL, "Template", "No valid diffusion image was found."); return; } typedef itk::VectorImage VecImgType; VecImgType::Pointer vecimg = img->GetVectorImage(); OutImgType::IndexType dummy; FittIVIM(vecimg, img->GetDirections(), img->GetB_Value(), true, dummy); OutputToDatastorage(nodes); } void QmitkIVIMView::OnSliceChanged(const itk::EventObject& /*e*/) { - m_Controls->m_VisualizeResultsWidget->setVisible(false); - m_Controls->m_Warning->setVisible(false); + if(!m_Controls || !m_Active) + return; + m_Controls->m_FigureWidgetFrame->setVisible(false); + m_Controls->m_Warning->setVisible(false); if(!m_Controls->m_DisplayResultsCheckbox->isChecked()) return; std::vector nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; if (!nodes.front()) return; if (nodes.size()>2) return; mitk::DiffusionImage* diffusionImg = 0; mitk::DiffusionImage* img1 = dynamic_cast*>( nodes.front()->GetData()); mitk::DiffusionImage* img2 = 0; mitk::Image* maskImg = 0; if(nodes.size()>1) { if(img1) { if(strcmp(nodes.at(1)->GetData()->GetNameOfClass(), "Image") != 0 ) return; maskImg = dynamic_cast( nodes.at(1)->GetData()); diffusionImg = img1; } else { if(strcmp(nodes.front()->GetData()->GetNameOfClass(), "Image") != 0 ) return; maskImg = dynamic_cast( nodes.front()->GetData()); diffusionImg = dynamic_cast*>( nodes.at(1)->GetData()); } } else { diffusionImg = img1; } if (nodes.size()==2 && (!diffusionImg || !maskImg || m_Controls->m_MethodCombo->currentIndex() == 4 )) return; if (nodes.size()==1 && !diffusionImg) return; if (!m_MultiWidget) return; m_Controls->m_VisualizeResultsWidget->setVisible(true); typedef itk::VectorImage VecImgType; VecImgType::Pointer vecimg = (VecImgType*)diffusionImg->GetVectorImage().GetPointer(); VecImgType::Pointer roiImage = VecImgType::New(); if(maskImg == 0) { int roisize = 0; if(m_Controls->m_MethodCombo->currentIndex() == 4) roisize = 5; mitk::Point3D pos = m_MultiWidget->GetCrossPosition(); VecImgType::IndexType crosspos; diffusionImg->GetTimeSlicedGeometry()->WorldToIndex(pos, crosspos); VecImgType::IndexType index; index[0] = crosspos[0] - roisize; index[0] = index[0] < 0 ? 0 : index[0]; index[1] = crosspos[1] - roisize; index[1] = index[1] < 0 ? 0 : index[1]; index[2] = crosspos[2] - roisize; index[2] = index[2] < 0 ? 0 : index[2]; VecImgType::SizeType size; size[0] = roisize*2+1; size[1] = roisize*2+1; size[2] = roisize*2+1; VecImgType::SizeType maxSize = vecimg->GetLargestPossibleRegion().GetSize(); size[0] = index[0]+size[0] > maxSize[0] ? maxSize[0]-index[0] : size[0]; size[1] = index[1]+size[1] > maxSize[1] ? maxSize[1]-index[1] : size[1]; size[2] = index[2]+size[2] > maxSize[2] ? maxSize[2]-index[2] : size[2]; VecImgType::RegionType region; region.SetSize( size ); region.SetIndex( index ); vecimg->SetRequestedRegion( region ); VecImgType::IndexType newstart; newstart.Fill(0); VecImgType::RegionType newregion; newregion.SetSize( size ); newregion.SetIndex( newstart ); roiImage->CopyInformation( vecimg ); roiImage->SetRegions( newregion ); roiImage->SetOrigin( pos ); roiImage->Allocate(); roiImage->SetPixel(newstart, vecimg->GetPixel(index)); FittIVIM(roiImage, diffusionImg->GetDirections(), diffusionImg->GetB_Value(), false, crosspos); } else { typedef itk::Image MaskImgType; MaskImgType::Pointer maskItk; CastToItkImage( maskImg, maskItk ); mitk::Point3D pos; pos[0] = 0; pos[1] = 0; pos[2] = 0; VecImgType::IndexType index; index[0] = 0; index[1] = 0; index[2] = 0; VecImgType::SizeType size; size[0] = 1; size[1] = 1; size[2] = 1; VecImgType::RegionType region; region.SetSize( size ); region.SetIndex( index ); vecimg->SetRequestedRegion( region ); // iterators over output and input itk::ImageRegionConstIteratorWithIndex vecit(vecimg, vecimg->GetLargestPossibleRegion()); itk::VariableLengthVector avg(vecimg->GetVectorLength()); avg.Fill(0); float numPixels = 0; while ( ! vecit.IsAtEnd() ) { VecImgType::PointType point; vecimg->TransformIndexToPhysicalPoint(vecit.GetIndex(), point); MaskImgType::IndexType index; maskItk->TransformPhysicalPointToIndex(point, index); if(maskItk->GetPixel(index) != 0) { avg += vecit.Get(); numPixels += 1.0; } // update iterators ++vecit; } avg /= numPixels; m_Controls->m_Warning->setText(QString("Averaging ")+QString::number((int)numPixels)+QString(" voxels!")); m_Controls->m_Warning->setVisible(true); roiImage->CopyInformation( vecimg ); roiImage->SetRegions( region ); roiImage->SetOrigin( pos ); roiImage->Allocate(); roiImage->SetPixel(index, avg); FittIVIM(roiImage, diffusionImg->GetDirections(), diffusionImg->GetB_Value(), false, index); } vecimg->SetRegions( vecimg->GetLargestPossibleRegion() ); m_Controls->m_VisualizeResultsWidget->SetParameters(m_Snap); } void QmitkIVIMView::FittIVIM(itk::VectorImage* vecimg, DirContainerType* dirs, float bval, bool multivoxel, OutImgType::IndexType &crosspos) { IVIMFilterType::Pointer filter = IVIMFilterType::New(); filter->SetInput(vecimg); filter->SetGradientDirections(dirs); filter->SetBValue(bval); switch(m_Controls->m_MethodCombo->currentIndex()) { case 0: filter->SetMethod(IVIMFilterType::IVIM_FIT_ALL); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); break; case 1: filter->SetMethod(IVIMFilterType::IVIM_DSTAR_FIX); filter->SetDStar(m_Controls->m_DStarLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); break; case 2: filter->SetMethod(IVIMFilterType::IVIM_D_THEN_DSTAR); filter->SetBThres(m_Controls->m_BThreshLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); filter->SetFitDStar(m_Controls->m_CheckDStar->isChecked()); break; case 3: filter->SetMethod(IVIMFilterType::IVIM_LINEAR_D_THEN_F); filter->SetBThres(m_Controls->m_BThreshLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); filter->SetFitDStar(m_Controls->m_CheckDStar->isChecked()); break; case 4: filter->SetMethod(IVIMFilterType::IVIM_REGULARIZED); filter->SetBThres(m_Controls->m_BThreshLabel->text().toDouble()); filter->SetS0Thres(m_Controls->m_S0ThreshLabel->text().toDouble()); filter->SetNumberIterations(m_Controls->m_NumItsLabel->text().toInt()); filter->SetLambda(m_Controls->m_LambdaLabel->text().toDouble()); filter->SetFitDStar(m_Controls->m_CheckDStar->isChecked()); break; } if(!multivoxel) { filter->SetFitDStar(true); } filter->SetNumberOfThreads(1); filter->SetVerbose(multivoxel); filter->SetCrossPosition(crosspos); filter->Update(); m_Snap = filter->GetSnapshot(); m_DStarMap = filter->GetOutput(2); m_DMap = filter->GetOutput(1); m_fMap = filter->GetOutput(0); } void QmitkIVIMView::OutputToDatastorage(std::vector nodes) { // Outputs to Datastorage QString basename(nodes.front()->GetName().c_str()); if(m_Controls->m_CheckDStar->isChecked()) { mitk::Image::Pointer dstarimage = mitk::Image::New(); dstarimage->InitializeByItk(m_DStarMap.GetPointer()); dstarimage->SetVolume(m_DStarMap->GetBufferPointer()); QString newname2 = basename; newname2 = newname2.append("_DStarMap%1").arg(m_Controls->m_MethodCombo->currentIndex()); mitk::DataNode::Pointer node2=mitk::DataNode::New(); node2->SetData( dstarimage ); node2->SetName(newname2.toAscii()); GetDefaultDataStorage()->Add(node2); } if(m_Controls->m_CheckD->isChecked()) { mitk::Image::Pointer dimage = mitk::Image::New(); dimage->InitializeByItk(m_DMap.GetPointer()); dimage->SetVolume(m_DMap->GetBufferPointer()); QString newname1 = basename; newname1 = newname1.append("_DMap%1").arg(m_Controls->m_MethodCombo->currentIndex()); mitk::DataNode::Pointer node1=mitk::DataNode::New(); node1->SetData( dimage ); node1->SetName(newname1.toAscii()); GetDefaultDataStorage()->Add(node1); } if(m_Controls->m_Checkf->isChecked()) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(m_fMap.GetPointer()); image->SetVolume(m_fMap->GetBufferPointer()); QString newname0 = basename; newname0 = newname0.append("_fMap%1").arg(m_Controls->m_MethodCombo->currentIndex()); mitk::DataNode::Pointer node=mitk::DataNode::New(); node->SetData( image ); node->SetName(newname0.toAscii()); GetDefaultDataStorage()->Add(node); } m_MultiWidget->RequestUpdate(); } void QmitkIVIMView::ChooseMethod() { m_Controls->m_MethodCombo->setVisible(m_Controls->m_ChooseMethod->isChecked()); } void QmitkIVIMView::ClipboardCurveButtonClicked() { if(true) { QString clipboard("Measurement Points\n"); for ( int i=0; isetText( clipboard, QClipboard::Clipboard ); } else { QApplication::clipboard()->clear(); } } void QmitkIVIMView::ClipboardStatisticsButtonClicked() { if ( true ) { QString clipboard( "f \t D \t D* \n" ); clipboard = clipboard.append( "%L1 \t %L2 \t %L3" ) .arg( m_Snap.currentF, 0, 'f', 10 ) .arg( m_Snap.currentD, 0, 'f', 10 ) .arg( m_Snap.currentDStar, 0, 'f', 10 ) ; QApplication::clipboard()->setText( clipboard, QClipboard::Clipboard ); } else { QApplication::clipboard()->clear(); } } + +void QmitkIVIMView::Activated() +{ + m_Active = true; +} + +void QmitkIVIMView::Deactivated() +{ + m_Active = false; +} diff --git a/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.h b/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.h index 8ec0ab6db1..f3e407e1c1 100644 --- a/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.h +++ b/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMView.h @@ -1,108 +1,112 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2010-03-31 16:40:27 +0200 (Mi, 31 Mrz 2010) $ Version: $Revision: 21975 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef _QMITKIVIMVIEW_H_INCLUDED #define _QMITKIVIMVIEW_H_INCLUDED #include #include #include "ui_QmitkIVIMViewControls.h" #include "itkVectorImage.h" #include "itkImage.h" #include "mitkDiffusionImage.h" #include "itkDiffusionIntravoxelIncoherentMotionReconstructionImageFilter.h" /*! \brief QmitkIVIMView \warning This application module is not yet documented. Use "svn blame/praise/annotate" and ask the author to provide basic documentation. \sa QmitkFunctionality \ingroup Functionalities */ class QmitkIVIMView : public QmitkFunctionality { // this is needed for all Qt objects that should have a Qt meta-object // (everything that derives from QObject and wants to have signal/slots) Q_OBJECT public: static const std::string VIEW_ID; QmitkIVIMView(); virtual ~QmitkIVIMView(); typedef mitk::DiffusionImage::GradientDirectionContainerType DirContainerType; typedef itk::DiffusionIntravoxelIncoherentMotionReconstructionImageFilter IVIMFilterType; typedef itk::Image OutImgType; virtual void CreateQtPartControl(QWidget *parent); virtual void StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget); virtual void StdMultiWidgetNotAvailable(); void OnSliceChanged(const itk::EventObject& e); void OutputToDatastorage(std::vector nodes); void FittIVIM(itk::VectorImage* vecimg, DirContainerType* dirs, float bval, bool multivoxel, OutImgType::IndexType &crosspos); + void Activated(); + void Deactivated(); + protected slots: /// \brief Called when the user clicks the GUI button void FittIVIMStart(); void AutoThreshold(); void MethodCombo(int val); void Checkbox(); void DStarSlider(int val); void BThreshSlider(int val); void S0ThreshSlider(int val); void NumItsSlider(int val); void LambdaSlider(int val); void ChooseMethod(); void ClipboardStatisticsButtonClicked(); void ClipboardCurveButtonClicked(); protected: /// \brief called by QmitkFunctionality when DataManager's selection has changed virtual void OnSelectionChanged( std::vector nodes ); Ui::QmitkIVIMViewControls* m_Controls; QmitkStdMultiWidget* m_MultiWidget; int m_SliceObserverTag1; int m_SliceObserverTag2; int m_SliceObserverTag3; OutImgType::Pointer m_DStarMap; OutImgType::Pointer m_DMap; OutImgType::Pointer m_fMap; IVIMFilterType::IVIMSnapshot m_Snap; + bool m_Active; }; #endif // _QMITKIVIMVIEW_H_INCLUDED diff --git a/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMViewControls.ui b/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMViewControls.ui index baa5bbde7c..49d20b570b 100644 --- a/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMViewControls.ui +++ b/Modules/Bundles/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkIVIMViewControls.ui @@ -1,613 +1,631 @@ QmitkIVIMViewControls 0 0 307 790 0 0 QmitkTemplate 0 Intra Voxel Incoherent Motion Estimation 0 9 0 0 QFrame::NoFrame QFrame::Raised 0 QFrame::NoFrame QFrame::Raised 0 80 16777215 D* 100 60 Qt::Horizontal 51 16777215 200 QFrame::NoFrame QFrame::Raised 0 80 16777215 neglect b< 250 34 Qt::Horizontal 51 16777215 46.5 QFrame::NoFrame QFrame::Raised 0 80 16777215 neglect Si< 100 0 Qt::Horizontal 30 16777215 TextLabel 15 16777215 * QFrame::NoFrame QFrame::Raised 0 QFrame::NoFrame QFrame::Raised 0 80 16777215 #iterations 100 10 Qt::Horizontal 30 16777215 TextLabel QFrame::NoFrame QFrame::Raised 0 80 16777215 lambda 1000 10 Qt::Horizontal 30 16777215 TextLabel 15 16777215 * QFrame::NoFrame QFrame::Raised 0 80 0 Output Images f true D false D* false Generate Output Images color: rgb(255, 0, 0); font: 75 14pt "Ubuntu"; Bla bla bla Qt::RichText display voxel-wise results true - - - true - - - - 0 - 0 - + + + QFrame::StyledPanel - - - 0 - 400 - + + QFrame::Raised - + + + 0 + 0 + + + + true + + + + 0 + 0 + + + + + 0 + 400 + + + + + 0 + + + + QFrame::NoFrame QFrame::Raised 0 QFrame::NoFrame QFrame::Raised 0 QFrame::NoFrame QFrame::Raised 0 Curve to Clipboard Values to Clipboard Choose Method 2 3 Param. Fit Fit D & f with fixed D* value Fit D & f (high b), then fit D* Linearly fit D & f (high b), then fit D* Regularized Qt::Vertical QSizePolicy::Expanding 20 220 QmitkIVIMWidget QWidget
QmitkIVIMWidget.h
1
diff --git a/Modules/DiffusionImaging/Rendering/mitkOdfVtkMapper2D.txx b/Modules/DiffusionImaging/Rendering/mitkOdfVtkMapper2D.txx index 5bdb3ceeed..bcab84b531 100644 --- a/Modules/DiffusionImaging/Rendering/mitkOdfVtkMapper2D.txx +++ b/Modules/DiffusionImaging/Rendering/mitkOdfVtkMapper2D.txx @@ -1,1172 +1,1167 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2008-08-25 18:10:57 +0200 (Mo, 25 Aug 2008) $ Version: $Revision: 15062 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __mitkOdfVtkMapper2D_txx__ #define __mitkOdfVtkMapper2D_txx__ #include "mitkOdfVtkMapper2D.h" #include "mitkDataNode.h" #include "mitkBaseRenderer.h" #include "mitkMatrixConvert.h" #include "mitkGeometry3D.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkProperties.h" #include "mitkTensorImage.h" #include "vtkSphereSource.h" #include "vtkPropCollection.h" #include "vtkMaskedGlyph3D.h" #include "vtkGlyph2D.h" #include "vtkGlyph3D.h" #include "vtkMaskedProgrammableGlyphFilter.h" #include "vtkImageData.h" #include "vtkLinearTransform.h" #include "vtkCamera.h" #include "vtkPointData.h" #include "vtkTransformPolyDataFilter.h" #include "vtkTransform.h" #include "vtkOdfSource.h" #include "vtkDoubleArray.h" #include "vtkLookupTable.h" #include "vtkProperty.h" #include "vtkPolyDataNormals.h" #include "vtkLight.h" #include "vtkLightCollection.h" #include "vtkMath.h" #include "vtkFloatArray.h" #include "vtkDelaunay2D.h" #include "vtkMapper.h" #include "vtkRenderer.h" #include "vtkCamera.h" #include "itkOrientationDistributionFunction.h" #include "itkFixedArray.h" #include #include "vtkOpenGLRenderer.h" template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfTransform = vtkSmartPointer::New(); template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfVals = vtkSmartPointer::New(); template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfSource = vtkSmartPointer::New(); template float mitk::OdfVtkMapper2D::m_Scaling; template int mitk::OdfVtkMapper2D::m_Normalization; template int mitk::OdfVtkMapper2D::m_ScaleBy; template float mitk::OdfVtkMapper2D::m_IndexParam1; template float mitk::OdfVtkMapper2D::m_IndexParam2; #define ODF_MAPPER_PI 3.1415926535897932384626433832795 //#include "vtkSphereSource.h" //#include "vtkPolyDataMapper.h" //#include "vtkActor.h" //#include "vtkRenderWindow.h" //#include "vtkRenderer.h" //#include "vtkRenderWindowInteractor.h" //#include "vtkProperty.h" // //void bla(vtkPolyData* poly) //{ // // // map to graphics library // vtkPolyDataMapper *map = vtkPolyDataMapper::New(); // map->SetInput(poly); // // // actor coordinates geometry, properties, transformation // vtkActor *aSphere = vtkActor::New(); // aSphere->SetMapper(map); // aSphere->GetProperty()->SetColor(0,0,1); // sphere color blue // // // a renderer and render window // vtkRenderer *ren1 = vtkRenderer::New(); // vtkRenderWindow *renWin = vtkRenderWindow::New(); // renWin->AddRenderer(ren1); // // // an interactor // vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New(); // iren->SetRenderWindow(renWin); // // // add the actor to the scene // ren1->AddActor(aSphere); // ren1->SetBackground(1,1,1); // Background color white // // // render an image (lights and cameras are created automatically) // renWin->Render(); // // // begin mouse interaction // iren->Start(); //} template mitk::OdfVtkMapper2D ::OdfVtkMapper2D() { m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes[0]->AddInput(vtkPolyData::New()); m_OdfsPlanes[1]->AddInput(vtkPolyData::New()); m_OdfsPlanes[2]->AddInput(vtkPolyData::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors[0]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[1]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[2]->GetProperty()->SetInterpolationToGouraud(); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); vtkLookupTable *lut = vtkLookupTable::New(); //lut->SetMinimumTableValue(0,0,1,1); //lut->SetMaximumTableValue(1,0,0,1); //lut->SetWindow(0.1); //lut->SetLevel(0.05); <== not recognized or reset by mapper ?? //lut->Build(); m_OdfsMappers[0]->SetLookupTable(lut); m_OdfsMappers[1]->SetLookupTable(lut); m_OdfsMappers[2]->SetLookupTable(lut); m_OdfsActors[0]->SetMapper(m_OdfsMappers[0]); m_OdfsActors[1]->SetMapper(m_OdfsMappers[1]); m_OdfsActors[2]->SetMapper(m_OdfsMappers[2]); m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters[0]->SetCutFunction( m_Planes[0] ); m_Cutters[0]->GenerateValues( 1, 0, 1 ); m_Cutters[1]->SetCutFunction( m_Planes[1] ); m_Cutters[1]->GenerateValues( 1, 0, 1 ); m_Cutters[2]->SetCutFunction( m_Planes[2] ); m_Cutters[2]->GenerateValues( 1, 0, 1 ); // Windowing the cutted planes in direction 1 m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1[0]->SetClipFunction( m_ThickPlanes1[0] ); m_Clippers1[1]->SetClipFunction( m_ThickPlanes1[1] ); m_Clippers1[2]->SetClipFunction( m_ThickPlanes1[2] ); // Windowing the cutted planes in direction 2 m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2[0]->SetClipFunction( m_ThickPlanes2[0] ); m_Clippers2[1]->SetClipFunction( m_ThickPlanes2[1] ); m_Clippers2[2]->SetClipFunction( m_ThickPlanes2[2] ); m_TemplateOdf = itk::OrientationDistributionFunction::GetBaseMesh(); //vtkPoints* points = m_TemplateOdf->GetPoints(); m_OdfVals->Allocate(N); m_OdfSource->SetTemplateOdf(m_TemplateOdf); m_OdfSource->SetOdfVals(m_OdfVals); m_ShowMaxNumber = 500; //vtkMapper::GlobalImmediateModeRenderingOn(); } template mitk::OdfVtkMapper2D ::~OdfVtkMapper2D() { m_PropAssemblies[0]->Delete(); m_PropAssemblies[1]->Delete(); m_PropAssemblies[2]->Delete(); m_OdfsPlanes[0]->Delete(); m_OdfsPlanes[1]->Delete(); m_OdfsPlanes[2]->Delete(); m_OdfsActors[0]->Delete(); m_OdfsActors[1]->Delete(); m_OdfsActors[2]->Delete(); m_OdfsMappers[0]->Delete(); m_OdfsMappers[1]->Delete(); m_OdfsMappers[2]->Delete(); m_Planes[0]->Delete(); m_Planes[1]->Delete(); m_Planes[2]->Delete(); m_Cutters[0]->Delete(); m_Cutters[1]->Delete(); m_Cutters[2]->Delete(); m_ThickPlanes1[0]->Delete(); m_ThickPlanes1[1]->Delete(); m_ThickPlanes1[2]->Delete(); m_ThickPlanes2[0]->Delete(); m_ThickPlanes2[1]->Delete(); m_ThickPlanes2[2]->Delete(); m_Clippers1[0]->Delete(); m_Clippers1[1]->Delete(); m_Clippers1[2]->Delete(); m_Clippers2[0]->Delete(); m_Clippers2[1]->Delete(); m_Clippers2[2]->Delete(); } template mitk::Image* mitk::OdfVtkMapper2D ::GetInput() { return static_cast ( m_DataNode->GetData() ); } template vtkProp* mitk::OdfVtkMapper2D ::GetVtkProp(mitk::BaseRenderer* renderer) { return m_PropAssemblies[GetIndex(renderer)]; } template int mitk::OdfVtkMapper2D ::GetIndex(mitk::BaseRenderer* renderer) { if(!strcmp(renderer->GetName(),"stdmulti.widget1")) return 0; if(!strcmp(renderer->GetName(),"stdmulti.widget2")) return 1; if(!strcmp(renderer->GetName(),"stdmulti.widget3")) return 2; return 0; } template void mitk::OdfVtkMapper2D ::GlyphMethod(void *arg) { vtkMaskedProgrammableGlyphFilter *pfilter=(vtkMaskedProgrammableGlyphFilter*)arg; double point[3]; double debugpoint[3]; pfilter->GetPoint(point); pfilter->GetPoint(debugpoint); itk::Point p(point); Vector3D spacing = pfilter->GetGeometry()->GetSpacing(); p[0] /= spacing[0]; p[1] /= spacing[1]; p[2] /= spacing[2]; mitk::Point3D p2; pfilter->GetGeometry()->IndexToWorld( p, p2 ); point[0] = p2[0]; point[1] = p2[1]; point[2] = p2[2]; vtkPointData* data = pfilter->GetPointData(); vtkDataArray* odfvals = data->GetArray("vector"); vtkIdType id = pfilter->GetPointId(); m_OdfTransform->Identity(); m_OdfTransform->Translate(point[0],point[1],point[2]); typedef itk::OrientationDistributionFunction OdfType; OdfType odf; if(odfvals->GetNumberOfComponents()==6) { float tensorelems[6] = { (float)odfvals->GetComponent(id,0), (float)odfvals->GetComponent(id,1), (float)odfvals->GetComponent(id,2), (float)odfvals->GetComponent(id,3), (float)odfvals->GetComponent(id,4), (float)odfvals->GetComponent(id,5), }; itk::DiffusionTensor3D tensor(tensorelems); odf.InitFromTensor(tensor); } else { for(int i=0; iGetComponent(id,i); } switch(m_Normalization) { case ODFN_MINMAX: odf = odf.MinMaxNormalize(); break; case ODFN_MAX: odf = odf.MaxNormalize(); break; case ODFN_NONE: // nothing break; case ODFN_GLOBAL_MAX: // global max not implemented yet break; default: odf = odf.MinMaxNormalize(); } switch(m_ScaleBy) { case ODFSB_NONE: m_OdfSource->SetAdditionalScale(1.0); break; case ODFSB_GFA: m_OdfSource->SetAdditionalScale(odf.GetGeneralizedGFA(m_IndexParam1, m_IndexParam2)); break; case ODFSB_PC: m_OdfSource->SetAdditionalScale(odf.GetPrincipleCurvature(m_IndexParam1, m_IndexParam2, 0)); break; } for(int i=0; iSetComponent(0,i,0.5*odf[i]*m_Scaling); //double max = -100000; //double min = 100000; //for( unsigned int i=0; i max ? odf[i] : max; // min = odf[i] < min ? odf[i] : min; //} m_OdfSource->Modified(); } template void mitk::OdfVtkMapper2D ::AdaptCameraPosition(mitk::BaseRenderer* renderer, OdfDisplayGeometry* dispGeo ) { double viewAngle = renderer->GetVtkRenderer()->GetActiveCamera()->GetViewAngle(); viewAngle = viewAngle * (ODF_MAPPER_PI/180.0); viewAngle /= 2; double dist = dispGeo.d/tan(viewAngle); mitk::Point3D mfoc; mfoc[0]=dispGeo.M3D[0]; mfoc[1]=dispGeo.M3D[1]; mfoc[2]=dispGeo.M3D[2]; mitk::Point3D mpos; mpos[0]=mfoc[0]+dist*dispGeo.normal[0]; mpos[1]=mfoc[1]+dist*dispGeo.normal[1]; mpos[2]=mfoc[2]+dist*dispGeo.normal[2]; mitk::Point3D mup; mup[0]=dispGeo.O3D[0]-dispGeo.M3D[0]; mup[1]=dispGeo.O3D[1]-dispGeo.M3D[1]; mup[2]=dispGeo.O3D[2]-dispGeo.M3D[2]; renderer->GetVtkRenderer()->GetActiveCamera()->SetParallelProjection(true); renderer->GetVtkRenderer()->GetActiveCamera()->SetParallelScale(dist/3.74); vtkCamera* camera = renderer->GetVtkRenderer()->GetActiveCamera(); if (camera) { camera->SetPosition(mpos[0],mpos[1],mpos[2]); camera->SetFocalPoint(mfoc[0], mfoc[1],mfoc[2]); camera->SetViewUp(mup[0],mup[1],mup[2]); } renderer->GetVtkRenderer()->ResetCameraClippingRange(); } template typename mitk::OdfVtkMapper2D::OdfDisplayGeometry mitk::OdfVtkMapper2D ::MeasureDisplayedGeometry(mitk::BaseRenderer* renderer) { //vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); // set up the cutter orientation according to the current geometry of // the renderers plane vtkFloatingPointType vp[ 3 ], vnormal[ 3 ]; Point3D point = worldPlaneGeometry->GetOrigin(); Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( point.Get_vnl_vector(), vp ); vnl2vtk( normal.Get_vnl_vector(), vnormal ); mitk::DisplayGeometry::Pointer dispGeometry = renderer->GetDisplayGeometry(); mitk::Vector2D size = dispGeometry->GetSizeInMM(); mitk::Vector2D origin = dispGeometry->GetOriginInMM(); // // |------O------| // | d2 | // L d1 M | // | | // |-------------| // mitk::Vector2D M; mitk::Vector2D L; mitk::Vector2D O; M[0] = origin[0] + size[0]/2; M[1] = origin[1] + size[1]/2; L[0] = origin[0]; L[1] = origin[1] + size[1]/2; O[0] = origin[0] + size[0]/2; O[1] = origin[1] + size[1]; mitk::Point2D point1; point1[0] = M[0]; point1[1] = M[1]; mitk::Point3D M3D; dispGeometry->Map(point1, M3D); point1[0] = L[0]; point1[1] = L[1]; mitk::Point3D L3D; dispGeometry->Map(point1, L3D); point1[0] = O[0]; point1[1] = O[1]; mitk::Point3D O3D; dispGeometry->Map(point1, O3D); double d1 = sqrt((M3D[0]-L3D[0])*(M3D[0]-L3D[0]) + (M3D[1]-L3D[1])*(M3D[1]-L3D[1]) + (M3D[2]-L3D[2])*(M3D[2]-L3D[2])); double d2 = sqrt((M3D[0]-O3D[0])*(M3D[0]-O3D[0]) + (M3D[1]-O3D[1])*(M3D[1]-O3D[1]) + (M3D[2]-O3D[2])*(M3D[2]-O3D[2])); double d = d1>d2 ? d1 : d2; d = d2; OdfDisplayGeometry retval; retval.vp[0] = vp[0]; retval.vp[1] = vp[1]; retval.vp[2] = vp[2]; retval.vnormal[0] = vnormal[0]; retval.vnormal[1] = vnormal[1]; retval.vnormal[2] = vnormal[2]; retval.normal[0] = normal[0]; retval.normal[1] = normal[1]; retval.normal[2] = normal[2]; retval.d = d; retval.d1 = d1; retval.d2 = d2; retval.M3D[0] = M3D[0]; retval.M3D[1] = M3D[1]; retval.M3D[2] = M3D[2]; retval.L3D[0] = L3D[0]; retval.L3D[1] = L3D[1]; retval.L3D[2] = L3D[2]; retval.O3D[0] = O3D[0]; retval.O3D[1] = O3D[1]; retval.O3D[2] = O3D[2]; retval.vp_original[0] = vp[0]; retval.vp_original[1] = vp[1]; retval.vp_original[2] = vp[2]; retval.vnormal_original[0] = vnormal[0]; retval.vnormal_original[1] = vnormal[1]; retval.vnormal_original[2] = vnormal[2]; retval.size[0] = size[0]; retval.size[1] = size[1]; retval.origin[0] = origin[0]; retval.origin[1] = origin[1]; return retval; } template void mitk::OdfVtkMapper2D ::Slice(mitk::BaseRenderer* renderer, OdfDisplayGeometry dispGeo) { vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); int index = GetIndex(renderer); vtkTransform* inversetransform = vtkTransform::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; ((vtkTransform*)vtktransform)->GetScale(myscale); inversetransform->PostMultiply(); inversetransform->Scale(1*myscale[0],1*myscale[1],1*myscale[2]); inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); // vtk works in axis align coords // thus the normal also must be axis align, since // we do not allow arbitrary cutting through volume // // vnormal should already be axis align, but in order // to get rid of precision effects, we set the two smaller // components to zero here int dims[3]; m_VtkImage->GetDimensions(dims); double spac[3]; m_VtkImage->GetSpacing(spac); if(fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[0]/spac[0]) < 0.4) dispGeo.vp[0] = 0.4*spac[0]; if(fabs(dispGeo.vp[0]/spac[0]) > (dims[0]-1)-0.4) dispGeo.vp[0] = ((dims[0]-1)-0.4)*spac[0]; dispGeo.vnormal[1] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[0]) && fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[1]/spac[1]) < 0.4) dispGeo.vp[1] = 0.4*spac[1]; if(fabs(dispGeo.vp[1]/spac[1]) > (dims[1]-1)-0.4) dispGeo.vp[1] = ((dims[1]-1)-0.4)*spac[1]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[0]) ) { if(fabs(dispGeo.vp[2]/spac[2]) < 0.4) dispGeo.vp[2] = 0.4*spac[2]; if(fabs(dispGeo.vp[2]/spac[2]) > (dims[2]-1)-0.4) dispGeo.vp[2] = ((dims[2]-1)-0.4)*spac[2]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[1] = 0; } m_Planes[index]->SetTransform( (vtkAbstractTransform*)NULL ); m_Planes[index]->SetOrigin( dispGeo.vp ); m_Planes[index]->SetNormal( dispGeo.vnormal ); vtkPoints* points = NULL; vtkPoints* tmppoints = NULL; vtkPolyData* polydata = NULL; vtkFloatArray* pointdata = NULL; vtkDelaunay2D *delaunay = NULL; vtkPolyData* cuttedPlane = NULL; // the cutter only works if we do not have a 2D-image // or if we have a 2D-image and want to see the whole image. // // for side views of 2D-images, we need some special treatment if(!( (dims[0] == 1 && dispGeo.vnormal[0] != 0) || (dims[1] == 1 && dispGeo.vnormal[1] != 0) || (dims[2] == 1 && dispGeo.vnormal[2] != 0) )) { m_Cutters[index]->SetCutFunction( m_Planes[index] ); m_Cutters[index]->SetInput( m_VtkImage ); m_Cutters[index]->Update(); cuttedPlane = m_Cutters[index]->GetOutput(); } else { // cutting of a 2D-Volume does not work, // so we have to build up our own polydata object cuttedPlane = vtkPolyData::New(); points = vtkPoints::New(); points->SetNumberOfPoints(m_VtkImage->GetNumberOfPoints()); for(int i=0; iGetNumberOfPoints(); i++) { points->SetPoint(i, m_VtkImage->GetPoint(i)); } cuttedPlane->SetPoints(points); pointdata = vtkFloatArray::New(); int comps = m_VtkImage->GetPointData()->GetScalars()->GetNumberOfComponents(); pointdata->SetNumberOfComponents(comps); int tuples = m_VtkImage->GetPointData()->GetScalars()->GetNumberOfTuples(); pointdata->SetNumberOfTuples(tuples); for(int i=0; iSetTuple(i,m_VtkImage->GetPointData()->GetScalars()->GetTuple(i)); pointdata->SetName( "vector" ); cuttedPlane->GetPointData()->AddArray(pointdata); int nZero1, nZero2; if(dims[0]==1) { nZero1 = 1; nZero2 = 2; } else if(dims[1]==1) { nZero1 = 0; nZero2 = 2; } else { nZero1 = 0; nZero2 = 1; } tmppoints = vtkPoints::New(); for(int j=0; jGetNumberOfPoints(); j++){ double pt[3]; m_VtkImage->GetPoint(j,pt); tmppoints->InsertNextPoint(pt[nZero1],pt[nZero2],0); } polydata = vtkPolyData::New(); polydata->SetPoints( tmppoints ); delaunay = vtkDelaunay2D::New(); delaunay->SetInput( polydata ); delaunay->Update(); vtkCellArray* polys = delaunay->GetOutput()->GetPolys(); cuttedPlane->SetPolys(polys); } if(cuttedPlane->GetNumberOfPoints()) { // WINDOWING HERE inversetransform = vtkTransform::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; ((vtkTransform*)vtktransform)->GetScale(myscale); inversetransform->PostMultiply(); inversetransform->Scale(1*myscale[0],1*myscale[1],1*myscale[2]); dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.O3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.O3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.O3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes1[index]->count = 0; m_ThickPlanes1[index]->SetTransform((vtkAbstractTransform*)NULL ); m_ThickPlanes1[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes1[index]->SetThickness(dispGeo.d2); m_Clippers1[index]->SetClipFunction( m_ThickPlanes1[index] ); m_Clippers1[index]->SetInput( cuttedPlane ); m_Clippers1[index]->SetInsideOut(1); m_Clippers1[index]->Update(); dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.L3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.L3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.L3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes2[index]->count = 0; m_ThickPlanes2[index]->SetTransform((vtkAbstractTransform*)NULL ); m_ThickPlanes2[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes2[index]->SetThickness(dispGeo.d1); m_Clippers2[index]->SetClipFunction( m_ThickPlanes2[index] ); m_Clippers2[index]->SetInput( m_Clippers1[index]->GetOutput() ); m_Clippers2[index]->SetInsideOut(1); m_Clippers2[index]->Update(); cuttedPlane = m_Clippers2[index]->GetOutput (); if(cuttedPlane->GetNumberOfPoints()) { m_OdfsPlanes[index]->RemoveAllInputs(); vtkPolyDataNormals* normals = vtkPolyDataNormals::New(); normals->SetInputConnection( m_OdfSource->GetOutputPort() ); normals->SplittingOff(); normals->ConsistencyOff(); normals->AutoOrientNormalsOff(); normals->ComputePointNormalsOn(); normals->ComputeCellNormalsOff(); normals->FlipNormalsOff(); normals->NonManifoldTraversalOff(); vtkTransformPolyDataFilter* trans = vtkTransformPolyDataFilter::New(); trans->SetInputConnection( normals->GetOutputPort() ); trans->SetTransform(m_OdfTransform); vtkMaskedProgrammableGlyphFilter* glyphGenerator = vtkMaskedProgrammableGlyphFilter::New(); glyphGenerator->SetMaximumNumberOfPoints(m_ShowMaxNumber); glyphGenerator->SetRandomMode(1); glyphGenerator->SetUseMaskPoints(1); glyphGenerator->SetSource( trans->GetOutput() ); glyphGenerator->SetInput(cuttedPlane); glyphGenerator->SetColorModeToColorBySource(); glyphGenerator->SetInputArrayToProcess(0,0,0, vtkDataObject::FIELD_ASSOCIATION_POINTS , "vector"); glyphGenerator->SetGeometry(this->GetDataNode()->GetData()->GetGeometry()); glyphGenerator->SetGlyphMethod(&(GlyphMethod),(void *)glyphGenerator); try { glyphGenerator->Update(); } catch( itk::ExceptionObject& err ) { std::cout << err << std::endl; } m_OdfsPlanes[index]->AddInput(glyphGenerator->GetOutput()); trans->Delete(); glyphGenerator->Delete(); normals->Delete(); m_OdfsPlanes[index]->Update(); } } m_PropAssemblies[index]->VisibilityOn(); if(m_PropAssemblies[index]->GetParts()->IsItemPresent(m_OdfsActors[index])) m_PropAssemblies[index]->RemovePart(m_OdfsActors[index]); m_OdfsMappers[index]->SetInput(m_OdfsPlanes[index]->GetOutput()); m_PropAssemblies[index]->AddPart(m_OdfsActors[index]); if(inversetransform) inversetransform->Delete(); if(points) points->Delete(); if(pointdata) pointdata->Delete(); if(tmppoints) tmppoints->Delete(); if(polydata) polydata->Delete(); if(delaunay) delaunay->Delete(); } template bool mitk::OdfVtkMapper2D ::IsVisibleOdfs(mitk::BaseRenderer* renderer) { if(this->IsPlaneRotated(renderer)) return false; bool retval = false; switch(GetIndex(renderer)) { case 0: retval = this->IsVisible(renderer, "VisibleOdfs_T"); break; case 1: retval = this->IsVisible(renderer, "VisibleOdfs_S"); break; case 2: retval = this->IsVisible(renderer, "VisibleOdfs_C"); break; } return retval; } template void mitk::OdfVtkMapper2D ::MitkRenderOverlay(mitk::BaseRenderer* renderer) { //std::cout << "OdfVtkMapper2D::MitkRenderOverlay(" << renderer->GetName() << ")" << std::endl; if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); } } template void mitk::OdfVtkMapper2D ::MitkRenderOpaqueGeometry(mitk::BaseRenderer* renderer) { - std::cout << "OdfVtkMapper2D::MitkRenderOpaqueGeometry(" << renderer->GetName() << ")" << std::endl; + //std::cout << "OdfVtkMapper2D::MitkRenderOpaqueGeometry(" << renderer->GetName() << ")" << std::endl; if ( this->IsVisibleOdfs( renderer )==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { // adapt cam pos - MITK_INFO << "hallo 1"; OdfDisplayGeometry dispGeo = MeasureDisplayedGeometry( renderer); - MITK_INFO << "hallo 2"; //AdaptCameraPosition(renderer, dispGeo); if(/*this->GetDataNode()->IsOn("DoRefresh",NULL)*/false) { glMatrixMode( GL_PROJECTION ); glPushMatrix(); glLoadIdentity(); glMatrixMode( GL_MODELVIEW ); glPushMatrix(); glLoadIdentity(); renderer->GetVtkRenderer()->SetErase(false); renderer->GetVtkRenderer()->GetActiveCamera()->Render(renderer->GetVtkRenderer()); renderer->GetVtkRenderer()->SetErase(true); //GLfloat matrix[16]; //glGetFloatv(GL_MODELVIEW_MATRIX, matrix); float LightPos[4] = {0,0,0,0}; int index = GetIndex(renderer); if(index==0) { LightPos[2] = -1000; } if(index==1) { LightPos[0] = 1000; } if(index==2) { LightPos[1] = -1000; } glLightfv(GL_LIGHT0,GL_POSITION,LightPos); glLightfv(GL_LIGHT1,GL_POSITION,LightPos); glLightfv(GL_LIGHT2,GL_POSITION,LightPos); glLightfv(GL_LIGHT3,GL_POSITION,LightPos); glLightfv(GL_LIGHT4,GL_POSITION,LightPos); glLightfv(GL_LIGHT5,GL_POSITION,LightPos); glLightfv(GL_LIGHT6,GL_POSITION,LightPos); glLightfv(GL_LIGHT7,GL_POSITION,LightPos); } - MITK_INFO << "HERE 3"; this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); - MITK_INFO << "HERE 4"; if(/*this->GetDataNode()->IsOn("DoRefresh",NULL)*/false) { glMatrixMode( GL_PROJECTION ); glPopMatrix(); glMatrixMode( GL_MODELVIEW ); glPopMatrix(); } - MITK_INFO << "HERE 5"; } } template void mitk::OdfVtkMapper2D ::MitkRenderTranslucentGeometry(mitk::BaseRenderer* renderer) { //std::cout << "OdfVtkMapper2D::MitkRenderTranslucentGeometry(" << renderer->GetName() << ")" << std::endl; if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); } template void mitk::OdfVtkMapper2D ::GenerateData() { mitk::Image::Pointer input = const_cast( this->GetInput() ); if ( input.IsNull() ) return ; std::string classname("TensorImage"); if(classname.compare(input->GetNameOfClass())==0) { m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); } std::string qclassname("QBallImage"); if(qclassname.compare(input->GetNameOfClass())==0) { m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); } if( m_VtkImage ) { // make sure, that we have point data with more than 1 component (as vectors) vtkPointData* pointData = m_VtkImage->GetPointData(); if ( pointData == NULL ) { itkWarningMacro( << "m_VtkImage->GetPointData() returns NULL!" ); return ; } if ( pointData->GetNumberOfArrays() == 0 ) { itkWarningMacro( << "m_VtkImage->GetPointData()->GetNumberOfArrays() is 0!" ); return ; } else if ( pointData->GetArray(0)->GetNumberOfComponents() != N && pointData->GetArray(0)->GetNumberOfComponents() != 6 /*for tensor visualization*/) { itkWarningMacro( << "number of components != number of directions in ODF!" ); return; } else if ( pointData->GetArrayName( 0 ) == NULL ) { m_VtkImage->GetPointData()->GetArray(0)->SetName("vector"); } } else { itkWarningMacro( << "m_VtkImage is NULL!" ); return ; } } template void mitk::OdfVtkMapper2D ::AdaptOdfScalingToImageSpacing( int index ) { // Spacing adapted scaling double spacing[3]; m_VtkImage->GetSpacing(spacing); double min; if(index==0) { min = spacing[0]; min = min > spacing[1] ? spacing[1] : min; } if(index==1) { min = spacing[1]; min = min > spacing[2] ? spacing[2] : min; } if(index==2) { min = spacing[0]; min = min > spacing[2] ? spacing[2] : min; } m_OdfSource->SetScale(min); } template void mitk::OdfVtkMapper2D ::SetRendererLightSources( mitk::BaseRenderer *renderer ) { // Light Sources vtkCollectionSimpleIterator sit; vtkLight* light; for(renderer->GetVtkRenderer()->GetLights()->InitTraversal(sit); (light = renderer->GetVtkRenderer()->GetLights()->GetNextLight(sit)); ) { renderer->GetVtkRenderer()->RemoveLight(light); } light = vtkLight::New(); light->SetFocalPoint(0,0,0); light->SetLightTypeToSceneLight(); light->SwitchOn(); light->SetIntensity(1.0); light->PositionalOff(); itk::Point p; int index = GetIndex(renderer); if(index==0) { p[0] = 0; p[1] = 0; p[2] = 10000; } if(index==1) { p[0] = 0; p[1] = 10000; p[2] = 0; } if(index==2) { p[0] = 10000; p[1] = 0; p[2] = 0; } mitk::Point3D p2; this->GetInput()->GetGeometry()->IndexToWorld(p,p2); light->SetPosition(p2[0],p2[1],p2[2]); renderer->GetVtkRenderer()->AddLight(light); } template void mitk::OdfVtkMapper2D ::ApplyPropertySettings() { this->GetDataNode()->GetFloatProperty( "Scaling", m_Scaling ); this->GetDataNode()->GetIntProperty( "ShowMaxNumber", m_ShowMaxNumber ); OdfNormalizationMethodProperty* nmp = dynamic_cast ( this->GetDataNode()->GetProperty( "Normalization" )); if(nmp) { m_Normalization = nmp->GetNormalization(); } OdfScaleByProperty* sbp = dynamic_cast ( this->GetDataNode()->GetProperty( "ScaleBy" )); if(sbp) { m_ScaleBy = sbp->GetScaleBy(); } this->GetDataNode()->GetFloatProperty( "IndexParam1", m_IndexParam1); this->GetDataNode()->GetFloatProperty( "IndexParam2", m_IndexParam2); } template bool mitk::OdfVtkMapper2D ::IsPlaneRotated(mitk::BaseRenderer* renderer) { Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast( worldGeometry.GetPointer() ); vtkFloatingPointType vnormal[ 3 ]; Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( normal.Get_vnl_vector(), vnormal ); vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); vtkTransform* inversetransform = vtkTransform::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double* n = inversetransform->TransformNormal(vnormal); int nonZeros = 0; for (int j=0; j<3; j++) { if (fabs(n[j])>1e-7){ nonZeros++; } } if(nonZeros>1) return true; return false; } template void mitk::OdfVtkMapper2D ::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { if(!m_VtkImage) { itkWarningMacro( << "m_VtkImage is NULL!" ); return ; } int index = GetIndex(renderer); if(IsVisibleOdfs(renderer)==false) { m_OdfsActors[0]->VisibilityOff(); m_OdfsActors[1]->VisibilityOff(); m_OdfsActors[2]->VisibilityOff(); return; } else { m_OdfsActors[0]->VisibilityOn(); m_OdfsActors[1]->VisibilityOn(); m_OdfsActors[2]->VisibilityOn(); OdfDisplayGeometry dispGeo = MeasureDisplayedGeometry( renderer); if(!dispGeo.Equals(m_LastDisplayGeometry)) { AdaptOdfScalingToImageSpacing(index); SetRendererLightSources(renderer); ApplyPropertySettings(); //AdaptCameraPosition(renderer, dispGeo); Slice(renderer, dispGeo); m_LastDisplayGeometry = dispGeo; } } // Get the TimeSlicedGeometry of the input object mitk::Image::Pointer input = const_cast(this->GetInput()); const TimeSlicedGeometry *inputTimeGeometry = input->GetTimeSlicedGeometry(); if (( inputTimeGeometry == NULL ) || ( inputTimeGeometry->GetTimeSteps() == 0 )) { m_PropAssemblies[0]->VisibilityOff(); m_PropAssemblies[1]->VisibilityOff(); m_PropAssemblies[2]->VisibilityOff(); return; } if( inputTimeGeometry->IsValidTime( this->GetTimestep() ) == false ) { m_PropAssemblies[0]->VisibilityOff(); m_PropAssemblies[1]->VisibilityOff(); m_PropAssemblies[2]->VisibilityOff(); return; } } template void mitk::OdfVtkMapper2D ::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* /*renderer*/, bool /*overwrite*/) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 150 ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.0 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); node->SetProperty( "ScaleBy", mitk::OdfScaleByProperty::New()); node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs_T", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_C", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_S", mitk::BoolProperty::New( false ) ); node->SetProperty ("layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); //node->SetProperty( "opacity", mitk::FloatProperty::New(1.0f) ); } #endif // __mitkOdfVtkMapper2D_txx__