diff --git a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp index 5451a67f34..64df08bc8b 100644 --- a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp +++ b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.cpp @@ -1,204 +1,204 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include "mitkAutoMLSegmentationWithPreviewTool.h" #include "mitkImageAccessByItk.h" #include "mitkToolManager.h" #include #include #include #include #include #include // ITK #include #include mitk::AutoMLSegmentationWithPreviewTool::AutoMLSegmentationWithPreviewTool() : AutoSegmentationWithPreviewTool(true) { } void mitk::AutoMLSegmentationWithPreviewTool::SetSelectedLabels(const SelectedLabelVectorType& regions) { if (m_SelectedLabels != regions) { m_SelectedLabels = regions; //Note: we do not call this->Modified() on puprose. Reason: changing the //selected regions should not force to run otsu filter in DoUpdatePreview due to changed MTime. } } const mitk::LabelSetImage* mitk::AutoMLSegmentationWithPreviewTool::GetMLPreview() const { if (m_MLPreviewNode.IsNotNull()) { const auto mlPreviewImage = dynamic_cast(this->m_MLPreviewNode->GetData()); return mlPreviewImage; } return nullptr; } mitk::AutoMLSegmentationWithPreviewTool::SelectedLabelVectorType mitk::AutoMLSegmentationWithPreviewTool::GetSelectedLabels() const { return this->m_SelectedLabels; } void mitk::AutoMLSegmentationWithPreviewTool::Activated() { Superclass::Activated(); m_SelectedLabels = {}; m_MLPreviewNode = mitk::DataNode::New(); m_MLPreviewNode->SetProperty("name", StringProperty::New(std::string(this->GetName()) + "ML preview")); m_MLPreviewNode->SetProperty("helper object", BoolProperty::New(true)); m_MLPreviewNode->SetVisibility(true); m_MLPreviewNode->SetOpacity(1.0); - m_ToolManager->GetDataStorage()->Add(m_MLPreviewNode); + this->GetToolManager()->GetDataStorage()->Add(m_MLPreviewNode); } void mitk::AutoMLSegmentationWithPreviewTool::Deactivated() { - m_ToolManager->GetDataStorage()->Remove(m_MLPreviewNode); + this->GetToolManager()->GetDataStorage()->Remove(m_MLPreviewNode); m_MLPreviewNode = nullptr; Superclass::Deactivated(); } void mitk::AutoMLSegmentationWithPreviewTool::UpdateCleanUp() { if (m_MLPreviewNode.IsNotNull()) m_MLPreviewNode->SetVisibility(m_SelectedLabels.empty()); if (nullptr != this->GetPreviewSegmentationNode()) this->GetPreviewSegmentationNode()->SetVisibility(!m_SelectedLabels.empty()); if (m_SelectedLabels.empty()) { this->ResetPreviewNode(); } } -void mitk::AutoMLSegmentationWithPreviewTool::DoUpdatePreview(const Image* inputAtTimeStep, Image* previewImage, TimeStepType timeStep) +void mitk::AutoMLSegmentationWithPreviewTool::DoUpdatePreview(const Image* inputAtTimeStep, const Image* /*oldSegAtTimeStep*/, Image* previewImage, TimeStepType timeStep) { const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); if (nullptr == m_MLPreviewNode->GetData() || this->GetMTime() > m_MLPreviewNode->GetData()->GetMTime() || this->m_LastMLTimeStep != timeStep //this covers the case where dynamic //segmentations have to compute a preview //for all time steps on confirmation || this->GetLastTimePointOfUpdate() != timePoint //this ensures that static seg //previews work with dynamic images //with avoiding unnecessary other computations ) { if (nullptr == inputAtTimeStep) { MITK_WARN << "Cannot run segementation. Currently selected input image is not set."; return; } this->m_LastMLTimeStep = timeStep; auto newMLPreview = ComputeMLPreview(inputAtTimeStep, timeStep); if (newMLPreview.IsNotNull()) { this->m_MLPreviewNode->SetData(newMLPreview); this->m_MLPreviewNode->SetProperty("binary", mitk::BoolProperty::New(false)); mitk::RenderingModeProperty::Pointer renderingMode = mitk::RenderingModeProperty::New(); renderingMode->SetValue(mitk::RenderingModeProperty::LOOKUPTABLE_LEVELWINDOW_COLOR); this->m_MLPreviewNode->SetProperty("Image Rendering.Mode", renderingMode); mitk::LookupTable::Pointer lut = mitk::LookupTable::New(); mitk::LookupTableProperty::Pointer prop = mitk::LookupTableProperty::New(lut); vtkSmartPointer lookupTable = vtkSmartPointer::New(); lookupTable->SetHueRange(1.0, 0.0); lookupTable->SetSaturationRange(1.0, 1.0); lookupTable->SetValueRange(1.0, 1.0); lookupTable->SetTableRange(-1.0, 1.0); lookupTable->Build(); lut->SetVtkLookupTable(lookupTable); prop->SetLookupTable(lut); this->m_MLPreviewNode->SetProperty("LookupTable", prop); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); mitk::LevelWindow levelwindow; levelwindow.SetRangeMinMax(0, newMLPreview->GetScalarValueMax()); levWinProp->SetLevelWindow(levelwindow); this->m_MLPreviewNode->SetProperty("levelwindow", levWinProp); } } if (!m_SelectedLabels.empty()) { const auto mlPreviewImage = this->GetMLPreview(); if (nullptr != mlPreviewImage) { AccessByItk_n(mlPreviewImage, CalculateMergedSimplePreview, (previewImage, timeStep)); } } } template void mitk::AutoMLSegmentationWithPreviewTool::CalculateMergedSimplePreview(const itk::Image* itkImage, mitk::Image* segmentation, unsigned int timeStep) { typedef itk::Image InputImageType; typedef itk::Image OutputImageType; typedef itk::BinaryThresholdImageFilter FilterType; typename FilterType::Pointer filter = FilterType::New(); // InputImageType::Pointer itkImage; typename OutputImageType::Pointer itkBinaryResultImage; filter->SetInput(itkImage); filter->SetLowerThreshold(m_SelectedLabels[0]); filter->SetUpperThreshold(m_SelectedLabels[0]); filter->SetInsideValue(1); filter->SetOutsideValue(0); filter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); filter->Update(); itkBinaryResultImage = filter->GetOutput(); itkBinaryResultImage->DisconnectPipeline(); // if more than one region id is used compute the union of all given binary regions for (const auto labelID : m_SelectedLabels) { if (labelID != m_SelectedLabels[0]) { filter->SetLowerThreshold(labelID); filter->SetUpperThreshold(labelID); filter->SetInsideValue(1); filter->SetOutsideValue(0); filter->Update(); typename OutputImageType::Pointer tempImage = filter->GetOutput(); typename itk::OrImageFilter::Pointer orFilter = itk::OrImageFilter::New(); orFilter->SetInput1(tempImage); orFilter->SetInput2(itkBinaryResultImage); orFilter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); orFilter->UpdateLargestPossibleRegion(); itkBinaryResultImage = orFilter->GetOutput(); } } //---------------------------------------------------------------------------------------------------- segmentation->SetVolume((void*)(itkBinaryResultImage->GetPixelContainer()->GetBufferPointer()), timeStep); } diff --git a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.h b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.h index 94163df1ad..878fd5592c 100644 --- a/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.h +++ b/Modules/Segmentation/Interactions/mitkAutoMLSegmentationWithPreviewTool.h @@ -1,82 +1,82 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MITK_AUTO_ML_SEGMENTATION_WITH_PREVIEW_TOOL_H #define MITK_AUTO_ML_SEGMENTATION_WITH_PREVIEW_TOOL_H #include "mitkAutoSegmentationWithPreviewTool.h" #include "mitkDataNode.h" #include "mitkLabelSetImage.h" #include namespace mitk { /** \brief Base class for any auto segmentation tool that provides a preview of the new segmentation and generates segmentations with multiple labels. This tool class implements the basic logic to handle previews of multi label segmentations and to allow to pick arbitrary labels as selected and merge them to a single segmentation to store this segmentation as confirmed segmentation. \ingroup ToolManagerEtAl \sa mitk::Tool \sa QmitkInteractiveSegmentation */ class MITKSEGMENTATION_EXPORT AutoMLSegmentationWithPreviewTool : public AutoSegmentationWithPreviewTool { public: mitkClassMacro(AutoMLSegmentationWithPreviewTool, AutoSegmentationWithPreviewTool); void Activated() override; void Deactivated() override; using SelectedLabelVectorType = std::vector; void SetSelectedLabels(const SelectedLabelVectorType& regions); SelectedLabelVectorType GetSelectedLabels() const; const LabelSetImage* GetMLPreview() const; protected: AutoMLSegmentationWithPreviewTool(); ~AutoMLSegmentationWithPreviewTool() = default; void UpdateCleanUp() override; - void DoUpdatePreview(const Image* inputAtTimeStep, Image* previewImage, TimeStepType timeStep) override; + void DoUpdatePreview(const Image* inputAtTimeStep, const Image* oldSegAtTimeStep, Image* previewImage, TimeStepType timeStep) override; /** Function to generate the new multi lable preview for a given time step input image. * The function must be implemented by derived tools. * This function is called by DoUpdatePreview if needed. * Reasons are: * - ML preview does not exist * - Modify time of tools is newer then of ML preview * - ML preview was not generated for the current selected timestep of input image or for the current selected timepoint.*/ virtual LabelSetImage::Pointer ComputeMLPreview(const Image* inputAtTimeStep, TimeStepType timeStep) = 0; private: /** Function to generate a simple (single lable) preview by merging all labels of the ML preview that are selected and * copies that single label preview to the passed previewImage. * This function is called by DoUpdatePreview if needed. * @param mlPreviewImage Multi label preview that is the source. * @param previewImage Pointer to the single label preview image that should receive the merged selected labels. * @timeStep Time step of the previewImage that should be filled.*/ template void CalculateMergedSimplePreview(const itk::Image* mlImage, mitk::Image* segmentation, unsigned int timeStep); SelectedLabelVectorType m_SelectedLabels = {}; // holds the multilabel result as a preview image mitk::DataNode::Pointer m_MLPreviewNode; TimeStepType m_LastMLTimeStep = 0; }; } #endif diff --git a/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.cpp b/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.cpp index adfa517175..28aaeeb5e8 100644 --- a/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.cpp +++ b/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.cpp @@ -1,523 +1,533 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkAutoSegmentationWithPreviewTool.h" #include "mitkToolManager.h" #include "mitkColorProperty.h" #include "mitkLevelWindowProperty.h" #include "mitkProperties.h" #include "mitkDataStorage.h" #include "mitkRenderingManager.h" #include #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkImageStatisticsHolder.h" #include "mitkImageTimeSelector.h" #include "mitkLabelSetImage.h" #include "mitkMaskAndCutRoiImageFilter.h" #include "mitkPadImageFilter.h" #include "mitkNodePredicateGeometry.h" #include "mitkSegTool2D.h" mitk::AutoSegmentationWithPreviewTool::AutoSegmentationWithPreviewTool(bool lazyDynamicPreviews): m_LazyDynamicPreviews(lazyDynamicPreviews) { m_ProgressCommand = mitk::ToolCommand::New(); } mitk::AutoSegmentationWithPreviewTool::AutoSegmentationWithPreviewTool(bool lazyDynamicPreviews, const char* interactorType, const us::Module* interactorModule) : AutoSegmentationTool(interactorType, interactorModule), m_LazyDynamicPreviews(lazyDynamicPreviews) { m_ProgressCommand = mitk::ToolCommand::New(); } mitk::AutoSegmentationWithPreviewTool::~AutoSegmentationWithPreviewTool() { } bool mitk::AutoSegmentationWithPreviewTool::CanHandle(const BaseData* referenceData, const BaseData* workingData) const { if (!Superclass::CanHandle(referenceData, workingData)) return false; if (workingData == nullptr) return true; auto* labelSet = dynamic_cast(workingData); if (labelSet != nullptr) return true; auto* image = dynamic_cast(workingData); if (image == nullptr) return false; //if it is a normal image and not a label set image is used as working data //it must have the same pixel type as a label set. return MakeScalarPixelType< DefaultSegmentationDataType >() == image->GetPixelType(); } void mitk::AutoSegmentationWithPreviewTool::Activated() { Superclass::Activated(); - m_ToolManager->RoiDataChanged += + this->GetToolManager()->RoiDataChanged += mitk::MessageDelegate(this, &mitk::AutoSegmentationWithPreviewTool::OnRoiDataChanged); - m_ToolManager->SelectedTimePointChanged += + this->GetToolManager()->SelectedTimePointChanged += mitk::MessageDelegate(this, &mitk::AutoSegmentationWithPreviewTool::OnTimePointChanged); - m_ReferenceDataNode = m_ToolManager->GetReferenceData(0); + m_ReferenceDataNode = this->GetToolManager()->GetReferenceData(0); m_SegmentationInputNode = m_ReferenceDataNode; m_LastTimePointOfUpdate = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); if (m_PreviewSegmentationNode.IsNull()) { m_PreviewSegmentationNode = DataNode::New(); m_PreviewSegmentationNode->SetProperty("color", ColorProperty::New(0.0, 1.0, 0.0)); m_PreviewSegmentationNode->SetProperty("name", StringProperty::New(std::string(this->GetName())+" preview")); m_PreviewSegmentationNode->SetProperty("opacity", FloatProperty::New(0.3)); m_PreviewSegmentationNode->SetProperty("binary", BoolProperty::New(true)); m_PreviewSegmentationNode->SetProperty("helper object", BoolProperty::New(true)); } if (m_SegmentationInputNode.IsNotNull()) { this->ResetPreviewNode(); this->InitiateToolByInput(); } else { - m_ToolManager->ActivateTool(-1); + this->GetToolManager()->ActivateTool(-1); } } void mitk::AutoSegmentationWithPreviewTool::Deactivated() { - m_ToolManager->RoiDataChanged -= + this->GetToolManager()->RoiDataChanged -= mitk::MessageDelegate(this, &mitk::AutoSegmentationWithPreviewTool::OnRoiDataChanged); - m_ToolManager->SelectedTimePointChanged -= + this->GetToolManager()->SelectedTimePointChanged -= mitk::MessageDelegate(this, &mitk::AutoSegmentationWithPreviewTool::OnTimePointChanged); m_SegmentationInputNode = nullptr; m_ReferenceDataNode = nullptr; m_WorkingPlaneGeometry = nullptr; try { - if (DataStorage *storage = m_ToolManager->GetDataStorage()) + if (DataStorage *storage = this->GetToolManager()->GetDataStorage()) { storage->Remove(m_PreviewSegmentationNode); RenderingManager::GetInstance()->RequestUpdateAll(); } } catch (...) { // don't care } if (m_PreviewSegmentationNode.IsNotNull()) { m_PreviewSegmentationNode->SetData(nullptr); } Superclass::Deactivated(); } void mitk::AutoSegmentationWithPreviewTool::ConfirmSegmentation() { if (m_LazyDynamicPreviews && m_CreateAllTimeSteps) { // The tool should create all time steps but is currently in lazy mode, // thus ensure that a preview for all time steps is available. this->UpdatePreview(true); } CreateResultSegmentationFromPreview(); RenderingManager::GetInstance()->RequestUpdateAll(); if (!m_KeepActiveAfterAccept) { - m_ToolManager->ActivateTool(-1); + this->GetToolManager()->ActivateTool(-1); } } void mitk::AutoSegmentationWithPreviewTool::InitiateToolByInput() { //default implementation does nothing. //implement in derived classes to change behavior } mitk::Image* mitk::AutoSegmentationWithPreviewTool::GetPreviewSegmentation() { if (m_PreviewSegmentationNode.IsNull()) { return nullptr; } return dynamic_cast(m_PreviewSegmentationNode->GetData()); } mitk::DataNode* mitk::AutoSegmentationWithPreviewTool::GetPreviewSegmentationNode() { return m_PreviewSegmentationNode; } const mitk::Image* mitk::AutoSegmentationWithPreviewTool::GetSegmentationInput() const { if (m_SegmentationInputNode.IsNull()) { return nullptr; } return dynamic_cast(m_SegmentationInputNode->GetData()); } const mitk::Image* mitk::AutoSegmentationWithPreviewTool::GetReferenceData() const { if (m_ReferenceDataNode.IsNull()) { return nullptr; } return dynamic_cast(m_ReferenceDataNode->GetData()); } void mitk::AutoSegmentationWithPreviewTool::ResetPreviewNode() { itk::RGBPixel previewColor; previewColor[0] = 0.0f; previewColor[1] = 1.0f; previewColor[2] = 0.0f; const auto image = this->GetSegmentationInput(); if (nullptr != image) { mitk::LabelSetImage::ConstPointer workingImage = - dynamic_cast(m_ToolManager->GetWorkingData(0)->GetData()); + dynamic_cast(this->GetToolManager()->GetWorkingData(0)->GetData()); if (workingImage.IsNotNull()) { auto newPreviewImage = workingImage->Clone(); if (newPreviewImage.IsNull()) { MITK_ERROR << "Cannot create preview helper objects. Unable to clone working image"; return; } m_PreviewSegmentationNode->SetData(newPreviewImage); // Let's paint the feedback node green... newPreviewImage->GetActiveLabel()->SetColor(previewColor); newPreviewImage->GetActiveLabelSet()->UpdateLookupTable(newPreviewImage->GetActiveLabel()->GetValue()); } else { - mitk::Image::ConstPointer workingImageBin = dynamic_cast(m_ToolManager->GetWorkingData(0)->GetData()); + mitk::Image::ConstPointer workingImageBin = dynamic_cast(this->GetToolManager()->GetWorkingData(0)->GetData()); if (workingImageBin.IsNotNull()) { auto newPreviewImage = workingImageBin->Clone(); if (newPreviewImage.IsNull()) { MITK_ERROR << "Cannot create preview helper objects. Unable to clone working image"; return; } m_PreviewSegmentationNode->SetData(newPreviewImage->Clone()); } else { mitkThrow() << "Tool is an invalid state. Cannot setup preview node. Working data is an unsupported class and should have not been accepted by CanHandle()."; } } m_PreviewSegmentationNode->SetColor(previewColor); m_PreviewSegmentationNode->SetOpacity(0.5); int layer(50); m_ReferenceDataNode->GetIntProperty("layer", layer); m_PreviewSegmentationNode->SetIntProperty("layer", layer + 1); - if (DataStorage *ds = m_ToolManager->GetDataStorage()) + if (DataStorage *ds = this->GetToolManager()->GetDataStorage()) { if (!ds->Exists(m_PreviewSegmentationNode)) ds->Add(m_PreviewSegmentationNode, m_ReferenceDataNode); } } } template static void ITKSetVolume(const itk::Image *originalImage, mitk::Image *segmentation, unsigned int timeStep) { auto constPixelContainer = originalImage->GetPixelContainer(); //have to make a const cast because itk::PixelContainer does not provide a const correct access :( auto pixelContainer = const_cast::PixelContainer*>(constPixelContainer); segmentation->SetVolume((void *)pixelContainer->GetBufferPointer(), timeStep); } void mitk::AutoSegmentationWithPreviewTool::TransferImageAtTimeStep(const Image* sourceImage, Image* destinationImage, const TimeStepType timeStep) { try { Image::ConstPointer sourceImageAtTimeStep = this->GetImageByTimeStep(sourceImage, timeStep); if (sourceImageAtTimeStep->GetPixelType() != destinationImage->GetPixelType()) { mitkThrow() << "Cannot transfer images. Tool is in an invalid state, source image and destination image do not have the same pixel type. " << "Source pixel type: " << sourceImage->GetPixelType().GetTypeAsString() << "; destination pixel type: " << destinationImage->GetPixelType().GetTypeAsString(); } if (!Equal(*(sourceImage->GetGeometry(timeStep)), *(destinationImage->GetGeometry(timeStep)), NODE_PREDICATE_GEOMETRY_DEFAULT_CHECK_COORDINATE_PRECISION, NODE_PREDICATE_GEOMETRY_DEFAULT_CHECK_DIRECTION_PRECISION, false)) { mitkThrow() << "Cannot transfer images. Tool is in an invalid state, source image and destination image do not have the same geometry."; } if (nullptr != this->GetWorkingPlaneGeometry()) { auto sourceSlice = SegTool2D::GetAffectedImageSliceAs2DImage(this->GetWorkingPlaneGeometry(), sourceImage, timeStep); SegTool2D::WriteBackSegmentationResult(this->GetTargetSegmentationNode(), m_WorkingPlaneGeometry, sourceSlice, timeStep); } else { //take care of the full segmentation volume if (sourceImageAtTimeStep->GetDimension() == 2) { AccessFixedDimensionByItk_2( sourceImageAtTimeStep, ITKSetVolume, 2, destinationImage, timeStep); } else { AccessFixedDimensionByItk_2( sourceImageAtTimeStep, ITKSetVolume, 3, destinationImage, timeStep); } } } catch (...) { Tool::ErrorMessage("Error accessing single time steps of the original image. Cannot create segmentation."); throw; } } void mitk::AutoSegmentationWithPreviewTool::CreateResultSegmentationFromPreview() { const auto segInput = this->GetSegmentationInput(); auto previewImage = this->GetPreviewSegmentation(); if (nullptr != segInput && nullptr != previewImage) { DataNode::Pointer resultSegmentationNode = GetTargetSegmentationNode(); if (resultSegmentationNode.IsNotNull()) { const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); auto resultSegmentation = dynamic_cast(resultSegmentationNode->GetData()); // REMARK: the following code in this scope assumes that previewImage and resultSegmentation // are clones of the working image (segmentation provided to the tool). Therefore they have // the same time geometry. if (previewImage->GetTimeSteps() != resultSegmentation->GetTimeSteps()) { mitkThrow() << "Cannot perform threshold. Internal tool state is invalid." << " Preview segmentation and segmentation result image have different time geometries."; } if (m_CreateAllTimeSteps) { for (unsigned int timeStep = 0; timeStep < previewImage->GetTimeSteps(); ++timeStep) { this->TransferImageAtTimeStep(previewImage, resultSegmentation, timeStep); } } else { const auto timeStep = resultSegmentation->GetTimeGeometry()->TimePointToTimeStep(timePoint); this->TransferImageAtTimeStep(previewImage, resultSegmentation, timeStep); } // since we are maybe working on a smaller image, pad it to the size of the original image if (m_ReferenceDataNode.GetPointer() != m_SegmentationInputNode.GetPointer()) { mitk::PadImageFilter::Pointer padFilter = mitk::PadImageFilter::New(); padFilter->SetInput(0, resultSegmentation); padFilter->SetInput(1, dynamic_cast(m_ReferenceDataNode->GetData())); padFilter->SetBinaryFilter(true); padFilter->SetUpperThreshold(1); padFilter->SetLowerThreshold(1); padFilter->Update(); resultSegmentationNode->SetData(padFilter->GetOutput()); } - m_ToolManager->SetWorkingData(resultSegmentationNode); - m_ToolManager->GetWorkingData(0)->Modified(); + this->GetToolManager()->SetWorkingData(resultSegmentationNode); + this->GetToolManager()->GetWorkingData(0)->Modified(); this->EnsureTargetSegmentationNodeInDataStorage(); } } } void mitk::AutoSegmentationWithPreviewTool::OnRoiDataChanged() { - mitk::DataNode::ConstPointer node = m_ToolManager->GetRoiData(0); + mitk::DataNode::ConstPointer node = this->GetToolManager()->GetRoiData(0); if (node.IsNotNull()) { mitk::MaskAndCutRoiImageFilter::Pointer roiFilter = mitk::MaskAndCutRoiImageFilter::New(); mitk::Image::Pointer image = dynamic_cast(m_SegmentationInputNode->GetData()); if (image.IsNull()) return; roiFilter->SetInput(image); roiFilter->SetRegionOfInterest(node->GetData()); roiFilter->Update(); mitk::DataNode::Pointer tmpNode = mitk::DataNode::New(); tmpNode->SetData(roiFilter->GetOutput()); m_SegmentationInputNode = tmpNode; } else m_SegmentationInputNode = m_ReferenceDataNode; this->ResetPreviewNode(); this->InitiateToolByInput(); this->UpdatePreview(); } void mitk::AutoSegmentationWithPreviewTool::OnTimePointChanged() { if (m_IsTimePointChangeAware && m_PreviewSegmentationNode.IsNotNull() && m_SegmentationInputNode.IsNotNull()) { const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); const bool isStaticSegOnDynamicImage = m_PreviewSegmentationNode->GetData()->GetTimeSteps() == 1 && m_SegmentationInputNode->GetData()->GetTimeSteps() > 1; if (timePoint!=m_LastTimePointOfUpdate && (isStaticSegOnDynamicImage || m_LazyDynamicPreviews)) { //we only need to update either because we are lazzy //or because we have a static segmentation with a dynamic image this->UpdatePreview(); } } } void mitk::AutoSegmentationWithPreviewTool::UpdatePreview(bool ignoreLazyPreviewSetting) { const auto inputImage = this->GetSegmentationInput(); auto previewImage = this->GetPreviewSegmentation(); int progress_steps = 200; + const auto workingImage = dynamic_cast(this->GetToolManager()->GetWorkingData(0)->GetData()); + this->CurrentlyBusy.Send(true); m_IsUpdating = true; this->UpdatePrepare(); const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); try { if (nullptr != inputImage && nullptr != previewImage) { m_ProgressCommand->AddStepsToDo(progress_steps); if (previewImage->GetTimeSteps() > 1 && (ignoreLazyPreviewSetting || !m_LazyDynamicPreviews)) { for (unsigned int timeStep = 0; timeStep < previewImage->GetTimeSteps(); ++timeStep) { Image::ConstPointer feedBackImage; + Image::ConstPointer currentSegImage; + auto previewTimePoint = previewImage->GetTimeGeometry()->TimeStepToTimePoint(timeStep); auto inputTimeStep = inputImage->GetTimeGeometry()->TimePointToTimeStep(previewTimePoint); if (nullptr != this->GetWorkingPlaneGeometry()) { //only extract a specific slice defined by the working plane as feedback image. feedBackImage = SegTool2D::GetAffectedImageSliceAs2DImage(this->GetWorkingPlaneGeometry(), inputImage, inputTimeStep); + currentSegImage = SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(this->GetWorkingPlaneGeometry(), workingImage, previewTimePoint); } else { //work on the whole feedback image feedBackImage = this->GetImageByTimeStep(inputImage, inputTimeStep); + currentSegImage = this->GetImageByTimePoint(workingImage, previewTimePoint); } - this->DoUpdatePreview(feedBackImage, previewImage, timeStep); + this->DoUpdatePreview(feedBackImage, currentSegImage, previewImage, timeStep); } } else { Image::ConstPointer feedBackImage; + Image::ConstPointer currentSegImage; + if (nullptr != this->GetWorkingPlaneGeometry()) { feedBackImage = SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(this->GetWorkingPlaneGeometry(), inputImage, timePoint); + currentSegImage = SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(this->GetWorkingPlaneGeometry(), workingImage, timePoint); } else { feedBackImage = this->GetImageByTimePoint(inputImage, timePoint); + currentSegImage = this->GetImageByTimePoint(workingImage, timePoint); } auto timeStep = previewImage->GetTimeGeometry()->TimePointToTimeStep(timePoint); - this->DoUpdatePreview(feedBackImage, previewImage, timeStep); + this->DoUpdatePreview(feedBackImage, currentSegImage, previewImage, timeStep); } RenderingManager::GetInstance()->RequestUpdateAll(); } } catch (itk::ExceptionObject & excep) { MITK_ERROR << "Exception caught: " << excep.GetDescription(); m_ProgressCommand->SetProgress(progress_steps); std::string msg = excep.GetDescription(); ErrorMessage.Send(msg); } catch (...) { m_ProgressCommand->SetProgress(progress_steps); m_IsUpdating = false; CurrentlyBusy.Send(false); throw; } this->UpdateCleanUp(); m_LastTimePointOfUpdate = timePoint; m_ProgressCommand->SetProgress(progress_steps); m_IsUpdating = false; CurrentlyBusy.Send(false); } bool mitk::AutoSegmentationWithPreviewTool::IsUpdating() const { return m_IsUpdating; } void mitk::AutoSegmentationWithPreviewTool::UpdatePrepare() { // default implementation does nothing //reimplement in derived classes for special behavior } void mitk::AutoSegmentationWithPreviewTool::UpdateCleanUp() { // default implementation does nothing //reimplement in derived classes for special behavior } mitk::TimePointType mitk::AutoSegmentationWithPreviewTool::GetLastTimePointOfUpdate() const { return m_LastTimePointOfUpdate; } diff --git a/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.h b/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.h index b3cad84572..2632174d4c 100644 --- a/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.h +++ b/Modules/Segmentation/Interactions/mitkAutoSegmentationWithPreviewTool.h @@ -1,169 +1,178 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkAutoSegmentationWithPreviewTool_h_Included #define mitkAutoSegmentationWithPreviewTool_h_Included #include "mitkAutoSegmentationTool.h" #include "mitkCommon.h" #include "mitkDataNode.h" #include "mitkToolCommand.h" #include namespace mitk { /** \brief Base class for any auto segmentation tool that provides a preview of the new segmentation. This tool class implements a lot basic logic to handle auto segmentation tools with preview, Time point and ROI support. Derived classes will ask to update the segmentation preview if needed (e.g. because the ROI or the current time point has changed) or because derived tools indicated the need to update themselves. This class also takes care to properly transfer a confirmed preview into the segementation result. \ingroup ToolManagerEtAl \sa mitk::Tool \sa QmitkInteractiveSegmentation */ class MITKSEGMENTATION_EXPORT AutoSegmentationWithPreviewTool : public AutoSegmentationTool { public: mitkClassMacro(AutoSegmentationWithPreviewTool, AutoSegmentationTool); void Activated() override; void Deactivated() override; void ConfirmSegmentation(); itkSetMacro(CreateAllTimeSteps, bool); itkGetMacro(CreateAllTimeSteps, bool); itkBooleanMacro(CreateAllTimeSteps); itkSetMacro(KeepActiveAfterAccept, bool); itkGetMacro(KeepActiveAfterAccept, bool); itkBooleanMacro(KeepActiveAfterAccept); itkSetMacro(IsTimePointChangeAware, bool); itkGetMacro(IsTimePointChangeAware, bool); itkBooleanMacro(IsTimePointChangeAware); bool CanHandle(const BaseData* referenceData, const BaseData* workingData) const override; /** Triggers the actualization of the preview * @param ignoreLazyPreviewSetting If set true UpdatePreview will always * generate the preview for all time steps. If set to false, UpdatePreview * will regard the setting specified by the constructor. * To define the update generation for time steps implement DoUpdatePreview. * To alter what should be done directly before or after the update of the preview, * reimplement UpdatePrepare() or UpdateCleanUp().*/ void UpdatePreview(bool ignoreLazyPreviewSetting = false); /** Indicate if currently UpdatePreview is triggered (true) or not (false).*/ bool IsUpdating() const; protected: mitk::ToolCommand::Pointer m_ProgressCommand; /** Member is always called if GetSegmentationInput() has changed * (e.g. because a new ROI was defined, or on activation) to give derived * classes the posibility to initiate their state accordingly. * Reimplement this function to implement special behavior. */ virtual void InitiateToolByInput(); + /** This member function offers derived classes the possibility to alter what should + happen directly before the update of the preview is performed. It is called by + UpdatePreview. Default implementation does nothing.*/ virtual void UpdatePrepare(); + + /** This member function offers derived classes the possibility to alter what should + happen directly after the update of the preview is performed. It is called by + UpdatePreview. Default implementation does nothing.*/ virtual void UpdateCleanUp(); /** This function does the real work. Here the preview for a given * input image should be computed and stored in the also passed * preview image at the passed time step. + * It also provides the current/old segmentation at the time point, + * which can be used, if the preview depends on the the segmenation so far. */ - virtual void DoUpdatePreview(const Image* inputAtTimeStep, Image* previewImage, TimeStepType timeStep) = 0; + virtual void DoUpdatePreview(const Image* inputAtTimeStep, const Image* oldSegAtTimeStep, Image* previewImage, TimeStepType timeStep) = 0; AutoSegmentationWithPreviewTool(bool lazyDynamicPreviews = false); // purposely hidden AutoSegmentationWithPreviewTool(bool lazyDynamicPreviews, const char* interactorType, const us::Module* interactorModule = nullptr); // purposely hidden ~AutoSegmentationWithPreviewTool() override; /** Returns the image that contains the preview of the current segmentation. * Returns null if the node is not set or does not contain an image.*/ Image* GetPreviewSegmentation(); DataNode* GetPreviewSegmentationNode(); /** Returns the input that should be used for any segmentation/preview or tool update. * It is either the data of ReferenceDataNode itself or a part of it defined by a ROI mask * provided by the tool manager. Derived classes should regard this as the relevant * input data for any processing. * Returns null if the node is not set or does not contain an image.*/ const Image* GetSegmentationInput() const; /** Returns the image that is provided by the ReferenceDataNode. * Returns null if the node is not set or does not contain an image.*/ const Image* GetReferenceData() const; /** Resets the preview node so it is empty and ready to be filled by the tool*/ void ResetPreviewNode(); TimePointType GetLastTimePointOfUpdate() const; itkSetObjectMacro(WorkingPlaneGeometry, PlaneGeometry); itkGetConstObjectMacro(WorkingPlaneGeometry, PlaneGeometry); private: void TransferImageAtTimeStep(const Image* sourceImage, Image* destinationImage, const TimeStepType timeStep); void CreateResultSegmentationFromPreview(); void OnRoiDataChanged(); void OnTimePointChanged(); /** Node that containes the preview data generated and managed by this class or derived ones.*/ DataNode::Pointer m_PreviewSegmentationNode; /** The reference data recieved from ToolManager::GetReferenceData when tool was activated.*/ DataNode::Pointer m_ReferenceDataNode; /** Node that containes the data that should be used as input for any auto segmentation. It might * be the same like m_ReferenceDataNode (if no ROI is set) or a sub region (if ROI is set).*/ DataNode::Pointer m_SegmentationInputNode; /** Indicates if Accepting the threshold should transfer/create the segmentations of all time steps (true) or only of the currently selected timepoint (false).*/ bool m_CreateAllTimeSteps = false; /** Indicates if the tool should kept active after accepting the segmentation or not.*/ bool m_KeepActiveAfterAccept = false; /** Relevant if the working data / preview image has multiple time steps (dynamic segmentations). * This flag has to be set by derived classes accordingly to there way to generate dynamic previews. * If LazyDynamicPreview is true, the tool generates only the preview for the current time step. * Therefore it always has to update the preview if current time point has changed and it has to (re)compute * all timeframes if ConfirmSegmentation() is called.*/ bool m_LazyDynamicPreviews = false; bool m_IsTimePointChangeAware = true; TimePointType m_LastTimePointOfUpdate = 0.; bool m_IsUpdating = false; /** This variable indicates if for the tool a working plane geometry is defined. * If a working plane is defined the tool will only work an the slice of the input * and the segmentation. Thus only the relevant input slice will be passed to * DoUpdatePreview(...) and only the relevant slice of the preview will be transfered when * ConfirmSegmentation() is called.*/ PlaneGeometry::Pointer m_WorkingPlaneGeometry; }; } // namespace #endif diff --git a/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.cpp b/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.cpp index a8ee655db0..40c2a088b6 100644 --- a/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.cpp +++ b/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.cpp @@ -1,126 +1,126 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkBinaryThresholdBaseTool.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkImageStatisticsHolder.h" #include "mitkLabelSetImage.h" #include #include mitk::BinaryThresholdBaseTool::BinaryThresholdBaseTool() : m_SensibleMinimumThresholdValue(-100), m_SensibleMaximumThresholdValue(+100), m_CurrentLowerThresholdValue(1), m_CurrentUpperThresholdValue(1) { } mitk::BinaryThresholdBaseTool::~BinaryThresholdBaseTool() { } void mitk::BinaryThresholdBaseTool::SetThresholdValues(double lower, double upper) { /* If value is not in the min/max range, do nothing. In that case, this method will be called again with a proper value right after. The only known case where this happens is with an [0.0, 1.0[ image, where value could be an epsilon greater than the max. */ if (lower < m_SensibleMinimumThresholdValue || lower > m_SensibleMaximumThresholdValue || upper < m_SensibleMinimumThresholdValue || upper > m_SensibleMaximumThresholdValue) { return; } m_CurrentLowerThresholdValue = lower; m_CurrentUpperThresholdValue = upper; if (nullptr != this->GetPreviewSegmentation()) { UpdatePreview(); } } void mitk::BinaryThresholdBaseTool::InitiateToolByInput() { const auto referenceImage = this->GetReferenceData(); if (nullptr != referenceImage) { m_SensibleMinimumThresholdValue = std::numeric_limits::max(); m_SensibleMaximumThresholdValue = std::numeric_limits::lowest(); Image::StatisticsHolderPointer statistics = referenceImage->GetStatistics(); for (unsigned int ts = 0; ts < referenceImage->GetTimeSteps(); ++ts) { m_SensibleMinimumThresholdValue = std::min(m_SensibleMinimumThresholdValue, static_cast(statistics->GetScalarValueMin())); m_SensibleMaximumThresholdValue = std::max(m_SensibleMaximumThresholdValue, static_cast(statistics->GetScalarValueMax())); } if (m_LockedUpperThreshold) { m_CurrentLowerThresholdValue = (m_SensibleMaximumThresholdValue + m_SensibleMinimumThresholdValue) / 2.0; m_CurrentUpperThresholdValue = m_SensibleMaximumThresholdValue; } else { double range = m_SensibleMaximumThresholdValue - m_SensibleMinimumThresholdValue; m_CurrentLowerThresholdValue = m_SensibleMinimumThresholdValue + range / 3.0; m_CurrentUpperThresholdValue = m_SensibleMinimumThresholdValue + 2 * range / 3.0; } bool isFloatImage = false; if ((referenceImage->GetPixelType().GetPixelType() == itk::ImageIOBase::SCALAR) && (referenceImage->GetPixelType().GetComponentType() == itk::ImageIOBase::FLOAT || referenceImage->GetPixelType().GetComponentType() == itk::ImageIOBase::DOUBLE)) { isFloatImage = true; } IntervalBordersChanged.Send(m_SensibleMinimumThresholdValue, m_SensibleMaximumThresholdValue, isFloatImage); ThresholdingValuesChanged.Send(m_CurrentLowerThresholdValue, m_CurrentUpperThresholdValue); } } template static void ITKThresholding(const itk::Image *originalImage, mitk::Image *segmentation, double lower, double upper, unsigned int timeStep) { typedef itk::Image ImageType; typedef itk::Image SegmentationType; typedef itk::BinaryThresholdImageFilter ThresholdFilterType; typename ThresholdFilterType::Pointer filter = ThresholdFilterType::New(); filter->SetInput(originalImage); filter->SetLowerThreshold(lower); filter->SetUpperThreshold(upper); filter->SetInsideValue(1); filter->SetOutsideValue(0); filter->Update(); segmentation->SetVolume((void *)(filter->GetOutput()->GetPixelContainer()->GetBufferPointer()), timeStep); } -void mitk::BinaryThresholdBaseTool::DoUpdatePreview(const Image* inputAtTimeStep, Image* previewImage, TimeStepType timeStep) +void mitk::BinaryThresholdBaseTool::DoUpdatePreview(const Image* inputAtTimeStep, const Image* /*oldSegAtTimeStep*/, Image* previewImage, TimeStepType timeStep) { if (nullptr != inputAtTimeStep && nullptr != previewImage) { AccessByItk_n(inputAtTimeStep, ITKThresholding, (previewImage, m_CurrentLowerThresholdValue, m_CurrentUpperThresholdValue, timeStep)); } } diff --git a/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.h b/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.h index cdc15f18be..7eb15979c4 100644 --- a/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.h +++ b/Modules/Segmentation/Interactions/mitkBinaryThresholdBaseTool.h @@ -1,70 +1,70 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkBinaryThresholdBaseTool_h_Included #define mitkBinaryThresholdBaseTool_h_Included #include "mitkAutoSegmentationWithPreviewTool.h" #include "mitkCommon.h" #include "mitkDataNode.h" #include #include #include namespace mitk { /** \brief Base class for binary threshold tools. \ingroup ToolManagerEtAl \sa mitk::Tool \sa QmitkInteractiveSegmentation */ class MITKSEGMENTATION_EXPORT BinaryThresholdBaseTool : public AutoSegmentationWithPreviewTool { public: Message3 IntervalBordersChanged; Message2 ThresholdingValuesChanged; mitkClassMacro(BinaryThresholdBaseTool, AutoSegmentationWithPreviewTool); virtual void SetThresholdValues(double lower, double upper); protected: BinaryThresholdBaseTool(); // purposely hidden ~BinaryThresholdBaseTool() override; itkSetMacro(LockedUpperThreshold, bool); itkGetMacro(LockedUpperThreshold, bool); itkBooleanMacro(LockedUpperThreshold); itkGetMacro(SensibleMinimumThresholdValue, ScalarType); itkGetMacro(SensibleMaximumThresholdValue, ScalarType); void InitiateToolByInput() override; - void DoUpdatePreview(const Image* inputAtTimeStep, Image* previewImage, TimeStepType timeStep) override; + void DoUpdatePreview(const Image* inputAtTimeStep, const Image* oldSegAtTimeStep, Image* previewImage, TimeStepType timeStep) override; private: ScalarType m_SensibleMinimumThresholdValue; ScalarType m_SensibleMaximumThresholdValue; ScalarType m_CurrentLowerThresholdValue; ScalarType m_CurrentUpperThresholdValue; /** Indicates if the tool should behave like a single threshold tool (true) or like a upper/lower threshold tool (false)*/ bool m_LockedUpperThreshold = false; }; } // namespace #endif diff --git a/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.cpp b/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.cpp index 1ded558ddc..322f768302 100644 --- a/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.cpp +++ b/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.cpp @@ -1,335 +1,336 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkFastMarchingBaseTool.h" #include "mitkToolManager.h" #include "mitkBaseRenderer.h" #include "mitkInteractionConst.h" #include "mitkRenderingManager.h" #include "mitkInteractionPositionEvent.h" #include "mitkImageAccessByItk.h" #include "mitkSegTool2D.h" #include // itk filter #include "itkBinaryThresholdImageFilter.h" #include "itkCurvatureAnisotropicDiffusionImageFilter.h" #include "itkGradientMagnitudeRecursiveGaussianImageFilter.h" #include "itkSigmoidImageFilter.h" +#include "itkFastMarchingImageFilter.h" // us #include #include #include #include mitk::FastMarchingBaseTool::FastMarchingBaseTool(unsigned int toolDim) : AutoSegmentationWithPreviewTool(false, "FastMarchingTool"), m_LowerThreshold(0), m_UpperThreshold(200), m_StoppingValue(100), m_Sigma(1.0), m_Alpha(-0.5), m_Beta(3.0), m_ToolDimension(toolDim) { } mitk::FastMarchingBaseTool::~FastMarchingBaseTool() { } bool mitk::FastMarchingBaseTool::CanHandle(const BaseData* referenceData, const BaseData* workingData) const { if(!Superclass::CanHandle(referenceData, workingData)) return false; if (referenceData == nullptr) return false; auto *image = dynamic_cast(referenceData); if (image == nullptr) return false; if (image->GetDimension() < 3) return false; return true; } const char **mitk::FastMarchingBaseTool::GetXPM() const { return nullptr; // mitkFastMarchingBaseTool_xpm; } us::ModuleResource mitk::FastMarchingBaseTool::GetIconResource() const { us::Module *module = us::GetModuleContext()->GetModule(); us::ModuleResource resource = module->GetResource("FastMarching_48x48.png"); return resource; } us::ModuleResource mitk::FastMarchingBaseTool::GetCursorIconResource() const { us::Module* module = us::GetModuleContext()->GetModule(); us::ModuleResource resource = module->GetResource("FastMarching_Cursor_32x32.png"); return resource; } void mitk::FastMarchingBaseTool::SetUpperThreshold(double value) { m_UpperThreshold = value / 10.0; } void mitk::FastMarchingBaseTool::SetLowerThreshold(double value) { m_LowerThreshold = value / 10.0; } void mitk::FastMarchingBaseTool::SetBeta(double value) { if (m_Beta != value) { m_Beta = value; } } void mitk::FastMarchingBaseTool::SetSigma(double value) { if (m_Sigma != value) { if (value > 0.0) { m_Sigma = value; } } } void mitk::FastMarchingBaseTool::SetAlpha(double value) { if (m_Alpha != value) { m_Alpha = value; } } void mitk::FastMarchingBaseTool::SetStoppingValue(double value) { if (m_StoppingValue != value) { m_StoppingValue = value; } } void mitk::FastMarchingBaseTool::Activated() { Superclass::Activated(); m_SeedsAsPointSet = mitk::PointSet::New(); //ensure that the seed points are visible for all timepoints. dynamic_cast(m_SeedsAsPointSet->GetTimeGeometry())->SetStepDuration(std::numeric_limits::max()); m_SeedsAsPointSetNode = mitk::DataNode::New(); m_SeedsAsPointSetNode->SetData(m_SeedsAsPointSet); m_SeedsAsPointSetNode->SetName(std::string(this->GetName()) + "_PointSet"); m_SeedsAsPointSetNode->SetBoolProperty("helper object", true); m_SeedsAsPointSetNode->SetColor(0.0, 1.0, 0.0); m_SeedsAsPointSetNode->SetVisibility(true); - m_ToolManager->GetDataStorage()->Add(m_SeedsAsPointSetNode, m_ToolManager->GetWorkingData(0)); + this->GetDataStorage()->Add(m_SeedsAsPointSetNode, this->GetToolManager()->GetWorkingData(0)); } void mitk::FastMarchingBaseTool::Deactivated() { this->ClearSeeds(); - m_ToolManager->GetDataStorage()->Remove(m_SeedsAsPointSetNode); + this->GetDataStorage()->Remove(m_SeedsAsPointSetNode); m_SeedsAsPointSetNode = nullptr; m_SeedsAsPointSet = nullptr; Superclass::Deactivated(); } void mitk::FastMarchingBaseTool::ConnectActionsAndFunctions() { CONNECT_FUNCTION("ShiftSecondaryButtonPressed", OnAddPoint); CONNECT_FUNCTION("ShiftPrimaryButtonPressed", OnAddPoint); CONNECT_FUNCTION("DeletePoint", OnDelete); } void mitk::FastMarchingBaseTool::OnAddPoint(StateMachineAction*, InteractionEvent* interactionEvent) { if (!this->IsUpdating() && m_SeedsAsPointSet.IsNotNull()) { const auto positionEvent = dynamic_cast(interactionEvent); if (positionEvent != nullptr) { auto workingPlaneGeometry = positionEvent->GetSender()->GetCurrentWorldPlaneGeometry(); // if click was on another plane and we are in 2D mode we should reset the seeds if (m_ToolDimension == 2 && ( nullptr == this->GetWorkingPlaneGeometry() || !this->GetWorkingPlaneGeometry()->IsOnPlane(workingPlaneGeometry))) { this->ClearSeeds(); this->SetWorkingPlaneGeometry(workingPlaneGeometry->Clone()); } m_SeedsAsPointSet->InsertPoint(m_SeedsAsPointSet->GetSize(), positionEvent->GetPositionInWorld()); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->UpdatePreview(); } } } void mitk::FastMarchingBaseTool::OnDelete(StateMachineAction*, InteractionEvent* /*interactionEvent*/) { if (!this->IsUpdating() && m_SeedsAsPointSet.IsNotNull()) { // delete last seed point if (this->m_SeedsAsPointSet->GetSize() > 0) { m_SeedsAsPointSet->RemovePointAtEnd(0); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->UpdatePreview(); } } } void mitk::FastMarchingBaseTool::ClearSeeds() { if (this->m_SeedsAsPointSet.IsNotNull()) { // renew pointset this->m_SeedsAsPointSet = mitk::PointSet::New(); //ensure that the seed points are visible for all timepoints. dynamic_cast(m_SeedsAsPointSet->GetTimeGeometry())->SetStepDuration(std::numeric_limits::max()); this->m_SeedsAsPointSetNode->SetData(this->m_SeedsAsPointSet); } } template void mitk::FastMarchingBaseTool::DoITKFastMarching(const itk::Image* inputImage, Image* previewImage, unsigned int timeStep, const BaseGeometry* inputGeometry) { // typedefs for itk pipeline typedef itk::Image InputImageType; typedef float InternalPixelType; typedef itk::Image InternalImageType; typedef mitk::Tool::DefaultSegmentationDataType OutputPixelType; typedef itk::Image OutputImageType; typedef itk::CurvatureAnisotropicDiffusionImageFilter SmoothingFilterType; typedef itk::GradientMagnitudeRecursiveGaussianImageFilter GradientFilterType; typedef itk::SigmoidImageFilter SigmoidFilterType; typedef itk::BinaryThresholdImageFilter ThresholdingFilterType; typedef itk::FastMarchingImageFilter FastMarchingFilterType; typedef typename FastMarchingFilterType::NodeContainer NodeContainer; typedef typename FastMarchingFilterType::NodeType NodeType; //convert point set seed into trialpoint typename NodeContainer::Pointer trialPoints = NodeContainer::New(); trialPoints->Initialize(); for (auto pos = m_SeedsAsPointSet->Begin(); pos != m_SeedsAsPointSet->End(); ++pos) { mitk::Point3D clickInIndex; inputGeometry->WorldToIndex(pos->Value(), clickInIndex); itk::Index seedPosition; for (unsigned int dim = 0; dim < VImageDimension; ++dim) { seedPosition[dim] = clickInIndex[dim]; } NodeType node; const double seedValue = 0.0; node.SetValue(seedValue); node.SetIndex(seedPosition); trialPoints->InsertElement(trialPoints->Size(), node); } // assemble pipeline auto smoothFilter = SmoothingFilterType::New(); smoothFilter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); smoothFilter->SetTimeStep(0.05); smoothFilter->SetNumberOfIterations(2); smoothFilter->SetConductanceParameter(9.0); auto gradientMagnitudeFilter = GradientFilterType::New(); gradientMagnitudeFilter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); gradientMagnitudeFilter->SetSigma(m_Sigma); auto sigmoidFilter = SigmoidFilterType::New(); sigmoidFilter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); sigmoidFilter->SetAlpha(m_Alpha); sigmoidFilter->SetBeta(m_Beta); sigmoidFilter->SetOutputMinimum(0.0); sigmoidFilter->SetOutputMaximum(1.0); auto fastMarchingFilter = FastMarchingFilterType::New(); fastMarchingFilter->AddObserver(itk::ProgressEvent(), m_ProgressCommand); fastMarchingFilter->SetStoppingValue(m_StoppingValue); fastMarchingFilter->SetTrialPoints(trialPoints); auto thresholdFilter = ThresholdingFilterType::New(); thresholdFilter->SetLowerThreshold(m_LowerThreshold); thresholdFilter->SetUpperThreshold(m_UpperThreshold); thresholdFilter->SetOutsideValue(0); thresholdFilter->SetInsideValue(1.0); // set up pipeline smoothFilter->SetInput(inputImage); gradientMagnitudeFilter->SetInput(smoothFilter->GetOutput()); sigmoidFilter->SetInput(gradientMagnitudeFilter->GetOutput()); fastMarchingFilter->SetInput(sigmoidFilter->GetOutput()); thresholdFilter->SetInput(fastMarchingFilter->GetOutput()); thresholdFilter->Update(); if (nullptr == this->GetWorkingPlaneGeometry()) { previewImage->SetVolume((void*)(thresholdFilter->GetOutput()->GetPixelContainer()->GetBufferPointer()), timeStep); } else { mitk::Image::Pointer sliceImage = mitk::Image::New(); mitk::CastToMitkImage(thresholdFilter->GetOutput(), sliceImage); SegTool2D::WriteSliceToVolume(previewImage, this->GetWorkingPlaneGeometry(), sliceImage, timeStep, false); } } -void mitk::FastMarchingBaseTool::DoUpdatePreview(const Image* inputAtTimeStep, Image* previewImage, TimeStepType timeStep) +void mitk::FastMarchingBaseTool::DoUpdatePreview(const Image* inputAtTimeStep, const Image* /*oldSegAtTimeStep*/, Image* previewImage, TimeStepType timeStep) { if (nullptr != inputAtTimeStep && nullptr != previewImage && m_SeedsAsPointSet.IsNotNull() && m_SeedsAsPointSet->GetSize()>0) { if (nullptr == this->GetWorkingPlaneGeometry()) { AccessFixedDimensionByItk_n(inputAtTimeStep, DoITKFastMarching, 3, (previewImage, timeStep, inputAtTimeStep->GetGeometry())); } else { AccessFixedDimensionByItk_n(inputAtTimeStep, DoITKFastMarching, 2, (previewImage, timeStep, inputAtTimeStep->GetGeometry())); } } } diff --git a/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.h b/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.h index ebec9fd0b2..68a4c6ffcb 100644 --- a/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.h +++ b/Modules/Segmentation/Interactions/mitkFastMarchingBaseTool.h @@ -1,118 +1,117 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkFastMarchingBaseTool_h_Included #define mitkFastMarchingBaseTool_h_Included #include "mitkAutoSegmentationWithPreviewTool.h" #include "mitkDataNode.h" #include "mitkPointSet.h" #include "mitkPointSetDataInteractor.h" #include "mitkToolCommand.h" #include "itkImage.h" -#include "itkFastMarchingImageFilter.h" #include namespace us { class ModuleResource; } namespace mitk { /** \brief FastMarching semgentation tool base class. The segmentation is done by setting one or more seed points on the image and adapting the time range and threshold. The pipeline is: Smoothing->GradientMagnitude->SigmoidFunction->FastMarching->Threshold The resulting binary image is seen as a segmentation of an object. For detailed documentation see ITK Software Guide section 9.3.1 Fast Marching Segmentation. */ class MITKSEGMENTATION_EXPORT FastMarchingBaseTool : public AutoSegmentationWithPreviewTool { public: mitkClassMacro(FastMarchingBaseTool, AutoSegmentationWithPreviewTool); bool CanHandle(const BaseData* referenceData, const BaseData* workingData) const override; /* icon stuff */ const char **GetXPM() const override; us::ModuleResource GetCursorIconResource() const override; us::ModuleResource GetIconResource() const override; void Activated() override; void Deactivated() override; /// \brief Set parameter used in Threshold filter. void SetUpperThreshold(double); /// \brief Set parameter used in Threshold filter. void SetLowerThreshold(double); /// \brief Set parameter used in Fast Marching filter. void SetStoppingValue(double); /// \brief Set parameter used in Gradient Magnitude filter. void SetSigma(double); /// \brief Set parameter used in Fast Marching filter. void SetAlpha(double); /// \brief Set parameter used in Fast Marching filter. void SetBeta(double); /// \brief Clear all seed points. void ClearSeeds(); protected: FastMarchingBaseTool(unsigned int toolDim); ~FastMarchingBaseTool() override; void ConnectActionsAndFunctions() override; /// \brief Add point action of StateMachine pattern virtual void OnAddPoint(StateMachineAction*, InteractionEvent* interactionEvent); /// \brief Delete action of StateMachine pattern virtual void OnDelete(StateMachineAction*, InteractionEvent* interactionEvent); - void DoUpdatePreview(const Image* inputAtTimeStep, Image* previewImage, TimeStepType timeStep) override; + void DoUpdatePreview(const Image* inputAtTimeStep, const Image* oldSegAtTimeStep, Image* previewImage, TimeStepType timeStep) override; template void DoITKFastMarching(const itk::Image* inputImage, Image* segmentation, unsigned int timeStep, const BaseGeometry* inputGeometry); float m_LowerThreshold; // used in Threshold filter float m_UpperThreshold; // used in Threshold filter float m_StoppingValue; // used in Fast Marching filter float m_Sigma; // used in GradientMagnitude filter float m_Alpha; // used in Sigmoid filter float m_Beta; // used in Sigmoid filter DataNode::Pointer m_SeedsAsPointSetNode; // used to visualize the seed points PointSet::Pointer m_SeedsAsPointSet; private: /** Indicating if the tool is used in 2D mode (just segment the current slice) * or 3D mode (segment the whole current volume),*/ unsigned int m_ToolDimension; }; } // namespace #endif