diff --git a/Modules/DiffusionImaging/DiffusionIO/mitkConnectomicsNetworkWriter.cpp b/Modules/DiffusionImaging/DiffusionIO/mitkConnectomicsNetworkWriter.cpp index c8bf4a3b1d..f4913056d2 100644 --- a/Modules/DiffusionImaging/DiffusionIO/mitkConnectomicsNetworkWriter.cpp +++ b/Modules/DiffusionImaging/DiffusionIO/mitkConnectomicsNetworkWriter.cpp @@ -1,136 +1,143 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkConnectomicsNetworkWriter.h" #include "mitkConnectomicsNetworkDefinitions.h" #include #include "itksys/SystemTools.hxx" #include "mitkDiffusionIOMimeTypes.h" mitk::ConnectomicsNetworkWriter::ConnectomicsNetworkWriter() : AbstractFileWriter(mitk::ConnectomicsNetwork::GetStaticNameOfClass(), CustomMimeType( mitk::DiffusionIOMimeTypes::CONNECTOMICS_MIMETYPE_NAME() ), mitk::DiffusionIOMimeTypes::CONNECTOMICS_MIMETYPE_DESCRIPTION() ) { RegisterService(); } mitk::ConnectomicsNetworkWriter::ConnectomicsNetworkWriter(const mitk::ConnectomicsNetworkWriter& other) : AbstractFileWriter(other) { } mitk::ConnectomicsNetworkWriter::~ConnectomicsNetworkWriter() {} mitk::ConnectomicsNetworkWriter* mitk::ConnectomicsNetworkWriter::Clone() const { return new ConnectomicsNetworkWriter(*this); } void mitk::ConnectomicsNetworkWriter::Write() { MITK_INFO << "Writing connectomics network"; InputType::ConstPointer input = dynamic_cast(this->GetInput()); if (input.IsNull() ) { MITK_ERROR <<"Sorry, input to ConnectomicsNetworkWriter is NULL!"; return; } if ( this->GetOutputLocation().empty() ) { MITK_ERROR << "Sorry, filename has not been set!" ; return ; } std::string ext = itksys::SystemTools::GetFilenameLastExtension(this->GetOutputLocation()); ext = itksys::SystemTools::LowerCase(ext); + // default extension is .cnf + if(ext == "") + { + ext = ".cnf"; + this->SetOutputLocation(this->GetOutputLocation() + ext); + } + if (ext == ".cnf") { // Get geometry of the network mitk::BaseGeometry* geometry = input->GetGeometry(); // Create XML document TiXmlDocument documentXML; { // begin document TiXmlDeclaration* declXML = new TiXmlDeclaration( "1.0", "", "" ); // TODO what to write here? encoding? etc.... documentXML.LinkEndChild( declXML ); TiXmlElement* mainXML = new TiXmlElement(mitk::ConnectomicsNetworkDefinitions::XML_CONNECTOMICS_FILE); mainXML->SetAttribute(mitk::ConnectomicsNetworkDefinitions::XML_FILE_VERSION, mitk::ConnectomicsNetworkDefinitions::VERSION_STRING); documentXML.LinkEndChild(mainXML); TiXmlElement* geometryXML = new TiXmlElement(mitk::ConnectomicsNetworkDefinitions::XML_GEOMETRY); { // begin geometry geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_XX, geometry->GetMatrixColumn(0)[0]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_XY, geometry->GetMatrixColumn(0)[1]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_XZ, geometry->GetMatrixColumn(0)[2]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_YX, geometry->GetMatrixColumn(1)[0]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_YY, geometry->GetMatrixColumn(1)[1]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_YZ, geometry->GetMatrixColumn(1)[2]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_ZX, geometry->GetMatrixColumn(2)[0]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_ZY, geometry->GetMatrixColumn(2)[1]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_MATRIX_ZZ, geometry->GetMatrixColumn(2)[2]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_ORIGIN_X, geometry->GetOrigin()[0]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_ORIGIN_Y, geometry->GetOrigin()[1]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_ORIGIN_Z, geometry->GetOrigin()[2]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_SPACING_X, geometry->GetSpacing()[0]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_SPACING_Y, geometry->GetSpacing()[1]); geometryXML->SetDoubleAttribute(mitk::ConnectomicsNetworkDefinitions::XML_SPACING_Z, geometry->GetSpacing()[2]); } // end geometry mainXML->LinkEndChild(geometryXML); TiXmlElement* verticesXML = new TiXmlElement(mitk::ConnectomicsNetworkDefinitions::XML_VERTICES); { // begin vertices section VertexVectorType vertexVector = dynamic_cast(this->GetInput())->GetVectorOfAllNodes(); for( unsigned int index = 0; index < vertexVector.size(); index++ ) { // not localized as of yet TODO TiXmlElement* vertexXML = new TiXmlElement(mitk::ConnectomicsNetworkDefinitions::XML_VERTEX ); vertexXML->SetAttribute( mitk::ConnectomicsNetworkDefinitions::XML_VERTEX_ID , vertexVector[ index ].id ); vertexXML->SetAttribute( mitk::ConnectomicsNetworkDefinitions::XML_VERTEX_LABEL , vertexVector[ index ].label ); vertexXML->SetDoubleAttribute( mitk::ConnectomicsNetworkDefinitions::XML_VERTEX_X , vertexVector[ index ].coordinates[0] ); vertexXML->SetDoubleAttribute( mitk::ConnectomicsNetworkDefinitions::XML_VERTEX_Y , vertexVector[ index ].coordinates[1] ); vertexXML->SetDoubleAttribute( mitk::ConnectomicsNetworkDefinitions::XML_VERTEX_Z , vertexVector[ index ].coordinates[2] ); verticesXML->LinkEndChild(vertexXML); } } // end vertices section mainXML->LinkEndChild(verticesXML); TiXmlElement* edgesXML = new TiXmlElement(mitk::ConnectomicsNetworkDefinitions::XML_EDGES); { // begin edges section EdgeVectorType edgeVector = dynamic_cast(this->GetInput())->GetVectorOfAllEdges(); for(unsigned int index = 0; index < edgeVector.size(); index++ ) { TiXmlElement* edgeXML = new TiXmlElement(mitk::ConnectomicsNetworkDefinitions::XML_EDGE ); edgeXML->SetAttribute( mitk::ConnectomicsNetworkDefinitions::XML_EDGE_ID , index ); edgeXML->SetAttribute( mitk::ConnectomicsNetworkDefinitions::XML_EDGE_SOURCE_ID , edgeVector[ index ].second.sourceId ); edgeXML->SetAttribute( mitk::ConnectomicsNetworkDefinitions::XML_EDGE_TARGET_ID , edgeVector[ index ].second.targetId ); edgeXML->SetAttribute( mitk::ConnectomicsNetworkDefinitions::XML_EDGE_WEIGHT_ID , edgeVector[ index ].second.weight ); edgesXML->LinkEndChild(edgeXML); } } // end edges section mainXML->LinkEndChild(edgesXML); } // end document documentXML.SaveFile( this->GetOutputLocation().c_str() ); MITK_INFO << "Connectomics network written"; } } diff --git a/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleXWriter.cpp b/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleXWriter.cpp index 8be7fc3d96..643219e16d 100644 --- a/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleXWriter.cpp +++ b/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleXWriter.cpp @@ -1,126 +1,133 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkFiberBundleXWriter.h" #include #include #include #include #include #include #include #include "mitkDiffusionIOMimeTypes.h" mitk::FiberBundleXWriter::FiberBundleXWriter() : mitk::AbstractFileWriter(mitk::FiberBundleX::GetStaticNameOfClass(), CustomMimeType( mitk::DiffusionIOMimeTypes::FIBERBUNDLE_MIMETYPE_NAME() ), mitk::DiffusionIOMimeTypes::FIBERBUNDLE_MIMETYPE_DESCRIPTION()) { RegisterService(); } mitk::FiberBundleXWriter::FiberBundleXWriter(const mitk::FiberBundleXWriter & other) :mitk::AbstractFileWriter(other) {} mitk::FiberBundleXWriter::~FiberBundleXWriter() {} mitk::FiberBundleXWriter * mitk::FiberBundleXWriter::Clone() const { return new mitk::FiberBundleXWriter(*this); } void mitk::FiberBundleXWriter::Write() { std::ostream* out; std::ofstream outStream; if( this->GetOutputStream() ) { out = this->GetOutputStream(); }else{ outStream.open( this->GetOutputLocation().c_str() ); out = &outStream; } if ( !out->good() ) { mitkThrow() << "Stream not good."; } try { const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); setlocale(LC_ALL, locale.c_str()); std::locale previousLocale(out->getloc()); std::locale I("C"); out->imbue(I); std::string filename = this->GetOutputLocation().c_str(); mitk::FiberBundleX::ConstPointer input = dynamic_cast(this->GetInput()); std::string ext = itksys::SystemTools::GetFilenameLastExtension(this->GetOutputLocation().c_str()); + // default extension is .fib + if(ext == "") + { + ext = ".fib"; + this->SetOutputLocation(this->GetOutputLocation() + ext); + } + if (ext==".fib" || ext==".vtk") { MITK_INFO << "Writing fiber bundle as binary VTK"; vtkSmartPointer writer = vtkSmartPointer::New(); writer->SetInputData(input->GetFiberPolyData()); writer->SetFileName(this->GetOutputLocation().c_str()); writer->SetFileTypeToBinary(); writer->Write(); } else if (ext==".afib") { itksys::SystemTools::ReplaceString(filename,".afib",".fib"); MITK_INFO << "Writing fiber bundle as ascii VTK"; vtkSmartPointer writer = vtkSmartPointer::New(); writer->SetInputData(input->GetFiberPolyData()); writer->SetFileName(this->GetOutputLocation().c_str()); writer->SetFileTypeToASCII(); writer->Write(); } else if (ext==".avtk") { itksys::SystemTools::ReplaceString(filename,".avtk",".vtk"); MITK_INFO << "Writing fiber bundle as ascii VTK"; vtkSmartPointer writer = vtkSmartPointer::New(); writer->SetInputData(input->GetFiberPolyData()); writer->SetFileName(this->GetOutputLocation().c_str()); writer->SetFileTypeToASCII(); writer->Write(); } else if (ext==".trk") { MITK_INFO << "Writing fiber bundle as TRK"; TrackVisFiberReader trk; trk.create(filename, input.GetPointer()); trk.writeHdr(); trk.append(input.GetPointer()); } setlocale(LC_ALL, currLocale.c_str()); MITK_INFO << "Fiber bundle written"; } catch(...) { throw; } } diff --git a/Modules/DiffusionImaging/DiffusionIO/mitkNrrdDiffusionImageWriter.cpp b/Modules/DiffusionImaging/DiffusionIO/mitkNrrdDiffusionImageWriter.cpp index a3cda09826..d9f7f745ba 100644 --- a/Modules/DiffusionImaging/DiffusionIO/mitkNrrdDiffusionImageWriter.cpp +++ b/Modules/DiffusionImaging/DiffusionIO/mitkNrrdDiffusionImageWriter.cpp @@ -1,318 +1,326 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __mitkNrrdDiffusionImageWriter__cpp #define __mitkNrrdDiffusionImageWriter__cpp #include "mitkNrrdDiffusionImageWriter.h" #include "itkMetaDataDictionary.h" #include "itkMetaDataObject.h" #include "itkNrrdImageIO.h" #include "itkNiftiImageIO.h" #include "itkImageFileWriter.h" #include "itksys/SystemTools.hxx" #include "mitkDiffusionIOMimeTypes.h" #include #include mitk::NrrdDiffusionImageWriter::NrrdDiffusionImageWriter() : AbstractFileWriter(mitk::DiffusionImage::GetStaticNameOfClass(), CustomMimeType( mitk::DiffusionIOMimeTypes::DWI_MIMETYPE_NAME() ), mitk::DiffusionIOMimeTypes::DWI_MIMETYPE_DESCRIPTION()) { RegisterService(); } mitk::NrrdDiffusionImageWriter::NrrdDiffusionImageWriter(const mitk::NrrdDiffusionImageWriter& other) : AbstractFileWriter(other) { } mitk::NrrdDiffusionImageWriter::~NrrdDiffusionImageWriter() {} void mitk::NrrdDiffusionImageWriter::Write() { InputType::ConstPointer input = dynamic_cast(this->GetInput()); if (input.IsNull()) { MITK_ERROR <<"Sorry, input to NrrdDiffusionImageWriter is NULL!"; return; } if ( this->GetOutputLocation().empty() ) { MITK_ERROR << "Sorry, filename has not been set!"; return ; } const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } char keybuffer[512]; char valbuffer[512]; //itk::MetaDataDictionary dic = input->GetImage()->GetMetaDataDictionary(); vnl_matrix_fixed measurementFrame = input->GetMeasurementFrame(); if (measurementFrame(0,0) || measurementFrame(0,1) || measurementFrame(0,2) || measurementFrame(1,0) || measurementFrame(1,1) || measurementFrame(1,2) || measurementFrame(2,0) || measurementFrame(2,1) || measurementFrame(2,2)) { sprintf( valbuffer, " (%lf,%lf,%lf) (%lf,%lf,%lf) (%lf,%lf,%lf)", measurementFrame(0,0), measurementFrame(0,1), measurementFrame(0,2), measurementFrame(1,0), measurementFrame(1,1), measurementFrame(1,2), measurementFrame(2,0), measurementFrame(2,1), measurementFrame(2,2)); itk::EncapsulateMetaData(input->GetVectorImage()->GetMetaDataDictionary(),std::string("measurement frame"),std::string(valbuffer)); } sprintf( valbuffer, "DWMRI"); itk::EncapsulateMetaData(input->GetVectorImage()->GetMetaDataDictionary(),std::string("modality"),std::string(valbuffer)); if(input->GetDirections()->Size()) { sprintf( valbuffer, "%1f", input->GetReferenceBValue() ); itk::EncapsulateMetaData(input->GetVectorImage()->GetMetaDataDictionary(),std::string("DWMRI_b-value"),std::string(valbuffer)); } for(unsigned int i=0; iGetDirections()->Size(); i++) { sprintf( keybuffer, "DWMRI_gradient_%04d", i ); /*if(itk::ExposeMetaData(input->GetMetaDataDictionary(), std::string(keybuffer),tmp)) continue;*/ sprintf( valbuffer, "%1f %1f %1f", input->GetDirections()->ElementAt(i).get(0), input->GetDirections()->ElementAt(i).get(1), input->GetDirections()->ElementAt(i).get(2)); itk::EncapsulateMetaData(input->GetVectorImage()->GetMetaDataDictionary(),std::string(keybuffer),std::string(valbuffer)); } typedef itk::VectorImage ImageType; std::string ext = itksys::SystemTools::GetFilenameLastExtension(this->GetOutputLocation()); ext = itksys::SystemTools::LowerCase(ext); + + // default extension is .dwi + if( ext == "") + { + ext = ".dwi"; + this->SetOutputLocation(this->GetOutputLocation() + ext); + } + if (ext == ".hdwi" || ext == ".dwi") { itk::NrrdImageIO::Pointer io = itk::NrrdImageIO::New(); //io->SetNrrdVectorType( nrrdKindList ); io->SetFileType( itk::ImageIOBase::Binary ); io->UseCompressionOn(); typedef itk::ImageFileWriter WriterType; WriterType::Pointer nrrdWriter = WriterType::New(); nrrdWriter->UseInputMetaDataDictionaryOn(); nrrdWriter->SetInput( input->GetVectorImage() ); nrrdWriter->SetImageIO(io); nrrdWriter->SetFileName(this->GetOutputLocation()); nrrdWriter->UseCompressionOn(); nrrdWriter->SetImageIO(io); try { nrrdWriter->Update(); } catch (itk::ExceptionObject e) { std::cout << e << std::endl; throw; } } else if (ext == ".fsl" || ext == ".fslgz") { MITK_INFO << "Writing Nifti-Image for FSL"; ImageType::Pointer vecimg = input->GetVectorImage(); typedef itk::Image ImageType4D; ImageType4D::Pointer img4 = ImageType4D::New(); ImageType::SpacingType spacing = vecimg->GetSpacing(); ImageType4D::SpacingType spacing4; for(int i=0; i<3; i++) spacing4[i] = spacing[i]; spacing4[3] = 1; img4->SetSpacing( spacing4 ); // Set the image spacing ImageType::PointType origin = vecimg->GetOrigin(); ImageType4D::PointType origin4; for(int i=0; i<3; i++) origin4[i] = origin[i]; origin4[3] = 0; img4->SetOrigin( origin4 ); // Set the image origin ImageType::DirectionType direction = vecimg->GetDirection(); ImageType4D::DirectionType direction4; for(int i=0; i<3; i++) for(int j=0; j<3; j++) direction4[i][j] = direction[i][j]; for(int i=0; i<4; i++) direction4[i][3] = 0; for(int i=0; i<4; i++) direction4[3][i] = 0; direction4[3][3] = 1; img4->SetDirection( direction4 ); // Set the image direction ImageType::RegionType region = vecimg->GetLargestPossibleRegion(); ImageType4D::RegionType region4; ImageType::RegionType::SizeType size = region.GetSize(); ImageType4D::RegionType::SizeType size4; for(int i=0; i<3; i++) size4[i] = size[i]; size4[3] = vecimg->GetVectorLength(); ImageType::RegionType::IndexType index = region.GetIndex(); ImageType4D::RegionType::IndexType index4; for(int i=0; i<3; i++) index4[i] = index[i]; index4[3] = 0; region4.SetSize(size4); region4.SetIndex(index4); img4->SetRegions( region4 ); img4->Allocate(); itk::ImageRegionIterator it (vecimg, vecimg->GetLargestPossibleRegion() ); typedef ImageType::PixelType VecPixType; for (it.GoToBegin(); !it.IsAtEnd(); ++it) { VecPixType vec = it.Get(); ImageType::IndexType currentIndex = it.GetIndex(); for(unsigned int ind=0; indSetPixel(index4, vec[ind]); } } // create copy of file with correct ending for mitk std::string fname3 = this->GetOutputLocation(); std::string::iterator itend = fname3.end(); if (ext == ".fsl") fname3.replace( itend-3, itend, "nii"); else fname3.replace( itend-5, itend, "nii.gz"); itk::NiftiImageIO::Pointer io4 = itk::NiftiImageIO::New(); typedef itk::VectorImage ImageType; typedef itk::ImageFileWriter WriterType4; WriterType4::Pointer nrrdWriter4 = WriterType4::New(); nrrdWriter4->UseInputMetaDataDictionaryOn(); nrrdWriter4->SetInput( img4 ); nrrdWriter4->SetFileName(fname3); nrrdWriter4->UseCompressionOn(); nrrdWriter4->SetImageIO(io4); try { nrrdWriter4->Update(); } catch (itk::ExceptionObject e) { std::cout << e << std::endl; throw; } itksys::SystemTools::CopyAFile(fname3.c_str(), this->GetOutputLocation().c_str()); if(input->GetDirections()->Size()) { std::ofstream myfile; std::string fname = this->GetOutputLocation(); fname += ".bvals"; myfile.open (fname.c_str()); for(unsigned int i=0; iGetDirections()->Size(); i++) { double twonorm = input->GetDirections()->ElementAt(i).two_norm(); myfile << input->GetReferenceBValue()*twonorm*twonorm << " "; } myfile.close(); std::ofstream myfile2; std::string fname2 = this->GetOutputLocation(); fname2 += ".bvecs"; myfile2.open (fname2.c_str()); for(int j=0; j<3; j++) { for(unsigned int i=0; iGetDirections()->Size(); i++) { //need to modify the length mitk::DiffusionImage::GradientDirectionContainerType::Pointer grads = input->GetDirections(); mitk::DiffusionImage::GradientDirectionType direction = grads->ElementAt(i); direction.normalize(); myfile2 << direction.get(j) << " "; //myfile2 << input->GetDirections()->ElementAt(i).get(j) << " "; } myfile2 << std::endl; } std::ofstream myfile3; std::string fname4 = this->GetOutputLocation(); fname4 += ".ttk"; myfile3.open (fname4.c_str()); for(unsigned int i=0; iGetDirections()->Size(); i++) { for(int j=0; j<3; j++) { myfile3 << input->GetDirections()->ElementAt(i).get(j) << " "; } myfile3 << std::endl; } } } try { setlocale(LC_ALL, currLocale.c_str()); } catch(...) { MITK_INFO << "Could not reset locale " << currLocale; } } mitk::NrrdDiffusionImageWriter* mitk::NrrdDiffusionImageWriter::Clone() const { return new NrrdDiffusionImageWriter(*this); } mitk::IFileWriter::ConfidenceLevel mitk::NrrdDiffusionImageWriter::GetConfidenceLevel() const { InputType::ConstPointer input = dynamic_cast(this->GetInput()); if (input.IsNull() ) { return Unsupported; } else { return Supported; } } #endif //__mitkNrrdDiffusionImageWriter__cpp diff --git a/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp b/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp index d08b515956..b80b1e1b1c 100755 --- a/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp +++ b/Modules/DiffusionImaging/MiniApps/FiberDirectionExtraction.cpp @@ -1,182 +1,177 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include #include #include #include #include #include "ctkCommandLineParser.h" #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include int FiberDirectionExtraction(int argc, char* argv[]) { MITK_INFO << "FiberDirectionExtraction"; ctkCommandLineParser parser; parser.setTitle("Fiber Direction Extraction"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::InputFile, "Input:", "input tractogram (.fib/.trk)", us::Any(), false); parser.addArgument("out", "o", ctkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); parser.addArgument("mask", "m", ctkCommandLineParser::InputFile, "Mask:", "mask image"); parser.addArgument("athresh", "a", ctkCommandLineParser::Float, "Angular threshold:", "angular threshold in degrees. closer fiber directions are regarded as one direction and clustered together.", 25, true); parser.addArgument("peakthresh", "t", ctkCommandLineParser::Float, "Peak size threshold:", "peak size threshold relative to largest peak in voxel", 0.2, true); parser.addArgument("verbose", "v", ctkCommandLineParser::Bool, "Verbose:", "output optional and intermediate calculation results"); parser.addArgument("numdirs", "d", ctkCommandLineParser::Int, "Max. num. directions:", "maximum number of fibers per voxel", 3, true); parser.addArgument("normalize", "n", ctkCommandLineParser::Bool, "Normalize:", "normalize vectors"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; string fibFile = us::any_cast(parsedArgs["input"]); string maskImage(""); if (parsedArgs.count("mask")) maskImage = us::any_cast(parsedArgs["mask"]); float peakThreshold = 0.2; if (parsedArgs.count("peakthresh")) peakThreshold = us::any_cast(parsedArgs["peakthresh"]); float angularThreshold = 25; if (parsedArgs.count("athresh")) angularThreshold = us::any_cast(parsedArgs["athresh"]); string outRoot = us::any_cast(parsedArgs["out"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); int maxNumDirs = 3; if (parsedArgs.count("numdirs")) maxNumDirs = us::any_cast(parsedArgs["numdirs"]); bool normalize = false; if (parsedArgs.count("normalize")) normalize = us::any_cast(parsedArgs["normalize"]); try { typedef itk::Image ItkUcharImgType; typedef itk::Image< itk::Vector< float, 3>, 3 > ItkDirectionImage3DType; typedef itk::VectorContainer< unsigned int, ItkDirectionImage3DType::Pointer > ItkDirectionImageContainerType; // load fiber bundle mitk::FiberBundleX::Pointer inputTractogram = dynamic_cast(mitk::IOUtil::LoadDataNode(fibFile)->GetData()); // load/create mask image ItkUcharImgType::Pointer itkMaskImage = NULL; if (maskImage.compare("")!=0) { MITK_INFO << "Using mask image"; itkMaskImage = ItkUcharImgType::New(); mitk::Image::Pointer mitkMaskImage = dynamic_cast(mitk::IOUtil::LoadDataNode(maskImage)->GetData()); mitk::CastToItkImage(mitkMaskImage, itkMaskImage); } // extract directions from fiber bundle itk::TractsToVectorImageFilter::Pointer fOdfFilter = itk::TractsToVectorImageFilter::New(); fOdfFilter->SetFiberBundle(inputTractogram); fOdfFilter->SetMaskImage(itkMaskImage); fOdfFilter->SetAngularThreshold(cos(angularThreshold*M_PI/180)); fOdfFilter->SetNormalizeVectors(normalize); fOdfFilter->SetUseWorkingCopy(false); fOdfFilter->SetSizeThreshold(peakThreshold); fOdfFilter->SetMaxNumDirections(maxNumDirs); fOdfFilter->Update(); ItkDirectionImageContainerType::Pointer directionImageContainer = fOdfFilter->GetDirectionImageContainer(); // write direction images for (unsigned int i=0; iSize(); i++) { itk::TractsToVectorImageFilter::ItkDirectionImageType::Pointer itkImg = directionImageContainer->GetElement(i); typedef itk::ImageFileWriter< itk::TractsToVectorImageFilter::ItkDirectionImageType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_DIRECTION_"); outfilename.append(boost::lexical_cast(i)); outfilename.append(".nrrd"); writer->SetFileName(outfilename.c_str()); writer->SetInput(itkImg); writer->Update(); } if (verbose) { // write vector field mitk::FiberBundleX::Pointer directions = fOdfFilter->GetOutputFiberBundle(); - mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(directions.GetPointer()) ) { - string outfilename = outRoot; - outfilename.append("_VECTOR_FIELD.fib"); - (*it)->SetFileName( outfilename.c_str() ); - (*it)->DoWrite( directions.GetPointer() ); - } - } + + string outfilename = outRoot; + outfilename.append("_VECTOR_FIELD.fib"); + + mitk::IOUtil::SaveBaseData(directions.GetPointer(), outfilename ); // write num direction image { ItkUcharImgType::Pointer numDirImage = fOdfFilter->GetNumDirectionsImage(); typedef itk::ImageFileWriter< ItkUcharImgType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_NUM_DIRECTIONS.nrrd"); writer->SetFileName(outfilename.c_str()); writer->SetInput(numDirImage); writer->Update(); } } } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } RegisterDiffusionMiniApp(FiberDirectionExtraction); diff --git a/Modules/DiffusionImaging/MiniApps/FiberProcessing.cpp b/Modules/DiffusionImaging/MiniApps/FiberProcessing.cpp index baa94f89af..a0534029f5 100644 --- a/Modules/DiffusionImaging/MiniApps/FiberProcessing.cpp +++ b/Modules/DiffusionImaging/MiniApps/FiberProcessing.cpp @@ -1,223 +1,218 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include #include #include #include #include #include #include #include #include #include #include #include "ctkCommandLineParser.h" #include #include +#include mitk::FiberBundleX::Pointer LoadFib(std::string filename) { const std::string s1="", s2=""; std::vector fibInfile = mitk::BaseDataIO::LoadBaseDataFromFile( filename, s1, s2, false ); if( fibInfile.empty() ) MITK_INFO << "File " << filename << " could not be read!"; mitk::BaseData::Pointer baseData = fibInfile.at(0); return dynamic_cast(baseData.GetPointer()); } int FiberProcessing(int argc, char* argv[]) { MITK_INFO << "FiberProcessing"; ctkCommandLineParser parser; parser.setTitle("Fiber Processing"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::InputFile, "Input:", "input fiber bundle (.fib)", us::Any(), false); parser.addArgument("outFile", "o", ctkCommandLineParser::OutputFile, "Output:", "output fiber bundle (.fib)", us::Any(), false); parser.addArgument("resample", "r", ctkCommandLineParser::Float, "Linear resampling:", "Linearly resample fiber with the given point distance (in mm)"); parser.addArgument("smooth", "s", ctkCommandLineParser::Float, "Spline resampling:", "Resample fiber using splines with the given point distance (in mm)"); parser.addArgument("compress", "c", ctkCommandLineParser::Float, "Compress:", "Compress fiber using the given error threshold (in mm)"); parser.addArgument("minLength", "l", ctkCommandLineParser::Float, "Minimum length:", "Minimum fiber length (in mm)"); parser.addArgument("maxLength", "m", ctkCommandLineParser::Float, "Maximum length:", "Maximum fiber length (in mm)"); parser.addArgument("minCurv", "a", ctkCommandLineParser::Float, "Minimum curvature radius:", "Minimum curvature radius (in mm)"); parser.addArgument("mirror", "p", ctkCommandLineParser::Int, "Invert coordinates:", "Invert fiber coordinates XYZ (e.g. 010 to invert y-coordinate of each fiber point)"); parser.addArgument("rotate-x", "rx", ctkCommandLineParser::Float, "Rotate x-axis:", "Rotate around x-axis (if copy is given the copy is rotated, in deg)"); parser.addArgument("rotate-y", "ry", ctkCommandLineParser::Float, "Rotate y-axis:", "Rotate around y-axis (if copy is given the copy is rotated, in deg)"); parser.addArgument("rotate-z", "rz", ctkCommandLineParser::Float, "Rotate z-axis:", "Rotate around z-axis (if copy is given the copy is rotated, in deg)"); parser.addArgument("scale-x", "sx", ctkCommandLineParser::Float, "Scale x-axis:", "Scale in direction of x-axis (if copy is given the copy is scaled)"); parser.addArgument("scale-y", "sy", ctkCommandLineParser::Float, "Scale y-axis:", "Scale in direction of y-axis (if copy is given the copy is scaled)"); parser.addArgument("scale-z", "sz", ctkCommandLineParser::Float, "Scale z-axis", "Scale in direction of z-axis (if copy is given the copy is scaled)"); parser.addArgument("translate-x", "tx", ctkCommandLineParser::Float, "Translate x-axis:", "Translate in direction of x-axis (if copy is given the copy is translated, in mm)"); parser.addArgument("translate-y", "ty", ctkCommandLineParser::Float, "Translate y-axis:", "Translate in direction of y-axis (if copy is given the copy is translated, in mm)"); parser.addArgument("translate-z", "tz", ctkCommandLineParser::Float, "Translate z-axis:", "Translate in direction of z-axis (if copy is given the copy is translated, in mm)"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; float pointDist = -1; if (parsedArgs.count("resample")) pointDist = us::any_cast(parsedArgs["resample"]); float smoothDist = -1; if (parsedArgs.count("smooth")) smoothDist = us::any_cast(parsedArgs["smooth"]); float compress = -1; if (parsedArgs.count("compress")) compress = us::any_cast(parsedArgs["compress"]); float minFiberLength = -1; if (parsedArgs.count("minLength")) minFiberLength = us::any_cast(parsedArgs["minLength"]); float maxFiberLength = -1; if (parsedArgs.count("maxLength")) maxFiberLength = us::any_cast(parsedArgs["maxLength"]); float curvThres = -1; if (parsedArgs.count("minCurv")) curvThres = us::any_cast(parsedArgs["minCurv"]); int axis = 0; if (parsedArgs.count("mirror")) axis = us::any_cast(parsedArgs["mirror"]); float rotateX = 0; if (parsedArgs.count("rotate-x")) rotateX = us::any_cast(parsedArgs["rotate-x"]); float rotateY = 0; if (parsedArgs.count("rotate-y")) rotateY = us::any_cast(parsedArgs["rotate-y"]); float rotateZ = 0; if (parsedArgs.count("rotate-z")) rotateZ = us::any_cast(parsedArgs["rotate-z"]); float scaleX = 0; if (parsedArgs.count("scale-x")) scaleX = us::any_cast(parsedArgs["scale-x"]); float scaleY = 0; if (parsedArgs.count("scale-y")) scaleY = us::any_cast(parsedArgs["scale-y"]); float scaleZ = 0; if (parsedArgs.count("scale-z")) scaleZ = us::any_cast(parsedArgs["scale-z"]); float translateX = 0; if (parsedArgs.count("translate-x")) translateX = us::any_cast(parsedArgs["translate-x"]); float translateY = 0; if (parsedArgs.count("translate-y")) translateY = us::any_cast(parsedArgs["translate-y"]); float translateZ = 0; if (parsedArgs.count("translate-z")) translateZ = us::any_cast(parsedArgs["translate-z"]); string inFileName = us::any_cast(parsedArgs["input"]); string outFileName = us::any_cast(parsedArgs["outFile"]); try { mitk::FiberBundleX::Pointer fib = LoadFib(inFileName); if (minFiberLength>0) fib->RemoveShortFibers(minFiberLength); if (maxFiberLength>0) fib->RemoveLongFibers(maxFiberLength); if (curvThres>0) fib->ApplyCurvatureThreshold(curvThres, false); if (pointDist>0) fib->ResampleLinear(pointDist); if (smoothDist>0) fib->ResampleSpline(smoothDist); if (compress>0) fib->Compress(compress); if (axis/100==1) fib->MirrorFibers(0); if ((axis%100)/10==1) fib->MirrorFibers(1); if (axis%10==1) fib->MirrorFibers(2); if (rotateX > 0 || rotateY > 0 || rotateZ > 0){ MITK_INFO << "Rotate " << rotateX << " " << rotateY << " " << rotateZ; fib->RotateAroundAxis(rotateX, rotateY, rotateZ); } if (translateX > 0 || translateY > 0 || translateZ > 0){ fib->TranslateFibers(translateX, translateY, translateZ); } if (scaleX > 0 || scaleY > 0 || scaleZ > 0) fib->ScaleFibers(scaleX, scaleY, scaleZ); - mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(fib.GetPointer()) ) { - (*it)->SetFileName( outFileName.c_str() ); - (*it)->DoWrite( fib.GetPointer() ); - } - } + mitk::IOUtil::SaveBaseData(fib.GetPointer(), outFileName ); + } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } RegisterDiffusionMiniApp(FiberProcessing); diff --git a/Modules/DiffusionImaging/MiniApps/GibbsTracking.cpp b/Modules/DiffusionImaging/MiniApps/GibbsTracking.cpp index 7bd0f14b97..e5a222818c 100755 --- a/Modules/DiffusionImaging/MiniApps/GibbsTracking.cpp +++ b/Modules/DiffusionImaging/MiniApps/GibbsTracking.cpp @@ -1,252 +1,245 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include #include #include #include #include #include #include #include #include #include #include "ctkCommandLineParser.h" #include #include #include template typename itk::ShCoefficientImageImporter< float, shOrder >::QballImageType::Pointer TemplatedConvertShCoeffs(mitk::Image* mitkImg, int toolkit, bool noFlip = false) { typedef itk::ShCoefficientImageImporter< float, shOrder > FilterType; typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(mitkImg); caster->Update(); itk::Image< float, 4 >::Pointer itkImage = caster->GetOutput(); typename FilterType::Pointer filter = FilterType::New(); if (noFlip) { filter->SetInputImage(itkImage); } else { MITK_INFO << "Flipping image"; itk::FixedArray flipAxes; flipAxes[0] = true; flipAxes[1] = true; flipAxes[2] = false; flipAxes[3] = false; itk::FlipImageFilter< itk::Image< float, 4 > >::Pointer flipper = itk::FlipImageFilter< itk::Image< float, 4 > >::New(); flipper->SetInput(itkImage); flipper->SetFlipAxes(flipAxes); flipper->Update(); itk::Image< float, 4 >::Pointer flipped = flipper->GetOutput(); itk::Matrix< double,4,4 > m = itkImage->GetDirection(); m[0][0] *= -1; m[1][1] *= -1; flipped->SetDirection(m); itk::Point< float, 4 > o = itkImage->GetOrigin(); o[0] -= (flipped->GetLargestPossibleRegion().GetSize(0)-1); o[1] -= (flipped->GetLargestPossibleRegion().GetSize(1)-1); flipped->SetOrigin(o); filter->SetInputImage(flipped); } switch (toolkit) { case 0: filter->SetToolkit(FilterType::FSL); break; case 1: filter->SetToolkit(FilterType::MRTRIX); break; default: filter->SetToolkit(FilterType::FSL); } filter->GenerateData(); return filter->GetQballImage(); } int GibbsTracking(int argc, char* argv[]) { MITK_INFO << "GibbsTracking"; ctkCommandLineParser parser; parser.setTitle("Gibbs Tracking"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::InputFile, "Input:", "input image (tensor, Q-ball or FSL/MRTrix SH-coefficient image)", us::Any(), false); parser.addArgument("parameters", "p", ctkCommandLineParser::InputFile, "Parameters:", "parameter file (.gtp)", us::Any(), false); parser.addArgument("mask", "m", ctkCommandLineParser::InputFile, "Mask:", "binary mask image"); parser.addArgument("shConvention", "s", ctkCommandLineParser::String, "SH coefficient:", "sh coefficient convention (FSL, MRtrix)", string("FSL"), true); parser.addArgument("outFile", "o", ctkCommandLineParser::OutputFile, "Output:", "output fiber bundle (.fib)", us::Any(), false); parser.addArgument("noFlip", "f", ctkCommandLineParser::Bool, "No flip:", "do not flip input image to match MITK coordinate convention"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; string inFileName = us::any_cast(parsedArgs["input"]); string paramFileName = us::any_cast(parsedArgs["parameters"]); string outFileName = us::any_cast(parsedArgs["outFile"]); bool noFlip = false; if (parsedArgs.count("noFlip")) noFlip = us::any_cast(parsedArgs["noFlip"]); try { // instantiate gibbs tracker typedef itk::Vector OdfVectorType; typedef itk::Image ItkQballImageType; typedef itk::GibbsTrackingFilter GibbsTrackingFilterType; GibbsTrackingFilterType::Pointer gibbsTracker = GibbsTrackingFilterType::New(); // load input image const std::string s1="", s2=""; std::vector infile = mitk::BaseDataIO::LoadBaseDataFromFile( inFileName, s1, s2, false ); mitk::Image::Pointer mitkImage = dynamic_cast(infile.at(0).GetPointer()); // try to cast to qball image if( boost::algorithm::ends_with(inFileName, ".qbi") ) { MITK_INFO << "Loading qball image ..."; mitk::QBallImage::Pointer mitkQballImage = dynamic_cast(infile.at(0).GetPointer()); ItkQballImageType::Pointer itk_qbi = ItkQballImageType::New(); mitk::CastToItkImage(mitkQballImage, itk_qbi); gibbsTracker->SetQBallImage(itk_qbi.GetPointer()); } else if( boost::algorithm::ends_with(inFileName, ".dti") ) { MITK_INFO << "Loading tensor image ..."; typedef itk::Image< itk::DiffusionTensor3D, 3 > ItkTensorImage; mitk::TensorImage::Pointer mitkTensorImage = dynamic_cast(infile.at(0).GetPointer()); ItkTensorImage::Pointer itk_dti = ItkTensorImage::New(); mitk::CastToItkImage(mitkTensorImage, itk_dti); gibbsTracker->SetTensorImage(itk_dti); } else if ( boost::algorithm::ends_with(inFileName, ".nii") ) { MITK_INFO << "Loading sh-coefficient image ..."; int nrCoeffs = mitkImage->GetLargestPossibleRegion().GetSize()[3]; int c=3, d=2-2*nrCoeffs; double D = c*c-4*d; int shOrder; if (D>0) { shOrder = (-c+sqrt(D))/2.0; if (shOrder<0) shOrder = (-c-sqrt(D))/2.0; } else if (D==0) shOrder = -c/2.0; MITK_INFO << "using SH-order " << shOrder; int toolkitConvention = 0; if (parsedArgs.count("shConvention")) { string convention = us::any_cast(parsedArgs["shConvention"]).c_str(); if ( boost::algorithm::equals(convention, "MRtrix") ) { toolkitConvention = 1; MITK_INFO << "Using MRtrix style sh-coefficient convention"; } else MITK_INFO << "Using FSL style sh-coefficient convention"; } else MITK_INFO << "Using FSL style sh-coefficient convention"; switch (shOrder) { case 4: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<4>(mitkImage, toolkitConvention, noFlip)); break; case 6: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<6>(mitkImage, toolkitConvention, noFlip)); break; case 8: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<8>(mitkImage, toolkitConvention, noFlip)); break; case 10: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<10>(mitkImage, toolkitConvention, noFlip)); break; case 12: gibbsTracker->SetQBallImage(TemplatedConvertShCoeffs<12>(mitkImage, toolkitConvention, noFlip)); break; default: MITK_INFO << "SH-order " << shOrder << " not supported"; } } else return EXIT_FAILURE; // global tracking if (parsedArgs.count("mask")) { typedef itk::Image MaskImgType; mitk::Image::Pointer mitkMaskImage = mitk::IOUtil::LoadImage(us::any_cast(parsedArgs["mask"])); MaskImgType::Pointer itk_mask = MaskImgType::New(); mitk::CastToItkImage(mitkMaskImage, itk_mask); gibbsTracker->SetMaskImage(itk_mask); } gibbsTracker->SetDuplicateImage(false); gibbsTracker->SetLoadParameterFile( paramFileName ); // gibbsTracker->SetLutPath( "" ); gibbsTracker->Update(); mitk::FiberBundleX::Pointer mitkFiberBundle = mitk::FiberBundleX::New(gibbsTracker->GetFiberBundle()); mitkFiberBundle->SetReferenceGeometry(mitkImage->GetGeometry()); - mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(mitkFiberBundle.GetPointer()) ) { - (*it)->SetFileName( outFileName.c_str() ); - (*it)->DoWrite( mitkFiberBundle.GetPointer() ); - } - } + mitk::IOUtil::SaveBaseData(mitkFiberBundle.GetPointer(), outFileName ); } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } RegisterDiffusionMiniApp(GibbsTracking); diff --git a/Modules/DiffusionImaging/MiniApps/LocalDirectionalFiberPlausibility.cpp b/Modules/DiffusionImaging/MiniApps/LocalDirectionalFiberPlausibility.cpp index 2ec21daa9d..ff292b4feb 100755 --- a/Modules/DiffusionImaging/MiniApps/LocalDirectionalFiberPlausibility.cpp +++ b/Modules/DiffusionImaging/MiniApps/LocalDirectionalFiberPlausibility.cpp @@ -1,309 +1,304 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include #include #include #include #include #include #include "ctkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include int LocalDirectionalFiberPlausibility(int argc, char* argv[]) { MITK_INFO << "LocalDirectionalFiberPlausibility"; ctkCommandLineParser parser; parser.setTitle("Local Directional Fiber Plausibility"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::InputFile, "Input:", "input tractogram (.fib, vtk ascii file format)", us::Any(), false); parser.addArgument("reference", "r", ctkCommandLineParser::StringList, "Reference images:", "reference direction images", us::Any(), false); parser.addArgument("out", "o", ctkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); parser.addArgument("mask", "m", ctkCommandLineParser::StringList, "Masks:", "mask images"); parser.addArgument("athresh", "a", ctkCommandLineParser::Float, "Angular threshold:", "angular threshold in degrees. closer fiber directions are regarded as one direction and clustered together.", 25, true); parser.addArgument("verbose", "v", ctkCommandLineParser::Bool, "Verbose:", "output optional and intermediate calculation results"); parser.addArgument("ignore", "n", ctkCommandLineParser::Bool, "Ignore:", "don't increase error for missing or too many directions"); parser.addArgument("fileID", "id", ctkCommandLineParser::String, "ID:", "optional ID field"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; ctkCommandLineParser::StringContainerType referenceImages = us::any_cast(parsedArgs["reference"]); ctkCommandLineParser::StringContainerType maskImages; if (parsedArgs.count("mask")) maskImages = us::any_cast(parsedArgs["mask"]); string fibFile = us::any_cast(parsedArgs["input"]); float angularThreshold = 25; if (parsedArgs.count("athresh")) angularThreshold = us::any_cast(parsedArgs["athresh"]); string outRoot = us::any_cast(parsedArgs["out"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); bool ignore = false; if (parsedArgs.count("ignore")) ignore = us::any_cast(parsedArgs["ignore"]); string fileID = ""; if (parsedArgs.count("fileID")) fileID = us::any_cast(parsedArgs["fileID"]); try { typedef itk::Image ItkUcharImgType; typedef itk::Image< itk::Vector< float, 3>, 3 > ItkDirectionImage3DType; typedef itk::VectorContainer< unsigned int, ItkDirectionImage3DType::Pointer > ItkDirectionImageContainerType; typedef itk::EvaluateDirectionImagesFilter< float > EvaluationFilterType; // load fiber bundle mitk::FiberBundleX::Pointer inputTractogram = dynamic_cast(mitk::IOUtil::LoadDataNode(fibFile)->GetData()); // load reference directions ItkDirectionImageContainerType::Pointer referenceImageContainer = ItkDirectionImageContainerType::New(); for (unsigned int i=0; i(mitk::IOUtil::LoadDataNode(referenceImages.at(i))->GetData()); typedef mitk::ImageToItk< ItkDirectionImage3DType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(img); caster->Update(); ItkDirectionImage3DType::Pointer itkImg = caster->GetOutput(); referenceImageContainer->InsertElement(referenceImageContainer->Size(),itkImg); } catch(...){ MITK_INFO << "could not load: " << referenceImages.at(i); } } ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New(); ItkDirectionImage3DType::Pointer dirImg = referenceImageContainer->GetElement(0); itkMaskImage->SetSpacing( dirImg->GetSpacing() ); itkMaskImage->SetOrigin( dirImg->GetOrigin() ); itkMaskImage->SetDirection( dirImg->GetDirection() ); itkMaskImage->SetLargestPossibleRegion( dirImg->GetLargestPossibleRegion() ); itkMaskImage->SetBufferedRegion( dirImg->GetLargestPossibleRegion() ); itkMaskImage->SetRequestedRegion( dirImg->GetLargestPossibleRegion() ); itkMaskImage->Allocate(); itkMaskImage->FillBuffer(1); // extract directions from fiber bundle itk::TractsToVectorImageFilter::Pointer fOdfFilter = itk::TractsToVectorImageFilter::New(); fOdfFilter->SetFiberBundle(inputTractogram); fOdfFilter->SetMaskImage(itkMaskImage); fOdfFilter->SetAngularThreshold(cos(angularThreshold*M_PI/180)); fOdfFilter->SetNormalizeVectors(true); fOdfFilter->SetUseWorkingCopy(false); fOdfFilter->Update(); ItkDirectionImageContainerType::Pointer directionImageContainer = fOdfFilter->GetDirectionImageContainer(); if (verbose) { // write vector field mitk::FiberBundleX::Pointer directions = fOdfFilter->GetOutputFiberBundle(); - mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(directions.GetPointer()) ) { - string outfilename = outRoot; - outfilename.append("_VECTOR_FIELD.fib"); - (*it)->SetFileName( outfilename.c_str() ); - (*it)->DoWrite( directions.GetPointer() ); - } - } + + string outfilename = outRoot; + outfilename.append("_VECTOR_FIELD.fib"); + + mitk::IOUtil::SaveBaseData(directions.GetPointer(), outfilename ); // write direction images for (unsigned int i=0; iSize(); i++) { itk::TractsToVectorImageFilter::ItkDirectionImageType::Pointer itkImg = directionImageContainer->GetElement(i); typedef itk::ImageFileWriter< itk::TractsToVectorImageFilter::ItkDirectionImageType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_DIRECTION_"); outfilename.append(boost::lexical_cast(i)); outfilename.append(".nrrd"); writer->SetFileName(outfilename.c_str()); writer->SetInput(itkImg); writer->Update(); } // write num direction image { ItkUcharImgType::Pointer numDirImage = fOdfFilter->GetNumDirectionsImage(); typedef itk::ImageFileWriter< ItkUcharImgType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_NUM_DIRECTIONS.nrrd"); writer->SetFileName(outfilename.c_str()); writer->SetInput(numDirImage); writer->Update(); } } string logFile = outRoot; logFile.append("_ANGULAR_ERROR.csv"); ofstream file; file.open (logFile.c_str()); if (maskImages.size()>0) { for (unsigned int i=0; i(mitk::IOUtil::LoadDataNode(maskImages.at(i))->GetData()); mitk::CastToItkImage(mitkMaskImage, itkMaskImage); // evaluate directions EvaluationFilterType::Pointer evaluationFilter = EvaluationFilterType::New(); evaluationFilter->SetImageSet(directionImageContainer); evaluationFilter->SetReferenceImageSet(referenceImageContainer); evaluationFilter->SetMaskImage(itkMaskImage); evaluationFilter->SetIgnoreMissingDirections(ignore); evaluationFilter->Update(); if (verbose) { EvaluationFilterType::OutputImageType::Pointer angularErrorImage = evaluationFilter->GetOutput(0); typedef itk::ImageFileWriter< EvaluationFilterType::OutputImageType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_ERROR_IMAGE.nrrd"); writer->SetFileName(outfilename.c_str()); writer->SetInput(angularErrorImage); writer->Update(); } string maskFileName = itksys::SystemTools::GetFilenameWithoutExtension(maskImages.at(i)); unsigned found = maskFileName.find_last_of("_"); string sens = itksys::SystemTools::GetFilenameWithoutLastExtension(fibFile); if (!fileID.empty()) sens = fileID; sens.append(","); sens.append(maskFileName.substr(found+1)); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMeanAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMedianAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMaxAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMinAngularError())); sens.append(","); sens.append(boost::lexical_cast(std::sqrt(evaluationFilter->GetVarAngularError()))); sens.append(";\n"); file << sens; } } else { // evaluate directions EvaluationFilterType::Pointer evaluationFilter = EvaluationFilterType::New(); evaluationFilter->SetImageSet(directionImageContainer); evaluationFilter->SetReferenceImageSet(referenceImageContainer); evaluationFilter->SetMaskImage(itkMaskImage); evaluationFilter->SetIgnoreMissingDirections(ignore); evaluationFilter->Update(); if (verbose) { EvaluationFilterType::OutputImageType::Pointer angularErrorImage = evaluationFilter->GetOutput(0); typedef itk::ImageFileWriter< EvaluationFilterType::OutputImageType > WriterType; WriterType::Pointer writer = WriterType::New(); string outfilename = outRoot; outfilename.append("_ERROR_IMAGE.nrrd"); writer->SetFileName(outfilename.c_str()); writer->SetInput(angularErrorImage); writer->Update(); } string sens = itksys::SystemTools::GetFilenameWithoutLastExtension(fibFile); if (!fileID.empty()) sens = fileID; sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMeanAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMedianAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMaxAngularError())); sens.append(","); sens.append(boost::lexical_cast(evaluationFilter->GetMinAngularError())); sens.append(","); sens.append(boost::lexical_cast(std::sqrt(evaluationFilter->GetVarAngularError()))); sens.append(";\n"); file << sens; } file.close(); } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } RegisterDiffusionMiniApp(LocalDirectionalFiberPlausibility); diff --git a/Modules/DiffusionImaging/MiniApps/NetworkCreation.cpp b/Modules/DiffusionImaging/MiniApps/NetworkCreation.cpp index 45eda8cf9f..c3349de199 100644 --- a/Modules/DiffusionImaging/MiniApps/NetworkCreation.cpp +++ b/Modules/DiffusionImaging/MiniApps/NetworkCreation.cpp @@ -1,143 +1,136 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" // std includes #include // CTK includes #include "ctkCommandLineParser.h" // MITK includes #include #include "mitkConnectomicsNetworkCreator.h" #include +#include int NetworkCreation(int argc, char* argv[]) { ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("fiberImage", "f", ctkCommandLineParser::InputFile, "Input image", "input fiber image (.fib)", us::Any(), false); parser.addArgument("parcellation", "p", ctkCommandLineParser::InputFile, "Parcellation image", "parcellation image", us::Any(), false); parser.addArgument("outputNetwork", "o", ctkCommandLineParser::String, "Output network", "where to save the output (.cnf)", us::Any(), false); parser.addArgument("radius", "r", ctkCommandLineParser::Int, "Radius", "Search radius in mm", 15, true); parser.addArgument("noCenterOfMass", "com", ctkCommandLineParser::Bool, "No center of mass", "Do not use center of mass for node positions"); parser.setCategory("Connectomics"); parser.setTitle("Network Creation"); parser.setDescription(""); parser.setContributor("MBI"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; //default values int searchRadius( 15 ); bool noCenterOfMass( false ); // parse command line arguments std::string fiberFilename = us::any_cast(parsedArgs["fiberImage"]); std::string parcellationFilename = us::any_cast(parsedArgs["parcellation"]); std::string outputFilename = us::any_cast(parsedArgs["outputNetwork"]); if (parsedArgs.count("radius")) searchRadius = us::any_cast(parsedArgs["radius"]); if (parsedArgs.count("noCenterOfMass")) noCenterOfMass = us::any_cast(parsedArgs["noCenterOfMass"]); try { const std::string s1="", s2=""; // load fiber image std::vector fiberInfile = mitk::BaseDataIO::LoadBaseDataFromFile( fiberFilename, s1, s2, false ); if( fiberInfile.empty() ) { std::string errorMessage = "Fiber Image at " + fiberFilename + " could not be read. Aborting."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } mitk::BaseData* fiberBaseData = fiberInfile.at(0); mitk::FiberBundleX* fiberBundle = dynamic_cast( fiberBaseData ); // load parcellation std::vector parcellationInFile = mitk::BaseDataIO::LoadBaseDataFromFile( parcellationFilename, s1, s2, false ); if( parcellationInFile.empty() ) { std::string errorMessage = "Parcellation at " + parcellationFilename + " could not be read. Aborting."; MITK_ERROR << errorMessage; return EXIT_FAILURE; } mitk::BaseData* parcellationBaseData = parcellationInFile.at(0); mitk::Image* parcellationImage = dynamic_cast( parcellationBaseData ); // do creation mitk::ConnectomicsNetworkCreator::Pointer connectomicsNetworkCreator = mitk::ConnectomicsNetworkCreator::New(); connectomicsNetworkCreator->SetSegmentation( parcellationImage ); connectomicsNetworkCreator->SetFiberBundle( fiberBundle ); if( !noCenterOfMass ) { connectomicsNetworkCreator->CalculateCenterOfMass(); } connectomicsNetworkCreator->SetEndPointSearchRadius( searchRadius ); connectomicsNetworkCreator->CreateNetworkFromFibersAndSegmentation(); mitk::ConnectomicsNetwork::Pointer network = connectomicsNetworkCreator->GetNetwork(); MITK_INFO << "searching writer"; - mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(network.GetPointer()) ) - { - MITK_INFO << "writing"; - (*it)->SetFileName( outputFilename.c_str() ); - (*it)->DoWrite( network.GetPointer() ); - } - } + + mitk::IOUtil::SaveBaseData(network.GetPointer(), outputFilename ); return EXIT_SUCCESS; } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } MITK_INFO << "DONE"; return EXIT_SUCCESS; } RegisterDiffusionMiniApp(NetworkCreation); diff --git a/Modules/DiffusionImaging/MiniApps/StreamlineTracking.cpp b/Modules/DiffusionImaging/MiniApps/StreamlineTracking.cpp index 286274fd54..bdd10f38b0 100755 --- a/Modules/DiffusionImaging/MiniApps/StreamlineTracking.cpp +++ b/Modules/DiffusionImaging/MiniApps/StreamlineTracking.cpp @@ -1,186 +1,180 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include #include #include #include #include #include #include #include "ctkCommandLineParser.h" #include int StreamlineTracking(int argc, char* argv[]) { MITK_INFO << "StreamlineTracking"; ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::StringList, "Input image", "input tensor image (.dti)", us::Any(), false); parser.addArgument("seed", "si", ctkCommandLineParser::InputFile, "Seed image", "binary seed image", us::Any(), true); parser.addArgument("mask", "mi", ctkCommandLineParser::InputFile, "Mask", "binary mask image", us::Any(), true); parser.addArgument("faImage", "fai", ctkCommandLineParser::InputFile, "FA image", "FA image", us::Any(), true); parser.addArgument("minFA", "fa", ctkCommandLineParser::Float, "Min. FA threshold", "minimum fractional anisotropy threshold", 0.15, true); parser.addArgument("minCurv", "c", ctkCommandLineParser::Float, "Min. curvature radius", "minimum curvature radius in mm (default = 0.5*minimum-spacing)"); parser.addArgument("stepSize", "s", ctkCommandLineParser::Float, "Step size", "step size in mm (default = 0.1*minimum-spacing)"); parser.addArgument("tendf", "f", ctkCommandLineParser::Float, "Weight f", "Weighting factor between first eigenvector (f=1 equals FACT tracking) and input vector dependent direction (f=0).", 1.0, true); parser.addArgument("tendg", "g", ctkCommandLineParser::Float, "Weight g", "Weighting factor between input vector (g=0) and tensor deflection (g=1 equals TEND tracking)", 0.0, true); parser.addArgument("numSeeds", "n", ctkCommandLineParser::Int, "Seeds per voxel", "Number of seeds per voxel.", 1, true); parser.addArgument("minLength", "l", ctkCommandLineParser::Float, "Min. fiber length", "minimum fiber length in mm", 20, true); parser.addArgument("interpolate", "ip", ctkCommandLineParser::Bool, "Interpolate", "Use linear interpolation", false, true); parser.addArgument("outFile", "o", ctkCommandLineParser::String, "Output file", "output fiber bundle (.fib)", us::Any(), false); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setTitle("Streamline Tracking"); parser.setDescription(""); parser.setContributor("MBI"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; ctkCommandLineParser::StringContainerType inputImages = us::any_cast(parsedArgs["input"]); string dtiFileName; string outFileName = us::any_cast(parsedArgs["outFile"]); float minFA = 0.15; float minCurv = -1; float stepSize = -1; float tendf = 1; float tendg = 0; float minLength = 20; int numSeeds = 1; bool interpolate = false; if (parsedArgs.count("minCurv")) minCurv = us::any_cast(parsedArgs["minCurv"]); if (parsedArgs.count("minFA")) minFA = us::any_cast(parsedArgs["minFA"]); if (parsedArgs.count("stepSize")) stepSize = us::any_cast(parsedArgs["stepSize"]); if (parsedArgs.count("tendf")) tendf = us::any_cast(parsedArgs["tendf"]); if (parsedArgs.count("tendg")) tendg = us::any_cast(parsedArgs["tendg"]); if (parsedArgs.count("minLength")) minLength = us::any_cast(parsedArgs["minLength"]); if (parsedArgs.count("numSeeds")) numSeeds = us::any_cast(parsedArgs["numSeeds"]); if (parsedArgs.count("interpolate")) interpolate = us::any_cast(parsedArgs["interpolate"]); try { typedef itk::StreamlineTrackingFilter< float > FilterType; FilterType::Pointer filter = FilterType::New(); mitk::Image::Pointer mitkImage = NULL; MITK_INFO << "Loading tensor images ..."; typedef itk::Image< itk::DiffusionTensor3D, 3 > ItkTensorImage; dtiFileName = inputImages.at(0); for (unsigned int i=0; i(mitk::IOUtil::LoadDataNode(inputImages.at(i))->GetData()); mitk::TensorImage::Pointer img = dynamic_cast(mitk::IOUtil::LoadDataNode(inputImages.at(i))->GetData()); ItkTensorImage::Pointer itk_dti = ItkTensorImage::New(); mitk::CastToItkImage(img, itk_dti); filter->SetInput(i, itk_dti); } catch(...){ MITK_INFO << "could not load: " << inputImages.at(i); } } MITK_INFO << "Loading seed image ..."; typedef itk::Image< unsigned char, 3 > ItkUCharImageType; mitk::Image::Pointer mitkSeedImage = NULL; if (parsedArgs.count("seed")) mitkSeedImage = mitk::IOUtil::LoadImage(us::any_cast(parsedArgs["seed"])); MITK_INFO << "Loading mask image ..."; mitk::Image::Pointer mitkMaskImage = NULL; if (parsedArgs.count("mask")) mitkMaskImage = mitk::IOUtil::LoadImage(us::any_cast(parsedArgs["mask"])); // instantiate tracker filter->SetSeedsPerVoxel(numSeeds); filter->SetFaThreshold(minFA); filter->SetMinCurvatureRadius(minCurv); filter->SetStepSize(stepSize); filter->SetF(tendf); filter->SetG(tendg); filter->SetInterpolate(interpolate); filter->SetMinTractLength(minLength); if (mitkSeedImage.IsNotNull()) { ItkUCharImageType::Pointer mask = ItkUCharImageType::New(); mitk::CastToItkImage(mitkSeedImage, mask); filter->SetSeedImage(mask); } if (mitkMaskImage.IsNotNull()) { ItkUCharImageType::Pointer mask = ItkUCharImageType::New(); mitk::CastToItkImage(mitkMaskImage, mask); filter->SetMaskImage(mask); } filter->Update(); vtkSmartPointer fiberBundle = filter->GetFiberPolyData(); if ( fiberBundle->GetNumberOfLines()==0 ) { MITK_INFO << "No fibers reconstructed. Check parametrization."; return EXIT_FAILURE; } mitk::FiberBundleX::Pointer fib = mitk::FiberBundleX::New(fiberBundle); fib->SetReferenceGeometry(mitkImage->GetGeometry()); - mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(fib.GetPointer()) ) { - (*it)->SetFileName( outFileName.c_str() ); - (*it)->DoWrite( fib.GetPointer() ); - } - } + mitk::IOUtil::SaveBaseData(fib.GetPointer(), outFileName ); + } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } RegisterDiffusionMiniApp(StreamlineTracking); diff --git a/Modules/DiffusionImaging/MiniApps/TractometerMetrics.cpp b/Modules/DiffusionImaging/MiniApps/TractometerMetrics.cpp index befa4c8f9a..3bc7636c97 100755 --- a/Modules/DiffusionImaging/MiniApps/TractometerMetrics.cpp +++ b/Modules/DiffusionImaging/MiniApps/TractometerMetrics.cpp @@ -1,424 +1,418 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MiniAppManager.h" #include #include #include #include #include #include #include "ctkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include int TractometerMetrics(int argc, char* argv[]) { MITK_INFO << "TractometerMetrics"; ctkCommandLineParser parser; parser.setTitle("Tractometer Metrics"); parser.setCategory("Fiber Tracking and Processing Methods"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::InputFile, "Input:", "input tractogram (.fib, vtk ascii file format)", us::Any(), false); parser.addArgument("out", "o", ctkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false); parser.addArgument("labels", "l", ctkCommandLineParser::StringList, "Label pairs:", "label pairs", false); parser.addArgument("labelimage", "li", ctkCommandLineParser::String, "Label image:", "label image", false); parser.addArgument("verbose", "v", ctkCommandLineParser::Bool, "Verbose:", "output valid, invalid and no connections as fiber bundles"); parser.addArgument("fileID", "id", ctkCommandLineParser::String, "ID:", "optional ID field"); map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; ctkCommandLineParser::StringContainerType labelpairs = us::any_cast(parsedArgs["labels"]); string fibFile = us::any_cast(parsedArgs["input"]); string labelImageFile = us::any_cast(parsedArgs["labelimage"]); string outRoot = us::any_cast(parsedArgs["out"]); string fileID = ""; if (parsedArgs.count("fileID")) fileID = us::any_cast(parsedArgs["fileID"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); try { typedef itk::Image ItkShortImgType; typedef itk::Image ItkUcharImgType; // load fiber bundle mitk::FiberBundleX::Pointer inputTractogram = dynamic_cast(mitk::IOUtil::LoadDataNode(fibFile)->GetData()); mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadDataNode(labelImageFile)->GetData()); typedef mitk::ImageToItk< ItkShortImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(img); caster->Update(); ItkShortImgType::Pointer labelImage = caster->GetOutput(); string path = itksys::SystemTools::GetFilenamePath(labelImageFile); std::vector< bool > detected; std::vector< std::pair< int, int > > labelsvector; std::vector< ItkUcharImgType::Pointer > bundleMasks; std::vector< ItkUcharImgType::Pointer > bundleMasksCoverage; short max = 0; for (unsigned int i=0; i l; l.first = boost::lexical_cast(labelpairs.at(i)); l.second = boost::lexical_cast(labelpairs.at(i+1)); MITK_INFO << labelpairs.at(i); MITK_INFO << labelpairs.at(i+1); if (l.first>max) max=l.first; if (l.second>max) max=l.second; labelsvector.push_back(l); detected.push_back(false); { mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadDataNode(path+"/Bundle"+boost::lexical_cast(labelsvector.size())+"_MASK.nrrd")->GetData()); typedef mitk::ImageToItk< ItkUcharImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(img); caster->Update(); ItkUcharImgType::Pointer bundle = caster->GetOutput(); bundleMasks.push_back(bundle); } { mitk::Image::Pointer img = dynamic_cast(mitk::IOUtil::LoadDataNode(path+"/Bundle"+boost::lexical_cast(labelsvector.size())+"_MASK_COVERAGE.nrrd")->GetData()); typedef mitk::ImageToItk< ItkUcharImgType > CasterType; CasterType::Pointer caster = CasterType::New(); caster->SetInput(img); caster->Update(); ItkUcharImgType::Pointer bundle = caster->GetOutput(); bundleMasksCoverage.push_back(bundle); } } vnl_matrix< unsigned char > matrix; matrix.set_size(max, max); matrix.fill(0); vtkSmartPointer polyData = inputTractogram->GetFiberPolyData(); int validConnections = 0; int noConnection = 0; int validBundles = 0; int invalidBundles = 0; int invalidConnections = 0; ItkUcharImgType::Pointer coverage = ItkUcharImgType::New(); coverage->SetSpacing(labelImage->GetSpacing()); coverage->SetOrigin(labelImage->GetOrigin()); coverage->SetDirection(labelImage->GetDirection()); coverage->SetLargestPossibleRegion(labelImage->GetLargestPossibleRegion()); coverage->SetBufferedRegion( labelImage->GetLargestPossibleRegion() ); coverage->SetRequestedRegion( labelImage->GetLargestPossibleRegion() ); coverage->Allocate(); coverage->FillBuffer(0); vtkSmartPointer noConnPoints = vtkSmartPointer::New(); vtkSmartPointer noConnCells = vtkSmartPointer::New(); vtkSmartPointer invalidPoints = vtkSmartPointer::New(); vtkSmartPointer invalidCells = vtkSmartPointer::New(); vtkSmartPointer validPoints = vtkSmartPointer::New(); vtkSmartPointer validCells = vtkSmartPointer::New(); boost::progress_display disp(inputTractogram->GetNumFibers()); for (int i=0; iGetNumFibers(); i++) { ++disp; vtkCell* cell = polyData->GetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (numPoints>1) { double* start = points->GetPoint(0); itk::Point itkStart; itkStart[0] = start[0]; itkStart[1] = start[1]; itkStart[2] = start[2]; itk::Index<3> idxStart; labelImage->TransformPhysicalPointToIndex(itkStart, idxStart); double* end = points->GetPoint(numPoints-1); itk::Point itkEnd; itkEnd[0] = end[0]; itkEnd[1] = end[1]; itkEnd[2] = end[2]; itk::Index<3> idxEnd; labelImage->TransformPhysicalPointToIndex(itkEnd, idxEnd); if ( labelImage->GetPixel(idxStart)==0 || labelImage->GetPixel(idxEnd)==0 ) { noConnection++; if (verbose) { vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = noConnPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } noConnCells->InsertNextCell(container); } } else { bool invalid = true; for (unsigned int i=0; i l = labelsvector.at(i); if ( (labelImage->GetPixel(idxStart)==l.first && labelImage->GetPixel(idxEnd)==l.second) || (labelImage->GetPixel(idxStart)==l.second && labelImage->GetPixel(idxEnd)==l.first) ) { for (int j=0; jGetPoint(j); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; bundle->TransformPhysicalPointToIndex(itkP, idx); if ( !bundle->GetPixel(idx)>0 && bundle->GetLargestPossibleRegion().IsInside(idx) ) { outside=true; } } if (!outside) { validConnections++; if (detected.at(i)==false) validBundles++; detected.at(i) = true; invalid = false; vtkSmartPointer container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = validPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); itk::Point itkP; itkP[0] = p[0]; itkP[1] = p[1]; itkP[2] = p[2]; itk::Index<3> idx; coverage->TransformPhysicalPointToIndex(itkP, idx); if ( coverage->GetLargestPossibleRegion().IsInside(idx) ) coverage->SetPixel(idx, 1); } validCells->InsertNextCell(container); } break; } } if (invalid==true) { invalidConnections++; int x = labelImage->GetPixel(idxStart)-1; int y = labelImage->GetPixel(idxEnd)-1; if (x>=0 && y>0 && x container = vtkSmartPointer::New(); for (int j=0; jGetPoint(j); vtkIdType id = invalidPoints->InsertNextPoint(p); container->GetPointIds()->InsertNextId(id); } invalidCells->InsertNextCell(container); } } } } } if (verbose) { mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters(); vtkSmartPointer noConnPolyData = vtkSmartPointer::New(); noConnPolyData->SetPoints(noConnPoints); noConnPolyData->SetLines(noConnCells); mitk::FiberBundleX::Pointer noConnFib = mitk::FiberBundleX::New(noConnPolyData); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(noConnFib.GetPointer()) ) { - (*it)->SetFileName( (outRoot+"_NC.fib").c_str() ); - (*it)->DoWrite( noConnFib.GetPointer() ); - } - } + + string ncfilename = outRoot; + ncfilename.append("_NC.fib"); + + mitk::IOUtil::SaveBaseData(noConnFib.GetPointer(), ncfilename ); vtkSmartPointer invalidPolyData = vtkSmartPointer::New(); invalidPolyData->SetPoints(invalidPoints); invalidPolyData->SetLines(invalidCells); mitk::FiberBundleX::Pointer invalidFib = mitk::FiberBundleX::New(invalidPolyData); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(invalidFib.GetPointer()) ) { - (*it)->SetFileName( (outRoot+"_IC.fib").c_str() ); - (*it)->DoWrite( invalidFib.GetPointer() ); - } - } + + string icfilename = outRoot; + icfilename.append("_IC.fib"); + + mitk::IOUtil::SaveBaseData(invalidFib.GetPointer(), icfilename ); vtkSmartPointer validPolyData = vtkSmartPointer::New(); validPolyData->SetPoints(validPoints); validPolyData->SetLines(validCells); mitk::FiberBundleX::Pointer validFib = mitk::FiberBundleX::New(validPolyData); - for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it) - { - if ( (*it)->CanWriteBaseDataType(validFib.GetPointer()) ) { - (*it)->SetFileName( (outRoot+"_VC.fib").c_str() ); - (*it)->DoWrite( validFib.GetPointer() ); - } - } + + string vcfilename = outRoot; + vcfilename.append("_VC.fib"); + + mitk::IOUtil::SaveBaseData(validFib.GetPointer(), vcfilename ); { typedef itk::ImageFileWriter< ItkUcharImgType > WriterType; WriterType::Pointer writer = WriterType::New(); writer->SetFileName(outRoot+"_ABC.nrrd"); writer->SetInput(coverage); writer->Update(); } } // calculate coverage int wmVoxels = 0; int coveredVoxels = 0; itk::ImageRegionIterator it (coverage, coverage->GetLargestPossibleRegion()); while(!it.IsAtEnd()) { bool wm = false; for (unsigned int i=0; iGetPixel(it.GetIndex())>0) { wm = true; wmVoxels++; break; } } if (wm && it.Get()>0) coveredVoxels++; ++it; } int numFibers = inputTractogram->GetNumFibers(); double nc = (double)noConnection/numFibers; double vc = (double)validConnections/numFibers; double ic = (double)invalidConnections/numFibers; if (numFibers==0) { nc = 0.0; vc = 0.0; ic = 0.0; } int vb = validBundles; int ib = invalidBundles; double abc = (double)coveredVoxels/wmVoxels; MITK_INFO << "NC: " << nc; MITK_INFO << "VC: " << vc; MITK_INFO << "IC: " << ic; MITK_INFO << "VB: " << vb; MITK_INFO << "IB: " << ib; MITK_INFO << "ABC: " << abc; string logFile = outRoot; logFile.append("_TRACTOMETER.csv"); ofstream file; file.open (logFile.c_str()); { string sens = itksys::SystemTools::GetFilenameWithoutLastExtension(fibFile); if (!fileID.empty()) sens = fileID; sens.append(","); sens.append(boost::lexical_cast(nc)); sens.append(","); sens.append(boost::lexical_cast(vc)); sens.append(","); sens.append(boost::lexical_cast(ic)); sens.append(","); sens.append(boost::lexical_cast(validBundles)); sens.append(","); sens.append(boost::lexical_cast(invalidBundles)); sens.append(","); sens.append(boost::lexical_cast(abc)); sens.append(";\n"); file << sens; } file.close(); } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; } RegisterDiffusionMiniApp(TractometerMetrics);