diff --git a/CMakeExternals/MITKData.cmake b/CMakeExternals/MITKData.cmake index 33c68acf2a..779f547901 100644 --- a/CMakeExternals/MITKData.cmake +++ b/CMakeExternals/MITKData.cmake @@ -1,35 +1,35 @@ #----------------------------------------------------------------------------- # MITK Data #----------------------------------------------------------------------------- # Sanity checks if(DEFINED MITK_DATA_DIR AND NOT EXISTS ${MITK_DATA_DIR}) message(FATAL_ERROR "MITK_DATA_DIR variable is defined but corresponds to non-existing directory") endif() set(proj MITK-Data) set(proj_DEPENDENCIES) set(MITK-Data_DEPENDS ${proj}) if(BUILD_TESTING) - set(revision_tag 3591d110) + set(revision_tag f3670126) # ^^^^^^^^ these are just to check correct length of hash part ExternalProject_Add(${proj} URL ${MITK_THIRDPARTY_DOWNLOAD_PREFIX_URL}/MITK-Data_${revision_tag}.tar.gz UPDATE_COMMAND "" CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND "" DEPENDS ${proj_DEPENDENCIES} ) set(MITK_DATA_DIR ${ep_source_dir}/${proj}) else() mitkMacroEmptyExternalProject(${proj} "${proj_DEPENDENCIES}") endif(BUILD_TESTING) diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp index d0f6419c9b..ddb7ec4b93 100755 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp @@ -1,878 +1,870 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractsToDWIImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace itk { template< class PixelType > TractsToDWIImageFilter< PixelType >::TractsToDWIImageFilter() : m_UseConstantRandSeed(false) { m_RandGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New(); m_RandGen->SetSeed(); } template< class PixelType > TractsToDWIImageFilter< PixelType >::~TractsToDWIImageFilter() { } template< class PixelType > TractsToDWIImageFilter< PixelType >::DoubleDwiType::Pointer TractsToDWIImageFilter< PixelType >::DoKspaceStuff( std::vector< DoubleDwiType::Pointer >& images ) { // create slice object ImageRegion<2> sliceRegion; sliceRegion.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); sliceRegion.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); Vector< double, 2 > sliceSpacing; sliceSpacing[0] = m_UpsampledSpacing[0]; sliceSpacing[1] = m_UpsampledSpacing[1]; // frequency map slice SliceType::Pointer fMapSlice = NULL; if (m_Parameters.m_FrequencyMap.IsNotNull()) { fMapSlice = SliceType::New(); ImageRegion<2> region; region.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); region.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); fMapSlice->SetLargestPossibleRegion( region ); fMapSlice->SetBufferedRegion( region ); fMapSlice->SetRequestedRegion( region ); fMapSlice->Allocate(); fMapSlice->FillBuffer(0.0); } DoubleDwiType::Pointer newImage = DoubleDwiType::New(); newImage->SetSpacing( m_Parameters.m_ImageSpacing ); newImage->SetOrigin( m_Parameters.m_ImageOrigin ); newImage->SetDirection( m_Parameters.m_ImageDirection ); newImage->SetLargestPossibleRegion( m_Parameters.m_ImageRegion ); newImage->SetBufferedRegion( m_Parameters.m_ImageRegion ); newImage->SetRequestedRegion( m_Parameters.m_ImageRegion ); newImage->SetVectorLength( images.at(0)->GetVectorLength() ); newImage->Allocate(); std::vector< unsigned int > spikeVolume; for (int i=0; iGetIntegerVariate()%images.at(0)->GetVectorLength()); std::sort (spikeVolume.begin(), spikeVolume.end()); std::reverse (spikeVolume.begin(), spikeVolume.end()); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; unsigned long lastTick = 0; boost::progress_display disp(2*images.at(0)->GetVectorLength()*images.at(0)->GetLargestPossibleRegion().GetSize(2)); for (unsigned int g=0; gGetVectorLength(); g++) { std::vector< int > spikeSlice; while (!spikeVolume.empty() && spikeVolume.back()==g) { spikeSlice.push_back(m_RandGen->GetIntegerVariate()%images.at(0)->GetLargestPossibleRegion().GetSize(2)); spikeVolume.pop_back(); } std::sort (spikeSlice.begin(), spikeSlice.end()); std::reverse (spikeSlice.begin(), spikeSlice.end()); for (unsigned int z=0; zGetLargestPossibleRegion().GetSize(2); z++) { std::vector< SliceType::Pointer > compartmentSlices; std::vector< double > t2Vector; for (unsigned int i=0; i* signalModel; if (iSetLargestPossibleRegion( sliceRegion ); slice->SetBufferedRegion( sliceRegion ); slice->SetRequestedRegion( sliceRegion ); slice->SetSpacing(sliceSpacing); slice->Allocate(); slice->FillBuffer(0.0); // extract slice from channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; slice->SetPixel(index2D, images.at(i)->GetPixel(index3D)[g]); if (fMapSlice.IsNotNull() && i==0) fMapSlice->SetPixel(index2D, m_Parameters.m_FrequencyMap->GetPixel(index3D)); } compartmentSlices.push_back(slice); t2Vector.push_back(signalModel->GetT2()); } if (this->GetAbortGenerateData()) return NULL; // create k-sapce (inverse fourier transform slices) itk::Size<2> outSize; outSize.SetElement(0, m_Parameters.m_ImageRegion.GetSize(0)); outSize.SetElement(1, m_Parameters.m_ImageRegion.GetSize(1)); itk::KspaceImageFilter< SliceType::PixelType >::Pointer idft = itk::KspaceImageFilter< SliceType::PixelType >::New(); idft->SetCompartmentImages(compartmentSlices); idft->SetT2(t2Vector); idft->SetUseConstantRandSeed(m_UseConstantRandSeed); idft->SetParameters(m_Parameters); idft->SetZ((double)z-(double)images.at(0)->GetLargestPossibleRegion().GetSize(2)/2.0); idft->SetDiffusionGradientDirection(m_Parameters.GetGradientDirection(g)); idft->SetFrequencyMapSlice(fMapSlice); idft->SetOutSize(outSize); int numSpikes = 0; while (!spikeSlice.empty() && spikeSlice.back()==z) { numSpikes++; spikeSlice.pop_back(); } idft->SetSpikesPerSlice(numSpikes); idft->Update(); ComplexSliceType::Pointer fSlice; fSlice = idft->GetOutput(); ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (int tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; // fourier transform slice SliceType::Pointer newSlice; itk::DftImageFilter< SliceType::PixelType >::Pointer dft = itk::DftImageFilter< SliceType::PixelType >::New(); dft->SetInput(fSlice); dft->Update(); newSlice = dft->GetOutput(); // put slice back into channel g for (unsigned int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (unsigned int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::PixelType pix3D = newImage->GetPixel(index3D); pix3D[g] = newSlice->GetPixel(index2D); newImage->SetPixel(index3D, pix3D); } ++disp; newTick = 50*disp.count()/disp.expected_count(); for (int tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; } } m_StatusText += "\n\n"; return newImage; } template< class PixelType > void TractsToDWIImageFilter< PixelType >::GenerateData() { m_StartTime = clock(); m_StatusText = "Starting simulation\n"; // check input data if (m_FiberBundle.IsNull()) itkExceptionMacro("Input fiber bundle is NULL!"); if (m_Parameters.m_DoDisablePartialVolume) while (m_Parameters.m_FiberModelList.size()>1) m_Parameters.m_FiberModelList.pop_back(); if (m_Parameters.m_NonFiberModelList.empty()) itkExceptionMacro("No diffusion model for non-fiber compartments defined!"); int baselineIndex = m_Parameters.GetFirstBaselineIndex(); if (baselineIndex<0) itkExceptionMacro("No baseline index found!"); if (m_UseConstantRandSeed) // always generate the same random numbers? m_RandGen->SetSeed(0); else m_RandGen->SetSeed(); // initialize output dwi image ImageRegion<3> croppedRegion = m_Parameters.m_ImageRegion; croppedRegion.SetSize(1, croppedRegion.GetSize(1)*m_Parameters.m_CroppingFactor); itk::Point shiftedOrigin = m_Parameters.m_ImageOrigin; shiftedOrigin[1] += (m_Parameters.m_ImageRegion.GetSize(1)-croppedRegion.GetSize(1))*m_Parameters.m_ImageSpacing[1]/2; typename OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Parameters.m_ImageSpacing ); outImage->SetOrigin( shiftedOrigin ); outImage->SetDirection( m_Parameters.m_ImageDirection ); outImage->SetLargestPossibleRegion( croppedRegion ); outImage->SetBufferedRegion( croppedRegion ); outImage->SetRequestedRegion( croppedRegion ); outImage->SetVectorLength( m_Parameters.GetNumVolumes() ); outImage->Allocate(); typename OutputImageType::PixelType temp; temp.SetSize(m_Parameters.GetNumVolumes()); temp.Fill(0.0); outImage->FillBuffer(temp); // ADJUST GEOMETRY FOR FURTHER PROCESSING // is input slize size a power of two? unsigned int x=m_Parameters.m_ImageRegion.GetSize(0); unsigned int y=m_Parameters.m_ImageRegion.GetSize(1); ItkDoubleImgType::SizeType pad; pad[0]=x%2; pad[1]=y%2; pad[2]=0; m_Parameters.m_ImageRegion.SetSize(0, x+pad[0]); m_Parameters.m_ImageRegion.SetSize(1, y+pad[1]); if (m_Parameters.m_FrequencyMap.IsNotNull() && (pad[0]>0 || pad[1]>0)) { itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_FrequencyMap); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_FrequencyMap = zeroPadder->GetOutput(); } if (m_Parameters.m_MaskImage.IsNotNull() && (pad[0]>0 || pad[1]>0)) { itk::ConstantPadImageFilter::Pointer zeroPadder = itk::ConstantPadImageFilter::New(); zeroPadder->SetInput(m_Parameters.m_MaskImage); zeroPadder->SetConstant(0); zeroPadder->SetPadUpperBound(pad); zeroPadder->Update(); m_Parameters.m_MaskImage = zeroPadder->GetOutput(); } // Apply in-plane upsampling for Gibbs ringing artifact double upsampling = 1; if (m_Parameters.m_DoAddGibbsRinging) upsampling = 2; m_UpsampledSpacing = m_Parameters.m_ImageSpacing; m_UpsampledSpacing[0] /= upsampling; m_UpsampledSpacing[1] /= upsampling; m_UpsampledImageRegion = m_Parameters.m_ImageRegion; m_UpsampledImageRegion.SetSize(0, m_Parameters.m_ImageRegion.GetSize()[0]*upsampling); m_UpsampledImageRegion.SetSize(1, m_Parameters.m_ImageRegion.GetSize()[1]*upsampling); m_UpsampledOrigin = m_Parameters.m_ImageOrigin; m_UpsampledOrigin[0] -= m_Parameters.m_ImageSpacing[0]/2; m_UpsampledOrigin[0] += m_UpsampledSpacing[0]/2; m_UpsampledOrigin[1] -= m_Parameters.m_ImageSpacing[1]/2; m_UpsampledOrigin[1] += m_UpsampledSpacing[1]/2; m_UpsampledOrigin[2] -= m_Parameters.m_ImageSpacing[2]/2; m_UpsampledOrigin[2] += m_UpsampledSpacing[2]/2; // generate double images to store the individual compartment signals std::vector< DoubleDwiType::Pointer > compartments; for (unsigned int i=0; iSetSpacing( m_UpsampledSpacing ); doubleDwi->SetOrigin( m_UpsampledOrigin ); doubleDwi->SetDirection( m_Parameters.m_ImageDirection ); doubleDwi->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleDwi->SetBufferedRegion( m_UpsampledImageRegion ); doubleDwi->SetRequestedRegion( m_UpsampledImageRegion ); doubleDwi->SetVectorLength( m_Parameters.GetNumVolumes() ); doubleDwi->Allocate(); DoubleDwiType::PixelType pix; pix.SetSize(m_Parameters.GetNumVolumes()); pix.Fill(0.0); doubleDwi->FillBuffer(pix); compartments.push_back(doubleDwi); } // initialize volume fraction images m_VolumeFractions.clear(); for (unsigned int i=0; iSetSpacing( m_UpsampledSpacing ); doubleImg->SetOrigin( m_UpsampledOrigin ); doubleImg->SetDirection( m_Parameters.m_ImageDirection ); doubleImg->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleImg->SetBufferedRegion( m_UpsampledImageRegion ); doubleImg->SetRequestedRegion( m_UpsampledImageRegion ); doubleImg->Allocate(); doubleImg->FillBuffer(0); m_VolumeFractions.push_back(doubleImg); } // resample mask image and frequency map to fit upsampled geometry if (m_Parameters.m_DoAddGibbsRinging) { if (m_Parameters.m_MaskImage.IsNotNull()) { // rescale mask image (otherwise there are problems with the resampling) itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0,m_Parameters.m_MaskImage); rescaler->SetOutputMaximum(100); rescaler->SetOutputMinimum(0); rescaler->Update(); // resample mask image itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(rescaler->GetOutput()); resampler->SetOutputParametersFromImage(m_Parameters.m_MaskImage); resampler->SetSize(m_UpsampledImageRegion.GetSize()); resampler->SetOutputSpacing(m_UpsampledSpacing); resampler->SetOutputOrigin(m_UpsampledOrigin); resampler->Update(); m_Parameters.m_MaskImage = resampler->GetOutput(); } // resample frequency map if (m_Parameters.m_FrequencyMap.IsNotNull()) { itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(m_Parameters.m_FrequencyMap); resampler->SetOutputParametersFromImage(m_Parameters.m_FrequencyMap); resampler->SetSize(m_UpsampledImageRegion.GetSize()); resampler->SetOutputSpacing(m_UpsampledSpacing); resampler->SetOutputOrigin(m_UpsampledOrigin); resampler->Update(); m_Parameters.m_FrequencyMap = resampler->GetOutput(); } } // no input tissue mask is set -> create default bool maskImageSet = true; if (m_Parameters.m_MaskImage.IsNull()) { m_StatusText += "No tissue mask set\n"; MITK_INFO << "No tissue mask set"; m_Parameters.m_MaskImage = ItkUcharImgType::New(); m_Parameters.m_MaskImage->SetSpacing( m_UpsampledSpacing ); m_Parameters.m_MaskImage->SetOrigin( m_UpsampledOrigin ); m_Parameters.m_MaskImage->SetDirection( m_Parameters.m_ImageDirection ); m_Parameters.m_MaskImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); m_Parameters.m_MaskImage->SetBufferedRegion( m_UpsampledImageRegion ); m_Parameters.m_MaskImage->SetRequestedRegion( m_UpsampledImageRegion ); m_Parameters.m_MaskImage->Allocate(); m_Parameters.m_MaskImage->FillBuffer(1); maskImageSet = false; } else { m_StatusText += "Using tissue mask\n"; MITK_INFO << "Using tissue mask"; } m_Parameters.m_ImageRegion = croppedRegion; x=m_Parameters.m_ImageRegion.GetSize(0); y=m_Parameters.m_ImageRegion.GetSize(1); if ( x%2 == 1 ) m_Parameters.m_ImageRegion.SetSize(0, x+1); if ( y%2 == 1 ) m_Parameters.m_ImageRegion.SetSize(1, y+1); // resample fiber bundle for sufficient voxel coverage m_StatusText += "\n"+this->GetTime()+" > Resampling fibers ...\n"; double segmentVolume = 0.0001; float minSpacing = 1; if(m_UpsampledSpacing[0]GetDeepCopy(); double volumeAccuracy = 10; fiberBundle->ResampleFibers(minSpacing/volumeAccuracy); double mmRadius = m_Parameters.m_AxonRadius/1000; if (mmRadius>0) segmentVolume = M_PI*mmRadius*mmRadius*minSpacing/volumeAccuracy; double maxVolume = 0; double voxelVolume = m_UpsampledSpacing[0]*m_UpsampledSpacing[1]*m_UpsampledSpacing[2]; if (m_Parameters.m_DoAddMotion) { if (m_Parameters.m_DoRandomizeMotion) { m_StatusText += "Adding random motion artifacts:\n"; m_StatusText += "Maximum rotation: +/-" + boost::lexical_cast(m_Parameters.m_Rotation) + "°\n"; m_StatusText += "Maximum translation: +/-" + boost::lexical_cast(m_Parameters.m_Translation) + "mm\n"; } else { m_StatusText += "Adding linear motion artifacts:\n"; m_StatusText += "Maximum rotation: " + boost::lexical_cast(m_Parameters.m_Rotation) + "°\n"; m_StatusText += "Maximum translation: " + boost::lexical_cast(m_Parameters.m_Translation) + "mm\n"; } MITK_INFO << "Adding motion artifacts"; MITK_INFO << "Maximum rotation: " << m_Parameters.m_Rotation; MITK_INFO << "Maxmimum translation: " << m_Parameters.m_Translation; } maxVolume = 0; m_StatusText += "\n"+this->GetTime()+" > Generating signal of " + boost::lexical_cast(m_Parameters.m_FiberModelList.size()) + " fiber compartments\n"; MITK_INFO << "Generating signal of " << m_Parameters.m_FiberModelList.size() << " fiber compartments"; int numFibers = m_FiberBundle->GetNumFibers(); boost::progress_display disp(numFibers*m_Parameters.GetNumVolumes()); ofstream logFile; logFile.open("fiberfox_motion.log"); logFile << "0 rotation: 0,0,0; translation: 0,0,0\n"; // get transform for motion artifacts FiberBundleType fiberBundleTransformed = fiberBundle; VectorType rotation = m_Parameters.m_Rotation/m_Parameters.GetNumVolumes(); VectorType translation = m_Parameters.m_Translation/m_Parameters.GetNumVolumes(); // creat image to hold transformed mask (motion artifact) ItkUcharImgType::Pointer tempTissueMask = ItkUcharImgType::New(); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(m_Parameters.m_MaskImage); duplicator->Update(); tempTissueMask = duplicator->GetOutput(); // second upsampling needed for motion artifacts ImageRegion<3> upsampledImageRegion = m_UpsampledImageRegion; itk::Vector upsampledSpacing = m_UpsampledSpacing; upsampledSpacing[0] /= 4; upsampledSpacing[1] /= 4; upsampledSpacing[2] /= 4; upsampledImageRegion.SetSize(0, m_UpsampledImageRegion.GetSize()[0]*4); upsampledImageRegion.SetSize(1, m_UpsampledImageRegion.GetSize()[1]*4); upsampledImageRegion.SetSize(2, m_UpsampledImageRegion.GetSize()[2]*4); itk::Point upsampledOrigin = m_UpsampledOrigin; upsampledOrigin[0] -= m_UpsampledSpacing[0]/2; upsampledOrigin[0] += upsampledSpacing[0]/2; upsampledOrigin[1] -= m_UpsampledSpacing[1]/2; upsampledOrigin[1] += upsampledSpacing[1]/2; upsampledOrigin[2] -= m_UpsampledSpacing[2]/2; upsampledOrigin[2] += upsampledSpacing[2]/2; ItkUcharImgType::Pointer upsampledTissueMask = ItkUcharImgType::New(); itk::ResampleImageFilter::Pointer upsampler = itk::ResampleImageFilter::New(); upsampler->SetInput(m_Parameters.m_MaskImage); upsampler->SetOutputParametersFromImage(m_Parameters.m_MaskImage); upsampler->SetSize(upsampledImageRegion.GetSize()); upsampler->SetOutputSpacing(upsampledSpacing); upsampler->SetOutputOrigin(upsampledOrigin); itk::NearestNeighborInterpolateImageFunction::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction::New(); upsampler->SetInterpolator(nn_interpolator); upsampler->Update(); upsampledTissueMask = upsampler->GetOutput(); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; unsigned int lastTick = 0; for (int g=0; gGetFiberPolyData(); - ItkDoubleImgType::Pointer intraAxonalVolume = ItkDoubleImgType::New(); - intraAxonalVolume->SetSpacing( m_UpsampledSpacing ); - intraAxonalVolume->SetOrigin( m_UpsampledOrigin ); - intraAxonalVolume->SetDirection( m_Parameters.m_ImageDirection ); - intraAxonalVolume->SetLargestPossibleRegion( m_UpsampledImageRegion ); - intraAxonalVolume->SetBufferedRegion( m_UpsampledImageRegion ); - intraAxonalVolume->SetRequestedRegion( m_UpsampledImageRegion ); - intraAxonalVolume->Allocate(); - intraAxonalVolume->FillBuffer(0); + ItkDoubleImgType::Pointer intraAxonalVolumeImage = ItkDoubleImgType::New(); + intraAxonalVolumeImage->SetSpacing( m_UpsampledSpacing ); + intraAxonalVolumeImage->SetOrigin( m_UpsampledOrigin ); + intraAxonalVolumeImage->SetDirection( m_Parameters.m_ImageDirection ); + intraAxonalVolumeImage->SetLargestPossibleRegion( m_UpsampledImageRegion ); + intraAxonalVolumeImage->SetBufferedRegion( m_UpsampledImageRegion ); + intraAxonalVolumeImage->SetRequestedRegion( m_UpsampledImageRegion ); + intraAxonalVolumeImage->Allocate(); + intraAxonalVolumeImage->FillBuffer(0); // generate fiber signal (if there are any fiber models present) if (!m_Parameters.m_FiberModelList.empty()) for( int i=0; iGetCell(i); int numPoints = cell->GetNumberOfPoints(); vtkPoints* points = cell->GetPoints(); if (numPoints<2) continue; for( int j=0; jGetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } double* temp = points->GetPoint(j); itk::Point vertex = GetItkPoint(temp); itk::Vector v = GetItkVector(temp); itk::Vector dir(3); if (jGetPoint(j+1))-v; else dir = v-GetItkVector(points->GetPoint(j-1)); if (dir.GetSquaredNorm()<0.0001 || dir[0]!=dir[0] || dir[1]!=dir[1] || dir[2]!=dir[2]) continue; itk::Index<3> idx; itk::ContinuousIndex contIndex; tempTissueMask->TransformPhysicalPointToIndex(vertex, idx); tempTissueMask->TransformPhysicalPointToContinuousIndex(vertex, contIndex); if (!tempTissueMask->GetLargestPossibleRegion().IsInside(idx) || tempTissueMask->GetPixel(idx)<=0) continue; // generate signal for each fiber compartment for (unsigned int k=0; kSetFiberDirection(dir); - DoubleDwiType::PixelType pix = doubleDwi->GetPixel(idx); + DoubleDwiType::PixelType pix = compartments.at(k)->GetPixel(idx); pix[g] += segmentVolume*m_Parameters.m_FiberModelList[k]->SimulateMeasurement(g); - doubleDwi->SetPixel(idx, pix ); - if (k==0) - { - double vol = intraAxonalVolume->GetPixel(idx) + segmentVolume; - intraAxonalVolume->SetPixel(idx, vol ); - if (g==0 && vol>maxVolume) - maxVolume = vol; - } + compartments.at(k)->SetPixel(idx, pix); } + + // update fiber volume image + double vol = intraAxonalVolumeImage->GetPixel(idx) + segmentVolume; + intraAxonalVolumeImage->SetPixel(idx, vol); + if (g==0 && vol>maxVolume) + maxVolume = vol; } + + // progress report ++disp; unsigned long newTick = 50*disp.count()/disp.expected_count(); for (unsigned int tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; } // generate non-fiber signal ImageRegionIterator it3(tempTissueMask, tempTissueMask->GetLargestPossibleRegion()); double fact = 1; - if (m_Parameters.m_AxonRadius<0.0001) + if (m_Parameters.m_AxonRadius<0.0001 || maxVolume>voxelVolume) fact = voxelVolume/maxVolume; while(!it3.IsAtEnd()) { if (it3.Get()>0) { DoubleDwiType::IndexType index = it3.GetIndex(); // get fiber volume fraction - DoubleDwiType::Pointer fiberDwi = compartments.at(0); - DoubleDwiType::PixelType fiberPix = fiberDwi->GetPixel(index); // intra axonal compartment -// if (fact>1) // auto scale intra-axonal if no fiber radius is specified -// { - for (unsigned int i=0; iGetPixel(index); - pix[g] *= fact; - compartments.at(i)->SetPixel(index, pix); - } -// } - double f = intraAxonalVolume->GetPixel(index)*fact; + double intraAxonalVolume = intraAxonalVolumeImage->GetPixel(index)*fact; - if (f>voxelVolume || (f>0.0 && m_Parameters.m_DoDisablePartialVolume) ) // more fiber than space in voxel? + for (unsigned int i=0; iSetPixel(index, fiberPix); + DoubleDwiType::PixelType pix = compartments.at(i)->GetPixel(index); + pix[g] *= fact; + compartments.at(i)->SetPixel(index, pix); + } + + if (intraAxonalVolume>0.0001 && m_Parameters.m_DoDisablePartialVolume) // only fiber in voxel + { + DoubleDwiType::PixelType pix = compartments.at(0)->GetPixel(index); + pix[g] *= voxelVolume/intraAxonalVolume; + compartments.at(0)->SetPixel(index, pix); m_VolumeFractions.at(0)->SetPixel(index, 1); for (unsigned int i=1; iGetPixel(index); pix[g] = 0; compartments.at(i)->SetPixel(index, pix); } } else { - m_VolumeFractions.at(0)->SetPixel(index, f/voxelVolume); + m_VolumeFractions.at(0)->SetPixel(index, intraAxonalVolume/voxelVolume); - double nonf = voxelVolume-f; // non-fiber volume - double inter = 0; + double extraAxonalVolume = voxelVolume-intraAxonalVolume; // non-fiber volume + double interAxonalVolume = 0; if (m_Parameters.m_FiberModelList.size()>1) - inter = nonf * f/voxelVolume; // inter-axonal fraction of non fiber compartment scales linearly with f - double other = nonf - inter; // rest of compartment - double singleinter = inter/(m_Parameters.m_FiberModelList.size()-1); - - double sum = compartments.at(0)->GetPixel(index)[g]; + interAxonalVolume = extraAxonalVolume * intraAxonalVolume/voxelVolume; // inter-axonal fraction of non fiber compartment scales linearly with f + double other = extraAxonalVolume - interAxonalVolume; // rest of compartment + double singleinter = interAxonalVolume/(m_Parameters.m_FiberModelList.size()-1); // adjust non-fiber and intra-axonal signal for (unsigned int i=1; iGetPixel(index); - if (f>0) - pix[g] /= f; + if (intraAxonalVolume>0) // remove scaling by intra-axonal volume from inter-axonal compartment + pix[g] /= intraAxonalVolume; pix[g] *= singleinter; compartments.at(i)->SetPixel(index, pix); - sum += compartments.at(i)->GetPixel(index)[g]; m_VolumeFractions.at(i)->SetPixel(index, singleinter/voxelVolume); } for (unsigned int i=0; iGetPixel(index); - pix[g] += m_Parameters.m_NonFiberModelList[i]->SimulateMeasurement(g)*other*m_Parameters.m_NonFiberModelList[i]->GetWeight(); doubleDwi->SetPixel(index, pix); - sum += compartments.at(i+m_Parameters.m_FiberModelList.size())->GetPixel(index)[g]; m_VolumeFractions.at(i+m_Parameters.m_FiberModelList.size())->SetPixel(index, other/voxelVolume*m_Parameters.m_NonFiberModelList[i]->GetWeight()); } } } ++it3; } // move fibers if (m_Parameters.m_DoAddMotion) { if (m_Parameters.m_DoRandomizeMotion) { fiberBundleTransformed = fiberBundle->GetDeepCopy(); rotation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[0]*2)-m_Parameters.m_Rotation[0]; rotation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[1]*2)-m_Parameters.m_Rotation[1]; rotation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Rotation[2]*2)-m_Parameters.m_Rotation[2]; translation[0] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[0]*2)-m_Parameters.m_Translation[0]; translation[1] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[1]*2)-m_Parameters.m_Translation[1]; translation[2] = m_RandGen->GetVariateWithClosedRange(m_Parameters.m_Translation[2]*2)-m_Parameters.m_Translation[2]; } // rotate mask image if (maskImageSet) { ImageRegionIterator maskIt(upsampledTissueMask, upsampledTissueMask->GetLargestPossibleRegion()); tempTissueMask->FillBuffer(0); while(!maskIt.IsAtEnd()) { if (maskIt.Get()<=0) { ++maskIt; continue; } DoubleDwiType::IndexType index = maskIt.GetIndex(); itk::Point point; upsampledTissueMask->TransformIndexToPhysicalPoint(index, point); if (m_Parameters.m_DoRandomizeMotion) point = fiberBundle->TransformPoint(point.GetVnlVector(), rotation[0],rotation[1],rotation[2],translation[0],translation[1],translation[2]); else point = fiberBundle->TransformPoint(point.GetVnlVector(), rotation[0]*(g+1),rotation[1]*(g+1),rotation[2]*(g+1),translation[0]*(g+1),translation[1]*(g+1),translation[2]*(g+1)); tempTissueMask->TransformPhysicalPointToIndex(point, index); if (tempTissueMask->GetLargestPossibleRegion().IsInside(index)) tempTissueMask->SetPixel(index,100); ++maskIt; } } // rotate fibers logFile << g+1 << " rotation:" << rotation[0] << "," << rotation[1] << "," << rotation[2] << ";"; logFile << " translation:" << translation[0] << "," << translation[1] << "," << translation[2] << "\n"; fiberBundleTransformed->TransformFibers(rotation[0],rotation[1],rotation[2],translation[0],translation[1],translation[2]); } } logFile.close(); m_StatusText += "\n\n"; if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } // do k-space stuff DoubleDwiType::Pointer doubleOutImage; if (m_Parameters.m_Spikes>0 || m_Parameters.m_FrequencyMap.IsNotNull() || m_Parameters.m_KspaceLineOffset>0 || m_Parameters.m_DoSimulateRelaxation || m_Parameters.m_EddyStrength>0 || m_Parameters.m_DoAddGibbsRinging || m_Parameters.m_CroppingFactor<1.0) { m_StatusText += this->GetTime()+" > Adjusting complex signal\n"; MITK_INFO << "Adjusting complex signal:"; if (m_Parameters.m_DoSimulateRelaxation) m_StatusText += "Simulating signal relaxation\n"; if (m_Parameters.m_FrequencyMap.IsNotNull()) m_StatusText += "Simulating distortions\n"; if (m_Parameters.m_DoAddGibbsRinging) m_StatusText += "Simulating ringing artifacts\n"; if (m_Parameters.m_EddyStrength>0) m_StatusText += "Simulating eddy currents\n"; if (m_Parameters.m_Spikes>0) m_StatusText += "Simulating spikes\n"; if (m_Parameters.m_CroppingFactor<1.0) m_StatusText += "Simulating aliasing artifacts\n"; if (m_Parameters.m_KspaceLineOffset>0) m_StatusText += "Simulating ghosts\n"; doubleOutImage = DoKspaceStuff(compartments); m_Parameters.m_SignalScale = 1; } else { m_StatusText += this->GetTime()+" > Summing compartments\n"; MITK_INFO << "Summing compartments"; doubleOutImage = compartments.at(0); for (unsigned int i=1; i::Pointer adder = itk::AddImageFilter< DoubleDwiType, DoubleDwiType, DoubleDwiType>::New(); adder->SetInput1(doubleOutImage); adder->SetInput2(compartments.at(i)); adder->Update(); doubleOutImage = adder->GetOutput(); } } if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } m_StatusText += this->GetTime()+" > Finalizing image\n"; MITK_INFO << "Finalizing image"; if (m_Parameters.m_SignalScale>1) m_StatusText += " Scaling signal\n"; if (m_Parameters.m_NoiseModel!=NULL) m_StatusText += " Adding noise\n"; unsigned int window = 0; unsigned int min = itk::NumericTraits::max(); ImageRegionIterator it4 (outImage, outImage->GetLargestPossibleRegion()); DoubleDwiType::PixelType signal; signal.SetSize(m_Parameters.GetNumVolumes()); boost::progress_display disp2(outImage->GetLargestPossibleRegion().GetNumberOfPixels()); m_StatusText += "0% 10 20 30 40 50 60 70 80 90 100%\n"; m_StatusText += "|----|----|----|----|----|----|----|----|----|----|\n*"; lastTick = 0; while(!it4.IsAtEnd()) { if (this->GetAbortGenerateData()) { m_StatusText += "\n"+this->GetTime()+" > Simulation aborted\n"; return; } ++disp2; unsigned long newTick = 50*disp2.count()/disp2.expected_count(); for (int tick = 0; tick<(newTick-lastTick); tick++) m_StatusText += "*"; lastTick = newTick; typename OutputImageType::IndexType index = it4.GetIndex(); signal = doubleOutImage->GetPixel(index)*m_Parameters.m_SignalScale; if (m_Parameters.m_NoiseModel!=NULL) { DoubleDwiType::PixelType accu = signal; accu.Fill(0.0); for (unsigned int i=0; iAddNoise(temp); accu += temp; } signal = accu/m_Parameters.m_Repetitions; } for (unsigned int i=0; i0) signal[i] = floor(signal[i]+0.5); else signal[i] = ceil(signal[i]-0.5); if (!m_Parameters.IsBaselineIndex(i) && signal[i]>window) window = signal[i]; if (!m_Parameters.IsBaselineIndex(i) && signal[i]SetNthOutput(0, outImage); m_StatusText += "\n\n"; m_StatusText += "Finished simulation\n"; m_StatusText += "Simulation time: "+GetTime(); } template< class PixelType > itk::Point TractsToDWIImageFilter< PixelType >::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } template< class PixelType > itk::Vector TractsToDWIImageFilter< PixelType >::GetItkVector(double point[3]) { itk::Vector itkVector; itkVector[0] = point[0]; itkVector[1] = point[1]; itkVector[2] = point[2]; return itkVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(double point[3]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } template< class PixelType > vnl_vector_fixed TractsToDWIImageFilter< PixelType >::GetVnlVector(Vector& vector) { vnl_vector_fixed vnlVector; vnlVector[0] = vector[0]; vnlVector[1] = vector[1]; vnlVector[2] = vector[2]; return vnlVector; } template< class PixelType > std::string TractsToDWIImageFilter< PixelType >::GetTime() { unsigned long total = (double)(clock() - m_StartTime)/CLOCKS_PER_SEC; unsigned long hours = total/3600; unsigned long minutes = (total%3600)/60; unsigned long seconds = total%60; std::string out = ""; out.append(boost::lexical_cast(hours)); out.append(":"); out.append(boost::lexical_cast(minutes)); out.append(":"); out.append(boost::lexical_cast(seconds)); return out; } } diff --git a/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxAddArtifactsToDwiTest.cpp b/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxAddArtifactsToDwiTest.cpp index 550efe2c27..e3315ab1a9 100644 --- a/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxAddArtifactsToDwiTest.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxAddArtifactsToDwiTest.cpp @@ -1,205 +1,204 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /**Documentation * Test the Fiberfox simulation functions (diffusion weighted image -> diffusion weighted image) */ class mitkFiberfoxAddArtifactsToDwiTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkFiberfoxAddArtifactsToDwiTestSuite); MITK_TEST(Spikes); MITK_TEST(GibbsRinging); MITK_TEST(Ghost); MITK_TEST(Aliasing); MITK_TEST(Eddy); MITK_TEST(RicianNoise); MITK_TEST(ChiSquareNoise); MITK_TEST(Distortions); CPPUNIT_TEST_SUITE_END(); private: mitk::DiffusionImage::Pointer m_InputDwi; FiberfoxParameters m_Parameters; public: void setUp() { RegisterDiffusionCoreObjectFactory(); // reference files m_InputDwi = dynamic_cast*>(mitk::IOUtil::LoadDataNode(GetTestDataFilePath("DiffusionImaging/Fiberfox/StickBall_RELAX.dwi"))->GetData()); // parameter setup m_Parameters = FiberfoxParameters(); m_Parameters.m_ImageRegion = m_InputDwi->GetVectorImage()->GetLargestPossibleRegion(); m_Parameters.m_ImageSpacing = m_InputDwi->GetVectorImage()->GetSpacing(); m_Parameters.m_ImageOrigin = m_InputDwi->GetVectorImage()->GetOrigin(); m_Parameters.m_ImageDirection = m_InputDwi->GetVectorImage()->GetDirection(); m_Parameters.m_Bvalue = m_InputDwi->GetB_Value(); m_Parameters.SetGradienDirections(m_InputDwi->GetDirections()); } bool CompareDwi(itk::VectorImage< short, 3 >* dwi1, itk::VectorImage< short, 3 >* dwi2) { typedef itk::VectorImage< short, 3 > DwiImageType; try{ itk::ImageRegionIterator< DwiImageType > it1(dwi1, dwi1->GetLargestPossibleRegion()); itk::ImageRegionIterator< DwiImageType > it2(dwi2, dwi2->GetLargestPossibleRegion()); while(!it1.IsAtEnd()) { if (it1.Get()!=it2.Get()) return false; ++it1; ++it2; } } catch(...) { return false; } return true; } void StartSimulation(string testFileName) { mitk::DiffusionImage::Pointer refImage = NULL; if (!testFileName.empty()) CPPUNIT_ASSERT(refImage = dynamic_cast*>(mitk::IOUtil::LoadDataNode(testFileName)->GetData())); itk::AddArtifactsToDwiImageFilter< short >::Pointer artifactsToDwiFilter = itk::AddArtifactsToDwiImageFilter< short >::New(); artifactsToDwiFilter->SetUseConstantRandSeed(true); artifactsToDwiFilter->SetInput(m_InputDwi->GetVectorImage()); artifactsToDwiFilter->SetParameters(m_Parameters); CPPUNIT_ASSERT_NO_THROW(artifactsToDwiFilter->Update()); mitk::DiffusionImage::Pointer testImage = mitk::DiffusionImage::New(); testImage->SetVectorImage( artifactsToDwiFilter->GetOutput() ); testImage->SetB_Value(m_Parameters.m_Bvalue); testImage->SetDirections(m_Parameters.GetGradientDirections()); testImage->InitializeFromVectorImage(); if (refImage.IsNotNull()) { bool ok = CompareDwi(testImage->GetVectorImage(), refImage->GetVectorImage()); - if (!ok) - { - NrrdDiffusionImageWriter::Pointer writer = NrrdDiffusionImageWriter::New(); - writer->SetFileName("/tmp/test2.dwi"); - writer->SetInput(testImage); - writer->Update(); - - writer->SetFileName("/tmp/ref2.dwi"); - writer->SetInput(refImage); - writer->Update(); - } +// if (!ok) +// { +// MITK_INFO << "******************************************"; +// MITK_INFO << testFileName; +// MITK_INFO << "******************************************"; +// NrrdDiffusionImageWriter::Pointer writer = NrrdDiffusionImageWriter::New(); +// writer->SetFileName(testFileName); +// writer->SetInput(testImage); +// writer->Update(); +// } CPPUNIT_ASSERT_MESSAGE(testFileName, ok); } else { NrrdDiffusionImageWriter::Pointer writer = NrrdDiffusionImageWriter::New(); writer->SetFileName("/local/distortions2.dwi"); writer->SetInput(testImage); writer->Update(); } } void Spikes() { m_Parameters.m_Spikes = 5; m_Parameters.m_SpikeAmplitude = 1; StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/spikes2.dwi") ); } void GibbsRinging() { m_Parameters.m_DoAddGibbsRinging = true; StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/gibbsringing2.dwi") ); } void Ghost() { m_Parameters.m_KspaceLineOffset = 0.25; StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/ghost2.dwi") ); } void Aliasing() { m_Parameters.m_CroppingFactor = 0.4; StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/aliasing2.dwi") ); } void Eddy() { m_Parameters.m_EddyStrength = 0.05; StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/eddy2.dwi") ); } void RicianNoise() { mitk::RicianNoiseModel* ricianNoiseModel = new mitk::RicianNoiseModel(); ricianNoiseModel->SetNoiseVariance(1000000); ricianNoiseModel->SetSeed(0); m_Parameters.m_NoiseModel = ricianNoiseModel; -// StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/riciannoise2.dwi") ); + StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/riciannoise2.dwi") ); delete m_Parameters.m_NoiseModel; } void ChiSquareNoise() { mitk::ChiSquareNoiseModel* chiSquareNoiseModel = new mitk::ChiSquareNoiseModel(); chiSquareNoiseModel->SetNoiseVariance(1000000); chiSquareNoiseModel->SetSeed(0); m_Parameters.m_NoiseModel = chiSquareNoiseModel; -// StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/chisquarenoise2.dwi") ); + StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/chisquarenoise2.dwi") ); delete m_Parameters.m_NoiseModel; } void Distortions() { mitk::Image::Pointer mitkFMap = dynamic_cast(mitk::IOUtil::LoadDataNode( GetTestDataFilePath("DiffusionImaging/Fiberfox/Fieldmap.nrrd") )->GetData()); typedef itk::Image ItkDoubleImgType; ItkDoubleImgType::Pointer fMap = ItkDoubleImgType::New(); mitk::CastToItkImage(mitkFMap, fMap); m_Parameters.m_FrequencyMap = fMap; StartSimulation( GetTestDataFilePath("DiffusionImaging/Fiberfox/distortions2.dwi") ); } }; MITK_TEST_SUITE_REGISTRATION(mitkFiberfoxAddArtifactsToDwi) diff --git a/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxSignalGenerationTest.cpp b/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxSignalGenerationTest.cpp index 14684e2e3b..52cf764a2c 100644 --- a/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxSignalGenerationTest.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberfoxSignalGenerationTest.cpp @@ -1,294 +1,290 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /**Documentation * Test the Fiberfox simulation functions (fiberBundle -> diffusion weighted image) */ bool CompareDwi(itk::VectorImage< short, 3 >* dwi1, itk::VectorImage< short, 3 >* dwi2) { typedef itk::VectorImage< short, 3 > DwiImageType; try{ itk::ImageRegionIterator< DwiImageType > it1(dwi1, dwi1->GetLargestPossibleRegion()); itk::ImageRegionIterator< DwiImageType > it2(dwi2, dwi2->GetLargestPossibleRegion()); while(!it1.IsAtEnd()) { if (it1.Get()!=it2.Get()) return false; ++it1; ++it2; } } catch(...) { return false; } return true; } void StartSimulation(FiberfoxParameters parameters, FiberBundleX::Pointer fiberBundle, mitk::DiffusionImage::Pointer refImage, string message) { itk::TractsToDWIImageFilter< short >::Pointer tractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); tractsToDwiFilter->SetUseConstantRandSeed(true); tractsToDwiFilter->SetParameters(parameters); tractsToDwiFilter->SetFiberBundle(fiberBundle); tractsToDwiFilter->Update(); mitk::DiffusionImage::Pointer testImage = mitk::DiffusionImage::New(); testImage->SetVectorImage( tractsToDwiFilter->GetOutput() ); testImage->SetB_Value(parameters.m_Bvalue); testImage->SetDirections(parameters.GetGradientDirections()); testImage->InitializeFromVectorImage(); if (refImage.IsNotNull()) { bool cond = CompareDwi(testImage->GetVectorImage(), refImage->GetVectorImage()); - if (!cond) - { - NrrdDiffusionImageWriter::Pointer writer = NrrdDiffusionImageWriter::New(); - writer->SetFileName("/tmp/testImage.dwi"); - writer->SetInput(testImage); - writer->Update(); - - writer->SetFileName("/tmp/refImage.dwi"); - writer->SetInput(refImage); - writer->Update(); - } +// if (!cond) +// { +// NrrdDiffusionImageWriter::Pointer writer = NrrdDiffusionImageWriter::New(); +// writer->SetFileName(message); +// writer->SetInput(testImage); +// writer->Update(); +// } MITK_TEST_CONDITION_REQUIRED(cond, message); } else { MITK_INFO << "Saving test image to " << message; NrrdDiffusionImageWriter::Pointer writer = NrrdDiffusionImageWriter::New(); writer->SetFileName(message); writer->SetInput(testImage); writer->Update(); } } int mitkFiberfoxSignalGenerationTest(int argc, char* argv[]) { RegisterDiffusionCoreObjectFactory(); MITK_TEST_BEGIN("mitkFiberfoxSignalGenerationTest"); MITK_TEST_CONDITION_REQUIRED(argc>=19,"check for input data"); // input fiber bundle FiberBundleXReader::Pointer fibReader = FiberBundleXReader::New(); fibReader->SetFileName(argv[1]); fibReader->Update(); FiberBundleX::Pointer fiberBundle = dynamic_cast(fibReader->GetOutput()); // reference diffusion weighted images mitk::DiffusionImage::Pointer stickBall = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[2])->GetData()); mitk::DiffusionImage::Pointer stickAstrosticks = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[3])->GetData()); mitk::DiffusionImage::Pointer stickDot = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[4])->GetData()); mitk::DiffusionImage::Pointer tensorBall = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[5])->GetData()); mitk::DiffusionImage::Pointer stickTensorBall = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[6])->GetData()); mitk::DiffusionImage::Pointer stickTensorBallAstrosticks = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[7])->GetData()); mitk::DiffusionImage::Pointer gibbsringing = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[8])->GetData()); mitk::DiffusionImage::Pointer ghost = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[9])->GetData()); mitk::DiffusionImage::Pointer aliasing = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[10])->GetData()); mitk::DiffusionImage::Pointer eddy = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[11])->GetData()); mitk::DiffusionImage::Pointer linearmotion = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[12])->GetData()); mitk::DiffusionImage::Pointer randommotion = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[13])->GetData()); mitk::DiffusionImage::Pointer spikes = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[14])->GetData()); mitk::DiffusionImage::Pointer riciannoise = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[15])->GetData()); mitk::DiffusionImage::Pointer chisquarenoise = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[16])->GetData()); mitk::DiffusionImage::Pointer distortions = dynamic_cast*>(mitk::IOUtil::LoadDataNode(argv[17])->GetData()); mitk::Image::Pointer mitkFMap = dynamic_cast(mitk::IOUtil::LoadDataNode(argv[18])->GetData()); typedef itk::Image ItkDoubleImgType; ItkDoubleImgType::Pointer fMap = ItkDoubleImgType::New(); mitk::CastToItkImage(mitkFMap, fMap); FiberfoxParameters parameters; parameters.m_DoSimulateRelaxation = true; parameters.m_SignalScale = 10000; parameters.m_ImageRegion = stickBall->GetVectorImage()->GetLargestPossibleRegion(); parameters.m_ImageSpacing = stickBall->GetVectorImage()->GetSpacing(); parameters.m_ImageOrigin = stickBall->GetVectorImage()->GetOrigin(); parameters.m_ImageDirection = stickBall->GetVectorImage()->GetDirection(); parameters.m_Bvalue = stickBall->GetB_Value(); parameters.SetGradienDirections(stickBall->GetDirections()); // intra and inter axonal compartments mitk::StickModel stickModel; stickModel.SetBvalue(parameters.m_Bvalue); stickModel.SetT2(110); stickModel.SetDiffusivity(0.001); stickModel.SetGradientList(parameters.GetGradientDirections()); mitk::TensorModel tensorModel; tensorModel.SetT2(110); stickModel.SetBvalue(parameters.m_Bvalue); tensorModel.SetDiffusivity1(0.001); tensorModel.SetDiffusivity2(0.00025); tensorModel.SetDiffusivity3(0.00025); tensorModel.SetGradientList(parameters.GetGradientDirections()); // extra axonal compartment models mitk::BallModel ballModel; ballModel.SetT2(80); ballModel.SetBvalue(parameters.m_Bvalue); ballModel.SetDiffusivity(0.001); ballModel.SetGradientList(parameters.GetGradientDirections()); mitk::AstroStickModel astrosticksModel; astrosticksModel.SetT2(80); astrosticksModel.SetBvalue(parameters.m_Bvalue); astrosticksModel.SetDiffusivity(0.001); astrosticksModel.SetRandomizeSticks(true); astrosticksModel.SetSeed(0); astrosticksModel.SetGradientList(parameters.GetGradientDirections()); mitk::DotModel dotModel; dotModel.SetT2(80); dotModel.SetGradientList(parameters.GetGradientDirections()); // noise models mitk::RicianNoiseModel* ricianNoiseModel = new mitk::RicianNoiseModel(); ricianNoiseModel->SetNoiseVariance(1000000); ricianNoiseModel->SetSeed(0); // Rician noise mitk::ChiSquareNoiseModel* chiSquareNoiseModel = new mitk::ChiSquareNoiseModel(); chiSquareNoiseModel->SetNoiseVariance(1000000); chiSquareNoiseModel->SetSeed(0); try{ // Stick-Ball parameters.m_FiberModelList.push_back(&stickModel); parameters.m_NonFiberModelList.push_back(&ballModel); StartSimulation(parameters, fiberBundle, stickBall, argv[2]); // Srick-Astrosticks parameters.m_NonFiberModelList.clear(); parameters.m_NonFiberModelList.push_back(&astrosticksModel); StartSimulation(parameters, fiberBundle, stickAstrosticks, argv[3]); // Stick-Dot parameters.m_NonFiberModelList.clear(); parameters.m_NonFiberModelList.push_back(&dotModel); StartSimulation(parameters, fiberBundle, stickDot, argv[4]); // Tensor-Ball parameters.m_FiberModelList.clear(); parameters.m_FiberModelList.push_back(&tensorModel); parameters.m_NonFiberModelList.clear(); parameters.m_NonFiberModelList.push_back(&ballModel); StartSimulation(parameters, fiberBundle, tensorBall, argv[5]); // Stick-Tensor-Ball parameters.m_FiberModelList.clear(); parameters.m_FiberModelList.push_back(&stickModel); parameters.m_FiberModelList.push_back(&tensorModel); parameters.m_NonFiberModelList.clear(); parameters.m_NonFiberModelList.push_back(&ballModel); StartSimulation(parameters, fiberBundle, stickTensorBall, argv[6]); // Stick-Tensor-Ball-Astrosticks parameters.m_NonFiberModelList.push_back(&astrosticksModel); StartSimulation(parameters, fiberBundle, stickTensorBallAstrosticks, argv[7]); // Gibbs ringing parameters.m_FiberModelList.clear(); parameters.m_FiberModelList.push_back(&stickModel); parameters.m_NonFiberModelList.clear(); parameters.m_NonFiberModelList.push_back(&ballModel); parameters.m_DoAddGibbsRinging = true; StartSimulation(parameters, fiberBundle, gibbsringing, argv[8]); // Ghost parameters.m_DoAddGibbsRinging = false; parameters.m_KspaceLineOffset = 0.25; StartSimulation(parameters, fiberBundle, ghost, argv[9]); // Aliasing parameters.m_KspaceLineOffset = 0; parameters.m_CroppingFactor = 0.4; parameters.m_SignalScale = 1000; StartSimulation(parameters, fiberBundle, aliasing, argv[10]); // Eddy currents parameters.m_CroppingFactor = 1; parameters.m_SignalScale = 10000; parameters.m_EddyStrength = 0.05; StartSimulation(parameters, fiberBundle, eddy, argv[11]); // Motion (linear) parameters.m_EddyStrength = 0.0; parameters.m_DoAddMotion = true; parameters.m_DoRandomizeMotion = false; parameters.m_Translation[1] = 10; parameters.m_Rotation[2] = 90; StartSimulation(parameters, fiberBundle, linearmotion, argv[12]); // Motion (random) parameters.m_DoRandomizeMotion = true; parameters.m_Translation[1] = 5; parameters.m_Rotation[2] = 45; StartSimulation(parameters, fiberBundle, randommotion, argv[13]); // Spikes parameters.m_DoAddMotion = false; parameters.m_Spikes = 5; parameters.m_SpikeAmplitude = 1; StartSimulation(parameters, fiberBundle, spikes, argv[14]); // Rician noise parameters.m_Spikes = 0; parameters.m_NoiseModel = ricianNoiseModel; StartSimulation(parameters, fiberBundle, riciannoise, argv[15]); delete parameters.m_NoiseModel; // Chi-square noise parameters.m_NoiseModel = chiSquareNoiseModel; StartSimulation(parameters, fiberBundle, chisquarenoise, argv[16]); delete parameters.m_NoiseModel; // Distortions parameters.m_NoiseModel = NULL; parameters.m_FrequencyMap = fMap; StartSimulation(parameters, fiberBundle, distortions, argv[17]); } catch (std::exception &e) { MITK_TEST_CONDITION_REQUIRED(false, e.what()); } // always end with this! MITK_TEST_END(); }