diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFibersFromPlanarFiguresFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFibersFromPlanarFiguresFilter.cpp index 397cc31606..d8eebc61dd 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFibersFromPlanarFiguresFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkFibersFromPlanarFiguresFilter.cpp @@ -1,252 +1,254 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkFibersFromPlanarFiguresFilter.h" #define _USE_MATH_DEFINES #include // MITK #include #include #include #include #include #include #include #include #include // ITK #include #include #include #include // MISC #include #include #include #include namespace itk{ FibersFromPlanarFiguresFilter::FibersFromPlanarFiguresFilter() : m_Density(1000) , m_FiberSampling(5) , m_Tension(0) , m_Continuity(0) , m_Bias(0) , m_FiberDistribution(DISTRIBUTE_UNIFORM) , m_Variance(0.1) { } FibersFromPlanarFiguresFilter::~FibersFromPlanarFiguresFilter() { } void FibersFromPlanarFiguresFilter::GeneratePoints() { Statistics::MersenneTwisterRandomVariateGenerator::Pointer randGen = Statistics::MersenneTwisterRandomVariateGenerator::New(); randGen->SetSeed((unsigned int)0); m_2DPoints.clear(); int count = 0; while (count < m_Density) { mitk::Vector2D p; switch (m_FiberDistribution) { case DISTRIBUTE_GAUSSIAN: p[0] = randGen->GetNormalVariate(0, m_Variance); p[1] = randGen->GetNormalVariate(0, m_Variance); break; default: p[0] = randGen->GetUniformVariate(-1, 1); p[1] = randGen->GetUniformVariate(-1, 1); } if (sqrt(p[0]*p[0]+p[1]*p[1]) <= 1) { m_2DPoints.push_back(p); count++; } } } // perform global tracking void FibersFromPlanarFiguresFilter::GenerateData() { // check if enough fiducials are available for (int i=0; i m_VtkCellArray = vtkSmartPointer::New(); vtkSmartPointer m_VtkPoints = vtkSmartPointer::New(); vector< mitk::PlanarEllipse::Pointer > bundle = m_Fiducials.at(i); vector< unsigned int > fliplist; if (i container = vtkSmartPointer::New(); mitk::PlanarEllipse::Pointer figure = bundle.at(0); mitk::Point2D p0 = figure->GetControlPoint(0); mitk::Point2D p1 = figure->GetControlPoint(1); mitk::Point2D p2 = figure->GetControlPoint(2); mitk::Point2D p3 = figure->GetControlPoint(3); float r1 = p0.EuclideanDistanceTo(p1); float r2 = p0.EuclideanDistanceTo(p2); mitk::Vector2D eDir = p1-p0; eDir.Normalize(); mitk::Vector2D tDir = p3-p0; tDir.Normalize(); // apply twist vnl_matrix_fixed tRot; tRot[0][0] = tDir[0]; tRot[1][1] = tRot[0][0]; tRot[1][0] = sin(acos(tRot[0][0])); tRot[0][1] = -tRot[1][0]; if (tDir[1]<0) tRot.inplace_transpose(); m_2DPoints[j].SetVnlVector(tRot*m_2DPoints[j].GetVnlVector()); // apply new ellipse shape vnl_vector_fixed< float, 2 > newP; newP[0] = m_2DPoints.at(j)[0]; newP[1] = m_2DPoints.at(j)[1]; float alpha = acos(eDir[0]); if (eDir[1]>0) alpha = 2*M_PI-alpha; vnl_matrix_fixed eRot; eRot[0][0] = cos(alpha); eRot[1][1] = eRot[0][0]; eRot[1][0] = sin(alpha); eRot[0][1] = -eRot[1][0]; newP = eRot*newP; newP[0] *= r1; newP[1] *= r2; newP = eRot.transpose()*newP; p0[0] += newP[0]; p0[1] += newP[1]; const mitk::Geometry2D* pfgeometry = figure->GetGeometry2D(); const mitk::PlaneGeometry* planeGeo = dynamic_cast(pfgeometry); mitk::Point3D w, wc; planeGeo->Map(p0, w); wc = figure->GetWorldControlPoint(0); vtkIdType id = m_VtkPoints->InsertNextPoint(w.GetDataPointer()); container->GetPointIds()->InsertNextId(id); vnl_vector_fixed< float, 3 > n = planeGeo->GetNormalVnl(); for (int k=1; kGetControlPoint(0); p1 = figure->GetControlPoint(1); p2 = figure->GetControlPoint(2); p3 = figure->GetControlPoint(3); r1 = p0.EuclideanDistanceTo(p1); r2 = p0.EuclideanDistanceTo(p2); eDir = p1-p0; eDir.Normalize(); mitk::Vector2D tDir2 = p3-p0; tDir2.Normalize(); mitk::Vector2D temp; temp.SetVnlVector(tRot.transpose() * tDir2.GetVnlVector()); // apply twist tRot[0][0] = tDir[0]*tDir2[0] + tDir[1]*tDir2[1]; tRot[1][1] = tRot[0][0]; tRot[1][0] = sin(acos(tRot[0][0])); tRot[0][1] = -tRot[1][0]; if (temp[1]<0) tRot.inplace_transpose(); m_2DPoints[j].SetVnlVector(tRot*m_2DPoints[j].GetVnlVector()); tDir = tDir2; // apply new ellipse shape newP[0] = m_2DPoints.at(j)[0]; newP[1] = m_2DPoints.at(j)[1]; - alpha = acos(eDir[0]); - if (eDir[1]>0) - alpha = 2*M_PI-alpha; - eRot[0][0] = cos(alpha); - eRot[1][1] = eRot[0][0]; - eRot[1][0] = sin(alpha); - eRot[0][1] = -eRot[1][0]; - newP = eRot*newP; - newP[0] *= r1; - newP[1] *= r2; - newP = eRot.transpose()*newP; + // calculate normal mitk::Geometry2D* pfgeometry = const_cast(figure->GetGeometry2D()); mitk::PlaneGeometry* planeGeo = dynamic_cast(pfgeometry); mitk::Vector3D perp = wc-planeGeo->ProjectPointOntoPlane(wc); perp.Normalize(); vnl_vector_fixed< float, 3 > n2 = planeGeo->GetNormalVnl(); wc = figure->GetWorldControlPoint(0); // is flip needed? if (dot_product(perp.GetVnlVector(),n2)>0 && dot_product(n,n2)<=0.00001) newP[0] *= -1; if (fliplist.at(k)>0) newP[0] *= -1; n = n2; + alpha = acos(eDir[0]); + if (eDir[1]>0) + alpha = 2*M_PI-alpha; + eRot[0][0] = cos(alpha); + eRot[1][1] = eRot[0][0]; + eRot[1][0] = sin(alpha); + eRot[0][1] = -eRot[1][0]; + newP = eRot*newP; + newP[0] *= r1; + newP[1] *= r2; + newP = eRot.transpose()*newP; + p0[0] += newP[0]; p0[1] += newP[1]; mitk::Point3D w; planeGeo->Map(p0, w); vtkIdType id = m_VtkPoints->InsertNextPoint(w.GetDataPointer()); container->GetPointIds()->InsertNextId(id); } m_VtkCellArray->InsertNextCell(container); } vtkSmartPointer fiberPolyData = vtkSmartPointer::New(); fiberPolyData->SetPoints(m_VtkPoints); fiberPolyData->SetLines(m_VtkCellArray); mitk::FiberBundleX::Pointer mitkFiberBundle = mitk::FiberBundleX::New(fiberPolyData); mitkFiberBundle->DoFiberSmoothing(m_FiberSampling, m_Tension, m_Continuity, m_Bias); m_FiberBundles.push_back(mitkFiberBundle); } } } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp index 067624c3d4..2bd20830af 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingView.cpp @@ -1,478 +1,469 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkFiberProcessingView.h" #include // Qt #include // MITK #include #include #include #include #include #include #include #include #include #include #include #include // ITK #include #include #include #include #include #include #include #include const std::string QmitkFiberProcessingView::VIEW_ID = "org.mitk.views.fiberprocessing"; const std::string id_DataManager = "org.mitk.views.datamanager"; using namespace mitk; QmitkFiberProcessingView::QmitkFiberProcessingView() : QmitkFunctionality() , m_Controls( 0 ) , m_MultiWidget( NULL ) , m_UpsamplingFactor(5) { } // Destructor QmitkFiberProcessingView::~QmitkFiberProcessingView() { } void QmitkFiberProcessingView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberProcessingViewControls; m_Controls->setupUi( parent ); connect( m_Controls->m_ProcessFiberBundleButton, SIGNAL(clicked()), this, SLOT(ProcessSelectedBundles()) ); connect( m_Controls->m_ResampleFibersButton, SIGNAL(clicked()), this, SLOT(ResampleSelectedBundles()) ); connect(m_Controls->m_FaColorFibersButton, SIGNAL(clicked()), this, SLOT(DoImageColorCoding())); connect( m_Controls->m_PruneFibersButton, SIGNAL(clicked()), this, SLOT(PruneBundle()) ); connect( m_Controls->m_CurvatureThresholdButton, SIGNAL(clicked()), this, SLOT(ApplyCurvatureThreshold()) ); connect( m_Controls->m_MirrorFibersButton, SIGNAL(clicked()), this, SLOT(MirrorFibers()) ); } } void QmitkFiberProcessingView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_MultiWidget = &stdMultiWidget; } void QmitkFiberProcessingView::StdMultiWidgetNotAvailable() { m_MultiWidget = NULL; } void QmitkFiberProcessingView::UpdateGui() { // are fiber bundles selected? if ( m_SelectedFB.empty() ) { - m_Controls->m_InputData->setTitle("Please Select Input Data"); - m_Controls->m_ProcessFiberBundleButton->setEnabled(false); m_Controls->m_ResampleFibersButton->setEnabled(false); m_Controls->m_FaColorFibersButton->setEnabled(false); m_Controls->m_PruneFibersButton->setEnabled(false); m_Controls->m_CurvatureThresholdButton->setEnabled(false); if (m_SelectedSurfaces.size()>0) m_Controls->m_MirrorFibersButton->setEnabled(true); else m_Controls->m_MirrorFibersButton->setEnabled(false); } else { - m_Controls->m_InputData->setTitle("Input Data"); - m_Controls->m_ProcessFiberBundleButton->setEnabled(true); m_Controls->m_ResampleFibersButton->setEnabled(true); m_Controls->m_PruneFibersButton->setEnabled(true); m_Controls->m_CurvatureThresholdButton->setEnabled(true); m_Controls->m_MirrorFibersButton->setEnabled(true); if (m_SelectedImage.IsNotNull()) m_Controls->m_FaColorFibersButton->setEnabled(true); } } void QmitkFiberProcessingView::OnSelectionChanged( std::vector nodes ) { //reset existing Vectors containing FiberBundles and PlanarFigures from a previous selection m_SelectedFB.clear(); m_SelectedSurfaces.clear(); m_SelectedImage = NULL; - m_Controls->m_FibLabel->setText("mandatory"); - m_Controls->m_PfLabel->setText("needed for extraction"); - for( std::vector::iterator it = nodes.begin(); it != nodes.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( dynamic_cast(node->GetData()) ) { - m_Controls->m_FibLabel->setText(node->GetName().c_str()); m_SelectedFB.push_back(node); } else if (dynamic_cast(node->GetData())) m_SelectedImage = dynamic_cast(node->GetData()); else if (dynamic_cast(node->GetData())) { - m_Controls->m_PfLabel->setText(node->GetName().c_str()); m_SelectedSurfaces.push_back(dynamic_cast(node->GetData())); } } UpdateGui(); GenerateStats(); } void QmitkFiberProcessingView::Activated() { } void QmitkFiberProcessingView::PruneBundle() { int minLength = this->m_Controls->m_PruneFibersSpinBox->value(); int maxLength = this->m_Controls->m_MaxPruneFibersSpinBox->value(); for (int i=0; i(m_SelectedFB.at(i)->GetData()); if (!fib->RemoveShortFibers(minLength)) QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); else if (!fib->RemoveLongFibers(maxLength)) QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); } GenerateStats(); RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::ApplyCurvatureThreshold() { int mm = this->m_Controls->m_MinCurvatureRadiusBox->value(); for (int i=0; i(m_SelectedFB.at(i)->GetData()); if (!fib->ApplyCurvatureThreshold(mm, this->m_Controls->m_RemoveFiberDueToCurvatureCheckbox->isChecked())) QMessageBox::information(NULL, "No output generated:", "The resulting fiber bundle contains no fibers."); } GenerateStats(); RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::GenerateStats() { if ( m_SelectedFB.empty() ) return; QString stats(""); for( int i=0; i(node->GetData())) { if (i>0) stats += "\n-----------------------------\n"; stats += QString(node->GetName().c_str()) + "\n"; mitk::FiberBundleX::Pointer fib = dynamic_cast(node->GetData()); stats += "Number of fibers: "+ QString::number(fib->GetNumFibers()) + "\n"; stats += "Min. length: "+ QString::number(fib->GetMinFiberLength(),'f',1) + " mm\n"; stats += "Max. length: "+ QString::number(fib->GetMaxFiberLength(),'f',1) + " mm\n"; stats += "Mean length: "+ QString::number(fib->GetMeanFiberLength(),'f',1) + " mm\n"; stats += "Median length: "+ QString::number(fib->GetMedianFiberLength(),'f',1) + " mm\n"; stats += "Standard deviation: "+ QString::number(fib->GetLengthStDev(),'f',1) + " mm\n"; } } this->m_Controls->m_StatsTextEdit->setText(stats); } void QmitkFiberProcessingView::ProcessSelectedBundles() { if ( m_SelectedFB.empty() ){ QMessageBox::information( NULL, "Warning", "No fibe bundle selected!"); MITK_WARN("QmitkFiberProcessingView") << "no fibe bundle selected"; return; } int generationMethod = m_Controls->m_GenerationBox->currentIndex(); for( int i=0; i(node->GetData())) { mitk::FiberBundleX::Pointer fib = dynamic_cast(node->GetData()); QString name(node->GetName().c_str()); DataNode::Pointer newNode = NULL; switch(generationMethod){ case 0: newNode = GenerateTractDensityImage(fib, false, true); name += "_TDI"; break; case 1: newNode = GenerateTractDensityImage(fib, false, false); name += "_TDI"; break; case 2: newNode = GenerateTractDensityImage(fib, true, false); name += "_envelope"; break; case 3: newNode = GenerateColorHeatmap(fib); break; case 4: newNode = GenerateFiberEndingsImage(fib); name += "_fiber_endings"; break; case 5: newNode = GenerateFiberEndingsPointSet(fib); name += "_fiber_endings"; break; } if (newNode.IsNotNull()) { newNode->SetName(name.toStdString()); GetDataStorage()->Add(newNode); } } } } // generate pointset displaying the fiber endings mitk::DataNode::Pointer QmitkFiberProcessingView::GenerateFiberEndingsPointSet(mitk::FiberBundleX::Pointer fib) { mitk::PointSet::Pointer pointSet = mitk::PointSet::New(); vtkSmartPointer fiberPolyData = fib->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); int count = 0; int numFibers = fib->GetNumFibers(); for( int i=0; iGetNextCell ( numPoints, points ); if (numPoints>0) { double* point = fiberPolyData->GetPoint(points[0]); itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; pointSet->InsertPoint(count, itkPoint); count++; } if (numPoints>2) { double* point = fiberPolyData->GetPoint(points[numPoints-1]); itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; pointSet->InsertPoint(count, itkPoint); count++; } } mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( pointSet ); return node; } // generate image displaying the fiber endings mitk::DataNode::Pointer QmitkFiberProcessingView::GenerateFiberEndingsImage(mitk::FiberBundleX::Pointer fib) { typedef unsigned char OutPixType; typedef itk::Image OutImageType; typedef itk::TractsToFiberEndingsImageFilter< OutImageType > ImageGeneratorType; ImageGeneratorType::Pointer generator = ImageGeneratorType::New(); generator->SetFiberBundle(fib); generator->SetUpsamplingFactor(m_Controls->m_UpsamplingSpinBox->value()); if (m_SelectedImage.IsNotNull()) { OutImageType::Pointer itkImage = OutImageType::New(); CastToItkImage(m_SelectedImage, itkImage); generator->SetInputImage(itkImage); generator->SetUseImageGeometry(true); } generator->Update(); // get output image OutImageType::Pointer outImg = generator->GetOutput(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); // init data node mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); return node; } // generate rgba heatmap from fiber bundle mitk::DataNode::Pointer QmitkFiberProcessingView::GenerateColorHeatmap(mitk::FiberBundleX::Pointer fib) { typedef itk::RGBAPixel OutPixType; typedef itk::Image OutImageType; typedef itk::TractsToRgbaImageFilter< OutImageType > ImageGeneratorType; ImageGeneratorType::Pointer generator = ImageGeneratorType::New(); generator->SetFiberBundle(fib); generator->SetUpsamplingFactor(m_Controls->m_UpsamplingSpinBox->value()); if (m_SelectedImage.IsNotNull()) { itk::Image::Pointer itkImage = itk::Image::New(); CastToItkImage(m_SelectedImage, itkImage); generator->SetInputImage(itkImage); generator->SetUseImageGeometry(true); } generator->Update(); // get output image typedef itk::Image OutType; OutType::Pointer outImg = generator->GetOutput(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); // init data node mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); return node; } // generate tract density image from fiber bundle mitk::DataNode::Pointer QmitkFiberProcessingView::GenerateTractDensityImage(mitk::FiberBundleX::Pointer fib, bool binary, bool absolute) { typedef float OutPixType; typedef itk::Image OutImageType; itk::TractDensityImageFilter< OutImageType >::Pointer generator = itk::TractDensityImageFilter< OutImageType >::New(); generator->SetFiberBundle(fib); generator->SetBinaryOutput(binary); generator->SetOutputAbsoluteValues(absolute); generator->SetUpsamplingFactor(m_Controls->m_UpsamplingSpinBox->value()); if (m_SelectedImage.IsNotNull()) { OutImageType::Pointer itkImage = OutImageType::New(); CastToItkImage(m_SelectedImage, itkImage); generator->SetInputImage(itkImage); generator->SetUseImageGeometry(true); } generator->Update(); // get output image typedef itk::Image OutType; OutType::Pointer outImg = generator->GetOutput(); mitk::Image::Pointer img = mitk::Image::New(); img->InitializeByItk(outImg.GetPointer()); img->SetVolume(outImg->GetBufferPointer()); // init data node mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(img); return node; } void QmitkFiberProcessingView::ResampleSelectedBundles() { int factor = this->m_Controls->m_ResampleFibersSpinBox->value(); for (int i=0; i(m_SelectedFB.at(i)->GetData()); fib->DoFiberSmoothing(factor); } GenerateStats(); RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::MirrorFibers() { unsigned int axis = this->m_Controls->m_AxisSelectionBox->currentIndex(); for (int i=0; i(m_SelectedFB.at(i)->GetData()); fib->MirrorFibers(axis); } if (m_SelectedFB.size()>0) GenerateStats(); if (m_SelectedSurfaces.size()>0) { for (int i=0; i poly = surf->GetVtkPolyData(); vtkSmartPointer vtkNewPoints = vtkSmartPointer::New(); for (int i=0; iGetNumberOfPoints(); i++) { double* point = poly->GetPoint(i); point[axis] *= -1; vtkNewPoints->InsertNextPoint(point); } poly->SetPoints(vtkNewPoints); surf->CalculateBoundingBox(); } } RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberProcessingView::DoImageColorCoding() { if (m_SelectedImage.IsNull()) return; for( int i=0; i(m_SelectedFB.at(i)->GetData()); fib->SetFAMap(m_SelectedImage); fib->SetColorCoding(mitk::FiberBundleX::COLORCODING_FA_BASED); fib->DoColorCodingFaBased(); } if(m_MultiWidget) m_MultiWidget->RequestUpdate(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui index e81c3cdcdc..ed85cb7d95 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberProcessingViewControls.ui @@ -1,520 +1,477 @@ QmitkFiberProcessingViewControls 0 0 492 866 Form + + + Fiber Statistics + + + + + + + Courier 10 Pitch + + + + false + + + true + + + + + + + + + + Qt::Vertical + + + + 20 + 40 + + + + + Fiber Processing QFormLayout::AllNonFixedFieldsGrow false 0 0 200 16777215 11 Perform selected operation on all selected fiber bundles. Generate Image QFrame::NoFrame QFrame::Raised 0 0 0 0 0 Tract Density Image (TDI) Normalized TDI Binary Envelope Fiber Bundle Image Fiber Endings Image Fiber Endings Pointset Upsampling factor 1 0.100000000000000 10.000000000000000 0.100000000000000 1.000000000000000 false 0 0 200 16777215 11 Resample fibers using a Kochanek spline interpolation. Smooth Fibers Points per cm 1 50 5 false 0 0 200 16777215 11 Remove fibers shorter/longer than the specified length (in mm). Length Threshold QFrame::NoFrame QFrame::Raised 0 0 Minimum fiber length in mm 0 1000 20 Maximum fiber length in mm 0 10000 500 false 0 0 200 16777215 11 Remove fibers with a too high curvature Curvature Threshold QFrame::NoFrame QFrame::Raised 6 0 0 Minimum radius of circle created by three consecutive points of a fiber 100.000000000000000 0.100000000000000 2.000000000000000 Remove whole fiber if it is exceeding the curvature threshold, otherwise remove only high curvature part. Remove Fiber true false 0 0 200 16777215 11 Mirror fibers around specified axis. Mirror Fibers 0 3 3 Sagittal Coronal Axial false 0 0 200 16777215 11 Apply float image values (0-1) as color coding to the selected fiber bundle. Color By Scalar Map - - - - Fiber Statistics - - - - - - - Courier 10 Pitch - - - - false - - - true - - - - - - - - - - Qt::Vertical - - - - 20 - 40 - - - - - - - - Please Select Input Data - - - - - - <html><head/><body><p><span style=" color:#ff0000;">mandatory</span></p></body></html> - - - - - - - <html><head/><body><p><span style=" color:#969696;">needed for extraction</span></p></body></html> - - - - - - - Input DTI - - - Fiber Bundle: - - - - - - - Binary seed ROI. If not specified, the whole image area is seeded. - - - ROI: - - - - - -