diff --git a/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp b/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp index db80da8ae6..52f62d6ad7 100644 --- a/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp +++ b/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp @@ -1,318 +1,318 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkAbstractTransformGeometry.h" #include mitk::AbstractTransformGeometry::AbstractTransformGeometry() : m_Plane(NULL), m_FrameGeometry(NULL) { Initialize(); } mitk::AbstractTransformGeometry::AbstractTransformGeometry(const AbstractTransformGeometry& other) : Superclass(other), m_ParametricBoundingBox(other.m_ParametricBoundingBox) { if(other.m_ParametricBoundingBox.IsNotNull()) { m_ParametricBoundingBox = other.m_ParametricBoundingBox->DeepCopy(); this->SetParametricBounds(m_ParametricBoundingBox->GetBounds()); } this->SetPlane(other.m_Plane); this->SetFrameGeometry(other.m_FrameGeometry); } mitk::AbstractTransformGeometry::~AbstractTransformGeometry() { } void mitk::AbstractTransformGeometry::PostInitialize() { m_ItkVtkAbstractTransform = itk::VtkAbstractTransform::New(); } vtkAbstractTransform* mitk::AbstractTransformGeometry::GetVtkAbstractTransform() const { return m_ItkVtkAbstractTransform->GetVtkAbstractTransform(); } mitk::ScalarType mitk::AbstractTransformGeometry::GetParametricExtentInMM(int direction) const { if(m_Plane.IsNull()) { itkExceptionMacro(<<"m_Plane is NULL."); } return m_Plane->GetExtentInMM(direction); } const itk::Transform* mitk::AbstractTransformGeometry::GetParametricTransform() const { return m_ItkVtkAbstractTransform; } bool mitk::AbstractTransformGeometry::Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(this->IsBoundingBoxNull()==false); mitk::Point2D pt2d_mm; bool isInside; isInside = Map(pt3d_mm, pt2d_mm); Map(pt2d_mm, projectedPt3d_mm); return isInside; //Point3D pt3d_units; //pt3d_units = m_ItkVtkAbstractTransform->BackTransform(pt3d_mm); //pt3d_units[2] = 0; //projectedPt3d_mm = m_ItkVtkAbstractTransform->TransformPoint(pt3d_units); //return const_cast(m_BoundingBox.GetPointer())->IsInside(pt3d_units); } bool mitk::AbstractTransformGeometry::Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); Point3D pt3d_units; pt3d_units = m_ItkVtkAbstractTransform->BackTransform(pt3d_mm); return m_Plane->Map(pt3d_units, pt2d_mm); } void mitk::AbstractTransformGeometry::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); m_Plane->Map(pt2d_mm, pt3d_mm); pt3d_mm = m_ItkVtkAbstractTransform->TransformPoint(pt3d_mm); } bool mitk::AbstractTransformGeometry::Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { itkExceptionMacro("not implemented yet - replace GetIndexToWorldTransform by m_ItkVtkAbstractTransform->GetInverseVtkAbstractTransform()"); assert(this->IsBoundingBoxNull()==false); Vector3D vec3d_units; vec3d_units = GetIndexToWorldTransform()->GetInverseMatrix() * vec3d_mm; vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); Point3D pt3d_units; mitk::ScalarType temp[3]; unsigned int i, j; for (j = 0; j < 3; ++j) temp[j] = atPt3d_mm[j] - GetIndexToWorldTransform()->GetOffset()[j]; for (i = 0; i < 3; ++i) { pt3d_units[i] = 0.0; for (j = 0; j < 3; ++j) pt3d_units[i] += GetIndexToWorldTransform()->GetInverseMatrix()[i][j] * temp[j]; } return const_cast(this->GetBoundingBox())->IsInside(pt3d_units); } bool mitk::AbstractTransformGeometry::Project(const mitk::Vector3D &/*vec3d_mm*/, mitk::Vector3D &/*projectedVec3d_mm*/) const { MITK_WARN << "Need additional point! No standard value defined. Please use Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm). Unfortunatley this one is not implemented at the moment. Sorry :("; itkExceptionMacro("not implemented yet - replace GetIndexToWorldTransform by m_ItkVtkAbstractTransform->GetInverseVtkAbstractTransform()"); return false; } bool mitk::AbstractTransformGeometry::Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); ScalarType vtkpt[3], vtkvec[3]; itk2vtk(atPt3d_mm, vtkpt); itk2vtk(vec3d_mm, vtkvec); m_ItkVtkAbstractTransform->GetInverseVtkAbstractTransform()->TransformVectorAtPoint(vtkpt, vtkvec, vtkvec); mitk::Vector3D vec3d_units; vtk2itk(vtkvec, vec3d_units); return m_Plane->Map(atPt3d_mm, vec3d_units, vec2d_mm); } void mitk::AbstractTransformGeometry::Map(const mitk::Point2D & atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const { m_Plane->Map(atPt2d_mm, vec2d_mm, vec3d_mm); Point3D atPt3d_mm; Map(atPt2d_mm, atPt3d_mm); float vtkpt[3], vtkvec[3]; itk2vtk(atPt3d_mm, vtkpt); itk2vtk(vec3d_mm, vtkvec); m_ItkVtkAbstractTransform->GetVtkAbstractTransform()->TransformVectorAtPoint(vtkpt, vtkvec, vtkvec); vtk2itk(vtkvec, vec3d_mm); } void mitk::AbstractTransformGeometry::IndexToWorld(const mitk::Point2D &pt_units, mitk::Point2D &pt_mm) const { m_Plane->IndexToWorld(pt_units, pt_mm); } void mitk::AbstractTransformGeometry::WorldToIndex(const mitk::Point2D &pt_mm, mitk::Point2D &pt_units) const { m_Plane->WorldToIndex(pt_mm, pt_units); } void mitk::AbstractTransformGeometry::IndexToWorld(const mitk::Point2D & /*atPt2d_units*/, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const { MITK_WARN<<"Warning! Call of the deprecated function AbstractTransformGeometry::IndexToWorld(point, vec, vec). Use AbstractTransformGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void mitk::AbstractTransformGeometry::IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const { m_Plane->IndexToWorld(vec_units, vec_mm); } void mitk::AbstractTransformGeometry::WorldToIndex(const mitk::Point2D & /*atPt2d_mm*/, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const { MITK_WARN<<"Warning! Call of the deprecated function AbstractTransformGeometry::WorldToIndex(point, vec, vec). Use AbstractTransformGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void mitk::AbstractTransformGeometry::WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const { m_Plane->WorldToIndex(vec_mm, vec_units); } -bool mitk::AbstractTransformGeometry::IsAbove(const mitk::Point3D& pt3d_mm, bool considerBoundingBox) const +bool mitk::AbstractTransformGeometry::IsAbove(const mitk::Point3D& pt3d_mm, bool /*considerBoundingBox*/) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); Point3D pt3d_ParametricWorld; pt3d_ParametricWorld = m_ItkVtkAbstractTransform->BackTransform(pt3d_mm); Point3D pt3d_ParametricUnits; ((BaseGeometry*)m_Plane)->WorldToIndex(pt3d_ParametricWorld, pt3d_ParametricUnits); return (pt3d_ParametricUnits[2] > m_ParametricBoundingBox->GetBounds()[4]); } void mitk::AbstractTransformGeometry::SetVtkAbstractTransform(vtkAbstractTransform* aVtkAbstractTransform) { m_ItkVtkAbstractTransform->SetVtkAbstractTransform(aVtkAbstractTransform); } void mitk::AbstractTransformGeometry::SetPlane(const mitk::PlaneGeometry* aPlane) { if(aPlane!=NULL) { m_Plane = static_cast(aPlane->Clone().GetPointer()); BoundingBox::BoundsArrayType b=m_Plane->GetBoundingBox()->GetBounds(); SetParametricBounds(b); CalculateFrameGeometry(); } else { if(m_Plane.IsNull()) return; m_Plane=NULL; } Modified(); } void mitk::AbstractTransformGeometry::CalculateFrameGeometry() { if((m_Plane.IsNull()) || (m_FrameGeometry.IsNotNull())) return; //@warning affine-transforms and bounding-box should be set by specific sub-classes! SetBounds(m_Plane->GetBoundingBox()->GetBounds()); } void mitk::AbstractTransformGeometry::SetFrameGeometry(const mitk::BaseGeometry* frameGeometry) { if((frameGeometry != NULL) && (frameGeometry->IsValid())) { m_FrameGeometry = static_cast(frameGeometry->Clone().GetPointer()); SetIndexToWorldTransform(m_FrameGeometry->GetIndexToWorldTransform()); SetBounds(m_FrameGeometry->GetBounds()); } else { m_FrameGeometry = NULL; } } unsigned long mitk::AbstractTransformGeometry::GetMTime() const { if(Superclass::GetMTime()GetMTime()) return m_ItkVtkAbstractTransform->GetMTime(); return Superclass::GetMTime(); } void mitk::AbstractTransformGeometry::SetOversampling(mitk::ScalarType oversampling) { if(m_Plane.IsNull()) { itkExceptionMacro(<< "m_Plane is not set."); } mitk::BoundingBox::BoundsArrayType bounds = m_Plane->GetBounds(); bounds[1]*=oversampling; bounds[3]*=oversampling; bounds[5]*=oversampling; SetParametricBounds(bounds); } itk::LightObject::Pointer mitk::AbstractTransformGeometry::InternalClone() const { Self::Pointer newGeometry = new AbstractTransformGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::AbstractTransformGeometry::SetParametricBounds(const BoundingBox::BoundsArrayType& bounds) { m_ParametricBoundingBox = BoundingBoxType::New(); BoundingBoxType::PointsContainer::Pointer pointscontainer = BoundingBoxType::PointsContainer::New(); BoundingBoxType::PointType p; BoundingBoxType::PointIdentifier pointid; for(pointid=0; pointid<2;++pointid) { unsigned int i; for(i=0; iInsertElement(pointid, p); } m_ParametricBoundingBox->SetPoints(pointscontainer); m_ParametricBoundingBox->ComputeBoundingBox(); this->Modified(); } const mitk::BoundingBox::BoundsArrayType& mitk::AbstractTransformGeometry::GetParametricBounds() const { assert(m_ParametricBoundingBox.IsNotNull()); return m_ParametricBoundingBox->GetBounds(); } mitk::ScalarType mitk::AbstractTransformGeometry::GetParametricExtent(int direction) const { if (direction < 0 || direction>=3) mitkThrow() << "Invalid direction. Must be between either 0, 1 or 2. "; assert(m_ParametricBoundingBox.IsNotNull()); BoundingBoxType::BoundsArrayType bounds = m_ParametricBoundingBox->GetBounds(); return bounds[direction*2+1]-bounds[direction*2]; } diff --git a/Core/Code/DataManagement/mitkBaseGeometry.h b/Core/Code/DataManagement/mitkBaseGeometry.h index f3673c08b7..e21c966cf9 100644 --- a/Core/Code/DataManagement/mitkBaseGeometry.h +++ b/Core/Code/DataManagement/mitkBaseGeometry.h @@ -1,759 +1,760 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef BaseGeometry_H_HEADER_INCLUDED #define BaseGeometry_H_HEADER_INCLUDED #include #include #include "mitkOperationActor.h" #include #include "mitkNumericTypes.h" #include #include #include "itkScalableAffineTransform.h" #include class vtkMatrix4x4; class vtkMatrixToLinearTransform; class vtkLinearTransform; namespace mitk { //##Documentation //## @brief Standard 3D-BoundingBox typedef //## //## Standard 3D-BoundingBox typedef to get rid of template arguments (3D, type). typedef itk::BoundingBox BoundingBox; //##Documentation //## @brief Standard typedef for time-bounds typedef itk::FixedArray TimeBounds; typedef itk::FixedArray FixedArrayType; typedef itk::AffineGeometryFrame AffineGeometryFrame3D; //##Documentation //## @brief BaseGeometry Describes the geometry of a data object //## //## The class holds //## \li a bounding box which is axes-parallel in intrinsic coordinates //## (often integer indices of pixels), to be accessed by //## GetBoundingBox() //## \li a transform to convert intrinsic coordinates into a //## world-coordinate system with coordinates in millimeters //## and milliseconds (all are floating point values), to //## be accessed by GetIndexToWorldTransform() //## \li an origin and spacing to define the geometry //## //## BaseGeometry and its sub-classes allow converting between //## intrinsic coordinates (called index or unit coordinates) //## and world-coordinates (called world or mm coordinates), //## e.g. WorldToIndex. //## In case you need integer index coordinates, provide an //## mitk::Index3D (or itk::Index) as target variable to //## WorldToIndex, otherwise you will get a continuous index //## (floating point values). //## //## An important sub-class is SlicedGeometry3D, which descibes //## data objects consisting of slices, e.g., objects of type Image. //## Conversions between world coordinates (in mm) and unit coordinates //## (e.g., pixels in the case of an Image) can be performed. //## //## For more information on related classes, see \ref Geometry. //## //## BaseGeometry instances referring to an Image need a slightly //## different definition of corners, see SetImageGeometry. This //## is usualy automatically called by Image. //## //## BaseGeometry have to be initialized in the method GenerateOutputInformation() //## of BaseProcess (or CopyInformation/ UpdateOutputInformation of BaseData, //## if possible, e.g., by analyzing pic tags in Image) subclasses. See also //## itk::ProcessObject::GenerateOutputInformation(), //## itk::DataObject::CopyInformation() and //## itk::DataObject::UpdateOutputInformation(). //## //## At least, it can return the bounding box of the data object. //## //## The BaseGeometry class is an abstract class. The most simple implementation //## is the sublass Geometry3D. //## //## Rule: everything is in mm (ms) if not stated otherwise. //## @ingroup Geometry class MITK_CORE_EXPORT BaseGeometry : public itk::Object, public OperationActor { public: mitkClassMacro(BaseGeometry, itk::Object); + itkCloneMacro(Self) // ********************************** TypeDef ********************************** typedef itk::ScalableAffineTransform TransformType; typedef itk::BoundingBox BoundingBoxType; typedef BoundingBoxType::BoundsArrayType BoundsArrayType; typedef BoundingBoxType::Pointer BoundingBoxPointer; // ********************************** Origin, Spacing ********************************** //##Documentation //## @brief Get the origin, e.g. the upper-left corner of the plane const Point3D& GetOrigin() const; //##Documentation //## @brief Set the origin, i.e. the upper-left corner of the plane //## void SetOrigin(const Point3D& origin); //##Documentation //## @brief Get the spacing (size of a pixel). //## itkGetConstReferenceMacro(Spacing, mitk::Vector3D); //##Documentation //## @brief Set the spacing (m_Spacing). //## //##The spacing is also changed in the IndexToWorldTransform. void SetSpacing(const mitk::Vector3D& aSpacing, bool enforceSetSpacing = false); //##Documentation //## @brief Get the origin as VnlVector //## //## \sa GetOrigin VnlVector GetOriginVnl() const; // ********************************** other functions ********************************** //##Documentation //## @brief Get the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkGetConstMacro(FrameOfReferenceID, unsigned int); //##Documentation //## @brief Set the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkSetMacro(FrameOfReferenceID, unsigned int); itkGetConstMacro(IndexToWorldTransformLastModified, unsigned long); //##Documentation //## @brief Overload of function Modified() to prohibit several calls of Modified() using the ModifiedLock class. //## //## For the use of Modified(), see class ModifiedLock. void Modified() const; friend class ModifiedLock; //##Documentation //## @brief Is this BaseGeometry in a state that is valid? //## //## This function returns always true in the BaseGeometry class. Other implementations are possible in subclasses. virtual bool IsValid() const; // ********************************** Initialize ********************************** //##Documentation //## @brief Initialize the BaseGeometry void Initialize(); void InitializeGeometry(Self * newGeometry) const; // ********************************** Transformations Set/Get ********************************** // a bit of a misuse, but we want only doxygen to see the following: #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get the transformation used to convert from index //## to world coordinates itkGetObjectMacro(IndexToWorldTransform, AffineTransform3D); #endif //## @brief Set the transformation used to convert from index //## to world coordinates. The spacing of the new transform is //## copied to m_spacing. void SetIndexToWorldTransform(mitk::AffineTransform3D* transform); //##Documentation //## @brief Convenience method for setting the ITK transform //## (m_IndexToWorldTransform) via an vtkMatrix4x4.The spacing of //## the new transform is copied to m_spacing. //## \sa SetIndexToWorldTransform virtual void SetIndexToWorldTransformByVtkMatrix(vtkMatrix4x4* vtkmatrix); //## Get the IndexToWorldTransform itkGetConstObjectMacro(IndexToWorldTransform, AffineTransform3D); itkGetObjectMacro(IndexToWorldTransform, AffineTransform3D); //## Get the Vtk Matrix which describes the transform. vtkMatrix4x4* GetVtkMatrix(); //##Documentation //## @brief Get the m_IndexToWorldTransform as a vtkLinearTransform vtkLinearTransform* GetVtkTransform() const; //##Documentation //## @brief Set the transform to identity, the spacing to 1 and origin to 0 //## virtual void SetIdentity(); // ********************************** Transformations ********************************** //##Documentation //## @brief Compose new IndexToWorldTransform with a given transform. //## //## This method composes m_IndexToWorldTransform with another transform, //## modifying self to be the composition of self and other. //## If the argument pre is true, then other is precomposed with self; //## that is, the resulting transformation consists of first applying //## other to the source, followed by self. If pre is false or omitted, //## then other is post-composed with self; that is the resulting //## transformation consists of first applying self to the source, //## followed by other. //## This method also changes m_spacing. void Compose( const BaseGeometry::TransformType * other, bool pre = 0 ); //##Documentation //## @brief Compose new IndexToWorldTransform with a given vtkMatrix4x4. //## //## Converts the vtkMatrix4x4 into a itk-transform and calls the previous method. void Compose( const vtkMatrix4x4 * vtkmatrix, bool pre = 0 ); //##Documentation //## @brief Translate the origin by a vector //## void Translate(const Vector3D& vector); //##Documentation //##@brief executes affine operations (translate, rotate, scale) virtual void ExecuteOperation(Operation* operation); //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (continuous!) index coordinates //## \warning If you need (discrete) integer index coordinates (e.g., for iterating easily over an image), //## use WorldToIndex(const mitk::Point3D& pt_mm, itk::Index &index). //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Point3D& pt_mm, mitk::Point3D& pt_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Vector3D& vec_mm, mitk::Vector3D& vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (discrete!) index coordinates. //## This method rounds to integer indices! //## For further information about coordinates types, please see the Geometry documentation template void WorldToIndex(const mitk::Point3D& pt_mm, itk::Index &index) const { typedef itk::Index IndexType; mitk::Point3D pt_units; this->WorldToIndex(pt_mm, pt_units); int i, dim=index.GetIndexDimension(); if(dim>3) { index.Fill(0); dim=3; } for(i=0;i( pt_units[i] ); } } //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Vector3D& vec_units, mitk::Vector3D& vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em point to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Point3D& pt_units, mitk::Point3D& pt_mm) const; //##Documentation //## @brief Convert (discrete) index coordinates of a \em point to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation template void IndexToWorld(const itk::Index &index, mitk::Point3D& pt_mm ) const { mitk::Point3D pt_units; pt_units.Fill(0); int i, dim=index.GetIndexDimension(); if(dim>3) { dim=3; } for(i=0;i void ItkPhysicalPointToWorld(const itk::Point& itkPhysicalPoint, mitk::Point3D& pt_mm) const { mitk::vtk2itk(itkPhysicalPoint, pt_mm); } //##Documentation //## @brief Deprecated for use with ITK version 3.10 or newer. //## Convert world coordinates (in mm) of a \em point to //## ITK physical coordinates (in mm, but without a possible rotation) //## //## This method is useful if you have want to access an mitk::Image //## via an itk::Image. ITK v3.8 and older did not support rotated (tilted) //## images, i.e., ITK images are always parallel to the coordinate axes. //## When accessing a (possibly rotated) mitk::Image via an itk::Image //## the rotational part of the transformation in the BaseGeometry is //## simply discarded; in other word: only the origin and spacing is //## used by ITK, not the complete matrix available in MITK. //## With WorldToItkPhysicalPoint you can convert an MITK world //## coordinate (including the rotation) into a coordinate that //## can be used with the ITK image as a ITK physical coordinate //## (excluding the rotation). template void WorldToItkPhysicalPoint(const mitk::Point3D& pt_mm, itk::Point& itkPhysicalPoint) const { mitk::vtk2itk(pt_mm, itkPhysicalPoint); } // ********************************** BoundingBox ********************************** /** Get the bounding box */ itkGetConstObjectMacro(BoundingBox, BoundingBoxType); //##Documentation //## @brief Get the time bounds (in ms) //itkGetConstReferenceMacro(TimeBounds, TimeBounds); // a bit of a misuse, but we want only doxygen to see the following: #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get bounding box (in index/unit coordinates) itkGetConstObjectMacro(BoundingBox, BoundingBoxType); //##Documentation //## @brief Get bounding box (in index/unit coordinates) as a BoundsArrayType const BoundsArrayType GetBounds() const; #endif const BoundsArrayType GetBounds() const; //##Documentation //## \brief Set the bounding box (in index/unit coordinates) //## //## Only possible via the BoundsArray to make clear that a //## copy of the bounding-box is stored, not a reference to it. void SetBounds(const BoundsArrayType& bounds); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a float array void SetFloatBounds(const float bounds[6]); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a double array void SetFloatBounds(const double bounds[6]); //##Documentation //## @brief Get a VnlVector along bounding-box in the specified //## @a direction, length is spacing //## //## \sa GetAxisVector VnlVector GetMatrixColumn(unsigned int direction) const; //##Documentation //## @brief Calculates a bounding-box around the geometry relative //## to a coordinate system defined by a transform //## mitk::BoundingBox::Pointer CalculateBoundingBoxRelativeToTransform(const mitk::AffineTransform3D* transform) const; //##Documentation //## @brief Set the time bounds (in ms) //void SetTimeBounds(const TimeBounds& timebounds); // ********************************** Geometry ********************************** #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get the extent of the bounding box (in index/unit coordinates) //## //## To access the extent in mm use GetExtentInMM ScalarType GetExtent(unsigned int direction) const; #endif /** Get the extent of the bounding box */ ScalarType GetExtent(unsigned int direction) const; //##Documentation //## @brief Get the extent of the bounding-box in the specified @a direction in mm //## //## Equals length of GetAxisVector(direction). ScalarType GetExtentInMM(int direction) const; //##Documentation //## @brief Get vector along bounding-box in the specified @a direction in mm //## //## The length of the vector is the size of the bounding-box in the //## specified @a direction in mm //## \sa GetMatrixColumn Vector3D GetAxisVector(unsigned int direction) const; //##Documentation //## @brief Checks, if the given geometry can be converted to 2D without information loss //## e.g. when a 2D image is saved, the matrix is usually cropped to 2x2, and when you load it back to MITK //## it will be filled with standard values. This function checks, if information would be lost during this //## procedure virtual bool Is2DConvertable(); //##Documentation //## @brief Get the center of the bounding-box in mm //## Point3D GetCenter() const; //##Documentation //## @brief Get the squared length of the diagonal of the bounding-box in mm //## double GetDiagonalLength2() const; //##Documentation //## @brief Get the length of the diagonal of the bounding-box in mm //## double GetDiagonalLength() const; //##Documentation //## @brief Get the position of the corner number \a id (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(int id) const; //##Documentation //## @brief Get the position of a corner (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(bool xFront=true, bool yFront=true, bool zFront=true) const; //##Documentation //## @brief Set the extent of the bounding-box in the specified @a direction in mm //## //## @note This changes the matrix in the transform, @a not the bounds, which are given in units! void SetExtentInMM(int direction, ScalarType extentInMM); //##Documentation //## @brief Test whether the point \a p (world coordinates in mm) is //## inside the bounding box bool IsInside(const mitk::Point3D& p) const; //##Documentation //## @brief Test whether the point \a p ((continous!)index coordinates in units) is //## inside the bounding box bool IsIndexInside(const mitk::Point3D& index) const; //##Documentation //## @brief Convenience method for working with ITK indices template bool IsIndexInside(const itk::Index &index) const { int i, dim=index.GetIndexDimension(); Point3D pt_index; pt_index.Fill(0); for ( i = 0; i < dim; ++i ) { pt_index[i] = index[i]; } return IsIndexInside(pt_index); } // ********************************* Image Geometry ******************************** //##Documentation //## @brief When switching from an Image Geometry to a normal Geometry (and the other way around), you have to change the origin as well (See Geometry Documentation)! This function will change the "isImageGeometry" bool flag and changes the origin respectively. virtual void ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ); //##Documentation //## @brief Is this an ImageGeometry? //## //## For more information, see SetImageGeometry itkGetConstMacro(ImageGeometry, bool); //##Documentation //## @brief Define that this BaseGeometry is refering to an Image //## //## A geometry referring to an Image needs a slightly different //## definition of the position of the corners (see GetCornerPoint). //## The position of a voxel is defined by the position of its center. //## If we would use the origin (position of the (center of) the first //## voxel) as a corner and display this point, it would seem to be //## \em not at the corner but a bit within the image. Even worse for //## the opposite corner of the image: here the corner would appear //## outside the image (by half of the voxel diameter). Thus, we have //## to correct for this and to be able to do that, we need to know //## that the BaseGeometry is referring to an Image. itkSetMacro(ImageGeometry, bool); itkBooleanMacro(ImageGeometry); protected: // ********************************** Constructor ********************************** BaseGeometry(); BaseGeometry(const BaseGeometry& other); virtual ~BaseGeometry(); //##Documentation //## @brief clones the geometry //## //## Overwrite in all sub-classes. //## Normally looks like: //## \code //## Self::Pointer newGeometry = new Self(*this); //## newGeometry->UnRegister(); //## return newGeometry.GetPointer(); //## \endcode virtual itk::LightObject::Pointer InternalClone() const =0; virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; void BackTransform(const mitk::Point3D& in, mitk::Point3D& out) const; //Without redundant parameter Point3D void BackTransform(const mitk::Vector3D& in, mitk::Vector3D& out) const; //##Documentation //## @brief Deprecated void BackTransform(const mitk::Point3D& at, const mitk::Vector3D& in, mitk::Vector3D& out) const; //##Documentation //## @brief Copy the ITK transform //## (m_IndexToWorldTransform) to the VTK transform //## \sa SetIndexToWorldTransform void TransferItkToVtkTransform(); //##Documentation //## @brief Copy the VTK transform //## to the ITK transform (m_IndexToWorldTransform) //## \sa SetIndexToWorldTransform void TransferVtkToItkTransform(); static const std::string GetTransformAsString( TransformType* transformType ); itkGetConstMacro(NDimensions, unsigned int); bool IsBoundingBoxNull() const; bool IsIndexToWorldTransformNull() const; //##Documentation //## @brief Intern functions to assure a consistent behaviour of SetSpacing. void _SetSpacing(const mitk::Vector3D& aSpacing, bool enforceSetSpacing = false); private: //##Documentation //## @brief Pre- and Post-functions are empty in BaseGeometry //## //## These virtual functions allow for a different beahiour in subclasses. virtual void PreSetBounds(const BoundsArrayType& bounds); virtual void PostInitialize(); virtual void PostInitializeGeometry(Self * newGeometry) const; virtual void PostSetExtentInMM(int direction, ScalarType extentInMM); //virtual void PostSetTimeBounds(const TimeBounds& timebounds); virtual void PreSetIndexToWorldTransform(mitk::AffineTransform3D* transform); virtual void PostSetIndexToWorldTransform(mitk::AffineTransform3D* transform); virtual void PreSetSpacing(const mitk::Vector3D& aSpacing); // ********************************** Variables ********************************** //##Documentation //## @brief Spacing, measurement of the resolution //## mitk::Vector3D m_Spacing; //##Documentation //## @brief Index to World Transform, contains a transformation matrix to convert //## points from indes coordinates to world coordinates (mm). The Spacing is included in this variable. AffineTransform3D::Pointer m_IndexToWorldTransform; //##Documentation //## @brief Bounding Box, which is axes-parallel in intrinsic coordinates //## (often integer indices of pixels) BoundingBoxPointer m_BoundingBox; vtkMatrixToLinearTransform* m_VtkIndexToWorldTransform; vtkMatrix4x4* m_VtkMatrix; unsigned int m_FrameOfReferenceID; //mitk::TimeBounds m_TimeBounds; static const unsigned int m_NDimensions = 3; mutable TransformType::Pointer m_InvertedTransform; mutable unsigned long m_IndexToWorldTransformLastModified; //##Documentation //## @brief Origin, i.e. upper-left corner of the plane //## Point3D m_Origin; bool m_ImageGeometry; //##Documentation //## @brief ModifiedLockFlag is used to prohibit the call of Modified() //## //## For the use of this Flag, see class ModifiedLock. This flag should only be set //## by the ModifiedLock class! bool m_ModifiedLockFlag; //##Documentation //## @brief ModifiedcalledFlag is used to collect calls of Modified(). //## //## For the use of this Flag, see class ModifiedLock. This flag should only be set //## by the Modified() function! mutable bool m_ModifiedCalledFlag; }; // ********************************** Equal Functions ********************************** // // Static compare functions mainly for testing // /** * @brief Equal A function comparing two geometries for beeing identical. * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const mitk::mitk::BaseGeometry& g1, const mitk::BaseGeometry& g2) instead. * * @ingroup MITKTestingAPI * * The function compares the spacing, origin, axisvectors, extents, the matrix of the * IndexToWorldTransform (elementwise), the bounding (elementwise) and the ImageGeometry flag. * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * If you want to use different tolarance values for different parts of the geometry, feel free to use * the other comparison methods and write your own implementation of Equal. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ DEPRECATED( MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry* leftHandSide, const mitk::BaseGeometry* rightHandSide, ScalarType eps, bool verbose)); /** * @brief Equal A function comparing two geometries for beeing identical. * * @ingroup MITKTestingAPI * * The function compares the spacing, origin, axisvectors, extents, the matrix of the * IndexToWorldTransform (elementwise), the bounding (elementwise) and the ImageGeometry flag. * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * If you want to use different tolarance values for different parts of the geometry, feel free to use * the other comparison methods and write your own implementation of Equal. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry& leftHandSide, const mitk::BaseGeometry& rightHandSide, ScalarType eps, bool verbose); /** * @brief Equal A function comparing two transforms (TransformType) for beeing identical. * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const mitk::mitk::BaseGeometry::TransformType& t1, const mitk::BaseGeometry::TransformType& t2) instead. * * @ingroup MITKTestingAPI * * The function compares the IndexToWorldTransform (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ DEPRECATED( MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry::TransformType *leftHandSide, const mitk::BaseGeometry::TransformType *rightHandSide, ScalarType eps, bool verbose)); /** * @brief Equal A function comparing two transforms (TransformType) for beeing identical. * * @ingroup MITKTestingAPI * * The function compares the IndexToWorldTransform (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITK_CORE_EXPORT bool Equal(const mitk::BaseGeometry::TransformType& leftHandSide, const mitk::BaseGeometry::TransformType& rightHandSide, ScalarType eps, bool verbose); /** * @brief Equal A function comparing two bounding boxes (BoundingBoxType) for beeing identical. * @warning This method is deprecated and will not be available in the future. Use the \a bool mitk::Equal(const mitk::mitk::BaseGeometry::BoundingBoxType& b1, const mitk::BaseGeometry::BoundingBoxType& b2) instead. * * @ingroup MITKTestingAPI * * The function compares the bounds (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ DEPRECATED( MITK_CORE_EXPORT bool Equal( const mitk::BaseGeometry::BoundingBoxType *leftHandSide, const mitk::BaseGeometry::BoundingBoxType *rightHandSide, ScalarType eps, bool verbose)); /** * @brief Equal A function comparing two bounding boxes (BoundingBoxType) for beeing identical. * * @ingroup MITKTestingAPI * * The function compares the bounds (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparion. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITK_CORE_EXPORT bool Equal( const mitk::BaseGeometry::BoundingBoxType& leftHandSide, const mitk::BaseGeometry::BoundingBoxType& rightHandSide, ScalarType eps, bool verbose); } // namespace mitk #endif /* BaseGeometry_H_HEADER_INCLUDED */ diff --git a/Core/Code/DataManagement/mitkImage.cpp b/Core/Code/DataManagement/mitkImage.cpp index 74e8ed55df..85a44834b8 100644 --- a/Core/Code/DataManagement/mitkImage.cpp +++ b/Core/Code/DataManagement/mitkImage.cpp @@ -1,1372 +1,1371 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //MITK #include "mitkImage.h" #include "mitkImageStatisticsHolder.h" #include "mitkPixelTypeMultiplex.h" #include #include "mitkCompareImageDataFilter.h" //VTK #include //Other #include #define FILL_C_ARRAY( _arr, _size, _value) for(unsigned int i=0u; i<_size; i++) \ { _arr[i] = _value; } mitk::Image::Image() : m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); m_Initialized = false; } mitk::Image::Image(const Image &other) : SlicedData(other), m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); this->Initialize( other.GetPixelType(), other.GetDimension(), other.GetDimensions()); //Since the above called "Initialize" method doesn't take the geometry into account we need to set it //here manually TimeGeometry::Pointer cloned = other.GetTimeGeometry()->Clone(); this->SetTimeGeometry(cloned.GetPointer()); if (this->GetDimension() > 3) { const unsigned int time_steps = this->GetDimension(3); for (unsigned int i = 0u; i < time_steps; ++i) { ImageDataItemPointer volume = const_cast(other).GetVolumeData(i); this->SetVolume(volume->GetData(), i); } } else { ImageDataItemPointer volume = const_cast(other).GetVolumeData(0); this->SetVolume(volume->GetData(), 0); } } mitk::Image::~Image() { Clear(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 3; m_ReferenceCountLock.Unlock(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 0; m_ReferenceCountLock.Unlock(); if(m_OffsetTable != NULL) delete [] m_OffsetTable; if(m_ImageStatistics != NULL) delete m_ImageStatistics; } const mitk::PixelType mitk::Image::GetPixelType(int n) const { return this->m_ImageDescriptor->GetChannelTypeById(n); } unsigned int mitk::Image::GetDimension() const { return m_Dimension; } unsigned int mitk::Image::GetDimension(int i) const { if((i>=0) && (i<(int)m_Dimension)) return m_Dimensions[i]; return 1; } void* mitk::Image::GetData() { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } m_CompleteData=GetChannelData(); // update channel's data // if data was not available at creation point, the m_Data of channel descriptor is NULL // if data present, it won't be overwritten m_ImageDescriptor->GetChannelDescriptor(0).SetData(m_CompleteData->GetData()); return m_CompleteData->GetData(); } template void AccessPixel( const mitk::PixelType ptype, void* data, const unsigned int offset, double& value ) { value = 0.0; if( data == NULL ) return; if(ptype.GetBpe() != 24) { value = (double) (((T*) data)[ offset ]); } else { const unsigned int rgboffset = 3 * offset; double returnvalue = (((T*) data)[rgboffset ]); returnvalue += (((T*) data)[rgboffset + 1]); returnvalue += (((T*) data)[rgboffset + 2]); value = returnvalue; } } double mitk::Image::GetPixelValueByIndex(const itk::Index<3> &position, unsigned int timestep) { double value = 0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } value = 0.0; const unsigned int* imageDims = this->m_ImageDescriptor->GetDimensions(); const mitk::PixelType ptype = this->m_ImageDescriptor->GetChannelTypeById(0); // Comparison ?>=0 not needed since all position[i] and timestep are unsigned int // (position[0]>=0 && position[1] >=0 && position[2]>=0 && timestep>=0) // bug-11978 : we still need to catch index with negative values if ( position[0] < 0 || position[1] < 0 || position[2] < 0 ) { MITK_WARN << "Given position ("<< position << ") is out of image range, returning 0." ; } // check if the given position is inside the index range of the image, the 3rd dimension needs to be compared only if the dimension is not 0 else if ( (unsigned int)position[0] >= imageDims[0] || (unsigned int)position[1] >= imageDims[1] || ( imageDims[2] && (unsigned int)position[2] >= imageDims[2] )) { MITK_WARN << "Given position ("<< position << ") is out of image range, returning 0." ; } else { const unsigned int offset = position[0] + position[1]*imageDims[0] + position[2]*imageDims[0]*imageDims[1] + timestep*imageDims[0]*imageDims[1]*imageDims[2]; mitkPixelTypeMultiplex3( AccessPixel, ptype, this->GetData(), offset, value ); } return value; } double mitk::Image::GetPixelValueByWorldCoordinate(const mitk::Point3D& position, unsigned int timestep) { double value = 0.0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } itk::Index<3> itkIndex; this->GetGeometry()->WorldToIndex(position, itkIndex); value = this->GetPixelValueByIndex( itkIndex, timestep); return value; } mitk::ImageVtkAccessor* mitk::Image::GetVtkImageData(int t, int n) { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume=GetVolumeData(t, n); if(volume.GetPointer()==NULL || volume->GetVtkImageData(this) == NULL) return NULL; SlicedGeometry3D* geom3d = GetSlicedGeometry(t); const mitk::Vector3D vspacing = (geom3d->GetSpacing()); double dspacing[3] = {vspacing[0],vspacing[1],vspacing[2]}; volume->GetVtkImageData(this)->SetSpacing( dspacing ); return volume->GetVtkImageData(this); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return NULL; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // slice directly available? int pos=GetSliceIndex(s,t,n); if(m_Slices[pos].GetPointer()!=NULL) return m_Slices[pos]; // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // slice is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir mussen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, s); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, 1); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsSliceSet(s,t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetSliceData(s,t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateSliceData(s,t,n,data,importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return NULL; ImageDataItemPointer ch, vol; // volume directly available? int pos=GetVolumeIndex(t,n); vol=m_Volumes[pos]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return vol; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); vol->SetComplete(true); return m_Volumes[pos]=vol; } // let's see if all slices of the volume are set, so that we can (could) combine them to a volume bool complete=true; unsigned int s; for(s=0;sSetComplete(true); } else { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); vol=m_Volumes[pos]; // ok, let's combine the slices! if(vol.GetPointer()==NULL) vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); vol->SetComplete(true); size_t size=m_OffsetTable[2]*(ptypeSize); for(s=0;sGetParent()!=vol) { // copy data of slices in volume size_t offset = ((size_t) s)*size; std::memcpy(static_cast(vol->GetData())+offset, sl->GetData(), size); // FIXME mitkIpPicDescriptor * pic = sl->GetPicDescriptor(); // replace old slice with reference to volume sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*size); sl->SetComplete(true); //mitkIpFuncCopyTags(sl->GetPicDescriptor(), pic); m_Slices[posSl]=sl; } } //if(vol->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(vol->GetPicDescriptor(), m_Slices[GetSliceIndex(0,t,n)]->GetPicDescriptor()); } return m_Volumes[pos]=vol; } // volume is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsVolumeSet(t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetVolumeData(t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateVolumeData(t,n,data,importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return NULL; ImageDataItemPointer ch, vol; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return ch; // let's see if all volumes are set, so that we can (could) combine them to a channel if(IsChannelSet(n)) { // if there is only one time frame we do not need to combine anything if(m_Dimensions[3]<=1) { vol=GetVolumeData(0,n,data,importMemoryManagement); ch=new ImageDataItem(*vol, m_ImageDescriptor, m_ImageDescriptor->GetNumberOfDimensions(), data, importMemoryManagement == ManageMemory); ch->SetComplete(true); } else { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=m_Channels[n]; // ok, let's combine the volumes! if(ch.GetPointer()==NULL) ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); ch->SetComplete(true); size_t size=m_OffsetTable[m_Dimension-1]*(ptypeSize); unsigned int t; ImageDataItemPointerArray::iterator slicesIt = m_Slices.begin()+n*m_Dimensions[2]*m_Dimensions[3]; for(t=0;tGetParent()!=ch) { // copy data of volume in channel size_t offset = ((size_t) t)*m_OffsetTable[3]*(ptypeSize); std::memcpy(static_cast(ch->GetData())+offset, vol->GetData(), size); // REVEIW FIX mitkIpPicDescriptor * pic = vol->GetPicDescriptor(); // replace old volume with reference to channel vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, offset); vol->SetComplete(true); //mitkIpFuncCopyTags(vol->GetPicDescriptor(), pic); m_Volumes[posVol]=vol; // get rid of slices - they may point to old volume ImageDataItemPointer dnull=NULL; for(unsigned int i = 0; i < m_Dimensions[2]; ++i, ++slicesIt) { assert(slicesIt != m_Slices.end()); *slicesIt = dnull; } } } // REVIEW FIX // if(ch->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(ch->GetPicDescriptor(), m_Volumes[GetVolumeIndex(0,n)]->GetPicDescriptor()); } return m_Channels[n]=ch; } // channel is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, 0); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, m_Dimensions[3]); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); // did it work? if(IsChannelSet(n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetChannelData(n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateChannelData(n,data,importMemoryManagement); item->SetComplete(true); return item; } } bool mitk::Image::IsSliceSet(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; if(m_Slices[GetSliceIndex(s,t,n)].GetPointer()!=NULL) return true; ImageDataItemPointer ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; return false; } bool mitk::Image::IsVolumeSet(int t, int n) const { if(IsValidVolume(t,n)==false) return false; ImageDataItemPointer ch, vol; // volume directly available? vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; // let's see if all slices of the volume are set, so that we can (could) combine them to a volume unsigned int s; for(s=0;sIsComplete())) return true; // let's see if all volumes are set, so that we can (could) combine them to a channel unsigned int t; for(t=0;t(data), s, t, n, CopyMemory); } bool mitk::Image::SetVolume(const void *data, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportVolume(const_cast(data), t, n, CopyMemory); } bool mitk::Image::SetChannel(const void *data, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportChannel(const_cast(data), n, CopyMemory); } bool mitk::Image::SetImportSlice(void *data, int s, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return false; ImageDataItemPointer sl; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); if(IsSliceSet(s,t,n)) { sl=GetSliceData(s,t,n,data,importMemoryManagement); if(sl->GetManageMemory()==false) { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; } if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); sl->Modified(); //we have changed the data: call Modified()! Modified(); } else { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); //we just added a missing slice, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(void *data, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return false; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer vol; if(IsVolumeSet(t,n)) { vol=GetVolumeData(t,n,data,importMemoryManagement); if(vol->GetManageMemory()==false) { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; } if ( vol->GetData() != data ) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); vol->Modified(); vol->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; if ( vol->GetData() != data ) { std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } vol->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( vol->GetData() ); //we just added a missing Volume, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportChannel(void *data, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return false; // channel descriptor const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer ch; if(IsChannelSet(n)) { ch=GetChannelData(n,data,importMemoryManagement); if(ch->GetManageMemory()==false) { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; } if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->Modified(); ch->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( ch->GetData() ); //we just added a missing Channel, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } void mitk::Image::Initialize() { ImageDataItemPointerArray::iterator it, end; for( it=m_Slices.begin(), end=m_Slices.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Volumes.begin(), end=m_Volumes.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Channels.begin(), end=m_Channels.end(); it!=end; ++it ) { (*it)=NULL; } m_CompleteData = NULL; if( m_ImageStatistics == NULL) { m_ImageStatistics = new mitk::ImageStatisticsHolder( this ); } SetRequestedRegionToLargestPossibleRegion(); } void mitk::Image::Initialize(const mitk::ImageDescriptor::Pointer inDesc) { // store the descriptor this->m_ImageDescriptor = inDesc; // initialize image this->Initialize( inDesc->GetChannelDescriptor(0).GetPixelType(), inDesc->GetNumberOfDimensions(), inDesc->GetDimensions(), 1 ); } void mitk::Image::Initialize(const mitk::PixelType& type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels) { Clear(); m_Dimension=dimension; if(!dimensions) itkExceptionMacro(<< "invalid zero dimension image"); unsigned int i; for(i=0;im_ImageDescriptor = mitk::ImageDescriptor::New(); this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); for(i=0;i<4;++i) { m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize (i, m_Dimensions[i]); } m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, channels); if(m_LargestPossibleRegion.GetNumberOfPixels()==0) { delete [] m_Dimensions; m_Dimensions = NULL; return; } for( unsigned int i=0u; im_ImageDescriptor->AddNewChannel( type ); } PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(m_Dimensions[0], m_Dimensions[1]); SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(planegeometry, m_Dimensions[2]); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); for (TimeStepType step = 0; step < timeGeometry->CountTimeSteps(); ++step) { timeGeometry->GetGeometryForTimeStep(step)->ImageGeometryOn(); } SetTimeGeometry(timeGeometry); ImageDataItemPointer dnull=NULL; m_Channels.assign(GetNumberOfChannels(), dnull); m_Volumes.assign(GetNumberOfChannels()*m_Dimensions[3], dnull); m_Slices.assign(GetNumberOfChannels()*m_Dimensions[3]*m_Dimensions[2], dnull); ComputeOffsetTable(); Initialize(); m_Initialized = true; } void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::BaseGeometry& geometry, unsigned int channels, int tDim ) { mitk::ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); - itk::LightObject::Pointer lopointer = geometry.Clone(); - timeGeometry->Initialize(dynamic_cast(lopointer.GetPointer()), tDim); + timeGeometry->Initialize(geometry.Clone(), tDim); this->Initialize(type, *timeGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::TimeGeometry& geometry, unsigned int channels, int tDim ) { unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(0)+0.5); dimensions[1] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(1)+0.5); dimensions[2] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(2)+0.5); dimensions[3] = (tDim > 0) ? tDim : geometry.CountTimeSteps(); dimensions[4] = 0; unsigned int dimension = 2; if ( dimensions[2] > 1 ) dimension = 3; if ( dimensions[3] > 1 ) dimension = 4; Initialize( type, dimension, dimensions, channels ); if (geometry.CountTimeSteps() > 1) { TimeGeometry::Pointer cloned = geometry.Clone(); SetTimeGeometry(cloned.GetPointer()); } else Superclass::SetGeometry(geometry.GetGeometryForTimeStep(0)); /* //Old //TODO_GOETZ Really necessary? mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBoxInWorld()->GetBounds(); if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) { SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); mitk::Point3D origin; origin.Fill(0.0); slicedGeometry->IndexToWorld(origin, origin); bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); slicedGeometry->SetBounds(bounds); slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.GetVnlVector().data_block()); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); }*/ } void mitk::Image::Initialize(const mitk::PixelType& type, int sDim, const mitk::PlaneGeometry& geometry2d, bool flipped, unsigned int channels, int tDim ) { SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(static_cast(geometry2d.Clone().GetPointer()), sDim, flipped); Initialize(type, *slicedGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::Image* image) { Initialize(image->GetPixelType(), *image->GetTimeGeometry()); } void mitk::Image::Initialize(vtkImageData* vtkimagedata, int channels, int tDim, int sDim, int pDim) { if(vtkimagedata==NULL) return; m_Dimension=vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions=new unsigned int[m_Dimension>4?m_Dimension:4]; for(i=0;iGetDimensions()[i]; if(m_Dimension<4) { unsigned int *p; for(i=0,p=tmpDimensions+m_Dimension;i<4-m_Dimension;++i, ++p) *p=1; } if(pDim>=0) { tmpDimensions[1]=pDim; if(m_Dimension < 2) m_Dimension = 2; } if(sDim>=0) { tmpDimensions[2]=sDim; if(m_Dimension < 3) m_Dimension = 3; } if(tDim>=0) { tmpDimensions[3]=tDim; if(m_Dimension < 4) m_Dimension = 4; } switch ( vtkimagedata->GetScalarType() ) { case VTK_BIT: case VTK_CHAR: //pixelType.Initialize(typeid(char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_CHAR: //pixelType.Initialize(typeid(unsigned char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_SHORT: //pixelType.Initialize(typeid(short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_SHORT: //pixelType.Initialize(typeid(unsigned short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_INT: //pixelType.Initialize(typeid(int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_INT: //pixelType.Initialize(typeid(unsigned int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_LONG: //pixelType.Initialize(typeid(long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_LONG: //pixelType.Initialize(typeid(unsigned long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_FLOAT: //pixelType.Initialize(typeid(float), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_DOUBLE: //pixelType.Initialize(typeid(double), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; default: break; } /* Initialize(pixelType, m_Dimension, tmpDimensions, channels); */ const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if(m_Dimension>=2) spacing[1]=spacinglist[1]; if(m_Dimension>=3) spacing[2]=spacinglist[2]; // access origin of vtkImage Point3D origin; double vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if(m_Dimension>=2) origin[1]=vtkorigin[1]; if(m_Dimension>=3) origin[2]=vtkorigin[2]; SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = static_cast(slicedGeometry->GetPlaneGeometry(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); delete [] tmpDimensions; } bool mitk::Image::IsValidSlice(int s, int t, int n) const { if(m_Initialized) return ((s>=0) && (s<(int)m_Dimensions[2]) && (t>=0) && (t< (int) m_Dimensions[3]) && (n>=0) && (n< (int)GetNumberOfChannels())); else return false; } bool mitk::Image::IsValidVolume(int t, int n) const { if(m_Initialized) return IsValidSlice(0, t, n); else return false; } bool mitk::Image::IsValidChannel(int n) const { if(m_Initialized) return IsValidSlice(0, 0, n); else return false; } void mitk::Image::ComputeOffsetTable() { if(m_OffsetTable!=NULL) delete [] m_OffsetTable; m_OffsetTable=new size_t[m_Dimension>4 ? m_Dimension+1 : 4+1]; unsigned int i; size_t num=1; m_OffsetTable[0] = 1; for (i=0; i < m_Dimension; ++i) { num *= m_Dimensions[i]; m_OffsetTable[i+1] = num; } for (;i < 4; ++i) m_OffsetTable[i+1] = num; } bool mitk::Image::IsValidTimeStep(int t) const { return ( ( m_Dimension >= 4 && t <= (int)m_Dimensions[3] && t > 0 ) || (t == 0) ); } void mitk::Image::Expand(unsigned int timeSteps) { if(timeSteps < 1) itkExceptionMacro(<< "Invalid timestep in Image!"); Superclass::Expand(timeSteps); } int mitk::Image::GetSliceIndex(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; return ((size_t)s)+((size_t) t)*m_Dimensions[2]+((size_t) n)*m_Dimensions[3]*m_Dimensions[2]; //?? } int mitk::Image::GetVolumeIndex(int t, int n) const { if(IsValidVolume(t,n)==false) return false; return ((size_t)t)+((size_t) n)*m_Dimensions[3]; //?? } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetSliceIndex(s,t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if(vol.GetPointer()!=NULL) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // allocate new volume (instead of a single slice to keep data together!) m_Volumes[GetVolumeIndex(t,n)]=vol=AllocateVolumeData(t,n,NULL,importMemoryManagement); sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; ////ALTERNATIVE: //// allocate new slice //sl=new ImageDataItem(*m_PixelType, 2, m_Dimensions); //m_Slices[pos]=sl; //return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetVolumeIndex(t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ImageDataItemPointer ch, vol; ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data,importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); return m_Volumes[pos]=vol; } mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); // allocate new volume if(importMemoryManagement == CopyMemory) { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); if(data != NULL) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } else { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, data, importMemoryManagement == ManageMemory); } m_Volumes[pos]=vol; return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { ImageDataItemPointer ch; // allocate new channel if(importMemoryManagement == CopyMemory) { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); if(data != NULL) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); } else { ch=new ImageDataItem(this->m_ImageDescriptor, data, importMemoryManagement == ManageMemory); } m_Channels[n]=ch; return ch; } unsigned int* mitk::Image::GetDimensions() const { return m_Dimensions; } void mitk::Image::Clear() { Superclass::Clear(); delete [] m_Dimensions; m_Dimensions = NULL; } void mitk::Image::SetGeometry(BaseGeometry* aGeometry3D) { // Please be aware of the 0.5 offset/pixel-center issue! See Geometry documentation for further information if(aGeometry3D->GetImageGeometry()==false) { MITK_INFO << "WARNING: Applied a non-image geometry onto an image. Please be SURE that this geometry is pixel-center-based! If it is not, you need to call Geometry3D->ChangeImageGeometryConsideringOriginOffset(true) before calling image->setGeometry(..)\n"; } Superclass::SetGeometry(aGeometry3D); for (TimeStepType step = 0; step < GetTimeGeometry()->CountTimeSteps(); ++step) GetTimeGeometry()->GetGeometryForTimeStep(step)->ImageGeometryOn(); } void mitk::Image::PrintSelf(std::ostream& os, itk::Indent indent) const { unsigned char i; if(m_Initialized) { os << indent << " Dimension: " << m_Dimension << std::endl; os << indent << " Dimensions: "; for(i=0; i < m_Dimension; ++i) os << GetDimension(i) << " "; os << std::endl; for(unsigned int ch=0; ch < this->m_ImageDescriptor->GetNumberOfChannels(); ch++) { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(ch); os << indent << " Channel: " << this->m_ImageDescriptor->GetChannelName(ch) << std::endl; os << indent << " PixelType: " << chPixelType.GetPixelTypeAsString() << std::endl; os << indent << " BytesPerElement: " << chPixelType.GetSize() << std::endl; os << indent << " ComponentType: " << chPixelType.GetComponentTypeAsString() << std::endl; os << indent << " NumberOfComponents: " << chPixelType.GetNumberOfComponents() << std::endl; os << indent << " BitsPerComponent: " << chPixelType.GetBitsPerComponent() << std::endl; } } else { os << indent << " Image not initialized: m_Initialized: false" << std::endl; } Superclass::PrintSelf(os,indent); } bool mitk::Image::IsRotated() const { const mitk::BaseGeometry* geo = this->GetGeometry(); bool ret = false; if(geo) { const vnl_matrix_fixed & mx = geo->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::ScalarType ref = 0; for(short k = 0; k < 3; ++k) ref += mx[k][k]; ref/=1000; // Arbitrary value; if a non-diagonal (nd) element is bigger then this, matrix is considered nd. for(short i = 0; i < 3; ++i) { for(short j = 0; j < 3; ++j) { if(i != j) { if(std::abs(mx[i][j]) > ref) // matrix is nd ret = true; } } } } return ret; } mitk::ScalarType mitk::Image::GetScalarValueMin(int t) const { return m_ImageStatistics->GetScalarValueMin(t); } //## \brief Get the maximum for scalar images mitk::ScalarType mitk::Image::GetScalarValueMax(int t) const { return m_ImageStatistics->GetScalarValueMax(t); } //## \brief Get the second smallest value for scalar images mitk::ScalarType mitk::Image::GetScalarValue2ndMin(int t) const { return m_ImageStatistics->GetScalarValue2ndMin(t); } mitk::ScalarType mitk::Image::GetScalarValueMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValueMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMax(int t) const { return m_ImageStatistics->GetScalarValue2ndMax(t); } mitk::ScalarType mitk::Image::GetScalarValueMaxNoRecompute( unsigned int t) const { return m_ImageStatistics->GetScalarValueMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMaxNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetCountOfMinValuedVoxels(int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxels(t); } mitk::ScalarType mitk::Image::GetCountOfMaxValuedVoxels(int t) const { return m_ImageStatistics->GetCountOfMaxValuedVoxels(t); } unsigned int mitk::Image::GetCountOfMaxValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMaxValuedVoxelsNoRecompute(t); } unsigned int mitk::Image::GetCountOfMinValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxelsNoRecompute(t); } bool mitk::Equal(const mitk::Image* leftHandSide, const mitk::Image* rightHandSide, ScalarType eps, bool verbose) { if((leftHandSide == NULL) || (rightHandSide == NULL)) { MITK_ERROR << "mitk::Equal(const mitk::Image* leftHandSide, const mitk::Image* rightHandSide, ScalarType eps, bool verbose) does not work with NULL pointer input."; return false; } return mitk::Equal( *leftHandSide, *rightHandSide, eps, verbose); } bool mitk::Equal(const mitk::Image& leftHandSide, const mitk::Image& rightHandSide, ScalarType eps, bool verbose) { bool returnValue = true; // Dimensionality if( rightHandSide.GetDimension() != leftHandSide.GetDimension() ) { if(verbose) { MITK_INFO << "[( Image )] Dimensionality differs."; MITK_INFO << "leftHandSide is " << leftHandSide.GetDimension() << "rightHandSide is " << rightHandSide.GetDimension(); } returnValue = false; } // Pair-wise dimension (size) comparison unsigned int minDimensionality = std::min(rightHandSide.GetDimension(),leftHandSide.GetDimension()); for( unsigned int i=0; i< minDimensionality; ++i) { if( rightHandSide.GetDimension(i) != leftHandSide.GetDimension(i) ) { returnValue = false; if(verbose) { MITK_INFO << "[( Image )] dimension differs."; MITK_INFO << "leftHandSide->GetDimension("<GetDimension("<SetInput(0, &rightHandSide); compareFilter->SetInput(1, &leftHandSide); compareFilter->SetTolerance(eps); compareFilter->Update(); if(( !compareFilter->GetResult() ) ) { returnValue = false; if(verbose) { MITK_INFO << "[(Image)] Pixel values differ: "; compareFilter->GetCompareResults().PrintSelf(); } } } return returnValue; } diff --git a/Core/Code/DataManagement/mitkPlaneGeometry.cpp b/Core/Code/DataManagement/mitkPlaneGeometry.cpp index 8ad0309caf..edfe46f0bb 100644 --- a/Core/Code/DataManagement/mitkPlaneGeometry.cpp +++ b/Core/Code/DataManagement/mitkPlaneGeometry.cpp @@ -1,916 +1,913 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlaneGeometry.h" #include "mitkPlaneOperation.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include #include namespace mitk { PlaneGeometry::PlaneGeometry() : m_ScaleFactorMMPerUnitX( 1.0 ), m_ScaleFactorMMPerUnitY( 1.0 ), m_ReferenceGeometry( NULL ) { Initialize(); } PlaneGeometry::~PlaneGeometry() { } PlaneGeometry::PlaneGeometry(const PlaneGeometry& other) : Superclass(other), m_ScaleFactorMMPerUnitX( other.m_ScaleFactorMMPerUnitX), m_ScaleFactorMMPerUnitY( other.m_ScaleFactorMMPerUnitY), m_ReferenceGeometry( other.m_ReferenceGeometry ) { } void PlaneGeometry::EnsurePerpendicularNormal(mitk::AffineTransform3D *transform) { //ensure row(2) of transform to be perpendicular to plane, keep length. VnlVector normal = vnl_cross_3d( transform->GetMatrix().GetVnlMatrix().get_column(0), transform->GetMatrix().GetVnlMatrix().get_column(1) ); normal.normalize(); ScalarType len = transform->GetMatrix() .GetVnlMatrix().get_column(2).two_norm(); if (len==0) len = 1; normal*=len; Matrix3D matrix = transform->GetMatrix(); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); } void PlaneGeometry::PreSetIndexToWorldTransform(mitk::AffineTransform3D *transform) { EnsurePerpendicularNormal(transform); } void PlaneGeometry::PreSetBounds(const BoundingBox::BoundsArrayType &bounds) { //currently the unit rectangle must be starting at the origin [0,0] assert(bounds[0]==0); assert(bounds[2]==0); //the unit rectangle must be two-dimensional assert(bounds[1]>0); assert(bounds[3]>0); } void PlaneGeometry::IndexToWorld( const Point2D &pt_units, Point2D &pt_mm ) const { pt_mm[0]=m_ScaleFactorMMPerUnitX*pt_units[0]; pt_mm[1]=m_ScaleFactorMMPerUnitY*pt_units[1]; } void PlaneGeometry::WorldToIndex( const Point2D &pt_mm, Point2D &pt_units ) const { pt_units[0]=pt_mm[0]*(1.0/m_ScaleFactorMMPerUnitX); pt_units[1]=pt_mm[1]*(1.0/m_ScaleFactorMMPerUnitY); } void PlaneGeometry::IndexToWorld( const Point2D & /*atPt2d_units*/, const Vector2D &vec_units, Vector2D &vec_mm) const { MITK_WARN<<"Warning! Call of the deprecated function PlaneGeometry::IndexToWorld(point, vec, vec). Use PlaneGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void PlaneGeometry::IndexToWorld(const Vector2D &vec_units, Vector2D &vec_mm) const { vec_mm[0] = m_ScaleFactorMMPerUnitX * vec_units[0]; vec_mm[1] = m_ScaleFactorMMPerUnitY * vec_units[1]; } void PlaneGeometry::WorldToIndex( const Point2D & /*atPt2d_mm*/, const Vector2D &vec_mm, Vector2D &vec_units) const { MITK_WARN<<"Warning! Call of the deprecated function PlaneGeometry::WorldToIndex(point, vec, vec). Use PlaneGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void PlaneGeometry::WorldToIndex( const Vector2D &vec_mm, Vector2D &vec_units) const { vec_units[0] = vec_mm[0] * ( 1.0 / m_ScaleFactorMMPerUnitX ); vec_units[1] = vec_mm[1] * ( 1.0 / m_ScaleFactorMMPerUnitY ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const Vector3D & spacing, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { AffineTransform3D::Pointer transform; transform = AffineTransform3D::New(); AffineTransform3D::MatrixType matrix; AffineTransform3D::MatrixType::InternalMatrixType &vnlmatrix = matrix.GetVnlMatrix(); vnlmatrix.set_identity(); vnlmatrix(0,0) = spacing[0]; vnlmatrix(1,1) = spacing[1]; vnlmatrix(2,2) = spacing[2]; transform->SetIdentity(); transform->SetMatrix(matrix); InitializeStandardPlane(width, height, transform.GetPointer(), planeorientation, zPosition, frontside, rotated); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const AffineTransform3D* transform, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { Superclass::Initialize(); //construct standard view Point3D origin; VnlVector rightDV(3), bottomDV(3); origin.Fill(0); int normalDirection; switch(planeorientation) { case Axial: if(frontside) { if(rotated==false) { FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else { FillVector3D(origin, width, height, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } else { if(rotated==false) { FillVector3D(origin, width, 0, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else { FillVector3D(origin, 0, height, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } normalDirection = 2; break; case Frontal: if(frontside) { if(rotated==false) { FillVector3D(origin, 0, zPosition, 0); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, width, zPosition, height); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if(rotated==false) { FillVector3D(origin, width, zPosition, 0); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, 0, zPosition, height); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 1; break; case Sagittal: if(frontside) { if(rotated==false) { FillVector3D(origin, zPosition, 0, 0); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, zPosition, width, height); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if(rotated==false) { FillVector3D(origin, zPosition, width, 0); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, zPosition, 0, height); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 0; break; default: itkExceptionMacro("unknown PlaneOrientation"); } if ( transform != NULL ) { origin = transform->TransformPoint( origin ); rightDV = transform->TransformVector( rightDV ); bottomDV = transform->TransformVector( bottomDV ); } ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); if ( transform == NULL ) { this->SetMatrixByVectors( rightDV, bottomDV ); } else { this->SetMatrixByVectors( rightDV, bottomDV, transform->GetMatrix().GetVnlMatrix() .get_column(normalDirection).magnitude() ); } this->SetOrigin(origin); } void PlaneGeometry::InitializeStandardPlane( const BaseGeometry *geometry3D, PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { this->SetReferenceGeometry( const_cast< BaseGeometry * >( geometry3D ) ); ScalarType width, height; const BoundingBox::BoundsArrayType& boundsarray = geometry3D->GetBoundingBox()->GetBounds(); Vector3D originVector; FillVector3D(originVector, boundsarray[0], boundsarray[2], boundsarray[4]); if(geometry3D->GetImageGeometry()) { FillVector3D( originVector, originVector[0] - 0.5, originVector[1] - 0.5, originVector[2] - 0.5 ); } switch(planeorientation) { case Axial: width = geometry3D->GetExtent(0); height = geometry3D->GetExtent(1); break; case Frontal: width = geometry3D->GetExtent(0); height = geometry3D->GetExtent(2); break; case Sagittal: width = geometry3D->GetExtent(1); height = geometry3D->GetExtent(2); break; default: itkExceptionMacro("unknown PlaneOrientation"); } InitializeStandardPlane( width, height, geometry3D->GetIndexToWorldTransform(), planeorientation, zPosition, frontside, rotated ); ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); Point3D origin; originVector = geometry3D->GetIndexToWorldTransform() ->TransformVector( originVector ); origin = GetOrigin() + originVector; SetOrigin(origin); } void PlaneGeometry::InitializeStandardPlane( const BaseGeometry *geometry3D, bool top, PlaneOrientation planeorientation, bool frontside, bool rotated ) { ScalarType zPosition; switch(planeorientation) { case Axial: zPosition = (top ? 0.5 : geometry3D->GetExtent(2)-1+0.5); break; case Frontal: zPosition = (top ? 0.5 : geometry3D->GetExtent(1)-1+0.5); break; case Sagittal: zPosition = (top ? 0.5 : geometry3D->GetExtent(0)-1+0.5); break; default: itkExceptionMacro("unknown PlaneOrientation"); } InitializeStandardPlane( geometry3D, planeorientation, zPosition, frontside, rotated ); } void PlaneGeometry::InitializeStandardPlane( const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing ) { InitializeStandardPlane( rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing ); } void PlaneGeometry::InitializeStandardPlane( const VnlVector& rightVector, const VnlVector &downVector, const Vector3D *spacing ) { ScalarType width = rightVector.magnitude(); ScalarType height = downVector.magnitude(); InitializeStandardPlane( width, height, rightVector, downVector, spacing ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing ) { InitializeStandardPlane( width, height, rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing ) { assert(width > 0); assert(height > 0); VnlVector rightDV = rightVector; rightDV.normalize(); VnlVector downDV = downVector; downDV.normalize(); VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); if(spacing!=NULL) { rightDV *= (*spacing)[0]; downDV *= (*spacing)[1]; normal *= (*spacing)[2]; } AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, downDV); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); ScalarType bounds[6] = { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); this->SetIndexToWorldTransform( transform ); } void PlaneGeometry::InitializePlane( const Point3D &origin, const Vector3D &normal ) { VnlVector rightVectorVnl(3), downVectorVnl; if( Equal( normal[1], 0.0f ) == false ) { FillVector3D( rightVectorVnl, 1.0f, -normal[0]/normal[1], 0.0f ); rightVectorVnl.normalize(); } else { FillVector3D( rightVectorVnl, 0.0f, 1.0f, 0.0f ); } downVectorVnl = vnl_cross_3d( normal.GetVnlVector(), rightVectorVnl ); downVectorVnl.normalize(); InitializeStandardPlane( rightVectorVnl, downVectorVnl ); SetOrigin(origin); } void PlaneGeometry::SetMatrixByVectors( const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness ) { VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); normal *= thickness; AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightVector); matrix.GetVnlMatrix().set_column(1, downVector); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); SetIndexToWorldTransform(transform); } Vector3D PlaneGeometry::GetNormal() const { Vector3D frontToBack; frontToBack.SetVnlVector( this->GetIndexToWorldTransform() ->GetMatrix().GetVnlMatrix().get_column(2) ); return frontToBack; } VnlVector PlaneGeometry::GetNormalVnl() const { return this->GetIndexToWorldTransform() ->GetMatrix().GetVnlMatrix().get_column(2); } ScalarType PlaneGeometry::DistanceFromPlane( const Point3D &pt3d_mm ) const { return fabs(SignedDistance( pt3d_mm )); } ScalarType PlaneGeometry::SignedDistance( const Point3D &pt3d_mm ) const { return SignedDistanceFromPlane(pt3d_mm); } //Function from Geometry2D // mitk::ScalarType // PlaneGeometry::SignedDistance(const mitk::Point3D& pt3d_mm) const //{ // Point3D projectedPoint; // Project(pt3d_mm, projectedPoint); // Vector3D direction = pt3d_mm-projectedPoint; // ScalarType distance = direction.GetNorm(); // if(IsAbove(pt3d_mm) == false) // distance*=-1.0; // return distance; //} bool PlaneGeometry::IsAbove( const Point3D &pt3d_mm , bool considerBoundingBox) const { if(considerBoundingBox) { Point3D pt3d_units; BaseGeometry::WorldToIndex(pt3d_mm, pt3d_units); return (pt3d_units[2] > this->GetBoundingBox()->GetBounds()[4]); } else return SignedDistanceFromPlane(pt3d_mm) > 0; } bool PlaneGeometry::IntersectionLine( const PlaneGeometry* plane, Line3D& crossline ) const { Vector3D normal = this->GetNormal(); normal.Normalize(); Vector3D planeNormal = plane->GetNormal(); planeNormal.Normalize(); Vector3D direction = itk::CrossProduct( normal, planeNormal ); if ( direction.GetSquaredNorm() < eps ) return false; crossline.SetDirection( direction ); double N1dN2 = normal * planeNormal; double determinant = 1.0 - N1dN2 * N1dN2; Vector3D origin = this->GetOrigin().GetVectorFromOrigin(); Vector3D planeOrigin = plane->GetOrigin().GetVectorFromOrigin(); double d1 = normal * origin; double d2 = planeNormal * planeOrigin; double c1 = ( d1 - d2 * N1dN2 ) / determinant; double c2 = ( d2 - d1 * N1dN2 ) / determinant; Vector3D p = normal * c1 + planeNormal * c2; crossline.GetPoint().GetVnlVector() = p.GetVnlVector(); return true; } unsigned int PlaneGeometry::IntersectWithPlane2D( const PlaneGeometry* plane, Point2D& lineFrom, Point2D &lineTo ) const { Line3D crossline; if ( this->IntersectionLine( plane, crossline ) == false ) return 0; Point2D point2; Vector2D direction2; this->Map( crossline.GetPoint(), point2 ); this->Map( crossline.GetPoint(), crossline.GetDirection(), direction2 ); return Line3D::RectangleLineIntersection( 0, 0, GetExtentInMM(0), GetExtentInMM(1), point2, direction2, lineFrom, lineTo ); } double PlaneGeometry::Angle( const PlaneGeometry *plane ) const { return angle(plane->GetMatrixColumn(2), GetMatrixColumn(2)); } double PlaneGeometry::Angle( const Line3D &line ) const { return vnl_math::pi_over_2 - angle( line.GetDirection().GetVnlVector(), GetMatrixColumn(2) ); } bool PlaneGeometry::IntersectionPoint( const Line3D &line, Point3D &intersectionPoint ) const { Vector3D planeNormal = this->GetNormal(); planeNormal.Normalize(); Vector3D lineDirection = line.GetDirection(); lineDirection.Normalize(); double t = planeNormal * lineDirection; if ( fabs( t ) < eps ) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = ( planeNormal * diff ) / t; intersectionPoint = line.GetPoint() + lineDirection * t; return true; } bool PlaneGeometry::IntersectionPointParam( const Line3D &line, double &t ) const { Vector3D planeNormal = this->GetNormal(); Vector3D lineDirection = line.GetDirection(); t = planeNormal * lineDirection; if ( fabs( t ) < eps ) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = ( planeNormal * diff ) / t; return true; } bool PlaneGeometry::IsParallel( const PlaneGeometry *plane ) const { return ( (Angle(plane) < 10.0 * mitk::sqrteps ) || ( Angle(plane) > ( vnl_math::pi - 10.0 * sqrteps ) ) ) ; } bool PlaneGeometry::IsOnPlane( const Point3D &point ) const { return Distance(point) < eps; } bool PlaneGeometry::IsOnPlane( const Line3D &line ) const { return ( (Distance( line.GetPoint() ) < eps) && (Distance( line.GetPoint2() ) < eps) ); } bool PlaneGeometry::IsOnPlane( const PlaneGeometry *plane ) const { return ( IsParallel( plane ) && (Distance( plane->GetOrigin() ) < eps) ); } Point3D PlaneGeometry::ProjectPointOntoPlane( const Point3D& pt ) const { ScalarType len = this->GetNormalVnl().two_norm(); return pt - this->GetNormal() * this->SignedDistanceFromPlane( pt ) / len; } itk::LightObject::Pointer PlaneGeometry::InternalClone() const { Self::Pointer newGeometry = new PlaneGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void PlaneGeometry::ExecuteOperation( Operation *operation ) { vtkTransform *transform = vtkTransform::New(); transform->SetMatrix( this->GetVtkMatrix()); switch ( operation->GetOperationType() ) { case OpORIENT: { mitk::PlaneOperation *planeOp = dynamic_cast< mitk::PlaneOperation * >( operation ); if ( planeOp == NULL ) { return; } Point3D center = planeOp->GetPoint(); Vector3D orientationVector = planeOp->GetNormal(); Vector3D defaultVector; FillVector3D( defaultVector, 0.0, 0.0, 1.0 ); Vector3D rotationAxis = itk::CrossProduct( orientationVector, defaultVector ); //double rotationAngle = acos( orientationVector[2] / orientationVector.GetNorm() ); double rotationAngle = atan2( (double) rotationAxis.GetNorm(), (double) (orientationVector * defaultVector) ); rotationAngle *= 180.0 / vnl_math::pi; transform->PostMultiply(); transform->Identity(); transform->Translate( center[0], center[1], center[2] ); transform->RotateWXYZ( rotationAngle, rotationAxis[0], rotationAxis[1], rotationAxis[2] ); transform->Translate( -center[0], -center[1], -center[2] ); break; } case OpRESTOREPLANEPOSITION: { RestorePlanePositionOperation *op = dynamic_cast< mitk::RestorePlanePositionOperation* >(operation); if(op == NULL) { return; } AffineTransform3D::Pointer transform2 = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(0)); matrix.GetVnlMatrix().set_column(1, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(1)); matrix.GetVnlMatrix().set_column(2, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(2)); transform2->SetMatrix(matrix); Vector3D offset = op->GetTransform()->GetOffset(); transform2->SetOffset(offset); this->SetIndexToWorldTransform(transform2); ScalarType bounds[6] = {0, op->GetWidth(), 0, op->GetHeight(), 0 ,1 }; this->SetBounds(bounds); TransferItkToVtkTransform(); this->Modified(); transform->Delete(); return; } default: Superclass::ExecuteOperation( operation ); transform->Delete(); return; } this->GetVtkMatrix()->DeepCopy(transform->GetMatrix()); this->TransferVtkToItkTransform(); this->Modified(); transform->Delete(); } void PlaneGeometry::PrintSelf( std::ostream& os, itk::Indent indent ) const { Superclass::PrintSelf(os,indent); os << indent << " ScaleFactorMMPerUnitX: " << m_ScaleFactorMMPerUnitX << std::endl; os << indent << " ScaleFactorMMPerUnitY: " << m_ScaleFactorMMPerUnitY << std::endl; os << indent << " Normal: " << GetNormal() << std::endl; } - void PlaneGeometry::PostSetIndexToWorldTransform( - mitk::AffineTransform3D* transform) + void PlaneGeometry::PostSetIndexToWorldTransform( + mitk::AffineTransform3D* /*transform*/) { m_ScaleFactorMMPerUnitX=GetExtentInMM(0)/GetExtent(0); m_ScaleFactorMMPerUnitY=GetExtentInMM(1)/GetExtent(1); assert(m_ScaleFactorMMPerUnitX::infinity()); assert(m_ScaleFactorMMPerUnitY::infinity()); } - void - PlaneGeometry::PostSetExtentInMM(int direction, ScalarType extentInMM) + void PlaneGeometry::PostSetExtentInMM(int /*direction*/, ScalarType /*extentInMM*/) { m_ScaleFactorMMPerUnitX=GetExtentInMM(0)/GetExtent(0); m_ScaleFactorMMPerUnitY=GetExtentInMM(1)/GetExtent(1); assert(m_ScaleFactorMMPerUnitX::infinity()); assert(m_ScaleFactorMMPerUnitY::infinity()); } - bool - PlaneGeometry::Map( - const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const + bool PlaneGeometry::Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const { assert(this->IsBoundingBoxNull()==false); Point3D pt3d_units; BackTransform(pt3d_mm, pt3d_units); pt2d_mm[0]=pt3d_units[0]*m_ScaleFactorMMPerUnitX; pt2d_mm[1]=pt3d_units[1]*m_ScaleFactorMMPerUnitY; pt3d_units[2]=0; return const_cast(this->GetBoundingBox())->IsInside(pt3d_units); } void PlaneGeometry::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { Point3D pt3d_units; pt3d_units[0]=pt2d_mm[0]/m_ScaleFactorMMPerUnitX; pt3d_units[1]=pt2d_mm[1]/m_ScaleFactorMMPerUnitY; pt3d_units[2]=0; pt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); } void PlaneGeometry::SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height) { ScalarType bounds[6]={0, width, 0, height, 0, 1}; ScalarType extent, newextentInMM; if(GetExtent(0)>0) { extent = GetExtent(0); if(width>extent) newextentInMM = GetExtentInMM(0)/width*extent; else newextentInMM = GetExtentInMM(0)*extent/width; SetExtentInMM(0, newextentInMM); } if(GetExtent(1)>0) { extent = GetExtent(1); if(width>extent) newextentInMM = GetExtentInMM(1)/height*extent; else newextentInMM = GetExtentInMM(1)*extent/height; SetExtentInMM(1, newextentInMM); } SetBounds(bounds); } bool PlaneGeometry::Project( const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(this->IsBoundingBoxNull()==false); Point3D pt3d_units; BackTransform(pt3d_mm, pt3d_units); pt3d_units[2] = 0; projectedPt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); return const_cast(this->GetBoundingBox())->IsInside(pt3d_units); } bool PlaneGeometry::Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { assert(this->IsBoundingBoxNull()==false); Vector3D vec3d_units; BackTransform(vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); return true; } bool PlaneGeometry::Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { MITK_WARN << "Deprecated function! Call Project(vec3D,vec3D) instead."; assert(this->IsBoundingBoxNull()==false); Vector3D vec3d_units; BackTransform(atPt3d_mm, vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); Point3D pt3d_units; BackTransform(atPt3d_mm, pt3d_units); return const_cast(this->GetBoundingBox())->IsInside(pt3d_units); } bool PlaneGeometry::Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { Point2D pt2d_mm_start, pt2d_mm_end; Point3D pt3d_mm_end; bool inside=Map(atPt3d_mm, pt2d_mm_start); pt3d_mm_end = atPt3d_mm+vec3d_mm; inside&=Map(pt3d_mm_end, pt2d_mm_end); vec2d_mm=pt2d_mm_end-pt2d_mm_start; return inside; } void PlaneGeometry::Map(const mitk::Point2D &/*atPt2d_mm*/, const mitk::Vector2D &/*vec2d_mm*/, mitk::Vector3D &/*vec3d_mm*/) const { //@todo implement parallel to the other Map method! assert(false); } void PlaneGeometry::SetReferenceGeometry( mitk::BaseGeometry *geometry ) { m_ReferenceGeometry = geometry; } mitk::BaseGeometry * PlaneGeometry::GetReferenceGeometry() const { return m_ReferenceGeometry; } bool PlaneGeometry::HasReferenceGeometry() const { return ( m_ReferenceGeometry != NULL ); } } // namespace diff --git a/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp b/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp index 93ca960056..949e9916a1 100644 --- a/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp +++ b/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp @@ -1,265 +1,262 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include mitk::ProportionalTimeGeometry::ProportionalTimeGeometry() : m_FirstTimePoint(0.0), m_StepDuration(1.0) { } mitk::ProportionalTimeGeometry::~ProportionalTimeGeometry() { } void mitk::ProportionalTimeGeometry::Initialize() { m_FirstTimePoint = 0.0; m_StepDuration = 1.0; m_GeometryVector.resize(1); } mitk::TimeStepType mitk::ProportionalTimeGeometry::CountTimeSteps () const { return static_cast(m_GeometryVector.size() ); } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMinimumTimePoint () const { return m_FirstTimePoint; } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMaximumTimePoint () const { TimePointType timePoint = m_FirstTimePoint + m_StepDuration * CountTimeSteps(); if (timePoint >std::numeric_limits().max()) timePoint = std::numeric_limits().max(); return timePoint; } mitk::TimeBounds mitk::ProportionalTimeGeometry::GetTimeBounds () const { TimeBounds bounds; bounds[0] = this->GetMinimumTimePoint(); bounds[1] = this->GetMaximumTimePoint(); return bounds; } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMinimumTimePoint(TimeStepType step) const { TimePointType timePoint; if (step == 0) { timePoint = m_FirstTimePoint; } else { timePoint = m_FirstTimePoint + m_StepDuration * step; } if (timePoint >std::numeric_limits().max()) timePoint = std::numeric_limits().max(); return timePoint; } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMaximumTimePoint(TimeStepType step) const { TimePointType timePoint = m_FirstTimePoint + m_StepDuration * (step + 1); if (timePoint >std::numeric_limits().max()) timePoint = std::numeric_limits().max(); return timePoint; } mitk::TimeBounds mitk::ProportionalTimeGeometry::GetTimeBounds(TimeStepType step) const { TimeBounds bounds; bounds[0] = this->GetMinimumTimePoint(step); bounds[1] = this->GetMaximumTimePoint(step); return bounds; } bool mitk::ProportionalTimeGeometry::IsValidTimePoint (TimePointType timePoint) const { return this->GetMinimumTimePoint() <= timePoint && timePoint < this->GetMaximumTimePoint(); } bool mitk::ProportionalTimeGeometry::IsValidTimeStep (TimeStepType timeStep) const { return timeStep < this->CountTimeSteps(); } mitk::TimePointType mitk::ProportionalTimeGeometry::TimeStepToTimePoint( TimeStepType timeStep) const { if (m_FirstTimePoint <= itk::NumericTraits::NonpositiveMin() || m_FirstTimePoint >= itk::NumericTraits::max() || m_StepDuration <= itk::NumericTraits::min() || m_StepDuration >= itk::NumericTraits::max()) { return static_cast(timeStep); } return m_FirstTimePoint + timeStep * m_StepDuration; } mitk::TimeStepType mitk::ProportionalTimeGeometry::TimePointToTimeStep( TimePointType timePoint) const { if (m_FirstTimePoint <= timePoint) return static_cast((timePoint -m_FirstTimePoint) / m_StepDuration); else return 0; } mitk::BaseGeometry::Pointer mitk::ProportionalTimeGeometry::GetGeometryForTimeStep( TimeStepType timeStep) const { if (IsValidTimeStep(timeStep)) { return dynamic_cast(m_GeometryVector[timeStep].GetPointer()); } else { return 0; } } mitk::BaseGeometry::Pointer mitk::ProportionalTimeGeometry::GetGeometryForTimePoint(TimePointType timePoint) const { if (this->IsValidTimePoint(timePoint)) { TimeStepType timeStep = this->TimePointToTimeStep(timePoint); return this->GetGeometryForTimeStep(timeStep); } else { return 0; } } mitk::BaseGeometry::Pointer mitk::ProportionalTimeGeometry::GetGeometryCloneForTimeStep( TimeStepType timeStep) const { if (timeStep > m_GeometryVector.size()) return 0; - itk::LightObject::Pointer lopointer = m_GeometryVector[timeStep]->Clone(); - return dynamic_cast(lopointer.GetPointer()); + return m_GeometryVector[timeStep]->Clone(); } bool mitk::ProportionalTimeGeometry::IsValid() const { bool isValid = true; isValid &= m_GeometryVector.size() > 0; isValid &= m_StepDuration > 0; return isValid; } void mitk::ProportionalTimeGeometry::ClearAllGeometries() { m_GeometryVector.clear(); } void mitk::ProportionalTimeGeometry::ReserveSpaceForGeometries(TimeStepType numberOfGeometries) { m_GeometryVector.reserve(numberOfGeometries); } void mitk::ProportionalTimeGeometry::Expand(mitk::TimeStepType size) { m_GeometryVector.reserve(size); while (m_GeometryVector.size() < size) { Geometry3D::Pointer geo3D = Geometry3D::New(); m_GeometryVector.push_back(dynamic_cast(geo3D.GetPointer())); } } void mitk::ProportionalTimeGeometry::SetTimeStepGeometry(BaseGeometry* geometry, TimeStepType timeStep) { assert(timeStep<=m_GeometryVector.size()); if (timeStep == m_GeometryVector.size()) m_GeometryVector.push_back(geometry); m_GeometryVector[timeStep] = geometry; } itk::LightObject::Pointer mitk::ProportionalTimeGeometry::InternalClone() const { itk::LightObject::Pointer parent = Superclass::InternalClone(); ProportionalTimeGeometry::Pointer newTimeGeometry = dynamic_cast (parent.GetPointer()); newTimeGeometry->m_FirstTimePoint = this->m_FirstTimePoint; newTimeGeometry->m_StepDuration = this->m_StepDuration; newTimeGeometry->m_GeometryVector.clear(); newTimeGeometry->Expand(this->CountTimeSteps()); for (TimeStepType i =0; i < CountTimeSteps(); ++i) { - itk::LightObject::Pointer lopointer=GetGeometryForTimeStep(i)->Clone(); - BaseGeometry::Pointer tempGeometry = dynamic_cast(lopointer.GetPointer()); - newTimeGeometry->SetTimeStepGeometry(tempGeometry.GetPointer(),i); + BaseGeometry::Pointer tempGeometry = GetGeometryForTimeStep(i)->Clone(); + newTimeGeometry->SetTimeStepGeometry(tempGeometry, i); } return parent; } void mitk::ProportionalTimeGeometry::Initialize (BaseGeometry* geometry, TimeStepType timeSteps) { timeSteps = (timeSteps > 0) ? timeSteps : 1; m_FirstTimePoint = 0.0; m_StepDuration = 1.0; if (timeSteps < 2) { m_FirstTimePoint = -std::numeric_limits::max(); m_StepDuration = std::numeric_limits().infinity(); } this->ReserveSpaceForGeometries(timeSteps); try{ for (TimeStepType currentStep = 0; currentStep < timeSteps; ++currentStep) { - itk::LightObject::Pointer lopointer=geometry->Clone(); - BaseGeometry::Pointer clonedGeometry = dynamic_cast(lopointer.GetPointer()); - this->SetTimeStepGeometry(clonedGeometry.GetPointer(), currentStep); + BaseGeometry::Pointer clonedGeometry = geometry->Clone(); + this->SetTimeStepGeometry(clonedGeometry, currentStep); } } catch (...) { MITK_INFO << "Cloning of geometry produced an error!"; } Update(); } void mitk::ProportionalTimeGeometry::Initialize (TimeStepType timeSteps) { mitk::Geometry3D::Pointer geo3D = Geometry3D::New(); mitk::BaseGeometry::Pointer geometry = dynamic_cast(geo3D.GetPointer()); geometry->Initialize(); this->Initialize(geometry.GetPointer(), timeSteps); } void mitk::ProportionalTimeGeometry::PrintSelf(std::ostream& os, itk::Indent indent) const { os << indent << " TimeSteps: " << this->CountTimeSteps() << std::endl; os << indent << " FirstTimePoint: " << this->GetFirstTimePoint() << std::endl; os << indent << " StepDuration: " << this->GetStepDuration() << " ms" << std::endl; os << indent << " Time Bounds: " << this->GetTimeBounds()[0] << " - " << this->GetTimeBounds()[1] << std::endl; os << std::endl; os << indent << " GetGeometryForTimeStep(0): "; if(GetGeometryForTimeStep(0).IsNull()) os << "NULL" << std::endl; else GetGeometryForTimeStep(0)->Print(os, indent); } diff --git a/Core/Code/Interactions/mitkSinglePointDataInteractor.cpp b/Core/Code/Interactions/mitkSinglePointDataInteractor.cpp index 38da417efd..1d70191841 100644 --- a/Core/Code/Interactions/mitkSinglePointDataInteractor.cpp +++ b/Core/Code/Interactions/mitkSinglePointDataInteractor.cpp @@ -1,111 +1,111 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSinglePointDataInteractor.h" #include "mitkMouseMoveEvent.h" #include "mitkOperationEvent.h" #include #include "mitkInteractionConst.h" // TODO: refactor file #include "mitkRenderingManager.h" #include "mitkInternalEvent.h" // #include "mitkDispatcher.h" #include "mitkBaseRenderer.h" #include "mitkUndoController.h" mitk::SinglePointDataInteractor::SinglePointDataInteractor() { this->SetMaxPoints(1); } mitk::SinglePointDataInteractor::~SinglePointDataInteractor() { } -bool mitk::SinglePointDataInteractor::AddPoint(StateMachineAction* stateMachineAction, InteractionEvent* interactionEvent) +bool mitk::SinglePointDataInteractor::AddPoint(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { unsigned int timeStep = interactionEvent->GetSender()->GetTimeStep(GetDataNode()->GetData()); ScalarType timeInMs = interactionEvent->GetSender()->GetTime(); // To add a point the minimal information is the position, this method accepts all InteractionsPositionEvents InteractionPositionEvent* positionEvent = dynamic_cast(interactionEvent); if (positionEvent != NULL) { PointOperation* doOp; PointOperation* undoOp; if (m_PointSet->IndexExists(0,timeStep)) { PointSet::PointType pt = m_PointSet->GetPoint(0, timeStep); Point3D itkPoint; itkPoint[0] = pt[0]; itkPoint[1] = pt[1]; itkPoint[2] = pt[2]; doOp = new mitk::PointOperation(OpMOVE,timeInMs,positionEvent->GetPositionInWorld(), 0); undoOp = new mitk::PointOperation(OpMOVE,timeInMs,itkPoint, 0); } else { doOp = new mitk::PointOperation(OpINSERT,timeInMs,positionEvent->GetPositionInWorld(), 0); undoOp = new mitk::PointOperation(OpREMOVE,timeInMs,positionEvent->GetPositionInWorld(), 0); } if ( m_UndoEnabled ) { OperationEvent *operationEvent = new OperationEvent(m_PointSet, doOp, undoOp, "Move point"); m_UndoController->SetOperationEvent(operationEvent); } //execute the Operation m_PointSet->ExecuteOperation(doOp); if ( !m_UndoEnabled ) delete doOp; // Request update interactionEvent->GetSender()->GetRenderingManager()->RequestUpdateAll(); return true; } return false; } /* * Check whether the DataNode contains a pointset, if not create one and add it. */ void mitk::SinglePointDataInteractor::DataNodeChanged() { if (GetDataNode().IsNotNull()) { PointSet* points = dynamic_cast(GetDataNode()->GetData()); if (points == NULL) { m_PointSet = PointSet::New(); GetDataNode()->SetData(m_PointSet); } else { points->Clear(); m_PointSet = points; } } } diff --git a/Core/Code/Interactions/mitkSinglePointDataInteractor.h b/Core/Code/Interactions/mitkSinglePointDataInteractor.h index 690af888ca..30bc315ae9 100644 --- a/Core/Code/Interactions/mitkSinglePointDataInteractor.h +++ b/Core/Code/Interactions/mitkSinglePointDataInteractor.h @@ -1,67 +1,68 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkSinglePointDataInteractor_h_ #define mitkSinglePointDataInteractor_h_ #include "itkObject.h" #include "itkSmartPointer.h" #include "itkObjectFactory.h" #include "mitkCommon.h" #include #include "mitkPointSetDataInteractor.h" #include namespace mitk { /** * Class SinglePointDataInteractor * \brief Implementation of the single point interaction * * Interactor operates on a single point set, when a data node is set, its containing point set is clear for initialization. */ // Inherit from DataInteratcor, this provides functionality of a state machine and configurable inputs. class MITK_CORE_EXPORT SinglePointDataInteractor: public PointSetDataInteractor { public: mitkClassMacro(SinglePointDataInteractor, PointSetDataInteractor) itkFactorylessNewMacro(Self) itkCloneMacro(Self) protected: SinglePointDataInteractor(); virtual ~SinglePointDataInteractor(); /** Adds a point at the given coordinates. * This function overwrites the behavior of PointSetDataInteractor such that instead of adding new points * the first points position is updated. All other interaction (move,delete) is still handled by PointSetDataInteractor. */ virtual bool AddPoint(StateMachineAction*, InteractionEvent* event); /** * @brief SetMaxPoints Sets the maximal number of points for the pointset * Overwritten, per design this class will always have a maximal number of one. * @param maxNumber */ - virtual void SetMaxPoints(unsigned int maxNumber = 0){}; + virtual void SetMaxPoints(unsigned int /*maxNumber*/ = 0) + {} virtual void DataNodeChanged(); }; } #endif diff --git a/Modules/IGTUI/Qmitk/QmitkInteractiveTransformationWidget.cpp b/Modules/IGTUI/Qmitk/QmitkInteractiveTransformationWidget.cpp index bdd930bfd1..8af410f469 100644 --- a/Modules/IGTUI/Qmitk/QmitkInteractiveTransformationWidget.cpp +++ b/Modules/IGTUI/Qmitk/QmitkInteractiveTransformationWidget.cpp @@ -1,288 +1,287 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkInteractiveTransformationWidget.h" // mitk includes #include "mitkRenderingManager.h" #include "mitkNavigationData.h" // vtk includes #include "vtkMatrix4x4.h" #include "vtkLinearTransform.h" const std::string QmitkInteractiveTransformationWidget::VIEW_ID = "org.mitk.views.interactivetransformationwidget"; QmitkInteractiveTransformationWidget::QmitkInteractiveTransformationWidget(QWidget* parent, Qt::WindowFlags f) : QWidget(parent, f), m_Geometry(NULL), m_ResetGeometry(NULL), m_Controls(NULL) { CreateQtPartControl(this); CreateConnections(); m_TranslationVector.Fill(0.0f); m_RotateSliderPos.Fill(0.0f); } QmitkInteractiveTransformationWidget::~QmitkInteractiveTransformationWidget() { } void QmitkInteractiveTransformationWidget::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { // create GUI widgets m_Controls = new Ui::QmitkInteractiveTransformationWidgetControls; m_Controls->setupUi(parent); } } void QmitkInteractiveTransformationWidget::CreateConnections() { if ( m_Controls ) { // translations connect( (QObject*)(m_Controls->m_XTransSlider), SIGNAL(valueChanged(int)), this, SLOT(OnXTranslationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_XTransSpinBox), SIGNAL(valueChanged(int)), this, SLOT(OnXTranslationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_YTransSlider), SIGNAL(valueChanged(int)), this, SLOT(OnYTranslationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_YTransSpinBox), SIGNAL(valueChanged(int)), this, SLOT(OnYTranslationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_ZTransSlider), SIGNAL(valueChanged(int)), this, SLOT(OnZTranslationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_ZTransSpinBox), SIGNAL(valueChanged(int)), this, SLOT(OnZTranslationValueChanged(int)) ); // rotations connect( (QObject*)(m_Controls->m_XRotSlider), SIGNAL(valueChanged(int)), this, SLOT(OnXRotationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_XRotSpinBox), SIGNAL(valueChanged(int)), this, SLOT(OnXRotationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_YRotSlider), SIGNAL(valueChanged(int)), this, SLOT(OnYRotationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_YRotSpinBox), SIGNAL(valueChanged(int)), this, SLOT(OnYRotationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_ZRotSlider), SIGNAL(valueChanged(int)), this, SLOT(OnZRotationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_ZRotSpinBox), SIGNAL(valueChanged(int)), this, SLOT(OnZRotationValueChanged(int)) ); connect( (QObject*)(m_Controls->m_ResetPB), SIGNAL(clicked()), this, SLOT(OnResetGeometry()) ); connect( (QObject*)(m_Controls->m_UseManipulatedToolTipPB), SIGNAL(clicked()), this, SLOT(OnApplyManipulatedToolTip()) ); } } void QmitkInteractiveTransformationWidget::SetGeometry( mitk::BaseGeometry::Pointer geometry, mitk::BaseGeometry::Pointer defaultValues ) { m_Geometry = geometry; - itk::LightObject::Pointer lopointer = geometry->Clone(); - m_ResetGeometry = dynamic_cast(lopointer.GetPointer()); + m_ResetGeometry = geometry->Clone(); //set default values if (defaultValues.IsNotNull()) { //first: some conversion mitk::NavigationData::Pointer transformConversionHelper = mitk::NavigationData::New(defaultValues->GetIndexToWorldTransform()); double eulerAlphaDegrees = transformConversionHelper->GetOrientation().rotation_euler_angles()[0] / vnl_math::pi * 180; double eulerBetaDegrees = transformConversionHelper->GetOrientation().rotation_euler_angles()[1] / vnl_math::pi * 180; double eulerGammaDegrees = transformConversionHelper->GetOrientation().rotation_euler_angles()[2] / vnl_math::pi * 180; //set translation OnXTranslationValueChanged(defaultValues->GetIndexToWorldTransform()->GetOffset()[0]); OnYTranslationValueChanged(defaultValues->GetIndexToWorldTransform()->GetOffset()[1]); OnZTranslationValueChanged(defaultValues->GetIndexToWorldTransform()->GetOffset()[2]); //set rotation OnXRotationValueChanged(eulerAlphaDegrees); OnYRotationValueChanged(eulerBetaDegrees); OnZRotationValueChanged(eulerGammaDegrees); } else { //reset everything OnXTranslationValueChanged(0); OnYTranslationValueChanged(0); OnZTranslationValueChanged(0); OnXRotationValueChanged(0); OnYRotationValueChanged(0); OnZRotationValueChanged(0); } } mitk::BaseGeometry::Pointer QmitkInteractiveTransformationWidget::GetGeometry() { return m_Geometry; } ///////////////////////////////////////////////////////////////////////////////////////////// // Section to allow interactive positioning of the moving surface ///////////////////////////////////////////////////////////////////////////////////////////// void QmitkInteractiveTransformationWidget::OnXTranslationValueChanged( int v ) { mitk::Vector3D translationParams; translationParams[0] = v; translationParams[1] = m_Controls->m_YTransSlider->value(); translationParams[2] = m_Controls->m_ZTransSlider->value(); SetSliderX(v); this->Translate(translationParams); } void QmitkInteractiveTransformationWidget::SetSliderX(int v) { m_Controls->m_XTransSlider->setValue(v); m_Controls->m_XTransSpinBox->setValue(v); } void QmitkInteractiveTransformationWidget::OnYTranslationValueChanged( int v ) { mitk::Vector3D translationParams; translationParams[0] = m_Controls->m_XTransSlider->value(); translationParams[1] = v; translationParams[2] = m_Controls->m_ZTransSlider->value(); SetSliderY(v); this->Translate(translationParams); } void QmitkInteractiveTransformationWidget::SetSliderY(int v) { m_Controls->m_YTransSlider->setValue(v); m_Controls->m_YTransSpinBox->setValue(v); } void QmitkInteractiveTransformationWidget::OnZTranslationValueChanged( int v ) { mitk::Vector3D translationParams; translationParams[0] = m_Controls->m_XTransSlider->value(); translationParams[1] = m_Controls->m_YTransSlider->value(); translationParams[2] = v; SetSliderZ(v); this->Translate(translationParams); } void QmitkInteractiveTransformationWidget::SetSliderZ(int v) { m_Controls->m_ZTransSlider->setValue(v); m_Controls->m_ZTransSpinBox->setValue(v); } void QmitkInteractiveTransformationWidget::Translate( mitk::Vector3D translateVector) { mitk::Vector3D translateVec; // transform the translation vector translateVec[0] = translateVector[0] - m_TranslationVector[0]; translateVec[1] = translateVector[1] - m_TranslationVector[1]; translateVec[2] = translateVector[2] - m_TranslationVector[2]; // set the new translation vector to member variable m_TranslationVector[0] = translateVector[0]; m_TranslationVector[1] = translateVector[1]; m_TranslationVector[2] = translateVector[2]; m_Geometry->Translate( translateVec ); qApp->processEvents(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkInteractiveTransformationWidget::OnXRotationValueChanged( int v ) { mitk::Vector3D rotationParams; rotationParams[0] = v; rotationParams[1] = m_Controls->m_YRotSlider->value(); rotationParams[2] = m_Controls->m_ZRotSlider->value(); m_Controls->m_XRotSlider->setValue(v); m_Controls->m_XRotSpinBox->setValue(v); this->Rotate(rotationParams); } void QmitkInteractiveTransformationWidget::OnYRotationValueChanged( int v ) { mitk::Vector3D rotationParams; rotationParams[0] = m_Controls->m_XRotSlider->value(); rotationParams[1] = v; rotationParams[2] = m_Controls->m_ZRotSlider->value(); m_Controls->m_YRotSlider->setValue(v); m_Controls->m_YRotSpinBox->setValue(v); this->Rotate(rotationParams); } void QmitkInteractiveTransformationWidget::OnZRotationValueChanged( int v ) { mitk::Vector3D rotationParams; rotationParams[0]=m_Controls->m_XRotSlider->value(); rotationParams[1]=m_Controls->m_YRotSlider->value(); rotationParams[2]=v; m_Controls->m_ZRotSlider->setValue(v); m_Controls->m_ZRotSpinBox->setValue(v); this->Rotate(rotationParams); } void QmitkInteractiveTransformationWidget::Rotate(mitk::Vector3D rotateVector) { //0: from degrees to radians double radianX = rotateVector[0] * vnl_math::pi / 180; double radianY = rotateVector[1] * vnl_math::pi / 180; double radianZ = rotateVector[2] * vnl_math::pi / 180; //1: from euler angles to quaternion mitk::Quaternion rotation(radianX,radianY,radianZ); //2: Conversion to navigation data / transform mitk::NavigationData::Pointer rotationTransform = mitk::NavigationData::New(); rotationTransform->SetOrientation(rotation); //3: Apply transform //also remember old transform, but without rotation, because rotation is completely stored in the sliders mitk::NavigationData::Pointer oldTransform = mitk::NavigationData::New(m_Geometry->GetIndexToWorldTransform()); mitk::Quaternion identity(0,0,0,1); oldTransform->SetOrientation(identity); //compose old transform with the new one rotationTransform->Compose(oldTransform); //and apply it... m_Geometry->SetIndexToWorldTransform(rotationTransform->GetAffineTransform3D()); qApp->processEvents(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkInteractiveTransformationWidget::OnResetGeometry() { m_Controls->m_XRotSlider->setValue(0); m_Controls->m_YRotSlider->setValue(0); m_Controls->m_ZRotSlider->setValue(0); m_Controls->m_XRotSpinBox->setValue(0); m_Controls->m_YRotSpinBox->setValue(0); m_Controls->m_ZRotSpinBox->setValue(0); m_Controls->m_XTransSlider->setValue(0); m_Controls->m_YTransSlider->setValue(0); m_Controls->m_ZTransSlider->setValue(0); m_Controls->m_XTransSpinBox->setValue(0); m_Controls->m_YTransSpinBox->setValue(0); m_Controls->m_ZTransSpinBox->setValue(0); qApp->processEvents(); // reset the input to its initial state. m_Geometry->SetIdentity(); m_Geometry->Compose(m_ResetGeometry->GetVtkTransform()->GetMatrix()); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkInteractiveTransformationWidget::OnApplyManipulatedToolTip() { emit ApplyManipulatedToolTip(); -} \ No newline at end of file +} diff --git a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp index a056a622fc..b8ad4d6cdd 100644 --- a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp +++ b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp @@ -1,105 +1,104 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDiffSliceOperation.h" #include mitk::DiffSliceOperation::DiffSliceOperation():Operation(1) { m_TimeStep = 0; m_Slice = NULL; m_Image = NULL; m_WorldGeometry = NULL; m_SliceGeometry = NULL; m_ImageIsValid = false; } mitk::DiffSliceOperation::DiffSliceOperation(mitk::Image* imageVolume, vtkImageData* slice, SlicedGeometry3D* sliceGeometry, unsigned int timestep, BaseGeometry* currentWorldGeometry):Operation(1) { - itk::LightObject::Pointer lopointer = currentWorldGeometry->Clone(); - m_WorldGeometry = dynamic_cast(lopointer.GetPointer()); + m_WorldGeometry = currentWorldGeometry->Clone(); /* Quick fix for bug 12338. Guard object - fix this when clone method of PlaneGeometry is cloning the reference geometry (see bug 13392)*/ //xxxx m_GuardReferenceGeometry = mitk::BaseGeometry::New(); m_GuardReferenceGeometry = dynamic_cast(m_WorldGeometry.GetPointer())->GetReferenceGeometry(); /*---------------------------------------------------------------------------------------------------*/ m_SliceGeometry = sliceGeometry->Clone(); m_TimeStep = timestep; /*m_zlibSliceContainer = CompressedImageContainer::New(); m_zlibSliceContainer->SetImage( slice );*/ m_Slice = vtkSmartPointer::New(); m_Slice->DeepCopy(slice); m_Image = imageVolume; if ( m_Image) { /*add an observer to listen to the delete event of the image, this is necessary because the operation is then invalid*/ itk::SimpleMemberCommand< DiffSliceOperation >::Pointer command = itk::SimpleMemberCommand< DiffSliceOperation >::New(); command->SetCallbackFunction( this, &DiffSliceOperation::OnImageDeleted ); //get the id of the observer, used to remove it later on m_DeleteObserverTag = imageVolume->AddObserver( itk::DeleteEvent(), command ); m_ImageIsValid = true; } else m_ImageIsValid = false; } mitk::DiffSliceOperation::~DiffSliceOperation() { m_Slice = NULL; m_WorldGeometry = NULL; //m_zlibSliceContainer = NULL; if (m_ImageIsValid) { //if the image is still there, we have to remove the observer from it m_Image->RemoveObserver( m_DeleteObserverTag ); } m_Image = NULL; } vtkImageData* mitk::DiffSliceOperation::GetSlice() { //Image::ConstPointer image = m_zlibSliceContainer->GetImage().GetPointer(); return m_Slice; } bool mitk::DiffSliceOperation::IsValid() { return m_ImageIsValid && (m_Slice.GetPointer() != NULL) && (m_WorldGeometry.IsNotNull());//TODO improve } void mitk::DiffSliceOperation::OnImageDeleted() { //if our imageVolume is removed e.g. from the datastorage the operation is no lnger valid m_ImageIsValid = false; -} \ No newline at end of file +}