diff --git a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp
index c330b1ddaf..eedda228b1 100755
--- a/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp
+++ b/Modules/DiffusionImaging/FiberTracking/cmdapps/TractographyEvaluation/FitFibersToImage.cpp
@@ -1,742 +1,745 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include <mitkBaseData.h>
 #include <mitkImageCast.h>
 #include <mitkImageToItk.h>
 #include <metaCommand.h>
 #include <mitkCommandLineParser.h>
 #include <usAny.h>
 #include <mitkIOUtil.h>
 #include <boost/lexical_cast.hpp>
 #include <itksys/SystemTools.hxx>
 #include <itkDirectory.h>
 #include <mitkFiberBundle.h>
 #include <mitkPreferenceListReaderOptionsFunctor.h>
 #include <mitkDiffusionPropertyHelper.h>
 #include <vnl/vnl_linear_system.h>
 #include <Eigen/Dense>
 #include <mitkStickModel.h>
 #include <mitkBallModel.h>
 #include <vigra/regression.hxx>
 #include <itkImageFileWriter.h>
 #include <itkImageDuplicator.h>
 #include <itkMersenneTwisterRandomVariateGenerator.h>
 #include <mitkPeakImage.h>
 #include <vnl/algo/vnl_lbfgsb.h>
 #include <vnl/vnl_sparse_matrix.h>
 #include <vnl/vnl_sparse_matrix_linear_system.h>
 #include <vnl/algo/vnl_lsqr.h>
 #include <itkImageDuplicator.h>
 #include <itkTimeProbe.h>
 #include <random>
 #include <itkParticleSwarmOptimizer.h>
 #include <itkOnePlusOneEvolutionaryOptimizer.h>
 #include <itkGradientDescentOptimizer.h>
 #include <itkSPSAOptimizer.h>
 
 using namespace std;
 typedef itksys::SystemTools ist;
 typedef itk::Point<float, 4> PointType4;
 typedef itk::Image< float, 4 >  PeakImgType;
 
 vnl_vector_fixed<float,3> GetClosestPeak(itk::Index<4> idx, PeakImgType::Pointer peak_image , vnl_vector_fixed<float,3> fiber_dir, int& id, double& w )
 {
   int m_NumDirs = peak_image->GetLargestPossibleRegion().GetSize()[3]/3;
   vnl_vector_fixed<float,3> out_dir; out_dir.fill(0);
   float angle = 0.8;
 
   for (int i=0; i<m_NumDirs; i++)
   {
     vnl_vector_fixed<float,3> dir;
     idx[3] = i*3;
     dir[0] = peak_image->GetPixel(idx);
     idx[3] += 1;
     dir[1] = peak_image->GetPixel(idx);
     idx[3] += 1;
     dir[2] = peak_image->GetPixel(idx);
 
     float mag = dir.magnitude();
     if (mag<mitk::eps)
       continue;
 
     dir.normalize();
 
     float a = dot_product(dir, fiber_dir);
     if (fabs(a)>angle)
     {
       angle = fabs(a);
       w = angle;
       if (a<0)
         out_dir = -dir;
       else
         out_dir = dir;
       out_dir *= mag;
       id = i;
     }
   }
 
   return out_dir;
 }
 
 class VnlCostFunction : public vnl_cost_function
 {
 public:
 
   vnl_sparse_matrix_linear_system< double >* S;
   vnl_sparse_matrix< double > m_A;
   vnl_sparse_matrix< double > m_A_Ones; // matrix indicating active weights with 1
   vnl_vector< double > m_b;
   double m_Lambda;  // regularization factor
 
   vnl_vector<double> row_sums;  // number of active weights per row
   vnl_vector<double> local_weight_means;  // mean weight of each row
 
   void SetProblem(vnl_sparse_matrix< double >& A, vnl_vector<double>& b, double lambda)
   {
     S = new vnl_sparse_matrix_linear_system<double>(A, b);
     m_A = A;
     m_b = b;
     m_Lambda = lambda;
 
     m_A_Ones.set_size(m_A.rows(), m_A.cols());
     m_A.reset();
     while (m_A.next())
       m_A_Ones.put(m_A.getrow(), m_A.getcolumn(), 1);
 
     unsigned int N = m_b.size();
     vnl_vector<double> ones; ones.set_size(dim); ones.fill(1.0);
     row_sums.set_size(N);
     m_A_Ones.mult(ones, row_sums);
     local_weight_means.set_size(N);
   }
 
   VnlCostFunction(const int NumVars) : vnl_cost_function(NumVars)
   {
   }
 
   void regu_MSE(vnl_vector<double> const &x, double& cost)
   {
     double mean = x.mean();
     vnl_vector<double> tx = x-mean;
     cost += m_Lambda*1e8*tx.squared_magnitude()/x.size();
   }
 
   void regu_MSM(vnl_vector<double> const &x, double& cost)
   {
     cost += m_Lambda*1e8*x.squared_magnitude()/x.size();
   }
 
   void regu_localMSE(vnl_vector<double> const &x, double& cost)
   {
     m_A_Ones.mult(x, local_weight_means);
     local_weight_means = element_quotient(local_weight_means, row_sums);
 
     m_A_Ones.reset();
     unsigned int num_elements = 0;
     double regu = 0;
     while (m_A_Ones.next())
     {
       double d = 0;
       if (x[m_A_Ones.getcolumn()]>local_weight_means[m_A_Ones.getrow()])
         d = std::exp(x[m_A_Ones.getcolumn()]) - std::exp(local_weight_means[m_A_Ones.getrow()]);
       else
         d = x[m_A_Ones.getcolumn()] - local_weight_means[m_A_Ones.getrow()];
       regu += d*d;
       ++num_elements;
     }
     cost += m_Lambda*1e3*regu/num_elements;
   }
 
   void grad_regu_MSE(vnl_vector<double> const &x, vnl_vector<double> &dx)
   {
     double mean = x.mean();
     vnl_vector<double> tx = x-mean;
 
     vnl_vector<double> tx2(dim, 0.0);
     vnl_vector<double> h(dim, 1.0);
     for (int c=0; c<dim; c++)
     {
       h[c] = dim-1;
       tx2[c] += dot_product(h,tx);
       h[c] = 1;
     }
     dx += tx2*m_Lambda*1e8*2.0/(dim*dim);
 
   }
 
   void grad_regu_MSM(vnl_vector<double> const &x, vnl_vector<double> &dx)
   {
     dx += m_Lambda*1e8*2.0*x/dim;
   }
 
   void grad_regu_localMSE(vnl_vector<double> const &x, vnl_vector<double> &dx)
   {
     m_A_Ones.mult(x, local_weight_means);
     local_weight_means = element_quotient(local_weight_means, row_sums);
 
     vnl_vector<double> exp_x = x.apply(std::exp);
     vnl_vector<double> exp_means = local_weight_means.apply(std::exp);
 
     vnl_vector<double> tdx(dim, 0);
     m_A_Ones.reset();
     while (m_A_Ones.next())
     {
       int c = m_A_Ones.getcolumn();
       int r = m_A_Ones.getrow();
       if (row_sums[r]==0)
         continue;
 
       if (x[c]>local_weight_means[r])
         tdx[c] += (exp_x[c] * ( exp_x[c] - exp_means[r] ))/row_sums[r];
       else
         tdx[c] += (x[c] - local_weight_means[r])/row_sums[r];
     }
     dx += tdx*1e3*2.0*m_Lambda;
 
     //    vnl_vector<double> dr; dr.set_size(dim); dr.fill(0);
     //    for (unsigned int r=0; r<m_A_Ones.rows(); r++)
     //    {
     //      int n = row_sums[r];
     //      vnl_vector<double> weights; weights.set_size(n);
     //      vnl_matrix<double> temp(n,n,1); temp.fill_diagonal(n-1);
 
     //      int i=0;
     //      for (auto w : m_A_Ones.get_row(r))
     //      {
     //        weights[i]=w.second;
     //        ++i;
     //      }
 
     //      weights -= local_weight_means[r];
     //      weights = temp*weights;
 
     //      i=0;
     //      for (auto w : m_A_Ones.get_row(r))
     //      {
     //        dr[w.second] += weights[i];
     //        ++i;
     //      }
     //    }
 
     //    dx += dr*2.0*m_Lambda;
   }
 
 
   double f(vnl_vector<double> const &x)
   {
     double cost = S->get_rms_error(x);
     cost *= cost;
 
     // cost for e^x
     //    vnl_vector<double> x_exp; x_exp.set_size(x.size());
     //    for (unsigned int c=0; c<x.size(); c++)
     //      x_exp[c] = std::exp(x[c]);
     //    double cost = S->get_rms_error(x_exp);
     //    cost *= cost;
 
     regu_localMSE(x, cost);
     //    regu_MSM(x, cost);
 
     return cost;
   }
 
   void gradf(vnl_vector<double> const &x, vnl_vector<double> &dx)
   {
     dx.fill(0.0);
     unsigned int N = m_b.size();
 
     //    vnl_vector<double> x_exp; x_exp.set_size(x.size());
     //    for (unsigned int c=0; c<x.size(); c++)
     //      x_exp[c] = std::exp(x[c]);
 
     vnl_vector<double> d; d.set_size(N);
     S->multiply(x,d);
     d -= m_b;
 
     S->transpose_multiply(d, dx);
     dx *= 2.0/N;
 
     //    for (unsigned int c=0; c<x.size(); c++)
     //      dx[c] *= x_exp[c];  // only for e^x weights
 
     grad_regu_localMSE(x,dx);
     //    grad_regu_MSM(x,dx);
   }
 };
 
 vnl_vector<double> FitFibers( std::string , std::vector< mitk::FiberBundle::Pointer > input_tracts, mitk::Image::Pointer inputImage, vnl_sparse_matrix< double >& A, vnl_vector<double>& b, bool single_fiber_fit, int max_iter, float g_tol, float lambda )
 {
   typedef mitk::ImageToItk< PeakImgType > CasterType;
   CasterType::Pointer caster = CasterType::New();
   caster->SetInput(inputImage);
   caster->Update();
   PeakImgType::Pointer itkImage = caster->GetOutput();
 
   unsigned int* image_size = inputImage->GetDimensions();
   int sz_x = image_size[0];
   int sz_y = image_size[1];
   int sz_z = image_size[2];
   int sz_peaks = image_size[3]/3 + 1; // +1 for zero - peak
   int num_voxels = sz_x*sz_y*sz_z;
 
   unsigned int num_unknowns = input_tracts.size();
   if (single_fiber_fit)
   {
     num_unknowns = 0;
     for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++)
       num_unknowns += input_tracts.at(bundle)->GetNumFibers();
   }
 
   unsigned int number_of_residuals = num_voxels * sz_peaks;
 
   // create linear system
   MITK_INFO << "Num. unknowns: " << num_unknowns;
   MITK_INFO << "Num. residuals: " << number_of_residuals;
 
   MITK_INFO << "Creating system ...";
   A.set_size(number_of_residuals, num_unknowns);
   b.set_size(number_of_residuals); b.fill(0.0);
 
   double TD = 0;
   double FD = 0;
   unsigned int dir_count = 0;
   unsigned int fiber_count = 0;
 
   for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++)
   {
     vtkSmartPointer<vtkPolyData> polydata = input_tracts.at(bundle)->GetFiberPolyData();
 
     for (int i=0; i<input_tracts.at(bundle)->GetNumFibers(); ++i)
     {
       vtkCell* cell = polydata->GetCell(i);
       int numPoints = cell->GetNumberOfPoints();
       vtkPoints* points = cell->GetPoints();
 
       if (numPoints<2)
         MITK_INFO << "FIBER WITH ONLY ONE POINT ENCOUNTERED!";
 
       for (int j=0; j<numPoints-1; ++j)
       {
         double* p1 = points->GetPoint(j);
         PointType4 p;
         p[0]=p1[0];
         p[1]=p1[1];
         p[2]=p1[2];
         p[3]=0;
 
         itk::Index<4> idx4;
         itkImage->TransformPhysicalPointToIndex(p, idx4);
         if (!itkImage->GetLargestPossibleRegion().IsInside(idx4))
           continue;
 
         double* p2 = points->GetPoint(j+1);
         vnl_vector_fixed<float,3> fiber_dir;
         fiber_dir[0] = p[0]-p2[0];
         fiber_dir[1] = p[1]-p2[1];
         fiber_dir[2] = p[2]-p2[2];
         fiber_dir.normalize();
 
         double w = 1;
         int peak_id = sz_peaks-1;
         vnl_vector_fixed<float,3> odf_peak = GetClosestPeak(idx4, itkImage, fiber_dir, peak_id, w);
         float peak_mag = odf_peak.magnitude();
 
         int x = idx4[0];
         int y = idx4[1];
         int z = idx4[2];
 
         unsigned int linear_index = x + sz_x*y + sz_x*sz_y*z + sz_x*sz_y*sz_z*peak_id;
 
         if (b[linear_index] == 0 && peak_id<3)
         {
           dir_count++;
           FD += peak_mag;
         }
         TD += w;
 
         if (single_fiber_fit)
         {
           b[linear_index] = peak_mag;
           A.put(linear_index, fiber_count, A.get(linear_index, fiber_count) + w);
         }
         else
         {
           b[linear_index] = peak_mag;
           A.put(linear_index, bundle, A.get(linear_index, bundle) + w);
         }
       }
 
       ++fiber_count;
     }
   }
 
   TD /= (dir_count*fiber_count);
   FD /= dir_count;
 
   A /= TD;
   b *= 100.0/FD;  // times 100 because we want to avoid too small values for computational reasons
 
 //  MITK_INFO << "TD: " << TD;
 //  MITK_INFO << "FD: " << FD;
 //  MITK_INFO << "Regularization: " << lambda;
 
   itk::TimeProbe clock;
   clock.Start();
 
   MITK_INFO << "Fitting fibers";
   VnlCostFunction cost(num_unknowns);
   cost.SetProblem(A, b, lambda);
 
   vnl_vector<double> x; x.set_size(num_unknowns); x.fill( TD/100.0 * FD/2.0 );
 
   vnl_lbfgsb minimizer(cost);
   vnl_vector<double> l; l.set_size(num_unknowns); l.fill(0);
 
   vnl_vector<long> bound_selection; bound_selection.set_size(num_unknowns); bound_selection.fill(1);
   minimizer.set_bound_selection(bound_selection);
   minimizer.set_lower_bound(l);
   minimizer.set_trace(true);
   minimizer.set_projected_gradient_tolerance(g_tol);
   if (max_iter>0)
     minimizer.set_max_function_evals(max_iter);
   minimizer.minimize(x);
 
   // SECOND RUN
   std::vector< double > weights;
   for (auto w : x)
     weights.push_back(w);
   sort(weights.begin(), weights.end());
   MITK_INFO << "Setting upper weight bound to " << weights.at(num_unknowns*0.95);
   vnl_vector<double> u; u.set_size(num_unknowns); u.fill(weights.at(num_unknowns*0.95));
   minimizer.set_upper_bound(u);
   bound_selection.fill(2);
   minimizer.set_bound_selection(bound_selection);
   minimizer.minimize(x);
 
   weights.clear();
   for (auto w : x)
     weights.push_back(w);
   sort(weights.begin(), weights.end());
 
   MITK_INFO << "*************************";
   MITK_INFO << "Weight statistics";
   MITK_INFO << "Mean: " << x.mean();
   MITK_INFO << "Median: " << weights.at(num_unknowns*0.5);
   MITK_INFO << "75% quantile: " << weights.at(num_unknowns*0.75);
   MITK_INFO << "95% quantile: " << weights.at(num_unknowns*0.95);
   MITK_INFO << "99% quantile: " << weights.at(num_unknowns*0.99);
   MITK_INFO << "Min: " << weights.at(0);
   MITK_INFO << "Max: " << weights.at(num_unknowns-1);
   MITK_INFO << "*************************";
   MITK_INFO << "NumEvals: " << minimizer.get_num_evaluations();
   MITK_INFO << "NumIterations: " << minimizer.get_num_iterations();
   MITK_INFO << "Residual cost: " << minimizer.get_end_error();
   MITK_INFO << "Final RMS: " << cost.S->get_rms_error(x);
 
   clock.Stop();
   int h = clock.GetTotal()/3600;
   int m = ((int)clock.GetTotal()%3600)/60;
   int s = (int)clock.GetTotal()%60;
   MITK_INFO << "Optimization took " << h << "h, " << m << "m and " << s << "s";
 
   // transform back for peak image creation
   A *= FD/100.0;
   b *= FD/100.0;
 
   return x;
 }
 
 std::vector< string > get_file_list(const std::string& path)
 {
   std::vector< string > file_list;
   itk::Directory::Pointer dir = itk::Directory::New();
 
   if (dir->Load(path.c_str()))
   {
     int n = dir->GetNumberOfFiles();
     for (int r = 0; r < n; r++)
     {
       const char *filename = dir->GetFile(r);
       std::string ext = ist::GetFilenameExtension(filename);
       if (ext==".fib" || ext==".trk")
         file_list.push_back(path + '/' + filename);
     }
   }
   return file_list;
 }
 
+/*!
+\brief Fits the tractogram to the input peak image by assigning a weight to each fiber (similar to https://doi.org/10.1016/j.neuroimage.2015.06.092).
+*/
 int main(int argc, char* argv[])
 {
   mitkCommandLineParser parser;
 
   parser.setTitle("Fit Fibers To Image");
   parser.setCategory("Fiber Tracking Evaluation");
   parser.setDescription("");
   parser.setContributor("MIC");
 
   parser.setArgumentPrefix("--", "-");
   parser.addArgument("", "i1", mitkCommandLineParser::StringList, "Input tractograms:", "input tractograms (.fib, vtk ascii file format)", us::Any(), false);
   parser.addArgument("", "i2", mitkCommandLineParser::InputFile, "Input peaks:", "input peak image", us::Any(), false);
   parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false);
 
   parser.addArgument("max_iter", "", mitkCommandLineParser::Int, "Max. iterations:", "maximum number of optimizer iterations", 20);
   parser.addArgument("bundle_based", "", mitkCommandLineParser::Bool, "Bundle based fit:", "fit one weight per input tractogram/bundle, not for each fiber", false);
   parser.addArgument("min_g", "", mitkCommandLineParser::Float, "Min. g:", "lower termination threshold for gradient magnitude", 1e-5);
   parser.addArgument("lambda", "", mitkCommandLineParser::Float, "Lambda:", "weighting factor for regularization", 1.0);
   parser.addArgument("save_res", "", mitkCommandLineParser::Bool, "Residuals:", "save residual images", false);
 
   map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv);
   if (parsedArgs.size()==0)
     return EXIT_FAILURE;
 
   mitkCommandLineParser::StringContainerType fib_files = us::any_cast<mitkCommandLineParser::StringContainerType>(parsedArgs["i1"]);
-  string dwiFile = us::any_cast<string>(parsedArgs["i2"]);
+  string peak_file_name = us::any_cast<string>(parsedArgs["i2"]);
   string outRoot = us::any_cast<string>(parsedArgs["o"]);
 
   bool single_fib = true;
   if (parsedArgs.count("bundle_based"))
     single_fib = !us::any_cast<bool>(parsedArgs["bundle_based"]);
 
   bool save_residuals = false;
   if (parsedArgs.count("save_res"))
     save_residuals = us::any_cast<bool>(parsedArgs["residuals"]);
 
   int max_iter = 20;
   if (parsedArgs.count("it"))
     max_iter = us::any_cast<int>(parsedArgs["it"]);
 
   float g_tol = 1e-5;
   if (parsedArgs.count("min_g"))
     g_tol = us::any_cast<float>(parsedArgs["min_g"]);
 
   float lambda = 1.0;
   if (parsedArgs.count("lambda"))
     lambda = us::any_cast<float>(parsedArgs["lambda"]);
 
   try
   {
     std::vector< mitk::FiberBundle::Pointer > input_tracts;
 
     mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image", "Fiberbundles"}, {});
-    mitk::Image::Pointer inputImage = dynamic_cast<mitk::PeakImage*>(mitk::IOUtil::Load(dwiFile, &functor)[0].GetPointer());
+    mitk::Image::Pointer inputImage = dynamic_cast<mitk::PeakImage*>(mitk::IOUtil::Load(peak_file_name, &functor)[0].GetPointer());
 
     float minSpacing = 1;
     if(inputImage->GetGeometry()->GetSpacing()[0]<inputImage->GetGeometry()->GetSpacing()[1] && inputImage->GetGeometry()->GetSpacing()[0]<inputImage->GetGeometry()->GetSpacing()[2])
       minSpacing = inputImage->GetGeometry()->GetSpacing()[0];
     else if (inputImage->GetGeometry()->GetSpacing()[1] < inputImage->GetGeometry()->GetSpacing()[2])
       minSpacing = inputImage->GetGeometry()->GetSpacing()[1];
     else
       minSpacing = inputImage->GetGeometry()->GetSpacing()[2];
 
     std::vector< std::string > fib_names;
     for (auto item : fib_files)
     {
       if ( ist::FileIsDirectory(item) )
       {
         for ( auto fibFile : get_file_list(item) )
         {
           mitk::FiberBundle::Pointer inputTractogram = dynamic_cast<mitk::FiberBundle*>(mitk::IOUtil::Load(fibFile)[0].GetPointer());
           if (inputTractogram.IsNull())
             continue;
           inputTractogram->ResampleLinear(minSpacing/10);
           input_tracts.push_back(inputTractogram);
           fib_names.push_back(fibFile);
         }
       }
       else
       {
         mitk::FiberBundle::Pointer inputTractogram = dynamic_cast<mitk::FiberBundle*>(mitk::IOUtil::Load(item)[0].GetPointer());
         if (inputTractogram.IsNull())
           continue;
         inputTractogram->ResampleLinear(minSpacing/10);
         input_tracts.push_back(inputTractogram);
         fib_names.push_back(item);
       }
     }
 
     vnl_sparse_matrix<double> A;
     vnl_vector<double> b;
     vnl_vector<double> x = FitFibers(outRoot, input_tracts, inputImage, A, b, single_fib, max_iter, g_tol, lambda);
 
     MITK_INFO << "Weighting fibers";
     if (single_fib)
     {
       unsigned int fiber_count = 0;
       for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++)
       {
         for (int i=0; i<input_tracts.at(bundle)->GetNumFibers(); i++)
         {
           input_tracts.at(bundle)->SetFiberWeight(i, x[fiber_count]);
           ++fiber_count;
         }
       }
     }
     else
     {
       for (unsigned int i=0; i<fib_names.size(); ++i)
         input_tracts.at(i)->SetFiberWeights(x[i]);
     }
 
     if (save_residuals)
     {
       // OUTPUT IMAGES
       MITK_INFO << "Generating output images ...";
       typedef mitk::ImageToItk< PeakImgType > CasterType;
       CasterType::Pointer caster = CasterType::New();
       caster->SetInput(inputImage);
       caster->Update();
       PeakImgType::Pointer peak_image = caster->GetOutput();
 
       itk::ImageDuplicator< PeakImgType >::Pointer duplicator = itk::ImageDuplicator< PeakImgType >::New();
       duplicator->SetInputImage(peak_image);
       duplicator->Update();
       PeakImgType::Pointer underexplained_image = duplicator->GetOutput();
       underexplained_image->FillBuffer(0.0);
 
       duplicator->SetInputImage(underexplained_image);
       duplicator->Update();
       PeakImgType::Pointer overexplained_image = duplicator->GetOutput();
       overexplained_image->FillBuffer(0.0);
 
       duplicator->SetInputImage(overexplained_image);
       duplicator->Update();
       PeakImgType::Pointer residual_image = duplicator->GetOutput();
       residual_image->FillBuffer(0.0);
 
       duplicator->SetInputImage(residual_image);
       duplicator->Update();
       PeakImgType::Pointer fitted_image = duplicator->GetOutput();
       fitted_image->FillBuffer(0.0);
 
       vnl_sparse_matrix_linear_system<double> S(A, b);
       vnl_vector<double> fitted_b; fitted_b.set_size(b.size());
       S.multiply(x, fitted_b);
 
       unsigned int* image_size = inputImage->GetDimensions();
       int sz_x = image_size[0];
       int sz_y = image_size[1];
       int sz_z = image_size[2];
       int sz_peaks = image_size[3]/3 + 1; // +1 for zero - peak
       for (unsigned int r=0; r<b.size(); r++)
       {
         itk::Index<4> idx;
         unsigned int linear_index = r;
         idx[0] = linear_index % sz_x; linear_index /= sz_x;
         idx[1] = linear_index % sz_y; linear_index /= sz_y;
         idx[2] = linear_index % sz_z; linear_index /= sz_z;
         int peak_id = linear_index % sz_peaks;
 
         if (peak_id<sz_peaks-1)
         {
           vnl_vector_fixed<float,3> peak_dir;
 
           idx[3] = peak_id*3;
           peak_dir[0] = peak_image->GetPixel(idx);
           idx[3] += 1;
           peak_dir[1] = peak_image->GetPixel(idx);
           idx[3] += 1;
           peak_dir[2] = peak_image->GetPixel(idx);
 
           peak_dir.normalize();
           peak_dir *= fitted_b[r];
 
           idx[3] = peak_id*3;
           fitted_image->SetPixel(idx, peak_dir[0]);
 
           idx[3] += 1;
           fitted_image->SetPixel(idx, peak_dir[1]);
 
           idx[3] += 1;
           fitted_image->SetPixel(idx, peak_dir[2]);
         }
       }
 
       itk::Index<4> idx;
       for (idx[0]=0; idx[0]<sz_x; ++idx[0])
         for (idx[1]=0; idx[1]<sz_y; ++idx[1])
           for (idx[2]=0; idx[2]<sz_z; ++idx[2])
           {
             vnl_vector_fixed<float,3> peak_dir;
             vnl_vector_fixed<float,3> fitted_dir;
             for (idx[3]=0; idx[3]<image_size[3]; ++idx[3])
             {
               peak_dir[idx[3]%3] = peak_image->GetPixel(idx);
               fitted_dir[idx[3]%3] = fitted_image->GetPixel(idx);
               residual_image->SetPixel(idx, peak_image->GetPixel(idx) - fitted_image->GetPixel(idx));
 
               if (idx[3]%3==2)
               {
                 itk::Index<4> tidx= idx;
                 if (peak_dir.magnitude()>fitted_dir.magnitude())
                 {
                   underexplained_image->SetPixel(tidx, peak_dir[2]-fitted_dir[2]); tidx[3]--;
                   underexplained_image->SetPixel(tidx, peak_dir[1]-fitted_dir[1]); tidx[3]--;
                   underexplained_image->SetPixel(tidx, peak_dir[0]-fitted_dir[0]);
                 }
                 else
                 {
                   overexplained_image->SetPixel(tidx, fitted_dir[2]-peak_dir[2]); tidx[3]--;
                   overexplained_image->SetPixel(tidx, fitted_dir[1]-peak_dir[1]); tidx[3]--;
                   overexplained_image->SetPixel(tidx, fitted_dir[0]-peak_dir[0]);
                 }
               }
             }
           }
 
       itk::ImageFileWriter< PeakImgType >::Pointer writer = itk::ImageFileWriter< PeakImgType >::New();
       writer->SetInput(fitted_image);
       writer->SetFileName(outRoot + "fitted_image.nrrd");
       writer->Update();
 
       writer->SetInput(residual_image);
       writer->SetFileName(outRoot + "residual_image.nrrd");
       writer->Update();
 
       writer->SetInput(overexplained_image);
       writer->SetFileName(outRoot + "overexplained_image.nrrd");
       writer->Update();
 
       writer->SetInput(underexplained_image);
       writer->SetFileName(outRoot + "underexplained_image.nrrd");
       writer->Update();
     }
 
     for (unsigned int bundle=0; bundle<input_tracts.size(); bundle++)
     {
       input_tracts.at(bundle)->Compress(0.1);
       std::string name = fib_names.at(bundle);
       name = ist::GetFilenameWithoutExtension(name);
       mitk::IOUtil::Save(input_tracts.at(bundle), outRoot + name + "_fitted.fib");
     }
   }
   catch (itk::ExceptionObject e)
   {
     std::cout << e;
     return EXIT_FAILURE;
   }
   catch (std::exception e)
   {
     std::cout << e.what();
     return EXIT_FAILURE;
   }
   catch (...)
   {
     std::cout << "ERROR!?!";
     return EXIT_FAILURE;
   }
   return EXIT_SUCCESS;
 }