diff --git a/Core/Code/Controllers/mitkSliceNavigationController.h b/Core/Code/Controllers/mitkSliceNavigationController.h index 72e1e51cb3..7291aaca31 100644 --- a/Core/Code/Controllers/mitkSliceNavigationController.h +++ b/Core/Code/Controllers/mitkSliceNavigationController.h @@ -1,553 +1,555 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef SLICENAVIGATIONCONTROLLER_H_HEADER_INCLUDED_C1C55A2F #define SLICENAVIGATIONCONTROLLER_H_HEADER_INCLUDED_C1C55A2F #include #include "mitkBaseController.h" #include "mitkRenderingManager.h" #include "mitkTimeSlicedGeometry.h" #include "mitkMessage.h" #pragma GCC visibility push(default) #include #pragma GCC visibility pop #include #include #include "mitkRestorePlanePositionOperation.h" namespace mitk { #define mitkTimeSlicedGeometryEventMacro( classname , super ) \ class MITK_CORE_EXPORT classname : public super { \ public: \ typedef classname Self; \ typedef super Superclass; \ classname(TimeSlicedGeometry* aTimeSlicedGeometry, unsigned int aPos) \ : Superclass(aTimeSlicedGeometry, aPos) {} \ virtual ~classname() {} \ virtual const char * GetEventName() const { return #classname; } \ virtual bool CheckEvent(const ::itk::EventObject* e) const \ { return dynamic_cast(e); } \ virtual ::itk::EventObject* MakeObject() const \ { return new Self(GetTimeSlicedGeometry(), GetPos()); } \ private: \ void operator=(const Self&); \ } class PlaneGeometry; class Geometry3D; class BaseRenderer; /** * \brief Controls the selection of the slice the associated BaseRenderer * will display * * A SliceNavigationController takes a Geometry3D as input world geometry * (TODO what are the exact requirements?) and generates a TimeSlicedGeometry * as output. The TimeSlicedGeometry holds a number of SlicedGeometry3Ds and * these in turn hold a series of Geometry2Ds. One of these Geometry2Ds is * selected as world geometry for the BaseRenderers associated to 2D views. * * The SliceNavigationController holds has Steppers (one for the slice, a * second for the time step), which control the selection of a single * Geometry2D from the TimeSlicedGeometry. SliceNavigationController generates * ITK events to tell observers, like a BaseRenderer, when the selected slice * or timestep changes. * * SliceNavigationControllers are registered as listeners to GlobalInteraction * by the QmitkStdMultiWidget. In ExecuteAction, the controllers react to * PositionEvents by setting the steppers to the slice which is nearest to the * point of the PositionEvent. * * Example: * \code * // Initialization * sliceCtrl = mitk::SliceNavigationController::New(); * * // Tell the navigator the geometry to be sliced (with geometry a * // Geometry3D::ConstPointer) * sliceCtrl->SetInputWorldGeometry(geometry.GetPointer()); * * // Tell the navigator in which direction it shall slice the data * sliceCtrl->SetViewDirection(mitk::SliceNavigationController::Axial); * * // Connect one or more BaseRenderer to this navigator, i.e.: events sent * // by the navigator when stepping through the slices (e.g. by * // sliceCtrl->GetSlice()->Next()) will be received by the BaseRenderer * // (in this example only slice-changes, see also ConnectGeometryTimeEvent * // and ConnectGeometryEvents.) * sliceCtrl->ConnectGeometrySliceEvent(renderer.GetPointer()); * * //create a world geometry and send the information to the connected renderer(s) * sliceCtrl->Update(); * \endcode * * * You can connect visible navigators to a SliceNavigationController, e.g., a * QmitkSliderNavigator (for Qt): * * \code * // Create the visible navigator (a slider with a spin-box) * QmitkSliderNavigator* navigator = * new QmitkSliderNavigator(parent, "slidernavigator"); * * // Connect the navigator to the slice-stepper of the * // SliceNavigationController. For initialization (position, mininal and * // maximal values) the values of the SliceNavigationController are used. * // Thus, accessing methods of a navigator is normally not necessary, since * // everything can be set via the (Qt-independent) SliceNavigationController. * // The QmitkStepperAdapter converts the Qt-signals to Qt-independent * // itk-events. * new QmitkStepperAdapter(navigator, sliceCtrl->GetSlice(), "navigatoradaptor"); * \endcode * * If you do not want that all renderwindows are updated when a new slice is * selected, you can use a specific RenderingManager, which updates only those * renderwindows that should be updated. This is sometimes useful when a 3D view * does not need to be updated when the slices in some 2D views are changed. * QmitkSliderNavigator (for Qt): * * \code * // create a specific RenderingManager * mitk::RenderingManager::Pointer myManager = mitk::RenderingManager::New(); * * // tell the RenderingManager to update only renderwindow1 and renderwindow2 * myManager->AddRenderWindow(renderwindow1); * myManager->AddRenderWindow(renderwindow2); * * // tell the SliceNavigationController of renderwindow1 and renderwindow2 * // to use the specific RenderingManager instead of the global one * renderwindow1->GetSliceNavigationController()->SetRenderingManager(myManager); * renderwindow2->GetSliceNavigationController()->SetRenderingManager(myManager); * \endcode * * \todo implement for non-evenly-timed geometry! * \ingroup NavigationControl */ class MITK_CORE_EXPORT SliceNavigationController : public BaseController { public: mitkClassMacro(SliceNavigationController,BaseController); itkNewMacro(Self); mitkNewMacro1Param(Self, const char *); /** * \brief Possible view directions, \a Original will uses * the Geometry2D instances in a SlicedGeometry3D provided * as input world geometry (by SetInputWorldGeometry). */ enum ViewDirection { #ifdef _MSC_VER Transversal, // deprecated #endif Axial = 0, Sagittal, Frontal, Original }; #ifdef __GNUC__ __attribute__ ((deprecated)) static const ViewDirection Transversal = ViewDirection(Axial); #endif /** * \brief Set the input world geometry out of which the * geometries for slicing will be created. */ void SetInputWorldGeometry(const mitk::Geometry3D* geometry); itkGetConstObjectMacro(InputWorldGeometry, mitk::Geometry3D); /** * \brief Access the created geometry */ itkGetConstObjectMacro(CreatedWorldGeometry, mitk::Geometry3D); /** * \brief Set the desired view directions * * \sa ViewDirection * \sa Update(ViewDirection viewDirection, bool top = true, * bool frontside = true, bool rotated = false) */ itkSetEnumMacro(ViewDirection, ViewDirection); itkGetEnumMacro(ViewDirection, ViewDirection); /** * \brief Set the default view direction * * This is used to re-initialize the view direction of the SNC to the * default value with SetViewDirectionToDefault() * * \sa ViewDirection * \sa Update(ViewDirection viewDirection, bool top = true, * bool frontside = true, bool rotated = false) */ itkSetEnumMacro(DefaultViewDirection, ViewDirection); itkGetEnumMacro(DefaultViewDirection, ViewDirection); virtual void SetViewDirectionToDefault(); /** * \brief Do the actual creation and send it to the connected * observers (renderers) * */ virtual void Update(); /** * \brief Extended version of Update, additionally allowing to * specify the direction/orientation of the created geometry. * */ virtual void Update(ViewDirection viewDirection, bool top = true, bool frontside = true, bool rotated = false); /** * \brief Send the created geometry to the connected * observers (renderers) * * Called by Update(). */ virtual void SendCreatedWorldGeometry(); /** * \brief Tell observers to re-read the currently selected 2D geometry * * Called by mitk::SlicesRotator during rotation. */ virtual void SendCreatedWorldGeometryUpdate(); /** * \brief Send the currently selected slice to the connected * observers (renderers) * * Called by Update(). */ virtual void SendSlice(); /** * \brief Send the currently selected time to the connected * observers (renderers) * * Called by Update(). */ virtual void SendTime(); /** * \brief Set the RenderingManager to be used * * If \a NULL, the default RenderingManager will be used. */ itkSetObjectMacro(RenderingManager, RenderingManager); mitk::RenderingManager* GetRenderingManager() const; #pragma GCC visibility push(default) itkEventMacro( UpdateEvent, itk::AnyEvent ); #pragma GCC visibility pop class MITK_CORE_EXPORT TimeSlicedGeometryEvent : public itk::AnyEvent { public: typedef TimeSlicedGeometryEvent Self; typedef itk::AnyEvent Superclass; TimeSlicedGeometryEvent( TimeSlicedGeometry* aTimeSlicedGeometry, unsigned int aPos) : m_TimeSlicedGeometry(aTimeSlicedGeometry), m_Pos(aPos) {} virtual ~TimeSlicedGeometryEvent() {} virtual const char * GetEventName() const { return "TimeSlicedGeometryEvent"; } virtual bool CheckEvent(const ::itk::EventObject* e) const { return dynamic_cast(e); } virtual ::itk::EventObject* MakeObject() const { return new Self(m_TimeSlicedGeometry, m_Pos); } TimeSlicedGeometry* GetTimeSlicedGeometry() const { return m_TimeSlicedGeometry; } unsigned int GetPos() const { return m_Pos; } private: TimeSlicedGeometry::Pointer m_TimeSlicedGeometry; unsigned int m_Pos; // TimeSlicedGeometryEvent(const Self&); void operator=(const Self&); //just hide }; mitkTimeSlicedGeometryEventMacro( GeometrySendEvent,TimeSlicedGeometryEvent ); mitkTimeSlicedGeometryEventMacro( GeometryUpdateEvent, TimeSlicedGeometryEvent ); mitkTimeSlicedGeometryEventMacro( GeometryTimeEvent, TimeSlicedGeometryEvent ); mitkTimeSlicedGeometryEventMacro( GeometrySliceEvent, TimeSlicedGeometryEvent ); template void ConnectGeometrySendEvent(T* receiver) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometry); unsigned long tag = AddObserver(GeometrySendEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometryUpdateEvent(T* receiver) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::UpdateGeometry); unsigned long tag = AddObserver(GeometryUpdateEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); } template void ConnectGeometrySliceEvent(T* receiver, bool connectSendEvent=true) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometrySlice); unsigned long tag = AddObserver(GeometrySliceEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); if(connectSendEvent) ConnectGeometrySendEvent(receiver); } template void ConnectGeometryTimeEvent(T* receiver, bool connectSendEvent=true) { typedef typename itk::ReceptorMemberCommand::Pointer ReceptorMemberCommandPointer; ReceptorMemberCommandPointer eventReceptorCommand = itk::ReceptorMemberCommand::New(); eventReceptorCommand->SetCallbackFunction(receiver, &T::SetGeometryTime); unsigned long tag = AddObserver(GeometryTimeEvent(NULL,0), eventReceptorCommand); m_ReceiverToObserverTagsMap[static_cast(receiver)].push_back(tag); if(connectSendEvent) ConnectGeometrySendEvent(receiver); } template void ConnectGeometryEvents(T* receiver) { //connect sendEvent only once ConnectGeometrySliceEvent(receiver, false); ConnectGeometryTimeEvent(receiver); } // use a templated method to get the right offset when casting to void* template void Disconnect(T* receiver) { ObserverTagsMapType::iterator i = m_ReceiverToObserverTagsMap.find(static_cast(receiver)); if (i == m_ReceiverToObserverTagsMap.end()) return; const std::list& tags = i->second; for (std::list::const_iterator tagIter = tags.begin(); tagIter != tags.end(); ++tagIter) { RemoveObserver(*tagIter); } m_ReceiverToObserverTagsMap.erase(i); } Message<> crosshairPositionEvent; /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface * \warning not implemented */ virtual void SetGeometry(const itk::EventObject & geometrySliceEvent); /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface */ virtual void SetGeometrySlice(const itk::EventObject & geometrySliceEvent); /** * \brief To connect multiple SliceNavigationController, we can * act as an observer ourselves: implemented interface */ virtual void SetGeometryTime(const itk::EventObject & geometryTimeEvent); /** \brief Positions the SNC according to the specified point */ void SelectSliceByPoint( const mitk::Point3D &point ); /** \brief Returns the TimeSlicedGeometry created by the SNC. */ const mitk::TimeSlicedGeometry *GetCreatedWorldGeometry(); /** \brief Returns the Geometry3D of the currently selected time step. */ const mitk::Geometry3D *GetCurrentGeometry3D(); /** \brief Returns the currently selected Plane in the current * Geometry3D (if existent). */ const mitk::PlaneGeometry *GetCurrentPlaneGeometry(); /** \brief Sets the BaseRenderer associated with this SNC (if any). While * the BaseRenderer is not directly used by SNC, this is a convenience * method to enable BaseRenderer access via the SNC. */ void SetRenderer( BaseRenderer *renderer ); /** \brief Gets the BaseRenderer associated with this SNC (if any). While * the BaseRenderer is not directly used by SNC, this is a convenience * method to enable BaseRenderer access via the SNC. Returns NULL if no * BaseRenderer has been specified*/ BaseRenderer *GetRenderer() const; - /** \brief Re-orients the slice stack to include the plane specified by - * the given point an normal vector. + /** \brief Re-orients the slice stack. All slices will be oriented to the given normal vector. + The given point (world coordinates) defines the selected slice. + Careful: The resulting axis vectors are not clearly defined this way. If you want to define them clearly, use + ReorientSlices (const mitk::Point3D &point, const mitk::Vector3D &axisVec0, const mitk::Vector3D &axisVec1). */ void ReorientSlices( const mitk::Point3D &point, const mitk::Vector3D &normal ); /** \brief Re-orients the slice stack so that all planes are oriented according to the * given axis vectors. The given Point eventually defines selected slice. */ void ReorientSlices( const mitk::Point3D &point, const mitk::Vector3D &axisVec0, const mitk::Vector3D &axisVec1 ); virtual bool ExecuteAction( Action* action, mitk::StateEvent const* stateEvent); void ExecuteOperation(Operation* operation); /** * \brief Feature option to lock planes during mouse interaction. * This option flag disables the mouse event which causes the center * cross to move near by. */ itkSetMacro(SliceLocked, bool); itkGetMacro(SliceLocked, bool); itkBooleanMacro(SliceLocked); /** * \brief Feature option to lock slice rotation. * * This option flag disables separately the rotation of a slice which is * implemented in mitkSliceRotator. */ itkSetMacro(SliceRotationLocked, bool); itkGetMacro(SliceRotationLocked, bool); itkBooleanMacro(SliceRotationLocked); /** * \brief Adjusts the numerical range of the slice stepper according to * the current geometry orientation of this SNC's SlicedGeometry. */ void AdjustSliceStepperRange(); protected: SliceNavigationController(const char * type = NULL); virtual ~SliceNavigationController(); /* template static void buildstring( mitkIpPicDescriptor *pic, itk::Point p, std::string &s, T = 0) { std::string value; std::stringstream stream; stream.imbue(std::locale::classic()); stream<=0 && p[1] >=0 && p[2]>=0) && (unsigned int)p[0] < pic->n[0] && (unsigned int)p[1] < pic->n[1] && (unsigned int)p[2] < pic->n[2] ) { if(pic->bpe!=24) { stream<<(((T*) pic->data)[ p[0] + p[1]*pic->n[0] + p[2]*pic->n[0]*pic->n[1] ]); } else { stream<<(((T*) pic->data)[p[0]*3 + 0 + p[1]*pic->n[0]*3 + p[2]*pic->n[0]*pic->n[1]*3 ]); stream<<(((T*) pic->data)[p[0]*3 + 1 + p[1]*pic->n[0]*3 + p[2]*pic->n[0]*pic->n[1]*3 ]); stream<<(((T*) pic->data)[p[0]*3 + 2 + p[1]*pic->n[0]*3 + p[2]*pic->n[0]*pic->n[1]*3 ]); } s = stream.str(); } else { s+= "point out of data"; } }; */ mitk::Geometry3D::ConstPointer m_InputWorldGeometry; mitk::Geometry3D::Pointer m_ExtendedInputWorldGeometry; mitk::TimeSlicedGeometry::Pointer m_CreatedWorldGeometry; ViewDirection m_ViewDirection; ViewDirection m_DefaultViewDirection; mitk::RenderingManager::Pointer m_RenderingManager; mitk::BaseRenderer *m_Renderer; itkSetMacro(Top, bool); itkGetMacro(Top, bool); itkBooleanMacro(Top); itkSetMacro(FrontSide, bool); itkGetMacro(FrontSide, bool); itkBooleanMacro(FrontSide); itkSetMacro(Rotated, bool); itkGetMacro(Rotated, bool); itkBooleanMacro(Rotated); bool m_Top; bool m_FrontSide; bool m_Rotated; bool m_BlockUpdate; bool m_SliceLocked; bool m_SliceRotationLocked; unsigned int m_OldPos; typedef std::map > ObserverTagsMapType; ObserverTagsMapType m_ReceiverToObserverTagsMap; }; } // namespace mitk #endif /* SLICENAVIGATIONCONTROLLER_H_HEADER_INCLUDED_C1C55A2F */ diff --git a/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp b/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp index 0dbe02c7c4..a3e3816857 100644 --- a/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp +++ b/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp @@ -1,1027 +1,1027 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSlicedGeometry3D.h" #include "mitkPlaneGeometry.h" #include "mitkRotationOperation.h" #include "mitkPlaneOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkInteractionConst.h" #include "mitkSliceNavigationController.h" const float PI = 3.14159265359; mitk::SlicedGeometry3D::SlicedGeometry3D() : m_EvenlySpaced( true ), m_Slices( 0 ), m_ReferenceGeometry( NULL ), m_SliceNavigationController( NULL ) { m_DirectionVector.Fill(0); this->InitializeSlicedGeometry( m_Slices ); } mitk::SlicedGeometry3D::SlicedGeometry3D(const SlicedGeometry3D& other) : Superclass(other), m_EvenlySpaced( other.m_EvenlySpaced ), m_Slices( other.m_Slices ), m_ReferenceGeometry( other.m_ReferenceGeometry ), m_SliceNavigationController( other.m_SliceNavigationController ) { m_DirectionVector.Fill(0); SetSpacing( other.GetSpacing() ); SetDirectionVector( other.GetDirectionVector() ); if ( m_EvenlySpaced ) { AffineGeometryFrame3D::Pointer geometry = other.m_Geometry2Ds[0]->Clone(); Geometry2D* geometry2D = dynamic_cast(geometry.GetPointer()); assert(geometry2D!=NULL); SetGeometry2D(geometry2D, 0); } else { unsigned int s; for ( s = 0; s < other.m_Slices; ++s ) { if ( other.m_Geometry2Ds[s].IsNull() ) { assert(other.m_EvenlySpaced); m_Geometry2Ds[s] = NULL; } else { AffineGeometryFrame3D::Pointer geometry = other.m_Geometry2Ds[s]->Clone(); Geometry2D* geometry2D = dynamic_cast(geometry.GetPointer()); assert(geometry2D!=NULL); SetGeometry2D(geometry2D, s); } } } } mitk::SlicedGeometry3D::~SlicedGeometry3D() { } mitk::Geometry2D * mitk::SlicedGeometry3D::GetGeometry2D( int s ) const { mitk::Geometry2D::Pointer geometry2D = NULL; if ( this->IsValidSlice(s) ) { geometry2D = m_Geometry2Ds[s]; // If (a) m_EvenlySpaced==true, (b) we don't have a Geometry2D stored // for the requested slice, and (c) the first slice (s=0) // is a PlaneGeometry instance, then we calculate the geometry of the // requested as the plane of the first slice shifted by m_Spacing[2]*s // in the direction of m_DirectionVector. if ( (m_EvenlySpaced) && (geometry2D.IsNull()) ) { PlaneGeometry *firstSlice = dynamic_cast< PlaneGeometry * > ( m_Geometry2Ds[0].GetPointer() ); if ( firstSlice != NULL ) { if ( (m_DirectionVector[0] == 0.0) && (m_DirectionVector[1] == 0.0) && (m_DirectionVector[2] == 0.0) ) { m_DirectionVector = firstSlice->GetNormal(); m_DirectionVector.Normalize(); } Vector3D direction; direction = m_DirectionVector * m_Spacing[2]; mitk::PlaneGeometry::Pointer requestedslice; requestedslice = static_cast< mitk::PlaneGeometry * >( firstSlice->Clone().GetPointer() ); requestedslice->SetOrigin( requestedslice->GetOrigin() + direction * s ); geometry2D = requestedslice; m_Geometry2Ds[s] = geometry2D; } } return geometry2D; } else { return NULL; } } const mitk::BoundingBox * mitk::SlicedGeometry3D::GetBoundingBox() const { assert(m_BoundingBox.IsNotNull()); return m_BoundingBox.GetPointer(); } bool mitk::SlicedGeometry3D::SetGeometry2D( mitk::Geometry2D *geometry2D, int s ) { if ( this->IsValidSlice(s) ) { m_Geometry2Ds[s] = geometry2D; m_Geometry2Ds[s]->SetReferenceGeometry( m_ReferenceGeometry ); return true; } return false; } void mitk::SlicedGeometry3D::InitializeSlicedGeometry( unsigned int slices ) { Superclass::Initialize(); m_Slices = slices; Geometry2D::Pointer gnull = NULL; m_Geometry2Ds.assign( m_Slices, gnull ); Vector3D spacing; spacing.Fill( 1.0 ); this->SetSpacing( spacing ); m_DirectionVector.Fill( 0 ); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced( mitk::Geometry2D* geometry2D, unsigned int slices, bool flipped ) { assert( geometry2D != NULL ); this->InitializeEvenlySpaced( geometry2D, geometry2D->GetExtentInMM(2)/geometry2D->GetExtent(2), slices, flipped ); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced( mitk::Geometry2D* geometry2D, mitk::ScalarType zSpacing, unsigned int slices, bool flipped ) { assert( geometry2D != NULL ); assert( geometry2D->GetExtent(0) > 0 ); assert( geometry2D->GetExtent(1) > 0 ); geometry2D->Register(); Superclass::Initialize(); m_Slices = slices; BoundingBox::BoundsArrayType bounds = geometry2D->GetBounds(); bounds[4] = 0; bounds[5] = slices; // clear and reserve Geometry2D::Pointer gnull = NULL; m_Geometry2Ds.assign( m_Slices, gnull ); Vector3D directionVector = geometry2D->GetAxisVector(2); directionVector.Normalize(); directionVector *= zSpacing; if ( flipped == false ) { // Normally we should use the following four lines to create a copy of // the transform contrained in geometry2D, because it may not be changed // by us. But we know that SetSpacing creates a new transform without // changing the old (coming from geometry2D), so we can use the fifth // line instead. We check this at (**). // // AffineTransform3D::Pointer transform = AffineTransform3D::New(); // transform->SetMatrix(geometry2D->GetIndexToWorldTransform()->GetMatrix()); // transform->SetOffset(geometry2D->GetIndexToWorldTransform()->GetOffset()); // SetIndexToWorldTransform(transform); m_IndexToWorldTransform = const_cast< AffineTransform3D * >( geometry2D->GetIndexToWorldTransform() ); } else { directionVector *= -1.0; m_IndexToWorldTransform = AffineTransform3D::New(); m_IndexToWorldTransform->SetMatrix( geometry2D->GetIndexToWorldTransform()->GetMatrix() ); AffineTransform3D::OutputVectorType scaleVector; FillVector3D(scaleVector, 1.0, 1.0, -1.0); m_IndexToWorldTransform->Scale(scaleVector, true); m_IndexToWorldTransform->SetOffset( geometry2D->GetIndexToWorldTransform()->GetOffset() ); } mitk::Vector3D spacing; FillVector3D( spacing, geometry2D->GetExtentInMM(0) / bounds[1], geometry2D->GetExtentInMM(1) / bounds[3], zSpacing ); // Ensure that spacing differs from m_Spacing to make SetSpacing change the // matrix. m_Spacing[2] = zSpacing - 1; this->SetDirectionVector( directionVector ); this->SetBounds( bounds ); this->SetGeometry2D( geometry2D, 0 ); this->SetSpacing( spacing ); this->SetEvenlySpaced(); this->SetTimeBounds( geometry2D->GetTimeBounds() ); assert(m_IndexToWorldTransform.GetPointer() != geometry2D->GetIndexToWorldTransform()); // (**) see above. this->SetFrameOfReferenceID( geometry2D->GetFrameOfReferenceID() ); this->SetImageGeometry( geometry2D->GetImageGeometry() ); geometry2D->UnRegister(); } void mitk::SlicedGeometry3D::InitializePlanes( const mitk::Geometry3D *geometry3D, mitk::PlaneGeometry::PlaneOrientation planeorientation, bool top, bool frontside, bool rotated ) { m_ReferenceGeometry = const_cast< Geometry3D * >( geometry3D ); PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( geometry3D, top, planeorientation, frontside, rotated ); ScalarType viewSpacing = 1; unsigned int slices = 1; switch ( planeorientation ) { case PlaneGeometry::Axial: viewSpacing = geometry3D->GetSpacing()[2]; slices = (unsigned int) geometry3D->GetExtent( 2 ); break; case PlaneGeometry::Frontal: viewSpacing = geometry3D->GetSpacing()[1]; slices = (unsigned int) geometry3D->GetExtent( 1 ); break; case PlaneGeometry::Sagittal: viewSpacing = geometry3D->GetSpacing()[0]; slices = (unsigned int) geometry3D->GetExtent( 0 ); break; default: itkExceptionMacro("unknown PlaneOrientation"); } mitk::Vector3D normal = this->AdjustNormal( planeGeometry->GetNormal() ); ScalarType directedExtent = fabs( m_ReferenceGeometry->GetExtentInMM( 0 ) * normal[0] ) + fabs( m_ReferenceGeometry->GetExtentInMM( 1 ) * normal[1] ) + fabs( m_ReferenceGeometry->GetExtentInMM( 2 ) * normal[2] ); if ( directedExtent >= viewSpacing ) { slices = static_cast< int >(directedExtent / viewSpacing + 0.5); } else { slices = 1; } bool flipped = (top == false); if ( frontside == false ) { flipped = !flipped; } if ( planeorientation == PlaneGeometry::Frontal ) { flipped = !flipped; } this->InitializeEvenlySpaced( planeGeometry, viewSpacing, slices, flipped ); } void mitk::SlicedGeometry3D ::ReinitializePlanes( const Point3D ¢er, const Point3D &referencePoint ) { // Need a reference frame to align the rotated planes if ( !m_ReferenceGeometry ) { return; } // Get first plane of plane stack PlaneGeometry *firstPlane = dynamic_cast< PlaneGeometry * >( m_Geometry2Ds[0].GetPointer() ); // If plane stack is empty, exit if ( firstPlane == NULL ) { return; } // Calculate the "directed" spacing when taking the plane (defined by its axes // vectors and normal) as the reference coordinate frame. // // This is done by calculating the radius of the ellipsoid defined by the // original volume spacing axes, in the direction of the respective axis of the // reference frame. mitk::Vector3D axis0 = firstPlane->GetAxisVector(0); mitk::Vector3D axis1 = firstPlane->GetAxisVector(1); mitk::Vector3D normal = firstPlane->GetNormal(); normal.Normalize(); Vector3D spacing; spacing[0] = this->CalculateSpacing( axis0 ); spacing[1] = this->CalculateSpacing( axis1 ); spacing[2] = this->CalculateSpacing( normal ); Superclass::SetSpacing( spacing ); // Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above. ScalarType directedExtent = fabs( m_ReferenceGeometry->GetExtentInMM( 0 ) * normal[0] ) + fabs( m_ReferenceGeometry->GetExtentInMM( 1 ) * normal[1] ) + fabs( m_ReferenceGeometry->GetExtentInMM( 2 ) * normal[2] ); if ( directedExtent >= spacing[2] ) { m_Slices = static_cast< unsigned int >(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } // The origin of our "first plane" needs to be adapted to this new extent. // To achieve this, we first calculate the current distance to the volume's // center, and then shift the origin in the direction of the normal by the // difference between this distance and half of the new extent. double centerOfRotationDistance = firstPlane->SignedDistanceFromPlane( center ); if ( centerOfRotationDistance > 0 ) { firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * (centerOfRotationDistance - directedExtent / 2.0) ); m_DirectionVector = normal; } else { firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * (directedExtent / 2.0 + centerOfRotationDistance) ); m_DirectionVector = -normal; } // Now we adjust this distance according with respect to the given reference // point: we need to make sure that the point is touched by one slice of the // new slice stack. double referencePointDistance = firstPlane->SignedDistanceFromPlane( referencePoint ); int referencePointSlice = static_cast< int >( referencePointDistance / spacing[2]); double alignmentValue = referencePointDistance / spacing[2] - referencePointSlice; firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * alignmentValue * spacing[2] ); // Finally, we can clear the previous geometry stack and initialize it with // our re-initialized "first plane". m_Geometry2Ds.assign( m_Slices, Geometry2D::Pointer( NULL ) ); if ( m_Slices > 0 ) { m_Geometry2Ds[0] = firstPlane; } // Reinitialize SNC with new number of slices m_SliceNavigationController->GetSlice()->SetSteps( m_Slices ); this->Modified(); } double mitk::SlicedGeometry3D::CalculateSpacing( const mitk::Vector3D &d ) const { // Need the spacing of the underlying dataset / geometry if ( !m_ReferenceGeometry ) { return 1.0; } const mitk::Vector3D &spacing = m_ReferenceGeometry->GetSpacing(); return SlicedGeometry3D::CalculateSpacing( spacing, d ); } double mitk::SlicedGeometry3D::CalculateSpacing( const mitk::Vector3D spacing, const mitk::Vector3D &d ) { // The following can be derived from the ellipsoid equation // // 1 = x^2/a^2 + y^2/b^2 + z^2/c^2 // // where (a,b,c) = spacing of original volume (ellipsoid radii) // and (x,y,z) = scaled coordinates of vector d (according to ellipsoid) // double scaling = d[0]*d[0] / (spacing[0] * spacing[0]) + d[1]*d[1] / (spacing[1] * spacing[1]) + d[2]*d[2] / (spacing[2] * spacing[2]); scaling = sqrt( scaling ); return ( sqrt( d[0]*d[0] + d[1]*d[1] + d[2]*d[2] ) / scaling ); } mitk::Vector3D mitk::SlicedGeometry3D::AdjustNormal( const mitk::Vector3D &normal ) const { Geometry3D::TransformType::Pointer inverse = Geometry3D::TransformType::New(); m_ReferenceGeometry->GetIndexToWorldTransform()->GetInverse( inverse ); Vector3D transformedNormal = inverse->TransformVector( normal ); transformedNormal.Normalize(); return transformedNormal; } void mitk::SlicedGeometry3D::SetImageGeometry( const bool isAnImageGeometry ) { Superclass::SetImageGeometry( isAnImageGeometry ); mitk::Geometry3D* geometry; unsigned int s; for ( s = 0; s < m_Slices; ++s ) { geometry = m_Geometry2Ds[s]; if ( geometry!=NULL ) { geometry->SetImageGeometry( isAnImageGeometry ); } } } void mitk::SlicedGeometry3D::ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ) { mitk::Geometry3D* geometry; unsigned int s; for ( s = 0; s < m_Slices; ++s ) { geometry = m_Geometry2Ds[s]; if ( geometry!=NULL ) { geometry->ChangeImageGeometryConsideringOriginOffset( isAnImageGeometry ); } } Superclass::ChangeImageGeometryConsideringOriginOffset( isAnImageGeometry ); } bool mitk::SlicedGeometry3D::IsValidSlice( int s ) const { return ((s >= 0) && (s < (int)m_Slices)); } void mitk::SlicedGeometry3D::SetReferenceGeometry( Geometry3D *referenceGeometry ) { m_ReferenceGeometry = referenceGeometry; std::vector::iterator it; for ( it = m_Geometry2Ds.begin(); it != m_Geometry2Ds.end(); ++it ) { (*it)->SetReferenceGeometry( referenceGeometry ); } } void mitk::SlicedGeometry3D::SetSpacing( const mitk::Vector3D &aSpacing ) { bool hasEvenlySpacedPlaneGeometry = false; mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; BoundingBox::BoundsArrayType bounds; assert(aSpacing[0]>0 && aSpacing[1]>0 && aSpacing[2]>0); // In case of evenly-spaced data: re-initialize instances of Geometry2D, // since the spacing influences them if ((m_EvenlySpaced) && (m_Geometry2Ds.size() > 0)) { mitk::Geometry2D::ConstPointer firstGeometry = m_Geometry2Ds[0].GetPointer(); const PlaneGeometry *planeGeometry = dynamic_cast< const PlaneGeometry * >( firstGeometry.GetPointer() ); if (planeGeometry != NULL ) { this->WorldToIndex( planeGeometry->GetOrigin(), origin ); this->WorldToIndex( planeGeometry->GetAxisVector(0), rightDV ); this->WorldToIndex( planeGeometry->GetAxisVector(1), bottomDV ); bounds = planeGeometry->GetBounds(); hasEvenlySpacedPlaneGeometry = true; } } Superclass::SetSpacing(aSpacing); mitk::Geometry2D::Pointer firstGeometry; // In case of evenly-spaced data: re-initialize instances of Geometry2D, // since the spacing influences them if ( hasEvenlySpacedPlaneGeometry ) { //create planeGeometry according to new spacing this->IndexToWorld( origin, origin ); this->IndexToWorld( rightDV, rightDV ); this->IndexToWorld( bottomDV, bottomDV ); mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->SetImageGeometry( this->GetImageGeometry() ); planeGeometry->SetReferenceGeometry( m_ReferenceGeometry ); planeGeometry->InitializeStandardPlane( rightDV.Get_vnl_vector(), bottomDV.Get_vnl_vector(), &m_Spacing ); planeGeometry->SetOrigin(origin); planeGeometry->SetBounds(bounds); firstGeometry = planeGeometry; } else if ( (m_EvenlySpaced) && (m_Geometry2Ds.size() > 0) ) { firstGeometry = m_Geometry2Ds[0].GetPointer(); } //clear and reserve Geometry2D::Pointer gnull=NULL; m_Geometry2Ds.assign(m_Slices, gnull); if ( m_Slices > 0 ) { m_Geometry2Ds[0] = firstGeometry; } this->Modified(); } void mitk::SlicedGeometry3D ::SetSliceNavigationController( SliceNavigationController *snc ) { m_SliceNavigationController = snc; } mitk::SliceNavigationController * mitk::SlicedGeometry3D::GetSliceNavigationController() { return m_SliceNavigationController; } void mitk::SlicedGeometry3D::SetEvenlySpaced(bool on) { if(m_EvenlySpaced!=on) { m_EvenlySpaced=on; this->Modified(); } } void mitk::SlicedGeometry3D ::SetDirectionVector( const mitk::Vector3D& directionVector ) { Vector3D newDir = directionVector; newDir.Normalize(); if ( newDir != m_DirectionVector ) { m_DirectionVector = newDir; this->Modified(); } } void mitk::SlicedGeometry3D::SetTimeBounds( const mitk::TimeBounds& timebounds ) { Superclass::SetTimeBounds( timebounds ); unsigned int s; for ( s = 0; s < m_Slices; ++s ) { if(m_Geometry2Ds[s].IsNotNull()) { m_Geometry2Ds[s]->SetTimeBounds( timebounds ); } } m_TimeBounds = timebounds; } mitk::AffineGeometryFrame3D::Pointer mitk::SlicedGeometry3D::Clone() const { Self::Pointer newGeometry = new SlicedGeometry3D(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::SlicedGeometry3D::PrintSelf( std::ostream& os, itk::Indent indent ) const { Superclass::PrintSelf(os,indent); os << indent << " EvenlySpaced: " << m_EvenlySpaced << std::endl; if ( m_EvenlySpaced ) { os << indent << " DirectionVector: " << m_DirectionVector << std::endl; } os << indent << " Slices: " << m_Slices << std::endl; os << std::endl; os << indent << " GetGeometry2D(0): "; if ( this->GetGeometry2D(0) == NULL ) { os << "NULL" << std::endl; } else { this->GetGeometry2D(0)->Print(os, indent); } } void mitk::SlicedGeometry3D::ExecuteOperation(Operation* operation) { switch ( operation->GetOperationType() ) { case OpNOTHING: break; case OpROTATE: if ( m_EvenlySpaced ) { // Need a reference frame to align the rotation if ( m_ReferenceGeometry ) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Save first slice Geometry2D::Pointer geometry2D = m_Geometry2Ds[0]; RotationOperation *rotOp = dynamic_cast< RotationOperation * >( operation ); // Generate a RotationOperation using the dataset center instead of // the supplied rotation center. This is necessary so that the rotated // zero-plane does not shift away. The supplied center is instead used // to adjust the slice stack afterwards. Point3D center = m_ReferenceGeometry->GetCenter(); RotationOperation centeredRotation( rotOp->GetOperationType(), center, rotOp->GetVectorOfRotation(), rotOp->GetAngleOfRotation() ); // Rotate first slice geometry2D->ExecuteOperation( ¢eredRotation ); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes( center, rotOp->GetCenterOfRotation() ); geometry2D->SetSpacing(this->GetSpacing()); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( rotOp->GetCenterOfRotation() ); m_SliceNavigationController->AdjustSliceStepperRange(); } Geometry3D::ExecuteOperation( ¢eredRotation ); } else { // we also have to consider the case, that there is no reference geometry available. if ( m_Geometry2Ds.size() > 0 ) { // Reach through to all slices in my container for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } // rotate overall geometry RotationOperation *rotOp = dynamic_cast< RotationOperation * >( operation ); Geometry3D::ExecuteOperation( rotOp); } } } else { // Reach through to all slices for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpORIENT: if ( m_EvenlySpaced ) { // get operation data PlaneOperation *planeOp = dynamic_cast< PlaneOperation * >( operation ); // Get first slice Geometry2D::Pointer geometry2D = m_Geometry2Ds[0]; PlaneGeometry *planeGeometry = dynamic_cast< PlaneGeometry * >( geometry2D.GetPointer() ); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation. If not all avaialble, stop here if ( !m_ReferenceGeometry || !planeGeometry || !planeOp ) { break; } // General Behavior: // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // // 1st Step: Reorient Normal Vector of first plane // - Point3D center = m_ReferenceGeometry->GetCenter(); + Point3D center = planeOp->GetPoint(); //m_ReferenceGeometry->GetCenter(); mitk::Vector3D currentNormal = planeGeometry->GetNormal(); mitk::Vector3D newNormal; if (planeOp->AreAxisDefined()) { // If planeOp was defined by one centerpoint and two axis vectors newNormal = CrossProduct(planeOp->GetAxisVec0(), planeOp->GetAxisVec1()); } else { // If planeOp was defined by one centerpoint and one normal vector newNormal = planeOp->GetNormal(); } // Get Rotation axis und angle currentNormal.Normalize(); newNormal.Normalize(); float rotationAngle = angle(currentNormal.Get_vnl_vector(),newNormal.Get_vnl_vector()); //MITK_INFO << rotationAngle; rotationAngle *= 180.0 / vnl_math::pi; // from rad to deg Vector3D rotationAxis = itk::CrossProduct( currentNormal, newNormal ); if (abs(rotationAngle-180) < mitk::eps ) { // current Normal and desired normal are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis should be ANY vector that is 90° to current Normal mitk::Vector3D helpNormal; helpNormal = currentNormal; helpNormal[0] += 1; helpNormal[1] -= 1; helpNormal[2] += 1; helpNormal.Normalize(); rotationAxis = itk::CrossProduct( helpNormal, currentNormal ); } RotationOperation centeredRotation( mitk::OpROTATE, center, rotationAxis, rotationAngle ); // Rotate first slice //MITK_INFO << "geometry2DMatrix before OP: " << geometry2D->GetMatrixColumn(0); //MITK_INFO << "opCenter: " << center << " opRotAxis: " << rotationAxis << "opRotAngle: " << rotationAngle; geometry2D->ExecuteOperation( ¢eredRotation ); //MITK_INFO << "geometry2DMatrix after OP: " << geometry2D->GetMatrixColumn(0); // Clear the slice stack and adjust it according to the center of // rotation and plane position (see documentation of ReinitializePlanes) this->ReinitializePlanes( center, planeOp->GetPoint() ); //MITK_INFO << "geometry2DMatrix after initPlanes: " << geometry2D->GetMatrixColumn(0); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( planeOp->GetPoint() ); m_SliceNavigationController->AdjustSliceStepperRange(); } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) Geometry3D::ExecuteOperation( ¢eredRotation ); // // 2nd step. If axis vectors were defined, rotate the plane around its normal to fit these // if (planeOp->AreAxisDefined()) { mitk::Vector3D vecAxixNew = planeOp->GetAxisVec0(); vecAxixNew.Normalize(); mitk::Vector3D VecAxisCurr = geometry2D->GetAxisVector(0); VecAxisCurr.Normalize(); float rotationAngle = angle(VecAxisCurr.Get_vnl_vector(),vecAxixNew.Get_vnl_vector()); rotationAngle = rotationAngle * 180 / PI; // Rad to Deg // we rotate around the normal of the plane, but we do not know, if we need to rotate clockwise // or anti-clockwise. So we rotate around the crossproduct of old and new Axisvector. // Since both axis vectors lie in the plane, the crossproduct is the planes normal or the negative planes normal rotationAxis = itk::CrossProduct( VecAxisCurr, vecAxixNew ); if (abs(rotationAngle-180) < mitk::eps ) { // current axisVec and desired axisVec are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis can be just plane Normal. (have to rotate by 180°) rotationAxis = newNormal; } // Perfom Rotation mitk::RotationOperation op(mitk::OpROTATE, center, rotationAxis, rotationAngle); geometry2D->ExecuteOperation( &op ); // Apply changes on first slice to whole slice stack this->ReinitializePlanes( center, planeOp->GetPoint() ); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( planeOp->GetPoint() ); m_SliceNavigationController->AdjustSliceStepperRange(); } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) Geometry3D::ExecuteOperation( &op ); } } else { // Reach through to all slices for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpRESTOREPLANEPOSITION: if ( m_EvenlySpaced ) { // Save first slice Geometry2D::Pointer geometry2D = m_Geometry2Ds[0]; PlaneGeometry* planeGeometry = dynamic_cast< PlaneGeometry * >( geometry2D.GetPointer() ); RestorePlanePositionOperation *restorePlaneOp = dynamic_cast< RestorePlanePositionOperation* >( operation ); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation if ( m_ReferenceGeometry && planeGeometry && restorePlaneOp ) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Rotate first slice geometry2D->ExecuteOperation( restorePlaneOp ); m_DirectionVector = restorePlaneOp->GetDirectionVector(); double centerOfRotationDistance = planeGeometry->SignedDistanceFromPlane( m_ReferenceGeometry->GetCenter() ); if ( centerOfRotationDistance > 0 ) { m_DirectionVector = m_DirectionVector; } else { m_DirectionVector = -m_DirectionVector; } Vector3D spacing = restorePlaneOp->GetSpacing(); Superclass::SetSpacing( spacing ); // /*Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above.*/ ScalarType directedExtent = fabs( m_ReferenceGeometry->GetExtentInMM( 0 ) * m_DirectionVector[0] ) + fabs( m_ReferenceGeometry->GetExtentInMM( 1 ) * m_DirectionVector[1] ) + fabs( m_ReferenceGeometry->GetExtentInMM( 2 ) * m_DirectionVector[2] ); if ( directedExtent >= spacing[2] ) { m_Slices = static_cast< unsigned int >(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } m_Geometry2Ds.assign( m_Slices, Geometry2D::Pointer( NULL ) ); if ( m_Slices > 0 ) { m_Geometry2Ds[0] = geometry2D; } m_SliceNavigationController->GetSlice()->SetSteps( m_Slices ); this->Modified(); //End Reinitialization if ( m_SliceNavigationController ) { m_SliceNavigationController->GetSlice()->SetPos( restorePlaneOp->GetPos() ); m_SliceNavigationController->AdjustSliceStepperRange(); } Geometry3D::ExecuteOperation(restorePlaneOp); } } else { // Reach through to all slices for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; } this->Modified(); } diff --git a/Core/Code/Testing/mitkSliceNavigationControllerTest.cpp b/Core/Code/Testing/mitkSliceNavigationControllerTest.cpp index 61de2bf336..672a264b3f 100644 --- a/Core/Code/Testing/mitkSliceNavigationControllerTest.cpp +++ b/Core/Code/Testing/mitkSliceNavigationControllerTest.cpp @@ -1,555 +1,588 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSliceNavigationController.h" #include "mitkPlaneGeometry.h" #include "mitkSlicedGeometry3D.h" #include "mitkTimeSlicedGeometry.h" #include "mitkRotationOperation.h" #include "mitkInteractionConst.h" #include "mitkPlanePositionManager.h" #include "mitkTestingMacros.h" #include "mitkGetModuleContext.h" #include #include #include bool operator==(const mitk::Geometry3D & left, const mitk::Geometry3D & right) { mitk::BoundingBox::BoundsArrayType leftbounds, rightbounds; leftbounds =left.GetBounds(); rightbounds=right.GetBounds(); unsigned int i; for(i=0;i<6;++i) if(mitk::Equal(leftbounds[i],rightbounds[i])==false) return false; const mitk::Geometry3D::TransformType::MatrixType & leftmatrix = left.GetIndexToWorldTransform()->GetMatrix(); const mitk::Geometry3D::TransformType::MatrixType & rightmatrix = right.GetIndexToWorldTransform()->GetMatrix(); unsigned int j; for(i=0;i<3;++i) { const mitk::Geometry3D::TransformType::MatrixType::ValueType* leftvector = leftmatrix[i]; const mitk::Geometry3D::TransformType::MatrixType::ValueType* rightvector = rightmatrix[i]; for(j=0;j<3;++j) if(mitk::Equal(leftvector[i],rightvector[i])==false) return false; } const mitk::Geometry3D::TransformType::OffsetType & leftoffset = left.GetIndexToWorldTransform()->GetOffset(); const mitk::Geometry3D::TransformType::OffsetType & rightoffset = right.GetIndexToWorldTransform()->GetOffset(); for(i=0;i<3;++i) if(mitk::Equal(leftoffset[i],rightoffset[i])==false) return false; return true; } int compareGeometry(const mitk::Geometry3D & geometry, const mitk::ScalarType& width, const mitk::ScalarType& height, const mitk::ScalarType& numSlices, const mitk::ScalarType& widthInMM, const mitk::ScalarType& heightInMM, const mitk::ScalarType& thicknessInMM, const mitk::Point3D& cornerpoint0, const mitk::Vector3D& right, const mitk::Vector3D& bottom, const mitk::Vector3D& normal) { std::cout << "Testing width, height and thickness (in units): "; if((mitk::Equal(geometry.GetExtent(0),width)==false) || (mitk::Equal(geometry.GetExtent(1),height)==false) || (mitk::Equal(geometry.GetExtent(2),numSlices)==false) ) { std::cout<<"[FAILED]"<GetCornerPoint(0), cornerpoint0)==false) { std::cout<<"[FAILED]"<SetInputWorldGeometry(geometry); std::cout<<"[PASSED]"<SetViewDirection(mitk::SliceNavigationController::Axial); std::cout<<"[PASSED]"<Update(); std::cout<<"[PASSED]"<GetCreatedWorldGeometry(), width, height, numSlices, widthInMM, heightInMM, thicknessInMM*numSlices, axialcornerpoint0, right, bottom*(-1.0), normal*(-1.0)); if(result!=EXIT_SUCCESS) { std::cout<<"[FAILED]"<SetViewDirection(mitk::SliceNavigationController::Frontal); std::cout<<"[PASSED]"<Update(); std::cout<<"[PASSED]"<GetAxisVector(1)*(+0.5/geometry->GetExtent(1)); result = compareGeometry(*sliceCtrl->GetCreatedWorldGeometry(), width, numSlices, height, widthInMM, thicknessInMM*numSlices, heightInMM, frontalcornerpoint0, right, normal, bottom); if(result!=EXIT_SUCCESS) { std::cout<<"[FAILED]"<SetViewDirection(mitk::SliceNavigationController::Sagittal); std::cout<<"[PASSED]"<Update(); std::cout<<"[PASSED]"<GetAxisVector(0)*(+0.5/geometry->GetExtent(0)); result = compareGeometry(*sliceCtrl->GetCreatedWorldGeometry(), height, numSlices, width, heightInMM, thicknessInMM*numSlices, widthInMM, sagittalcornerpoint0, bottom, normal, right); if(result!=EXIT_SUCCESS) { std::cout<<"[FAILED]"<InitializeStandardPlane(right.Get_vnl_vector(), bottom.Get_vnl_vector(), &spacing); planegeometry->SetOrigin(origin); //Create SlicedGeometry3D out of planeGeometry mitk::SlicedGeometry3D::Pointer slicedgeometry1 = mitk::SlicedGeometry3D::New(); unsigned int numSlices = 20; slicedgeometry1->InitializeEvenlySpaced(planegeometry, thicknessInMM, numSlices, false); //Create another slicedgeo which will be rotated mitk::SlicedGeometry3D::Pointer slicedgeometry2 = mitk::SlicedGeometry3D::New(); slicedgeometry2->InitializeEvenlySpaced(planegeometry, thicknessInMM, numSlices, false); //Create geo3D as reference mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetBounds(slicedgeometry1->GetBounds()); geometry->SetIndexToWorldTransform(slicedgeometry1->GetIndexToWorldTransform()); //Initialize planes for (int i=0; i < (int)numSlices; i++) { mitk::PlaneGeometry::Pointer geo2d = mitk::PlaneGeometry::New(); geo2d->Initialize(); geo2d->SetReferenceGeometry(geometry); slicedgeometry1->SetGeometry2D(geo2d,i); } for (int i=0; i < (int)numSlices; i++) { mitk::PlaneGeometry::Pointer geo2d = mitk::PlaneGeometry::New(); geo2d->Initialize(); geo2d->SetReferenceGeometry(geometry); slicedgeometry2->SetGeometry2D(geo2d,i); } slicedgeometry1->SetReferenceGeometry(geometry); slicedgeometry2->SetReferenceGeometry(geometry); //Create SNC mitk::SliceNavigationController::Pointer sliceCtrl1 = mitk::SliceNavigationController::New(); sliceCtrl1->SetInputWorldGeometry(slicedgeometry1); sliceCtrl1->Update(); mitk::SliceNavigationController::Pointer sliceCtrl2 = mitk::SliceNavigationController::New(); sliceCtrl2->SetInputWorldGeometry(slicedgeometry2); sliceCtrl2->Update(); slicedgeometry1->SetSliceNavigationController(sliceCtrl1); slicedgeometry2->SetSliceNavigationController(sliceCtrl2); - - // Now reorient slices - mitk::Point3D newCenter; + // Whats current geometry? + MITK_INFO << "center: " << sliceCtrl1->GetCurrentPlaneGeometry()->GetCenter(); + MITK_INFO << "normal: " << sliceCtrl1->GetCurrentPlaneGeometry()->GetNormal(); + MITK_INFO << "origin: " << sliceCtrl1->GetCurrentPlaneGeometry()->GetOrigin(); + MITK_INFO << "axis0 : " << sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(0); + MITK_INFO << "aixs1 : " << sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(1); + + // + // Now reorient slices (ONE POINT, ONE NORMAL) + mitk::Point3D oldCenter, oldOrigin; + mitk::Vector3D oldAxis0, oldAxis1; + oldCenter = sliceCtrl1->GetCurrentPlaneGeometry()->GetCenter(); + oldOrigin = sliceCtrl1->GetCurrentPlaneGeometry()->GetOrigin(); + oldAxis0 = sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(0); + oldAxis1 = sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(1); + + mitk::Point3D orientCenter; + mitk::Vector3D orientNormal; + orientCenter = oldCenter; + mitk::FillVector3D(orientNormal, 0.3, 0.1, 0.8); + orientNormal.Normalize(); + sliceCtrl1->ReorientSlices(orientCenter,orientNormal); + + mitk::Point3D newCenter, newOrigin; + mitk::Vector3D newNormal; newCenter = sliceCtrl1->GetCurrentPlaneGeometry()->GetCenter(); - mitk::Vector3D newNormal, newAxis, curNormal, curAxis; - mitk::FillVector3D(newNormal, 0.0, 0.0, 1.0); - mitk::FillVector3D(newAxis, 1.0, 0.0, 0.0); - - sliceCtrl1->ReorientSlices(newCenter,newNormal, newAxis); + newOrigin = sliceCtrl1->GetCurrentPlaneGeometry()->GetOrigin(); + newNormal = sliceCtrl1->GetCurrentPlaneGeometry()->GetNormal(); + newNormal.Normalize(); - - curNormal = sliceCtrl1->GetCurrentPlaneGeometry()->GetNormal(); - curAxis = sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(0); - curNormal.Normalize(); - curAxis.Normalize(); - MITK_INFO << curNormal; - MITK_INFO << curAxis; + itk::Index<3> orientCenterIdx; + itk::Index<3> newCenterIdx; + sliceCtrl1->GetCurrentGeometry3D()->WorldToIndex(orientCenter, orientCenterIdx); + sliceCtrl1->GetCurrentGeometry3D()->WorldToIndex(newCenter, newCenterIdx); if ( - ( !mitk::Equal(curNormal, newNormal) ) || - ( !mitk::Equal(curAxis, newAxis) ) + (newCenterIdx != orientCenterIdx) || + ( !mitk::Equal(orientNormal, newNormal) ) ) { - MITK_INFO << "Reorient Planes not working as it should"; + MITK_INFO << "Reorient Planes (1 point, 1 vector) not working as it should"; + MITK_INFO << "orientCenterIdx: " << orientCenterIdx; + MITK_INFO << "newCenterIdx: " << newCenterIdx; + MITK_INFO << "orientNormal: " << orientNormal; + MITK_INFO << "newNormal: " << newNormal; return EXIT_FAILURE; } - // Now again with different values - mitk::FillVector3D(newNormal, 1.0, 0.0, 0.0); - mitk::FillVector3D(newAxis, 0.0, 0.0, 1.0); - sliceCtrl1->ReorientSlices(newCenter,newNormal, newAxis); - curNormal = sliceCtrl1->GetCurrentPlaneGeometry()->GetNormal(); - curAxis = sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(0); - curNormal.Normalize(); - curAxis.Normalize(); - MITK_INFO << curNormal; - MITK_INFO << curAxis; + // + // Now reorient slices (center, vec0, vec1 ) + mitk::Vector3D orientAxis0, orientAxis1, newAxis0, newAxis1; + mitk::FillVector3D(orientAxis0, 1.0, 0.0, 0.0); + mitk::FillVector3D(orientAxis1, 0.0, 1.0, 0.0); + + orientAxis0.Normalize(); + orientAxis1.Normalize(); + + sliceCtrl1->ReorientSlices(orientCenter,orientAxis0, orientAxis1); + + newAxis0 = sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(0); + newAxis1 = sliceCtrl1->GetCurrentPlaneGeometry()->GetAxisVector(1); + newCenter = sliceCtrl1->GetCurrentPlaneGeometry()->GetCenter(); + newAxis0.Normalize(); + newAxis1.Normalize(); + + sliceCtrl1->GetCurrentGeometry3D()->WorldToIndex(orientCenter, orientCenterIdx); + sliceCtrl1->GetCurrentGeometry3D()->WorldToIndex(newCenter, newCenterIdx); if ( - ( !mitk::Equal(curNormal, newNormal) ) || - ( !mitk::Equal(curAxis, newAxis) ) + (newCenterIdx != orientCenterIdx) || + ( !mitk::Equal(orientAxis0, newAxis0) ) || + ( !mitk::Equal(orientAxis1, newAxis1) ) ) { - MITK_INFO << "Reorient Planes not working as it should"; + MITK_INFO << "Reorient Planes (point, vec, vec) not working as it should"; + MITK_INFO << "orientCenterIdx: " << orientCenterIdx; + MITK_INFO << "newCenterIdx: " << newCenterIdx; + MITK_INFO << "orientAxis0: " << orientAxis0; + MITK_INFO << "newAxis0: " << newAxis0; + MITK_INFO << "orientAxis1: " << orientAxis1; + MITK_INFO << "newAxis1: " << newAxis1; return EXIT_FAILURE; } - - - - return EXIT_SUCCESS; } int testRestorePlanePostionOperation () { //Create PlaneGeometry mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; mitk::Vector3D right, bottom, normal; mitk::ScalarType width, height; mitk::ScalarType widthInMM, heightInMM, thicknessInMM; width = 100; widthInMM = width; height = 200; heightInMM = height; thicknessInMM = 1.5; mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); mitk::FillVector3D(normal, 0, 0, thicknessInMM); mitk::Vector3D spacing; normal.Normalize(); normal *= thicknessInMM; mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right.Get_vnl_vector(), bottom.Get_vnl_vector(), &spacing); planegeometry->SetOrigin(origin); //Create SlicedGeometry3D out of planeGeometry mitk::SlicedGeometry3D::Pointer slicedgeometry1 = mitk::SlicedGeometry3D::New(); unsigned int numSlices = 300; slicedgeometry1->InitializeEvenlySpaced(planegeometry, thicknessInMM, numSlices, false); //Create another slicedgeo which will be rotated mitk::SlicedGeometry3D::Pointer slicedgeometry2 = mitk::SlicedGeometry3D::New(); slicedgeometry2->InitializeEvenlySpaced(planegeometry, thicknessInMM, numSlices, false); //Create geo3D as reference mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->SetBounds(slicedgeometry1->GetBounds()); geometry->SetIndexToWorldTransform(slicedgeometry1->GetIndexToWorldTransform()); //Initialize planes for (int i=0; i < (int)numSlices; i++) { mitk::PlaneGeometry::Pointer geo2d = mitk::PlaneGeometry::New(); geo2d->Initialize(); geo2d->SetReferenceGeometry(geometry); slicedgeometry1->SetGeometry2D(geo2d,i); } for (int i=0; i < (int)numSlices; i++) { mitk::PlaneGeometry::Pointer geo2d = mitk::PlaneGeometry::New(); geo2d->Initialize(); geo2d->SetReferenceGeometry(geometry); slicedgeometry2->SetGeometry2D(geo2d,i); } slicedgeometry1->SetReferenceGeometry(geometry); slicedgeometry2->SetReferenceGeometry(geometry); //Create SNC mitk::SliceNavigationController::Pointer sliceCtrl1 = mitk::SliceNavigationController::New(); sliceCtrl1->SetInputWorldGeometry(slicedgeometry1); sliceCtrl1->Update(); mitk::SliceNavigationController::Pointer sliceCtrl2 = mitk::SliceNavigationController::New(); sliceCtrl2->SetInputWorldGeometry(slicedgeometry2); sliceCtrl2->Update(); slicedgeometry1->SetSliceNavigationController(sliceCtrl1); slicedgeometry2->SetSliceNavigationController(sliceCtrl2); //Rotate slicedgeo2 double angle = 63.84; mitk::Vector3D rotationVector; mitk::FillVector3D( rotationVector, 0.5, 0.95, 0.23 ); mitk::Point3D center = slicedgeometry2->GetCenter(); mitk::RotationOperation* op = new mitk::RotationOperation( mitk::OpROTATE, center, rotationVector, angle ); slicedgeometry2->ExecuteOperation(op); sliceCtrl2->Update(); mitk::ServiceReference serviceRef = mitk::GetModuleContext()->GetServiceReference(); mitk::PlanePositionManagerService* service = dynamic_cast(mitk::GetModuleContext()->GetService(serviceRef)); service->AddNewPlanePosition(slicedgeometry2->GetGeometry2D(0), 178); sliceCtrl1->ExecuteOperation(service->GetPlanePosition(0)); sliceCtrl1->Update(); mitk::Geometry2D* planeRotated = slicedgeometry2->GetGeometry2D(178); mitk::Geometry2D* planeRestored = dynamic_cast< const mitk::SlicedGeometry3D*>(sliceCtrl1->GetCurrentGeometry3D())->GetGeometry2D(178); bool error = ( !mitk::MatrixEqualElementWise(planeRotated->GetIndexToWorldTransform()->GetMatrix(), planeRestored->GetIndexToWorldTransform()->GetMatrix()) || !mitk::Equal(planeRotated->GetOrigin(), planeRestored->GetOrigin()) || !mitk::Equal(planeRotated->GetSpacing(), planeRestored->GetSpacing()) || !mitk::Equal(slicedgeometry2->GetDirectionVector(), dynamic_cast< const mitk::SlicedGeometry3D*>(sliceCtrl1->GetCurrentGeometry3D())->GetDirectionVector()) || !mitk::Equal(slicedgeometry2->GetSlices(), dynamic_cast< const mitk::SlicedGeometry3D*>(sliceCtrl1->GetCurrentGeometry3D())->GetSlices()) || !mitk::MatrixEqualElementWise(slicedgeometry2->GetIndexToWorldTransform()->GetMatrix(), dynamic_cast< const mitk::SlicedGeometry3D*>(sliceCtrl1->GetCurrentGeometry3D())->GetIndexToWorldTransform()->GetMatrix()) ); if (error) { MITK_TEST_CONDITION(mitk::MatrixEqualElementWise(planeRotated->GetIndexToWorldTransform()->GetMatrix(), planeRestored->GetIndexToWorldTransform()->GetMatrix()),"Testing for IndexToWorld"); MITK_INFO<<"Rotated: \n"<GetIndexToWorldTransform()->GetMatrix()<<" Restored: \n"<GetIndexToWorldTransform()->GetMatrix(); MITK_TEST_CONDITION(mitk::Equal(planeRotated->GetOrigin(), planeRestored->GetOrigin()),"Testing for origin"); MITK_INFO<<"Rotated: \n"<GetOrigin()<<" Restored: \n"<GetOrigin(); MITK_TEST_CONDITION(mitk::Equal(planeRotated->GetSpacing(), planeRestored->GetSpacing()),"Testing for spacing"); MITK_INFO<<"Rotated: \n"<GetSpacing()<<" Restored: \n"<GetSpacing(); MITK_TEST_CONDITION(mitk::Equal(slicedgeometry2->GetDirectionVector(), dynamic_cast< const mitk::SlicedGeometry3D*>(sliceCtrl1->GetCurrentGeometry3D())->GetDirectionVector()),"Testing for directionvector"); MITK_INFO<<"Rotated: \n"<GetDirectionVector()<<" Restored: \n"<(sliceCtrl1->GetCurrentGeometry3D())->GetDirectionVector(); MITK_TEST_CONDITION(mitk::Equal(slicedgeometry2->GetSlices(), dynamic_cast< const mitk::SlicedGeometry3D*>(sliceCtrl1->GetCurrentGeometry3D())->GetSlices()),"Testing for numslices"); MITK_INFO<<"Rotated: \n"<GetSlices()<<" Restored: \n"<(sliceCtrl1->GetCurrentGeometry3D())->GetSlices(); MITK_TEST_CONDITION(mitk::MatrixEqualElementWise(slicedgeometry2->GetIndexToWorldTransform()->GetMatrix(), dynamic_cast< const mitk::SlicedGeometry3D*>(sliceCtrl1->GetCurrentGeometry3D())->GetIndexToWorldTransform()->GetMatrix()),"Testing for IndexToWorld"); MITK_INFO<<"Rotated: \n"<GetIndexToWorldTransform()->GetMatrix()<<" Restored: \n"<(sliceCtrl1->GetCurrentGeometry3D())->GetIndexToWorldTransform()->GetMatrix(); return EXIT_FAILURE; } return EXIT_SUCCESS; } int mitkSliceNavigationControllerTest(int /*argc*/, char* /*argv*/[]) { int result=EXIT_FAILURE; std::cout << "Creating and initializing a PlaneGeometry: "; mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; mitk::Vector3D right, bottom, normal; mitk::ScalarType width, height; mitk::ScalarType widthInMM, heightInMM, thicknessInMM; width = 100; widthInMM = width; height = 200; heightInMM = height; thicknessInMM = 1.5; // mitk::FillVector3D(origin, 0, 0, thicknessInMM*0.5); mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); mitk::FillVector3D(normal, 0, 0, thicknessInMM); mitk::Vector3D spacing; normal.Normalize(); normal *= thicknessInMM; mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right.Get_vnl_vector(), bottom.Get_vnl_vector(), &spacing); planegeometry->SetOrigin(origin); std::cout<<"[PASSED]"<InitializeEvenlySpaced(planegeometry, thicknessInMM, numSlices, false); std::cout<<"[PASSED]"<SetBounds(slicedgeometry->GetBounds()); geometry->SetIndexToWorldTransform(slicedgeometry->GetIndexToWorldTransform()); std::cout<<"[PASSED]"<GetCornerPoint(0); result=testGeometry(geometry, width, height, numSlices, widthInMM, heightInMM, thicknessInMM, cornerpoint0, right, bottom, normal); if(result!=EXIT_SUCCESS) return result; mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); transform->SetMatrix(geometry->GetIndexToWorldTransform()->GetMatrix()); mitk::BoundingBox::Pointer boundingbox = geometry->CalculateBoundingBoxRelativeToTransform(transform); geometry->SetBounds(boundingbox->GetBounds()); cornerpoint0 = geometry->GetCornerPoint(0); result=testGeometry(geometry, width, height, numSlices, widthInMM, heightInMM, thicknessInMM, cornerpoint0, right, bottom, normal); if(result!=EXIT_SUCCESS) return result; std::cout << "Changing the IndexToWorldTransform of the geometry to a rotated version by SetIndexToWorldTransform() (keep cornerpoint0): "; transform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = planegeometry->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::VnlVector axis(3); mitk::FillVector3D(axis, 1.0, 1.0, 1.0); axis.normalize(); vnl_quaternion rotation(axis, 0.223); vnlmatrix = rotation.rotation_matrix_transpose()*vnlmatrix; mitk::Matrix3D matrix; matrix = vnlmatrix; transform->SetMatrix(matrix); transform->SetOffset(cornerpoint0.GetVectorFromOrigin()); right.Set_vnl_vector( rotation.rotation_matrix_transpose()*right.Get_vnl_vector() ); bottom.Set_vnl_vector(rotation.rotation_matrix_transpose()*bottom.Get_vnl_vector()); normal.Set_vnl_vector(rotation.rotation_matrix_transpose()*normal.Get_vnl_vector()); geometry->SetIndexToWorldTransform(transform); std::cout<<"[PASSED]"<GetCornerPoint(0); result = testGeometry(geometry, width, height, numSlices, widthInMM, heightInMM, thicknessInMM, cornerpoint0, right, bottom, normal); if(result!=EXIT_SUCCESS) return result; //Testing Execute RestorePlanePositionOperation result = testRestorePlanePostionOperation(); if(result!=EXIT_SUCCESS) return result; //Testing ReorientPlanes result = testReorientPlanes(); if(result!=EXIT_SUCCESS) return result; std::cout<<"[TEST DONE]"<