diff --git a/Modules/PhotoacousticsAlgorithms/include/mitkBeamformingSettings.h b/Modules/PhotoacousticsAlgorithms/include/mitkBeamformingSettings.h index cddcf8d7fe..e53a234980 100644 --- a/Modules/PhotoacousticsAlgorithms/include/mitkBeamformingSettings.h +++ b/Modules/PhotoacousticsAlgorithms/include/mitkBeamformingSettings.h @@ -1,218 +1,242 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITK_BEAMFORMING_SETTINGS #define MITK_BEAMFORMING_SETTINGS #include #include #include #include namespace mitk { /*! * \brief Class holding the configuration data for the beamforming filters mitk::BeamformingFilter and mitk::PhotoacousticOCLBeamformingFilter * * A detailed description can be seen below. All parameters should be set manually for successfull beamforming. */ class MITKPHOTOACOUSTICSALGORITHMS_EXPORT BeamformingSettings : public itk::Object { public: mitkClassMacroItkParent(BeamformingSettings, itk::Object); itkCloneMacro(Self); /** \brief Available delay calculation methods: * - Spherical delay for best results. * - DEPRECATED quadratic Taylor approximation for slightly faster results with hardly any quality loss. */ enum DelayCalc { QuadApprox, Spherical }; /** \brief Available apodization functions: * - Hamming function. * - Von-Hann function. * - Box function. */ enum Apodization { Hamm, Hann, Box }; /** \brief Available beamforming algorithms: * - DAS (Delay and sum). * - DMAS (Delay multiply and sum). */ enum BeamformingAlgorithm { DMAS, DAS, sDMAS }; + /** \brief Available geometries for Probes: + * - Linear + * - Concave + */ + enum ProbeGeometry { Linear, Concave}; + itkGetConstMacro(PitchInMeters, float); itkGetConstMacro(SpeedOfSound, float); itkGetConstMacro(TimeSpacing, float); itkGetConstMacro(Angle, float); itkGetConstMacro(IsPhotoacousticImage, bool); itkGetConstMacro(TransducerElements, unsigned int); itkGetConstMacro(SamplesPerLine, unsigned int); itkGetConstMacro(ReconstructionLines, unsigned int); itkGetConstMacro(InputDim, const unsigned int*); itkGetConstMacro(UseGPU, bool); itkGetConstMacro(GPUBatchSize, unsigned int); itkGetConstMacro(DelayCalculationMethod, DelayCalc); itkGetConstMacro(ApodizationFunction, const float*); itkGetConstMacro(Apod, Apodization); itkGetConstMacro(ApodizationArraySize, int); itkGetConstMacro(Algorithm, BeamformingAlgorithm); itkGetConstMacro(ReconstructionDepth, float); + itkGetConstMacro(Geometry, ProbeGeometry); + itkGetConstMacro(ProbeRadius, float); /** \brief function for mitk::PhotoacousticOCLBeamformingFilter to check whether buffers need to be updated * this method only checks parameters relevant for the openCL implementation */ static bool SettingsChangedOpenCL(const BeamformingSettings::Pointer lhs, const BeamformingSettings::Pointer rhs) { return !((abs(lhs->GetAngle() - rhs->GetAngle()) < 0.01f) && // 0.01 degree error margin (lhs->GetApod() == rhs->GetApod()) && (lhs->GetDelayCalculationMethod() == rhs->GetDelayCalculationMethod()) && + (lhs->GetGeometry() == rhs->GetGeometry()) && + (abs(lhs->GetProbeRadius() - rhs->GetProbeRadius()) < 0.001f) && (lhs->GetIsPhotoacousticImage() == rhs->GetIsPhotoacousticImage()) && (abs(lhs->GetPitchInMeters() - rhs->GetPitchInMeters()) < 0.000001f) && // 0.0001 mm error margin (lhs->GetReconstructionLines() == rhs->GetReconstructionLines()) && (lhs->GetSamplesPerLine() == rhs->GetSamplesPerLine()) && (lhs->GetReconstructionDepth() == rhs->GetReconstructionDepth()) && (abs(lhs->GetSpeedOfSound() - rhs->GetSpeedOfSound()) < 0.01f) && (abs(lhs->GetTimeSpacing() - rhs->GetTimeSpacing()) < 0.00000000001f) && //0.01 ns error margin (lhs->GetTransducerElements() == rhs->GetTransducerElements())); } static Pointer New(float pitchInMeters, float speedOfSound, float timeSpacing, float angle, bool isPhotoacousticImage, unsigned int samplesPerLine, unsigned int reconstructionLines, unsigned int* inputDim, float reconstructionDepth, bool useGPU, unsigned int GPUBatchSize, DelayCalc delayCalculationMethod, Apodization apod, unsigned int apodizationArraySize, - BeamformingAlgorithm algorithm) + BeamformingAlgorithm algorithm, + ProbeGeometry geometry, + float probeRadius) { Pointer smartPtr = new BeamformingSettings(pitchInMeters, speedOfSound, timeSpacing, angle, isPhotoacousticImage, samplesPerLine, reconstructionLines, inputDim, reconstructionDepth, useGPU, GPUBatchSize, delayCalculationMethod, apod, apodizationArraySize, - algorithm); + algorithm, + geometry, + probeRadius); smartPtr->UnRegister(); return smartPtr; } protected: /** */ BeamformingSettings(float pitchInMeters, float speedOfSound, float timeSpacing, float angle, bool isPhotoacousticImage, unsigned int samplesPerLine, unsigned int reconstructionLines, unsigned int* inputDim, float reconstructionDepth, bool useGPU, unsigned int GPUBatchSize, DelayCalc delayCalculationMethod, Apodization apod, unsigned int apodizationArraySize, - BeamformingAlgorithm algorithm + BeamformingAlgorithm algorithm, + ProbeGeometry geometry, + float probeRadius ); ~BeamformingSettings(); /** \brief Pitch of the used transducer in [m]. */ float m_PitchInMeters; /** \brief Speed of sound in the used medium in [m/s]. */ float m_SpeedOfSound; /** \brief The time spacing of the input image */ float m_TimeSpacing; // [s] /** \brief The angle of the transducer elements */ float m_Angle; /** \brief Flag whether processed image is a photoacoustic image or an ultrasound image */ bool m_IsPhotoacousticImage; /** \brief How many transducer elements the used transducer had. */ unsigned int m_TransducerElements; /** \brief How many vertical samples should be used in the final image. */ unsigned int m_SamplesPerLine; /** \brief How many lines should be reconstructed in the final image. */ unsigned int m_ReconstructionLines; /** \brief Sets the dimensions of the inputImage. */ const unsigned int* m_InputDim; /** \brief The Depth up to which the filter should reconstruct the image [m] */ float m_ReconstructionDepth; /** \brief Decides whether GPU computing should be used */ bool m_UseGPU; unsigned int m_GPUBatchSize; /** \brief Sets the amount of image slices in batches when GPU is used */ /** \brief Sets how the delays for beamforming should be calculated. */ DelayCalc m_DelayCalculationMethod; const float* m_ApodizationFunction; /** \brief Sets the used apodization function. */ Apodization m_Apod; /** \brief Sets the resolution of the apodization array (must be greater than 0). */ int m_ApodizationArraySize; /** \brief Sets the used beamforming algorithm. */ BeamformingAlgorithm m_Algorithm; + + /** \brief Sets the used probe geometry + */ + ProbeGeometry m_Geometry; + + /** \brief Sets the radius of the curved probe + */ + float m_ProbeRadius; }; } #endif //MITK_BEAMFORMING_SETTINGS diff --git a/Modules/PhotoacousticsAlgorithms/source/filters/mitkBeamformingSettings.cpp b/Modules/PhotoacousticsAlgorithms/source/filters/mitkBeamformingSettings.cpp index 7508605611..681cac6f14 100644 --- a/Modules/PhotoacousticsAlgorithms/source/filters/mitkBeamformingSettings.cpp +++ b/Modules/PhotoacousticsAlgorithms/source/filters/mitkBeamformingSettings.cpp @@ -1,96 +1,100 @@ /*=================================================================== mitkBeamformingSettings The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkBeamformingSettings.h" #include "mitkBeamformingUtils.h" #include "itkMutexLock.h" mitk::BeamformingSettings::BeamformingSettings(float pitchInMeters, float speedOfSound, float timeSpacing, float angle, bool isPhotoacousticImage, unsigned int samplesPerLine, unsigned int reconstructionLines, unsigned int* inputDim, float reconstructionDepth, bool useGPU, unsigned int GPUBatchSize, DelayCalc delayCalculationMethod, Apodization apod, unsigned int apodizationArraySize, - BeamformingAlgorithm algorithm + BeamformingAlgorithm algorithm, + ProbeGeometry geometry, + float probeRadius ) : m_PitchInMeters(pitchInMeters), m_SpeedOfSound(speedOfSound), m_TimeSpacing(timeSpacing), m_Angle(angle), m_IsPhotoacousticImage(isPhotoacousticImage), m_SamplesPerLine(samplesPerLine), m_ReconstructionLines(reconstructionLines), m_ReconstructionDepth(reconstructionDepth), m_UseGPU(useGPU), m_GPUBatchSize(GPUBatchSize), m_DelayCalculationMethod(delayCalculationMethod), m_Apod(apod), m_ApodizationArraySize(apodizationArraySize), - m_Algorithm(algorithm) + m_Algorithm(algorithm), + m_Geometry(geometry), + m_ProbeRadius(probeRadius) { if (inputDim == nullptr) { MITK_ERROR << "No input dimension given."; mitkThrow() << "No input dimension given."; } switch (GetApod()) { case BeamformingSettings::Apodization::Hann: m_ApodizationFunction = mitk::BeamformingUtils::VonHannFunction(GetApodizationArraySize()); break; case BeamformingSettings::Apodization::Hamm: m_ApodizationFunction = mitk::BeamformingUtils::HammFunction(GetApodizationArraySize()); break; case BeamformingSettings::Apodization::Box: default: m_ApodizationFunction = mitk::BeamformingUtils::BoxFunction(GetApodizationArraySize()); break; } m_InputDim = new unsigned int[3]{ inputDim[0], inputDim[1], inputDim[2] }; m_TransducerElements = m_InputDim[0]; } mitk::BeamformingSettings::~BeamformingSettings() { MITK_INFO << "Destructing beamforming settings..."; //Free memory if (m_ApodizationFunction != nullptr) { MITK_INFO << "Deleting apodization function..."; delete[] m_ApodizationFunction; MITK_INFO << "Deleting apodization function...[Done]"; } if (m_InputDim != nullptr) { MITK_INFO << "Deleting input dim..."; delete[] m_InputDim; MITK_INFO << "Deleting input dim...[Done]"; } MITK_INFO << "Destructing beamforming settings...[Done]"; } diff --git a/Modules/PhotoacousticsAlgorithms/source/utils/mitkPhotoacousticFilterService.cpp b/Modules/PhotoacousticsAlgorithms/source/utils/mitkPhotoacousticFilterService.cpp index eb3940e9cc..ddcfed7aa4 100644 --- a/Modules/PhotoacousticsAlgorithms/source/utils/mitkPhotoacousticFilterService.cpp +++ b/Modules/PhotoacousticsAlgorithms/source/utils/mitkPhotoacousticFilterService.cpp @@ -1,307 +1,306 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPhotoacousticFilterService.h" #include "mitkITKImageImport.h" #include #include #include "./OpenCLFilter/mitkPhotoacousticBModeFilter.h" #include "mitkConvert2Dto3DImageFilter.h" #include #include "../ITKFilter/ITKUltrasound/itkBModeImageFilter.h" #include "../ITKFilter/itkPhotoacousticBModeImageFilter.h" #include // itk dependencies #include "itkImage.h" #include "itkResampleImageFilter.h" #include "itkCastImageFilter.h" #include "itkCropImageFilter.h" #include "itkRescaleIntensityImageFilter.h" #include "itkIntensityWindowingImageFilter.h" #include #include "itkBSplineInterpolateImageFunction.h" #include // needed itk image filters #include "mitkImageCast.h" mitk::PhotoacousticFilterService::PhotoacousticFilterService() { MITK_INFO << "[PhotoacousticFilterService] created filter service"; } mitk::PhotoacousticFilterService::~PhotoacousticFilterService() { MITK_INFO << "[PhotoacousticFilterService] destructed filter service"; } mitk::Image::Pointer mitk::PhotoacousticFilterService::ApplyBmodeFilter( mitk::Image::Pointer inputImage, BModeMethod method, bool UseLogFilter) { // the image needs to be of floating point type for the envelope filter to work; the casting is done automatically by the CastToItkImage typedef itk::Image< float, 3 > itkFloatImageType; auto floatImage = ConvertToFloat(inputImage); if (method == BModeMethod::Abs) { PhotoacousticBModeFilter::Pointer filter = PhotoacousticBModeFilter::New(); filter->UseLogFilter(UseLogFilter); filter->SetInput(floatImage); filter->Update(); return filter->GetOutput(); } typedef itk::BModeImageFilter < itkFloatImageType, itkFloatImageType > BModeFilterType; BModeFilterType::Pointer bModeFilter = BModeFilterType::New(); // LogFilter typedef itk::PhotoacousticBModeImageFilter < itkFloatImageType, itkFloatImageType > PhotoacousticBModeImageFilter; PhotoacousticBModeImageFilter::Pointer photoacousticBModeFilter = PhotoacousticBModeImageFilter::New(); // No LogFilter typedef itk::ResampleImageFilter < itkFloatImageType, itkFloatImageType > ResampleImageFilter; ResampleImageFilter::Pointer resampleImageFilter = ResampleImageFilter::New(); itkFloatImageType::Pointer itkImage; mitk::CastToItkImage(floatImage, itkImage); if (UseLogFilter) { bModeFilter->SetInput(itkImage); bModeFilter->SetDirection(1); itkImage = bModeFilter->GetOutput(); } else { photoacousticBModeFilter->SetInput(itkImage); photoacousticBModeFilter->SetDirection(1); itkImage = photoacousticBModeFilter->GetOutput(); } return mitk::GrabItkImageMemory(itkImage); } mitk::Image::Pointer mitk::PhotoacousticFilterService::ApplyResampling( mitk::Image::Pointer inputImage, double *outputSpacing) { typedef itk::Image< float, 3 > itkFloatImageType; auto floatImage = ConvertToFloat(inputImage); typedef itk::ResampleImageFilter < itkFloatImageType, itkFloatImageType > ResampleImageFilter; ResampleImageFilter::Pointer resampleImageFilter = ResampleImageFilter::New(); itkFloatImageType::Pointer itkImage; mitk::CastToItkImage(floatImage, itkImage); itkFloatImageType::SpacingType outputSpacingItk; itkFloatImageType::SizeType inputSizeItk = itkImage->GetLargestPossibleRegion().GetSize(); itkFloatImageType::SizeType outputSizeItk = inputSizeItk; outputSpacingItk[0] = outputSpacing[0]; outputSpacingItk[1] = outputSpacing[1]; outputSpacingItk[2] = itkImage->GetSpacing()[2]; outputSizeItk[0] = outputSizeItk[0] * (floatImage->GetGeometry()->GetSpacing()[0] / outputSpacing[0]); outputSizeItk[1] = outputSizeItk[1] * (floatImage->GetGeometry()->GetSpacing()[1] / outputSpacing[1]); resampleImageFilter->SetInput(itkImage); resampleImageFilter->SetSize(outputSizeItk); resampleImageFilter->SetOutputSpacing(outputSpacingItk); resampleImageFilter->UpdateLargestPossibleRegion(); return mitk::GrabItkImageMemory(resampleImageFilter->GetOutput()); } mitk::Image::Pointer mitk::PhotoacousticFilterService::ApplyResamplingToDim( mitk::Image::Pointer inputImage, double *outputDimension) { typedef itk::Image< float, 3 > itkFloatImageType; auto floatImage = ConvertToFloat(inputImage); typedef itk::ResampleImageFilter < itkFloatImageType, itkFloatImageType > ResampleImageFilter; ResampleImageFilter::Pointer resampleImageFilter = ResampleImageFilter::New(); itkFloatImageType::Pointer itkImage; mitk::CastToItkImage(floatImage, itkImage); itkFloatImageType::SpacingType outputSpacingItk; itkFloatImageType::SizeType inputSizeItk = itkImage->GetLargestPossibleRegion().GetSize(); itkFloatImageType::SizeType outputSizeItk = inputSizeItk; outputSizeItk[0] = outputDimension[0]; outputSizeItk[1] = outputDimension[1]; MITK_INFO << outputSizeItk[0] << " " << outputSizeItk[1]; outputSpacingItk[0] = (double)inputSizeItk[0] / (double)outputSizeItk[0] * floatImage->GetGeometry()->GetSpacing()[0]; outputSpacingItk[1] = (double)inputSizeItk[1] / (double)outputSizeItk[1] * floatImage->GetGeometry()->GetSpacing()[1]; outputSpacingItk[2] = itkImage->GetSpacing()[2]; MITK_INFO << outputSpacingItk[0] << " " << outputSpacingItk[1]; resampleImageFilter->SetInput(itkImage); resampleImageFilter->SetSize(outputSizeItk); resampleImageFilter->SetOutputSpacing(outputSpacingItk); resampleImageFilter->UpdateLargestPossibleRegion(); return mitk::GrabItkImageMemory(resampleImageFilter->GetOutput()); } mitk::Image::Pointer mitk::PhotoacousticFilterService::ApplyCropping( mitk::Image::Pointer inputImage, int above, int below, int right, int left, int zStart, int zEnd, int* errCode) { *errCode = 0; try { auto floatImage = ConvertToFloat(inputImage); mitk::CropImageFilter::Pointer cropImageFilter = mitk::CropImageFilter::New(); cropImageFilter->SetInput(floatImage); cropImageFilter->SetXPixelsCropStart(left); cropImageFilter->SetXPixelsCropEnd(right); cropImageFilter->SetYPixelsCropStart(above); cropImageFilter->SetYPixelsCropEnd(below); cropImageFilter->SetZPixelsCropStart(zStart); cropImageFilter->SetZPixelsCropEnd(zEnd); cropImageFilter->Update(); return cropImageFilter->GetOutput(); } catch (mitk::Exception &e) { std::string errorMessage = "Caught unexpected exception "; errorMessage.append(e.what()); MITK_ERROR << errorMessage; *errCode = -1; mitk::Image::Pointer ret = mitk::Image::New(); unsigned int dim[3] = { 1,1,1 }; ret->Initialize(MakeScalarPixelType(), 3, dim); return ret; } } mitk::Image::Pointer mitk::PhotoacousticFilterService::ExtendImage(mitk::Image::Pointer inputImage, float pixelColor, unsigned int outputDimensionY) { mitk::Image::Pointer outputImage = mitk::Image::New(); unsigned int dim[] = {inputImage->GetDimension(0), outputDimensionY, inputImage->GetDimension(2)}; outputImage->Initialize(inputImage->GetPixelType(), 3, dim); float *sliceData = new float[dim[0] * dim[1]]; for (size_t i = inputImage->GetDimension(1) * dim[0]; i < dim[0] * dim[1]; ++i) { sliceData[i] = pixelColor; } for (unsigned int slice = 0; slice < dim[2]; ++slice) { mitk::ImageReadAccessor cpy(inputImage, inputImage->GetSliceData(slice)); cpy.GetData(); std::memcpy((void*)sliceData, cpy.GetData(), sizeof(float) * inputImage->GetDimension(1) * dim[0]); outputImage->SetSlice(sliceData, slice); } delete[] sliceData; return outputImage; } mitk::Image::Pointer mitk::PhotoacousticFilterService::ApplyBeamforming( mitk::Image::Pointer inputImage, BeamformingSettings::Pointer config, std::function progressHandle) { Image::Pointer processedImage = mitk::Image::New(); if (inputImage->GetDimension() != 3) { mitk::Convert2Dto3DImageFilter::Pointer dimensionImageFilter = mitk::Convert2Dto3DImageFilter::New(); dimensionImageFilter->SetInput(inputImage); dimensionImageFilter->Update(); processedImage = dimensionImageFilter->GetOutput(); } else { processedImage = inputImage; } m_BeamformingFilter = mitk::BeamformingFilter::New(config); m_BeamformingFilter->SetInput(ConvertToFloat(processedImage)); m_BeamformingFilter->SetProgressHandle(progressHandle); m_BeamformingFilter->UpdateLargestPossibleRegion(); processedImage = m_BeamformingFilter->GetOutput(); return processedImage; } mitk::Image::Pointer mitk::PhotoacousticFilterService::ApplyBandpassFilter( mitk::Image::Pointer data, float BPHighPass, float BPLowPass, float alphaHighPass, float alphaLowPass, float TimeSpacing, float SpeedOfSound, bool IsBFImage) { try { auto floatData = ConvertToFloat(data); mitk::BandpassFilter::Pointer bandpassFilter = mitk::BandpassFilter::New(); bandpassFilter->SetInput(floatData); bandpassFilter->SetHighPass(BPHighPass); bandpassFilter->SetLowPass(BPLowPass); bandpassFilter->SetHighPassAlpha(alphaHighPass); bandpassFilter->SetLowPassAlpha(alphaLowPass); bandpassFilter->SetSpeedOfSound(SpeedOfSound); bandpassFilter->SetTimeSpacing(TimeSpacing); bandpassFilter->SetIsBFImage(IsBFImage); bandpassFilter->Update(); return bandpassFilter->GetOutput(); } - catch (mitk::Exception &e) { std::string errorMessage = "Caught unexpected exception "; errorMessage.append(e.what()); MITK_ERROR << errorMessage; return data; } } mitk::Image::Pointer mitk::PhotoacousticFilterService::ConvertToFloat(mitk::Image::Pointer inputImage) { if ((inputImage->GetPixelType().GetTypeAsString() == "scalar (float)" || inputImage->GetPixelType().GetTypeAsString() == " (float)")) { return inputImage; } mitk::CastToFloatImageFilter::Pointer castToFloatImageFilter = mitk::CastToFloatImageFilter::New(); castToFloatImageFilter->SetInput(inputImage); castToFloatImageFilter->Update(); return castToFloatImageFilter->GetOutput(); } diff --git a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp index 1a48655e57..1bb3ad862e 100644 --- a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp +++ b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.cpp @@ -1,1122 +1,1149 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "PAImageProcessing.h" // Qt #include #include #include #include //mitk image #include #include "mitkPhotoacousticFilterService.h" #include "mitkCastToFloatImageFilter.h" #include "mitkBeamformingFilter.h" //other #include #include #include #define GPU_BATCH_SIZE 32 const std::string PAImageProcessing::VIEW_ID = "org.mitk.views.paimageprocessing"; PAImageProcessing::PAImageProcessing() : m_ResampleSpacing(0), m_UseLogfilter(false), m_FilterBank(mitk::PhotoacousticFilterService::New()) { qRegisterMetaType(); qRegisterMetaType(); } void PAImageProcessing::SetFocus() { m_Controls.buttonApplyBModeFilter->setFocus(); } void PAImageProcessing::CreateQtPartControl(QWidget *parent) { // create GUI widgets from the Qt Designer's .ui file m_Controls.setupUi(parent); connect(m_Controls.buttonApplyBModeFilter, SIGNAL(clicked()), this, SLOT(StartBmodeThread())); + connect(m_Controls.Geometry, SIGNAL(currentIndexChanged(int)), this, SLOT(ChangedProbe())); connect(m_Controls.DoResampling, SIGNAL(clicked()), this, SLOT(UseResampling())); connect(m_Controls.Logfilter, SIGNAL(clicked()), this, SLOT(UseLogfilter())); connect(m_Controls.ResamplingValue, SIGNAL(valueChanged(double)), this, SLOT(SetResampling())); connect(m_Controls.buttonApplyBeamforming, SIGNAL(clicked()), this, SLOT(StartBeamformingThread())); connect(m_Controls.buttonApplyCropFilter, SIGNAL(clicked()), this, SLOT(StartCropThread())); connect(m_Controls.buttonApplyBandpass, SIGNAL(clicked()), this, SLOT(StartBandpassThread())); connect(m_Controls.UseImageSpacing, SIGNAL(clicked()), this, SLOT(UseImageSpacing())); connect(m_Controls.ScanDepth, SIGNAL(valueChanged(double)), this, SLOT(UpdateImageInfo())); connect(m_Controls.SpeedOfSound, SIGNAL(valueChanged(double)), this, SLOT(UpdateImageInfo())); connect(m_Controls.SpeedOfSound, SIGNAL(valueChanged(double)), this, SLOT(ChangedSOSBeamforming())); connect(m_Controls.BPSpeedOfSound, SIGNAL(valueChanged(double)), this, SLOT(ChangedSOSBandpass())); connect(m_Controls.Samples, SIGNAL(valueChanged(int)), this, SLOT(UpdateImageInfo())); connect(m_Controls.UseImageSpacing, SIGNAL(clicked()), this, SLOT(UpdateImageInfo())); connect(m_Controls.boundLow, SIGNAL(valueChanged(int)), this, SLOT(LowerSliceBoundChanged())); connect(m_Controls.boundHigh, SIGNAL(valueChanged(int)), this, SLOT(UpperSliceBoundChanged())); connect(m_Controls.Partial, SIGNAL(clicked()), this, SLOT(SliceBoundsEnabled())); connect(m_Controls.BatchProcessing, SIGNAL(clicked()), this, SLOT(BatchProcessing())); connect(m_Controls.StepBeamforming, SIGNAL(clicked()), this, SLOT(UpdateSaveBoxes())); connect(m_Controls.StepCropping, SIGNAL(clicked()), this, SLOT(UpdateSaveBoxes())); connect(m_Controls.StepBandpass, SIGNAL(clicked()), this, SLOT(UpdateSaveBoxes())); connect(m_Controls.StepBMode, SIGNAL(clicked()), this, SLOT(UpdateSaveBoxes())); connect(m_Controls.UseSignalDelay, SIGNAL(clicked()), this, SLOT(UseSignalDelay())); connect(m_Controls.IsBFImage, SIGNAL(clicked()), this, SLOT(UpdateImageInfo())); UpdateSaveBoxes(); UseSignalDelay(); m_Controls.DoResampling->setChecked(false); m_Controls.ResamplingValue->setEnabled(false); m_Controls.progressBar->setMinimum(0); m_Controls.progressBar->setMaximum(100); m_Controls.progressBar->setVisible(false); m_Controls.UseImageSpacing->setToolTip("Image spacing of y-Axis must be in us, x-Axis in mm."); m_Controls.UseImageSpacing->setToolTipDuration(5000); m_Controls.ProgressInfo->setVisible(false); m_Controls.UseGPUBmode->hide(); #ifndef PHOTOACOUSTICS_USE_GPU m_Controls.UseGPUBf->setEnabled(false); m_Controls.UseGPUBf->setChecked(false); m_Controls.UseGPUBmode->setEnabled(false); m_Controls.UseGPUBmode->setChecked(false); #endif UseImageSpacing(); + ChangedProbe(); +} + +void PAImageProcessing::ChangedProbe() +{ + if (m_Controls.Geometry->currentText() == "Concave") + { + m_Controls.ProbeRadius->setEnabled(true); + } + else + { + m_Controls.ProbeRadius->setEnabled(false); + } } void PAImageProcessing::UseSignalDelay() { if (m_Controls.UseSignalDelay->isChecked()) { m_Controls.SignalDelay->setEnabled(true); } else { m_Controls.SignalDelay->setEnabled(false); } } void PAImageProcessing::ChangedSOSBandpass() { m_Controls.SpeedOfSound->setValue(m_Controls.BPSpeedOfSound->value()); } void PAImageProcessing::ChangedSOSBeamforming() { m_Controls.BPSpeedOfSound->setValue(m_Controls.SpeedOfSound->value()); } std::vector splitpath( const std::string& str , const std::set delimiters) { std::vector result; char const* pch = str.c_str(); char const* start = pch; for (; *pch; ++pch) { if (delimiters.find(*pch) != delimiters.end()) { if (start != pch) { std::string str(start, pch); result.push_back(str); } else { result.push_back(""); } start = pch + 1; } } result.push_back(start); return result; } void PAImageProcessing::UpdateSaveBoxes() { if (m_Controls.StepBeamforming->isChecked()) m_Controls.SaveBeamforming->setEnabled(true); else m_Controls.SaveBeamforming->setEnabled(false); if (m_Controls.StepCropping->isChecked()) m_Controls.SaveCropping->setEnabled(true); else m_Controls.SaveCropping->setEnabled(false); if (m_Controls.StepBandpass->isChecked()) m_Controls.SaveBandpass->setEnabled(true); else m_Controls.SaveBandpass->setEnabled(false); if (m_Controls.StepBMode->isChecked()) m_Controls.SaveBMode->setEnabled(true); else m_Controls.SaveBMode->setEnabled(false); } void PAImageProcessing::BatchProcessing() { QFileDialog LoadDialog(nullptr, "Select Files to be processed"); LoadDialog.setFileMode(QFileDialog::FileMode::ExistingFiles); LoadDialog.setNameFilter(tr("Images (*.nrrd)")); LoadDialog.setViewMode(QFileDialog::Detail); QStringList fileNames; if (LoadDialog.exec()) fileNames = LoadDialog.selectedFiles(); QString saveDir = QFileDialog::getExistingDirectory(nullptr, tr("Select Directory To Save To"), "", QFileDialog::ShowDirsOnly | QFileDialog::DontResolveSymlinks); DisableControls(); std::set delims{ '/' }; bool doSteps[] = { m_Controls.StepBeamforming->isChecked(), m_Controls.StepCropping->isChecked() , m_Controls.StepBandpass->isChecked(), m_Controls.StepBMode->isChecked() }; bool saveSteps[] = { m_Controls.SaveBeamforming->isChecked(), m_Controls.SaveCropping->isChecked() , m_Controls.SaveBandpass->isChecked(), m_Controls.SaveBMode->isChecked() }; for (int fileNumber = 0; fileNumber < fileNames.size(); ++fileNumber) { m_Controls.progressBar->setValue(0); m_Controls.progressBar->setVisible(true); m_Controls.ProgressInfo->setVisible(true); m_Controls.ProgressInfo->setText("loading file"); QString filename = fileNames.at(fileNumber); auto split = splitpath(filename.toStdString(), delims); std::string imageName = split.at(split.size() - 1); // remove ".nrrd" imageName = imageName.substr(0, imageName.size() - 5); mitk::Image::Pointer image = mitk::IOUtil::Load(filename.toStdString().c_str()); auto BFconfig = CreateBeamformingSettings(image); // Beamforming if (doSteps[0]) { if (m_Controls.UseSignalDelay->isChecked()) { float signalDelay = m_Controls.SignalDelay->value(); if (signalDelay != 0) { int cropPixels = std::round(signalDelay / BFconfig->GetTimeSpacing() / 1000000); MITK_INFO << cropPixels; int errCode = 0; image = m_FilterBank->ApplyCropping(image, cropPixels, 0, 0, 0, 0, 0, &errCode); if (errCode == -1) { QMessageBox Msgbox; Msgbox.setText("It has been attempted to cut off more pixels than the image contains. Aborting batch processing."); Msgbox.exec(); m_Controls.progressBar->setVisible(false); EnableControls(); return; } BFconfig = mitk::BeamformingSettings::New(BFconfig->GetPitchInMeters(), BFconfig->GetSpeedOfSound(), BFconfig->GetTimeSpacing(), BFconfig->GetAngle(), BFconfig->GetIsPhotoacousticImage(), BFconfig->GetSamplesPerLine(), BFconfig->GetReconstructionLines(), image->GetDimensions(), BFconfig->GetReconstructionDepth(), BFconfig->GetUseGPU(), BFconfig->GetGPUBatchSize(), BFconfig->GetDelayCalculationMethod(), BFconfig->GetApod(), - BFconfig->GetApodizationArraySize(), BFconfig->GetAlgorithm()); + BFconfig->GetApodizationArraySize(), BFconfig->GetAlgorithm(), BFconfig->GetGeometry(), BFconfig->GetProbeRadius()); } } std::function progressHandle = [this](int progress, std::string progressInfo) { this->UpdateProgress(progress, progressInfo); }; m_Controls.progressBar->setValue(100); image = m_FilterBank->ApplyBeamforming(image, BFconfig, progressHandle); if (saveSteps[0]) { std::string saveFileName = saveDir.toStdString() + "/" + imageName + " beamformed" + ".nrrd"; mitk::IOUtil::Save(image, saveFileName); } } // Cropping if (doSteps[1]) { m_Controls.ProgressInfo->setText("cropping image"); int errCode = 0; - image = m_FilterBank->ApplyCropping(image, m_Controls.CutoffAbove->value(), m_Controls.CutoffBelow->value(), 0, 0, 0, 0, &errCode); + image = m_FilterBank->ApplyCropping(image, m_Controls.CutoffAbove->value(), m_Controls.CutoffBelow->value(), m_Controls.CutoffRight->value(), m_Controls.CutoffLeft->value(), 0, 0, &errCode); if (errCode == -1) { QMessageBox Msgbox; Msgbox.setText("It has been attempted to cut off more pixels than the image contains. Aborting batch processing."); Msgbox.exec(); m_Controls.progressBar->setVisible(false); EnableControls(); return; } if (saveSteps[1]) { std::string saveFileName = saveDir.toStdString() + "/" + imageName + " cropped" + ".nrrd"; mitk::IOUtil::Save(image, saveFileName); } } // Bandpass if (doSteps[2]) { m_Controls.ProgressInfo->setText("applying bandpass"); float recordTime = image->GetDimension(1)*image->GetGeometry()->GetSpacing()[1] / 1000 / m_Controls.BPSpeedOfSound->value(); // add a safeguard so the program does not chrash when applying a Bandpass that reaches out of the bounds of the image float maxFrequency = 1 / (recordTime / image->GetDimension(1)) * image->GetDimension(1) / 2 / 2 / 1000; float BPHighPass = 1000000 * m_Controls.BPhigh->value(); // [Hz] float BPLowPass = maxFrequency - 1000000 * m_Controls.BPlow->value(); // [Hz] if (BPLowPass > maxFrequency) { QMessageBox Msgbox; Msgbox.setText("LowPass too low, disabled it."); Msgbox.exec(); BPLowPass = 0; } if (BPLowPass < 0) { QMessageBox Msgbox; Msgbox.setText("LowPass too high, disabled it."); Msgbox.exec(); BPLowPass = 0; } if (BPHighPass > maxFrequency) { QMessageBox Msgbox; Msgbox.setText("HighPass too high, disabled it."); Msgbox.exec(); BPHighPass = 0; } if (BPHighPass > maxFrequency - BPLowPass) { QMessageBox Msgbox; Msgbox.setText("HighPass higher than LowPass, disabled both."); Msgbox.exec(); BPHighPass = 0; BPLowPass = 0; } image = m_FilterBank->ApplyBandpassFilter(image, BPHighPass, BPLowPass, m_Controls.BPFalloffHigh->value(), m_Controls.BPFalloffLow->value(), BFconfig->GetTimeSpacing(), BFconfig->GetSpeedOfSound(), m_Controls.IsBFImage->isChecked()); if (saveSteps[2]) { std::string saveFileName = saveDir.toStdString() + "/" + imageName + " bandpassed" + ".nrrd"; mitk::IOUtil::Save(image, saveFileName); } } // Bmode if (doSteps[3]) { m_Controls.ProgressInfo->setText("applying bmode filter"); if (m_Controls.BModeMethod->currentText() == "Absolute Filter") image = m_FilterBank->ApplyBmodeFilter(image, mitk::PhotoacousticFilterService::BModeMethod::Abs, m_UseLogfilter); else if (m_Controls.BModeMethod->currentText() == "Envelope Detection") image = m_FilterBank->ApplyBmodeFilter(image, mitk::PhotoacousticFilterService::BModeMethod::EnvelopeDetection, m_UseLogfilter); if (m_ResampleSpacing != 0) { double desiredSpacing[2]{ image->GetGeometry()->GetSpacing()[0], m_ResampleSpacing }; image = m_FilterBank->ApplyResampling(image, desiredSpacing); } if (saveSteps[3]) { std::string saveFileName = saveDir.toStdString() + "/" + imageName + " bmode" + ".nrrd"; mitk::IOUtil::Save(image, saveFileName); } } m_Controls.progressBar->setVisible(false); } EnableControls(); } void PAImageProcessing::StartBeamformingThread() { QList nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; mitk::DataStorage::Pointer storage = this->GetDataStorage(); mitk::DataNode::Pointer node = nodes.front(); if (!node) { // Nothing selected. Inform the user and return QMessageBox::information(NULL, "Template", "Please load and select an image before starting image processing."); return; } mitk::BaseData* data = node->GetData(); if (data) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast(data); if (image) { auto BFconfig = CreateBeamformingSettings(image); std::stringstream message; std::string name; message << "Performing beamforming for image "; if (node->GetName(name)) { // a property called "name" was found for this DataNode message << "'" << name << "'"; m_OldNodeName = name; } else m_OldNodeName = " "; message << "."; MITK_INFO << message.str(); m_Controls.progressBar->setValue(0); m_Controls.progressBar->setVisible(true); m_Controls.ProgressInfo->setVisible(true); m_Controls.ProgressInfo->setText("started"); DisableControls(); BeamformingThread *thread = new BeamformingThread(); connect(thread, &BeamformingThread::result, this, &PAImageProcessing::HandleResults); connect(thread, &BeamformingThread::updateProgress, this, &PAImageProcessing::UpdateProgress); connect(thread, &BeamformingThread::finished, thread, &QObject::deleteLater); thread->setConfig(BFconfig); if (m_Controls.UseSignalDelay->isChecked()) thread->setSignalDelay(m_Controls.SignalDelay->value()); thread->setInputImage(image); thread->setFilterBank(m_FilterBank); MITK_INFO << "Started new thread for Beamforming"; thread->start(); } } } void PAImageProcessing::HandleResults(mitk::Image::Pointer image, std::string nameExtension) { if (image == nullptr) { QMessageBox Msgbox; Msgbox.setText("An error has occurred during processing; please see the console output."); Msgbox.exec(); // disable progress bar m_Controls.progressBar->setVisible(false); m_Controls.ProgressInfo->setVisible(false); EnableControls(); return; } MITK_INFO << "Handling results..."; auto newNode = mitk::DataNode::New(); newNode->SetData(image); newNode->SetName(m_OldNodeName + nameExtension); // update level window for the current dynamic range mitk::LevelWindow levelWindow; newNode->GetLevelWindow(levelWindow); levelWindow.SetAuto(image, true, true); newNode->SetLevelWindow(levelWindow); // add new node to data storage this->GetDataStorage()->Add(newNode); // disable progress bar m_Controls.progressBar->setVisible(false); m_Controls.ProgressInfo->setVisible(false); EnableControls(); // update rendering mitk::RenderingManager::GetInstance()->InitializeViews(image->GetGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); MITK_INFO << "Handling results...[Done]"; } void PAImageProcessing::StartBmodeThread() { QList nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; mitk::DataStorage::Pointer storage = this->GetDataStorage(); mitk::DataNode::Pointer node = nodes.front(); if (!node) { // Nothing selected. Inform the user and return QMessageBox::information(NULL, "Template", "Please load and select an image before starting image processing."); return; } mitk::BaseData* data = node->GetData(); if (data) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast(data); if (image) { std::stringstream message; std::string name; message << "Performing image processing for image "; if (node->GetName(name)) { // a property called "name" was found for this DataNode message << "'" << name << "'"; m_OldNodeName = name; } else m_OldNodeName = " "; message << "."; MITK_INFO << message.str(); DisableControls(); BmodeThread *thread = new BmodeThread(); connect(thread, &BmodeThread::result, this, &PAImageProcessing::HandleResults); connect(thread, &BmodeThread::finished, thread, &QObject::deleteLater); bool useGPU = m_Controls.UseGPUBmode->isChecked(); if (m_Controls.BModeMethod->currentText() == "Absolute Filter") thread->setConfig(m_UseLogfilter, m_ResampleSpacing, mitk::PhotoacousticFilterService::BModeMethod::Abs, useGPU); else if (m_Controls.BModeMethod->currentText() == "Envelope Detection") thread->setConfig(m_UseLogfilter, m_ResampleSpacing, mitk::PhotoacousticFilterService::BModeMethod::EnvelopeDetection, useGPU); thread->setInputImage(image); thread->setFilterBank(m_FilterBank); MITK_INFO << "Started new thread for Image Processing"; thread->start(); } } } void PAImageProcessing::StartCropThread() { QList nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; mitk::DataStorage::Pointer storage = this->GetDataStorage(); mitk::DataNode::Pointer node = nodes.front(); if (!node) { // Nothing selected. Inform the user and return QMessageBox::information(NULL, "Template", "Please load and select an image before starting image cropping."); return; } mitk::BaseData* data = node->GetData(); if (data) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast(data); if (image) { std::stringstream message; std::string name; message << "Performing image cropping for image "; if (node->GetName(name)) { // a property called "name" was found for this DataNode message << "'" << name << "'"; m_OldNodeName = name; } else m_OldNodeName = " "; message << "."; MITK_INFO << message.str(); DisableControls(); CropThread *thread = new CropThread(); connect(thread, &CropThread::result, this, &PAImageProcessing::HandleResults); connect(thread, &CropThread::finished, thread, &QObject::deleteLater); if(m_Controls.Partial->isChecked()) - thread->setConfig(m_Controls.CutoffAbove->value(), m_Controls.CutoffBelow->value(), m_Controls.boundLow->value(), m_Controls.boundHigh->value()); + thread->setConfig(m_Controls.CutoffAbove->value(), m_Controls.CutoffBelow->value(), m_Controls.CutoffRight->value(), m_Controls.CutoffLeft->value(), m_Controls.boundLow->value(), m_Controls.boundHigh->value()); else - thread->setConfig(m_Controls.CutoffAbove->value(), m_Controls.CutoffBelow->value(), 0, image->GetDimension(2) - 1); + thread->setConfig(m_Controls.CutoffAbove->value(), m_Controls.CutoffBelow->value(), m_Controls.CutoffRight->value(), m_Controls.CutoffLeft->value(), 0, image->GetDimension(2) - 1); thread->setInputImage(image); thread->setFilterBank(m_FilterBank); MITK_INFO << "Started new thread for Image Cropping"; thread->start(); } } } void PAImageProcessing::StartBandpassThread() { QList nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; mitk::DataStorage::Pointer storage = this->GetDataStorage(); mitk::DataNode::Pointer node = nodes.front(); if (!node) { // Nothing selected. Inform the user and return QMessageBox::information(NULL, "Template", "Please load and select an image before applying a bandpass filter."); return; } mitk::BaseData* data = node->GetData(); if (data) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast(data); if (image) { auto config = CreateBeamformingSettings(image); std::stringstream message; std::string name; message << "Performing Bandpass filter on image "; if (node->GetName(name)) { // a property called "name" was found for this DataNode message << "'" << name << "'"; m_OldNodeName = name; } else m_OldNodeName = " "; message << "."; MITK_INFO << message.str(); DisableControls(); BandpassThread *thread = new BandpassThread(); connect(thread, &BandpassThread::result, this, &PAImageProcessing::HandleResults); connect(thread, &BandpassThread::finished, thread, &QObject::deleteLater); float BPHighPass = 1000000.0f * m_Controls.BPhigh->value(); // [Now in Hz] float BPLowPass = 1000000.0f * m_Controls.BPlow->value(); // [Now in Hz] thread->setConfig(BPHighPass, BPLowPass, m_Controls.BPFalloffLow->value(), m_Controls.BPFalloffHigh->value(), config->GetTimeSpacing(), config->GetSpeedOfSound(), m_Controls.IsBFImage->isChecked()); thread->setInputImage(image); thread->setFilterBank(m_FilterBank); MITK_INFO << "Started new thread for Bandpass filter"; thread->start(); } } } void PAImageProcessing::SliceBoundsEnabled() { if (!m_Controls.Partial->isChecked()) { m_Controls.boundLow->setEnabled(false); m_Controls.boundHigh->setEnabled(false); return; } else { m_Controls.boundLow->setEnabled(true); m_Controls.boundHigh->setEnabled(true); } } void PAImageProcessing::UpperSliceBoundChanged() { if (m_Controls.boundLow->value() > m_Controls.boundHigh->value()) { m_Controls.boundLow->setValue(m_Controls.boundHigh->value()); } } void PAImageProcessing::LowerSliceBoundChanged() { if (m_Controls.boundLow->value() > m_Controls.boundHigh->value()) { m_Controls.boundHigh->setValue(m_Controls.boundLow->value()); } } void PAImageProcessing::UpdateProgress(int progress, std::string progressInfo) { if (progress < 100) m_Controls.progressBar->setValue(progress); else m_Controls.progressBar->setValue(100); m_Controls.ProgressInfo->setText(progressInfo.c_str()); qApp->processEvents(); } void PAImageProcessing::PAMessageBox(std::string message) { if (0 != message.compare("noMessage")) { QMessageBox msgBox; msgBox.setText(message.c_str()); msgBox.exec(); } } void PAImageProcessing::UpdateImageInfo() { QList nodes = this->GetDataManagerSelection(); if (nodes.empty()) return; mitk::DataNode::Pointer node = nodes.front(); if (!node) { // Nothing selected return; } mitk::BaseData* data = node->GetData(); if (data) { // test if this data item is an image or not (could also be a surface or something totally different) mitk::Image* image = dynamic_cast(data); if (image) { // beamforming configs if (m_Controls.UseImageSpacing->isChecked()) { m_Controls.ElementCount->setValue(image->GetDimension(0)); m_Controls.Pitch->setValue(image->GetGeometry()->GetSpacing()[0]); } m_Controls.boundLow->setMaximum(image->GetDimension(2) - 1); m_Controls.boundHigh->setMaximum(image->GetDimension(2) - 1); float speedOfSound = m_Controls.SpeedOfSound->value(); // [m/s] std::stringstream frequency; float timeSpacing; if (m_Controls.UseImageSpacing->isChecked()) { timeSpacing = image->GetGeometry()->GetSpacing()[1] / 1000000.0f; MITK_INFO << "Calculated Scan Depth of " << (image->GetDimension(1)*image->GetGeometry()->GetSpacing()[1] / 1000000) * speedOfSound * 100 / 2 << "cm"; } else { timeSpacing = (2 * m_Controls.ScanDepth->value() / 1000 / speedOfSound) / image->GetDimension(1); } float maxFrequency = (1 / timeSpacing) / 2; if(m_Controls.IsBFImage->isChecked()) maxFrequency = ( 1 / (image->GetGeometry()->GetSpacing()[1] / 1e3 / speedOfSound)) / 2; frequency << maxFrequency / 1e6; //[MHz] frequency << "MHz"; m_Controls.BPhigh->setMaximum(maxFrequency / 1e6); m_Controls.BPlow->setMaximum(maxFrequency / 1e6); frequency << " is the maximal allowed frequency for the selected image."; m_Controls.BPhigh->setToolTip(frequency.str().c_str()); m_Controls.BPlow->setToolTip(frequency.str().c_str()); m_Controls.BPhigh->setToolTipDuration(5000); m_Controls.BPlow->setToolTipDuration(5000); } } } void PAImageProcessing::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*source*/, const QList& nodes) { // iterate all selected objects, adjust warning visibility foreach(mitk::DataNode::Pointer node, nodes) { if (node.IsNotNull() && dynamic_cast(node->GetData())) { m_Controls.labelWarning->setVisible(false); m_Controls.buttonApplyBModeFilter->setEnabled(true); m_Controls.labelWarning2->setVisible(false); m_Controls.buttonApplyCropFilter->setEnabled(true); m_Controls.labelWarning3->setVisible(false); m_Controls.buttonApplyBandpass->setEnabled(true); m_Controls.labelWarning4->setVisible(false); m_Controls.buttonApplyBeamforming->setEnabled(true); UpdateImageInfo(); return; } } m_Controls.labelWarning->setVisible(true); m_Controls.buttonApplyBModeFilter->setEnabled(false); m_Controls.labelWarning2->setVisible(true); m_Controls.buttonApplyCropFilter->setEnabled(false); m_Controls.labelWarning3->setVisible(true); m_Controls.buttonApplyBandpass->setEnabled(false); m_Controls.labelWarning4->setVisible(true); m_Controls.buttonApplyBeamforming->setEnabled(false); } void PAImageProcessing::UseResampling() { if (m_Controls.DoResampling->isChecked()) { m_Controls.ResamplingValue->setEnabled(true); m_ResampleSpacing = m_Controls.ResamplingValue->value(); } else { m_Controls.ResamplingValue->setEnabled(false); m_ResampleSpacing = 0; } } void PAImageProcessing::UseLogfilter() { m_UseLogfilter = m_Controls.Logfilter->isChecked(); } void PAImageProcessing::SetResampling() { m_ResampleSpacing = m_Controls.ResamplingValue->value(); } mitk::BeamformingSettings::Pointer PAImageProcessing::CreateBeamformingSettings(mitk::Image::Pointer image) { mitk::BeamformingSettings::BeamformingAlgorithm algorithm = mitk::BeamformingSettings::BeamformingAlgorithm::DAS; if ("DAS" == m_Controls.BFAlgorithm->currentText()) algorithm = mitk::BeamformingSettings::BeamformingAlgorithm::DAS; else if ("DMAS" == m_Controls.BFAlgorithm->currentText()) algorithm = mitk::BeamformingSettings::BeamformingAlgorithm::DMAS; else if ("sDMAS" == m_Controls.BFAlgorithm->currentText()) algorithm = mitk::BeamformingSettings::BeamformingAlgorithm::sDMAS; mitk::BeamformingSettings::DelayCalc delay = mitk::BeamformingSettings::DelayCalc::Spherical; mitk::BeamformingSettings::Apodization apod = mitk::BeamformingSettings::Apodization::Box; if ("Von Hann" == m_Controls.Apodization->currentText()) { apod = mitk::BeamformingSettings::Apodization::Hann; } else if ("Hamming" == m_Controls.Apodization->currentText()) { apod = mitk::BeamformingSettings::Apodization::Hamm; } else if ("Box" == m_Controls.Apodization->currentText()) { apod = mitk::BeamformingSettings::Apodization::Box; } float pitchInMeters = m_Controls.Pitch->value() / 1000; // [m] float speedOfSound = m_Controls.SpeedOfSound->value(); // [m/s] unsigned int samplesPerLine = m_Controls.Samples->value(); unsigned int reconstructionLines = m_Controls.Lines->value(); unsigned int apodizatonArraySize = m_Controls.Lines->value(); float angle = m_Controls.Angle->value(); // [deg] bool useGPU = m_Controls.UseGPUBf->isChecked(); float timeSpacing; if (m_Controls.UseImageSpacing->isChecked()) { timeSpacing = image->GetGeometry()->GetSpacing()[1] / 1000000.0f; MITK_INFO << "Calculated Scan Depth of " << (image->GetDimension(1)*image->GetGeometry()->GetSpacing()[1] / 1000000) * speedOfSound * 100 / 2 << "cm"; } else { timeSpacing = (2 * m_Controls.ScanDepth->value() / 1000 / speedOfSound) / image->GetDimension(1); } bool isPAImage = true; if ("US Image" == m_Controls.ImageType->currentText()) { isPAImage = false; } else if ("PA Image" == m_Controls.ImageType->currentText()) { isPAImage = true; } float reconstructionDepth = m_Controls.ReconstructionDepth->value() / 1000.f; // [m] + mitk::BeamformingSettings::ProbeGeometry geometry = mitk::BeamformingSettings::ProbeGeometry::Linear; + if ("Linear" == m_Controls.Apodization->currentText()) + { + mitk::BeamformingSettings::ProbeGeometry geometry = mitk::BeamformingSettings::ProbeGeometry::Linear; + } + else if ("Concave" == m_Controls.Apodization->currentText()) + { + mitk::BeamformingSettings::ProbeGeometry geometry = mitk::BeamformingSettings::ProbeGeometry::Concave; + } + float probeRadius = m_Controls.ProbeRadius->value(); // [deg] + return mitk::BeamformingSettings::New(pitchInMeters, speedOfSound, timeSpacing, angle, isPAImage, samplesPerLine, reconstructionLines, image->GetDimensions(), reconstructionDepth, useGPU, GPU_BATCH_SIZE, delay, apod, - apodizatonArraySize, algorithm); + apodizatonArraySize, algorithm, geometry, probeRadius); } void PAImageProcessing::EnableControls() { m_Controls.BatchProcessing->setEnabled(true); m_Controls.StepBeamforming->setEnabled(true); m_Controls.StepBandpass->setEnabled(true); m_Controls.StepCropping->setEnabled(true); m_Controls.StepBMode->setEnabled(true); UpdateSaveBoxes(); m_Controls.DoResampling->setEnabled(true); UseResampling(); m_Controls.Logfilter->setEnabled(true); m_Controls.BModeMethod->setEnabled(true); m_Controls.buttonApplyBModeFilter->setEnabled(true); m_Controls.CutoffAbove->setEnabled(true); m_Controls.CutoffBelow->setEnabled(true); m_Controls.buttonApplyCropFilter->setEnabled(true); m_Controls.BPSpeedOfSound->setEnabled(true); m_Controls.buttonApplyBandpass->setEnabled(true); m_Controls.Partial->setEnabled(true); m_Controls.boundHigh->setEnabled(true); m_Controls.boundLow->setEnabled(true); m_Controls.BFAlgorithm->setEnabled(true); m_Controls.ReconstructionDepth->setEnabled(true); m_Controls.ImageType->setEnabled(true); m_Controls.Apodization->setEnabled(true); #ifdef PHOTOACOUSTICS_USE_GPU m_Controls.UseGPUBf->setEnabled(true); m_Controls.UseGPUBmode->setEnabled(true); #endif m_Controls.BPhigh->setEnabled(true); m_Controls.BPlow->setEnabled(true); m_Controls.BPFalloffLow->setEnabled(true); m_Controls.BPFalloffHigh->setEnabled(true); m_Controls.UseImageSpacing->setEnabled(true); UseImageSpacing(); m_Controls.Pitch->setEnabled(true); m_Controls.ElementCount->setEnabled(true); m_Controls.SpeedOfSound->setEnabled(true); m_Controls.Samples->setEnabled(true); m_Controls.Lines->setEnabled(true); m_Controls.Angle->setEnabled(true); m_Controls.buttonApplyBeamforming->setEnabled(true); m_Controls.UseSignalDelay->setEnabled(true); m_Controls.SignalDelay->setEnabled(true); } void PAImageProcessing::DisableControls() { m_Controls.BatchProcessing->setEnabled(false); m_Controls.StepBeamforming->setEnabled(false); m_Controls.StepBandpass->setEnabled(false); m_Controls.StepCropping->setEnabled(false); m_Controls.StepBMode->setEnabled(false); m_Controls.SaveBeamforming->setEnabled(false); m_Controls.SaveBandpass->setEnabled(false); m_Controls.SaveCropping->setEnabled(false); m_Controls.SaveBMode->setEnabled(false); m_Controls.DoResampling->setEnabled(false); m_Controls.ResamplingValue->setEnabled(false); m_Controls.Logfilter->setEnabled(false); m_Controls.BModeMethod->setEnabled(false); m_Controls.buttonApplyBModeFilter->setEnabled(false); m_Controls.CutoffAbove->setEnabled(false); m_Controls.CutoffBelow->setEnabled(false); m_Controls.buttonApplyCropFilter->setEnabled(false); m_Controls.BPSpeedOfSound->setEnabled(false); m_Controls.buttonApplyBandpass->setEnabled(false); m_Controls.Partial->setEnabled(false); m_Controls.boundHigh->setEnabled(false); m_Controls.boundLow->setEnabled(false); m_Controls.BFAlgorithm->setEnabled(false); m_Controls.ReconstructionDepth->setEnabled(false); m_Controls.ImageType->setEnabled(false); m_Controls.Apodization->setEnabled(false); #ifdef PHOTOACOUSTICS_USE_GPU m_Controls.UseGPUBf->setEnabled(false); m_Controls.UseGPUBmode->setEnabled(false); #endif m_Controls.BPhigh->setEnabled(false); m_Controls.BPlow->setEnabled(false); m_Controls.BPFalloffLow->setEnabled(false); m_Controls.BPFalloffHigh->setEnabled(false); m_Controls.UseImageSpacing->setEnabled(false); m_Controls.ScanDepth->setEnabled(false); m_Controls.Pitch->setEnabled(false); m_Controls.ElementCount->setEnabled(false); m_Controls.SpeedOfSound->setEnabled(false); m_Controls.Samples->setEnabled(false); m_Controls.Lines->setEnabled(false); m_Controls.Angle->setEnabled(false); m_Controls.buttonApplyBeamforming->setEnabled(false); m_Controls.UseSignalDelay->setEnabled(false); m_Controls.SignalDelay->setEnabled(false); } void PAImageProcessing::UseImageSpacing() { if (m_Controls.UseImageSpacing->isChecked()) { m_Controls.ScanDepth->setDisabled(true); } else { m_Controls.ScanDepth->setEnabled(true); } } #include void BeamformingThread::run() { if (m_SignalDelay != 0) { int cropPixels = std::round(m_SignalDelay / m_BFconfig->GetTimeSpacing() / 1000000); MITK_INFO << cropPixels; int errCode = 0; m_InputImage = m_FilterBank->ApplyCropping(m_InputImage, cropPixels, 0, 0, 0, 0, 0, &errCode); m_BFconfig = mitk::BeamformingSettings::New(m_BFconfig->GetPitchInMeters(), m_BFconfig->GetSpeedOfSound(), m_BFconfig->GetTimeSpacing(), m_BFconfig->GetAngle(), m_BFconfig->GetIsPhotoacousticImage(), m_BFconfig->GetSamplesPerLine(), m_BFconfig->GetReconstructionLines(), m_InputImage->GetDimensions(), m_BFconfig->GetReconstructionDepth(), m_BFconfig->GetUseGPU(), m_BFconfig->GetGPUBatchSize(), m_BFconfig->GetDelayCalculationMethod(), m_BFconfig->GetApod(), - m_BFconfig->GetApodizationArraySize(), m_BFconfig->GetAlgorithm()); + m_BFconfig->GetApodizationArraySize(), m_BFconfig->GetAlgorithm(), m_BFconfig->GetGeometry(), m_BFconfig->GetProbeRadius()); } mitk::Image::Pointer resultImage; std::function progressHandle = [this](int progress, std::string progressInfo) { emit updateProgress(progress, progressInfo); }; resultImage = m_FilterBank->ApplyBeamforming(m_InputImage, m_BFconfig, progressHandle); emit result(resultImage, "_bf"); } void BeamformingThread::setConfig(mitk::BeamformingSettings::Pointer BFconfig) { m_BFconfig = BFconfig; } void BeamformingThread::setSignalDelay(float delay) { m_SignalDelay = delay; } void BeamformingThread::setInputImage(mitk::Image::Pointer image) { m_InputImage = image; } void BmodeThread::run() { mitk::Image::Pointer resultImage = m_FilterBank->ApplyBmodeFilter(m_InputImage, m_Method, m_UseLogfilter); if (m_ResampleSpacing != 0) { double desiredSpacing[2]{ m_InputImage->GetGeometry()->GetSpacing()[0], m_ResampleSpacing }; resultImage = m_FilterBank->ApplyResampling(resultImage, desiredSpacing); } emit result(resultImage, "_bmode"); } void BmodeThread::setConfig(bool useLogfilter, double resampleSpacing, mitk::PhotoacousticFilterService::BModeMethod method, bool useGPU) { m_UseLogfilter = useLogfilter; m_ResampleSpacing = resampleSpacing; m_Method = method; m_UseGPU = useGPU; } void BmodeThread::setInputImage(mitk::Image::Pointer image) { m_InputImage = image; } void CropThread::run() { mitk::Image::Pointer resultImage; - int errCode = 0; - resultImage = m_FilterBank->ApplyCropping(m_InputImage, m_CutAbove, m_CutBelow, 0, 0, m_CutSliceFirst, (m_InputImage->GetDimension(2) - 1) - m_CutSliceLast, &errCode); + resultImage = m_FilterBank->ApplyCropping(m_InputImage, m_CutAbove, m_CutBelow, m_CutRight, m_CutLeft, m_CutSliceFirst, (m_InputImage->GetDimension(2) - 1) - m_CutSliceLast, &errCode); if (errCode == -1) { emit result(nullptr, "_cropped"); return; } emit result(resultImage, "_cropped"); } -void CropThread::setConfig(unsigned int CutAbove, unsigned int CutBelow, unsigned int CutSliceFirst, unsigned int CutSliceLast) +void CropThread::setConfig(unsigned int CutAbove, unsigned int CutBelow, unsigned int CutRight, unsigned int CutLeft, unsigned int CutSliceFirst, unsigned int CutSliceLast) { m_CutAbove = CutAbove; m_CutBelow = CutBelow; + m_CutRight = CutRight; + m_CutLeft = CutLeft; + m_CutSliceLast = CutSliceLast; m_CutSliceFirst = CutSliceFirst; } void CropThread::setInputImage(mitk::Image::Pointer image) { m_InputImage = image; } void BandpassThread::run() { mitk::Image::Pointer resultImage = m_FilterBank->ApplyBandpassFilter(m_InputImage, m_BPHighPass, m_BPLowPass, m_TukeyAlphaHighPass, m_TukeyAlphaLowPass, m_TimeSpacing, m_SpeedOfSound, m_IsBFImage); emit result(resultImage, "_bandpassed"); } void BandpassThread::setConfig(float BPHighPass, float BPLowPass, float TukeyAlphaHighPass, float TukeyAlphaLowPass, float TimeSpacing, float SpeedOfSound, bool IsBFImage) { m_BPHighPass = BPHighPass; m_BPLowPass = BPLowPass; m_TukeyAlphaHighPass = TukeyAlphaHighPass; m_TukeyAlphaLowPass = TukeyAlphaLowPass; m_TimeSpacing = TimeSpacing; m_SpeedOfSound = SpeedOfSound; m_IsBFImage = IsBFImage; } void BandpassThread::setInputImage(mitk::Image::Pointer image) { m_InputImage = image; } diff --git a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.h b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.h index 159ae2f2be..95d9e878f3 100644 --- a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.h +++ b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessing.h @@ -1,244 +1,247 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef PAImageProcessing_h #define PAImageProcessing_h #include #include #include #include #include "ui_PAImageProcessingControls.h" #include "mitkBeamformingFilter.h" #include "mitkBeamformingSettings.h" Q_DECLARE_METATYPE(mitk::Image::Pointer) Q_DECLARE_METATYPE(std::string) /*! * \brief Plugin implementing an interface for the Photoacoustic Algorithms Module * * Beamforming, Image processing as B-Mode filtering, cropping, resampling, as well as batch processing can be performed using this plugin. */ class PAImageProcessing : public QmitkAbstractView { // this is needed for all Qt objects that should have a Qt meta-object // (everything that derives from QObject and wants to have signal/slots) Q_OBJECT public: static const std::string VIEW_ID; PAImageProcessing(); protected slots: void UpperSliceBoundChanged(); void LowerSliceBoundChanged(); void SliceBoundsEnabled(); + void ChangedProbe(); void UseResampling(); void UseLogfilter(); void SetResampling(); void UseImageSpacing(); void UpdateImageInfo(); void UseSignalDelay(); /** \brief Beamforming is being performed in a separate thread to keep the workbench from freezing. */ void StartBeamformingThread(); /** \brief B-mode filtering is being performed in a separate thread to keep the workbench from freezing. */ void StartBmodeThread(); /** \brief Cropping is being performed in a separate thread to keep the workbench from freezing. */ void StartCropThread(); /** \brief Method called when the bandpass thread finishes; * it adds the image to a new data node and registers it to the worbench's data storage */ void HandleResults(mitk::Image::Pointer image, std::string nameExtension); /** \brief Bandpassing is being performed in a separate thread to keep the workbench from freezing. */ void StartBandpassThread(); void UpdateProgress(int progress, std::string progressInfo); void PAMessageBox(std::string message); void BatchProcessing(); void UpdateSaveBoxes(); void ChangedSOSBandpass(); void ChangedSOSBeamforming(); protected: virtual void CreateQtPartControl(QWidget *parent) override; virtual void SetFocus() override; /** \brief called by QmitkFunctionality when DataManager's selection has changed. * On a change some parameters are internally updated to calculate bounds for GUI elements as the slice selector for beamforming or * the bandpass filter settings. */ virtual void OnSelectionChanged(berry::IWorkbenchPart::Pointer source, const QList& nodes) override; /** \brief Instance of the GUI controls */ Ui::PAImageProcessingControls m_Controls; float m_ResampleSpacing; bool m_UseLogfilter; std::string m_OldNodeName; /** \brief Method for updating the BFconfig by using a selected image and the GUI configuration. */ mitk::BeamformingSettings::Pointer CreateBeamformingSettings(mitk::Image::Pointer image); void EnableControls(); void DisableControls(); /** \brief Class through which the filters are called. */ mitk::PhotoacousticFilterService::Pointer m_FilterBank; }; class BeamformingThread : public QThread { Q_OBJECT void run() Q_DECL_OVERRIDE; signals: void result(mitk::Image::Pointer, std::string nameExtension); void updateProgress(int, std::string); void message(std::string); public: BeamformingThread() : m_SignalDelay(0) {} void setConfig(mitk::BeamformingSettings::Pointer BFconfig); void setSignalDelay(float delay); void setInputImage(mitk::Image::Pointer image); void setFilterBank(mitk::PhotoacousticFilterService::Pointer filterBank) { m_FilterBank = filterBank; } protected: mitk::BeamformingSettings::Pointer m_BFconfig; mitk::Image::Pointer m_InputImage; int m_Cutoff; float m_SignalDelay; // [us] mitk::PhotoacousticFilterService::Pointer m_FilterBank; }; class BmodeThread : public QThread { Q_OBJECT void run() Q_DECL_OVERRIDE; signals: void result(mitk::Image::Pointer, std::string nameExtension); public: enum BModeMethod { ShapeDetection, Abs }; void setConfig(bool useLogfilter, double resampleSpacing, mitk::PhotoacousticFilterService::BModeMethod method, bool useGPU); void setInputImage(mitk::Image::Pointer image); void setFilterBank(mitk::PhotoacousticFilterService::Pointer filterBank) { m_FilterBank = filterBank; } protected: mitk::Image::Pointer m_InputImage; mitk::PhotoacousticFilterService::BModeMethod m_Method; bool m_UseLogfilter; double m_ResampleSpacing; bool m_UseGPU; mitk::PhotoacousticFilterService::Pointer m_FilterBank; }; class CropThread : public QThread { Q_OBJECT void run() Q_DECL_OVERRIDE; signals: void result(mitk::Image::Pointer, std::string nameExtension); public: - void setConfig(unsigned int CutAbove, unsigned int CutBelow, unsigned int CutSliceFirst, unsigned int CutSliceLast); + void setConfig(unsigned int CutAbove, unsigned int CutBelow, unsigned int CutRight, unsigned int CutLeft, unsigned int CutSliceFirst, unsigned int CutSliceLast); void setInputImage(mitk::Image::Pointer image); void setFilterBank(mitk::PhotoacousticFilterService::Pointer filterBank) { m_FilterBank = filterBank; } protected: mitk::Image::Pointer m_InputImage; unsigned int m_CutAbove; unsigned int m_CutBelow; + unsigned int m_CutRight; + unsigned int m_CutLeft; unsigned int m_CutSliceLast; unsigned int m_CutSliceFirst; mitk::PhotoacousticFilterService::Pointer m_FilterBank; }; class BandpassThread : public QThread { Q_OBJECT void run() Q_DECL_OVERRIDE; signals: void result(mitk::Image::Pointer, std::string nameExtension); public: void setConfig(float BPHighPass, float BPLowPass, float TukeyAlphaHighPass, float TukeyAlphaLowPass, float TimeSpacing, float SpeedOfSound, bool IsBFImage); void setInputImage(mitk::Image::Pointer image); void setFilterBank(mitk::PhotoacousticFilterService::Pointer filterBank) { m_FilterBank = filterBank; } protected: mitk::Image::Pointer m_InputImage; float m_BPHighPass; float m_BPLowPass; float m_TukeyAlphaHighPass; float m_TukeyAlphaLowPass; float m_TimeSpacing; float m_SpeedOfSound; bool m_IsBFImage; mitk::PhotoacousticFilterService::Pointer m_FilterBank; }; #endif // PAImageProcessing_h diff --git a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessingControls.ui b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessingControls.ui index bba077088b..bebe936380 100644 --- a/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessingControls.ui +++ b/Plugins/org.mitk.gui.qt.photoacoustics.imageprocessing/src/internal/PAImageProcessingControls.ui @@ -1,1021 +1,1074 @@ PAImageProcessingControls 0 0 385 1278 0 0 QmitkTemplate <html><head/><body><p><span style=" font-weight:600;">Batch Processing</span></p></body></html> Start Batch Processing Bandpass true Crop true Save false Save false Save false Beamform true BMode true Save true <html><head/><body><p><span style=" font-weight:600;">B-mode Filter Settings</span></p></body></html> Envelope Detection Envelope Detection Absolute Filter Do Resampling true 0 0 13 0 11 3 0.010000000000000 1.000000000000000 0.010000000000000 0.150000000000000 [mm] Resampled Depth Spacing Logarithmic Compression Use GPU QLabel { color: rgb(255, 0, 0) } <html><head/><body><p align="center"><span style=" font-size:10pt; font-weight:600;">Please select an image!</span></p></body></html> 0 0 Do image processing Apply B-mode Filter Qt::Horizontal <html><head/><body><p><span style=" font-weight:600;">Bandpass Filter Settings</span></p></body></html> QLayout::SetDefaultConstraint 0 0 0 3 0.010000000000000 200.000000000000000 0.100000000000000 1.000000000000000 [MHz] f High Pass [MHz] f Low Pass 0 0 3 200.000000000000000 0.100000000000000 1 200.000000000000000 3000.000000000000000 5.000000000000000 1540.000000000000000 [m/s] Speed of Sound 1.000000000000000 0.100000000000000 0.500000000000000 Tukey Window α High Pass 2 1.000000000000000 0.100000000000000 0.500000000000000 Tukey Window α Low Pass If not checked, treat input as raw US/PA data with Y-axis a time coordinate [us] Assume Spatial Coordinates <html><head/><body><p align="center"><span style=" font-size:10pt; font-weight:600; color:#ff0000;">Please select an image!</span></p></body></html> Apply Bandpass Qt::Horizontal <html><head/><body><p><span style=" font-weight:600;">Crop Filter Settings</span></p></body></html> + + + + 999999999 + + + + + + + Cut Bottom + + + + + + + 999999999 + + + + + + 999999999 + + + 1 + + + 0 + + + + - 99999 + 999999999 0 - + Cut Top - - + + - Cut Bottom + Cut Right - - - - 99999 - - - 5 + + + + Cut Left - - 0 + + + + + + select slices - + false 99999 - - + + - Maximal beamformed slice + minimal beamformed slice - max + min - + false 99999 10 - - + + - minimal beamformed slice - - - min + Maximal beamformed slice - - - - - select slices + max <html><head/><body><p align="center"><span style=" font-size:10pt; font-weight:600; color:#ff0000;">Please select an image!</span></p></body></html> Apply Crop Filer Qt::Horizontal <html><head/><body><p><span style=" font-weight:600;">Beamforming Filter Settings</span></p></body></html> 5 2 - - + + + + <html><head/><body><p>Some setups' hardware produces signal delays that need to be cropped out of the image before performing beamforming. To do this, select this box.</p></body></html> + + + Consider Hardware Delay [µs] + + + false + + + + + + + Apply Beamforming + + + + + 0 0 - - 1 + + + PA Image + + + + + US Image + + + + + + + + + 0 + 0 + - 200.000000000000000 + 64 - 3000.000000000000000 + 1024 - 5.000000000000000 + 128 - 1540.000000000000000 + 128 - - - - Auto Get Depth + + + + + 0 + 0 + - - true + + 256 + + + 16384 + + + 256 + + + 2048 - + - Apply Beamforming + Reconstruction Lines - - + + - + Image Type - - - - Beamforming Method + + + + + 0 + 0 + + + + DAS + + + + + DMAS + + + + + sDMAS + + - - + + - [mm] Scan Depth + Samples - - + + 0 0 - - 3 - - - 0.010000000000000 - - - 9.000000000000000 - - - 0.050000000000000 - - - 0.300000000000000 - + + + Von Hann + + + + + Hamming + + + + + Box + + - - - - Transducer Elements + + + + true - - - - 0 0 - - 4 - - 300.000000000000000 - - - 0.100000000000000 + 100 - 50.000000000000000 + 0 - + [mm] Transducer Pitch - - + + 0 0 64 - 1024 + 2048 128 - 128 + 256 - - + + 0 0 + + 1 + - 256 + 200.000000000000000 - 16384 + 3000.000000000000000 - 256 + 5.000000000000000 - 2048 + 1540.000000000000000 - - - - - 0 - 0 - + + + + [mm] Scan Depth - - 64 + + + + + + Apodization - - 2048 + + + + + + Auto Get Depth - - 128 + + true - - 256 + + + + + + Beamforming Method - + - Samples + Transducer Elements - - + + - Reconstruction Lines + - - - - true - + + 0 0 + + 4 + - 100 + 300.000000000000000 + + + 0.100000000000000 - 0 + 50.000000000000000 - - + + 0 0 - - - DAS - - - - - DMAS - - - - - sDMAS - - - - - - - - - 0 - 0 - + + 3 - - - PA Image - - - - - US Image - - - - - - - - Image Type + + 0.010000000000000 - - - - - - - 0 - 0 - + + 9.000000000000000 - - - Von Hann - - - - - Hamming - - - - - Box - - - - - - - - Apodization + + 0.050000000000000 + + + 0.300000000000000 - - + + - [m/s] Speed of Sound + Probe Geomentry - - - - - - - + - - + + - Compute On GPU - - - true + [m/s] Speed of Sound - + 0 0 1 1.000000000000000 180.000000000000000 27.000000000000000 - + [°] Element Angle - + + + + Compute On GPU + + + true + + + + <html><head/><body><p align="center"><span style=" font-size:10pt; font-weight:600; color:#ff0000;">Please select an image!</span></p></body></html> - + [mm] Reconstruction Depth - + + + + 0.100000000000000 + + + 1.000000000000000 + + + + 4 300.000000000000000 0.100000000000000 40.000000000000000 - - - - 0.100000000000000 - - - 1.000000000000000 - + + + + + Linear + + + + + Concave + + - - - - <html><head/><body><p>Some setups' hardware produces signal delays that need to be cropped out of the image before performing beamforming. To do this, select this box.</p></body></html> - + + + + + - Consider Hardware Delay [µs] - - - false + [°] Radius Qt::Vertical 20 40