diff --git a/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp b/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp index 804dde617d..bac6ecca0c 100644 --- a/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp +++ b/Core/Code/Rendering/mitkSurfaceGLMapper2D.cpp @@ -1,541 +1,538 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkSurfaceGLMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkSurface.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkVtkScalarModeProperty.h" #include "mitkAbstractTransformGeometry.h" #include "mitkLookupTableProperty.h" #include #include #include #include #include #include #include #include #include #include #include #include #include mitk::SurfaceGLMapper2D::SurfaceGLMapper2D() : m_Plane( vtkPlane::New() ), m_Cutter( vtkCutter::New() ), m_LUT( vtkLookupTable::New() ), m_PointLocator( vtkPKdTree::New() ), m_Stripper( vtkStripper::New() ), m_DrawNormals(false), m_FrontNormalLengthInPixels(10.0), m_BackNormalLengthInPixels(10.0) { // default for normals on front side = green m_FrontSideColor[0] = 0.0; m_FrontSideColor[1] = 1.0; m_FrontSideColor[2] = 0.0; m_FrontSideColor[3] = 1.0; // default for normals on back side = red m_BackSideColor[0] = 1.0; m_BackSideColor[1] = 0.0; m_BackSideColor[2] = 0.0; m_BackSideColor[3] = 1.0; // default for line color = yellow m_LineColor[0] = 1.0; m_LineColor[1] = 1.0; m_LineColor[2] = 0.0; m_LineColor[3] = 1.0; m_Cutter->SetCutFunction(m_Plane); m_Cutter->GenerateValues(1,0,1); m_LUT->SetTableRange(0,255); m_LUT->SetNumberOfColors(255); m_LUT->SetRampToLinear(); m_LUT->Build(); } mitk::SurfaceGLMapper2D::~SurfaceGLMapper2D() { m_Plane->Delete(); m_Cutter->Delete(); m_LUT->Delete(); m_PointLocator->Delete(); m_Stripper->Delete(); } const mitk::Surface *mitk::SurfaceGLMapper2D::GetInput(void) { if(m_Surface.IsNotNull()) return m_Surface; return static_cast ( GetDataNode()->GetData() ); } void mitk::SurfaceGLMapper2D::SetDataNode( mitk::DataNode* node ) { Superclass::SetDataNode( node ); bool useCellData; if (dynamic_cast(node->GetProperty("deprecated useCellDataForColouring")) == NULL) useCellData = false; else useCellData = dynamic_cast(node->GetProperty("deprecated useCellDataForColouring"))->GetValue(); if (!useCellData) { // search min/max point scalars over all time steps double dataRange[2] = {0,0}; double range[2]; Surface::Pointer input = const_cast< Surface* >(dynamic_cast( this->GetDataNode()->GetData() )); if(input.IsNull()) return; const TimeGeometry::Pointer inputTimeGeometry = input->GetTimeGeometry(); if(( inputTimeGeometry.IsNull() ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) return; for (unsigned int timestep=0; timestepCountTimeSteps(); timestep++) { vtkPolyData * vtkpolydata = input->GetVtkPolyData( timestep ); if((vtkpolydata==NULL) || (vtkpolydata->GetNumberOfPoints() < 1 )) continue; vtkDataArray *vpointscalars = vtkpolydata->GetPointData()->GetScalars(); if (vpointscalars) { vpointscalars->GetRange( range, 0 ); if (dataRange[0]==0 && dataRange[1]==0) { dataRange[0] = range[0]; dataRange[1] = range[1]; } else { if (range[0] < dataRange[0]) dataRange[0] = range[0]; if (range[1] > dataRange[1]) dataRange[1] = range[1]; } } } if (dataRange[1] - dataRange[0] > 0) { m_LUT->SetTableRange( dataRange ); m_LUT->Build(); } } } void mitk::SurfaceGLMapper2D::Paint(mitk::BaseRenderer * renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if(!visible) return; Surface::Pointer input = const_cast(this->GetInput()); if(input.IsNull()) return; // // get the TimeGeometry of the input object // const TimeGeometry* inputTimeGeometry = input->GetTimeGeometry(); if(( inputTimeGeometry == NULL ) || ( inputTimeGeometry->CountTimeSteps() == 0 ) ) return; if (dynamic_cast(this->GetDataNode()->GetProperty("line width")) == NULL) m_LineWidth = 1; else m_LineWidth = dynamic_cast(this->GetDataNode()->GetProperty("line width"))->GetValue(); // // get the world time // ScalarType time =renderer->GetTime(); int timestep=0; if( time > ScalarTypeNumericTraits::NonpositiveMin() ) timestep = inputTimeGeometry->TimePointToTimeStep( time ); // int timestep = this->GetTimestep(); if( inputTimeGeometry->IsValidTimeStep( timestep ) == false ) return; vtkPolyData * vtkpolydata = input->GetVtkPolyData( timestep ); if((vtkpolydata==NULL) || (vtkpolydata->GetNumberOfPoints() < 1 )) return; - Geometry3D::Pointer worldGeometry = renderer->GetWorldGeometry(); - PlaneGeometry::ConstPointer worldPlaneGeometry = dynamic_cast(worldGeometry.GetPointer()); - //apply color and opacity read from the PropertyList this->ApplyAllProperties(renderer); if (m_DrawNormals) { m_PointLocator->SetDataSet( vtkpolydata ); m_PointLocator->BuildLocatorFromPoints( vtkpolydata->GetPoints() ); } if(vtkpolydata!=NULL) { Point3D point; Vector3D normal; //Check if Lookup-Table is already given, else use standard one. double* scalarLimits = m_LUT->GetTableRange(); double scalarsMin = scalarLimits[0], scalarsMax = scalarLimits[1]; vtkLookupTable *lut; LookupTableProperty::Pointer lookupTableProp; this->GetDataNode()->GetProperty(lookupTableProp, "LookupTable", renderer); if (lookupTableProp.IsNotNull() ) { lut = lookupTableProp->GetLookupTable()->GetVtkLookupTable(); if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum")) != NULL) scalarsMin = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMinimum"))->GetValue(); if (dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum")) != NULL) scalarsMax = dynamic_cast(this->GetDataNode()->GetProperty("ScalarsRangeMaximum"))->GetValue(); // check if the scalar range has been changed, e.g. manually, for the data tree node, and rebuild the LUT if necessary. double* oldRange = lut->GetTableRange(); if( oldRange[0] != scalarsMin || oldRange[1] != scalarsMax ) { lut->SetTableRange(scalarsMin, scalarsMax); lut->Build(); } } else { lut = m_LUT; } vtkLinearTransform * vtktransform = GetDataNode()->GetVtkTransform(timestep); Geometry2D::ConstPointer worldGeometry = renderer->GetCurrentWorldGeometry2D(); assert( worldGeometry.IsNotNull() ); - if(worldPlaneGeometry.IsNotNull()) + if (worldGeometry.IsNotNull()) { // set up vtkPlane according to worldGeometry - point=worldPlaneGeometry->GetOrigin(); - normal=worldPlaneGeometry->GetNormal(); normal.Normalize(); + point=worldGeometry->GetOrigin(); + normal=worldGeometry->GetNormal(); normal.Normalize(); m_Plane->SetTransform((vtkAbstractTransform*)NULL); } else { AbstractTransformGeometry::ConstPointer worldAbstractGeometry = dynamic_cast(renderer->GetCurrentWorldPlaneGeometry()); if(worldAbstractGeometry.IsNotNull()) { AbstractTransformGeometry::ConstPointer surfaceAbstractGeometry = dynamic_cast(input->GetTimeGeometry()->GetGeometryForTimeStep(0).GetPointer()); if(surfaceAbstractGeometry.IsNotNull()) //@todo substitude by operator== after implementation, see bug id 28 { PaintCells(renderer, vtkpolydata, worldGeometry, renderer->GetDisplayGeometry(), vtktransform, lut); return; } else { //@FIXME: does not work correctly. Does m_Plane->SetTransform really transforms a "flat plane" into a "curved plane"? return; // set up vtkPlane according to worldGeometry point=const_cast(worldAbstractGeometry->GetParametricBoundingBox())->GetMinimum(); FillVector3D(normal, 0, 0, 1); m_Plane->SetTransform(worldAbstractGeometry->GetVtkAbstractTransform()->GetInverse()); } } else return; } double vp[3], vnormal[3]; vnl2vtk(point.GetVnlVector(), vp); vnl2vtk(normal.GetVnlVector(), vnormal); //normally, we would need to transform the surface and cut the transformed surface with the cutter. //This might be quite slow. Thus, the idea is, to perform an inverse transform of the plane instead. //@todo It probably does not work for scaling operations yet:scaling operations have to be //dealed with after the cut is performed by scaling the contour. vtkLinearTransform * inversetransform = vtktransform->GetLinearInverse(); inversetransform->TransformPoint(vp, vp); inversetransform->TransformNormalAtPoint(vp, vnormal, vnormal); m_Plane->SetOrigin(vp); m_Plane->SetNormal(vnormal); //set data into cutter m_Cutter->SetInputData(vtkpolydata); m_Cutter->Update(); // m_Cutter->GenerateCutScalarsOff(); // m_Cutter->SetSortByToSortByCell(); if (m_DrawNormals) { m_Stripper->SetInputData( m_Cutter->GetOutput() ); // calculate the cut m_Stripper->Update(); PaintCells(renderer, m_Stripper->GetOutput(), worldGeometry, renderer->GetDisplayGeometry(), vtktransform, lut, vtkpolydata); } else { PaintCells(renderer, m_Cutter->GetOutput(), worldGeometry, renderer->GetDisplayGeometry(), vtktransform, lut, vtkpolydata); } } } void mitk::SurfaceGLMapper2D::PaintCells(mitk::BaseRenderer* renderer, vtkPolyData* contour, const PlaneGeometry* worldGeometry, const DisplayGeometry* displayGeometry, vtkLinearTransform * vtktransform, vtkLookupTable *lut, vtkPolyData* original3DObject) { // deprecated settings bool usePointData = false; bool useCellData = false; this->GetDataNode()->GetBoolProperty("deprecated useCellDataForColouring", useCellData); bool scalarVisibility = false; this->GetDataNode()->GetBoolProperty("scalar visibility", scalarVisibility); if(scalarVisibility) { VtkScalarModeProperty* scalarMode; if(this->GetDataNode()->GetProperty(scalarMode, "scalar mode", renderer)) { if( (scalarMode->GetVtkScalarMode() == VTK_SCALAR_MODE_USE_POINT_DATA) || (scalarMode->GetVtkScalarMode() == VTK_SCALAR_MODE_DEFAULT) ) { usePointData = true; } if(scalarMode->GetVtkScalarMode() == VTK_SCALAR_MODE_USE_CELL_DATA) { useCellData = true; } } else { usePointData = true; } } vtkPoints *vpoints = contour->GetPoints(); vtkDataArray *vpointscalars = contour->GetPointData()->GetScalars(); vtkCellArray *vlines = contour->GetLines(); vtkDataArray* vcellscalars = contour->GetCellData()->GetScalars(); Point3D p; Point2D p2d, last; int i, j; int numberOfLines = vlines->GetNumberOfCells(); glLineWidth( m_LineWidth ); glBegin (GL_LINES); glColor4fv(m_LineColor); double distanceSinceLastNormal(0.0); vlines->InitTraversal(); for(i=0;iGetNextCell(cellSize, cell); vpoints->GetPoint(cell[0], vp); //take transformation via vtktransform into account vtktransform->TransformPoint(vp, vp); vtk2itk(vp, p); //convert 3D point (in mm) to 2D point on slice (also in mm) worldGeometry->Map(p, p2d); //convert point (until now mm and in world coordinates) to display coordinates (units ) displayGeometry->WorldToDisplay(p2d, p2d); last=p2d; for(j=1; jGetPoint(cell[j], vp); Point3D originalPoint; vtk2itk(vp, originalPoint); //take transformation via vtktransform into account vtktransform->TransformPoint(vp, vp); vtk2itk(vp, p); //convert 3D point (in mm) to 2D point on slice (also in mm) worldGeometry->Map(p, p2d); //convert point (until now mm and in world coordinates) to display coordinates (units ) displayGeometry->WorldToDisplay(p2d, p2d); double color[3]; if (useCellData && vcellscalars != NULL ) { // color each cell according to cell data lut->GetColor( vcellscalars->GetComponent(i,0),color); glColor3f(color[0],color[1],color[2]); glVertex2f(last[0], last[1]); glVertex2f(p2d[0], p2d[1]); } else if (usePointData && vpointscalars != NULL ) { lut->GetColor( vpointscalars->GetComponent(cell[j-1],0),color); glColor3f(color[0],color[1],color[2]); glVertex2f(last[0], last[1]); lut->GetColor( vpointscalars->GetComponent(cell[j],0),color); glColor3f(color[0],color[1],color[2]); glVertex2f(p2d[0], p2d[1]); } else { glVertex2f(last[0], last[1]); glVertex2f(p2d[0], p2d[1]); // draw normals ? if (m_DrawNormals && original3DObject) { distanceSinceLastNormal += sqrt((p2d[0]-last[0])*(p2d[0]-last[0]) + (p2d[1]-last[1])*(p2d[1]-last[1])); if (distanceSinceLastNormal >= 5.0) { distanceSinceLastNormal = 0.0; vtkPointData* pointData = original3DObject->GetPointData(); if (!pointData) break; vtkDataArray* normalsArray = pointData->GetNormals(); if (!normalsArray) break; // find 3D point closest to the currently drawn point double distance(0.0); vtkIdType closestPointId = m_PointLocator->FindClosestPoint(originalPoint[0], originalPoint[1], originalPoint[2], distance); if (closestPointId >= 0) { // find normal of 3D object at this 3D point double* normal = normalsArray->GetTuple3(closestPointId); double transformedNormal[3]; vtktransform->TransformNormal(normal, transformedNormal); Vector3D normalITK; vtk2itk(transformedNormal, normalITK); normalITK.Normalize(); // calculate a point (point from the cut 3D object) + (normal vector of closest point) Point3D tip3D = p + normalITK; // map this point into our 2D coordinate system Point2D tip2D; worldGeometry->Map(tip3D, tip2D); displayGeometry->WorldToDisplay(tip2D, tip2D); // calculate 2D vector from point to point+normal, normalize it to standard length Vector2D tipVectorGLFront = tip2D - p2d; tipVectorGLFront.Normalize(); tipVectorGLFront *= m_FrontNormalLengthInPixels; Vector2D tipVectorGLBack = p2d - tip2D; tipVectorGLBack.Normalize(); tipVectorGLBack *= m_BackNormalLengthInPixels; Point2D tipPoint2D = p2d + tipVectorGLFront; Point2D backTipPoint2D = p2d + tipVectorGLBack; // draw normalized mapped normal vector glColor4f(m_BackSideColor[0], m_BackSideColor[1], m_BackSideColor[2], m_BackSideColor[3]); // red backside glVertex2f(p2d[0], p2d[1]); glVertex2f(tipPoint2D[0], tipPoint2D[1]); glColor4f(m_FrontSideColor[0], m_FrontSideColor[1], m_FrontSideColor[2], m_FrontSideColor[3]); // green backside glVertex2f(p2d[0], p2d[1]); glVertex2f(backTipPoint2D[0], backTipPoint2D[1]); glColor4fv(m_LineColor); // back to line color } } } } last=p2d; } } glEnd(); glLineWidth(1.0); } void mitk::SurfaceGLMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { node->AddProperty( "line width", IntProperty::New(2), renderer, overwrite ); node->AddProperty( "scalar mode", VtkScalarModeProperty::New(), renderer, overwrite ); node->AddProperty( "draw normals 2D", BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "invert normals", BoolProperty::New(false), renderer, overwrite ); node->AddProperty( "front color", ColorProperty::New(0.0, 1.0, 0.0), renderer, overwrite ); node->AddProperty( "back color", ColorProperty::New(1.0, 0.0, 0.0), renderer, overwrite ); node->AddProperty( "front normal lenth (px)", FloatProperty::New(10.0), renderer, overwrite ); node->AddProperty( "back normal lenth (px)", FloatProperty::New(10.0), renderer, overwrite ); node->AddProperty( "layer", mitk::IntProperty::New(100), renderer, overwrite); Superclass::SetDefaultProperties(node, renderer, overwrite); } void mitk::SurfaceGLMapper2D::ApplyAllProperties(mitk::BaseRenderer* renderer) { ApplyColorAndOpacityProperties(renderer); DataNode * node = GetDataNode(); if(node == NULL) { return; } node->GetBoolProperty("draw normals 2D", m_DrawNormals, renderer); // check for color and opacity properties, use it for rendering if they exists node->GetColor(m_LineColor, renderer, "color"); node->GetOpacity(m_LineColor[3], renderer, "opacity"); bool invertNormals(false); node->GetBoolProperty("invert normals", invertNormals, renderer); if (!invertNormals) { node->GetColor(m_FrontSideColor, renderer, "front color"); node->GetOpacity(m_FrontSideColor[3], renderer, "opacity"); node->GetColor(m_BackSideColor, renderer, "back color"); node->GetOpacity(m_BackSideColor[3], renderer, "opacity"); node->GetFloatProperty( "front normal lenth (px)", m_FrontNormalLengthInPixels, renderer ); node->GetFloatProperty( "back normal lenth (px)", m_BackNormalLengthInPixels, renderer ); } else { node->GetColor(m_FrontSideColor, renderer, "back color"); node->GetOpacity(m_FrontSideColor[3], renderer, "opacity"); node->GetColor(m_BackSideColor, renderer, "front color"); node->GetOpacity(m_BackSideColor[3], renderer, "opacity"); node->GetFloatProperty( "back normal lenth (px)", m_FrontNormalLengthInPixels, renderer ); node->GetFloatProperty( "front normal lenth (px)", m_BackNormalLengthInPixels, renderer ); } } diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp index 67f13ec20f..69fd88d7ba 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp @@ -1,1284 +1,1284 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageStatisticsCalculator.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkExtractImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace mitk { ImageStatisticsCalculator::ImageStatisticsCalculator() : m_MaskingMode( MASKING_MODE_NONE ), m_MaskingModeChanged( false ), m_IgnorePixelValue(0.0), m_DoIgnorePixelValue(false), m_IgnorePixelValueChanged(false), m_PlanarFigureAxis (0), m_PlanarFigureSlice (0), m_PlanarFigureCoordinate0 (0), m_PlanarFigureCoordinate1 (0), m_HistogramBinSize(1) { m_EmptyHistogram = HistogramType::New(); m_EmptyHistogram->SetMeasurementVectorSize(1); HistogramType::SizeType histogramSize(1); histogramSize.Fill( 256 ); m_EmptyHistogram->Initialize( histogramSize ); m_EmptyStatistics.Reset(); } ImageStatisticsCalculator::~ImageStatisticsCalculator() { } void ImageStatisticsCalculator::SetImage( const mitk::Image *image ) { if ( m_Image != image ) { m_Image = image; this->Modified(); unsigned int numberOfTimeSteps = image->GetTimeSteps(); // Initialize vectors to time-size of this image m_ImageHistogramVector.resize( numberOfTimeSteps ); m_MaskedImageHistogramVector.resize( numberOfTimeSteps ); m_PlanarFigureHistogramVector.resize( numberOfTimeSteps ); m_ImageStatisticsVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsVector.resize( numberOfTimeSteps ); m_ImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_ImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); for ( unsigned int t = 0; t < image->GetTimeSteps(); ++t ) { m_ImageStatisticsTimeStampVector[t].Modified(); m_ImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetImageMask( const mitk::Image *imageMask ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_ImageMask != imageMask ) { m_ImageMask = imageMask; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_MaskedImageStatisticsTimeStampVector[t].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetPlanarFigure( mitk::PlanarFigure *planarFigure ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_PlanarFigure != planarFigure ) { m_PlanarFigure = planarFigure; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_PlanarFigureStatisticsTimeStampVector[t].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetMaskingMode( unsigned int mode ) { if ( m_MaskingMode != mode ) { m_MaskingMode = mode; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToNone() { if ( m_MaskingMode != MASKING_MODE_NONE ) { m_MaskingMode = MASKING_MODE_NONE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToImage() { if ( m_MaskingMode != MASKING_MODE_IMAGE ) { m_MaskingMode = MASKING_MODE_IMAGE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToPlanarFigure() { if ( m_MaskingMode != MASKING_MODE_PLANARFIGURE ) { m_MaskingMode = MASKING_MODE_PLANARFIGURE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetIgnorePixelValue(double value) { if ( m_IgnorePixelValue != value ) { m_IgnorePixelValue = value; if(m_DoIgnorePixelValue) { m_IgnorePixelValueChanged = true; } this->Modified(); } } double ImageStatisticsCalculator::GetIgnorePixelValue() { return m_IgnorePixelValue; } void ImageStatisticsCalculator::SetDoIgnorePixelValue(bool value) { if ( m_DoIgnorePixelValue != value ) { m_DoIgnorePixelValue = value; m_IgnorePixelValueChanged = true; this->Modified(); } } bool ImageStatisticsCalculator::GetDoIgnorePixelValue() { return m_DoIgnorePixelValue; } void ImageStatisticsCalculator::SetHistogramBinSize(unsigned int size) { this->m_HistogramBinSize = size; } unsigned int ImageStatisticsCalculator::GetHistogramBinSize() { return this->m_HistogramBinSize; } bool ImageStatisticsCalculator::ComputeStatistics( unsigned int timeStep ) { if (m_Image.IsNull() ) { mitkThrow() << "Image not set!"; } if (!m_Image->IsInitialized()) { mitkThrow() << "Image not initialized!"; } if ( m_Image->GetReferenceCount() == 1 ) { // Image no longer valid; we are the only ones to still hold a reference on it return false; } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } // If a mask was set but we are the only ones to still hold a reference on // it, delete it. if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() == 1) ) { m_ImageMask = NULL; } // Check if statistics is already up-to-date unsigned long imageMTime = m_ImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long maskedImageMTime = m_MaskedImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long planarFigureMTime = m_PlanarFigureStatisticsTimeStampVector[timeStep].GetMTime(); bool imageStatisticsCalculationTrigger = m_ImageStatisticsCalculationTriggerVector[timeStep]; bool maskedImageStatisticsCalculationTrigger = m_MaskedImageStatisticsCalculationTriggerVector[timeStep]; bool planarFigureStatisticsCalculationTrigger = m_PlanarFigureStatisticsCalculationTriggerVector[timeStep]; if ( !m_IgnorePixelValueChanged && ((m_MaskingMode != MASKING_MODE_NONE) || (imageMTime > m_Image->GetMTime() && !imageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_IMAGE) || (maskedImageMTime > m_ImageMask->GetMTime() && !maskedImageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_PLANARFIGURE) || (planarFigureMTime > m_PlanarFigure->GetMTime() && !planarFigureStatisticsCalculationTrigger)) ) { // Statistics is up to date! if ( m_MaskingModeChanged ) { m_MaskingModeChanged = false; return true; } else { return false; } } // Reset state changed flag m_MaskingModeChanged = false; m_IgnorePixelValueChanged = false; // Depending on masking mode, extract and/or generate the required image // and mask data from the user input this->ExtractImageAndMask( timeStep ); StatisticsContainer *statisticsContainer; HistogramContainer *histogramContainer; switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: if(!m_DoIgnorePixelValue) { statisticsContainer = &m_ImageStatisticsVector[timeStep]; histogramContainer = &m_ImageHistogramVector[timeStep]; m_ImageStatisticsTimeStampVector[timeStep].Modified(); m_ImageStatisticsCalculationTriggerVector[timeStep] = false; } else { statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; } break; case MASKING_MODE_IMAGE: statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; break; case MASKING_MODE_PLANARFIGURE: statisticsContainer = &m_PlanarFigureStatisticsVector[timeStep]; histogramContainer = &m_PlanarFigureHistogramVector[timeStep]; m_PlanarFigureStatisticsTimeStampVector[timeStep].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[timeStep] = false; break; } // Calculate statistics and histogram(s) if ( m_InternalImage->GetDimension() == 3 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 3, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 3, m_InternalImageMask3D.GetPointer(), statisticsContainer, histogramContainer ); } } else if ( m_InternalImage->GetDimension() == 2 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 2, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 2, m_InternalImageMask2D.GetPointer(), statisticsContainer, histogramContainer ); } } else { MITK_ERROR << "ImageStatistics: Image dimension not supported!"; } // Release unused image smart pointers to free memory m_InternalImage = mitk::Image::ConstPointer(); m_InternalImageMask3D = MaskImage3DType::Pointer(); m_InternalImageMask2D = MaskImage2DType::Pointer(); return true; } const ImageStatisticsCalculator::HistogramType * ImageStatisticsCalculator::GetHistogram( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return NULL; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep][label]; return m_ImageHistogramVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep][label]; } } const ImageStatisticsCalculator::HistogramContainer & ImageStatisticsCalculator::GetHistogramVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyHistogramContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep]; return m_ImageHistogramVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep]; } } const ImageStatisticsCalculator::Statistics & ImageStatisticsCalculator::GetStatistics( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatistics; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep][label]; return m_ImageStatisticsVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep][label]; } } const ImageStatisticsCalculator::StatisticsContainer & ImageStatisticsCalculator::GetStatisticsVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatisticsContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep]; return m_ImageStatisticsVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep]; } } void ImageStatisticsCalculator::ExtractImageAndMask( unsigned int timeStep ) { if ( m_Image.IsNull() ) { throw std::runtime_error( "Error: image empty!" ); } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput( m_Image ); imageTimeSelector->SetTimeNr( timeStep ); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceImage = imageTimeSelector->GetOutput(); switch ( m_MaskingMode ) { case MASKING_MODE_NONE: { m_InternalImage = timeSliceImage; m_InternalImageMask2D = NULL; m_InternalImageMask3D = NULL; if(m_DoIgnorePixelValue) { if( m_InternalImage->GetDimension() == 3 ) { CastToItkImage( timeSliceImage, m_InternalImageMask3D ); m_InternalImageMask3D->FillBuffer(1); } if( m_InternalImage->GetDimension() == 2 ) { CastToItkImage( timeSliceImage, m_InternalImageMask2D ); m_InternalImageMask2D->FillBuffer(1); } } break; } case MASKING_MODE_IMAGE: { if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() > 1) ) { if ( timeStep >= m_ImageMask->GetTimeSteps() ) { // Use the last mask time step in case the current time step is bigger than the total // number of mask time steps. // It makes more sense setting this to the last mask time step than to 0. // For instance if you have a mask with 2 time steps and an image with 5: // If time step 0 is selected, the mask will use time step 0. // If time step 1 is selected, the mask will use time step 1. // If time step 2+ is selected, the mask will use time step 1. // If you have a mask with only one time step instead, this will always default to 0. timeStep = m_ImageMask->GetTimeSteps() - 1; } ImageTimeSelector::Pointer maskedImageTimeSelector = ImageTimeSelector::New(); maskedImageTimeSelector->SetInput( m_ImageMask ); maskedImageTimeSelector->SetTimeNr( timeStep ); maskedImageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceMaskedImage = maskedImageTimeSelector->GetOutput(); m_InternalImage = timeSliceImage; CastToItkImage( timeSliceMaskedImage, m_InternalImageMask3D ); } else { throw std::runtime_error( "Error: image mask empty!" ); } break; } case MASKING_MODE_PLANARFIGURE: { m_InternalImageMask2D = NULL; if ( m_PlanarFigure.IsNull() ) { throw std::runtime_error( "Error: planar figure empty!" ); } if ( !m_PlanarFigure->IsClosed() ) { throw std::runtime_error( "Masking not possible for non-closed figures" ); } const BaseGeometry *imageGeometry = timeSliceImage->GetGeometry(); if ( imageGeometry == NULL ) { throw std::runtime_error( "Image geometry invalid!" ); } const PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); if ( planarFigurePlaneGeometry == NULL ) { throw std::runtime_error( "Planar-Figure not yet initialized!" ); } const PlaneGeometry *planarFigureGeometry = dynamic_cast< const PlaneGeometry * >( planarFigurePlaneGeometry ); if ( planarFigureGeometry == NULL ) { throw std::runtime_error( "Non-planar planar figures not supported!" ); } // Find principal direction of PlanarFigure in input image unsigned int axis; if ( !this->GetPrincipalAxis( imageGeometry, planarFigureGeometry->GetNormal(), axis ) ) { throw std::runtime_error( "Non-aligned planar figures not supported!" ); } m_PlanarFigureAxis = axis; // Find slice number corresponding to PlanarFigure in input image MaskImage3DType::IndexType index; imageGeometry->WorldToIndex( planarFigureGeometry->GetOrigin(), index ); unsigned int slice = index[axis]; m_PlanarFigureSlice = slice; // Extract slice with given position and direction from image unsigned int dimension = timeSliceImage->GetDimension(); if (dimension != 2) { ExtractImageFilter::Pointer imageExtractor = ExtractImageFilter::New(); imageExtractor->SetInput( timeSliceImage ); imageExtractor->SetSliceDimension( axis ); imageExtractor->SetSliceIndex( slice ); imageExtractor->Update(); m_InternalImage = imageExtractor->GetOutput(); } else { m_InternalImage = timeSliceImage; } // Compute mask from PlanarFigure AccessFixedDimensionByItk_1( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 2, axis ); } } if(m_DoIgnorePixelValue) { if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 3, m_InternalImageMask3D.GetPointer() ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 2, m_InternalImageMask2D.GetPointer() ); } } } bool ImageStatisticsCalculator::GetPrincipalAxis( const BaseGeometry *geometry, Vector3D vector, unsigned int &axis ) { vector.Normalize(); for ( unsigned int i = 0; i < 3; ++i ) { Vector3D axisVector = geometry->GetAxisVector( i ); axisVector.Normalize(); if ( fabs( fabs( axisVector * vector ) - 1.0) < mitk::eps ) { axis = i; return true; } } return false; } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer *statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef itk::Statistics::ScalarImageToHistogramGenerator< ImageType > HistogramGeneratorType; statisticsContainer->clear(); histogramContainer->clear(); // Progress listening... typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate ); // Issue 100 artificial progress events since ScalarIMageToHistogramGenerator // does not (yet?) support progress reporting this->InvokeEvent( itk::StartEvent() ); for ( unsigned int i = 0; i < 100; ++i ) { this->UnmaskedStatisticsProgressUpdate(); } // Calculate statistics (separate filter) typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( image ); unsigned long observerTag = statisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); statisticsFilter->Update(); statisticsFilter->RemoveObserver( observerTag ); this->InvokeEvent( itk::EndEvent() ); // Calculate minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( image ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); Statistics statistics; statistics.Reset(); statistics.Label = 1; statistics.N = image->GetBufferedRegion().GetNumberOfPixels(); statistics.Min = statisticsFilter->GetMinimum(); statistics.Max = statisticsFilter->GetMaximum(); statistics.Mean = statisticsFilter->GetMean(); statistics.Median = 0.0; statistics.Sigma = statisticsFilter->GetSigma(); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); statistics.MinIndex.set_size(image->GetImageDimension()); statistics.MaxIndex.set_size(image->GetImageDimension()); for (unsigned int i=0; iGetIndexOfMaximum()[i]; statistics.MinIndex[i] = minMaxFilter->GetIndexOfMinimum()[i]; } statisticsContainer->push_back( statistics ); // Calculate histogram unsigned int numberOfBins = std::floor( ( (statistics.Max - statistics.Min + 1) / m_HistogramBinSize) + 0.5 ); typename HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( image ); histogramGenerator->SetMarginalScale( 100 ); histogramGenerator->SetNumberOfBins( numberOfBins ); histogramGenerator->SetHistogramMin( statistics.Min ); histogramGenerator->SetHistogramMax( statistics.Max ); histogramGenerator->Compute(); histogramContainer->push_back( histogramGenerator->GetOutput() ); } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; itk::ImageRegionIterator itmask(maskImage, maskImage->GetLargestPossibleRegion()); itk::ImageRegionConstIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); while( !itmask.IsAtEnd() ) { if(m_IgnorePixelValue == itimage.Get()) { itmask.Set(0); } ++itmask; ++itimage; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef typename ImageType::PointType PointType; typedef typename ImageType::SpacingType SpacingType; typedef itk::LabelStatisticsImageFilter< ImageType, MaskImageType > LabelStatisticsFilterType; typedef itk::ChangeInformationImageFilter< MaskImageType > ChangeInformationFilterType; typedef itk::ExtractImageFilter< ImageType, ImageType > ExtractImageFilterType; statisticsContainer->clear(); histogramContainer->clear(); // Make sure that mask is set if ( maskImage == NULL ) { itkExceptionMacro( << "Mask image needs to be set!" ); } // Make sure that spacing of mask and image are the same SpacingType imageSpacing = image->GetSpacing(); SpacingType maskSpacing = maskImage->GetSpacing(); PointType zeroPoint; zeroPoint.Fill( 0.0 ); if ( (zeroPoint + imageSpacing).SquaredEuclideanDistanceTo( (zeroPoint + maskSpacing) ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same spacing as image! (Image spacing: " << imageSpacing << "; Mask spacing: " << maskSpacing << ")" ); } // Make sure that orientation of mask and image are the same typedef typename ImageType::DirectionType DirectionType; DirectionType imageDirection = image->GetDirection(); DirectionType maskDirection = maskImage->GetDirection(); for( int i = 0; i < imageDirection.ColumnDimensions; ++i ) { for( int j = 0; j < imageDirection.ColumnDimensions; ++j ) { double differenceDirection = imageDirection[i][j] - maskDirection[i][j]; if ( fabs( differenceDirection ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same direction as image! (Image direction: " << imageDirection << "; Mask direction: " << maskDirection << ")" ); } } } // Make sure that the voxels of mask and image are correctly "aligned", i.e., voxel boundaries are the same in both images PointType imageOrigin = image->GetOrigin(); PointType maskOrigin = maskImage->GetOrigin(); long offset[ImageType::ImageDimension]; typedef itk::ContinuousIndex ContinousIndexType; ContinousIndexType maskOriginContinousIndex, imageOriginContinousIndex; image->TransformPhysicalPointToContinuousIndex(maskOrigin, maskOriginContinousIndex); image->TransformPhysicalPointToContinuousIndex(imageOrigin, imageOriginContinousIndex); for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { double misalignment = maskOriginContinousIndex[i] - floor( maskOriginContinousIndex[i] + 0.5 ); if ( fabs( misalignment ) > mitk::eps ) { itkExceptionMacro( << "Pixels/voxels of mask and image are not sufficiently aligned! (Misalignment: " << misalignment << ")" ); } double indexCoordDistance = maskOriginContinousIndex[i] - imageOriginContinousIndex[i]; offset[i] = (int) indexCoordDistance + image->GetBufferedRegion().GetIndex()[i]; } // Adapt the origin and region (index/size) of the mask so that the origin of both are the same typename ChangeInformationFilterType::Pointer adaptMaskFilter; adaptMaskFilter = ChangeInformationFilterType::New(); adaptMaskFilter->ChangeOriginOn(); adaptMaskFilter->ChangeRegionOn(); adaptMaskFilter->SetInput( maskImage ); adaptMaskFilter->SetOutputOrigin( image->GetOrigin() ); adaptMaskFilter->SetOutputOffset( offset ); adaptMaskFilter->Update(); typename MaskImageType::Pointer adaptedMaskImage = adaptMaskFilter->GetOutput(); // Make sure that mask region is contained within image region if ( !image->GetLargestPossibleRegion().IsInside( adaptedMaskImage->GetLargestPossibleRegion() ) ) { itkExceptionMacro( << "Mask region needs to be inside of image region! (Image region: " << image->GetLargestPossibleRegion() << "; Mask region: " << adaptedMaskImage->GetLargestPossibleRegion() << ")" ); } // If mask region is smaller than image region, extract the sub-sampled region from the original image typename ImageType::SizeType imageSize = image->GetBufferedRegion().GetSize(); typename ImageType::SizeType maskSize = maskImage->GetBufferedRegion().GetSize(); bool maskSmallerImage = false; for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { if ( maskSize[i] < imageSize[i] ) { maskSmallerImage = true; } } typename ImageType::ConstPointer adaptedImage; if ( maskSmallerImage ) { typename ExtractImageFilterType::Pointer extractImageFilter = ExtractImageFilterType::New(); extractImageFilter->SetInput( image ); extractImageFilter->SetExtractionRegion( adaptedMaskImage->GetBufferedRegion() ); extractImageFilter->Update(); adaptedImage = extractImageFilter->GetOutput(); } else { adaptedImage = image; } // Initialize Filter typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( adaptedImage ); statisticsFilter->Update(); int numberOfBins = std::floor( ( (statisticsFilter->GetMaximum() - statisticsFilter->GetMinimum() + 1) / m_HistogramBinSize) + 0.5 ); typename LabelStatisticsFilterType::Pointer labelStatisticsFilter; labelStatisticsFilter = LabelStatisticsFilterType::New(); labelStatisticsFilter->SetInput( adaptedImage ); labelStatisticsFilter->SetLabelInput( adaptedMaskImage ); labelStatisticsFilter->UseHistogramsOn(); labelStatisticsFilter->SetHistogramParameters( numberOfBins, statisticsFilter->GetMinimum(), statisticsFilter->GetMaximum() ); // Add progress listening typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::MaskedStatisticsProgressUpdate ); unsigned long observerTag = labelStatisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); // Execute filter this->InvokeEvent( itk::StartEvent() ); // Make sure that only the mask region is considered (otherwise, if the mask region is smaller // than the image region, the Update() would result in an exception). labelStatisticsFilter->GetOutput()->SetRequestedRegion( adaptedMaskImage->GetLargestPossibleRegion() ); // Execute the filter labelStatisticsFilter->Update(); this->InvokeEvent( itk::EndEvent() ); labelStatisticsFilter->RemoveObserver( observerTag ); // Find all relevant labels of mask (other than 0) std::list< int > relevantLabels; bool maskNonEmpty = false; unsigned int i; for ( i = 1; i < 4096; ++i ) { if ( labelStatisticsFilter->HasLabel( i ) ) { relevantLabels.push_back( i ); maskNonEmpty = true; } } if ( maskNonEmpty ) { std::list< int >::iterator it; for ( it = relevantLabels.begin(), i = 0; it != relevantLabels.end(); ++it, ++i ) { histogramContainer->push_back( HistogramType::ConstPointer( labelStatisticsFilter->GetHistogram( (*it) ) ) ); Statistics statistics; statistics.Label = (*it); statistics.N = labelStatisticsFilter->GetCount( *it ); statistics.Min = labelStatisticsFilter->GetMinimum( *it ); statistics.Max = labelStatisticsFilter->GetMaximum( *it ); statistics.Mean = labelStatisticsFilter->GetMean( *it ); statistics.Median = labelStatisticsFilter->GetMedian( *it ); statistics.Sigma = labelStatisticsFilter->GetSigma( *it ); statistics.RMS = sqrt( statistics.Mean * statistics.Mean + statistics.Sigma * statistics.Sigma ); // restrict image to mask area for min/max index calculation typedef itk::MaskImageFilter< ImageType, MaskImageType, ImageType > MaskImageFilterType; typename MaskImageFilterType::Pointer masker = MaskImageFilterType::New(); masker->SetOutsideValue( (statistics.Min+statistics.Max)/2 ); masker->SetInput1(adaptedImage); masker->SetInput2(adaptedMaskImage); masker->Update(); // get index of minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( masker->GetOutput() ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); statistics.MinIndex.set_size(adaptedImage->GetImageDimension()); statistics.MaxIndex.set_size(adaptedImage->GetImageDimension()); typename MinMaxFilterType::IndexType tempMaxIndex = minMaxFilter->GetIndexOfMaximum(); typename MinMaxFilterType::IndexType tempMinIndex = minMaxFilter->GetIndexOfMinimum(); // FIX BUG 14644 //If a PlanarFigure is used for segmentation the //adaptedImage is a single slice (2D). Adding the // 3. dimension. if (m_MaskingMode == MASKING_MODE_PLANARFIGURE && m_Image->GetDimension()==3) { statistics.MaxIndex.set_size(m_Image->GetDimension()); statistics.MaxIndex[m_PlanarFigureCoordinate0]=tempMaxIndex[0]; statistics.MaxIndex[m_PlanarFigureCoordinate1]=tempMaxIndex[1]; statistics.MaxIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; statistics.MinIndex.set_size(m_Image->GetDimension()); statistics.MinIndex[m_PlanarFigureCoordinate0]=tempMinIndex[0]; statistics.MinIndex[m_PlanarFigureCoordinate1]=tempMinIndex[1]; statistics.MinIndex[m_PlanarFigureAxis]=m_PlanarFigureSlice; } else { for (unsigned int i = 0; ipush_back( statistics ); } } else { histogramContainer->push_back( HistogramType::ConstPointer( m_EmptyHistogram ) ); statisticsContainer->push_back( Statistics() ); } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, MaskImage2DType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with "1". typename CastFilterType::Pointer castFilter = CastFilterType::New(); castFilter->SetInput( image ); castFilter->Update(); castFilter->GetOutput()->FillBuffer( 1 ); // all PolylinePoints of the PlanarFigure are stored in a vtkPoints object. // These points are used by the vtkLassoStencilSource to create // a vtkImageStencil. const mitk::PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); const typename PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const mitk::BaseGeometry *imageGeometry3D = m_Image->GetGeometry( 0 ); // If there is a second poly line in a closed planar figure, treat it as a hole. PlanarFigure::PolyLineType planarFigureHolePolyline; if (m_PlanarFigure->GetPolyLinesSize() == 2) planarFigureHolePolyline = m_PlanarFigure->GetPolyLine(1); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } m_PlanarFigureCoordinate0= i0; m_PlanarFigureCoordinate1= i1; // store the polyline contour as vtkPoints object bool outOfBounds = false; vtkSmartPointer points = vtkSmartPointer::New(); typename PlanarFigure::PolyLineType::const_iterator it; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image - planarFigurePlaneGeometry->Map( it->Point, point3D ); + planarFigurePlaneGeometry->Map( *it, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { outOfBounds = true; } imageGeometry3D->WorldToIndex( point3D, point3D ); points->InsertNextPoint( point3D[i0], point3D[i1], 0 ); } vtkSmartPointer holePoints = NULL; if (!planarFigureHolePolyline.empty()) { holePoints = vtkSmartPointer::New(); Point3D point3D; PlanarFigure::PolyLineType::const_iterator end = planarFigureHolePolyline.end(); for (it = planarFigureHolePolyline.begin(); it != end; ++it) { - planarFigurePlaneGeometry->Map(it->Point, point3D); + planarFigurePlaneGeometry->Map(*it, point3D); imageGeometry3D->WorldToIndex(point3D, point3D); holePoints->InsertNextPoint(point3D[i0], point3D[i1], 0); } } // mark a malformed 2D planar figure ( i.e. area = 0 ) as out of bounds // this can happen when all control points of a rectangle lie on the same line = two of the three extents are zero double bounds[6] = {0, 0, 0, 0, 0, 0}; points->GetBounds( bounds ); bool extent_x = (fabs(bounds[0] - bounds[1])) < mitk::eps; bool extent_y = (fabs(bounds[2] - bounds[3])) < mitk::eps; bool extent_z = (fabs(bounds[4] - bounds[5])) < mitk::eps; // throw an exception if a closed planar figure is deformed, i.e. has only one non-zero extent if ( m_PlanarFigure->IsClosed() && ((extent_x && extent_y) || (extent_x && extent_z) || (extent_y && extent_z))) { mitkThrow() << "Figure has a zero area and cannot be used for masking."; } if ( outOfBounds ) { throw std::runtime_error( "Figure at least partially outside of image bounds!" ); } // create a vtkLassoStencilSource and set the points of the Polygon vtkSmartPointer lassoStencil = vtkSmartPointer::New(); lassoStencil->SetShapeToPolygon(); lassoStencil->SetPoints( points ); vtkSmartPointer holeLassoStencil = NULL; if (holePoints.GetPointer() != NULL) { holeLassoStencil = vtkSmartPointer::New(); holeLassoStencil->SetShapeToPolygon(); holeLassoStencil->SetPoints(holePoints); } // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< MaskImage2DType > ImageImportType; typedef itk::VTKImageExport< MaskImage2DType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( castFilter->GetOutput() ); vtkSmartPointer vtkImporter = vtkSmartPointer::New(); this->ConnectPipelines( itkExporter, vtkImporter ); // Apply the generated image stencil to the input image vtkSmartPointer imageStencilFilter = vtkSmartPointer::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencilConnection(lassoStencil->GetOutputPort()); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); vtkSmartPointer holeStencilFilter = NULL; if (holeLassoStencil.GetPointer() != NULL) { holeStencilFilter = vtkSmartPointer::New(); holeStencilFilter->SetInputConnection(imageStencilFilter->GetOutputPort()); holeStencilFilter->SetStencilConnection(holeLassoStencil->GetOutputPort()); holeStencilFilter->ReverseStencilOn(); holeStencilFilter->SetBackgroundValue(0); holeStencilFilter->Update(); } // Export from VTK back to ITK vtkSmartPointer vtkExporter = vtkSmartPointer::New(); vtkExporter->SetInputConnection( holeStencilFilter.GetPointer() == NULL ? imageStencilFilter->GetOutputPort() : holeStencilFilter->GetOutputPort()); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); typedef itk::ImageDuplicator< ImageImportType::OutputImageType > DuplicatorType; DuplicatorType::Pointer duplicator = DuplicatorType::New(); duplicator->SetInputImage( itkImporter->GetOutput() ); duplicator->Update(); // Store mask m_InternalImageMask2D = duplicator->GetOutput(); } void ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate() { // Need to throw away every second progress event to reach a final count of // 100 since two consecutive filters are used in this case static int updateCounter = 0; if ( updateCounter++ % 2 == 0 ) { this->InvokeEvent( itk::ProgressEvent() ); } } void ImageStatisticsCalculator::MaskedStatisticsProgressUpdate() { this->InvokeEvent( itk::ProgressEvent() ); } }