diff --git a/Modules/Pharmacokinetics/src/Common/mitkConcentrationCurveGenerator.cpp b/Modules/Pharmacokinetics/src/Common/mitkConcentrationCurveGenerator.cpp index 5f6fc0002b..9924d9147a 100644 --- a/Modules/Pharmacokinetics/src/Common/mitkConcentrationCurveGenerator.cpp +++ b/Modules/Pharmacokinetics/src/Common/mitkConcentrationCurveGenerator.cpp @@ -1,380 +1,380 @@ #include "mitkConcentrationCurveGenerator.h" #include "mitkConvertToConcentrationTurboFlashFunctor.h" #include "mitkConvertT2ConcentrationFunctor.h" #include "mitkConvertToConcentrationViaT1Functor.h" #include "mitkImageTimeSelector.h" #include "mitkImageCast.h" #include "mitkITKImageImport.h" #include "mitkModelBase.h" #include "mitkExtractTimeGrid.h" #include "mitkArbitraryTimeGeometry.h" #include "itkNaryAddImageFilter.h" #include "mitkImageAccessByItk.h" #include "itkImageIOBase.h" #include "itkBinaryFunctorImageFilter.h" #include "itkTernaryFunctorImageFilter.h" #include #include #include mitk::ConcentrationCurveGenerator::ConcentrationCurveGenerator() : m_isT2weightedImage(false), m_isTurboFlashSequence(false), m_AbsoluteSignalEnhancement(false), m_RelativeSignalEnhancement(0.0), m_UsingT1Map(false), m_Factor(0.0), m_RecoveryTime(0.0), m_RelaxationTime(0.0), m_Relaxivity(0.0), m_FlipAngle(0.0), m_T2Factor(0.0), m_T2EchoTime(0.0) { } mitk::ConcentrationCurveGenerator::~ConcentrationCurveGenerator() { } mitk::Image::Pointer mitk::ConcentrationCurveGenerator::GetConvertedImage() { if(this->m_DynamicImage.IsNull()) { itkExceptionMacro( << "Dynamic Image not set!"); } else { Convert(); } return m_ConvertedImage; } void mitk::ConcentrationCurveGenerator::Convert() { mitk::Image::Pointer tempImage = mitk::Image::New(); mitk::PixelType pixeltype = mitk::MakeScalarPixelType(); tempImage->Initialize(pixeltype,*this->m_DynamicImage->GetTimeGeometry()); mitk::TimeGeometry::Pointer timeGeometry = (this->m_DynamicImage->GetTimeGeometry())->Clone(); tempImage->SetTimeGeometry(timeGeometry); PrepareBaselineImage(); mitk::ImageTimeSelector::Pointer imageTimeSelector = mitk::ImageTimeSelector::New(); imageTimeSelector->SetInput(this->m_DynamicImage); for(unsigned int i = 0; i< this->m_DynamicImage->GetTimeSteps(); ++i) { imageTimeSelector->SetTimeNr(i); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image::Pointer mitkInputImage = imageTimeSelector->GetOutput(); mitk::Image::Pointer outputImage = mitk::Image::New(); outputImage = ConvertSignalToConcentrationCurve(mitkInputImage,this->m_BaselineImage); mitk::ImageReadAccessor accessor(outputImage); tempImage->SetVolume(accessor.GetData(), i); } this->m_ConvertedImage = tempImage; } void mitk::ConcentrationCurveGenerator::PrepareBaselineImage() { mitk::ImageTimeSelector::Pointer imageTimeSelector = mitk::ImageTimeSelector::New(); imageTimeSelector->SetInput(this->m_DynamicImage); imageTimeSelector->SetTimeNr(0); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image::Pointer baselineImage; baselineImage = imageTimeSelector->GetOutput(); if (m_BaselineStartTimeStep == m_BaselineEndTimeStep) { this->m_BaselineImage = imageTimeSelector->GetOutput(); } else { try { AccessFixedDimensionByItk(this->m_DynamicImage, mitk::ConcentrationCurveGenerator::CalculateAverageBaselineImage, 4); } catch (itk::ExceptionObject & err) { std::cerr << "ExceptionObject in ConcentrationCurveGenerator::CalculateAverageBaselineImage caught!" << std::endl; std::cerr << err << std::endl; } } } template void mitk::ConcentrationCurveGenerator::CalculateAverageBaselineImage(const itk::Image *itkBaselineImage) { if (itkBaselineImage == NULL) { mitkThrow() << "Error in ConcentrationCurveGenerator::CalculateAverageBaselineImage. Input image is NULL."; } if (m_BaselineStartTimeStep > m_BaselineEndTimeStep) { mitkThrow() << "Error in ConcentrationCurveGenerator::CalculateAverageBaselineImage. End time point is before start time point."; } typedef itk::Image TPixel4DImageType; typedef itk::Image TPixel3DImageType; typedef itk::Image Double3DImageType; typedef itk::ExtractImageFilter ExtractImageFilterType; typedef itk::NaryAddImageFilter NaryAddBaselineImagesFilterType; typedef itk::MultiplyImageFilter MultiplyImageFilterType; typedef itk::CastImageFilter DoubleCastImageFilterType; typedef itk::CastImageFilter TPixelCastImageFilterType; NaryAddBaselineImagesFilterType::Pointer AddBaselineImagesFilter = NaryAddBaselineImagesFilterType::New(); MultiplyImageFilterType::Pointer multiplyImageFilter = MultiplyImageFilterType::New(); DoubleCastImageFilterType::Pointer DoubleCastImageFilter = DoubleCastImageFilterType::New(); TPixelCastImageFilterType::Pointer TPixelCastImageFilter = TPixelCastImageFilterType::New(); TPixel4DImageType::RegionType region_input = itkBaselineImage->GetLargestPossibleRegion(); if (m_BaselineEndTimeStep > region_input.GetSize()[3]) { mitkThrow() << "Error in ConcentrationCurveGenerator::CalculateAverageBaselineImage. End time point is larger than total number of time points."; } // add the selected baseline time frames to the nary add image filter - for (int i = m_BaselineStartTimeStep-1; i < m_BaselineEndTimeStep; ++i) + for (int i = m_BaselineStartTimeStep; i <= m_BaselineEndTimeStep; ++i) { ExtractImageFilterType::Pointer ExtractFilter = ExtractImageFilterType::New(); - TPixel3DImageType::Pointer timePointImage = TPixel3DImageType::New(); + TPixel3DImageType::Pointer timeFrameImage = TPixel3DImageType::New(); TPixel4DImageType::RegionType extractionRegion; TPixel4DImageType::SizeType size_input_aux = region_input.GetSize(); size_input_aux[3] = 0; TPixel4DImageType::IndexType start_input_aux = region_input.GetIndex(); start_input_aux[3] = i; extractionRegion.SetSize(size_input_aux); extractionRegion.SetIndex(start_input_aux); ExtractFilter->SetExtractionRegion(extractionRegion); ExtractFilter->SetInput(itkBaselineImage); ExtractFilter->SetDirectionCollapseToSubmatrix(); try { ExtractFilter->Update(); } catch (itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught!" << std::endl; std::cerr << err << std::endl; } - timePointImage = ExtractFilter->GetOutput(); - AddBaselineImagesFilter->SetInput(i-(m_BaselineStartTimeStep-1), timePointImage); + timeFrameImage = ExtractFilter->GetOutput(); + AddBaselineImagesFilter->SetInput(i-m_BaselineStartTimeStep, timeFrameImage); } try { AddBaselineImagesFilter->Update(); } catch (itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught!" << std::endl; std::cerr << err << std::endl; } DoubleCastImageFilter->SetInput(AddBaselineImagesFilter->GetOutput()); try { DoubleCastImageFilter->Update(); } catch (itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught!" << std::endl; std::cerr << err << std::endl; } multiplyImageFilter->SetInput(DoubleCastImageFilter->GetOutput()); double factor = 1.0/double(m_BaselineEndTimeStep-m_BaselineStartTimeStep+1); multiplyImageFilter->SetConstant(factor); try { multiplyImageFilter->Update(); } catch (itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught!" << std::endl; std::cerr << err << std::endl; } TPixelCastImageFilter->SetInput(multiplyImageFilter->GetOutput()); try { TPixelCastImageFilter->Update(); } catch (itk::ExceptionObject & err) { std::cerr << "ExceptionObject caught!" << std::endl; std::cerr << err << std::endl; } Image::Pointer mitkBaselineImage = Image::New(); CastToMitkImage(TPixelCastImageFilter->GetOutput(), mitkBaselineImage); this->m_BaselineImage = mitkBaselineImage; } mitk::Image::Pointer mitk::ConcentrationCurveGenerator::ConvertSignalToConcentrationCurve(const mitk::Image* inputImage, const mitk::Image* baselineImage) { mitk::PixelType m_PixelType = inputImage->GetPixelType(); mitk::Image::Pointer outputImage; if(inputImage->GetPixelType().GetComponentType() != baselineImage->GetPixelType().GetComponentType()) { mitkThrow() << "Input Image and Baseline Image have different Pixel Types. Data not supported"; } if(m_PixelType.GetComponentType() == itk::ImageIOBase::USHORT) { outputImage = convertToConcentration(inputImage, baselineImage); } else if(m_PixelType.GetComponentType() == itk::ImageIOBase::UINT) { outputImage = convertToConcentration(inputImage, baselineImage); } else if(m_PixelType.GetComponentType() == itk::ImageIOBase::INT) { outputImage = convertToConcentration(inputImage, baselineImage); } else if(m_PixelType.GetComponentType() == itk::ImageIOBase::SHORT) { outputImage = convertToConcentration(inputImage, baselineImage); } else if(m_PixelType.GetComponentType() == itk::ImageIOBase::DOUBLE) { outputImage = convertToConcentration(inputImage, baselineImage); } else if(m_PixelType.GetComponentType() == itk::ImageIOBase::FLOAT) { outputImage = convertToConcentration(inputImage, baselineImage); } else { mitkThrow() << "PixelType is "< mitk::Image::Pointer mitk::ConcentrationCurveGenerator::convertToConcentration(const mitk::Image* inputImage, const mitk::Image* baselineImage) { typedef itk::Image InputImageType; typename InputImageType::Pointer itkInputImage = InputImageType::New(); typename InputImageType::Pointer itkBaselineImage = InputImageType::New(); mitk::CastToItkImage(inputImage, itkInputImage ); mitk::CastToItkImage(baselineImage, itkBaselineImage ); mitk::Image::Pointer outputImage; if(this->m_isT2weightedImage) { typedef mitk::ConvertT2ConcentrationFunctor ConversionFunctorT2Type; typedef itk::BinaryFunctorImageFilter FilterT2Type; ConversionFunctorT2Type ConversionT2Functor; ConversionT2Functor.initialize(this->m_T2Factor, this->m_T2EchoTime); typename FilterT2Type::Pointer ConversionT2Filter = FilterT2Type::New(); ConversionT2Filter->SetFunctor(ConversionT2Functor); ConversionT2Filter->SetInput1(itkInputImage); ConversionT2Filter->SetInput2(itkBaselineImage); ConversionT2Filter->Update(); outputImage = mitk::ImportItkImage(ConversionT2Filter->GetOutput())->Clone(); } else { if(this->m_isTurboFlashSequence) { typedef mitk::ConvertToConcentrationTurboFlashFunctor ConversionFunctorTurboFlashType; typedef itk::BinaryFunctorImageFilter FilterTurboFlashType; ConversionFunctorTurboFlashType ConversionTurboFlashFunctor; ConversionTurboFlashFunctor.initialize(this->m_RelaxationTime, this->m_Relaxivity, this->m_RecoveryTime); typename FilterTurboFlashType::Pointer ConversionTurboFlashFilter = FilterTurboFlashType::New(); ConversionTurboFlashFilter->SetFunctor(ConversionTurboFlashFunctor); ConversionTurboFlashFilter->SetInput1(itkInputImage); ConversionTurboFlashFilter->SetInput2(itkBaselineImage); ConversionTurboFlashFilter->Update(); outputImage = mitk::ImportItkImage(ConversionTurboFlashFilter->GetOutput())->Clone(); } else if(this->m_UsingT1Map) { typename InputImageType::Pointer itkT10Image = InputImageType::New(); mitk::CastToItkImage(m_T10Image, itkT10Image); typedef mitk::ConvertToConcentrationViaT1CalcFunctor ConvertToConcentrationViaT1CalcFunctorType; typedef itk::TernaryFunctorImageFilter FilterT1MapType; ConvertToConcentrationViaT1CalcFunctorType ConversionT1MapFunctor; ConversionT1MapFunctor.initialize(this->m_Relaxivity, this->m_RecoveryTime, this->m_FlipAngle); typename FilterT1MapType::Pointer ConversionT1MapFilter = FilterT1MapType::New(); ConversionT1MapFilter->SetFunctor(ConversionT1MapFunctor); ConversionT1MapFilter->SetInput1(itkInputImage); ConversionT1MapFilter->SetInput2(itkBaselineImage); ConversionT1MapFilter->SetInput3(itkT10Image); ConversionT1MapFilter->Update(); outputImage = mitk::ImportItkImage(ConversionT1MapFilter->GetOutput())->Clone(); } else if(this->m_AbsoluteSignalEnhancement) { typedef mitk::ConvertToConcentrationAbsoluteFunctor ConversionFunctorAbsoluteType; typedef itk::BinaryFunctorImageFilter FilterAbsoluteType; ConversionFunctorAbsoluteType ConversionAbsoluteFunctor; ConversionAbsoluteFunctor.initialize(this->m_Factor); typename FilterAbsoluteType::Pointer ConversionAbsoluteFilter = FilterAbsoluteType::New(); ConversionAbsoluteFilter->SetFunctor(ConversionAbsoluteFunctor); ConversionAbsoluteFilter->SetInput1(itkInputImage); ConversionAbsoluteFilter->SetInput2(itkBaselineImage); ConversionAbsoluteFilter->Update(); outputImage = mitk::ImportItkImage(ConversionAbsoluteFilter->GetOutput())->Clone(); } else if(this->m_RelativeSignalEnhancement) { typedef mitk::ConvertToConcentrationRelativeFunctor ConversionFunctorRelativeType; typedef itk::BinaryFunctorImageFilter FilterRelativeType; ConversionFunctorRelativeType ConversionRelativeFunctor; ConversionRelativeFunctor.initialize(this->m_Factor); typename FilterRelativeType::Pointer ConversionRelativeFilter = FilterRelativeType::New(); ConversionRelativeFilter->SetFunctor(ConversionRelativeFunctor); ConversionRelativeFilter->SetInput1(itkInputImage); ConversionRelativeFilter->SetInput2(itkBaselineImage); ConversionRelativeFilter->Update(); outputImage = mitk::ImportItkImage(ConversionRelativeFilter->GetOutput())->Clone(); } } return outputImage; } diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp index 5c8491384b..e5c724148f 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp @@ -1,1436 +1,1436 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "MRPerfusionView.h" #include "boost/tokenizer.hpp" #include "boost/math/constants/constants.hpp" #include #include "mitkWorkbenchUtil.h" #include "mitkAterialInputFunctionGenerator.h" #include "mitkConcentrationCurveGenerator.h" #include #include #include #include "mitkThreeStepLinearModelFactory.h" #include "mitkThreeStepLinearModelParameterizer.h" #include #include #include #include #include "mitkTwoCompartmentExchangeModelFactory.h" #include "mitkTwoCompartmentExchangeModelParameterizer.h" #include "mitkNumericTwoCompartmentExchangeModelFactory.h" #include "mitkNumericTwoCompartmentExchangeModelParameterizer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Includes for image casting between ITK and MITK #include #include "mitkImageCast.h" #include "mitkITKImageImport.h" #include #include const std::string MRPerfusionView::VIEW_ID = "org.mitk.gui.qt.pharmacokinetics.mri"; inline double convertToDouble(const std::string& data) { std::istringstream stepStream(data); stepStream.imbue(std::locale("C")); double value = 0.0; if (!(stepStream >> value) || !(stepStream.eof())) { mitkThrow() << "Cannot convert string to double. String: " << data; } return value; } void MRPerfusionView::SetFocus() { m_Controls.btnModelling->setFocus(); } void MRPerfusionView::CreateQtPartControl(QWidget* parent) { m_Controls.setupUi(parent); m_Controls.btnModelling->setEnabled(false); m_Controls.errorMessageLabel->hide(); this->InitModelComboBox(); connect(m_Controls.btnModelling, SIGNAL(clicked()), this, SLOT(OnModellingButtonClicked())); connect(m_Controls.comboModel, SIGNAL(currentIndexChanged(int)), this, SLOT(OnModellSet(int))); connect(m_Controls.radioPixelBased, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); //AIF setting m_Controls.groupAIF->hide(); m_Controls.btnAIFFile->setEnabled(false); m_Controls.btnAIFFile->setEnabled(false); m_Controls.radioAIFImage->setChecked(true); m_Controls.comboAIFMask->SetDataStorage(this->GetDataStorage()); m_Controls.comboAIFMask->SetPredicate(m_IsMaskPredicate); m_Controls.comboAIFMask->setVisible(true); m_Controls.comboAIFMask->setEnabled(true); m_Controls.comboAIFImage->SetDataStorage(this->GetDataStorage()); m_Controls.comboAIFImage->SetPredicate(m_IsNoMaskImagePredicate); m_Controls.comboAIFImage->setEnabled(false); m_Controls.checkDedicatedAIFImage->setEnabled(true); m_Controls.HCLSpinBox->setValue(mitk::AterialInputFunctionGenerator::DEFAULT_HEMATOCRIT_LEVEL); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.comboAIFMask, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.labelAIFMask, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.checkDedicatedAIFImage, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.comboAIFMask, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.checkDedicatedAIFImage, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.checkDedicatedAIFImage, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.comboAIFImage, SLOT(setVisible(bool))); connect(m_Controls.checkDedicatedAIFImage, SIGNAL(toggled(bool)), m_Controls.comboAIFImage, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioAIFFile, SIGNAL(toggled(bool)), m_Controls.btnAIFFile, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFFile, SIGNAL(toggled(bool)), m_Controls.aifFilePath, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFFile, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.btnAIFFile, SIGNAL(clicked()), this, SLOT(LoadAIFfromFile())); //Brix setting m_Controls.groupDescBrix->hide(); connect(m_Controls.injectiontime, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); //Num2CX setting m_Controls.groupNum2CXM->hide(); connect(m_Controls.odeStepSize, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); //Model fit configuration m_Controls.groupBox_FitConfiguration->hide(); m_Controls.checkBox_Constraints->setEnabled(false); m_Controls.constraintManager->setEnabled(false); m_Controls.initialValuesManager->setEnabled(false); m_Controls.initialValuesManager->setDataStorage(this->GetDataStorage()); connect(m_Controls.radioButton_StartParameters, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.checkBox_Constraints, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.initialValuesManager, SIGNAL(initialValuesChanged(void)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_StartParameters, SIGNAL(toggled(bool)), m_Controls.initialValuesManager, SLOT(setEnabled(bool))); connect(m_Controls.checkBox_Constraints, SIGNAL(toggled(bool)), m_Controls.constraintManager, SLOT(setEnabled(bool))); connect(m_Controls.checkBox_Constraints, SIGNAL(toggled(bool)), m_Controls.constraintManager, SLOT(setVisible(bool))); //Concentration m_Controls.groupConcentration->hide(); m_Controls.groupBoxTurboFlash->hide(); m_Controls.radioButtonNoConversion->setChecked(true); m_Controls.factorSpinBox->setEnabled(false); m_Controls.spinBox_baselineStartTimeStep->setEnabled(false); m_Controls.spinBox_baselineEndTimeStep->setEnabled(false); m_Controls.groupBox_viaT1Map->hide(); - m_Controls.spinBox_baselineStartTimeStep->setValue(1); - m_Controls.spinBox_baselineEndTimeStep->setValue(1); + m_Controls.spinBox_baselineStartTimeStep->setValue(0); + m_Controls.spinBox_baselineEndTimeStep->setValue(0); connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), m_Controls.groupBoxTurboFlash, SLOT(setVisible(bool))); connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.relaxationtime, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.recoverytime, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.relaxivity, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), m_Controls.factorSpinBox, SLOT(setEnabled(bool))); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), m_Controls.factorSpinBox, SLOT(setEnabled(bool))); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineStartTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineStartTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.radioButtonUsingT1, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineStartTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineStartTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineEndTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineEndTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.radioButtonUsingT1, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineEndTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), m_Controls.spinBox_baselineEndTimeStep, SLOT(setEnabled(bool))); connect(m_Controls.factorSpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.spinBox_baselineStartTimeStep, SIGNAL(valueChanged(int)), this, SLOT(UpdateGUIControls())); connect(m_Controls.spinBox_baselineEndTimeStep, SIGNAL(valueChanged(int)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButtonUsingT1, SIGNAL(toggled(bool)), m_Controls.groupBox_viaT1Map, SLOT(setVisible(bool))); connect(m_Controls.radioButtonUsingT1, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.FlipangleSpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.RelaxivitySpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.TRSpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); m_Controls.ComboT1Map->SetDataStorage(this->GetDataStorage()); m_Controls.ComboT1Map->SetPredicate(m_IsNoMaskImagePredicate); m_Controls.ComboT1Map->setEnabled(false); connect(m_Controls.radioButtonUsingT1, SIGNAL(toggled(bool)), m_Controls.ComboT1Map, SLOT(setEnabled(bool))); UpdateGUIControls(); } bool MRPerfusionView::IsTurboFlashSequenceFlag() const { return this->m_Controls.radioButtonTurboFlash->isChecked(); }; void MRPerfusionView::UpdateGUIControls() { m_Controls.lineFitName->setPlaceholderText(QString::fromStdString(this->GetDefaultFitName())); m_Controls.lineFitName->setEnabled(!m_FittingInProgress); m_Controls.checkBox_Constraints->setEnabled(m_modelConstraints.IsNotNull()); bool isDescBrixFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr || dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr || dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isNum2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; m_Controls.groupAIF->setVisible(isToftsFactory || is2CXMFactory); m_Controls.groupDescBrix->setVisible(isDescBrixFactory); m_Controls.groupNum2CXM->setVisible(isNum2CXMFactory); m_Controls.groupConcentration->setVisible(isToftsFactory || is2CXMFactory); m_Controls.groupBox_FitConfiguration->setVisible(m_selectedModelFactory); m_Controls.groupBox->setEnabled(!m_FittingInProgress); m_Controls.comboModel->setEnabled(!m_FittingInProgress); m_Controls.groupAIF->setEnabled(!m_FittingInProgress); m_Controls.groupDescBrix->setEnabled(!m_FittingInProgress); m_Controls.groupNum2CXM->setEnabled(!m_FittingInProgress); m_Controls.groupConcentration->setEnabled(!m_FittingInProgress); m_Controls.groupBox_FitConfiguration->setEnabled(!m_FittingInProgress); m_Controls.radioROIbased->setEnabled(m_selectedMask.IsNotNull()); m_Controls.btnModelling->setEnabled(m_selectedImage.IsNotNull() && m_selectedModelFactory.IsNotNull() && !m_FittingInProgress && CheckModelSettings()); } void MRPerfusionView::OnModellSet(int index) { m_selectedModelFactory = nullptr; if (index > 0) { if (static_cast(index) <= m_FactoryStack.size() ) { m_selectedModelFactory = m_FactoryStack[index - 1]; } else { MITK_WARN << "Invalid model index. Index outside of the factory stack. Factory stack size: "<< m_FactoryStack.size() << "; invalid index: "<< index; } } if (m_selectedModelFactory) { this->m_modelConstraints = dynamic_cast (m_selectedModelFactory->CreateDefaultConstraints().GetPointer()); m_Controls.initialValuesManager->setInitialValues(m_selectedModelFactory->GetParameterNames(), m_selectedModelFactory->GetDefaultInitialParameterization()); if (this->m_modelConstraints.IsNull()) { this->m_modelConstraints = mitk::SimpleBarrierConstraintChecker::New(); } m_Controls.constraintManager->setChecker(this->m_modelConstraints, this->m_selectedModelFactory->GetParameterNames()); } UpdateGUIControls(); } std::string MRPerfusionView::GetFitName() const { std::string fitName = m_Controls.lineFitName->text().toStdString(); if (fitName.empty()) { fitName = m_Controls.lineFitName->placeholderText().toStdString(); } return fitName; } std::string MRPerfusionView::GetDefaultFitName() const { std::string defaultName = "undefined model"; if (this->m_selectedModelFactory.IsNotNull()) { defaultName = this->m_selectedModelFactory->GetClassID(); } if (this->m_Controls.radioPixelBased->isChecked()) { defaultName += "_pixel"; } else { defaultName += "_roi"; } return defaultName; } void MRPerfusionView::OnModellingButtonClicked() { //check if all static parameters set if (m_selectedModelFactory.IsNotNull() && CheckModelSettings()) { m_HasGeneratedNewInput = false; m_HasGeneratedNewInputAIF = false; mitk::ParameterFitImageGeneratorBase::Pointer generator = nullptr; mitk::modelFit::ModelFitInfo::Pointer fitSession = nullptr; bool isDescBrixFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is3LinearFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isExtToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isStanToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isNum2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; if (isDescBrixFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateDescriptiveBrixModel_PixelBased(fitSession, generator); } else { GenerateDescriptiveBrixModel_ROIBased(fitSession, generator); } } else if (is3LinearFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { Generate3StepLinearModelFit_PixelBased(fitSession, generator); } else { Generate3StepLinearModelFit_ROIBased(fitSession, generator); } } else if (isStanToftsFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateAIFbasedModelFit_PixelBased(fitSession, generator); } else { GenerateAIFbasedModelFit_ROIBased(fitSession, generator); } } else if (isExtToftsFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateAIFbasedModelFit_PixelBased(fitSession, generator); } else { GenerateAIFbasedModelFit_ROIBased(fitSession, generator); } } else if (is2CXMFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateAIFbasedModelFit_PixelBased(fitSession, generator); } else { GenerateAIFbasedModelFit_ROIBased(fitSession, generator); } } else if (isNum2CXMFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateAIFbasedModelFit_PixelBased(fitSession, generator); } else { GenerateAIFbasedModelFit_ROIBased(fitSession, generator); } } //add other models with else if if (generator.IsNotNull() && fitSession.IsNotNull()) { m_FittingInProgress = true; UpdateGUIControls(); DoFit(fitSession, generator); } else { QMessageBox box; box.setText("Fitting error!"); box.setInformativeText("Could not establish fitting job. Error when setting ab generator, model parameterizer or session info."); box.setStandardButtons(QMessageBox::Ok); box.setDefaultButton(QMessageBox::Ok); box.setIcon(QMessageBox::Warning); box.exec(); } } else { QMessageBox box; box.setText("Static parameters for model are not set!"); box.setInformativeText("Some static parameters, that are needed for calculation are not set and equal to zero. Modeling not possible"); box.setStandardButtons(QMessageBox::Ok); box.setDefaultButton(QMessageBox::Ok); box.setIcon(QMessageBox::Warning); box.exec(); } } void MRPerfusionView::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*source*/, const QList& selectedNodes) { m_selectedMaskNode = nullptr; m_selectedMask = nullptr; m_Controls.errorMessageLabel->setText(""); m_Controls.masklabel->setText("No (valid) mask selected."); m_Controls.timeserieslabel->setText("No (valid) series selected."); QList nodes = selectedNodes; if (nodes.size() > 0 && this->m_IsNoMaskImagePredicate->CheckNode(nodes.front())) { this->m_selectedNode = nodes.front(); auto selectedImage = dynamic_cast(this->m_selectedNode->GetData()); m_Controls.timeserieslabel->setText((this->m_selectedNode->GetName()).c_str()); if (selectedImage != this->m_selectedImage) { if (selectedImage) { this->m_Controls.initialValuesManager->setReferenceImageGeometry(selectedImage->GetGeometry()); } else { this->m_Controls.initialValuesManager->setReferenceImageGeometry(nullptr); } } this->m_selectedImage = selectedImage; nodes.pop_front(); } else { this->m_selectedNode = nullptr; this->m_selectedImage = nullptr; this->m_Controls.initialValuesManager->setReferenceImageGeometry(nullptr); } if (nodes.size() > 0 && this->m_IsMaskPredicate->CheckNode(nodes.front())) { this->m_selectedMaskNode = nodes.front(); this->m_selectedMask = dynamic_cast(this->m_selectedMaskNode->GetData()); if (this->m_selectedMask->GetTimeSteps() > 1) { MITK_INFO << "Selected mask has multiple timesteps. Only use first timestep to mask model fit. Mask name: " << m_selectedMaskNode->GetName(); mitk::ImageTimeSelector::Pointer maskedImageTimeSelector = mitk::ImageTimeSelector::New(); maskedImageTimeSelector->SetInput(this->m_selectedMask); maskedImageTimeSelector->SetTimeNr(0); maskedImageTimeSelector->UpdateLargestPossibleRegion(); this->m_selectedMask = maskedImageTimeSelector->GetOutput(); } m_Controls.masklabel->setText((this->m_selectedMaskNode->GetName()).c_str()); } if (m_selectedMask.IsNull()) { this->m_Controls.radioPixelBased->setChecked(true); } m_Controls.errorMessageLabel->show(); UpdateGUIControls(); } bool MRPerfusionView::CheckModelSettings() const { bool ok = true; //check wether any model is set at all. Otherwise exit with false if (m_selectedModelFactory.IsNotNull()) { bool isDescBrixFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is3LinearFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr|| dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isNum2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; if (isDescBrixFactory) { //if all static parameters for this model are set, exit with true, Otherwise exit with false ok = m_Controls.injectiontime->value() > 0; } else if (is3LinearFactory) { if (this->m_Controls.radioButtonTurboFlash->isChecked()) { ok = ok && (m_Controls.recoverytime->value() > 0); ok = ok && (m_Controls.relaxationtime->value() > 0); ok = ok && (m_Controls.relaxivity->value() > 0); ok = ok && (m_Controls.AifRecoverytime->value() > 0); - ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 1); + ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 0); ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value()); - ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() <= this->m_selectedImage->GetDimension(3)); + ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() < this->m_selectedImage->GetDimension(3)); } else if (this->m_Controls.radioButton_absoluteEnhancement->isChecked() || this->m_Controls.radioButton_relativeEnchancement->isChecked()) { ok = ok && (m_Controls.factorSpinBox->value() > 0); - ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 1); + ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 0); ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value()); - ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() <= this->m_selectedImage->GetDimension(3)); + ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() < this->m_selectedImage->GetDimension(3)); } else if (this->m_Controls.radioButtonUsingT1->isChecked()) { ok = ok && (m_Controls.FlipangleSpinBox->value() > 0); ok = ok && (m_Controls.TRSpinBox->value() > 0); ok = ok && (m_Controls.RelaxivitySpinBox->value() > 0); ok = ok && (m_Controls.ComboT1Map->GetSelectedNode().IsNotNull()); - ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 1); + ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 0); ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value()); - ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() <= this->m_selectedImage->GetDimension(3)); + ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() < this->m_selectedImage->GetDimension(3)); } else { ok = false; } } else if (isToftsFactory || is2CXMFactory || isNum2CXMFactory) { if (this->m_Controls.radioAIFImage->isChecked()) { ok = ok && m_Controls.comboAIFMask->GetSelectedNode().IsNotNull(); if (this->m_Controls.checkDedicatedAIFImage->isChecked()) { ok = ok && m_Controls.comboAIFImage->GetSelectedNode().IsNotNull(); } } else if (this->m_Controls.radioAIFFile->isChecked()) { ok = ok && (this->AIFinputGrid.size() != 0) && (this->AIFinputFunction.size() != 0); } else { ok = false; } if (this->m_Controls.radioButtonTurboFlash->isChecked()) { ok = ok && (m_Controls.recoverytime->value() > 0); ok = ok && (m_Controls.relaxationtime->value() > 0); ok = ok && (m_Controls.relaxivity->value() > 0); ok = ok && (m_Controls.AifRecoverytime->value() > 0); - ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 1); + ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 0); ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value()); - ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() <= this->m_selectedImage->GetDimension(3)); + ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() < this->m_selectedImage->GetDimension(3)); } else if (this->m_Controls.radioButton_absoluteEnhancement->isChecked() || this->m_Controls.radioButton_relativeEnchancement->isChecked()) { ok = ok && (m_Controls.factorSpinBox->value() > 0); - ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 1); + ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 0); ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value()); - ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() <= this->m_selectedImage->GetDimension(3)); + ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() < this->m_selectedImage->GetDimension(3)); } else if (this->m_Controls.radioButtonUsingT1->isChecked()) { ok = ok && (m_Controls.FlipangleSpinBox->value() > 0); ok = ok && (m_Controls.TRSpinBox->value() > 0); ok = ok && (m_Controls.RelaxivitySpinBox->value() > 0); ok = ok && (m_Controls.ComboT1Map->GetSelectedNode().IsNotNull()); - ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 1); + ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() >= 0); ok = ok && (m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value()); - ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() <= this->m_selectedImage->GetDimension(3)); + ok = ok && (m_Controls.spinBox_baselineEndTimeStep->value() < this->m_selectedImage->GetDimension(3)); } else { ok = false; } if (isNum2CXMFactory) { ok = ok && (this->m_Controls.odeStepSize->value() > 0); } } //add other models as else if and check wether all needed static parameters are set else { ok = false; } if (this->m_Controls.radioButton_StartParameters->isChecked() && !this->m_Controls.initialValuesManager->hasValidInitialValues()) { std::string warning = "Warning. Invalid start parameters. At least one parameter as an invalid image setting as source."; MITK_ERROR << warning; m_Controls.infoBox->append(QString("") + QString::fromStdString(warning) + QString("")); ok = false; }; } else { ok = false; } return ok; } void MRPerfusionView::ConfigureInitialParametersOfParameterizer(mitk::ModelParameterizerBase* parameterizer) const { if (m_Controls.radioButton_StartParameters->isChecked()) { //use user defined initial parameters mitk::InitialParameterizationDelegateBase::Pointer paramDelegate = m_Controls.initialValuesManager->getInitialParametrizationDelegate(); parameterizer->SetInitialParameterizationDelegate(paramDelegate); } } void MRPerfusionView::GenerateDescriptiveBrixModel_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { mitk::PixelBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::PixelBasedParameterFitImageGenerator::New(); mitk::DescriptivePharmacokineticBrixModelParameterizer::Pointer modelParameterizer = mitk::DescriptivePharmacokineticBrixModelParameterizer::New(); //Model configuration (static parameters) can be done now modelParameterizer->SetTau(m_Controls.injectiontime->value()); mitk::ImageTimeSelector::Pointer imageTimeSelector = mitk::ImageTimeSelector::New(); imageTimeSelector->SetInput(this->m_selectedImage); imageTimeSelector->SetTimeNr(0); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::DescriptivePharmacokineticBrixModelParameterizer::BaseImageType::Pointer baseImage; mitk::CastToItkImage(imageTimeSelector->GetOutput(), baseImage); modelParameterizer->SetBaseImage(baseImage); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); std::string roiUID = ""; if (m_selectedMask.IsNotNull()) { fitGenerator->SetMask(m_selectedMask); roiUID = mitk::EnsureModelFitUID(this->m_selectedMaskNode); } fitGenerator->SetDynamicImage(m_selectedImage); fitGenerator->SetFitFunctor(fitFunctor); generator = fitGenerator.GetPointer(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_PIXELBASED(), this->GetFitName(), roiUID); } void MRPerfusionView::GenerateDescriptiveBrixModel_ROIBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { if (m_selectedMask.IsNull()) { return; } mitk::ROIBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::ROIBasedParameterFitImageGenerator::New(); mitk::DescriptivePharmacokineticBrixModelValueBasedParameterizer::Pointer modelParameterizer = mitk::DescriptivePharmacokineticBrixModelValueBasedParameterizer::New(); //Compute ROI signal mitk::MaskedDynamicImageStatisticsGenerator::Pointer signalGenerator = mitk::MaskedDynamicImageStatisticsGenerator::New(); signalGenerator->SetMask(m_selectedMask); signalGenerator->SetDynamicImage(m_selectedImage); signalGenerator->Generate(); mitk::MaskedDynamicImageStatisticsGenerator::ResultType roiSignal = signalGenerator->GetMean(); //Model configuration (static parameters) can be done now modelParameterizer->SetTau(m_Controls.injectiontime->value()); modelParameterizer->SetBaseValue(roiSignal[0]); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); fitGenerator->SetMask(m_selectedMask); fitGenerator->SetFitFunctor(fitFunctor); fitGenerator->SetSignal(roiSignal); fitGenerator->SetTimeGrid(mitk::ExtractTimeGrid(m_selectedImage)); generator = fitGenerator.GetPointer(); std::string roiUID = mitk::EnsureModelFitUID(this->m_selectedMaskNode); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_ROIBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::MaskedDynamicImageStatisticsGenerator::ResultType::const_iterator pos = roiSignal.begin(); pos != roiSignal.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("ROI", infoSignal); } void MRPerfusionView::Generate3StepLinearModelFit_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { mitk::PixelBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::PixelBasedParameterFitImageGenerator::New(); mitk::ThreeStepLinearModelParameterizer::Pointer modelParameterizer = mitk::ThreeStepLinearModelParameterizer::New(); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); std::string roiUID = ""; if (m_selectedMask.IsNotNull()) { fitGenerator->SetMask(m_selectedMask); roiUID = mitk::EnsureModelFitUID(this->m_selectedMaskNode); } fitGenerator->SetDynamicImage(m_selectedImage); fitGenerator->SetFitFunctor(fitFunctor); generator = fitGenerator.GetPointer(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_PIXELBASED(), this->GetFitName(), roiUID); } void MRPerfusionView::Generate3StepLinearModelFit_ROIBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { if (m_selectedMask.IsNull()) { return; } mitk::ROIBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::ROIBasedParameterFitImageGenerator::New(); mitk::ThreeStepLinearModelParameterizer::Pointer modelParameterizer = mitk::ThreeStepLinearModelParameterizer::New(); //Compute ROI signal mitk::MaskedDynamicImageStatisticsGenerator::Pointer signalGenerator = mitk::MaskedDynamicImageStatisticsGenerator::New(); signalGenerator->SetMask(m_selectedMask); signalGenerator->SetDynamicImage(m_selectedImage); signalGenerator->Generate(); mitk::MaskedDynamicImageStatisticsGenerator::ResultType roiSignal = signalGenerator->GetMean(); //Model configuration (static parameters) can be done now this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); fitGenerator->SetMask(m_selectedMask); fitGenerator->SetFitFunctor(fitFunctor); fitGenerator->SetSignal(roiSignal); fitGenerator->SetTimeGrid(mitk::ExtractTimeGrid(m_selectedImage)); generator = fitGenerator.GetPointer(); std::string roiUID = mitk::EnsureModelFitUID(this->m_selectedMaskNode); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_ROIBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::MaskedDynamicImageStatisticsGenerator::ResultType::const_iterator pos = roiSignal.begin(); pos != roiSignal.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("ROI", infoSignal); } template void MRPerfusionView::GenerateAIFbasedModelFit_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { mitk::PixelBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::PixelBasedParameterFitImageGenerator::New(); typename TParameterizer::Pointer modelParameterizer = TParameterizer::New(); PrepareConcentrationImage(); mitk::AIFBasedModelBase::AterialInputFunctionType aif; mitk::AIFBasedModelBase::AterialInputFunctionType aifTimeGrid; GetAIF(aif, aifTimeGrid); modelParameterizer->SetAIF(aif); modelParameterizer->SetAIFTimeGrid(aifTimeGrid); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); mitk::NumericTwoCompartmentExchangeModelParameterizer* numTCXParametrizer = dynamic_cast (modelParameterizer.GetPointer()); if (numTCXParametrizer) { numTCXParametrizer->SetODEINTStepSize(this->m_Controls.odeStepSize->value()); } //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); std::string roiUID = ""; if (m_selectedMask.IsNotNull()) { fitGenerator->SetMask(m_selectedMask); roiUID = mitk::EnsureModelFitUID(this->m_selectedMaskNode); } fitGenerator->SetDynamicImage(this->m_inputImage); fitGenerator->SetFitFunctor(fitFunctor); generator = fitGenerator.GetPointer(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, this->m_inputImage, mitk::ModelFitConstants::FIT_TYPE_VALUE_PIXELBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::AIFBasedModelBase::AterialInputFunctionType::const_iterator pos = aif.begin(); pos != aif.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("AIF", infoSignal); } template void MRPerfusionView::GenerateAIFbasedModelFit_ROIBased( mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { if (m_selectedMask.IsNull()) { return; } mitk::ROIBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::ROIBasedParameterFitImageGenerator::New(); typename TParameterizer::Pointer modelParameterizer = TParameterizer::New(); PrepareConcentrationImage(); mitk::AIFBasedModelBase::AterialInputFunctionType aif; mitk::AIFBasedModelBase::AterialInputFunctionType aifTimeGrid; GetAIF(aif, aifTimeGrid); modelParameterizer->SetAIF(aif); modelParameterizer->SetAIFTimeGrid(aifTimeGrid); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); mitk::NumericTwoCompartmentExchangeModelParameterizer* numTCXParametrizer = dynamic_cast (modelParameterizer.GetPointer()); if (numTCXParametrizer) { numTCXParametrizer->SetODEINTStepSize(this->m_Controls.odeStepSize->value()); } //Compute ROI signal mitk::MaskedDynamicImageStatisticsGenerator::Pointer signalGenerator = mitk::MaskedDynamicImageStatisticsGenerator::New(); signalGenerator->SetMask(m_selectedMask); signalGenerator->SetDynamicImage(this->m_inputImage); signalGenerator->Generate(); mitk::MaskedDynamicImageStatisticsGenerator::ResultType roiSignal = signalGenerator->GetMean(); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); fitGenerator->SetMask(m_selectedMask); fitGenerator->SetFitFunctor(fitFunctor); fitGenerator->SetSignal(roiSignal); fitGenerator->SetTimeGrid(mitk::ExtractTimeGrid(this->m_inputImage)); generator = fitGenerator.GetPointer(); std::string roiUID = mitk::EnsureModelFitUID(this->m_selectedMaskNode); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, this->m_inputImage, mitk::ModelFitConstants::FIT_TYPE_VALUE_ROIBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::MaskedDynamicImageStatisticsGenerator::ResultType::const_iterator pos = roiSignal.begin(); pos != roiSignal.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("ROI", infoSignal); infoSignal.clear(); for (mitk::AIFBasedModelBase::AterialInputFunctionType::const_iterator pos = aif.begin(); pos != aif.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("AIF", infoSignal); } void MRPerfusionView::DoFit(const mitk::modelFit::ModelFitInfo* fitSession, mitk::ParameterFitImageGeneratorBase* generator) { std::stringstream message; message << "" << "Fitting Data Set . . ." << ""; m_Controls.errorMessageLabel->setText(message.str().c_str()); m_Controls.errorMessageLabel->show(); ///////////////////////// //create job and put it into the thread pool mitk::modelFit::ModelFitResultNodeVectorType additionalNodes; if (m_HasGeneratedNewInput) { additionalNodes.push_back(m_inputNode); } if (m_HasGeneratedNewInputAIF) { additionalNodes.push_back(m_inputAIFNode); } ParameterFitBackgroundJob* pJob = new ParameterFitBackgroundJob(generator, fitSession, this->m_selectedNode, additionalNodes); pJob->setAutoDelete(true); connect(pJob, SIGNAL(Error(QString)), this, SLOT(OnJobError(QString))); connect(pJob, SIGNAL(Finished()), this, SLOT(OnJobFinished())); connect(pJob, SIGNAL(ResultsAreAvailable(mitk::modelFit::ModelFitResultNodeVectorType, const ParameterFitBackgroundJob*)), this, SLOT(OnJobResultsAreAvailable(mitk::modelFit::ModelFitResultNodeVectorType, const ParameterFitBackgroundJob*)), Qt::BlockingQueuedConnection); connect(pJob, SIGNAL(JobProgress(double)), this, SLOT(OnJobProgress(double))); connect(pJob, SIGNAL(JobStatusChanged(QString)), this, SLOT(OnJobStatusChanged(QString))); QThreadPool* threadPool = QThreadPool::globalInstance(); threadPool->start(pJob); } MRPerfusionView::MRPerfusionView() : m_FittingInProgress(false), m_HasGeneratedNewInput(false), m_HasGeneratedNewInputAIF(false) { m_selectedImage = nullptr; m_selectedMask = nullptr; mitk::ModelFactoryBase::Pointer factory = mitk::DescriptivePharmacokineticBrixModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::ThreeStepLinearModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::StandardToftsModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::ExtendedToftsModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::TwoCompartmentExchangeModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::NumericTwoCompartmentExchangeModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); mitk::NodePredicateDataType::Pointer isLabelSet = mitk::NodePredicateDataType::New("LabelSetImage"); mitk::NodePredicateDataType::Pointer isImage = mitk::NodePredicateDataType::New("Image"); mitk::NodePredicateProperty::Pointer isBinary = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateAnd::Pointer isLegacyMask = mitk::NodePredicateAnd::New(isImage, isBinary); mitk::NodePredicateOr::Pointer isMask = mitk::NodePredicateOr::New(isLegacyMask, isLabelSet); mitk::NodePredicateAnd::Pointer isNoMask = mitk::NodePredicateAnd::New(isImage, mitk::NodePredicateNot::New(isMask)); this->m_IsMaskPredicate = mitk::NodePredicateAnd::New(isMask, mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("helper object"))).GetPointer(); this->m_IsNoMaskImagePredicate = mitk::NodePredicateAnd::New(isNoMask, mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("helper object"))).GetPointer(); } void MRPerfusionView::OnJobFinished() { this->m_Controls.infoBox->append(QString("Fitting finished.")); this->m_FittingInProgress = false; this->UpdateGUIControls(); }; void MRPerfusionView::OnJobError(QString err) { MITK_ERROR << err.toStdString().c_str(); m_Controls.infoBox->append(QString("") + err + QString("")); }; void MRPerfusionView::OnJobResultsAreAvailable(mitk::modelFit::ModelFitResultNodeVectorType results, const ParameterFitBackgroundJob* pJob) { //Store the resulting parameter fit image via convenience helper function in data storage //(handles the correct generation of the nodes and their properties) mitk::modelFit::StoreResultsInDataStorage(this->GetDataStorage(), results, pJob->GetParentNode()); //this stores the concentration image and AIF concentration image, if generated for this fit in the storage. //if not generated for this fit, relevant nodes are empty. mitk::modelFit::StoreResultsInDataStorage(this->GetDataStorage(), pJob->GetAdditionalRelevantNodes(), pJob->GetParentNode()); }; void MRPerfusionView::OnJobProgress(double progress) { QString report = QString("Progress. ") + QString::number(progress); this->m_Controls.infoBox->append(report); }; void MRPerfusionView::OnJobStatusChanged(QString info) { this->m_Controls.infoBox->append(info); } void MRPerfusionView::InitModelComboBox() const { this->m_Controls.comboModel->clear(); this->m_Controls.comboModel->addItem(tr("No model selected")); for (ModelFactoryStackType::const_iterator pos = m_FactoryStack.begin(); pos != m_FactoryStack.end(); ++pos) { this->m_Controls.comboModel->addItem(QString::fromStdString((*pos)->GetClassID())); } this->m_Controls.comboModel->setCurrentIndex(0); }; mitk::DataNode::Pointer MRPerfusionView::GenerateConcentrationNode(mitk::Image* image, const std::string& nodeName) const { if (!image) { mitkThrow() << "Cannot generate concentration node. Passed image is null. parameter name: "; } mitk::DataNode::Pointer result = mitk::DataNode::New(); result->SetData(image); result->SetName(nodeName); result->SetVisibility(true); mitk::EnsureModelFitUID(result); return result; }; mitk::Image::Pointer MRPerfusionView::ConvertConcentrationImage(bool AIFMode) { //Compute Concentration image mitk::ConcentrationCurveGenerator::Pointer concentrationGen = mitk::ConcentrationCurveGenerator::New(); if (m_Controls.checkDedicatedAIFImage->isChecked() && AIFMode) { concentrationGen->SetDynamicImage(this->m_selectedAIFImage); } else { concentrationGen->SetDynamicImage(this->m_selectedImage); } concentrationGen->SetisTurboFlashSequence(IsTurboFlashSequenceFlag()); concentrationGen->SetAbsoluteSignalEnhancement(m_Controls.radioButton_absoluteEnhancement->isChecked()); concentrationGen->SetRelativeSignalEnhancement(m_Controls.radioButton_relativeEnchancement->isChecked()); concentrationGen->SetUsingT1Map(m_Controls.radioButtonUsingT1->isChecked()); if (IsTurboFlashSequenceFlag()) { if (AIFMode) { concentrationGen->SetRecoveryTime(m_Controls.AifRecoverytime->value()); } else { concentrationGen->SetRecoveryTime(m_Controls.recoverytime->value()); } concentrationGen->SetRelaxationTime(m_Controls.relaxationtime->value()); concentrationGen->SetRelaxivity(m_Controls.relaxivity->value()); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); } else if (this->m_Controls.radioButtonUsingT1->isChecked()) { concentrationGen->SetRecoveryTime(m_Controls.TRSpinBox->value()); concentrationGen->SetRelaxivity(m_Controls.RelaxivitySpinBox->value()); concentrationGen->SetT10Image(dynamic_cast(m_Controls.ComboT1Map->GetSelectedNode()->GetData())); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); //Convert Flipangle from degree to radiant double alpha = m_Controls.FlipangleSpinBox->value()/360*2* boost::math::constants::pi(); concentrationGen->SetFlipAngle(alpha); } else { concentrationGen->SetFactor(m_Controls.factorSpinBox->value()); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); } mitk::Image::Pointer concentrationImage = concentrationGen->GetConvertedImage(); return concentrationImage; } void MRPerfusionView::GetAIF(mitk::AIFBasedModelBase::AterialInputFunctionType& aif, mitk::AIFBasedModelBase::AterialInputFunctionType& aifTimeGrid) { if (this->m_Controls.radioAIFFile->isChecked()) { aif.clear(); aifTimeGrid.clear(); aif.SetSize(AIFinputFunction.size()); aifTimeGrid.SetSize(AIFinputGrid.size()); aif.fill(0.0); aifTimeGrid.fill(0.0); itk::Array::iterator aifPos = aif.begin(); for (std::vector::const_iterator pos = AIFinputFunction.begin(); pos != AIFinputFunction.end(); ++pos, ++aifPos) { *aifPos = *pos; } itk::Array::iterator gridPos = aifTimeGrid.begin(); for (std::vector::const_iterator pos = AIFinputGrid.begin(); pos != AIFinputGrid.end(); ++pos, ++gridPos) { *gridPos = *pos; } } else if (this->m_Controls.radioAIFImage->isChecked()) { aif.clear(); aifTimeGrid.clear(); mitk::AterialInputFunctionGenerator::Pointer aifGenerator = mitk::AterialInputFunctionGenerator::New(); //Hematocrit level aifGenerator->SetHCL(this->m_Controls.HCLSpinBox->value()); //mask settings this->m_selectedAIFMaskNode = m_Controls.comboAIFMask->GetSelectedNode(); this->m_selectedAIFMask = dynamic_cast(this->m_selectedAIFMaskNode->GetData()); if (this->m_selectedAIFMask->GetTimeSteps() > 1) { MITK_INFO << "Selected AIF mask has multiple timesteps. Only use first timestep to mask model fit. AIF Mask name: " << m_selectedAIFMaskNode->GetName() ; mitk::ImageTimeSelector::Pointer maskedImageTimeSelector = mitk::ImageTimeSelector::New(); maskedImageTimeSelector->SetInput(this->m_selectedAIFMask); maskedImageTimeSelector->SetTimeNr(0); maskedImageTimeSelector->UpdateLargestPossibleRegion(); this->m_selectedAIFMask = maskedImageTimeSelector->GetOutput(); } if (this->m_selectedAIFMask.IsNotNull()) { aifGenerator->SetMask(this->m_selectedAIFMask); } //image settings if (this->m_Controls.checkDedicatedAIFImage->isChecked()) { this->m_selectedAIFImageNode = m_Controls.comboAIFImage->GetSelectedNode(); this->m_selectedAIFImage = dynamic_cast(this->m_selectedAIFImageNode->GetData()); } else { this->m_selectedAIFImageNode = m_selectedNode; this->m_selectedAIFImage = m_selectedImage; } this->PrepareAIFConcentrationImage(); aifGenerator->SetDynamicImage(this->m_inputAIFImage); aif = aifGenerator->GetAterialInputFunction(); aifTimeGrid = aifGenerator->GetAterialInputFunctionTimeGrid(); } else { mitkThrow() << "Cannot generate AIF. View is in a invalide state. No AIF mode selected."; } } void MRPerfusionView::LoadAIFfromFile() { QFileDialog dialog; dialog.setNameFilter(tr("Images (*.csv")); QString fileName = dialog.getOpenFileName(); m_Controls.aifFilePath->setText(fileName); std::string m_aifFilePath = fileName.toStdString(); //Read Input typedef boost::tokenizer< boost::escaped_list_separator > Tokenizer; ///////////////////////////////////////////////////////////////////////////////////////////////// //AIF Data std::ifstream in1(m_aifFilePath.c_str()); if (!in1.is_open()) { m_Controls.errorMessageLabel->setText("Could not open AIF File!"); } std::vector< std::string > vec1; std::string line1; while (getline(in1, line1)) { Tokenizer tok(line1); vec1.assign(tok.begin(), tok.end()); this->AIFinputGrid.push_back(convertToDouble(vec1[0])); this->AIFinputFunction.push_back(convertToDouble(vec1[1])); } } void MRPerfusionView::PrepareConcentrationImage() { mitk::Image::Pointer concentrationImage = this->m_selectedImage; mitk::DataNode::Pointer concentrationNode = this->m_selectedNode; m_HasGeneratedNewInput = false; if (!this->m_Controls.radioButtonNoConversion->isChecked()) { concentrationImage = this->ConvertConcentrationImage(false); concentrationNode = GenerateConcentrationNode(concentrationImage, "Concentration"); m_HasGeneratedNewInput = true; } m_inputImage = concentrationImage; m_inputNode = concentrationNode; mitk::EnsureModelFitUID(concentrationNode); } void MRPerfusionView::PrepareAIFConcentrationImage() { mitk::Image::Pointer concentrationImage = this->m_selectedImage; mitk::DataNode::Pointer concentrationNode = this->m_selectedNode; m_HasGeneratedNewInputAIF = false; if (this->m_Controls.checkDedicatedAIFImage->isChecked()) { concentrationImage = this->m_selectedAIFImage; concentrationNode = this->m_selectedAIFImageNode; } if (!this->m_Controls.radioButtonNoConversion->isChecked()) { if (!IsTurboFlashSequenceFlag() && !this->m_Controls.checkDedicatedAIFImage->isChecked()) { if (m_inputImage.IsNull()) { mitkThrow() << "Cannot get AIF concentration image. Invalid view state. Input image is not defined yet, but should be."; } //we can directly use the concentration input image/node (generated by GetConcentrationImage) also for the AIF concentrationImage = this->m_inputImage; concentrationNode = this->m_inputNode; } else { concentrationImage = this->ConvertConcentrationImage(true); concentrationNode = GenerateConcentrationNode(concentrationImage, "AIF Concentration"); m_HasGeneratedNewInputAIF = true; } } m_inputAIFImage = concentrationImage; m_inputAIFNode = concentrationNode; mitk::EnsureModelFitUID(concentrationNode); } mitk::ModelFitFunctorBase::Pointer MRPerfusionView::CreateDefaultFitFunctor( const mitk::ModelParameterizerBase* parameterizer) const { mitk::LevenbergMarquardtModelFitFunctor::Pointer fitFunctor = mitk::LevenbergMarquardtModelFitFunctor::New(); mitk::NormalizedSumOfSquaredDifferencesFitCostFunction::Pointer chi2 = mitk::NormalizedSumOfSquaredDifferencesFitCostFunction::New(); fitFunctor->RegisterEvaluationParameter("Chi^2", chi2); if (m_Controls.checkBox_Constraints->isChecked()) { fitFunctor->SetConstraintChecker(m_modelConstraints); } mitk::ModelBase::Pointer refModel = parameterizer->GenerateParameterizedModel(); ::itk::LevenbergMarquardtOptimizer::ScalesType scales; scales.SetSize(refModel->GetNumberOfParameters()); scales.Fill(1.0); fitFunctor->SetScales(scales); fitFunctor->SetDebugParameterMaps(m_Controls.checkDebug->isChecked()); return fitFunctor.GetPointer(); }