diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp index 4a0b9e729a..9ca35cf7fb 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp @@ -1,613 +1,623 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractsToDWIImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include namespace itk { TractsToDWIImageFilter::TractsToDWIImageFilter() : m_CircleDummy(false) , m_VolumeAccuracy(10) , m_Upsampling(1) , m_NumberOfRepetitions(1) , m_EnforcePureFiberVoxels(false) , m_InterpolationShrink(10) , m_FiberRadius(20) , m_SignalScale(300) { m_Spacing.Fill(2.5); m_Origin.Fill(0.0); m_DirectionMatrix.SetIdentity(); m_ImageRegion.SetSize(0, 10); m_ImageRegion.SetSize(1, 10); m_ImageRegion.SetSize(2, 10); } TractsToDWIImageFilter::~TractsToDWIImageFilter() { } std::vector< TractsToDWIImageFilter::DoubleDwiType::Pointer > TractsToDWIImageFilter::AddKspaceArtifacts( std::vector< DoubleDwiType::Pointer >& images ) { // create slice object SliceType::Pointer slice = SliceType::New(); ImageRegion<2> region; region.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); region.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); slice->SetLargestPossibleRegion( region ); slice->SetBufferedRegion( region ); slice->SetRequestedRegion( region ); slice->Allocate(); boost::progress_display disp(images.size()*images[0]->GetVectorLength()*images[0]->GetLargestPossibleRegion().GetSize(2)); std::vector< DoubleDwiType::Pointer > outImages; for (int i=0; iSetSpacing( m_Spacing ); newImage->SetOrigin( m_Origin ); newImage->SetDirection( m_DirectionMatrix ); newImage->SetLargestPossibleRegion( m_ImageRegion ); newImage->SetBufferedRegion( m_ImageRegion ); newImage->SetRequestedRegion( m_ImageRegion ); newImage->SetVectorLength( image->GetVectorLength() ); newImage->Allocate(); DiffusionSignalModel* signalModel; if (iGetVectorLength(); g++) for (int z=0; zGetLargestPossibleRegion().GetSize(2); z++) { ++disp; // extract slice from channel g for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::PixelType pix2D = image->GetPixel(index3D)[g]; slice->SetPixel(index2D, pix2D); } // fourier transform slice - itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::Pointer fft = itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::New(); - fft->SetInput(slice); - fft->Update(); - ComplexSliceType::Pointer fSlice = fft->GetOutput(); + ComplexSliceType::Pointer fSlice; + +// itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::Pointer fft = itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::New(); +// fft->SetInput(slice); +// fft->Update(); +// fSlice = fft->GetOutput(); + + itk::KspaceImageFilter< double >::Pointer dft = itk::KspaceImageFilter< double >::New(); + dft->SetInput(slice); + dft->Update(); + + fSlice = dft->GetOutput(); fSlice = RearrangeSlice(fSlice); + // add artifacts for (int a=0; aSetT2(signalModel->GetT2()); fSlice = m_KspaceArtifacts.at(a)->AddArtifact(fSlice); } // save k-space slice of s0 image if (g==m_FiberModels.at(0)->GetFirstBaselineIndex()) for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; double kpix = sqrt(fSlice->GetPixel(index2D).real()*fSlice->GetPixel(index2D).real()+fSlice->GetPixel(index2D).imag()*fSlice->GetPixel(index2D).imag()); m_KspaceImage->SetPixel(index3D, m_KspaceImage->GetPixel(index3D)+kpix); } // inverse fourier transform slice SliceType::Pointer newSlice; itk::FFTComplexConjugateToRealImageFilter< SliceType::PixelType, 2 >::Pointer ifft = itk::FFTComplexConjugateToRealImageFilter< SliceType::PixelType, 2 >::New(); ifft->SetInput(fSlice); ifft->Update(); newSlice = ifft->GetOutput(); // put slice back into channel g for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; DoubleDwiType::PixelType pix3D = newImage->GetPixel(index3D); SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; pix3D[g] = newSlice->GetPixel(index2D); newImage->SetPixel(index3D, pix3D); } } outImages.push_back(newImage); } return outImages; } TractsToDWIImageFilter::ComplexSliceType::Pointer TractsToDWIImageFilter::RearrangeSlice(ComplexSliceType::Pointer slice) { ImageRegion<2> region = slice->GetLargestPossibleRegion(); ComplexSliceType::Pointer rearrangedSlice = ComplexSliceType::New(); rearrangedSlice->SetLargestPossibleRegion( region ); rearrangedSlice->SetBufferedRegion( region ); rearrangedSlice->SetRequestedRegion( region ); rearrangedSlice->Allocate(); int xHalf = region.GetSize(0)/2; int yHalf = region.GetSize(1)/2; for (int y=0; y pix = slice->GetPixel(idx); if( idx[0] < xHalf ) idx[0] = idx[0] + xHalf; else idx[0] = idx[0] - xHalf; if( idx[1] < yHalf ) idx[1] = idx[1] + yHalf; else idx[1] = idx[1] - yHalf; rearrangedSlice->SetPixel(idx, pix); } return rearrangedSlice; } void TractsToDWIImageFilter::GenerateData() { // check input data if (m_FiberBundle.IsNull()) itkExceptionMacro("Input fiber bundle is NULL!"); int numFibers = m_FiberBundle->GetNumFibers(); if (numFibers<=0) itkExceptionMacro("Input fiber bundle contains no fibers!"); if (m_FiberModels.empty()) itkExceptionMacro("No diffusion model for fiber compartments defined!"); if (m_NonFiberModels.empty()) itkExceptionMacro("No diffusion model for non-fiber compartments defined!"); int baselineIndex = m_FiberModels[0]->GetFirstBaselineIndex(); if (baselineIndex<0) itkExceptionMacro("No baseline index found!"); // determine k-space undersampling for (int i=0; i*>(m_KspaceArtifacts.at(i)) ) m_Upsampling = dynamic_cast*>(m_KspaceArtifacts.at(i))->GetKspaceCropping(); if (m_Upsampling<1) m_Upsampling = 1; if (m_TissueMask.IsNotNull()) { // use input tissue mask m_Spacing = m_TissueMask->GetSpacing(); m_Origin = m_TissueMask->GetOrigin(); m_DirectionMatrix = m_TissueMask->GetDirection(); m_ImageRegion = m_TissueMask->GetLargestPossibleRegion(); if (m_Upsampling>1) { ImageRegion<3> region = m_ImageRegion; region.SetSize(0, m_ImageRegion.GetSize(0)*m_Upsampling); region.SetSize(1, m_ImageRegion.GetSize(1)*m_Upsampling); mitk::Vector3D spacing = m_Spacing; spacing[0] /= m_Upsampling; spacing[1] /= m_Upsampling; itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0,m_TissueMask); rescaler->SetOutputMaximum(100); rescaler->SetOutputMinimum(0); rescaler->Update(); itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(rescaler->GetOutput()); resampler->SetOutputParametersFromImage(m_TissueMask); resampler->SetSize(region.GetSize()); resampler->SetOutputSpacing(spacing); resampler->Update(); m_TissueMask = resampler->GetOutput(); } MITK_INFO << "Using tissue mask"; } // initialize output dwi image OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Spacing ); outImage->SetOrigin( m_Origin ); outImage->SetDirection( m_DirectionMatrix ); outImage->SetLargestPossibleRegion( m_ImageRegion ); outImage->SetBufferedRegion( m_ImageRegion ); outImage->SetRequestedRegion( m_ImageRegion ); outImage->SetVectorLength( m_FiberModels[0]->GetNumGradients() ); outImage->Allocate(); OutputImageType::PixelType temp; temp.SetSize(m_FiberModels[0]->GetNumGradients()); temp.Fill(0.0); outImage->FillBuffer(temp); // is input slize size a power of two? int x=2; int y=2; while (x " << x << " --> " << x*m_Upsampling; m_ImageRegion.SetSize(0, x); } if (y!=m_ImageRegion.GetSize(1)) { MITK_INFO << "Adjusting image height: " << m_ImageRegion.GetSize(1) << " --> " << y << " --> " << y*m_Upsampling; m_ImageRegion.SetSize(1, y); } // initialize k-space image m_KspaceImage = ItkDoubleImgType::New(); m_KspaceImage->SetSpacing( m_Spacing ); m_KspaceImage->SetOrigin( m_Origin ); m_KspaceImage->SetDirection( m_DirectionMatrix ); m_KspaceImage->SetLargestPossibleRegion( m_ImageRegion ); m_KspaceImage->SetBufferedRegion( m_ImageRegion ); m_KspaceImage->SetRequestedRegion( m_ImageRegion ); m_KspaceImage->Allocate(); m_KspaceImage->FillBuffer(0); // apply undersampling to image parameters m_UpsampledSpacing = m_Spacing; m_UpsampledImageRegion = m_ImageRegion; m_UpsampledSpacing[0] /= m_Upsampling; m_UpsampledSpacing[1] /= m_Upsampling; m_UpsampledImageRegion.SetSize(0, m_ImageRegion.GetSize()[0]*m_Upsampling); m_UpsampledImageRegion.SetSize(1, m_ImageRegion.GetSize()[1]*m_Upsampling); // everything from here on is using the upsampled image parameters!!! if (m_TissueMask.IsNull()) { m_TissueMask = ItkUcharImgType::New(); m_TissueMask->SetSpacing( m_UpsampledSpacing ); m_TissueMask->SetOrigin( m_Origin ); m_TissueMask->SetDirection( m_DirectionMatrix ); m_TissueMask->SetLargestPossibleRegion( m_UpsampledImageRegion ); m_TissueMask->SetBufferedRegion( m_UpsampledImageRegion ); m_TissueMask->SetRequestedRegion( m_UpsampledImageRegion ); m_TissueMask->Allocate(); m_TissueMask->FillBuffer(1); } // resample fiber bundle for sufficient voxel coverage double segmentVolume = 0.0001; float minSpacing = 1; if(m_UpsampledSpacing[0]GetDeepCopy(); fiberBundle->ResampleFibers(minSpacing/m_VolumeAccuracy); double mmRadius = m_FiberRadius/1000; if (mmRadius>0) segmentVolume = M_PI*mmRadius*mmRadius*minSpacing/m_VolumeAccuracy; // generate double images to wokr with because we don't want to lose precision // we use a separate image for each compartment model std::vector< DoubleDwiType::Pointer > compartments; for (int i=0; iSetSpacing( m_UpsampledSpacing ); doubleDwi->SetOrigin( m_Origin ); doubleDwi->SetDirection( m_DirectionMatrix ); doubleDwi->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleDwi->SetBufferedRegion( m_UpsampledImageRegion ); doubleDwi->SetRequestedRegion( m_UpsampledImageRegion ); doubleDwi->SetVectorLength( m_FiberModels[0]->GetNumGradients() ); doubleDwi->Allocate(); DoubleDwiType::PixelType pix; pix.SetSize(m_FiberModels[0]->GetNumGradients()); pix.Fill(0.0); doubleDwi->FillBuffer(pix); compartments.push_back(doubleDwi); } double interpFact = 2*atan(-0.5*m_InterpolationShrink); double maxVolume = 0; vtkSmartPointer fiberPolyData = fiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); MITK_INFO << "Generating signal of " << m_FiberModels.size() << " fiber compartments"; boost::progress_display disp(numFibers); for( int i=0; iGetNextCell ( numPoints, points ); if (numPoints<2) continue; for( int j=0; jGetPoint(points[j]); itk::Point vertex = GetItkPoint(temp); itk::Vector v = GetItkVector(temp); itk::Vector dir(3); if (jGetPoint(points[j+1]))-v; else dir = v-GetItkVector(fiberPolyData->GetPoint(points[j-1])); itk::Index<3> idx; itk::ContinuousIndex contIndex; m_TissueMask->TransformPhysicalPointToIndex(vertex, idx); m_TissueMask->TransformPhysicalPointToContinuousIndex(vertex, contIndex); double frac_x = contIndex[0] - idx[0]; double frac_y = contIndex[1] - idx[1]; double frac_z = contIndex[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } frac_x = atan((0.5-frac_x)*m_InterpolationShrink)/interpFact + 0.5; frac_y = atan((0.5-frac_y)*m_InterpolationShrink)/interpFact + 0.5; frac_z = atan((0.5-frac_z)*m_InterpolationShrink)/interpFact + 0.5; // use trilinear interpolation itk::Index<3> newIdx; for (int x=0; x<2; x++) { frac_x = 1-frac_x; for (int y=0; y<2; y++) { frac_y = 1-frac_y; for (int z=0; z<2; z++) { frac_z = 1-frac_z; newIdx[0] = idx[0]+x; newIdx[1] = idx[1]+y; newIdx[2] = idx[2]+z; double frac = frac_x*frac_y*frac_z; // is position valid? if (!m_TissueMask->GetLargestPossibleRegion().IsInside(newIdx) || m_TissueMask->GetPixel(newIdx)<=0) continue; // generate signal for each fiber compartment for (int k=0; kSetFiberDirection(dir); DoubleDwiType::PixelType pix = doubleDwi->GetPixel(newIdx); pix += segmentVolume*frac*m_FiberModels[k]->SimulateMeasurement(); doubleDwi->SetPixel(newIdx, pix ); if (pix[baselineIndex]>maxVolume) maxVolume = pix[baselineIndex]; } } } } } } MITK_INFO << "Generating signal of " << m_NonFiberModels.size() << " non-fiber compartments"; ImageRegionIterator it3(m_TissueMask, m_TissueMask->GetLargestPossibleRegion()); boost::progress_display disp3(m_TissueMask->GetLargestPossibleRegion().GetNumberOfPixels()); double voxelVolume = m_UpsampledSpacing[0]*m_UpsampledSpacing[1]*m_UpsampledSpacing[2]; double fact = 1; if (m_FiberRadius<0.0001) fact = voxelVolume/maxVolume; while(!it3.IsAtEnd()) { ++disp3; DoubleDwiType::IndexType index = it3.GetIndex(); if (it3.Get()>0) { // get fiber volume fraction DoubleDwiType::Pointer fiberDwi = compartments.at(0); DoubleDwiType::PixelType fiberPix = fiberDwi->GetPixel(index); // intra axonal compartment if (fact>1) // auto scale intra-axonal if no fiber radius is specified { fiberPix *= fact; fiberDwi->SetPixel(index, fiberPix); } double f = fiberPix[baselineIndex]; if (f>voxelVolume || f>0 && m_EnforcePureFiberVoxels) // more fiber than space in voxel? { fiberDwi->SetPixel(index, fiberPix*voxelVolume/f); for (int i=1; iSetPixel(index, pix); } } else { double nonf = voxelVolume-f; // non-fiber volume double inter = 0; if (m_FiberModels.size()>1) inter = nonf * f; // intra-axonal fraction of non fiber compartment scales linearly with f double other = nonf - inter; // rest of compartment // adjust non-fiber and intra-axonal signal for (int i=1; iGetPixel(index); if (pix[baselineIndex]>0) pix /= pix[baselineIndex]; pix *= inter; doubleDwi->SetPixel(index, pix); } for (int i=0; iGetPixel(index) + m_NonFiberModels[i]->SimulateMeasurement()*other*m_NonFiberModels[i]->GetWeight(); doubleDwi->SetPixel(index, pix); } } } ++it3; } // do k-space stuff MITK_INFO << "Adjusting complex signal"; compartments = AddKspaceArtifacts(compartments); MITK_INFO << "Summing compartments and adding noise"; unsigned int window = 0; unsigned int min = itk::NumericTraits::max(); ImageRegionIterator it4 (outImage, outImage->GetLargestPossibleRegion()); DoubleDwiType::PixelType signal; signal.SetSize(m_FiberModels[0]->GetNumGradients()); boost::progress_display disp4(outImage->GetLargestPossibleRegion().GetNumberOfPixels()); while(!it4.IsAtEnd()) { ++disp4; DWIImageType::IndexType index = it4.GetIndex(); signal.Fill(0.0); // adjust fiber signal for (int i=0; iGetPixel(index)*m_SignalScale; // adjust non-fiber signal for (int i=0; iGetPixel(index)*m_SignalScale; DoubleDwiType::PixelType accu = signal; accu.Fill(0.0); for (int i=0; iAddNoise(temp); accu += temp; } signal = accu/m_NumberOfRepetitions; for (int i=0; i0) signal[i] = floor(signal[i]+0.5); else signal[i] = ceil(signal[i]-0.5); if (!m_FiberModels.at(0)->IsBaselineIndex(i) && signal[i]>window) window = signal[i]; if (!m_FiberModels.at(0)->IsBaselineIndex(i) && signal[i]SetNthOutput(0, outImage); } itk::Point TractsToDWIImageFilter::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } itk::Vector TractsToDWIImageFilter::GetItkVector(double point[3]) { itk::Vector itkVector; itkVector[0] = point[0]; itkVector[1] = point[1]; itkVector[2] = point[2]; return itkVector; } vnl_vector_fixed TractsToDWIImageFilter::GetVnlVector(double point[3]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } vnl_vector_fixed TractsToDWIImageFilter::GetVnlVector(Vector& vector) { vnl_vector_fixed vnlVector; vnlVector[0] = vector[0]; vnlVector[1] = vector[1]; vnlVector[2] = vector[2]; return vnlVector; } } diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h index 27044e66da..5ba70ba567 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h @@ -1,132 +1,134 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkTractsToDWIImageFilter_h__ #define __itkTractsToDWIImageFilter_h__ // MITK #include #include #include #include #include #include // ITK #include #include #include #include #include #include typedef itk::VectorImage< short, 3 > DWIImageType; namespace itk { /** * \brief Generates artificial diffusion weighted image volume from the input fiberbundle using a generic multicompartment model. */ class TractsToDWIImageFilter : public ImageSource< DWIImageType > { public: typedef TractsToDWIImageFilter Self; typedef ImageSource< DWIImageType > Superclass; typedef SmartPointer< Self > Pointer; typedef SmartPointer< const Self > ConstPointer; typedef itk::Image ItkDoubleImgType; typedef itk::Image ItkFloatImgType; typedef itk::Image ItkUcharImgType; typedef mitk::FiberBundleX::Pointer FiberBundleType; typedef itk::VectorImage< double, 3 > DoubleDwiType; typedef std::vector< mitk::KspaceArtifact* > KspaceArtifactList; typedef std::vector< mitk::DiffusionSignalModel* > DiffusionModelList; typedef itk::Matrix MatrixType; typedef mitk::DiffusionNoiseModel NoiseModelType; typedef itk::Image< double, 2 > SliceType; typedef itk::FFTRealToComplexConjugateImageFilter< double, 2 >::OutputImageType ComplexSliceType; itkNewMacro(Self) itkTypeMacro( TractsToDWIImageFilter, ImageToImageFilter ) // input itkSetMacro( SignalScale, double ) itkSetMacro( FiberRadius, double ) itkSetMacro( InterpolationShrink, double ) ///< large values shrink (towards nearest neighbour interpolation), small values strech interpolation function (towards linear interpolation) itkSetMacro( VolumeAccuracy, unsigned int ) ///< determines fiber sampling density and thereby the accuracy of the fiber volume fraction itkSetMacro( FiberBundle, FiberBundleType ) ///< input fiber bundle itkSetMacro( Spacing, mitk::Vector3D ) ///< output image spacing itkSetMacro( Origin, mitk::Point3D ) ///< output image origin itkSetMacro( DirectionMatrix, MatrixType ) ///< output image rotation itkSetMacro( EnforcePureFiberVoxels, bool ) ///< treat all voxels containing at least one fiber as fiber-only (actually disable non-fiber compartments for this voxel). itkSetMacro( ImageRegion, ImageRegion<3> ) ///< output image size itkSetMacro( NumberOfRepetitions, unsigned int ) ///< number of acquisition repetitions to reduce noise (default is no additional repetition) itkSetMacro( TissueMask, ItkUcharImgType::Pointer ) ///< voxels outside of this binary mask contain only noise (are treated as air) itkGetMacro( KspaceImage, ItkDoubleImgType::Pointer ) void SetNoiseModel(NoiseModelType* noiseModel){ m_NoiseModel = noiseModel; } ///< generates the noise added to the image values void SetFiberModels(DiffusionModelList modelList){ m_FiberModels = modelList; } ///< generate signal of fiber compartments void SetNonFiberModels(DiffusionModelList modelList){ m_NonFiberModels = modelList; } ///< generate signal of non-fiber compartments void SetKspaceArtifacts(KspaceArtifactList artifactList){ m_KspaceArtifacts = artifactList; } mitk::LevelWindow GetLevelWindow(){ return m_LevelWindow; } + itkSetMacro( FrequencyMap, ItkDoubleImgType::Pointer ) void GenerateData(); protected: TractsToDWIImageFilter(); virtual ~TractsToDWIImageFilter(); itk::Point GetItkPoint(double point[3]); itk::Vector GetItkVector(double point[3]); vnl_vector_fixed GetVnlVector(double point[3]); vnl_vector_fixed GetVnlVector(Vector< float, 3 >& vector); /** Transform generated image compartment by compartment, channel by channel and slice by slice using FFT and add k-space artifacts. */ std::vector< DoubleDwiType::Pointer > AddKspaceArtifacts(std::vector< DoubleDwiType::Pointer >& images); /** Rearrange FFT output to shift low frequencies to the iamge center (correct itk). */ TractsToDWIImageFilter::ComplexSliceType::Pointer RearrangeSlice(ComplexSliceType::Pointer slice); mitk::Vector3D m_Spacing; ///< output image spacing mitk::Vector3D m_UpsampledSpacing; mitk::Point3D m_Origin; ///< output image origin MatrixType m_DirectionMatrix; ///< output image rotation ImageRegion<3> m_ImageRegion; ///< output image size ImageRegion<3> m_UpsampledImageRegion; ItkUcharImgType::Pointer m_TissueMask; ///< voxels outside of this binary mask contain only noise (are treated as air) + ItkDoubleImgType::Pointer m_FrequencyMap; ///< map of the B0 inhomogeneities FiberBundleType m_FiberBundle; ///< input fiber bundle DiffusionModelList m_FiberModels; ///< generate signal of fiber compartments DiffusionModelList m_NonFiberModels; ///< generate signal of non-fiber compartments KspaceArtifactList m_KspaceArtifacts; NoiseModelType* m_NoiseModel; ///< generates the noise added to the image values bool m_CircleDummy; unsigned int m_VolumeAccuracy; ItkDoubleImgType::Pointer m_KspaceImage; unsigned int m_Upsampling; unsigned int m_NumberOfRepetitions; bool m_EnforcePureFiberVoxels; double m_InterpolationShrink; double m_FiberRadius; double m_SignalScale; mitk::LevelWindow m_LevelWindow; }; } #include "itkTractsToDWIImageFilter.cpp" #endif diff --git a/Modules/DiffusionImaging/FiberTracking/files.cmake b/Modules/DiffusionImaging/FiberTracking/files.cmake index dec7c0be87..11ae2bcac7 100644 --- a/Modules/DiffusionImaging/FiberTracking/files.cmake +++ b/Modules/DiffusionImaging/FiberTracking/files.cmake @@ -1,100 +1,102 @@ set(CPP_FILES # DataStructures -> FiberBundleX IODataStructures/FiberBundleX/mitkFiberBundleX.cpp IODataStructures/FiberBundleX/mitkFiberBundleXWriter.cpp IODataStructures/FiberBundleX/mitkFiberBundleXReader.cpp IODataStructures/FiberBundleX/mitkFiberBundleXIOFactory.cpp IODataStructures/FiberBundleX/mitkFiberBundleXWriterFactory.cpp IODataStructures/FiberBundleX/mitkFiberBundleXSerializer.cpp IODataStructures/FiberBundleX/mitkFiberBundleXThreadMonitor.cpp # DataStructures -> PlanarFigureComposite IODataStructures/PlanarFigureComposite/mitkPlanarFigureComposite.cpp # DataStructures IODataStructures/mitkFiberTrackingObjectFactory.cpp # Rendering Rendering/mitkFiberBundleXMapper2D.cpp Rendering/mitkFiberBundleXMapper3D.cpp Rendering/mitkFiberBundleXThreadMonitorMapper3D.cpp #Rendering/mitkPlanarFigureMapper3D.cpp # Interactions Interactions/mitkFiberBundleInteractor.cpp # Algorithms Algorithms/mitkTractAnalyzer.cpp # Tractography Algorithms/GibbsTracking/mitkParticleGrid.cpp Algorithms/GibbsTracking/mitkMetropolisHastingsSampler.cpp Algorithms/GibbsTracking/mitkEnergyComputer.cpp Algorithms/GibbsTracking/mitkGibbsEnergyComputer.cpp Algorithms/GibbsTracking/mitkFiberBuilder.cpp Algorithms/GibbsTracking/mitkSphereInterpolator.cpp ) set(H_FILES # Rendering Rendering/mitkFiberBundleXMapper3D.h Rendering/mitkFiberBundleXMapper2D.h Rendering/mitkFiberBundleXThreadMonitorMapper3D.h #Rendering/mitkPlanarFigureMapper3D.h # DataStructures -> FiberBundleX IODataStructures/FiberBundleX/mitkFiberBundleX.h IODataStructures/FiberBundleX/mitkFiberBundleXWriter.h IODataStructures/FiberBundleX/mitkFiberBundleXReader.h IODataStructures/FiberBundleX/mitkFiberBundleXIOFactory.h IODataStructures/FiberBundleX/mitkFiberBundleXWriterFactory.h IODataStructures/FiberBundleX/mitkFiberBundleXSerializer.h IODataStructures/FiberBundleX/mitkFiberBundleXThreadMonitor.h IODataStructures/mitkFiberTrackingObjectFactory.h # Algorithms Algorithms/itkTractDensityImageFilter.h Algorithms/itkTractsToFiberEndingsImageFilter.h Algorithms/itkTractsToRgbaImageFilter.h Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.h Algorithms/itkFibersFromPlanarFiguresFilter.h Algorithms/itkTractsToDWIImageFilter.h Algorithms/itkTractsToVectorImageFilter.h + Algorithms/itkKspaceImageFilter.h + Algorithms/itkDftImageFilter.h # (old) Tractography Algorithms/itkGibbsTrackingFilter.h Algorithms/itkStochasticTractographyFilter.h Algorithms/itkStreamlineTrackingFilter.h Algorithms/GibbsTracking/mitkParticle.h Algorithms/GibbsTracking/mitkParticleGrid.h Algorithms/GibbsTracking/mitkMetropolisHastingsSampler.h Algorithms/GibbsTracking/mitkSimpSamp.h Algorithms/GibbsTracking/mitkEnergyComputer.h Algorithms/GibbsTracking/mitkGibbsEnergyComputer.h Algorithms/GibbsTracking/mitkSphereInterpolator.h Algorithms/GibbsTracking/mitkFiberBuilder.h # Signal Models SignalModels/mitkDiffusionSignalModel.h SignalModels/mitkTensorModel.h SignalModels/mitkBallModel.h SignalModels/mitkDotModel.h SignalModels/mitkAstroStickModel.h SignalModels/mitkStickModel.h SignalModels/mitkDiffusionNoiseModel.h SignalModels/mitkRicianNoiseModel.h SignalModels/mitkKspaceArtifact.h SignalModels/mitkGibbsRingingArtifact.h SignalModels/mitkSignalDecay.h ) set(RESOURCE_FILES # Binary directory resources FiberTrackingLUTBaryCoords.bin FiberTrackingLUTIndices.bin # Shaders Shaders/mitkShaderFiberClipping.xml )