diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp index 66891575b5..33a8471ca8 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.cpp @@ -1,631 +1,605 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "itkTractsToDWIImageFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace itk { TractsToDWIImageFilter::TractsToDWIImageFilter() : m_CircleDummy(false) , m_VolumeAccuracy(10) , m_Upsampling(1) , m_NumberOfRepetitions(1) - , m_EnforcePureFiberVoxels(true) - , m_InterpolationShrink(5) + , m_EnforcePureFiberVoxels(false) + , m_InterpolationShrink(10) + , m_FiberRadius(20) + , m_SignalScale(300) { m_Spacing.Fill(2.5); m_Origin.Fill(0.0); m_DirectionMatrix.SetIdentity(); m_ImageRegion.SetSize(0, 10); m_ImageRegion.SetSize(1, 10); m_ImageRegion.SetSize(2, 10); } TractsToDWIImageFilter::~TractsToDWIImageFilter() { } std::vector< TractsToDWIImageFilter::DoubleDwiType::Pointer > TractsToDWIImageFilter::AddKspaceArtifacts( std::vector< DoubleDwiType::Pointer >& images ) { // create slice object SliceType::Pointer slice = SliceType::New(); ImageRegion<2> region; region.SetSize(0, m_UpsampledImageRegion.GetSize()[0]); region.SetSize(1, m_UpsampledImageRegion.GetSize()[1]); slice->SetLargestPossibleRegion( region ); slice->SetBufferedRegion( region ); slice->SetRequestedRegion( region ); slice->Allocate(); boost::progress_display disp(images.size()*images[0]->GetVectorLength()*images[0]->GetLargestPossibleRegion().GetSize(2)); std::vector< DoubleDwiType::Pointer > outImages; for (int i=0; iSetSpacing( m_Spacing ); newImage->SetOrigin( m_Origin ); newImage->SetDirection( m_DirectionMatrix ); newImage->SetLargestPossibleRegion( m_ImageRegion ); newImage->SetBufferedRegion( m_ImageRegion ); newImage->SetRequestedRegion( m_ImageRegion ); newImage->SetVectorLength( image->GetVectorLength() ); newImage->Allocate(); DiffusionSignalModel* signalModel; if (iGetVectorLength(); g++) for (int z=0; zGetLargestPossibleRegion().GetSize(2); z++) { ++disp; // extract slice from channel g for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::PixelType pix2D = image->GetPixel(index3D)[g]; slice->SetPixel(index2D, pix2D); } // fourier transform slice itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::Pointer fft = itk::FFTRealToComplexConjugateImageFilter< SliceType::PixelType, 2 >::New(); fft->SetInput(slice); fft->Update(); ComplexSliceType::Pointer fSlice = fft->GetOutput(); fSlice = RearrangeSlice(fSlice); // add artifacts for (int a=0; aSetRelaxationT2(signalModel->GetRelaxationT2()); + m_KspaceArtifacts.at(a)->SetT1(signalModel->GetT1()); + m_KspaceArtifacts.at(a)->SetT2(signalModel->GetT2()); fSlice = m_KspaceArtifacts.at(a)->AddArtifact(fSlice); } // save k-space slice of s0 image if (g==0) for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; double kpix = sqrt(fSlice->GetPixel(index2D).real()*fSlice->GetPixel(index2D).real()+fSlice->GetPixel(index2D).imag()*fSlice->GetPixel(index2D).imag()); m_KspaceImage->SetPixel(index3D, kpix); } // inverse fourier transform slice SliceType::Pointer newSlice; itk::FFTComplexConjugateToRealImageFilter< SliceType::PixelType, 2 >::Pointer ifft = itk::FFTComplexConjugateToRealImageFilter< SliceType::PixelType, 2 >::New(); ifft->SetInput(fSlice); ifft->Update(); newSlice = ifft->GetOutput(); // put slice back into channel g for (int y=0; yGetLargestPossibleRegion().GetSize(1); y++) for (int x=0; xGetLargestPossibleRegion().GetSize(0); x++) { DoubleDwiType::IndexType index3D; index3D[0]=x; index3D[1]=y; index3D[2]=z; DoubleDwiType::PixelType pix3D = newImage->GetPixel(index3D); SliceType::IndexType index2D; index2D[0]=x; index2D[1]=y; pix3D[g] = newSlice->GetPixel(index2D); newImage->SetPixel(index3D, pix3D); } } outImages.push_back(newImage); } return outImages; } TractsToDWIImageFilter::ComplexSliceType::Pointer TractsToDWIImageFilter::RearrangeSlice(ComplexSliceType::Pointer slice) { ImageRegion<2> region = slice->GetLargestPossibleRegion(); ComplexSliceType::Pointer rearrangedSlice = ComplexSliceType::New(); rearrangedSlice->SetLargestPossibleRegion( region ); rearrangedSlice->SetBufferedRegion( region ); rearrangedSlice->SetRequestedRegion( region ); rearrangedSlice->Allocate(); int xHalf = region.GetSize(0)/2; int yHalf = region.GetSize(1)/2; for (int y=0; y pix = slice->GetPixel(idx); if( idx[0] < xHalf ) idx[0] = idx[0] + xHalf; else idx[0] = idx[0] - xHalf; if( idx[1] < yHalf ) idx[1] = idx[1] + yHalf; else idx[1] = idx[1] - yHalf; rearrangedSlice->SetPixel(idx, pix); } return rearrangedSlice; } void TractsToDWIImageFilter::GenerateData() { // check input data if (m_FiberBundle.IsNull()) itkExceptionMacro("Input fiber bundle is NULL!"); int numFibers = m_FiberBundle->GetNumFibers(); if (numFibers<=0) itkExceptionMacro("Input fiber bundle contains no fibers!"); if (m_FiberModels.empty()) itkExceptionMacro("No diffusion model for fiber compartments defined!"); if (m_NonFiberModels.empty()) itkExceptionMacro("No diffusion model for non-fiber compartments defined!"); int baselineIndex = m_FiberModels[0]->GetFirstBaselineIndex(); if (baselineIndex<0) itkExceptionMacro("No baseline index found!"); // determine k-space undersampling for (int i=0; i*>(m_KspaceArtifacts.at(i)) ) m_Upsampling = dynamic_cast*>(m_KspaceArtifacts.at(i))->GetKspaceCropping(); if (m_Upsampling<1) m_Upsampling = 1; if (m_TissueMask.IsNotNull()) { // use input tissue mask m_Spacing = m_TissueMask->GetSpacing(); m_Origin = m_TissueMask->GetOrigin(); m_DirectionMatrix = m_TissueMask->GetDirection(); m_ImageRegion = m_TissueMask->GetLargestPossibleRegion(); if (m_Upsampling>1) { ImageRegion<3> region = m_ImageRegion; region.SetSize(0, m_ImageRegion.GetSize(0)*m_Upsampling); region.SetSize(1, m_ImageRegion.GetSize(1)*m_Upsampling); mitk::Vector3D spacing = m_Spacing; spacing[0] /= m_Upsampling; spacing[1] /= m_Upsampling; itk::RescaleIntensityImageFilter::Pointer rescaler = itk::RescaleIntensityImageFilter::New(); rescaler->SetInput(0,m_TissueMask); rescaler->SetOutputMaximum(100); rescaler->SetOutputMinimum(0); rescaler->Update(); itk::ResampleImageFilter::Pointer resampler = itk::ResampleImageFilter::New(); resampler->SetInput(rescaler->GetOutput()); resampler->SetOutputParametersFromImage(m_TissueMask); resampler->SetSize(region.GetSize()); resampler->SetOutputSpacing(spacing); resampler->Update(); m_TissueMask = resampler->GetOutput(); } MITK_INFO << "Using tissue mask"; } // initialize output dwi image OutputImageType::Pointer outImage = OutputImageType::New(); outImage->SetSpacing( m_Spacing ); outImage->SetOrigin( m_Origin ); outImage->SetDirection( m_DirectionMatrix ); outImage->SetLargestPossibleRegion( m_ImageRegion ); outImage->SetBufferedRegion( m_ImageRegion ); outImage->SetRequestedRegion( m_ImageRegion ); outImage->SetVectorLength( m_FiberModels[0]->GetNumGradients() ); outImage->Allocate(); OutputImageType::PixelType temp; temp.SetSize(m_FiberModels[0]->GetNumGradients()); temp.Fill(0.0); outImage->FillBuffer(temp); // is input slize size a power of two? int x=2; int y=2; while (x " << x; m_ImageRegion.SetSize(0, x); } if (y!=m_ImageRegion.GetSize(1)) { MITK_INFO << "Adjusting image height: " << m_ImageRegion.GetSize(1) << " --> " << y; m_ImageRegion.SetSize(1, y); } // initialize k-space image m_KspaceImage = ItkDoubleImgType::New(); m_KspaceImage->SetSpacing( m_Spacing ); m_KspaceImage->SetOrigin( m_Origin ); m_KspaceImage->SetDirection( m_DirectionMatrix ); m_KspaceImage->SetLargestPossibleRegion( m_ImageRegion ); m_KspaceImage->SetBufferedRegion( m_ImageRegion ); m_KspaceImage->SetRequestedRegion( m_ImageRegion ); m_KspaceImage->Allocate(); m_KspaceImage->FillBuffer(0); // apply undersampling to image parameters m_UpsampledSpacing = m_Spacing; m_UpsampledImageRegion = m_ImageRegion; m_UpsampledSpacing[0] /= m_Upsampling; m_UpsampledSpacing[1] /= m_Upsampling; m_UpsampledImageRegion.SetSize(0, m_ImageRegion.GetSize()[0]*m_Upsampling); m_UpsampledImageRegion.SetSize(1, m_ImageRegion.GetSize()[1]*m_Upsampling); // everything from here on is using the upsampled image parameters!!! if (m_TissueMask.IsNull()) { m_TissueMask = ItkUcharImgType::New(); m_TissueMask->SetSpacing( m_UpsampledSpacing ); m_TissueMask->SetOrigin( m_Origin ); m_TissueMask->SetDirection( m_DirectionMatrix ); m_TissueMask->SetLargestPossibleRegion( m_UpsampledImageRegion ); m_TissueMask->SetBufferedRegion( m_UpsampledImageRegion ); m_TissueMask->SetRequestedRegion( m_UpsampledImageRegion ); m_TissueMask->Allocate(); m_TissueMask->FillBuffer(1); } // resample fiber bundle for sufficient voxel coverage + double segmentVolume = 1; float minSpacing = 1; if(m_UpsampledSpacing[0]GetFiberSampling()<=0 || 10/m_FiberBundle->GetFiberSampling()>minSpacing*0.5/m_VolumeAccuracy) - { - fiberBundle = m_FiberBundle->GetDeepCopy(); - fiberBundle->ResampleFibers(minSpacing/m_VolumeAccuracy); - } + FiberBundleType fiberBundle = m_FiberBundle->GetDeepCopy(); + fiberBundle->ResampleFibers(minSpacing/m_VolumeAccuracy); + double mmRadius = m_FiberRadius/1000; + segmentVolume = M_PI*mmRadius*mmRadius*minSpacing/m_VolumeAccuracy; // generate double images to wokr with because we don't want to lose precision // we use a separate image for each compartment model std::vector< DoubleDwiType::Pointer > compartments; for (int i=0; iSetSpacing( m_UpsampledSpacing ); doubleDwi->SetOrigin( m_Origin ); doubleDwi->SetDirection( m_DirectionMatrix ); doubleDwi->SetLargestPossibleRegion( m_UpsampledImageRegion ); doubleDwi->SetBufferedRegion( m_UpsampledImageRegion ); doubleDwi->SetRequestedRegion( m_UpsampledImageRegion ); doubleDwi->SetVectorLength( m_FiberModels[0]->GetNumGradients() ); doubleDwi->Allocate(); DoubleDwiType::PixelType pix; pix.SetSize(m_FiberModels[0]->GetNumGradients()); pix.Fill(0.0); doubleDwi->FillBuffer(pix); compartments.push_back(doubleDwi); } if (m_CircleDummy) { for (int i=0; iGetNumGradients()); pix.Fill(1); DoubleDwiType::Pointer doubleDwi = compartments.at(i); ImageRegion<3> region = doubleDwi->GetLargestPossibleRegion(); ImageRegionIterator it(doubleDwi, region); while(!it.IsAtEnd()) { DoubleDwiType::IndexType index = it.GetIndex(); double t = region.GetSize(0)/2; double d1 = index[0]-t+0.5; t = region.GetSize(1)/2; double d2 = index[1]-t+0.5; if (sqrt(d1*d1+d2*d2)<20*m_Upsampling) it.Set(pix); ++it; } } } else { double interpFact = 2*atan(-0.5*m_InterpolationShrink); vtkSmartPointer fiberPolyData = fiberBundle->GetFiberPolyData(); vtkSmartPointer vLines = fiberPolyData->GetLines(); vLines->InitTraversal(); MITK_INFO << "Generating signal of " << m_FiberModels.size() << " fiber compartments"; - double maxFiberDensity = 0; boost::progress_display disp(numFibers); for( int i=0; iGetNextCell ( numPoints, points ); if (numPoints<2) continue; for( int j=0; jGetPoint(points[j]); itk::Point vertex = GetItkPoint(temp); itk::Vector v = GetItkVector(temp); itk::Vector dir(3); if (jGetPoint(points[j+1]))-v; else dir = v-GetItkVector(fiberPolyData->GetPoint(points[j-1])); itk::Index<3> idx; itk::ContinuousIndex contIndex; m_TissueMask->TransformPhysicalPointToIndex(vertex, idx); m_TissueMask->TransformPhysicalPointToContinuousIndex(vertex, contIndex); double frac_x = contIndex[0] - idx[0]; double frac_y = contIndex[1] - idx[1]; double frac_z = contIndex[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } frac_x = atan((0.5-frac_x)*m_InterpolationShrink)/interpFact + 0.5; frac_y = atan((0.5-frac_y)*m_InterpolationShrink)/interpFact + 0.5; frac_z = atan((0.5-frac_z)*m_InterpolationShrink)/interpFact + 0.5; // use trilinear interpolation itk::Index<3> newIdx; for (int x=0; x<2; x++) { frac_x = 1-frac_x; for (int y=0; y<2; y++) { frac_y = 1-frac_y; for (int z=0; z<2; z++) { frac_z = 1-frac_z; newIdx[0] = idx[0]+x; newIdx[1] = idx[1]+y; newIdx[2] = idx[2]+z; double frac = frac_x*frac_y*frac_z; // is position valid? if (!m_TissueMask->GetLargestPossibleRegion().IsInside(newIdx) || m_TissueMask->GetPixel(newIdx)<=0) continue; // generate signal for each fiber compartment for (int k=0; kSetFiberDirection(dir); - doubleDwi->SetPixel(newIdx, doubleDwi->GetPixel(newIdx) + frac*m_FiberModels[k]->SimulateMeasurement()); - - DoubleDwiType::PixelType pix = doubleDwi->GetPixel(newIdx); - if (pix[baselineIndex]>maxFiberDensity) - maxFiberDensity = pix[baselineIndex]; + doubleDwi->SetPixel(newIdx, doubleDwi->GetPixel(newIdx) + segmentVolume*frac*m_FiberModels[k]->SimulateMeasurement()); } } } } } } MITK_INFO << "Generating signal of " << m_NonFiberModels.size() << " non-fiber compartments"; - boost::progress_display disp2(m_NonFiberModels.size()*compartments.at(0)->GetLargestPossibleRegion().GetNumberOfPixels()); - for (int i=0; i it(doubleDwi, doubleDwi->GetLargestPossibleRegion()); - while(!it.IsAtEnd()) - { - ++disp2; - DoubleDwiType::IndexType index = it.GetIndex(); - if (m_TissueMask->GetLargestPossibleRegion().IsInside(index) && m_TissueMask->GetPixel(index)>0) - doubleDwi->SetPixel(index, doubleDwi->GetPixel(index) + m_NonFiberModels[i]->SimulateMeasurement()); - ++it; - } - } - - MITK_INFO << "Adjusting compartment signal intensities according to volume fraction"; ImageRegionIterator it3(m_TissueMask, m_TissueMask->GetLargestPossibleRegion()); boost::progress_display disp3(m_TissueMask->GetLargestPossibleRegion().GetNumberOfPixels()); + double voxelVolume = m_UpsampledSpacing[0]*m_UpsampledSpacing[1]*m_UpsampledSpacing[2]; while(!it3.IsAtEnd()) { ++disp3; DoubleDwiType::IndexType index = it3.GetIndex(); if (it3.Get()>0) { - // compartment weights are calculated according to fiber density - double w = compartments.at(0)->GetPixel(index)[baselineIndex]/maxFiberDensity; - if (m_EnforcePureFiberVoxels && w>0) - w = 1; - - // adjust fiber signal + // get fiber volume fraction + double w = 0; for (int i=0; iGetPixel(index)[baselineIndex]; + + if (w>voxelVolume) // more fiber than space in voxel? { - DoubleDwiType::Pointer doubleDwi = compartments.at(i); - DoubleDwiType::PixelType pix = doubleDwi->GetPixel(index); - if (pix[baselineIndex]>0) - pix /= pix[baselineIndex]; - pix *= w/m_FiberModels.size(); - doubleDwi->SetPixel(index, pix); + // adjust fiber signal + for (int i=0; iSetPixel(index, doubleDwi->GetPixel(index)*voxelVolume/w); + } + w = 0; // no non-fiber volume left } + else + w = voxelVolume-w; // non-fiber volume // adjust non-fiber signal for (int i=0; iGetPixel(index); - if (pix[baselineIndex]>0) - pix /= pix[baselineIndex]; - pix *= (1-w)/m_NonFiberModels.size(); + DoubleDwiType::PixelType pix = doubleDwi->GetPixel(index) + m_NonFiberModels[i]->SimulateMeasurement()*w/m_NonFiberModels.size(); doubleDwi->SetPixel(index, pix); } - } ++it3; } } // do k-space stuff if (!m_KspaceArtifacts.empty()) MITK_INFO << "Generating k-space artifacts"; else MITK_INFO << "Generating k-space image"; compartments = AddKspaceArtifacts(compartments); MITK_INFO << "Summing compartments and adding noise"; - double correction = m_Upsampling*m_Upsampling; + double correction = m_SignalScale/(m_Upsampling*m_Upsampling); ImageRegionIterator it4 (outImage, outImage->GetLargestPossibleRegion()); DoubleDwiType::PixelType signal; signal.SetSize(m_FiberModels[0]->GetNumGradients()); boost::progress_display disp4(outImage->GetLargestPossibleRegion().GetNumberOfPixels()); while(!it4.IsAtEnd()) { ++disp4; DWIImageType::IndexType index = it4.GetIndex(); signal.Fill(0.0); // adjust fiber signal for (int i=0; iGetSignalScale()/correction; - signal += compartments.at(i)->GetPixel(index)*s; - } + signal += compartments.at(i)->GetPixel(index)*correction; // adjust non-fiber signal for (int i=0; iGetSignalScale()/correction; - signal += compartments.at(m_FiberModels.size()+i)->GetPixel(index)*s; - } + signal += compartments.at(m_FiberModels.size()+i)->GetPixel(index)*correction; DoubleDwiType::PixelType accu = signal; accu.Fill(0.0); for (int i=0; iAddNoise(temp); accu += temp; } signal = accu/m_NumberOfRepetitions; for (int i=0; i0) signal[i] = floor(signal[i]+0.5); else signal[i] = ceil(signal[i]-0.5); } it4.Set(signal); ++it4; } this->SetNthOutput(0, outImage); } itk::Point TractsToDWIImageFilter::GetItkPoint(double point[3]) { itk::Point itkPoint; itkPoint[0] = point[0]; itkPoint[1] = point[1]; itkPoint[2] = point[2]; return itkPoint; } itk::Vector TractsToDWIImageFilter::GetItkVector(double point[3]) { itk::Vector itkVector; itkVector[0] = point[0]; itkVector[1] = point[1]; itkVector[2] = point[2]; return itkVector; } vnl_vector_fixed TractsToDWIImageFilter::GetVnlVector(double point[3]) { vnl_vector_fixed vnlVector; vnlVector[0] = point[0]; vnlVector[1] = point[1]; vnlVector[2] = point[2]; return vnlVector; } vnl_vector_fixed TractsToDWIImageFilter::GetVnlVector(Vector& vector) { vnl_vector_fixed vnlVector; vnlVector[0] = vector[0]; vnlVector[1] = vector[1]; vnlVector[2] = vector[2]; return vnlVector; } } diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h index 02ab223a9f..8708ce140c 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkTractsToDWIImageFilter.h @@ -1,124 +1,130 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkTractsToDWIImageFilter_h__ #define __itkTractsToDWIImageFilter_h__ // MITK #include #include #include #include #include #include // ITK #include #include #include #include #include +#include + typedef itk::VectorImage< short, 3 > DWIImageType; namespace itk { /** * \brief Generates artificial diffusion weighted image volume from the input fiberbundle using a generic multicompartment model. */ class TractsToDWIImageFilter : public ImageSource< DWIImageType > { public: typedef TractsToDWIImageFilter Self; typedef ImageSource< DWIImageType > Superclass; typedef SmartPointer< Self > Pointer; typedef SmartPointer< const Self > ConstPointer; typedef itk::Image ItkDoubleImgType; typedef itk::Image ItkFloatImgType; typedef itk::Image ItkUcharImgType; typedef mitk::FiberBundleX::Pointer FiberBundleType; typedef itk::VectorImage< double, 3 > DoubleDwiType; typedef std::vector< mitk::KspaceArtifact* > KspaceArtifactList; typedef std::vector< mitk::DiffusionSignalModel* > DiffusionModelList; typedef itk::Matrix MatrixType; typedef mitk::DiffusionNoiseModel NoiseModelType; typedef itk::Image< double, 2 > SliceType; typedef itk::FFTRealToComplexConjugateImageFilter< double, 2 >::OutputImageType ComplexSliceType; itkNewMacro(Self) itkTypeMacro( TractsToDWIImageFilter, ImageToImageFilter ) // input + itkSetMacro( SignalScale, double ) + itkSetMacro( FiberRadius, double ) itkSetMacro( InterpolationShrink, double ) ///< large values shrink (towards nearest neighbour interpolation), small values strech interpolation function (towards linear interpolation) itkSetMacro( VolumeAccuracy, unsigned int ) ///< determines fiber sampling density and thereby the accuracy of the fiber volume fraction itkSetMacro( FiberBundle, FiberBundleType ) ///< input fiber bundle itkSetMacro( Spacing, mitk::Vector3D ) ///< output image spacing itkSetMacro( Origin, mitk::Point3D ) ///< output image origin itkSetMacro( DirectionMatrix, MatrixType ) ///< output image rotation itkSetMacro( EnforcePureFiberVoxels, bool ) ///< treat all voxels containing at least one fiber as fiber-only (actually disable non-fiber compartments for this voxel). itkSetMacro( ImageRegion, ImageRegion<3> ) ///< output image size itkSetMacro( NumberOfRepetitions, unsigned int ) ///< number of acquisition repetitions to reduce noise (default is no additional repetition) itkSetMacro( TissueMask, ItkUcharImgType::Pointer ) ///< voxels outside of this binary mask contain only noise (are treated as air) itkGetMacro( KspaceImage, ItkDoubleImgType::Pointer ) void SetNoiseModel(NoiseModelType* noiseModel){ m_NoiseModel = noiseModel; } ///< generates the noise added to the image values void SetFiberModels(DiffusionModelList modelList){ m_FiberModels = modelList; } ///< generate signal of fiber compartments void SetNonFiberModels(DiffusionModelList modelList){ m_NonFiberModels = modelList; } ///< generate signal of non-fiber compartments void SetKspaceArtifacts(KspaceArtifactList artifactList){ m_KspaceArtifacts = artifactList; } void GenerateData(); protected: TractsToDWIImageFilter(); virtual ~TractsToDWIImageFilter(); itk::Point GetItkPoint(double point[3]); itk::Vector GetItkVector(double point[3]); vnl_vector_fixed GetVnlVector(double point[3]); vnl_vector_fixed GetVnlVector(Vector< float, 3 >& vector); /** Transform generated image compartment by compartment, channel by channel and slice by slice using FFT and add k-space artifacts. */ std::vector< DoubleDwiType::Pointer > AddKspaceArtifacts(std::vector< DoubleDwiType::Pointer >& images); /** Rearrange FFT output to shift low frequencies to the iamge center (correct itk). */ TractsToDWIImageFilter::ComplexSliceType::Pointer RearrangeSlice(ComplexSliceType::Pointer slice); mitk::Vector3D m_Spacing; ///< output image spacing mitk::Vector3D m_UpsampledSpacing; mitk::Point3D m_Origin; ///< output image origin MatrixType m_DirectionMatrix; ///< output image rotation ImageRegion<3> m_ImageRegion; ///< output image size ImageRegion<3> m_UpsampledImageRegion; ItkUcharImgType::Pointer m_TissueMask; ///< voxels outside of this binary mask contain only noise (are treated as air) FiberBundleType m_FiberBundle; ///< input fiber bundle DiffusionModelList m_FiberModels; ///< generate signal of fiber compartments DiffusionModelList m_NonFiberModels; ///< generate signal of non-fiber compartments KspaceArtifactList m_KspaceArtifacts; NoiseModelType* m_NoiseModel; ///< generates the noise added to the image values bool m_CircleDummy; unsigned int m_VolumeAccuracy; ItkDoubleImgType::Pointer m_KspaceImage; unsigned int m_Upsampling; unsigned int m_NumberOfRepetitions; bool m_EnforcePureFiberVoxels; double m_InterpolationShrink; + double m_FiberRadius; + double m_SignalScale; }; } #include "itkTractsToDWIImageFilter.cpp" #endif diff --git a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkDiffusionSignalModel.h b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkDiffusionSignalModel.h index e2f9a7fb3d..5512c2e063 100644 --- a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkDiffusionSignalModel.h +++ b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkDiffusionSignalModel.h @@ -1,81 +1,84 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_DiffusionSignalModel_H #define _MITK_DiffusionSignalModel_H #include #include #include #include namespace mitk { /** * \brief Abstract class for diffusion signal models * */ template< class ScalarType > class DiffusionSignalModel { public: - DiffusionSignalModel() : m_SignalScale(200){} + DiffusionSignalModel() + : m_T1(4000) + , m_T2(2000) + {} ~DiffusionSignalModel(){} typedef itk::VariableLengthVector< ScalarType > PixelType; typedef itk::Vector GradientType; typedef std::vector GradientListType; /** Realizes actual signal generation. Has to be implemented in subclass. **/ virtual PixelType SimulateMeasurement() = 0; void SetFiberDirection(GradientType fiberDirection){ m_FiberDirection = fiberDirection; } void SetGradientList(GradientListType gradientList) { m_GradientList = gradientList; } - void SetSignalScale(ScalarType signalScale) { m_SignalScale = signalScale; } - void SetRelaxationT2(double T2) { m_RelaxationT2 = T2; } + void SetT2(double T2) { m_T2 = T2; } + void SetT1(double T1) { m_T1 = T1; } - double GetRelaxationT2() { return m_RelaxationT2; } - ScalarType GetSignalScale() { return m_SignalScale; } + double GetT2() { return m_T2; } + double GetT1() { return m_T1; } int GetNumGradients(){ return m_GradientList.size(); } std::vector< int > GetBaselineIndices() { std::vector< int > result; for( unsigned int i=0; im_GradientList.size(); i++) if (m_GradientList.at(i).GetNorm()<0.0001) result.push_back(i); return result; } int GetFirstBaselineIndex() { for( unsigned int i=0; im_GradientList.size(); i++) if (m_GradientList.at(i).GetNorm()<0.0001) return i; return -1; } protected: GradientType m_FiberDirection; ///< Needed to generate anisotropc signal to determin direction of anisotropy GradientListType m_GradientList; ///< Diffusion gradient direction container - ScalarType m_SignalScale; ///< Scaling factor for signal value - double m_RelaxationT2; ///< Tissue specific relaxation time (used for artificial artifacts) + double m_T2; ///< Tissue specific relaxation time + double m_T1; ///< Tissue specific relaxation time }; } #endif diff --git a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkKspaceArtifact.h b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkKspaceArtifact.h index eb204990d8..5b3ede33b5 100644 --- a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkKspaceArtifact.h +++ b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkKspaceArtifact.h @@ -1,55 +1,73 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_KspaceArtifact_H #define _MITK_KspaceArtifact_H #include #include #include namespace mitk { /** * \brief Abstract class for diffusion noise models * */ template< class ScalarType > class KspaceArtifact { public: - KspaceArtifact(){ m_T2=90; } + enum PhaseDirections { + X, + Y + }; + + KspaceArtifact() + : m_T2(2000) + , m_T1(4000) + , m_TE(20) + , m_T2star(50) + , m_PhaseDirection(Y) + { + } ~KspaceArtifact(){} typedef typename itk::FFTRealToComplexConjugateImageFilter< ScalarType, 2 >::OutputImageType ComplexSliceType; /** Adds artifact according to model to the input slice. Has to be implemented in subclass. **/ virtual typename ComplexSliceType::Pointer AddArtifact(typename ComplexSliceType::Pointer slice) = 0; - void SetRelaxationT2(unsigned int T2){ m_T2=T2; } + void SetT1(unsigned int T1){ m_T1=T1; } + void SetT2(unsigned int T2){ m_T2=T2; } + void SetTE(unsigned int TE){ m_TE=TE; } + void SetT2star(unsigned int T2star){ m_T2star=T2star; } protected: - unsigned int m_T2; - + unsigned int m_T2star; + unsigned int m_T2; + unsigned int m_T1; + unsigned int m_TE; + PhaseDirections m_PhaseDirection; }; } #endif diff --git a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.cpp b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.cpp index 6dc8a894b5..0b696f18d2 100644 --- a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.cpp +++ b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.cpp @@ -1,45 +1,63 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ template< class ScalarType > T2SmearingArtifact< ScalarType >::T2SmearingArtifact() - : m_ReadoutPulseLength(1) + : m_UseT1(true) + , m_UseT2(true) + , m_UseT2star(true) { } template< class ScalarType > T2SmearingArtifact< ScalarType >::~T2SmearingArtifact() { } template< class ScalarType > typename T2SmearingArtifact< ScalarType >::ComplexSliceType::Pointer T2SmearingArtifact< ScalarType >::AddArtifact(typename ComplexSliceType::Pointer slice) { itk::ImageRegion<2> region = slice->GetLargestPossibleRegion(); + double dt = (double)this->m_TE/(region.GetSize(0)*region.GetSize(1)); + + double from90 = (double)this->m_TE/2; + double from180 = -(double)this->m_TE/2; + for (int y=0; y pix = slice->GetPixel(idx); + double fact = 0; - double t = m_ReadoutPulseLength*(y+(double)x/region.GetSize(0)); - std::complex< double > newPix(pix.real()*exp(-t/this->m_T2), pix.imag()*exp(-t/this->m_T2)); + if (m_UseT1) + fact -= from90/this->m_T1; + if (m_UseT2) + fact -= from90/this->m_T2; + if (m_UseT2star) + fact -= fabs(from180)/this->m_T2star; + fact = exp(fact); + + std::complex< double > newPix(fact*pix.real(), fact*pix.imag()); slice->SetPixel(idx, newPix); + + from90 += dt; + from180 += dt; } return slice; } diff --git a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.h b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.h index 2348cd2bb9..f6ea1de854 100644 --- a/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.h +++ b/Modules/DiffusionImaging/FiberTracking/SignalModels/mitkT2SmearingArtifact.h @@ -1,57 +1,57 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_T2SmearingArtifact_H #define _MITK_T2SmearingArtifact_H #include #include #include #include namespace mitk { /** * \brief Class to add gibbs ringing artifact to input complex slice * */ template< class ScalarType > class T2SmearingArtifact : public KspaceArtifact< ScalarType > { public: T2SmearingArtifact(); ~T2SmearingArtifact(); typedef typename KspaceArtifact< ScalarType >::ComplexSliceType ComplexSliceType; /** Attenuate signal according to given T2 time. **/ typename ComplexSliceType::Pointer AddArtifact(typename ComplexSliceType::Pointer slice); - void SetReadoutPulseLength(double t){ m_ReadoutPulseLength=t; } + bool m_UseT1; + bool m_UseT2; + bool m_UseT2star; protected: - unsigned int m_ReadoutPulseLength; - }; #include "mitkT2SmearingArtifact.cpp" } #endif diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp index ac69ba56e4..b58e07c363 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.cpp @@ -1,1328 +1,1309 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ //misc #define _USE_MATH_DEFINES #include // Blueberry #include #include // Qmitk #include "QmitkFiberfoxView.h" // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include const std::string QmitkFiberfoxView::VIEW_ID = "org.mitk.views.fiberfoxview"; QmitkFiberfoxView::QmitkFiberfoxView() : QmitkAbstractView() , m_Controls( 0 ) , m_SelectedImage( NULL ) , m_SelectedBundle( NULL ) { } // Destructor QmitkFiberfoxView::~QmitkFiberfoxView() { } void QmitkFiberfoxView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberfoxViewControls; m_Controls->setupUi( parent ); m_Controls->m_VarianceBox->setVisible(false); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_T2bluringParamFrame->setVisible(false); m_Controls->m_KspaceParamFrame->setVisible(false); m_Controls->m_StickModelFrame->setVisible(false); m_Controls->m_AdvancedFiberOptionsFrame->setVisible(false); connect((QObject*) m_Controls->m_GenerateImageButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateImage())); connect((QObject*) m_Controls->m_GenerateFibersButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateFibers())); connect((QObject*) m_Controls->m_CircleButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnDrawROI())); connect((QObject*) m_Controls->m_FlipButton, SIGNAL(clicked()), (QObject*) this, SLOT(OnFlipButton())); connect((QObject*) m_Controls->m_JoinBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(JoinBundles())); connect((QObject*) m_Controls->m_VarianceBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnVarianceChanged(double))); connect((QObject*) m_Controls->m_DistributionBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnDistributionChanged(int))); connect((QObject*) m_Controls->m_FiberDensityBox, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(OnFiberDensityChanged(int))); connect((QObject*) m_Controls->m_FiberSamplingBox, SIGNAL(valueChanged(int)), (QObject*) this, SLOT(OnFiberSamplingChanged(int))); connect((QObject*) m_Controls->m_TensionBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnTensionChanged(double))); connect((QObject*) m_Controls->m_ContinuityBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnContinuityChanged(double))); connect((QObject*) m_Controls->m_BiasBox, SIGNAL(valueChanged(double)), (QObject*) this, SLOT(OnBiasChanged(double))); - connect((QObject*) m_Controls->m_AddT2Smearing, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddT2Smearing(int))); connect((QObject*) m_Controls->m_AddGibbsRinging, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddGibbsRinging(int))); connect((QObject*) m_Controls->m_ConstantRadiusBox, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnConstantRadius(int))); connect((QObject*) m_Controls->m_CopyBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(CopyBundles())); connect((QObject*) m_Controls->m_TransformBundlesButton, SIGNAL(clicked()), (QObject*) this, SLOT(ApplyTransform())); connect((QObject*) m_Controls->m_AlignOnGrid, SIGNAL(clicked()), (QObject*) this, SLOT(AlignOnGrid())); connect((QObject*) m_Controls->m_FiberCompartmentModelBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(FiberModelFrameVisibility(int))); connect((QObject*) m_Controls->m_NonFiberCompartmentModelBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(FiberModelFrameVisibility(int))); connect((QObject*) m_Controls->m_AdvancedFiberOptionsBox, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(ShowAdvancedFiberOptions(int))); } } void QmitkFiberfoxView::ShowAdvancedFiberOptions(int state) { if (state) m_Controls->m_AdvancedFiberOptionsFrame->setVisible(true); else m_Controls->m_AdvancedFiberOptionsFrame->setVisible(false); } void QmitkFiberfoxView::FiberModelFrameVisibility(int index) { m_Controls->m_TensorModelFrame->setVisible(false); m_Controls->m_StickModelFrame->setVisible(false); switch (index) { case 0: m_Controls->m_TensorModelFrame->setVisible(true); break; case 1: m_Controls->m_StickModelFrame->setVisible(true); break; default: m_Controls->m_TensorModelFrame->setVisible(true); } } void QmitkFiberfoxView::NonFiberModelFrameVisibility(int index) { } void QmitkFiberfoxView::OnConstantRadius(int value) { if (value>0 && m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } -void QmitkFiberfoxView::OnAddT2Smearing(int value) -{ - if (value>0) - m_Controls->m_T2bluringParamFrame->setVisible(true); - else - m_Controls->m_T2bluringParamFrame->setVisible(false); -} - void QmitkFiberfoxView::OnAddGibbsRinging(int value) { if (value>0) m_Controls->m_KspaceParamFrame->setVisible(true); else m_Controls->m_KspaceParamFrame->setVisible(false); } void QmitkFiberfoxView::OnDistributionChanged(int value) { if (value==1) m_Controls->m_VarianceBox->setVisible(true); else m_Controls->m_VarianceBox->setVisible(false); if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnVarianceChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberDensityChanged(int value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFiberSamplingChanged(int value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnTensionChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnContinuityChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnBiasChanged(double value) { if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::AlignOnGrid() { for (int i=0; i(m_SelectedFiducials.at(i)->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::DataStorage::SetOfObjects::ConstPointer parentFibs = GetDataStorage()->GetSources(m_SelectedFiducials.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = parentFibs->begin(); it != parentFibs->end(); ++it ) { mitk::DataNode::Pointer pFibNode = *it; if ( pFibNode.IsNotNull() && dynamic_cast(pFibNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer parentImgs = GetDataStorage()->GetSources(pFibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = parentImgs->begin(); it2 != parentImgs->end(); ++it2 ) { mitk::DataNode::Pointer pImgNode = *it2; if ( pImgNode.IsNotNull() && dynamic_cast(pImgNode->GetData()) ) { mitk::Image::Pointer img = dynamic_cast(pImgNode->GetData()); mitk::Geometry3D::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); break; } } break; } } } for( int i=0; iGetSources(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it = sources->begin(); it != sources->end(); ++it ) { mitk::DataNode::Pointer imgNode = *it; if ( imgNode.IsNotNull() && dynamic_cast(imgNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = dynamic_cast(fiducialNode->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::Image::Pointer img = dynamic_cast(imgNode->GetData()); mitk::Geometry3D::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); } } break; } } } for( int i=0; i(m_SelectedImages.at(i)->GetData()); mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(m_SelectedImages.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = derivations->begin(); it != derivations->end(); ++it ) { mitk::DataNode::Pointer fibNode = *it; if ( fibNode.IsNotNull() && dynamic_cast(fibNode->GetData()) ) { mitk::DataStorage::SetOfObjects::ConstPointer derivations2 = GetDataStorage()->GetDerivations(fibNode); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations2->begin(); it2 != derivations2->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = dynamic_cast(fiducialNode->GetData()); mitk::Point3D wc0 = pe->GetWorldControlPoint(0); mitk::Geometry3D::Pointer geom = img->GetGeometry(); itk::Index<3> idx; geom->WorldToIndex(wc0, idx); mitk::Point3D cIdx; cIdx[0]=idx[0]; cIdx[1]=idx[1]; cIdx[2]=idx[2]; mitk::Point3D world; geom->IndexToWorld(cIdx,world); mitk::Vector3D trans = world - wc0; pe->GetGeometry()->Translate(trans); } } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::OnFlipButton() { if (m_SelectedFiducial.IsNull()) return; std::map::iterator it = m_DataNodeToPlanarFigureData.find(m_SelectedFiducial.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; data.m_Flipped += 1; data.m_Flipped %= 2; } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } QmitkFiberfoxView::GradientListType QmitkFiberfoxView::GenerateHalfShell(int NPoints) { NPoints *= 2; GradientListType pointshell; int numB0 = NPoints/10; if (numB0==0) numB0=1; GradientType g; g.Fill(0.0); for (int i=0; i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*M_PI); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkFiberfoxView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkFiberfoxView::OnAddBundle() { if (m_SelectedImage.IsNull()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedImage); mitk::FiberBundleX::Pointer bundle = mitk::FiberBundleX::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( bundle ); QString name = QString("Bundle_%1").arg(children->size()); node->SetName(name.toStdString()); m_SelectedBundle = node; m_SelectedBundles.push_back(node); UpdateGui(); GetDataStorage()->Add(node, m_SelectedImage); } void QmitkFiberfoxView::OnDrawROI() { if (m_SelectedBundle.IsNull()) OnAddBundle(); if (m_SelectedBundle.IsNull()) return; mitk::DataStorage::SetOfObjects::ConstPointer children = GetDataStorage()->GetDerivations(m_SelectedBundle); mitk::PlanarEllipse::Pointer figure = mitk::PlanarEllipse::New(); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( figure ); QList nodes = this->GetDataManagerSelection(); for( int i=0; iSetSelected(false); m_SelectedFiducial = node; QString name = QString("Fiducial_%1").arg(children->size()); node->SetName(name.toStdString()); node->SetSelected(true); GetDataStorage()->Add(node, m_SelectedBundle); this->DisableCrosshairNavigation(); mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetInteractor()); if(figureInteractor.IsNull()) figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", node); mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); UpdateGui(); } bool CompareLayer(mitk::DataNode::Pointer i,mitk::DataNode::Pointer j) { int li = -1; i->GetPropertyValue("layer", li); int lj = -1; j->GetPropertyValue("layer", lj); return liGetSources(m_SelectedFiducial); for( mitk::DataStorage::SetOfObjects::const_iterator it = parents->begin(); it != parents->end(); ++it ) if(dynamic_cast((*it)->GetData())) m_SelectedBundles.push_back(*it); if (m_SelectedBundles.empty()) return; } vector< vector< mitk::PlanarEllipse::Pointer > > fiducials; vector< vector< unsigned int > > fliplist; for (int i=0; iGetDerivations(m_SelectedBundles.at(i)); std::vector< mitk::DataNode::Pointer > childVector; for( mitk::DataStorage::SetOfObjects::const_iterator it = children->begin(); it != children->end(); ++it ) childVector.push_back(*it); sort(childVector.begin(), childVector.end(), CompareLayer); vector< mitk::PlanarEllipse::Pointer > fib; vector< unsigned int > flip; float radius = 1; int count = 0; for( std::vector< mitk::DataNode::Pointer >::const_iterator it = childVector.begin(); it != childVector.end(); ++it ) { mitk::DataNode::Pointer node = *it; if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { mitk::PlanarEllipse* ellipse = dynamic_cast(node->GetData()); if (m_Controls->m_ConstantRadiusBox->isChecked()) { ellipse->SetTreatAsCircle(true); mitk::Point2D c = ellipse->GetControlPoint(0); mitk::Point2D p = ellipse->GetControlPoint(1); mitk::Vector2D v = p-c; if (count==0) { radius = v.GetVnlVector().magnitude(); ellipse->SetControlPoint(1, p); } else { v.Normalize(); v *= radius; ellipse->SetControlPoint(1, c+v); } } fib.push_back(ellipse); std::map::iterator it = m_DataNodeToPlanarFigureData.find(node.GetPointer()); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; flip.push_back(data.m_Flipped); } else flip.push_back(0); } count++; } if (fib.size()>1) { fiducials.push_back(fib); fliplist.push_back(flip); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); if (fib.size()<3) return; } itk::FibersFromPlanarFiguresFilter::Pointer filter = itk::FibersFromPlanarFiguresFilter::New(); filter->SetFiducials(fiducials); filter->SetFlipList(fliplist); switch(m_Controls->m_DistributionBox->currentIndex()){ case 0: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_UNIFORM); break; case 1: filter->SetFiberDistribution(itk::FibersFromPlanarFiguresFilter::DISTRIBUTE_GAUSSIAN); filter->SetVariance(m_Controls->m_VarianceBox->value()); break; } filter->SetDensity(m_Controls->m_FiberDensityBox->value()); filter->SetTension(m_Controls->m_TensionBox->value()); filter->SetContinuity(m_Controls->m_ContinuityBox->value()); filter->SetBias(m_Controls->m_BiasBox->value()); filter->SetFiberSampling(m_Controls->m_FiberSamplingBox->value()); filter->Update(); vector< mitk::FiberBundleX::Pointer > fiberBundles = filter->GetFiberBundles(); for (int i=0; iSetData( fiberBundles.at(i) ); if (fiberBundles.at(i)->GetNumFibers()>50000) m_SelectedBundles.at(i)->SetVisibility(false); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::GenerateImage() { itk::ImageRegion<3> imageRegion; imageRegion.SetSize(0, m_Controls->m_SizeX->value()); imageRegion.SetSize(1, m_Controls->m_SizeY->value()); imageRegion.SetSize(2, m_Controls->m_SizeZ->value()); mitk::Vector3D spacing; spacing[0] = m_Controls->m_SpacingX->value(); spacing[1] = m_Controls->m_SpacingY->value(); spacing[2] = m_Controls->m_SpacingZ->value(); mitk::Point3D origin; origin[0] = spacing[0]/2; origin[1] = spacing[1]/2; origin[2] = spacing[2]/2; itk::Matrix directionMatrix; directionMatrix.SetIdentity(); if (m_SelectedBundle.IsNull()) { mitk::Image::Pointer image = mitk::ImageGenerator::GenerateGradientImage( m_Controls->m_SizeX->value(), m_Controls->m_SizeY->value(), m_Controls->m_SizeZ->value(), m_Controls->m_SpacingX->value(), m_Controls->m_SpacingY->value(), m_Controls->m_SpacingZ->value()); mitk::Geometry3D* geom = image->GetGeometry(); geom->SetOrigin(origin); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Dummy"); GetDataStorage()->Add(node); m_SelectedImage = node; mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } UpdateGui(); return; } DiffusionSignalModel::GradientListType gradientList; double bVal = 1000; if (m_SelectedDWI.IsNull()) { gradientList = GenerateHalfShell(m_Controls->m_NumGradientsBox->value());; bVal = m_Controls->m_BvalueBox->value(); } else { mitk::DiffusionImage::Pointer dwi = dynamic_cast*>(m_SelectedDWI->GetData()); imageRegion = dwi->GetVectorImage()->GetLargestPossibleRegion(); spacing = dwi->GetVectorImage()->GetSpacing(); origin = dwi->GetVectorImage()->GetOrigin(); directionMatrix = dwi->GetVectorImage()->GetDirection(); bVal = dwi->GetB_Value(); mitk::DiffusionImage::GradientDirectionContainerType::Pointer dirs = dwi->GetDirections(); for (int i=0; iSize(); i++) { DiffusionSignalModel::GradientType g; g[0] = dirs->at(i)[0]; g[1] = dirs->at(i)[1]; g[2] = dirs->at(i)[2]; gradientList.push_back(g); } } - // storage for generated phantom image - mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); - - // signal models - QString signalModelString("Ball"); - itk::TractsToDWIImageFilter::DiffusionModelList fiberModelList, nonFiberModelList; - mitk::TensorModel tensorModel; - mitk::StickModel stickModel; - - // free diffusion - mitk::BallModel ballModel; - ballModel.SetGradientList(gradientList); - ballModel.SetBvalue(bVal); - ballModel.SetDiffusivity(m_Controls->m_BallD->value()); - ballModel.SetSignalScale(m_Controls->m_NonFiberS0Box->value()); - ballModel.SetRelaxationT2(m_Controls->m_NonFiberRelaxationT2Box->value()); - nonFiberModelList.push_back(&ballModel); - - resultNode->AddProperty("Fiberfox.Ball.Diffusivity", DoubleProperty::New(m_Controls->m_BallD->value())); - resultNode->AddProperty("Fiberfox.Ball.Scaling", DoubleProperty::New(m_Controls->m_NonFiberS0Box->value())); - if (m_Controls->m_AddT2Smearing->isChecked()) - resultNode->AddProperty("Fiberfox.Ball.T2", DoubleProperty::New(m_Controls->m_NonFiberRelaxationT2Box->value())); - - // intra-axonal diffusion - switch (m_Controls->m_FiberCompartmentModelBox->currentIndex()) - { - case 0: - MITK_INFO << "Using zeppelin model"; - tensorModel.SetGradientList(gradientList); - tensorModel.SetBvalue(bVal); - tensorModel.SetKernelFA(m_Controls->m_TensorFaBox->value()); - tensorModel.SetSignalScale(m_Controls->m_FiberS0Box->value()); - tensorModel.SetRelaxationT2(m_Controls->m_FiberRelaxationT2Box->value()); - fiberModelList.push_back(&tensorModel); - signalModelString += "-Zeppelin"; - resultNode->AddProperty("Fiberfox.Zeppelin.FA", DoubleProperty::New(m_Controls->m_TensorFaBox->value())); - resultNode->AddProperty("Fiberfox.Zeppelin.Scaling", DoubleProperty::New(m_Controls->m_FiberS0Box->value())); - if (m_Controls->m_AddT2Smearing->isChecked()) - resultNode->AddProperty("Fiberfox.Zeppelin.T2", DoubleProperty::New(m_Controls->m_FiberRelaxationT2Box->value())); - break; - case 1: - MITK_INFO << "Using stick model"; - stickModel.SetGradientList(gradientList); - stickModel.SetDiffusivity(m_Controls->m_StickDiffusivityBox->value()); - stickModel.SetSignalScale(m_Controls->m_FiberS0Box->value()); - stickModel.SetRelaxationT2(m_Controls->m_FiberRelaxationT2Box->value()); - fiberModelList.push_back(&stickModel); - signalModelString += "-Stick"; - resultNode->AddProperty("Fiberfox.Stick.Diffusivity", DoubleProperty::New(m_Controls->m_StickDiffusivityBox->value())); - resultNode->AddProperty("Fiberfox.Stick.Scaling", DoubleProperty::New(m_Controls->m_FiberS0Box->value())); - if (m_Controls->m_AddT2Smearing->isChecked()) - resultNode->AddProperty("Fiberfox.Stick.T2", DoubleProperty::New(m_Controls->m_FiberRelaxationT2Box->value())); - break; - } - itk::TractsToDWIImageFilter::KspaceArtifactList artifactList; - // noise model - double snr = m_Controls->m_NoiseLevel->value(); - double noiseVariance = 0; - if (snr <= 0) - snr = 0.0001; - if (snr<=99) + for (int i=0; im_FiberS0Box->value()/snr; - noiseVariance *= noiseVariance; - } - mitk::RicianNoiseModel noiseModel; - noiseModel.SetNoiseVariance(noiseVariance); + // storage for generated phantom image + mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); + + // signal models + QString signalModelString("Ball"); + itk::TractsToDWIImageFilter::DiffusionModelList fiberModelList, nonFiberModelList; + mitk::TensorModel tensorModel; + mitk::StickModel stickModel; + + // free diffusion + mitk::BallModel ballModel; + ballModel.SetGradientList(gradientList); + ballModel.SetBvalue(bVal); + ballModel.SetDiffusivity(m_Controls->m_BallD->value()); + ballModel.SetT2(m_Controls->m_NonFiberT2Box->value()); + ballModel.SetT1(m_Controls->m_NonFiberT1Box->value()); + nonFiberModelList.push_back(&ballModel); + + resultNode->AddProperty("Fiberfox.Ball.Diffusivity", DoubleProperty::New(m_Controls->m_BallD->value())); + resultNode->AddProperty("Fiberfox.Ball.T2", DoubleProperty::New(m_Controls->m_NonFiberT2Box->value())); + resultNode->AddProperty("Fiberfox.Ball.T1", DoubleProperty::New(m_Controls->m_NonFiberT1Box->value())); + + // intra-axonal diffusion + switch (m_Controls->m_FiberCompartmentModelBox->currentIndex()) + { + case 0: + MITK_INFO << "Using zeppelin model"; + tensorModel.SetGradientList(gradientList); + tensorModel.SetBvalue(bVal); + tensorModel.SetKernelFA(m_Controls->m_TensorFaBox->value()); + tensorModel.SetT2(m_Controls->m_FiberT2Box->value()); + tensorModel.SetT1(m_Controls->m_FiberT1Box->value()); + fiberModelList.push_back(&tensorModel); + signalModelString += "-Zeppelin"; + resultNode->AddProperty("Fiberfox.Zeppelin.FA", DoubleProperty::New(m_Controls->m_TensorFaBox->value())); + resultNode->AddProperty("Fiberfox.Zeppelin.T2", DoubleProperty::New(m_Controls->m_FiberT2Box->value())); + resultNode->AddProperty("Fiberfox.Zeppelin.T1", DoubleProperty::New(m_Controls->m_FiberT1Box->value())); + break; + case 1: + MITK_INFO << "Using stick model"; + stickModel.SetGradientList(gradientList); + stickModel.SetDiffusivity(m_Controls->m_StickDiffusivityBox->value()); + stickModel.SetT2(m_Controls->m_FiberT2Box->value()); + stickModel.SetT1(m_Controls->m_FiberT1Box->value()); + fiberModelList.push_back(&stickModel); + signalModelString += "-Stick"; + resultNode->AddProperty("Fiberfox.Stick.Diffusivity", DoubleProperty::New(m_Controls->m_StickDiffusivityBox->value())); + resultNode->AddProperty("Fiberfox.Stick.T2", DoubleProperty::New(m_Controls->m_FiberT2Box->value())); + resultNode->AddProperty("Fiberfox.Stick.T1", DoubleProperty::New(m_Controls->m_FiberT1Box->value())); + break; + } - // artifact models - QString artifactModelString(""); - mitk::GibbsRingingArtifact gibbsModel; - if (m_Controls->m_AddGibbsRinging->isChecked()) - { - artifactModelString += "_Gibbs-ringing"; - resultNode->AddProperty("Fiberfox.k-Space-Undersampling", IntProperty::New(m_Controls->m_KspaceUndersamplingBox->currentText().toInt())); - gibbsModel.SetKspaceCropping((double)m_Controls->m_KspaceUndersamplingBox->currentText().toInt()); - artifactList.push_back(&gibbsModel); - } + itk::TractsToDWIImageFilter::KspaceArtifactList artifactList; - mitk::T2SmearingArtifact t2Model; - if (m_Controls->m_AddT2Smearing->isChecked()) - { - artifactModelString += "_T2-blurring"; - t2Model.SetReadoutPulseLength(1); - artifactList.push_back(&t2Model); - } + // noise model + double noiseVariance = m_Controls->m_NoiseLevel->value(); + mitk::RicianNoiseModel noiseModel; + noiseModel.SetNoiseVariance(noiseVariance); + + // artifact models + QString artifactModelString(""); + mitk::GibbsRingingArtifact gibbsModel; + if (m_Controls->m_AddGibbsRinging->isChecked()) + { + artifactModelString += "_Gibbs-ringing"; + resultNode->AddProperty("Fiberfox.k-Space-Undersampling", IntProperty::New(m_Controls->m_KspaceUndersamplingBox->currentText().toInt())); + gibbsModel.SetKspaceCropping((double)m_Controls->m_KspaceUndersamplingBox->currentText().toInt()); + artifactList.push_back(&gibbsModel); + } + + mitk::T2SmearingArtifact contrastModel; + contrastModel.SetT2star(this->m_Controls->m_T2starBox->value()); + contrastModel.SetTE(this->m_Controls->m_TEbox->value()); + artifactList.push_back(&contrastModel); - for (int i=0; i(m_SelectedBundles.at(i)->GetData()); if (fiberBundle->GetNumFibers()<=0) continue; itk::TractsToDWIImageFilter::Pointer filter = itk::TractsToDWIImageFilter::New(); filter->SetImageRegion(imageRegion); filter->SetSpacing(spacing); filter->SetOrigin(origin); filter->SetDirectionMatrix(directionMatrix); filter->SetFiberBundle(fiberBundle); filter->SetFiberModels(fiberModelList); filter->SetNonFiberModels(nonFiberModelList); filter->SetNoiseModel(&noiseModel); filter->SetKspaceArtifacts(artifactList); filter->SetNumberOfRepetitions(m_Controls->m_RepetitionsBox->value()); filter->SetEnforcePureFiberVoxels(m_Controls->m_EnforcePureFiberVoxelsBox->isChecked()); filter->SetInterpolationShrink(m_Controls->m_InterpolationShrink->value()); + filter->SetFiberRadius(m_Controls->m_FiberRadius->value()); + filter->SetSignalScale(m_Controls->m_SignalScaleBox->value()); if (m_TissueMask.IsNotNull()) { ItkUcharImgType::Pointer mask = ItkUcharImgType::New(); mitk::CastToItkImage(m_TissueMask, mask); filter->SetTissueMask(mask); } filter->Update(); mitk::DiffusionImage::Pointer image = mitk::DiffusionImage::New(); image->SetVectorImage( filter->GetOutput() ); image->SetB_Value(bVal); image->SetDirections(gradientList); image->InitializeFromVectorImage(); resultNode->SetData( image ); - resultNode->SetName(m_SelectedBundle->GetName() + resultNode->SetName(m_SelectedBundles.at(i)->GetName() +"_D"+QString::number(imageRegion.GetSize(0)).toStdString() +"-"+QString::number(imageRegion.GetSize(1)).toStdString() +"-"+QString::number(imageRegion.GetSize(2)).toStdString() +"_S"+QString::number(spacing[0]).toStdString() +"-"+QString::number(spacing[1]).toStdString() +"-"+QString::number(spacing[2]).toStdString() +"_b"+QString::number(bVal).toStdString() - +"_SNR"+QString::number(snr).toStdString() + +"_NOISE"+QString::number(noiseVariance).toStdString() +"_"+signalModelString.toStdString() +artifactModelString.toStdString()); - GetDataStorage()->Add(resultNode, m_SelectedBundle); + GetDataStorage()->Add(resultNode, m_SelectedBundles.at(i)); - resultNode->AddProperty("Fiberfox.SNR", DoubleProperty::New(snr)); + resultNode->AddProperty("Fiberfox.Noise-Variance", DoubleProperty::New(noiseVariance)); resultNode->AddProperty("Fiberfox.Repetitions", IntProperty::New(m_Controls->m_RepetitionsBox->value())); resultNode->AddProperty("Fiberfox.b-value", DoubleProperty::New(bVal)); resultNode->AddProperty("Fiberfox.Model", StringProperty::New(signalModelString.toStdString())); if (m_Controls->m_KspaceImageBox->isChecked()) { itk::Image::Pointer kspace = filter->GetKspaceImage(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(kspace.GetPointer()); image->SetVolume(kspace->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); - node->SetName(m_SelectedBundle->GetName()+"_k-space"); - GetDataStorage()->Add(node, m_SelectedBundle); + node->SetName(m_SelectedBundles.at(i)->GetName()+"_k-space"); + GetDataStorage()->Add(node, m_SelectedBundles.at(i)); } mitk::BaseData::Pointer basedata = resultNode->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeSlicedGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } } void QmitkFiberfoxView::ApplyTransform() { vector< mitk::DataNode::Pointer > selectedBundles; for( int i=0; iGetDerivations(m_SelectedImages.at(i)); for( mitk::DataStorage::SetOfObjects::const_iterator it = derivations->begin(); it != derivations->end(); ++it ) { mitk::DataNode::Pointer fibNode = *it; if ( fibNode.IsNotNull() && dynamic_cast(fibNode->GetData()) ) selectedBundles.push_back(fibNode); } } if (selectedBundles.empty()) selectedBundles = m_SelectedBundles2; if (!selectedBundles.empty()) { std::vector::const_iterator it = selectedBundles.begin(); for (it; it!=selectedBundles.end(); ++it) { mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); fib->RotateAroundAxis(m_Controls->m_XrotBox->value(), m_Controls->m_YrotBox->value(), m_Controls->m_ZrotBox->value()); fib->TranslateFibers(m_Controls->m_XtransBox->value(), m_Controls->m_YtransBox->value(), m_Controls->m_ZtransBox->value()); fib->ScaleFibers(m_Controls->m_XscaleBox->value(), m_Controls->m_YscaleBox->value(), m_Controls->m_ZscaleBox->value()); // handle child fiducials if (m_Controls->m_IncludeFiducials->isChecked()) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse* pe = dynamic_cast(fiducialNode->GetData()); mitk::Geometry3D* geom = pe->GetGeometry(); // translate mitk::Vector3D world; world[0] = m_Controls->m_XtransBox->value(); world[1] = m_Controls->m_YtransBox->value(); world[2] = m_Controls->m_ZtransBox->value(); geom->Translate(world); // calculate rotation matrix double x = m_Controls->m_XrotBox->value()*M_PI/180; double y = m_Controls->m_YrotBox->value()*M_PI/180; double z = m_Controls->m_ZrotBox->value()*M_PI/180; itk::Matrix< float, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; itk::Matrix< float, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; itk::Matrix< float, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< float, 3, 3 > rot = rotZ*rotY*rotX; // transform control point coordinate into geometry translation geom->SetOrigin(pe->GetWorldControlPoint(0)); mitk::Point2D cp; cp.Fill(0.0); pe->SetControlPoint(0, cp); // rotate fiducial geom->GetIndexToWorldTransform()->SetMatrix(rot*geom->GetIndexToWorldTransform()->GetMatrix()); // implicit translation mitk::Vector3D trans; trans[0] = geom->GetOrigin()[0]-fib->GetGeometry()->GetCenter()[0]; trans[1] = geom->GetOrigin()[1]-fib->GetGeometry()->GetCenter()[1]; trans[2] = geom->GetOrigin()[2]-fib->GetGeometry()->GetCenter()[2]; mitk::Vector3D newWc = rot*trans; newWc = newWc-trans; geom->Translate(newWc); } } } } } else { for (int i=0; i(m_SelectedFiducials.at(i)->GetData()); mitk::Geometry3D* geom = pe->GetGeometry(); // translate mitk::Vector3D world; world[0] = m_Controls->m_XtransBox->value(); world[1] = m_Controls->m_YtransBox->value(); world[2] = m_Controls->m_ZtransBox->value(); geom->Translate(world); // calculate rotation matrix double x = m_Controls->m_XrotBox->value()*M_PI/180; double y = m_Controls->m_YrotBox->value()*M_PI/180; double z = m_Controls->m_ZrotBox->value()*M_PI/180; itk::Matrix< float, 3, 3 > rotX; rotX.SetIdentity(); rotX[1][1] = cos(x); rotX[2][2] = rotX[1][1]; rotX[1][2] = -sin(x); rotX[2][1] = -rotX[1][2]; itk::Matrix< float, 3, 3 > rotY; rotY.SetIdentity(); rotY[0][0] = cos(y); rotY[2][2] = rotY[0][0]; rotY[0][2] = sin(y); rotY[2][0] = -rotY[0][2]; itk::Matrix< float, 3, 3 > rotZ; rotZ.SetIdentity(); rotZ[0][0] = cos(z); rotZ[1][1] = rotZ[0][0]; rotZ[0][1] = -sin(z); rotZ[1][0] = -rotZ[0][1]; itk::Matrix< float, 3, 3 > rot = rotZ*rotY*rotX; // transform control point coordinate into geometry translation geom->SetOrigin(pe->GetWorldControlPoint(0)); mitk::Point2D cp; cp.Fill(0.0); pe->SetControlPoint(0, cp); // rotate fiducial geom->GetIndexToWorldTransform()->SetMatrix(rot*geom->GetIndexToWorldTransform()->GetMatrix()); } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::CopyBundles() { if ( m_SelectedBundles.size()<1 ){ QMessageBox::information( NULL, "Warning", "Select at least one fiber bundle!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least one fiber bundle!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); for (it; it!=m_SelectedBundles.end(); ++it) { // find parent image mitk::DataNode::Pointer parentNode; mitk::DataStorage::SetOfObjects::ConstPointer parentImgs = GetDataStorage()->GetSources(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = parentImgs->begin(); it2 != parentImgs->end(); ++it2 ) { mitk::DataNode::Pointer pImgNode = *it2; if ( pImgNode.IsNotNull() && dynamic_cast(pImgNode->GetData()) ) { parentNode = pImgNode; break; } } mitk::FiberBundleX::Pointer fib = dynamic_cast((*it)->GetData()); mitk::FiberBundleX::Pointer newBundle = fib->GetDeepCopy(); QString name((*it)->GetName().c_str()); name += "_copy"; mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); if (parentNode.IsNotNull()) GetDataStorage()->Add(fbNode, parentNode); else GetDataStorage()->Add(fbNode); // copy child fiducials if (m_Controls->m_IncludeFiducials->isChecked()) { mitk::DataStorage::SetOfObjects::ConstPointer derivations = GetDataStorage()->GetDerivations(*it); for( mitk::DataStorage::SetOfObjects::const_iterator it2 = derivations->begin(); it2 != derivations->end(); ++it2 ) { mitk::DataNode::Pointer fiducialNode = *it2; if ( fiducialNode.IsNotNull() && dynamic_cast(fiducialNode->GetData()) ) { mitk::PlanarEllipse::Pointer pe = mitk::PlanarEllipse::New(); pe->DeepCopy(dynamic_cast(fiducialNode->GetData())); mitk::DataNode::Pointer newNode = mitk::DataNode::New(); newNode->SetData(pe); newNode->SetName(fiducialNode->GetName()); GetDataStorage()->Add(newNode, fbNode); } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::JoinBundles() { if ( m_SelectedBundles.size()<2 ){ QMessageBox::information( NULL, "Warning", "Select at least two fiber bundles!"); MITK_WARN("QmitkFiberProcessingView") << "Select at least two fiber bundles!"; return; } std::vector::const_iterator it = m_SelectedBundles.begin(); mitk::FiberBundleX::Pointer newBundle = dynamic_cast((*it)->GetData()); QString name(""); name += QString((*it)->GetName().c_str()); ++it; for (it; it!=m_SelectedBundles.end(); ++it) { newBundle = newBundle->AddBundle(dynamic_cast((*it)->GetData())); name += "+"+QString((*it)->GetName().c_str()); } mitk::DataNode::Pointer fbNode = mitk::DataNode::New(); fbNode->SetData(newBundle); fbNode->SetName(name.toStdString()); fbNode->SetVisibility(true); GetDataStorage()->Add(fbNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkFiberfoxView::UpdateGui() { m_Controls->m_FiberBundleLabel->setText("mandatory"); m_Controls->m_GeometryFrame->setEnabled(true); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_FiberGenMessage->setVisible(true); m_Controls->m_TransformBundlesButton->setEnabled(false); m_Controls->m_CopyBundlesButton->setEnabled(false); m_Controls->m_GenerateFibersButton->setEnabled(false); m_Controls->m_FlipButton->setEnabled(false); m_Controls->m_CircleButton->setEnabled(false); m_Controls->m_BvalueBox->setEnabled(true); m_Controls->m_NumGradientsBox->setEnabled(true); m_Controls->m_JoinBundlesButton->setEnabled(false); m_Controls->m_AlignOnGrid->setEnabled(false); if (m_SelectedFiducial.IsNotNull()) { m_Controls->m_TransformBundlesButton->setEnabled(true); m_Controls->m_FlipButton->setEnabled(true); m_Controls->m_AlignOnGrid->setEnabled(true); } if (m_SelectedImage.IsNotNull() || m_SelectedBundle.IsNotNull()) { m_Controls->m_TransformBundlesButton->setEnabled(true); m_Controls->m_CircleButton->setEnabled(true); m_Controls->m_FiberGenMessage->setVisible(false); m_Controls->m_AlignOnGrid->setEnabled(true); } if (m_TissueMask.IsNotNull()) { m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if (m_SelectedDWI.IsNotNull()) { m_Controls->m_DiffusionPropsMessage->setVisible(true); m_Controls->m_BvalueBox->setEnabled(false); m_Controls->m_NumGradientsBox->setEnabled(false); m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if (m_SelectedBundle.IsNotNull()) { m_Controls->m_CopyBundlesButton->setEnabled(true); m_Controls->m_GenerateFibersButton->setEnabled(true); m_Controls->m_FiberBundleLabel->setText(m_SelectedBundle->GetName().c_str()); if (m_SelectedBundles.size()>1) m_Controls->m_JoinBundlesButton->setEnabled(true); } } void QmitkFiberfoxView::OnSelectionChanged( berry::IWorkbenchPart::Pointer, const QList& nodes ) { m_SelectedBundles2.clear(); m_SelectedImages.clear(); m_SelectedFiducials.clear(); m_SelectedFiducial = NULL; m_TissueMask = NULL; m_SelectedBundles.clear(); m_SelectedBundle = NULL; m_SelectedImage = NULL; m_SelectedDWI = NULL; m_Controls->m_TissueMaskLabel->setText("optional"); // iterate all selected objects, adjust warning visibility for( int i=0; i*>(node->GetData()) ) { m_SelectedDWI = node; m_SelectedImage = node; m_SelectedImages.push_back(node); } else if( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedImages.push_back(node); m_SelectedImage = node; bool isBinary = false; node->GetPropertyValue("binary", isBinary); if (isBinary) { m_TissueMask = dynamic_cast(node->GetData()); m_Controls->m_TissueMaskLabel->setText(node->GetName().c_str()); } } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedBundles2.push_back(node); if (m_Controls->m_RealTimeFibers->isChecked() && node!=m_SelectedBundle) { m_SelectedBundle = node; m_SelectedBundles.push_back(node); mitk::FiberBundleX::Pointer newFib = dynamic_cast(node->GetData()); if (newFib->GetNumFibers()!=m_Controls->m_FiberDensityBox->value()) GenerateFibers(); } else { m_SelectedBundle = node; m_SelectedBundles.push_back(node); } } else if ( node.IsNotNull() && dynamic_cast(node->GetData()) ) { m_SelectedFiducials.push_back(node); m_SelectedFiducial = node; m_SelectedBundles.clear(); mitk::DataStorage::SetOfObjects::ConstPointer parents = GetDataStorage()->GetSources(node); for( mitk::DataStorage::SetOfObjects::const_iterator it = parents->begin(); it != parents->end(); ++it ) { mitk::DataNode::Pointer pNode = *it; if ( pNode.IsNotNull() && dynamic_cast(pNode->GetData()) ) { m_SelectedBundle = pNode; m_SelectedBundles.push_back(pNode); } } } } UpdateGui(); } void QmitkFiberfoxView::EnableCrosshairNavigation() { MITK_DEBUG << "EnableCrosshairNavigation"; // enable the crosshair navigation if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "enabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(true); // linkedRenderWindow->EnableSlicingPlanes(true); } if (m_Controls->m_RealTimeFibers->isChecked()) GenerateFibers(); } void QmitkFiberfoxView::DisableCrosshairNavigation() { MITK_DEBUG << "DisableCrosshairNavigation"; // disable the crosshair navigation during the drawing if (mitk::ILinkedRenderWindowPart* linkedRenderWindow = dynamic_cast(this->GetRenderWindowPart())) { MITK_DEBUG << "disabling linked navigation"; linkedRenderWindow->EnableLinkedNavigation(false); // linkedRenderWindow->EnableSlicingPlanes(false); } } void QmitkFiberfoxView::NodeRemoved(const mitk::DataNode* node) { if (node == m_SelectedImage) m_SelectedImage = NULL; if (node == m_SelectedBundle) m_SelectedBundle = NULL; mitk::DataNode* nonConstNode = const_cast(node); std::map::iterator it = m_DataNodeToPlanarFigureData.find(nonConstNode); if( it != m_DataNodeToPlanarFigureData.end() ) { QmitkPlanarFigureData& data = it->second; // remove observers data.m_Figure->RemoveObserver( data.m_EndPlacementObserverTag ); data.m_Figure->RemoveObserver( data.m_SelectObserverTag ); data.m_Figure->RemoveObserver( data.m_StartInteractionObserverTag ); data.m_Figure->RemoveObserver( data.m_EndInteractionObserverTag ); m_DataNodeToPlanarFigureData.erase( it ); } } void QmitkFiberfoxView::NodeAdded( const mitk::DataNode* node ) { // add observer for selection in renderwindow mitk::PlanarFigure* figure = dynamic_cast(node->GetData()); bool isPositionMarker (false); node->GetBoolProperty("isContourMarker", isPositionMarker); if( figure && !isPositionMarker ) { MITK_DEBUG << "figure added. will add interactor if needed."; mitk::PlanarFigureInteractor::Pointer figureInteractor = dynamic_cast(node->GetInteractor()); mitk::DataNode* nonConstNode = const_cast( node ); if(figureInteractor.IsNull()) { figureInteractor = mitk::PlanarFigureInteractor::New("PlanarFigureInteractor", nonConstNode); } else { // just to be sure that the interactor is not added twice mitk::GlobalInteraction::GetInstance()->RemoveInteractor(figureInteractor); } MITK_DEBUG << "adding interactor to globalinteraction"; mitk::GlobalInteraction::GetInstance()->AddInteractor(figureInteractor); MITK_DEBUG << "will now add observers for planarfigure"; QmitkPlanarFigureData data; data.m_Figure = figure; // // add observer for event when figure has been placed typedef itk::SimpleMemberCommand< QmitkFiberfoxView > SimpleCommandType; // SimpleCommandType::Pointer initializationCommand = SimpleCommandType::New(); // initializationCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureInitialized ); // data.m_EndPlacementObserverTag = figure->AddObserver( mitk::EndPlacementPlanarFigureEvent(), initializationCommand ); // add observer for event when figure is picked (selected) typedef itk::MemberCommand< QmitkFiberfoxView > MemberCommandType; MemberCommandType::Pointer selectCommand = MemberCommandType::New(); selectCommand->SetCallbackFunction( this, &QmitkFiberfoxView::PlanarFigureSelected ); data.m_SelectObserverTag = figure->AddObserver( mitk::SelectPlanarFigureEvent(), selectCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer startInteractionCommand = SimpleCommandType::New(); startInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::DisableCrosshairNavigation); data.m_StartInteractionObserverTag = figure->AddObserver( mitk::StartInteractionPlanarFigureEvent(), startInteractionCommand ); // add observer for event when interaction with figure starts SimpleCommandType::Pointer endInteractionCommand = SimpleCommandType::New(); endInteractionCommand->SetCallbackFunction( this, &QmitkFiberfoxView::EnableCrosshairNavigation); data.m_EndInteractionObserverTag = figure->AddObserver( mitk::EndInteractionPlanarFigureEvent(), endInteractionCommand ); m_DataNodeToPlanarFigureData[nonConstNode] = data; } } void QmitkFiberfoxView::PlanarFigureSelected( itk::Object* object, const itk::EventObject& ) { mitk::TNodePredicateDataType::Pointer isPf = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer allPfs = this->GetDataStorage()->GetSubset( isPf ); for ( mitk::DataStorage::SetOfObjects::const_iterator it = allPfs->begin(); it!=allPfs->end(); ++it) { mitk::DataNode* node = *it; if( node->GetData() == object ) { node->SetSelected(true); m_SelectedFiducial = node; } else node->SetSelected(false); } UpdateGui(); this->RequestRenderWindowUpdate(); } void QmitkFiberfoxView::SetFocus() { m_Controls->m_CircleButton->setFocus(); } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.h b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.h index 757addc9d2..e225ec0cbc 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.h +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxView.h @@ -1,137 +1,136 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "ui_QmitkFiberfoxViewControls.h" #include #include #include #include #include /*! \brief View for fiber based diffusion software phantoms (Fiberfox). \sa QmitkFunctionality \ingroup Functionalities */ // Forward Qt class declarations using namespace std; class QmitkFiberfoxView : public QmitkAbstractView { // this is needed for all Qt objects that should have a Qt meta-object // (everything that derives from QObject and wants to have signal/slots) Q_OBJECT public: static const string VIEW_ID; QmitkFiberfoxView(); virtual ~QmitkFiberfoxView(); virtual void CreateQtPartControl(QWidget *parent); void SetFocus(); typedef itk::Image ItkUcharImgType; typedef itk::Vector GradientType; typedef vector GradientListType; template vector > MakeGradientList() ; protected slots: void OnDrawROI(); ///< adds new ROI, handles interactors etc. void OnAddBundle(); ///< adds new fiber bundle to datastorage void OnFlipButton(); ///< negate one coordinate of the fiber waypoints in the selcted planar figure. needed in case of unresolvable twists void GenerateFibers(); ///< generate fibers from the selected ROIs void GenerateImage(); ///< generate artificial image from the selected fiber bundle void JoinBundles(); ///< merges selcted fiber bundles into one void CopyBundles(); ///< add copy of the selected bundle to the datamanager void ApplyTransform(); ///< rotate and shift selected bundles void AlignOnGrid(); ///< shift selected fiducials to nearest voxel center void FiberModelFrameVisibility(int index);///< only show parameters of selected fiber model type void NonFiberModelFrameVisibility(int index);///< only show parameters of selected non-fiber model type void ShowAdvancedFiberOptions(int state); /** update fibers if any parameter changes */ void OnFiberDensityChanged(int value); void OnFiberSamplingChanged(int value); void OnTensionChanged(double value); void OnContinuityChanged(double value); void OnBiasChanged(double value); void OnVarianceChanged(double value); void OnDistributionChanged(int value); - void OnAddT2Smearing(int value); void OnAddGibbsRinging(int value); void OnConstantRadius(int value); protected: /// \brief called by QmitkFunctionality when DataManager's selection has changed virtual void OnSelectionChanged(berry::IWorkbenchPart::Pointer, const QList&); GradientListType GenerateHalfShell(int NPoints); ///< generate vectors distributed over the halfsphere Ui::QmitkFiberfoxViewControls* m_Controls; void UpdateGui(); ///< enable/disbale buttons etc. according to current datamanager selection void PlanarFigureSelected( itk::Object* object, const itk::EventObject& ); void EnableCrosshairNavigation(); ///< enable crosshair navigation if planar figure interaction ends void DisableCrosshairNavigation(); ///< disable crosshair navigation if planar figure interaction starts void NodeAdded( const mitk::DataNode* node ); ///< add observers void NodeRemoved(const mitk::DataNode* node); ///< remove observers /** structure to keep track of planar figures and observers */ struct QmitkPlanarFigureData { QmitkPlanarFigureData() : m_Figure(0) , m_EndPlacementObserverTag(0) , m_SelectObserverTag(0) , m_StartInteractionObserverTag(0) , m_EndInteractionObserverTag(0) , m_Flipped(0) { } mitk::PlanarFigure* m_Figure; unsigned int m_EndPlacementObserverTag; unsigned int m_SelectObserverTag; unsigned int m_StartInteractionObserverTag; unsigned int m_EndInteractionObserverTag; unsigned int m_Flipped; }; std::map m_DataNodeToPlanarFigureData; ///< map each planar figure uniquely to a QmitkPlanarFigureData mitk::Image::Pointer m_TissueMask; ///< mask defining which regions of the image should contain signal and which are containing only noise mitk::DataNode::Pointer m_SelectedFiducial; ///< selected planar ellipse mitk::DataNode::Pointer m_SelectedImage; mitk::DataNode::Pointer m_SelectedBundle; mitk::DataNode::Pointer m_SelectedDWI; vector< mitk::DataNode::Pointer > m_SelectedBundles; vector< mitk::DataNode::Pointer > m_SelectedBundles2; vector< mitk::DataNode::Pointer > m_SelectedFiducials; vector< mitk::DataNode::Pointer > m_SelectedImages; }; diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui index b8a746e398..b7df048910 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui +++ b/Plugins/org.mitk.gui.qt.diffusionimaging/src/internal/QmitkFiberfoxViewControls.ui @@ -1,1950 +1,2081 @@ QmitkFiberfoxViewControls 0 0 493 - 1140 + 1206 Form 0 Fiber Definition Qt::Vertical 20 40 color: rgb(255, 0, 0); Please select an image or an existing fiber bundle to draw the fiber fiducials. If you can't provide a suitable image, generate one using the "Signal Generation" tab. Qt::AutoText Qt::AlignJustify|Qt::AlignVCenter true Fiducial Options All fiducials are treated as circles with the same radius as the first fiducial. Use Constant Fiducial Radius false false Align selected fiducials with voxel grid. Shifts selected fiducials to nearest voxel center. Align With Grid Operations false Copy Bundles false Transform Selection QFrame::NoFrame QFrame::Raised 0 Y false Rotation angle (in degree) around x-axis. -360.000000000000000 360.000000000000000 0.100000000000000 Axis: false Rotation angle (in degree) around y-axis. -360.000000000000000 360.000000000000000 0.100000000000000 Translation: false Translation (in mm) in direction of the z-axis. - -100.000000000000000 + -1000.000000000000000 - 100.000000000000000 + 1000.000000000000000 0.100000000000000 Translation (in mm) in direction of the y-axis. - -100.000000000000000 + -1000.000000000000000 - 100.000000000000000 + 1000.000000000000000 0.100000000000000 X false Rotation: false Z false Rotation angle (in degree) around z-axis. -360.000000000000000 360.000000000000000 0.100000000000000 Translation (in mm) in direction of the x-axis. - -100.000000000000000 + -1000.000000000000000 - 100.000000000000000 + 1000.000000000000000 0.100000000000000 Scaling: false Scaling factor for selected fiber bundle along the x-axis. 0.010000000000000 - 1.000000000000000 + 10.000000000000000 0.010000000000000 1.000000000000000 Scaling factor for selected fiber bundle along the y-axis. 0.010000000000000 - 1.000000000000000 + 10.000000000000000 0.010000000000000 1.000000000000000 Scaling factor for selected fiber bundle along the z-axis. 0.010000000000000 - 1.000000000000000 + 10.000000000000000 0.010000000000000 1.000000000000000 false Join Bundles If checked, the fiducials belonging to the modified bundle are also modified. Include Fiducials true Fiber Options QFrame::NoFrame QFrame::Raised 0 QFrame::NoFrame QFrame::Raised 0 Tension: false Fiber Sampling: false 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 Fiber sampling points (per cm) 1 100 1 10 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 Bias: false Continuity: false 3 -1.000000000000000 1.000000000000000 0.100000000000000 0.000000000000000 QFrame::NoFrame QFrame::Raised QFormLayout::AllNonFixedFieldsGrow 6 0 #Fibers: false Specify number of fibers to generate for the selected bundle. 1 1000000 100 100 false Generate Fibers QFrame::NoFrame QFrame::Raised 0 Select fiber distribution inside of the fiducials. Uniform Gaussian Fiber Distribution: false Variance of the gaussian 3 0.001000000000000 10.000000000000000 0.010000000000000 0.100000000000000 QFrame::NoFrame QFrame::Raised 0 Disable to only generate fibers if "Generate Fibers" button is pressed. Real Time Fibers true Disable to only generate fibers if "Generate Fibers" button is pressed. Advanced Options false QFrame::NoFrame QFrame::Raised 0 false 30 30 Draw elliptical fiducial. :/QmitkDiffusionImaging/circle.png:/QmitkDiffusionImaging/circle.png 32 32 false true false 30 30 Flip fiber waypoints of selcted fiducial around one axis. :/QmitkDiffusionImaging/refresh.xpm:/QmitkDiffusionImaging/refresh.xpm 32 32 false true Qt::Horizontal 40 20 Signal Generation Data Fiber Bundle: false <html><head/><body><p><span style=" color:#ff0000;">mandatory</span></p></body></html> true Tissue Mask: false <html><head/><body><p><span style=" color:#969696;">optional</span></p></body></html> true Noise and Artifacts - + true QFrame::NoFrame QFrame::Raised 6 0 k-Space Undersampling: false Image is upsampled using this factor, afterwards fourier transformed, cropped to the original size and then inverse fourier transformed. 1 2 4 8 16 32 64 128 256 - - - Add T2 Blurring + + + true - - false + + QFrame::NoFrame + + + QFrame::Raised + + + QFormLayout::AllNonFixedFieldsGrow + + + 0 + + + 0 + + + 0 + + QFrame::NoFrame QFrame::Raised 0 - SNR: + Variance: - Signal to noise ratio (for values > 99, no noise at all is added to the image). Value relative to the fiber signal scaling factor. + Variance of Rician noise model. 4 0.000000000000000 100.000000000000000 0.001000000000000 25.000000000000000 - - - true - - - QFrame::NoFrame - - - QFrame::Raised - - - - 0 - - - - - - - - - - - - - - Fiber T2: - - - false - - - - - - - T2 of fiber tissue (in milliseconds). - - - 1 - - - 10000 - - - 1 - - - 90 - - - - - - - - - - - - - - - - Non Fiber T2: - - - false - - - - - - - T2 of non-fiber tissue (in milliseconds). - - - 1 - - - 10000 - - - 1 - - - 2200 - - - - - - - Add Gibbs Ringing false true Start DWI generation from selected fiebr bundle. If no fiber bundle is selected, a grayscale image containing a simple gradient is generated. Generate Image Intra-axonal Compartment false false QFrame::NoFrame QFrame::Raised 0 Determins anisotropy of kernel tensor (zeppelin-model). 0.010000000000000 1.000000000000000 0.100000000000000 0.700000000000000 Fractional Anisotropy: Select signal model for intra-axonal compartment. Zeppelin Model Stick Model QFrame::NoFrame QFrame::Raised 0 + + + + + + + + + + + + + T2 relaxation: + + + false + + + + + + + T2 of intra axonal compartment (in milliseconds). + + + 1 + + + 10000 + + + 1 + + + 90 + + + - + - Signal Scale: + T1 relaxation: false - + - Scaling factor for intra-axonal signal. + T1 of intra axonal compartment (in milliseconds). - 0 + 1 10000 1 - 200 + 780 QFrame::NoFrame QFrame::Raised 0 Diffusivity parameter of the stick-model. 4 0.000100000000000 1.000000000000000 0.000500000000000 0.005000000000000 Diffusivity: Image Settings QFrame::NoFrame QFrame::Raised 0 3 0.100000000000000 50.000000000000000 0.100000000000000 2.500000000000000 Image Spacing: 3 0.100000000000000 50.000000000000000 0.100000000000000 2.500000000000000 3 0.100000000000000 50.000000000000000 0.100000000000000 2.500000000000000 Image Dimensions: Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. 1 1000 1 32 Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. 1 100 1 32 Fiber sampling factor which determines the accuracy of the calculated fiber and non-fiber volume fractions. 1 100 1 5 QFrame::NoFrame QFrame::Raised QFormLayout::AllNonFixedFieldsGrow 6 6 0 #Gradient Directions: Number of gradient directions distributed over the half sphere. 0 10000 1 - 60 + 30 b-Value: false b-value in mm/s² 0 10000 100 1000 Repetitions: Number of signal averages. Increase to reduce noise. 1 100 1 1 - + Interpolation Shrink: - + Large values shrink (towards nearest neighbour interpolation), small values strech interpolation function (towards linear interpolation). 1 10000 10 + + + + Fiber Radius: + + + + + + + Fiber radius used to calculate volume fractions (in µm). + + + 1 + + + 1000 + + + 20 + + + + + + + + + + + + + + + + Signal Scale: + + + false + + + + + + + Scaling factor for intra-axonal signal. + + + 0 + + + 10000 + + + 1 + + + 200 + + + + + + + + + + + + + + + + Echo time TE: + + + false + + + + + + + T2* relaxation time (in milliseconds). + + + 1 + + + 10000 + + + 1 + + + 20 + + + + + + + T2* relaxation time (in milliseconds). + + + 1 + + + 10000 + + + 1 + + + 50 + + + + + + + + + + + + + + + + T2* relaxation: + + + false + + + color: rgb(255, 0, 0); Using mask image geometry! Treat voxel content as fiber-only if at least one fiber is present. Enforce Pure Fiber Voxels false color: rgb(255, 0, 0); Using gradients of selected DWI! Output k-Space Image false Qt::Vertical 20 40 Extra-axonal Compartment Select signal model for extra-axonal compartment. Ball Model QFrame::NoFrame QFrame::Raised 0 - - - - Diffusivity: - - - Diffusivity parameter of the ball-model. 4 0.000100000000000 1.000000000000000 0.000500000000000 0.001000000000000 + + + + T2 of extra axonal compartment (in milliseconds). + + + 1 + + + 10000 + + + 1 + + + 2200 + + + + + + + Diffusivity: + + + + + + + + + + + + + + + + T2 relaxation: + + + false + + + - + - Signal Scale: + T1 relaxation: false - + - Scaling factor extra-axonal signal. + T1 of extra axonal compartment (in milliseconds). - 0 + 1 10000 1 - 100 + 4400 tabWidget m_CircleButton m_FlipButton m_RealTimeFibers m_AdvancedFiberOptionsBox m_DistributionBox m_VarianceBox m_FiberDensityBox m_FiberSamplingBox m_TensionBox m_ContinuityBox m_BiasBox m_GenerateFibersButton m_ConstantRadiusBox m_AlignOnGrid m_XrotBox m_YrotBox m_ZrotBox m_XtransBox m_YtransBox m_ZtransBox m_XscaleBox m_YscaleBox m_ZscaleBox m_TransformBundlesButton m_CopyBundlesButton m_JoinBundlesButton m_IncludeFiducials m_GenerateImageButton m_SizeX m_SizeY m_SizeZ m_SpacingX m_SpacingY m_SpacingZ m_NumGradientsBox m_BvalueBox m_RepetitionsBox m_InterpolationShrink m_EnforcePureFiberVoxelsBox m_KspaceImageBox m_FiberCompartmentModelBox m_TensorFaBox m_StickDiffusivityBox - m_FiberS0Box m_NonFiberCompartmentModelBox m_BallD - m_NonFiberS0Box m_NoiseLevel - m_AddT2Smearing - m_FiberRelaxationT2Box - m_NonFiberRelaxationT2Box m_AddGibbsRinging m_KspaceUndersamplingBox