diff --git a/Modules/Classification/CLMiniApps/CL2Dto3DImage.cpp b/Modules/Classification/CLMiniApps/CL2Dto3DImage.cpp index 6d49b49a00..66e1acaa53 100644 --- a/Modules/Classification/CLMiniApps/CL2Dto3DImage.cpp +++ b/Modules/Classification/CLMiniApps/CL2Dto3DImage.cpp @@ -1,60 +1,59 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCommandLineParser.h" #include #include "mitkIOUtil.h" int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Dicom Loader"); parser.setCategory("Preprocessing Tools"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--","-"); // Add command line argument names parser.addArgument("help", "h",mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.addArgument("input", "i", mitkCommandLineParser::InputDirectory, "Input file:", "Input file",us::Any(),false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output file:", "Output file",us::Any(),false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // Show a help message if ( parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } std::string inputName = us::any_cast(parsedArgs["input"]); std::string outputName = us::any_cast(parsedArgs["output"]); - + mitk::Image::Pointer image = mitk::IOUtil::LoadImage(inputName); mitk::Convert2Dto3DImageFilter::Pointer multiFilter2 = mitk::Convert2Dto3DImageFilter::New(); multiFilter2->SetInput(image); multiFilter2->Update(); mitk::Image::Pointer image2 = multiFilter2->GetOutput(); - - mitk::IOUtil::SaveImage(image2, outputName); + mitk::IOUtil::Save(image2, outputName); return EXIT_SUCCESS; } \ No newline at end of file diff --git a/Modules/Classification/CLMiniApps/CLGlobalImageFeatures.cpp b/Modules/Classification/CLMiniApps/CLGlobalImageFeatures.cpp index b32580224e..d6ace96ce9 100644 --- a/Modules/Classification/CLMiniApps/CLGlobalImageFeatures.cpp +++ b/Modules/Classification/CLMiniApps/CLGlobalImageFeatures.cpp @@ -1,666 +1,666 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkCLPolyToNrrd_cpp #define mitkCLPolyToNrrd_cpp #include "time.h" #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "itkNearestNeighborInterpolateImageFunction.h" #include "itkResampleImageFilter.h" #include #include #include "QmitkRegisterClasses.h" #include "QmitkRenderWindow.h" #include "vtkRenderLargeImage.h" #include "vtkPNGWriter.h" typedef itk::Image< double, 3 > FloatImageType; typedef itk::Image< unsigned char, 3 > MaskImageType; template void ResampleImage(itk::Image* itkImage, float resolution, mitk::Image::Pointer& newImage) { typedef itk::Image ImageType; typedef itk::ResampleImageFilter ResampleFilterType; typename ResampleFilterType::Pointer resampler = ResampleFilterType::New(); auto spacing = itkImage->GetSpacing(); auto size = itkImage->GetLargestPossibleRegion().GetSize(); for (int i = 0; i < VImageDimension; ++i) { size[i] = size[i] / (1.0*resolution)*(1.0*spacing[i])+1.0; } spacing.Fill(resolution); resampler->SetInput(itkImage); resampler->SetSize(size); resampler->SetOutputSpacing(spacing); resampler->SetOutputOrigin(itkImage->GetOrigin()); resampler->SetOutputDirection(itkImage->GetDirection()); resampler->Update(); newImage->InitializeByItk(resampler->GetOutput()); mitk::GrabItkImageMemory(resampler->GetOutput(), newImage); } template static void CreateNoNaNMask(itk::Image* itkValue, mitk::Image::Pointer mask, mitk::Image::Pointer& newMask) { typedef itk::Image< TPixel, VImageDimension> LFloatImageType; typedef itk::Image< unsigned char, VImageDimension> LMaskImageType; typename LMaskImageType::Pointer itkMask = LMaskImageType::New(); mitk::CastToItkImage(mask, itkMask); typedef itk::ImageDuplicator< LMaskImageType > DuplicatorType; typename DuplicatorType::Pointer duplicator = DuplicatorType::New(); duplicator->SetInputImage(itkMask); duplicator->Update(); auto tmpMask = duplicator->GetOutput(); itk::ImageRegionIterator mask1Iter(itkMask, itkMask->GetLargestPossibleRegion()); itk::ImageRegionIterator mask2Iter(tmpMask, tmpMask->GetLargestPossibleRegion()); itk::ImageRegionIterator imageIter(itkValue, itkValue->GetLargestPossibleRegion()); while (!mask1Iter.IsAtEnd()) { mask2Iter.Set(0); if (mask1Iter.Value() > 0) { // Is not NaN if (imageIter.Value() == imageIter.Value()) { mask2Iter.Set(1); } } ++mask1Iter; ++mask2Iter; ++imageIter; } newMask->InitializeByItk(tmpMask); mitk::GrabItkImageMemory(tmpMask, newMask); } template static void ResampleMask(itk::Image* itkMoving, mitk::Image::Pointer ref, mitk::Image::Pointer& newMask) { typedef itk::Image< TPixel, VImageDimension> LMaskImageType; typedef itk::NearestNeighborInterpolateImageFunction< LMaskImageType> NearestNeighborInterpolateImageFunctionType; typedef itk::ResampleImageFilter ResampleFilterType; typename NearestNeighborInterpolateImageFunctionType::Pointer nn_interpolator = NearestNeighborInterpolateImageFunctionType::New(); typename LMaskImageType::Pointer itkRef = LMaskImageType::New(); mitk::CastToItkImage(ref, itkRef); typename ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput(itkMoving); resampler->SetReferenceImage(itkRef); resampler->UseReferenceImageOn(); resampler->SetInterpolator(nn_interpolator); resampler->Update(); newMask->InitializeByItk(resampler->GetOutput()); mitk::GrabItkImageMemory(resampler->GetOutput(), newMask); } static void ExtractSlicesFromImages(mitk::Image::Pointer image, mitk::Image::Pointer mask, mitk::Image::Pointer maskNoNaN, int direction, std::vector &imageVector, std::vector &maskVector, std::vector &maskNoNaNVector) { typedef itk::Image< double, 2 > FloatImage2DType; typedef itk::Image< unsigned char, 2 > MaskImage2DType; FloatImageType::Pointer itkFloat = FloatImageType::New(); MaskImageType::Pointer itkMask = MaskImageType::New(); MaskImageType::Pointer itkMaskNoNaN = MaskImageType::New(); mitk::CastToItkImage(mask, itkMask); mitk::CastToItkImage(maskNoNaN, itkMaskNoNaN); mitk::CastToItkImage(image, itkFloat); int idxA, idxB, idxC; switch (direction) { case 0: idxA = 1; idxB = 2; idxC = 0; break; case 1: idxA = 0; idxB = 2; idxC = 1; break; case 2: idxA = 0; idxB = 1; idxC = 2; break; default: idxA = 1; idxB = 2; idxC = 0; break; } auto imageSize = image->GetLargestPossibleRegion().GetSize(); FloatImageType::IndexType index3D; FloatImage2DType::IndexType index2D; FloatImage2DType::SpacingType spacing2D; spacing2D[0] = itkFloat->GetSpacing()[idxA]; spacing2D[1] = itkFloat->GetSpacing()[idxB]; for (int i = 0; i < imageSize[idxC]; ++i) { FloatImage2DType::RegionType region; FloatImage2DType::IndexType start; FloatImage2DType::SizeType size; start[0] = 0; start[1] = 0; size[0] = imageSize[idxA]; size[1] = imageSize[idxB]; region.SetIndex(start); region.SetSize(size); FloatImage2DType::Pointer image2D = FloatImage2DType::New(); image2D->SetRegions(region); image2D->Allocate(); MaskImage2DType::Pointer mask2D = MaskImage2DType::New(); mask2D->SetRegions(region); mask2D->Allocate(); MaskImage2DType::Pointer masnNoNaN2D = MaskImage2DType::New(); masnNoNaN2D->SetRegions(region); masnNoNaN2D->Allocate(); unsigned long voxelsInMask = 0; for (int a = 0; a < imageSize[idxA]; ++a) { for (int b = 0; b < imageSize[idxB]; ++b) { index3D[idxA] = a; index3D[idxB] = b; index3D[idxC] = i; index2D[0] = a; index2D[1] = b; image2D->SetPixel(index2D, itkFloat->GetPixel(index3D)); mask2D->SetPixel(index2D, itkMask->GetPixel(index3D)); masnNoNaN2D->SetPixel(index2D, itkMaskNoNaN->GetPixel(index3D)); voxelsInMask += (itkMask->GetPixel(index3D) > 0) ? 1 : 0; } } image2D->SetSpacing(spacing2D); mask2D->SetSpacing(spacing2D); masnNoNaN2D->SetSpacing(spacing2D); mitk::Image::Pointer tmpFloatImage = mitk::Image::New(); tmpFloatImage->InitializeByItk(image2D.GetPointer()); mitk::GrabItkImageMemory(image2D, tmpFloatImage); mitk::Image::Pointer tmpMaskImage = mitk::Image::New(); tmpMaskImage->InitializeByItk(mask2D.GetPointer()); mitk::GrabItkImageMemory(mask2D, tmpMaskImage); mitk::Image::Pointer tmpMaskNoNaNImage = mitk::Image::New(); tmpMaskNoNaNImage->InitializeByItk(masnNoNaN2D.GetPointer()); mitk::GrabItkImageMemory(masnNoNaN2D, tmpMaskNoNaNImage); if (voxelsInMask > 0) { imageVector.push_back(tmpFloatImage); maskVector.push_back(tmpMaskImage); maskNoNaNVector.push_back(tmpMaskNoNaNImage); } } } static void SaveSliceOrImageAsPNG(mitk::Image::Pointer image, mitk::Image::Pointer mask, std::string path, int index) { // Create a Standalone Datastorage for the single purpose of saving screenshots.. mitk::StandaloneDataStorage::Pointer ds = mitk::StandaloneDataStorage::New(); QmitkRenderWindow renderWindow; renderWindow.GetRenderer()->SetDataStorage(ds); auto nodeI = mitk::DataNode::New(); nodeI->SetData(image); auto nodeM = mitk::DataNode::New(); nodeM->SetData(mask); ds->Add(nodeI); ds->Add(nodeM); mitk::TimeGeometry::Pointer geo = ds->ComputeBoundingGeometry3D(ds->GetAll()); mitk::RenderingManager::GetInstance()->InitializeViews(geo); mitk::SliceNavigationController::Pointer sliceNaviController = renderWindow.GetSliceNavigationController(); unsigned int numberOfSteps = 1; if (sliceNaviController) { numberOfSteps = sliceNaviController->GetSlice()->GetSteps(); sliceNaviController->GetSlice()->SetPos(0); } renderWindow.show(); renderWindow.resize(256, 256); for (unsigned int currentStep = 0; currentStep < numberOfSteps; ++currentStep) { if (sliceNaviController) { sliceNaviController->GetSlice()->SetPos(currentStep); } renderWindow.GetRenderer()->PrepareRender(); vtkRenderWindow* renderWindow2 = renderWindow.GetVtkRenderWindow(); mitk::BaseRenderer* baserenderer = mitk::BaseRenderer::GetInstance(renderWindow2); auto vtkRender = baserenderer->GetVtkRenderer(); vtkRender->GetRenderWindow()->WaitForCompletion(); vtkRenderLargeImage* magnifier = vtkRenderLargeImage::New(); magnifier->SetInput(vtkRender); magnifier->SetMagnification(3.0); std::stringstream ss; ss << path << "_Idx-" << index << "_Step-"<> tmpImageName; auto fileWriter = vtkPNGWriter::New(); fileWriter->SetInputConnection(magnifier->GetOutputPort()); fileWriter->SetFileName(tmpImageName.c_str()); fileWriter->Write(); fileWriter->Delete(); } } int main(int argc, char* argv[]) { mitk::GIFFirstOrderStatistics::Pointer firstOrderCalculator = mitk::GIFFirstOrderStatistics::New(); mitk::GIFVolumetricStatistics::Pointer volCalculator = mitk::GIFVolumetricStatistics::New(); mitk::GIFCooccurenceMatrix::Pointer coocCalculator = mitk::GIFCooccurenceMatrix::New(); mitk::GIFCooccurenceMatrix2::Pointer cooc2Calculator = mitk::GIFCooccurenceMatrix2::New(); mitk::GIFNeighbouringGreyLevelDependenceFeature::Pointer ngldCalculator = mitk::GIFNeighbouringGreyLevelDependenceFeature::New(); mitk::GIFGrayLevelRunLength::Pointer rlCalculator = mitk::GIFGrayLevelRunLength::New(); mitk::GIFGreyLevelSizeZone::Pointer glszCalculator = mitk::GIFGreyLevelSizeZone::New(); std::vector features; features.push_back(firstOrderCalculator.GetPointer()); features.push_back(volCalculator.GetPointer()); features.push_back(coocCalculator.GetPointer()); features.push_back(cooc2Calculator.GetPointer()); features.push_back(ngldCalculator.GetPointer()); features.push_back(rlCalculator.GetPointer()); features.push_back(glszCalculator.GetPointer()); mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); mitk::cl::GlobalImageFeaturesParameter param; param.AddParameter(parser); parser.addArgument("--","-", mitkCommandLineParser::String, "---", "---", us::Any(),true); for (auto cFeature : features) { cFeature->AddArguments(parser); } parser.addArgument("--", "-", mitkCommandLineParser::String, "---", "---", us::Any(), true); parser.addArgument("description","d",mitkCommandLineParser::String,"Text","Description that is added to the output",us::Any()); parser.addArgument("direction", "dir", mitkCommandLineParser::String, "Int", "Allows to specify the direction for Cooc and RL. 0: All directions, 1: Only single direction (Test purpose), 2,3,4... Without dimension 0,1,2... ", us::Any()); parser.addArgument("slice-wise", "slice", mitkCommandLineParser::String, "Int", "Allows to specify if the image is processed slice-wise (number giving direction) ", us::Any()); parser.addArgument("output-mode", "omode", mitkCommandLineParser::Int, "Int", "Defines if the results of an image / slice are written in a single row (0 , default) or column (1)."); // Miniapp Infos parser.setCategory("Classification Tools"); parser.setTitle("Global Image Feature calculator"); parser.setDescription("Calculates different global statistics for a given segmentation / image combination"); parser.setContributor("MBI"); std::map parsedArgs = parser.parseArguments(argc, argv); param.ParseParameter(parsedArgs); if (parsedArgs.size()==0) { return EXIT_FAILURE; } if ( parsedArgs.count("help") || parsedArgs.count("h")) { return EXIT_SUCCESS; } bool savePNGofSlices = true; std::string folderForPNGOfSlices = "E:\\tmp\\bonekamp\\fig\\"; - std::string version = "Version: 1.19"; + std::string version = "Version: 1.20"; MITK_INFO << version; std::ofstream log; if (param.useLogfile) { log.open(param.logfilePath, std::ios::app); log << version; log << "Image: " << param.imagePath; log << "Mask: " << param.maskPath; } mitk::Image::Pointer image; mitk::Image::Pointer mask; mitk::Image::Pointer tmpImage = mitk::IOUtil::LoadImage(param.imagePath); mitk::Image::Pointer tmpMask = mitk::IOUtil::LoadImage(param.maskPath); image = tmpImage; mask = tmpMask; if ((image->GetDimension() != mask->GetDimension())) { MITK_INFO << "Dimension of image does not match. "; MITK_INFO << "Correct one image, may affect the result"; if (image->GetDimension() == 2) { mitk::Convert2Dto3DImageFilter::Pointer multiFilter2 = mitk::Convert2Dto3DImageFilter::New(); multiFilter2->SetInput(tmpImage); multiFilter2->Update(); image = multiFilter2->GetOutput(); } if (mask->GetDimension() == 2) { mitk::Convert2Dto3DImageFilter::Pointer multiFilter3 = mitk::Convert2Dto3DImageFilter::New(); multiFilter3->SetInput(tmpMask); multiFilter3->Update(); mask = multiFilter3->GetOutput(); } } int writeDirection = 0; if (parsedArgs.count("output-mode")) { writeDirection = us::any_cast(parsedArgs["output-mode"]); } if (param.resampleToFixIsotropic) { mitk::Image::Pointer newImage = mitk::Image::New(); AccessByItk_2(image, ResampleImage, param.resampleResolution, newImage); image = newImage; } if ( ! mitk::Equal(mask->GetGeometry(0)->GetOrigin(), image->GetGeometry(0)->GetOrigin())) { MITK_INFO << "Not equal Origins"; if (param.ensureSameSpace) { MITK_INFO << "Warning!"; MITK_INFO << "The origin of the input image and the mask do not match. They are"; MITK_INFO << "now corrected. Please check to make sure that the images still match"; image->GetGeometry(0)->SetOrigin(mask->GetGeometry(0)->GetOrigin()); } else { return -1; } } if (param.resampleMask) { mitk::Image::Pointer newMaskImage = mitk::Image::New(); AccessByItk_2(mask, ResampleMask, image, newMaskImage); mask = newMaskImage; } if ( ! mitk::Equal(mask->GetGeometry(0)->GetSpacing(), image->GetGeometry(0)->GetSpacing())) { MITK_INFO << "Not equal Sapcings"; if (param.ensureSameSpace) { MITK_INFO << "Warning!"; MITK_INFO << "The spacing of the mask was set to match the spacing of the input image."; MITK_INFO << "This might cause unintended spacing of the mask image"; image->GetGeometry(0)->SetSpacing(mask->GetGeometry(0)->GetSpacing()); } else { MITK_INFO << "The spacing of the mask and the input images is not equal."; MITK_INFO << "Terminating the programm. You may use the '-fi' option"; return -1; } } int direction = 0; if (parsedArgs.count("direction")) { direction = mitk::cl::splitDouble(parsedArgs["direction"].ToString(), ';')[0]; } MITK_INFO << "Start creating Mask without NaN"; mitk::Image::Pointer maskNoNaN = mitk::Image::New(); AccessByItk_2(image, CreateNoNaNMask, mask, maskNoNaN); //CreateNoNaNMask(mask, image, maskNoNaN); bool sliceWise = false; int sliceDirection = 0; int currentSlice = 0; bool imageToProcess = true; std::vector floatVector; std::vector maskVector; std::vector maskNoNaNVector; if ((parsedArgs.count("slice-wise")) && image->GetDimension() > 2) { MITK_INFO << "Enabled slice-wise"; sliceWise = true; sliceDirection = mitk::cl::splitDouble(parsedArgs["slice-wise"].ToString(), ';')[0]; MITK_INFO << sliceDirection; ExtractSlicesFromImages(image, mask, maskNoNaN, sliceDirection, floatVector, maskVector, maskNoNaNVector); MITK_INFO << "Slice"; } for (auto cFeature : features) { if (param.defineGlobalMinimumIntensity) { cFeature->SetMinimumIntensity(param.globalMinimumIntensity); cFeature->SetUseMinimumIntensity(true); } if (param.defineGlobalMaximumIntensity) { cFeature->SetMaximumIntensity(param.globalMaximumIntensity); cFeature->SetUseMaximumIntensity(true); } if (param.defineGlobalNumberOfBins) { cFeature->SetBins(param.globalNumberOfBins); MITK_INFO << param.globalNumberOfBins; } cFeature->SetParameter(parsedArgs); cFeature->SetDirection(direction); } bool addDescription = parsedArgs.count("description"); mitk::cl::FeatureResultWritter writer(param.outputPath, writeDirection); std::string description = ""; if (addDescription) { description = parsedArgs["description"].ToString(); } mitk::Image::Pointer cImage = image; mitk::Image::Pointer cMask = mask; mitk::Image::Pointer cMaskNoNaN = maskNoNaN; if (param.useHeader) { writer.AddColumn("Patient"); writer.AddColumn("Image"); writer.AddColumn("Segmentation"); } // Create a QTApplication and a Datastorage // This is necessary in order to save screenshots of // each image / slice. QApplication qtapplication(argc, argv); QmitkRegisterClasses(); std::vector allStats; while (imageToProcess) { if (sliceWise) { cImage = floatVector[currentSlice]; cMask = maskVector[currentSlice]; cMaskNoNaN = maskNoNaNVector[currentSlice]; imageToProcess = (floatVector.size()-1 > (currentSlice)) ? true : false ; } else { imageToProcess = false; } if (param.writePNGScreenshots) { SaveSliceOrImageAsPNG(cImage, cMask, param.pngScreenshotsPath, currentSlice); } if (param.writeAnalysisImage) { - mitk::IOUtil::SaveImage(cImage, param.anaylsisImagePath); + mitk::IOUtil::Save(cImage, param.anaylsisImagePath); } if (param.writeAnalysisMask) { - mitk::IOUtil::SaveImage(cImage, param.analysisMaskPath); + mitk::IOUtil::Save(cMask, param.analysisMaskPath); } mitk::AbstractGlobalImageFeature::FeatureListType stats; for (auto cFeature : features) { cFeature->CalculateFeaturesUsingParameters(cImage, cMask, cMaskNoNaN, stats); } for (std::size_t i = 0; i < stats.size(); ++i) { std::cout << stats[i].first << " - " << stats[i].second << std::endl; } writer.AddHeader(description, currentSlice, stats, param.useHeader, addDescription); if (true) { writer.AddColumn(param.imageFolder); writer.AddColumn(param.imageName); writer.AddColumn(param.maskName); } writer.AddResult(description, currentSlice, stats, param.useHeader, addDescription); allStats.push_back(stats); ++currentSlice; } if (sliceWise) { mitk::AbstractGlobalImageFeature::FeatureListType statMean, statStd; for (std::size_t i = 0; i < allStats[0].size(); ++i) { auto cElement1 = allStats[0][i]; cElement1.first = "SliceWise Mean " + cElement1.first; cElement1.second = 0.0; auto cElement2 = allStats[0][i]; cElement2.first = "SliceWise Var. " + cElement2.first; cElement2.second = 0.0; statMean.push_back(cElement1); statStd.push_back(cElement2); } for (auto cStat : allStats) { for (std::size_t i = 0; i < cStat.size(); ++i) { statMean[i].second += cStat[i].second / (1.0*allStats.size()); } } for (auto cStat : allStats) { for (std::size_t i = 0; i < cStat.size(); ++i) { statStd[i].second += (cStat[i].second - statMean[i].second)*(cStat[i].second - statMean[i].second) / (1.0*allStats.size()); } } for (std::size_t i = 0; i < statMean.size(); ++i) { std::cout << statMean[i].first << " - " << statMean[i].second << std::endl; std::cout << statStd[i].first << " - " << statStd[i].second << std::endl; } if (true) { writer.AddColumn(param.imageFolder); writer.AddColumn(param.imageName); writer.AddColumn(param.maskName + " - Mean"); } writer.AddResult(description, currentSlice, statMean, param.useHeader, addDescription); if (true) { writer.AddColumn(param.imageFolder); writer.AddColumn(param.imageName); writer.AddColumn(param.maskName + " - Var."); } writer.AddResult(description, currentSlice, statStd, param.useHeader, addDescription); } if (param.useLogfile) { log << "Finished calculation"; log.close(); } return 0; } #endif diff --git a/Modules/Classification/CLMiniApps/CLImageTypeConverter.cpp b/Modules/Classification/CLMiniApps/CLImageTypeConverter.cpp index c636160a8b..41ab9734a5 100644 --- a/Modules/Classification/CLMiniApps/CLImageTypeConverter.cpp +++ b/Modules/Classification/CLMiniApps/CLImageTypeConverter.cpp @@ -1,108 +1,108 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCommandLineParser.h" #include "mitkIOUtil.h" #include #include #define CONVERT_IMAGE(TYPE, DIM) itk::Image::Pointer itkImage = itk::Image::New(); \ MITK_INFO << "Data Type for Conversion: "<< typeid(TYPE).name(); \ mitk::CastToItkImage(image, itkImage); \ mitk::CastToMitkImage(itkImage, outputImage) int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Image Type Converter"); parser.setCategory("Preprocessing Tools"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--","-"); // Add command line argument names parser.addArgument("help", "h",mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.addArgument("input", "i", mitkCommandLineParser::InputDirectory, "Input file:", "Input file",us::Any(),false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output file:", "Output file", us::Any(), false); parser.addArgument("type", "t", mitkCommandLineParser::OutputFile, "Type definition:", "Define Scalar data type: int, uint, short, ushort, char, uchar, float, double", us::Any(), false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // Show a help message if ( parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } std::string inputName = us::any_cast(parsedArgs["input"]); std::string outputName = us::any_cast(parsedArgs["output"]); std::string type = us::any_cast(parsedArgs["type"]); mitk::Image::Pointer image = mitk::IOUtil::LoadImage(inputName); mitk::Image::Pointer outputImage = mitk::Image::New(); if (type.compare("int") == 0) { CONVERT_IMAGE(int, 3); } else if (type.compare("uint") == 0) { CONVERT_IMAGE(unsigned int, 3); } else if (type.compare("char") == 0) { CONVERT_IMAGE(char, 3); } else if (type.compare("uchar") == 0) { CONVERT_IMAGE(unsigned char, 3); } else if (type.compare("short") == 0) { CONVERT_IMAGE(short, 3); } else if (type.compare("ushort") == 0) { CONVERT_IMAGE(unsigned short, 3); } else if (type.compare("float") == 0) { CONVERT_IMAGE(float, 3); } else if (type.compare("double") == 0) { CONVERT_IMAGE(double, 3); } else if (type.compare("none") == 0) { MITK_INFO << " No conversion performed"; outputImage = image; } else { CONVERT_IMAGE(double, 3); } - mitk::IOUtil::SaveImage(outputImage, outputName); + mitk::IOUtil::Save(outputImage, outputName); return EXIT_SUCCESS; } \ No newline at end of file diff --git a/Modules/Classification/CLMiniApps/CLLungSegmentation.cpp b/Modules/Classification/CLMiniApps/CLLungSegmentation.cpp index 1259482ed3..e642880a54 100644 --- a/Modules/Classification/CLMiniApps/CLLungSegmentation.cpp +++ b/Modules/Classification/CLMiniApps/CLLungSegmentation.cpp @@ -1,154 +1,154 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDicomSeriesReader.h" #include "mitkProperties.h" #include "mitkCommandLineParser.h" #include "mitkIOUtil.h" #include #include "mitkLabelSetImage.h" #include "mitkImageCast.h" #include "mitkImageTimeSelector.h" #include "mitkITKImageImport.h" #include "mitkImageAccessByItk.h" #include #include template void StartRegionGrowing(itk::Image* itkImage, mitk::Image::Pointer &result, mitk::BaseGeometry* imageGeometry) { typedef itk::Image InputImageType; typedef typename InputImageType::IndexType IndexType; typedef itk::ConnectedThresholdImageFilter RegionGrowingFilterType; typename RegionGrowingFilterType::Pointer regionGrower = RegionGrowingFilterType::New(); // convert world coordinates to image indices IndexType startIndex; IndexType seedIndex; startIndex[0] = itkImage->GetLargestPossibleRegion().GetSize()[0]/2; startIndex[1] = itkImage->GetLargestPossibleRegion().GetSize()[1]/2; startIndex[2] = itkImage->GetLargestPossibleRegion().GetSize()[2]/2; for (int x = -50; x < 50; ++x) { for (int y = -50; y < 50; ++y) { for (int z = -50; z < 50; ++z) { seedIndex[0] = startIndex[0] + x; seedIndex[1] = startIndex[1] + y; seedIndex[2] = startIndex[2] + z; if (itkImage->GetPixel(seedIndex) > 0) { x = 100; y = 100; z = 100; } } } } MITK_INFO << "Seedpoint: " << seedIndex; //perform region growing in desired segmented region regionGrower->SetInput(itkImage); regionGrower->AddSeed(seedIndex); regionGrower->SetLower(1); regionGrower->SetUpper(255); try { regionGrower->Update(); } catch (const itk::ExceptionObject&) { return; // can't work } catch (...) { return; } //Store result and preview mitk::CastToMitkImage(regionGrower->GetOutput(), result); } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Dicom Loader"); parser.setCategory("Preprocessing Tools"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--","-"); // Add command line argument names parser.addArgument("help", "h",mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.addArgument("input", "i", mitkCommandLineParser::InputDirectory, "Input folder:", "Input folder", us::Any(), false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output file:", "Output file",us::Any(),false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // Show a help message if ( parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } std::string inputFile = us::any_cast(parsedArgs["input"]); std::string outFileName = us::any_cast(parsedArgs["output"]); mitk::Image::Pointer image = mitk::IOUtil::LoadImage(inputFile); mitk::OtsuSegmentationFilter::Pointer otsuFilter = mitk::OtsuSegmentationFilter::New(); otsuFilter->SetNumberOfThresholds(2); otsuFilter->SetValleyEmphasis(false); otsuFilter->SetNumberOfBins(128); otsuFilter->SetInput(image); try { otsuFilter->Update(); } catch (...) { mitkThrow() << "itkOtsuFilter error (image dimension must be in {2, 3} and image must not be RGB)"; } mitk::LabelSetImage::Pointer resultImage = mitk::LabelSetImage::New(); resultImage->InitializeByLabeledImage(otsuFilter->GetOutput()); mitk::Image::Pointer rawMask = resultImage->CreateLabelMask(1); mitk::Image::Pointer pickedMask; AccessByItk_2(rawMask, StartRegionGrowing, pickedMask, rawMask->GetGeometry()); mitk::MorphologicalOperations::FillHoles(pickedMask); mitk::MorphologicalOperations::Closing(pickedMask, 5, mitk::MorphologicalOperations::StructuralElementType::Ball); mitk::MorphologicalOperations::FillHoles(pickedMask); - mitk::IOUtil::SaveImage(pickedMask, outFileName); + mitk::IOUtil::Save(pickedMask, outFileName); return EXIT_SUCCESS; } diff --git a/Modules/Classification/CLMiniApps/CLN4.cpp b/Modules/Classification/CLMiniApps/CLN4.cpp index 4ff96603bc..f7a65eb60f 100644 --- a/Modules/Classification/CLMiniApps/CLN4.cpp +++ b/Modules/Classification/CLMiniApps/CLN4.cpp @@ -1,121 +1,121 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCommandLineParser.h" #include "mitkIOUtil.h" #include #include "mitkCommandLineParser.h" #include #include int main(int argc, char* argv[]) { typedef itk::Image MaskImageType; typedef itk::Image ImageType; typedef itk::N4BiasFieldCorrectionImageFilter < ImageType, MaskImageType, ImageType > FilterType; mitkCommandLineParser parser; parser.setTitle("N4 Bias Field Correction"); parser.setCategory("Classification Command Tools"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); // Add command line argument names parser.addArgument("help", "h", mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.addArgument("input", "i", mitkCommandLineParser::InputDirectory, "Input file:", "Input file", us::Any(), false); parser.addArgument("mask", "m", mitkCommandLineParser::OutputFile, "Output file:", "Mask file", us::Any(), false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output file:", "Output file", us::Any(), false); parser.addArgument("number-of-controllpoints", "noc", mitkCommandLineParser::Int, "Parameter", "The noc for the point grid size defining the B-spline estimate (default 4)", us::Any(), true); parser.addArgument("number-of-fitting-levels", "nofl", mitkCommandLineParser::Int, "Parameter", "Number of fitting levels for the multi-scale approach (default 1)", us::Any(), true); parser.addArgument("number-of-histogram-bins", "nofl", mitkCommandLineParser::Int, "Parameter", "number of bins defining the log input intensity histogram (default 200)", us::Any(), true); parser.addArgument("spline-order", "so", mitkCommandLineParser::Int, "Parameter", "Define the spline order (default 3)", us::Any(), true); parser.addArgument("winer-filter-noise", "wfn", mitkCommandLineParser::Float, "Parameter", "Noise estimate defining the Wiener filter (default 0.01)", us::Any(), true); parser.addArgument("number-of-maximum-iterations", "nomi", mitkCommandLineParser::Int, "Parameter", "Spezifies the maximum number of iterations per run", us::Any(), true); // ToDo: Number Of Maximum Iterations durchschleifen std::map parsedArgs = parser.parseArguments(argc, argv); // Show a help message if (parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } MaskImageType::Pointer itkMsk = MaskImageType::New(); mitk::Image::Pointer img = mitk::IOUtil::LoadImage(parsedArgs["mask"].ToString()); mitk::CastToItkImage(img, itkMsk); ImageType::Pointer itkImage = ImageType::New(); mitk::Image::Pointer img2 = mitk::IOUtil::LoadImage(parsedArgs["input"].ToString()); mitk::CastToItkImage(img2, itkImage); FilterType::Pointer filter = FilterType::New(); filter->SetInput(itkImage); filter->SetMaskImage(itkMsk); if (parsedArgs.count("number-of-controllpoints") > 0) { int variable = us::any_cast(parsedArgs["maximum-iterations"]); MITK_INFO << "Number of controll points: " << variable; filter->SetNumberOfControlPoints(variable); } if (parsedArgs.count("number-of-fitting-levels") > 0) { int variable = us::any_cast(parsedArgs["number-of-fitting-levels"]); MITK_INFO << "Number of fitting levels: " << variable; filter->SetNumberOfFittingLevels(variable); } if (parsedArgs.count("number-of-histogram-bins") > 0) { int variable = us::any_cast(parsedArgs["number-of-histogram-bins"]); MITK_INFO << "Number of histogram bins: " << variable; filter->SetNumberOfHistogramBins(variable); } if (parsedArgs.count("spline-order") > 0) { int variable = us::any_cast(parsedArgs["spline-order"]); MITK_INFO << "Spline Order " << variable; filter->SetSplineOrder(variable); } if (parsedArgs.count("winer-filter-noise") > 0) { float variable = us::any_cast(parsedArgs["winer-filter-noise"]); MITK_INFO << "Number of histogram bins: " << variable; filter->SetWienerFilterNoise(variable); } if (parsedArgs.count("number-of-maximum-iterations") > 0) { int variable = us::any_cast(parsedArgs["number-of-maximum-iterations"]); MITK_INFO << "Number of Maximum Iterations: " << variable; auto list = filter->GetMaximumNumberOfIterations(); list.Fill(variable); filter->SetMaximumNumberOfIterations(list); } filter->Update(); auto out = filter->GetOutput(); mitk::Image::Pointer outImg = mitk::Image::New(); mitk::CastToMitkImage(out, outImg); - mitk::IOUtil::SaveImage(outImg, parsedArgs["output"].ToString()); + mitk::IOUtil::Save(outImg, parsedArgs["output"].ToString()); return EXIT_SUCCESS; } \ No newline at end of file diff --git a/Modules/Classification/CLMiniApps/CLRandomSampling.cpp b/Modules/Classification/CLMiniApps/CLRandomSampling.cpp index 42b59ae7db..fd8632de2a 100644 --- a/Modules/Classification/CLMiniApps/CLRandomSampling.cpp +++ b/Modules/Classification/CLMiniApps/CLRandomSampling.cpp @@ -1,158 +1,158 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCommandLineParser.h" #include "mitkIOUtil.h" #include static std::vector splitDouble(std::string str, char delimiter) { std::vector internal; std::stringstream ss(str); // Turn the string into a stream. std::string tok; double val; while (getline(ss, tok, delimiter)) { std::stringstream s2(tok); s2 >> val; internal.push_back(val); } return internal; } static std::vector splitUInt(std::string str, char delimiter) { std::vector internal; std::stringstream ss(str); // Turn the string into a stream. std::string tok; unsigned int val; while (getline(ss, tok, delimiter)) { std::stringstream s2(tok); s2 >> val; internal.push_back(val); } return internal; } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Random Sampling"); parser.setCategory("Classification Command Tools"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); // Add command line argument names parser.addArgument("help", "h", mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.addArgument("input", "i", mitkCommandLineParser::InputDirectory, "Input file:", "Input file", us::Any(), false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output file:", "Output file", us::Any(), false); parser.addArgument("single-rate", "sr", mitkCommandLineParser::OutputFile, "Single Acceptance rate for all voxel", "Output file", us::Any(), true); parser.addArgument("class-rate", "cr", mitkCommandLineParser::OutputFile, "Class-dependend acceptance rate", "Output file", us::Any(), true); parser.addArgument("single-number", "sn", mitkCommandLineParser::OutputFile, "Single Number of Voxel for each class", "Output file", us::Any(), true); parser.addArgument("class-number", "cn", mitkCommandLineParser::OutputFile, "Class-dependedn number of voxels ", "Output file", us::Any(), true); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size() == 0) return EXIT_FAILURE; // Show a help message if (parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } if (parsedArgs.count("single-rate") + parsedArgs.count("class-rate") + parsedArgs.count("single-number") + parsedArgs.count("class-number") < 1) { std::cout << "Please specify the sampling rate or number of voxels to be labeled" << std::endl << std::endl; std::cout << parser.helpText(); return EXIT_SUCCESS; } if (parsedArgs.count("single-rate") + parsedArgs.count("class-rate") + parsedArgs.count("single-number") + parsedArgs.count("class-number") > 2) { std::cout << "Please specify only one way for the sampling rate or number of voxels to be labeled" << std::endl << std::endl; std::cout << parser.helpText(); return EXIT_SUCCESS; } std::string inputName = us::any_cast(parsedArgs["input"]); std::string outputName = us::any_cast(parsedArgs["output"]); mitk::Image::Pointer image = mitk::IOUtil::LoadImage(inputName); mitk::RandomImageSampler::Pointer filter = mitk::RandomImageSampler::New(); filter->SetInput(image); if (parsedArgs.count("single-rate")) { filter->SetSamplingMode(mitk::RandomImageSamplerMode::SINGLE_ACCEPTANCE_RATE); auto rate = splitDouble(parsedArgs["single-rate"].ToString(), ';'); if (rate.size() != 1) { std::cout << "Please specify a single double value for single-rate, for example 0.3." << std::endl << std::endl; std::cout << parser.helpText(); return EXIT_SUCCESS; } filter->SetAcceptanceRate(rate[0]); } else if (parsedArgs.count("class-rate")) { filter->SetSamplingMode(mitk::RandomImageSamplerMode::CLASS_DEPENDEND_ACCEPTANCE_RATE); auto rate = splitDouble(parsedArgs["class-rate"].ToString(), ';'); if (rate.size() < 2) { std::cout << "Please specify at least two, semicolon separated values for class-rate, for example '0.3;0.2' ." << std::endl << std::endl; std::cout << parser.helpText(); return EXIT_SUCCESS; } filter->SetAcceptanceRateVector(rate); } else if (parsedArgs.count("single-number")) { filter->SetSamplingMode(mitk::RandomImageSamplerMode::SINGLE_NUMBER_OF_ACCEPTANCE); auto rate = splitUInt(parsedArgs["single-number"].ToString(), ';'); if (rate.size() != 1) { std::cout << "Please specify a single double value for single-number, for example 100." << std::endl << std::endl; std::cout << parser.helpText(); return EXIT_SUCCESS; } filter->SetNumberOfSamples(rate[0]); } else if (parsedArgs.count("class-number")) { filter->SetSamplingMode(mitk::RandomImageSamplerMode::CLASS_DEPENDEND_NUMBER_OF_ACCEPTANCE); auto rate = splitUInt(parsedArgs["class-number"].ToString(), ';'); if (rate.size() < 2) { std::cout << "Please specify at least two, semicolon separated values for class-number, for example '100;200' ." << std::endl << std::endl; std::cout << parser.helpText(); return EXIT_SUCCESS; } filter->SetNumberOfSamplesVector(rate); } filter->Update(); - mitk::IOUtil::SaveImage(filter->GetOutput(), outputName); + mitk::IOUtil::Save(filter->GetOutput(), outputName); return EXIT_SUCCESS; } \ No newline at end of file diff --git a/Modules/Classification/CLMiniApps/CLRemoveEmptyVoxels.cpp b/Modules/Classification/CLMiniApps/CLRemoveEmptyVoxels.cpp index 51275ae701..83759c1263 100644 --- a/Modules/Classification/CLMiniApps/CLRemoveEmptyVoxels.cpp +++ b/Modules/Classification/CLMiniApps/CLRemoveEmptyVoxels.cpp @@ -1,159 +1,159 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkCommandLineParser.h" #include "mitkIOUtil.h" #include "mitkImageCast.h" #include #include #include "mitkImageGenerator.h" int main(int argc, char* argv[]) { typedef itk::Image ImageType; typedef itk::Image MaskImageType; typedef ImageType::Pointer ImagePointerType; typedef MaskImageType::Pointer MaskImagePointerType; typedef itk::ImageRegionConstIterator ConstIteratorType; typedef itk::ImageRegionConstIterator ConstMaskIteratorType; typedef itk::ImageRegionIterator IteratorType; typedef itk::ImageRegionIterator MaskIteratorType; mitkCommandLineParser parser; parser.setTitle("Remove empty voxels Sampling"); parser.setCategory("Classification Command Tools"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("--", "-"); // Add command line argument names parser.addArgument("help", "h", mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.addArgument("mask-input", "mi", mitkCommandLineParser::InputDirectory, "Input file:", "Input file", us::Any(), false); parser.addArgument("mask-output", "mo", mitkCommandLineParser::OutputFile, "Output file:", "Output file", us::Any(), false); for (int i = 0; i < 100; ++i) { std::stringstream s1; s1 << i; std::string number = s1.str(); parser.addArgument("input"+number, "i"+number, mitkCommandLineParser::OutputFile, "Input file", "input file", us::Any(), true); parser.addArgument("output" + number, "o" + number, mitkCommandLineParser::OutputFile, "Output File", "Output file", us::Any(), true); } std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size() == 0) return EXIT_FAILURE; // Show a help message if (parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } // Load Mask Image and count number of non-zero voxels mitk::Image::Pointer mask = mitk::IOUtil::LoadImage(parsedArgs["mask-input"].ToString()); MaskImagePointerType itkMask = MaskImageType::New(); mitk::CastToItkImage(mask, itkMask); ConstMaskIteratorType maskIter(itkMask, itkMask->GetLargestPossibleRegion()); std::size_t nonZero = 0; while (!maskIter.IsAtEnd()) { if (maskIter.Value() > 0) { ++nonZero; } ++maskIter; } maskIter.GoToBegin(); // Create new mask image auto mitkNewMask = mitk::ImageGenerator::GenerateGradientImage(nonZero, 1, 1, 1, 1, 1); MaskImagePointerType itkNewMask = MaskImageType::New(); mitk::CastToItkImage(mitkNewMask, itkNewMask); MaskIteratorType newMaskIter(itkNewMask, itkNewMask->GetLargestPossibleRegion()); // Read additional image std::vector mitkImagesVector; std::vector itkImageVector; std::vector itkOutputImageVector; std::vector inputIteratorVector; std::vector outputIteratorVector; for (int i = 0; i < 100; ++i) { std::stringstream s1; s1 << i; std::string number = s1.str(); if (parsedArgs.count("input" + number) < 1) break; if (parsedArgs.count("output" + number) < 1) break; mitk::Image::Pointer image = mitk::IOUtil::LoadImage(parsedArgs["input"+number].ToString()); mitkImagesVector.push_back(image); ImagePointerType itkImage = ImageType::New(); mitk::CastToItkImage(image, itkImage); itkImageVector.push_back(itkImage); ConstIteratorType iter(itkImage, itkImage->GetLargestPossibleRegion()); inputIteratorVector.push_back(iter); auto mitkNewImage = mitk::ImageGenerator::GenerateGradientImage(nonZero, 1, 1, 1, 1, 1); ImagePointerType itkNewOutput = ImageType::New(); mitk::CastToItkImage(mitkNewImage, itkNewOutput); IteratorType outputIter(itkNewOutput, itkNewOutput->GetLargestPossibleRegion()); itkOutputImageVector.push_back(itkNewOutput); outputIteratorVector.push_back(outputIter); } // Convert non-zero voxels to the new images while (!maskIter.IsAtEnd()) { if (maskIter.Value() > 0) { newMaskIter.Set(maskIter.Value()); ++newMaskIter; for (int i = 0; i < outputIteratorVector.size(); ++i) { outputIteratorVector[i].Set(inputIteratorVector[i].Value()); ++(outputIteratorVector[i]); } } ++maskIter; for (int i = 0; i < inputIteratorVector.size(); ++i) { ++(inputIteratorVector[i]); } } // Save the new images for (int i = 0; i < outputIteratorVector.size(); ++i) { std::stringstream s1; s1 << i; std::string number = s1.str(); mitk::Image::Pointer mitkImage = mitk::Image::New(); mitk::CastToMitkImage(itkOutputImageVector[i], mitkImage); - mitk::IOUtil::SaveImage(mitkImage, parsedArgs["output" + number].ToString()); + mitk::IOUtil::Save(mitkImage, parsedArgs["output" + number].ToString()); } // Save the new mask { mitk::Image::Pointer mitkImage = mitk::Image::New(); mitk::CastToMitkImage(itkNewMask, mitkImage); - mitk::IOUtil::SaveImage(mitkImage, parsedArgs["mask-output"].ToString()); + mitk::IOUtil::Save(mitkImage, parsedArgs["mask-output"].ToString()); } return EXIT_SUCCESS; } \ No newline at end of file diff --git a/Modules/Classification/CLMiniApps/CLResampleImageToReference.cpp b/Modules/Classification/CLMiniApps/CLResampleImageToReference.cpp index 3d00cc041f..e58acfba58 100644 --- a/Modules/Classification/CLMiniApps/CLResampleImageToReference.cpp +++ b/Modules/Classification/CLMiniApps/CLResampleImageToReference.cpp @@ -1,116 +1,116 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkCLResampleImageToReference_cpp #define mitkCLResampleImageToReference_cpp #include "mitkCommandLineParser.h" #include #include #include #include #include #include // ITK #include "itkLinearInterpolateImageFunction.h" #include "itkWindowedSincInterpolateImageFunction.h" #include "itkNearestNeighborInterpolateImageFunction.h" #include "itkIdentityTransform.h" #include "itkResampleImageFilter.h" template void ResampleImageToReferenceFunction(itk::Image* itkReference, mitk::Image::Pointer moving, std::string ergPath) { typedef itk::Image InputImageType; // Identify Transform typedef itk::IdentityTransform T_Transform; typename T_Transform::Pointer _pTransform = T_Transform::New(); _pTransform->SetIdentity(); typedef itk::WindowedSincInterpolateImageFunction< InputImageType, VImageDimension> WindowedSincInterpolatorType; typename WindowedSincInterpolatorType::Pointer sinc_interpolator = WindowedSincInterpolatorType::New(); typedef itk::LinearInterpolateImageFunction< InputImageType> LinearInterpolateImageFunctionType; typename LinearInterpolateImageFunctionType::Pointer lin_interpolator = LinearInterpolateImageFunctionType::New(); typedef itk::NearestNeighborInterpolateImageFunction< InputImageType> NearestNeighborInterpolateImageFunctionType; typename NearestNeighborInterpolateImageFunctionType::Pointer nn_interpolator = NearestNeighborInterpolateImageFunctionType::New(); typename InputImageType::Pointer itkMoving = InputImageType::New(); mitk::CastToItkImage(moving,itkMoving); typedef itk::ResampleImageFilter ResampleFilterType; typename ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput(itkMoving); resampler->SetReferenceImage( itkReference ); resampler->UseReferenceImageOn(); resampler->SetTransform(_pTransform); //if ( sincInterpol) // resampler->SetInterpolator(sinc_interpolator); //else resampler->SetInterpolator(lin_interpolator); resampler->Update(); // Convert back to mitk mitk::Image::Pointer result = mitk::Image::New(); result->InitializeByItk(resampler->GetOutput()); GrabItkImageMemory(resampler->GetOutput(), result); MITK_INFO << "writing result to: " << ergPath; - mitk::IOUtil::SaveImage(result, ergPath); + mitk::IOUtil::Save(result, ergPath); //return result; } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); // required params parser.addArgument("fix", "f", mitkCommandLineParser::InputImage, "Input Image", "Path to the input VTK polydata", us::Any(), false); parser.addArgument("moving", "m", mitkCommandLineParser::OutputFile, "Output text file", "Target file. The output statistic is appended to this file.", us::Any(), false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Extension", "File extension. Default is .nii.gz", us::Any(), false); // Miniapp Infos parser.setCategory("Classification Tools"); parser.setTitle("Resample Image To Reference"); parser.setDescription("Resamples an image (moving) to an given image (fix) without additional registration."); parser.setContributor("MBI"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size() == 0) { return EXIT_FAILURE; } if (parsedArgs.count("help") || parsedArgs.count("h")) { return EXIT_SUCCESS; } mitk::Image::Pointer fix = mitk::IOUtil::LoadImage(parsedArgs["fix"].ToString()); mitk::Image::Pointer moving = mitk::IOUtil::LoadImage(parsedArgs["moving"].ToString()); mitk::Image::Pointer erg = mitk::Image::New(); AccessByItk_2(fix, ResampleImageToReferenceFunction, moving, parsedArgs["output"].ToString()); } #endif diff --git a/Modules/Classification/CLMiniApps/CLVoxelClassification.cpp b/Modules/Classification/CLMiniApps/CLVoxelClassification.cpp index bfc2cd48bf..750a8a3b42 100644 --- a/Modules/Classification/CLMiniApps/CLVoxelClassification.cpp +++ b/Modules/Classification/CLMiniApps/CLVoxelClassification.cpp @@ -1,481 +1,481 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkForest_cpp #define mitkForest_cpp #include "time.h" #include #include #include #include #include #include #include #include #include #include #include // ----------------------- Forest Handling ---------------------- //#include #include //#include //#include //#include //#include // ----------------------- Point weighting ---------------------- //#include //#include //#include #include //#include //#include //#include //#include int main(int argc, char* argv[]) { MITK_INFO << "Starting MITK_Forest Mini-App"; ////////////////////////////////////////////////////////////////////////////// // Read Console Input Parameter ////////////////////////////////////////////////////////////////////////////// ConfigFileReader allConfig(argv[1]); bool readFile = true; std::stringstream ss; for (int i = 0; i < argc; ++i ) { MITK_INFO << "-----"<< argv[i]<<"------"; if (readFile) { if (argv[i][0] == '+') { readFile = false; continue; } else { try { allConfig.ReadFile(argv[i]); } catch (std::exception &e) { MITK_INFO << e.what(); } } } else { std::string input = argv[i]; std::replace(input.begin(), input.end(),'_',' '); ss << input << std::endl; } } allConfig.ReadStream(ss); try { ////////////////////////////////////////////////////////////////////////////// // General ////////////////////////////////////////////////////////////////////////////// int currentRun = allConfig.IntValue("General","Run",0); int doTraining = allConfig.IntValue("General","Do Training",1); std::string forestPath = allConfig.Value("General","Forest Path"); std::string trainingCollectionPath = allConfig.Value("General","Patient Collection"); std::string testCollectionPath = allConfig.Value("General", "Patient Test Collection", trainingCollectionPath); ////////////////////////////////////////////////////////////////////////////// // Read Default Classification ////////////////////////////////////////////////////////////////////////////// std::vector trainPatients = allConfig.Vector("Training Group",currentRun); std::vector testPatients = allConfig.Vector("Test Group",currentRun); std::vector modalities = allConfig.Vector("Modalities", 0); std::vector outputFilter = allConfig.Vector("Output Filter", 0); std::string trainMask = allConfig.Value("Data","Training Mask"); std::string completeTrainMask = allConfig.Value("Data","Complete Training Mask"); std::string testMask = allConfig.Value("Data","Test Mask"); std::string resultMask = allConfig.Value("Data", "Result Mask"); std::string resultProb = allConfig.Value("Data", "Result Propability"); std::string outputFolder = allConfig.Value("General","Output Folder"); std::string writeDataFilePath = allConfig.Value("Forest","File to write data to"); ////////////////////////////////////////////////////////////////////////////// // Read Data Forest Parameter ////////////////////////////////////////////////////////////////////////////// int testSingleDataset = allConfig.IntValue("Data", "Test Single Dataset",0); std::string singleDatasetName = allConfig.Value("Data", "Single Dataset Name", "none"); int trainSingleDataset = allConfig.IntValue("Data", "Train Single Dataset", 0); std::string singleTrainDatasetName = allConfig.Value("Data", "Train Single Dataset Name", "none"); ////////////////////////////////////////////////////////////////////////////// // Read Forest Parameter ////////////////////////////////////////////////////////////////////////////// int minimumSplitNodeSize = allConfig.IntValue("Forest", "Minimum split node size",1); int numberOfTrees = allConfig.IntValue("Forest", "Number of Trees",255); double samplesPerTree = atof(allConfig.Value("Forest", "Samples per Tree").c_str()); if (samplesPerTree <= 0.0000001) { samplesPerTree = 1.0; } MITK_INFO << "Samples per Tree: " << samplesPerTree; int sampleWithReplacement = allConfig.IntValue("Forest", "Sample with replacement",1); double trainPrecision = atof(allConfig.Value("Forest", "Precision").c_str()); if (trainPrecision <= 0.0000000001) { trainPrecision = 0.0; } double weightLambda = atof(allConfig.Value("Forest", "Weight Lambda").c_str()); if (weightLambda <= 0.0000000001) { weightLambda = 0.0; } int maximumTreeDepth = allConfig.IntValue("Forest", "Maximum Tree Depth",10000); // TODO int randomSplit = allConfig.IntValue("Forest","Use RandomSplit",0); ////////////////////////////////////////////////////////////////////////////// // Read Statistic Parameter ////////////////////////////////////////////////////////////////////////////// std::string statisticFilePath = allConfig.Value("Evaluation", "Statistic output file"); std::string statisticShortFilePath = allConfig.Value("Evaluation", "Statistic short output file"); std::string statisticShortFileLabel = allConfig.Value("Evaluation", "Index for short file"); std::string statisticGoldStandard = allConfig.Value("Evaluation", "Gold Standard Name","GTV"); // TODO bool statisticWithHeader = allConfig.IntValue("Evaluation", "Write header in short file",0); std::vector labelGroupA = allConfig.Vector("LabelsA",0); std::vector labelGroupB = allConfig.Vector("LabelsB",0); ////////////////////////////////////////////////////////////////////////////// // Read Special Parameter ////////////////////////////////////////////////////////////////////////////// - // TODO bool useWeightedPoints = allConfig.IntValue("Forest", "Use point-based weighting",0); + bool useWeightedPoints = allConfig.IntValue("Forest", "Use point-based weighting",0); // TODO bool writePointsToFile = allConfig.IntValue("Forest", "Write points to file",0); // TODO int importanceWeightAlgorithm = allConfig.IntValue("Forest","Importance weight Algorithm",0); std::string importanceWeightName = allConfig.Value("Forest","Importance weight name",""); std::ofstream timingFile; timingFile.open((statisticFilePath + ".timing").c_str(), std::ios::app); timingFile << statisticShortFileLabel << ";"; std::time_t lastTimePoint; time(&lastTimePoint); ////////////////////////////////////////////////////////////////////////////// // Read Images ////////////////////////////////////////////////////////////////////////////// std::vector usedModalities; for (std::size_t i = 0; i < modalities.size(); ++i) { usedModalities.push_back(modalities[i]); } usedModalities.push_back(trainMask); usedModalities.push_back(completeTrainMask); usedModalities.push_back(testMask); usedModalities.push_back(statisticGoldStandard); usedModalities.push_back(importanceWeightName); if (trainSingleDataset > 0) { trainPatients.clear(); trainPatients.push_back(singleTrainDatasetName); } mitk::CollectionReader* colReader = new mitk::CollectionReader(); colReader->AddDataElementIds(trainPatients); colReader->SetDataItemNames(usedModalities); //colReader->SetNames(usedModalities); mitk::DataCollection::Pointer trainCollection; if (doTraining) { trainCollection = colReader->LoadCollection(trainingCollectionPath); } if (testSingleDataset > 0) { testPatients.clear(); testPatients.push_back(singleDatasetName); } colReader->ClearDataElementIds(); colReader->AddDataElementIds(testPatients); mitk::DataCollection::Pointer testCollection = colReader->LoadCollection(testCollectionPath); std::time_t now; time(&now); double seconds = std::difftime(now, lastTimePoint); timingFile << seconds << ";"; time(&lastTimePoint); /* if (writePointsToFile) { MITK_INFO << "Use external weights..."; mitk::ExternalWeighting weightReader; weightReader.SetModalities(modalities); weightReader.SetTestCollection(testCollection); weightReader.SetTrainCollection(trainCollection); weightReader.SetTestMask(testMask); weightReader.SetTrainMask(trainMask); weightReader.SetWeightsName("weights"); weightReader.SetCorrectionFactor(1.0); weightReader.SetWeightFileName(writeDataFilePath); weightReader.WriteData(); return 0; }*/ ////////////////////////////////////////////////////////////////////////////// // If required do Training.... ////////////////////////////////////////////////////////////////////////////// //mitk::DecisionForest forest; mitk::VigraRandomForestClassifier::Pointer forest = mitk::VigraRandomForestClassifier::New(); forest->SetSamplesPerTree(samplesPerTree); forest->SetMinimumSplitNodeSize(minimumSplitNodeSize); forest->SetTreeCount(numberOfTrees); forest->UseSampleWithReplacement(sampleWithReplacement); forest->SetPrecision(trainPrecision); forest->SetMaximumTreeDepth(maximumTreeDepth); forest->SetWeightLambda(weightLambda); // TODO forest.UseRandomSplit(randomSplit); if (doTraining) { // 0 = LR-Estimation // 1 = KNN-Estimation // 2 = Kliep // 3 = Extern Image // 4 = Zadrozny // 5 = Spectral // 6 = uLSIF auto trainDataX = mitk::DCUtilities::DC3dDToMatrixXd(trainCollection, modalities, trainMask); auto trainDataY = mitk::DCUtilities::DC3dDToMatrixXi(trainCollection, trainMask, trainMask); if (useWeightedPoints) //if (false) { MITK_INFO << "Activated Point-based weighting..."; //forest.UseWeightedPoints(true); forest->UsePointWiseWeight(true); //forest.SetWeightName("calculated_weight"); /*if (importanceWeightAlgorithm == 1) { mitk::KNNDensityEstimation est; est.SetCollection(trainCollection); est.SetTrainMask(trainMask); est.SetTestMask(testMask); est.SetModalities(modalities); est.SetWeightName("calculated_weight"); est.Update(); } else if (importanceWeightAlgorithm == 2) { mitk::KliepDensityEstimation est; est.SetCollection(trainCollection); est.SetTrainMask(trainMask); est.SetTestMask(testMask); est.SetModalities(modalities); est.SetWeightName("calculated_weight"); est.Update(); } else if (importanceWeightAlgorithm == 3) { forest.SetWeightName(importanceWeightName); } else if (importanceWeightAlgorithm == 4) { mitk::ZadroznyWeighting est; est.SetCollection(trainCollection); est.SetTrainMask(trainMask); est.SetTestMask(testMask); est.SetModalities(modalities); est.SetWeightName("calculated_weight"); est.Update(); } else if (importanceWeightAlgorithm == 5) { mitk::SpectralDensityEstimation est; est.SetCollection(trainCollection); est.SetTrainMask(trainMask); est.SetTestMask(testMask); est.SetModalities(modalities); est.SetWeightName("calculated_weight"); est.Update(); } else if (importanceWeightAlgorithm == 6) { mitk::ULSIFDensityEstimation est; est.SetCollection(trainCollection); est.SetTrainMask(trainMask); est.SetTestMask(testMask); est.SetModalities(modalities); est.SetWeightName("calculated_weight"); est.Update(); } else*/ { mitk::LRDensityEstimation est; est.SetCollection(trainCollection); est.SetTrainMask(trainMask); est.SetTestMask(testMask); est.SetModalities(modalities); est.SetWeightName("calculated_weight"); est.Update(); } auto trainDataW = mitk::DCUtilities::DC3dDToMatrixXd(trainCollection, "calculated_weight", trainMask); forest->SetPointWiseWeight(trainDataW); forest->UsePointWiseWeight(true); } MITK_INFO << "Start training the forest"; forest->Train(trainDataX, trainDataY); MITK_INFO << "Save Forest"; mitk::IOUtil::Save(forest, forestPath); } else { forest = dynamic_cast(mitk::IOUtil::Load(forestPath)[0].GetPointer());// TODO forest.Load(forestPath); } time(&now); seconds = std::difftime(now, lastTimePoint); MITK_INFO << "Duration for Training: " << seconds; timingFile << seconds << ";"; time(&lastTimePoint); ////////////////////////////////////////////////////////////////////////////// // If required do Save Forest.... ////////////////////////////////////////////////////////////////////////////// //writer.// (forest); /* auto w = forest->GetTreeWeights(); w(0,0) = 10; forest->SetTreeWeights(w);*/ ////////////////////////////////////////////////////////////////////////////// // If required do test ////////////////////////////////////////////////////////////////////////////// MITK_INFO << "Convert Test data"; auto testDataX = mitk::DCUtilities::DC3dDToMatrixXd(testCollection,modalities, testMask); MITK_INFO << "Predict Test Data"; auto testDataNewY = forest->Predict(testDataX); auto testDataNewProb = forest->GetPointWiseProbabilities(); //MITK_INFO << testDataNewY; auto maxClassValue = testDataNewProb.cols(); std::vector names; for (int i = 0; i < maxClassValue; ++i) { std::string name = resultProb + std::to_string(i); MITK_INFO << name; names.push_back(name); } //names.push_back("prob-1"); //names.push_back("prob-2"); mitk::DCUtilities::MatrixToDC3d(testDataNewY, testCollection, resultMask, testMask); mitk::DCUtilities::MatrixToDC3d(testDataNewProb, testCollection, names, testMask); MITK_INFO << "Converted predicted data"; //forest.SetMaskName(testMask); //forest.SetCollection(testCollection); //forest.Test(); //forest.PrintTree(0); time(&now); seconds = std::difftime(now, lastTimePoint); timingFile << seconds << ";"; time(&lastTimePoint); ////////////////////////////////////////////////////////////////////////////// // Cost-based analysis ////////////////////////////////////////////////////////////////////////////// // TODO Reactivate //MITK_INFO << "Calculate Cost-based Statistic "; //mitk::CostingStatistic costStat; //costStat.SetCollection(testCollection); //costStat.SetCombinedA("combinedHealty"); //costStat.SetCombinedB("combinedTumor"); //costStat.SetCombinedLabel("combinedLabel"); //costStat.SetMaskName(testMask); ////std::vector labelHealthy; ////labelHealthy.push_back("result_prop_Class-0"); ////labelHealthy.push_back("result_prop_Class-4"); ////std::vector labelTumor; ////labelTumor.push_back("result_prop_Class-1"); ////labelTumor.push_back("result_prop_Class-2"); ////labelTumor.push_back("result_prop_Class-3"); //costStat.SetProbabilitiesA(labelGroupA); //costStat.SetProbabilitiesB(labelGroupB); //std::ofstream costStatisticFile; //costStatisticFile.open((statisticFilePath + ".cost").c_str(), std::ios::app); //std::ofstream lcostStatisticFile; //lcostStatisticFile.open((statisticFilePath + ".longcost").c_str(), std::ios::app); //costStat.WriteStatistic(lcostStatisticFile,costStatisticFile,2.5,statisticShortFileLabel); //costStatisticFile.close(); //costStat.CalculateClass(50); ////////////////////////////////////////////////////////////////////////////// // Save results to folder ////////////////////////////////////////////////////////////////////////////// ////std::vector outputFilter; //outputFilter.push_back(resultMask); //std::vector propNames = forest.GetListOfProbabilityNames(); //outputFilter.insert(outputFilter.begin(), propNames.begin(), propNames.end()); MITK_INFO << "Write Result to HDD"; mitk::CollectionWriter::ExportCollectionToFolder(testCollection, outputFolder + "/result_collection.xml", outputFilter); MITK_INFO << "Calculate Statistic...." ; ////////////////////////////////////////////////////////////////////////////// // Calculate and Print Statistic ////////////////////////////////////////////////////////////////////////////// std::ofstream statisticFile; statisticFile.open(statisticFilePath.c_str(), std::ios::app); std::ofstream sstatisticFile; sstatisticFile.open(statisticShortFilePath.c_str(), std::ios::app); mitk::CollectionStatistic stat; stat.SetCollection(testCollection); stat.SetClassCount(5); stat.SetGoldName(statisticGoldStandard); stat.SetTestName(resultMask); stat.SetMaskName(testMask); mitk::BinaryValueminusOneToIndexMapper* mapper = new mitk::BinaryValueminusOneToIndexMapper; stat.SetGroundTruthValueToIndexMapper(mapper); stat.SetTestValueToIndexMapper(mapper); stat.Update(); //stat.Print(statisticFile,sstatisticFile,statisticWithHeader, statisticShortFileLabel); stat.Print(statisticFile,sstatisticFile,true, statisticShortFileLabel); statisticFile.close(); delete mapper; time(&now); seconds = std::difftime(now, lastTimePoint); timingFile << seconds << std::endl; time(&lastTimePoint); timingFile.close(); } catch (std::string s) { MITK_INFO << s; return 0; } catch (char* s) { MITK_INFO << s; } return 0; } #endif diff --git a/Modules/Classification/CLMiniApps/CLVoxelFeatures.cpp b/Modules/Classification/CLMiniApps/CLVoxelFeatures.cpp index 55bd36b3c4..acae0547ec 100644 --- a/Modules/Classification/CLMiniApps/CLVoxelFeatures.cpp +++ b/Modules/Classification/CLMiniApps/CLVoxelFeatures.cpp @@ -1,335 +1,335 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkCLVoxeFeatures_cpp #define mitkCLVoxeFeatures_cpp #include "time.h" #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include "itkDiscreteGaussianImageFilter.h" #include #include "itkHessianRecursiveGaussianImageFilter.h" #include "itkUnaryFunctorImageFilter.h" #include "vnl/algo/vnl_symmetric_eigensystem.h" #include #include static std::vector splitDouble(std::string str, char delimiter) { std::vector internal; std::stringstream ss(str); // Turn the string into a stream. std::string tok; double val; while (std::getline(ss, tok, delimiter)) { std::stringstream s2(tok); s2 >> val; internal.push_back(val); } return internal; } namespace Functor { template class MatrixFirstEigenvalue { public: MatrixFirstEigenvalue() {} virtual ~MatrixFirstEigenvalue() {} int order; inline TOutput operator ()(const TInput& input) { double a,b,c; if (input[0] < 0.01 && input[1] < 0.01 &&input[2] < 0.01 &&input[3] < 0.01 &&input[4] < 0.01 &&input[5] < 0.01) return 0; vnl_symmetric_eigensystem_compute_eigenvals(input[0], input[1],input[2],input[3],input[4],input[5],a,b,c); switch (order) { case 0: return a; case 1: return b; case 2: return c; default: return a; } } bool operator !=(const MatrixFirstEigenvalue) const { return false; } bool operator ==(const MatrixFirstEigenvalue& other) const { return !(*this != other); } }; } template void GaussianFilter(itk::Image* itkImage, double variance, mitk::Image::Pointer &output) { typedef itk::Image ImageType; typedef itk::DiscreteGaussianImageFilter< ImageType, ImageType > GaussFilterType; typename GaussFilterType::Pointer gaussianFilter = GaussFilterType::New(); gaussianFilter->SetInput( itkImage ); gaussianFilter->SetVariance(variance); gaussianFilter->Update(); mitk::CastToMitkImage(gaussianFilter->GetOutput(), output); } template void DifferenceOfGaussFilter(itk::Image* itkImage, double variance, mitk::Image::Pointer &output) { typedef itk::Image ImageType; typedef itk::DiscreteGaussianImageFilter< ImageType, ImageType > GaussFilterType; typedef itk::SubtractImageFilter SubFilterType; typename GaussFilterType::Pointer gaussianFilter1 = GaussFilterType::New(); gaussianFilter1->SetInput( itkImage ); gaussianFilter1->SetVariance(variance); gaussianFilter1->Update(); typename GaussFilterType::Pointer gaussianFilter2 = GaussFilterType::New(); gaussianFilter2->SetInput( itkImage ); gaussianFilter2->SetVariance(variance*0.66*0.66); gaussianFilter2->Update(); typename SubFilterType::Pointer subFilter = SubFilterType::New(); subFilter->SetInput1(gaussianFilter1->GetOutput()); subFilter->SetInput2(gaussianFilter2->GetOutput()); subFilter->Update(); mitk::CastToMitkImage(subFilter->GetOutput(), output); } template void LaplacianOfGaussianFilter(itk::Image* itkImage, double variance, mitk::Image::Pointer &output) { typedef itk::Image ImageType; typedef itk::DiscreteGaussianImageFilter< ImageType, ImageType > GaussFilterType; typedef itk::LaplacianRecursiveGaussianImageFilter LaplacianFilter; typename GaussFilterType::Pointer gaussianFilter = GaussFilterType::New(); gaussianFilter->SetInput( itkImage ); gaussianFilter->SetVariance(variance); gaussianFilter->Update(); typename LaplacianFilter::Pointer laplaceFilter = LaplacianFilter::New(); laplaceFilter->SetInput(gaussianFilter->GetOutput()); laplaceFilter->Update(); mitk::CastToMitkImage(laplaceFilter->GetOutput(), output); } template void HessianOfGaussianFilter(itk::Image* itkImage, double variance, std::vector &out) { typedef itk::Image ImageType; typedef itk::Image FloatImageType; typedef itk::HessianRecursiveGaussianImageFilter HessianFilterType; typedef typename HessianFilterType::OutputImageType VectorImageType; typedef Functor::MatrixFirstEigenvalue DeterminantFunctorType; typedef itk::UnaryFunctorImageFilter DetFilterType; typename HessianFilterType::Pointer hessianFilter = HessianFilterType::New(); hessianFilter->SetInput(itkImage); hessianFilter->SetSigma(std::sqrt(variance)); for (unsigned int i = 0; i < VImageDimension; ++i) { typename DetFilterType::Pointer detFilter = DetFilterType::New(); detFilter->SetInput(hessianFilter->GetOutput()); detFilter->GetFunctor().order = i; detFilter->Update(); mitk::CastToMitkImage(detFilter->GetOutput(), out[i]); } } template void LocalHistograms(itk::Image* itkImage, std::vector &out, double offset, double delta) { typedef itk::Image ImageType; typedef itk::MultiHistogramFilter MultiHistogramType; typename MultiHistogramType::Pointer filter = MultiHistogramType::New(); filter->SetInput(itkImage); filter->SetOffset(offset); filter->SetDelta(delta); filter->Update(); for (int i = 0; i < 11; ++i) { mitk::Image::Pointer img = mitk::Image::New(); mitk::CastToMitkImage(filter->GetOutput(i), img); out.push_back(img); } } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); // required params parser.addArgument("image", "i", mitkCommandLineParser::InputImage, "Input Image", "Path to the input VTK polydata", us::Any(), false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output text file", "Target file. The output statistic is appended to this file.", us::Any(), false); parser.addArgument("extension", "e", mitkCommandLineParser::OutputFile, "Extension", "File extension. Default is .nii.gz", us::Any(), true); parser.addArgument("gaussian","g",mitkCommandLineParser::String, "Gaussian Filtering of the input images", "Gaussian Filter. Followed by the used variances seperated by ';' ",us::Any()); parser.addArgument("difference-of-gaussian","dog",mitkCommandLineParser::String, "Difference of Gaussian Filtering of the input images", "Difference of Gaussian Filter. Followed by the used variances seperated by ';' ",us::Any()); parser.addArgument("laplace-of-gauss","log",mitkCommandLineParser::String, "Laplacian of Gaussian Filtering", "Laplacian of Gaussian Filter. Followed by the used variances seperated by ';' ",us::Any()); parser.addArgument("hessian-of-gauss","hog",mitkCommandLineParser::String, "Hessian of Gaussian Filtering", "Hessian of Gaussian Filter. Followed by the used variances seperated by ';' ",us::Any()); parser.addArgument("local-histogram", "lh", mitkCommandLineParser::String, "Local Histograms", "Calculate the local histogram based feature. Specify Offset and Delta, for exampel -3;0.6 ", us::Any()); // Miniapp Infos parser.setCategory("Classification Tools"); parser.setTitle("Global Image Feature calculator"); parser.setDescription("Calculates different global statistics for a given segmentation / image combination"); parser.setContributor("MBI"); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) { return EXIT_FAILURE; } if ( parsedArgs.count("help") || parsedArgs.count("h")) { return EXIT_SUCCESS; } mitk::Image::Pointer image = dynamic_cast(mitk::IOUtil::Load(parsedArgs["image"].ToString())[0].GetPointer()); std::string filename=parsedArgs["output"].ToString(); std::string extension = ".nii.gz"; if (parsedArgs.count("extension")) { extension = parsedArgs["extension"].ToString(); } //////////////////////////////////////////////////////////////// // CAlculate Gaussian Features //////////////////////////////////////////////////////////////// MITK_INFO << "Check for Local Histogram..."; if (parsedArgs.count("local-histogram")) { std::vector outs; auto ranges = splitDouble(parsedArgs["local-histogram"].ToString(), ';'); if (ranges.size() < 2) { MITK_INFO << "Missing Delta and Offset for Local Histogram"; } else { AccessByItk_3(image, LocalHistograms, outs, ranges[0], ranges[1]); for (std::size_t i = 0; i < outs.size(); ++i) { std::string name = filename + "-lh" + us::any_value_to_string(i)+extension; mitk::IOUtil::Save(outs[i], name); } } } //////////////////////////////////////////////////////////////// // CAlculate Gaussian Features //////////////////////////////////////////////////////////////// MITK_INFO << "Check for Gaussian..."; if (parsedArgs.count("gaussian")) { MITK_INFO << "Calculate Gaussian... " << parsedArgs["gaussian"].ToString(); auto ranges = splitDouble(parsedArgs["gaussian"].ToString(),';'); for (std::size_t i = 0; i < ranges.size(); ++i) { MITK_INFO << "Gaussian with sigma: " << ranges[i]; mitk::Image::Pointer output; AccessByItk_2(image, GaussianFilter, ranges[i], output); MITK_INFO << "Write output:"; std::string name = filename + "-gaussian-" + us::any_value_to_string(ranges[i]) + extension; - mitk::IOUtil::SaveImage(output, name); + mitk::IOUtil::Save(output, name); } } //////////////////////////////////////////////////////////////// // CAlculate Difference of Gaussian Features //////////////////////////////////////////////////////////////// MITK_INFO << "Check for DoG..."; if (parsedArgs.count("difference-of-gaussian")) { MITK_INFO << "Calculate Difference of Gaussian... " << parsedArgs["difference-of-gaussian"].ToString(); auto ranges = splitDouble(parsedArgs["difference-of-gaussian"].ToString(),';'); for (std::size_t i = 0; i < ranges.size(); ++i) { mitk::Image::Pointer output; AccessByItk_2(image, DifferenceOfGaussFilter, ranges[i], output); std::string name = filename + "-dog-" + us::any_value_to_string(ranges[i]) + extension; mitk::IOUtil::Save(output, name); } } MITK_INFO << "Check for LoG..."; //////////////////////////////////////////////////////////////// // CAlculate Laplacian Of Gauss Features //////////////////////////////////////////////////////////////// if (parsedArgs.count("laplace-of-gauss")) { MITK_INFO << "Calculate LoG... " << parsedArgs["laplace-of-gauss"].ToString(); auto ranges = splitDouble(parsedArgs["laplace-of-gauss"].ToString(),';'); for (std::size_t i = 0; i < ranges.size(); ++i) { mitk::Image::Pointer output; AccessByItk_2(image, LaplacianOfGaussianFilter, ranges[i], output); std::string name = filename + "-log-" + us::any_value_to_string(ranges[i]) + extension; mitk::IOUtil::Save(output, name); } } MITK_INFO << "Check for HoG..."; //////////////////////////////////////////////////////////////// // CAlculate Hessian Of Gauss Features //////////////////////////////////////////////////////////////// if (parsedArgs.count("hessian-of-gauss")) { MITK_INFO << "Calculate HoG... " << parsedArgs["hessian-of-gauss"].ToString(); auto ranges = splitDouble(parsedArgs["hessian-of-gauss"].ToString(),';'); for (std::size_t i = 0; i < ranges.size(); ++i) { std::vector outs; outs.push_back(mitk::Image::New()); outs.push_back(mitk::Image::New()); outs.push_back(mitk::Image::New()); AccessByItk_2(image, HessianOfGaussianFilter, ranges[i], outs); std::string name = filename + "-hog0-" + us::any_value_to_string(ranges[i]) + extension; mitk::IOUtil::Save(outs[0], name); name = filename + "-hog1-" + us::any_value_to_string(ranges[i]) + extension; mitk::IOUtil::Save(outs[1], name); name = filename + "-hog2-" + us::any_value_to_string(ranges[i]) + extension; mitk::IOUtil::Save(outs[2], name); } } return 0; } #endif diff --git a/Modules/Classification/CLMiniApps/CMakeLists.txt b/Modules/Classification/CLMiniApps/CMakeLists.txt index 1978c241e3..af8f088c36 100644 --- a/Modules/Classification/CLMiniApps/CMakeLists.txt +++ b/Modules/Classification/CLMiniApps/CMakeLists.txt @@ -1,145 +1,135 @@ option(BUILD_ClassificationMiniApps "Build commandline tools for classification" OFF) if(BUILD_ClassificationMiniApps OR MITK_BUILD_ALL_APPS) include_directories( ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR} ) # list of miniapps # if an app requires additional dependencies # they are added after a "^^" and separated by "_" set( classificationminiapps RandomForestTraining^^MitkCLVigraRandomForest NativeHeadCTSegmentation^^MitkCLVigraRandomForest ManualSegmentationEvaluation^^MitkCLVigraRandomForest CLScreenshot^^MitkCore_MitkQtWidgetsExt_MitkCLUtilities CLDicom2Nrrd^^MitkCore CLImageTypeConverter^^MitkCore CLResampleImageToReference^^MitkCore - CLGlobalImageFeatures^^MitkCLUtilities + CLGlobalImageFeatures^^MitkCLUtilities_MitkQtWidgetsExt CLMRNormalization^^MitkCLUtilities_MitkCLMRUtilities CLStaple^^MitkCLUtilities CLVoxelFeatures^^MitkCLUtilities CLPolyToNrrd^^ CLSimpleVoxelClassification^^MitkDataCollection_MitkCLVigraRandomForest CLVoxelClassification^^MitkDataCollection_MitkCLImportanceWeighting_MitkCLVigraRandomForest CLBrainMask^^MitkCLUtilities XRaxSimulationFromCT^^MitkCLUtilities CLRandomSampling^^MitkCore_MitkCLUtilities CLRemoveEmptyVoxels^^MitkCore CLN4^^MitkCore CLMultiForestPrediction^^MitkDataCollection_MitkCLVigraRandomForest CLNrrdToPoly^^MitkCore CL2Dto3DImage^^MitkCore CLWeighting^^MitkCore_MitkCLImportanceWeighting_MitkCLUtilities CLOverlayRoiCenterOfMass^^MitkCore_MitkCLUtilities_MitkQtWidgetsExt CLLungSegmentation^^MitkCore_MitkSegmentation_MitkMultilabel # RandomForestPrediction^^MitkCLVigraRandomForest ) foreach(classificationminiapps ${classificationminiapps}) # extract mini app name and dependencies string(REPLACE "^^" "\\;" miniapp_info ${classificationminiapps}) set(miniapp_info_list ${miniapp_info}) list(GET miniapp_info_list 0 appname) list(GET miniapp_info_list 1 raw_dependencies) string(REPLACE "_" "\\;" dependencies "${raw_dependencies}") set(dependencies_list ${dependencies}) mitk_create_executable(${appname} DEPENDS MitkCore MitkCLCore MitkCommandLine ${dependencies_list} PACKAGE_DEPENDS ITK Qt5|Core Vigra CPP_FILES ${appname}.cpp ) # CPP_FILES ${appname}.cpp mitkCommandLineParser.cpp if(EXECUTABLE_IS_ENABLED) # On Linux, create a shell script to start a relocatable application if(UNIX AND NOT APPLE) install(PROGRAMS "${MITK_SOURCE_DIR}/CMake/RunInstalledApp.sh" DESTINATION "." RENAME ${EXECUTABLE_TARGET}.sh) endif() get_target_property(_is_bundle ${EXECUTABLE_TARGET} MACOSX_BUNDLE) if(APPLE) if(_is_bundle) set(_target_locations ${EXECUTABLE_TARGET}.app) set(${_target_locations}_qt_plugins_install_dir ${EXECUTABLE_TARGET}.app/Contents/MacOS) set(_bundle_dest_dir ${EXECUTABLE_TARGET}.app/Contents/MacOS) set(_qt_plugins_for_current_bundle ${EXECUTABLE_TARGET}.app/Contents/MacOS) set(_qt_conf_install_dirs ${EXECUTABLE_TARGET}.app/Contents/Resources) install(TARGETS ${EXECUTABLE_TARGET} BUNDLE DESTINATION . ) else() if(NOT MACOSX_BUNDLE_NAMES) set(_qt_conf_install_dirs bin) set(_target_locations bin/${EXECUTABLE_TARGET}) set(${_target_locations}_qt_plugins_install_dir bin) install(TARGETS ${EXECUTABLE_TARGET} RUNTIME DESTINATION bin) else() foreach(bundle_name ${MACOSX_BUNDLE_NAMES}) list(APPEND _qt_conf_install_dirs ${bundle_name}.app/Contents/Resources) set(_current_target_location ${bundle_name}.app/Contents/MacOS/${EXECUTABLE_TARGET}) list(APPEND _target_locations ${_current_target_location}) set(${_current_target_location}_qt_plugins_install_dir ${bundle_name}.app/Contents/MacOS) message( " set(${_current_target_location}_qt_plugins_install_dir ${bundle_name}.app/Contents/MacOS) ") install(TARGETS ${EXECUTABLE_TARGET} RUNTIME DESTINATION ${bundle_name}.app/Contents/MacOS/) endforeach() endif() endif() else() set(_target_locations bin/${EXECUTABLE_TARGET}${CMAKE_EXECUTABLE_SUFFIX}) set(${_target_locations}_qt_plugins_install_dir bin) set(_qt_conf_install_dirs bin) install(TARGETS ${EXECUTABLE_TARGET} RUNTIME DESTINATION bin) endif() endif() endforeach() # This mini app does not depend on mitkDiffusionImaging at all #mitk_create_executable(CLGlobalImageFeatures # DEPENDS MitkCore MitkCLUtilities # CPP_FILES CLGlobalImageFeatures.cpp mitkCommandLineParser.cpp #) - - mitk_create_executable(CLSimpleVoxelClassification - DEPENDS MitkCore MitkCLCore MitkDataCollection MitkCLVigraRandomForest MitkCommandLine - CPP_FILES CLSimpleVoxelClassification.cpp - ) - # This mini app does not depend on mitkDiffusionImaging at all - mitk_create_executable(CLVoxelClassification - DEPENDS MitkCore MitkCLCore MitkDataCollection MitkCLImportanceWeighting MitkCLVigraRandomForest - CPP_FILES CLVoxelClassification.cpp - ) #mitk_create_executable(CLBrainMask # DEPENDS MitkCore MitkCLUtilities # CPP_FILES CLBrainMask.cpp mitkCommandLineParser.cpp #) #mitk_create_executable(CLImageConverter # DEPENDS MitkCore # CPP_FILES CLImageConverter.cpp mitkCommandLineParser.cpp #) #mitk_create_executable(CLSurWeighting # DEPENDS MitkCore MitkCLUtilities MitkDataCollection #MitkCLImportanceWeighting # CPP_FILES CLSurWeighting.cpp mitkCommandLineParser.cpp #) #mitk_create_executable(CLImageCropper # DEPENDS MitkCore MitkCLUtilities MitkAlgorithmsExt # CPP_FILES CLImageCropper.cpp mitkCommandLineParser.cpp #) # On Linux, create a shell script to start a relocatable application if(UNIX AND NOT APPLE) install(PROGRAMS "${MITK_SOURCE_DIR}/CMake/RunInstalledApp.sh" DESTINATION "." RENAME ${EXECUTABLE_TARGET}.sh) endif() if(EXECUTABLE_IS_ENABLED) MITK_INSTALL_TARGETS(EXECUTABLES ${EXECUTABLE_TARGET}) endif() endif() diff --git a/Modules/Classification/CLMiniApps/XRaxSimulationFromCT.cpp b/Modules/Classification/CLMiniApps/XRaxSimulationFromCT.cpp index c951097f72..2aaff7647e 100644 --- a/Modules/Classification/CLMiniApps/XRaxSimulationFromCT.cpp +++ b/Modules/Classification/CLMiniApps/XRaxSimulationFromCT.cpp @@ -1,198 +1,198 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDicomSeriesReader.h" #include "mitkProperties.h" #include "mitkCommandLineParser.h" #include "mitkIOUtil.h" #include "itkImageRegionIterator.h" // MITK #include #include #include template void CreateXRay(itk::Image* itkImage, mitk::Image::Pointer mask1, std::string output) { typedef itk::Image ImageType; typedef itk::Image MaskType; typedef itk::Image NewImageType; typename MaskType::Pointer itkMask = MaskType::New(); mitk::CastToItkImage(mask1, itkMask); NewImageType::SpacingType newSpacing; auto spacing = itkImage->GetSpacing(); NewImageType::RegionType region1,region2,region3,region1m,region2m,region3m; NewImageType::IndexType start; start[0] = 0; start[1] = 0; NewImageType::SizeType size1, size2, size3; size1[0] = mask1->GetDimensions()[0]; size2[0] = mask1->GetDimensions()[0]; size3[0] = mask1->GetDimensions()[1]; size1[1] = mask1->GetDimensions()[1]; size2[1] = mask1->GetDimensions()[2]; size3[1] = mask1->GetDimensions()[2]; region1.SetSize(size1); region1m.SetSize(size1); region2.SetSize(size2); region2m.SetSize(size2); region3.SetSize(size3); region3m.SetSize(size3); region1.SetIndex(start); region1m.SetIndex(start); region2.SetIndex(start); region2m.SetIndex(start); region3.SetIndex(start); region3m.SetIndex(start); NewImageType::Pointer image1 = NewImageType::New(); image1->SetRegions(region1); image1->Allocate(); image1->FillBuffer(0); newSpacing[0] = spacing[0]; newSpacing[1] = spacing[1]; image1->SetSpacing(newSpacing); NewImageType::Pointer image2 = NewImageType::New(); image2->SetRegions(region2); image2->Allocate(); image2->FillBuffer(0); newSpacing[0] = spacing[0]; newSpacing[1] = spacing[2]; image2->SetSpacing(newSpacing); NewImageType::Pointer image3 = NewImageType::New(); image3->SetRegions(region3); image3->Allocate(); image3->FillBuffer(0); newSpacing[0] = spacing[1]; newSpacing[1] = spacing[2]; image3->SetSpacing(newSpacing); NewImageType::Pointer image1m = NewImageType::New(); image1m->SetRegions(region1m); image1m->Allocate(); image1m->FillBuffer(0); newSpacing[0] = spacing[0]; newSpacing[1] = spacing[1]; image1m->SetSpacing(newSpacing); NewImageType::Pointer image2m = NewImageType::New(); image2m->SetRegions(region2m); image2m->Allocate(); image2m->FillBuffer(0); newSpacing[0] = spacing[0]; newSpacing[1] = spacing[2]; image2m->SetSpacing(newSpacing); NewImageType::Pointer image3m = NewImageType::New(); image3m->SetRegions(region3m); image3m->Allocate(); image3m->FillBuffer(0); newSpacing[0] = spacing[1]; newSpacing[1] = spacing[2]; image3m->SetSpacing(newSpacing); - for (int x = 0; x < mask1->GetDimensions()[0]; ++x) + for (unsigned int x = 0; x < mask1->GetDimensions()[0]; ++x) { - for (int y = 0; y < mask1->GetDimensions()[1]; ++y) + for (unsigned int y = 0; y < mask1->GetDimensions()[1]; ++y) { - for (int z = 0; z < mask1->GetDimensions()[2]; ++z) + for (unsigned int z = 0; z < mask1->GetDimensions()[2]; ++z) { NewImageType::IndexType newIndex; ImageType::IndexType index; index[0] = x; index[1] = y; index[2] = z; double pixel = itkImage->GetPixel(index)+1024; pixel = pixel / 1000.0; newIndex[0] = x; newIndex[1] = y; image1->SetPixel(newIndex, image1->GetPixel(newIndex) + pixel); newIndex[0] = x; newIndex[1] = z; image2->SetPixel(newIndex, image2->GetPixel(newIndex) + pixel); newIndex[0] = y; newIndex[1] = z; image3->SetPixel(newIndex, image3->GetPixel(newIndex) + pixel); if (itkMask->GetPixel(index) > 0) { pixel = -1000 + 1024; pixel = pixel / 1000.0; } newIndex[0] = x; newIndex[1] = y; image1m->SetPixel(newIndex, image1m->GetPixel(newIndex) + pixel); newIndex[0] = x; newIndex[1] = z; image2m->SetPixel(newIndex, image2m->GetPixel(newIndex) + pixel); newIndex[0] = y; newIndex[1] = z; image3m->SetPixel(newIndex, image3m->GetPixel(newIndex) + pixel); } } } mitk::Image::Pointer img = mitk::ImportItkImage(image1); - mitk::IOUtil::SaveImage(img, output + "1.nrrd"); + mitk::IOUtil::Save(img, output + "1.nrrd"); img = mitk::ImportItkImage(image2); - mitk::IOUtil::SaveImage(img, output + "2.nrrd"); + mitk::IOUtil::Save(img, output + "2.nrrd"); img = mitk::ImportItkImage(image3); - mitk::IOUtil::SaveImage(img, output + "3.nrrd"); + mitk::IOUtil::Save(img, output + "3.nrrd"); img = mitk::ImportItkImage(image1m); - mitk::IOUtil::SaveImage(img, output + "1m.nrrd"); + mitk::IOUtil::Save(img, output + "1m.nrrd"); img = mitk::ImportItkImage(image2m); - mitk::IOUtil::SaveImage(img, output + "2m.nrrd"); + mitk::IOUtil::Save(img, output + "2m.nrrd"); img = mitk::ImportItkImage(image3m); - mitk::IOUtil::SaveImage(img, output + "3m.nrrd"); + mitk::IOUtil::Save(img, output + "3m.nrrd"); } int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Dicom Loader"); parser.setCategory("Preprocessing Tools"); parser.setDescription(""); parser.setContributor("MBI"); parser.setArgumentPrefix("-","-"); // Add command line argument names parser.addArgument("help", "h",mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.addArgument("input", "i", mitkCommandLineParser::InputDirectory, "Input image:", "Input folder", us::Any(), false); parser.addArgument("mask", "m", mitkCommandLineParser::InputDirectory, "Input mask:", "Input folder", us::Any(), false); parser.addArgument("output", "o", mitkCommandLineParser::OutputFile, "Output file:", "Output file",us::Any(),false); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; // Show a help message if ( parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } std::string inputImage = us::any_cast(parsedArgs["input"]); MITK_INFO << inputImage; std::string inputMask = us::any_cast(parsedArgs["mask"]); MITK_INFO << inputMask; mitk::Image::Pointer image = mitk::IOUtil::LoadImage(inputImage); mitk::Image::Pointer mask = mitk::IOUtil::LoadImage(inputMask); AccessByItk_2(image, CreateXRay, mask, parsedArgs["output"].ToString()); //const mitk::Image::Pointer image = *imageIter; //mitk::IOUtil::SaveImage(image,outFileName); return EXIT_SUCCESS; } diff --git a/Modules/Classification/CLUtilities/include/itkMultiHistogramFilter.cpp b/Modules/Classification/CLUtilities/include/itkMultiHistogramFilter.cpp index 544ee43a67..efec31ece5 100644 --- a/Modules/Classification/CLUtilities/include/itkMultiHistogramFilter.cpp +++ b/Modules/Classification/CLUtilities/include/itkMultiHistogramFilter.cpp @@ -1,113 +1,112 @@ #ifndef itkMultiHistogramFilter_cpp #define itkMultiHistogramFilter_cpp #include #include #include #include #include "itkMinimumMaximumImageCalculator.h" template< class TInputImageType, class TOuputImageType> itk::MultiHistogramFilter::MultiHistogramFilter(): m_Offset(-3.0), m_Delta(0.6), m_Bins(11), m_Size(5), m_UseImageIntensityRange(false) { this->SetNumberOfRequiredOutputs(m_Bins); this->SetNumberOfRequiredInputs(0); for (int i = 0; i < m_Bins; ++i) { this->SetNthOutput( i, this->MakeOutput(i) ); } } template< class TInputImageType, class TOuputImageType> void itk::MultiHistogramFilter::BeforeThreadedGenerateData() { typedef itk::MinimumMaximumImageCalculator ImageCalculatorFilterType; if (m_UseImageIntensityRange) { ImageCalculatorFilterType::Pointer imageCalculatorFilter = ImageCalculatorFilterType::New(); imageCalculatorFilter->SetImage(this->GetInput(0)); imageCalculatorFilter->Compute(); - offset = imageCalculatorFilter->GetMinimum(); - delta = 1.0*(imageCalculatorFilter->GetMaximum() - imageCalculatorFilter->GetMinimum()) / (1.0*m_Bins); + m_Offset = imageCalculatorFilter->GetMinimum(); + m_Delta = 1.0*(imageCalculatorFilter->GetMaximum() - imageCalculatorFilter->GetMinimum()) / (1.0*m_Bins); } - std::cout << "Offset: " << offset << " delta: " << delta << std::endl; - InputImagePointer input = this->GetInput(0); for (int i = 0; i < m_Bins; ++i) { CreateOutputImage(input, this->GetOutput(i)); } } template< class TInputImageType, class TOuputImageType> void itk::MultiHistogramFilter::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread, ThreadIdType threadId) { double offset = m_Offset;// -3.0; double delta = m_Delta;// 0.6; typedef itk::ImageRegionIterator IteratorType; typedef itk::ConstNeighborhoodIterator ConstIteratorType; typename TInputImageType::SizeType size; size.Fill(m_Size); + InputImagePointer input = this->GetInput(0); // MITK_INFO << "Creating output iterator"; std::vector iterVector; for (int i = 0; i < m_Bins; ++i) { IteratorType iter(this->GetOutput(i), outputRegionForThread); iterVector.push_back(iter); } ConstIteratorType inputIter(size, input, outputRegionForThread); while (!inputIter.IsAtEnd()) { for (int i = 0; i < m_Bins; ++i) { iterVector[i].Set(0); } for (unsigned int i = 0; i < inputIter.Size(); ++i) { double value = inputIter.GetPixel(i); value -= offset; value /= delta; int pos = (int)(value); pos = std::max(0, std::min(m_Bins-1, pos)); iterVector[pos].Value() += 1;// (iterVector[pos].GetCenterPixel() + 1); } for (int i = 0; i < m_Bins; ++i) { ++(iterVector[i]); } ++inputIter; } } template< class TInputImageType, class TOuputImageType> itk::ProcessObject::DataObjectPointer itk::MultiHistogramFilter::MakeOutput(itk::ProcessObject::DataObjectPointerArraySizeType /*idx*/) { itk::ProcessObject::DataObjectPointer output; output = ( TOuputImageType::New() ).GetPointer(); return output; } template< class TInputImageType, class TOuputImageType> void itk::MultiHistogramFilter::CreateOutputImage(InputImagePointer input, OutputImagePointer output) { output->SetRegions(input->GetLargestPossibleRegion()); output->Allocate(); } #endif //itkMultiHistogramFilter_cpp