diff --git a/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.cpp b/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.cpp index 46101189d9..afa4447a0b 100644 --- a/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.cpp +++ b/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.cpp @@ -1,219 +1,219 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkNavigationDataSliceVisualization.h" #include "mitkBaseRenderer.h" mitk::NavigationDataSliceVisualization::NavigationDataSliceVisualization() : mitk::NavigationDataToNavigationDataFilter(), m_Renderer(nullptr), m_ViewDirection(Axial) { m_TipOffset[0] = 0.0f; m_TipOffset[1] = 0.0f; m_TipOffset[2] = 0.0f; m_ToolTrajectory[0] = 0; m_ToolTrajectory[1] = 0; m_ToolTrajectory[2] = -1; m_WorldVerticalVector[0] = 0.0; m_WorldVerticalVector[1] = 1.0; m_WorldVerticalVector[2] = 0.0; } void mitk::NavigationDataSliceVisualization::SetToolTrajectory(Vector3D direction) { if (Equal(direction.GetNorm(), 0.0)) { MITK_WARN << "Ignoring invalid direction of projection: " << direction; return; } if (m_ToolTrajectory != direction) { m_ToolTrajectory = direction; this->SetViewDirection(Oblique); this->Modified(); } } void mitk::NavigationDataSliceVisualization::GenerateData() { // check if renderer was set if (m_Renderer.IsNull()) { itkExceptionMacro(<< "Renderer was not properly set"); } /* update outputs with tracking data from tools */ unsigned int numberOfInputs = this->GetNumberOfInputs(); if (numberOfInputs == 0) { return; } for (unsigned int i = 0; i < numberOfInputs ; ++i) { NavigationData* output = this->GetOutput(i); assert(output); const NavigationData* input = this->GetInput(i); assert(input); if (!input->IsDataValid()) continue; output->Graft(input); // First, copy all information from input to output } // Nothing left to do if we don't have an input with valid data if (numberOfInputs == 0 || !this->GetInput()->IsDataValid()) return; // get position from NavigationData to move the slice to this position Point3D slicePosition = this->GetInput()->GetPosition(); { NavigationData::OrientationType orientation = this->GetInput()->GetOrientation(); Vector3D transformedTipOffset; transformedTipOffset.SetVnlVector(orientation.rotate(m_TipOffset.GetVnlVector()).as_ref()); slicePosition += transformedTipOffset; mitk::SliceNavigationController::Pointer snc = m_Renderer->GetSliceNavigationController(); if (Axial == m_ViewDirection) { snc->SetViewDirection(mitk::SliceNavigationController::Axial); snc->SelectSliceByPoint(slicePosition); } else if (Sagittal == m_ViewDirection) { snc->SetViewDirection(mitk::SliceNavigationController::Sagittal); snc->SelectSliceByPoint(slicePosition); } - else if (Frontal == m_ViewDirection) + else if (Coronal == m_ViewDirection) { snc->SetViewDirection(mitk::SliceNavigationController::Coronal); snc->SelectSliceByPoint(slicePosition); } else if (AxialOblique == m_ViewDirection || SagittalOblique == m_ViewDirection) { const int slicingPlaneXAxis = AxialOblique == m_ViewDirection ? 0 : 2; // The column 0 is the slicing plane's x-axis, column 1 is the slicing plane's y-axis const mitk::PlaneGeometry::TransformType::MatrixType &m = m_Renderer->GetCurrentWorldPlaneGeometry()->GetIndexToWorldTransform()->GetMatrix(); // Rotate the tool trajectory vector into world coordinate frame (assuming // NavigationData has passed through a NavigationDataTransformFilter to // convert it into world coordinate frame) Vector3D slicingPlaneYAxisVector; slicingPlaneYAxisVector.SetVnlVector(orientation.rotate(m_ToolTrajectory.GetVnlVector()).as_ref()); // Project the tool trajectory onto the plane normal to x-axis of this // oblique slicing. This defines the y-axis ("up") of the oblique slicing // plane slicingPlaneYAxisVector[slicingPlaneXAxis] = 0.0; // Do nothing for ambigous/undefined cases: // - the R-L component of the x-axis is zero (for AxialOblique) // - the S-I component of the x-axis is zero (for SagittalOblique) // - the A-P component of the y-axis is zero if ( m(slicingPlaneXAxis,0) == 0.0 || m(1,1) == 0.0 || (slicingPlaneXAxis != 0 && slicingPlaneYAxisVector[0] == 0.0) || (slicingPlaneXAxis != 1 && slicingPlaneYAxisVector[1] == 0.0) || (slicingPlaneXAxis != 2 && slicingPlaneYAxisVector[2] == 0.0) ) { return; } // Maintain the A-P orientation of the slice's y-axis regardless of what // direction the tool trajectory points /// @todo Use std::signbit if ( (m(1,1) > 0) != (slicingPlaneYAxisVector[1] > 0) ) { slicingPlaneYAxisVector *= -1; } Vector3D slicingPlaneXAxisVector; slicingPlaneXAxisVector.Fill(0.0); // For AxialOblique: maintain the Left/Right direction of the slice's x-axis // For SagittalOblique: maintain the Superior/Inferior direction of the slice's x-axis /// @todo Use std::copysign slicingPlaneXAxisVector[slicingPlaneXAxis] = m(slicingPlaneXAxis,0) > 0 ? 1.0 : -1.0; Point3D origin; FillVector3D(origin, 0.0, 0.0, 0.0); snc->ReorientSlices(origin, slicingPlaneXAxisVector, slicingPlaneYAxisVector); snc->SelectSliceByPoint(slicePosition); } else if (Oblique == m_ViewDirection) { Vector3D slicingPlaneNormalVector; slicingPlaneNormalVector.SetVnlVector(orientation.rotate(m_ToolTrajectory.GetVnlVector()).as_ref()); // The second column of the Index-to-World matrix is the positive y-axis // of the current slicing plane in world coordinates. const mitk::PlaneGeometry::TransformType::MatrixType &m = m_Renderer->GetCurrentWorldPlaneGeometry()->GetIndexToWorldTransform()->GetMatrix(); mitk::Vector3D currentSlicingPlaneUpVector; mitk::FillVector3D(currentSlicingPlaneUpVector, m[0][1], m[1][1], m[2][1]); mitk::Vector3D worldUpVector = m_WorldVerticalVector; if (angle(worldUpVector.GetVnlVector(), currentSlicingPlaneUpVector.GetVnlVector()) > vnl_math::pi_over_2 ) { worldUpVector *= -1; } mitk::PlaneGeometry::Pointer slicingPlane = mitk::PlaneGeometry::New(); Point3D origin; FillVector3D(origin, 0.0, 0.0, 0.0); slicingPlane->InitializePlane(origin, slicingPlaneNormalVector); // Now that we have the direction of WorldVerticalVector chosen to be the // most "up" direction, project it onto the slicing plane to define the // up vector (y-axis) of the reoriented slices mitk::Vector3D slicingPlaneUpVector; if ( slicingPlane->Project(worldUpVector, slicingPlaneUpVector) ) { // slicingPlaneUpVector CROSS slicingPlaneNormalVector -> slicingPlaneRightVector // Math is done in double precision as much as possible to get more // orthogonal right and up vectors which fixes a VNL SVD error when // the WorldGeometry matrix is later inverted itk::Vector slicingPlaneUpVector_double; FillVector3D(slicingPlaneUpVector_double, slicingPlaneUpVector[0], slicingPlaneUpVector[1], slicingPlaneUpVector[2]); itk::Vector slicingPlaneNormalVector_double; FillVector3D(slicingPlaneNormalVector_double, slicingPlaneNormalVector[0], slicingPlaneNormalVector[1], slicingPlaneNormalVector[2]); itk::Vector slicingPlaneRightVector_double = itk::CrossProduct(slicingPlaneUpVector_double, slicingPlaneNormalVector_double); mitk::Vector3D slicingPlaneRightVector; mitk::FillVector3D(slicingPlaneRightVector, slicingPlaneRightVector_double[0], slicingPlaneRightVector_double[1], slicingPlaneRightVector_double[2]); mitk::FillVector3D(slicingPlaneUpVector, slicingPlaneUpVector_double[0], slicingPlaneUpVector_double[1], slicingPlaneUpVector_double[2]); snc->ReorientSlices(origin, slicingPlaneRightVector, slicingPlaneUpVector); snc->SelectSliceByPoint(slicePosition); } } else { MITK_ERROR << "Unsupported ViewDirection: " << m_ViewDirection; } m_Renderer->RequestUpdate(); } } diff --git a/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.h b/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.h index 179edc46f7..a78f7e1cf6 100644 --- a/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.h +++ b/Modules/IGT/Rendering/mitkNavigationDataSliceVisualization.h @@ -1,135 +1,135 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MITKNAVIGATIONDATASLICEVISUALIZATION_H_HEADER_INCLUDED_ #define MITKNAVIGATIONDATASLICEVISUALIZATION_H_HEADER_INCLUDED_ #include "mitkNavigationDataToNavigationDataFilter.h" #include "mitkBaseRenderer.h" #include "mitkVector.h" namespace mitk { /**Documentation * \brief Control the position and orientation of rendered slices with NavigationData * * A NavigationDataToNavigationDataFilter that takes NavigationData as input and * sets the position and, optionally, the orientation of the slice plane for a * user-specified renderer. * * \ingroup IGT */ class MITKIGT_EXPORT NavigationDataSliceVisualization : public NavigationDataToNavigationDataFilter { public: mitkClassMacro(NavigationDataSliceVisualization, NavigationDataToNavigationDataFilter); itkNewMacro(Self); enum ViewDirection { /** * Tracked slice planes are NOT re-oriented, only the position * of the slice plane is controlled by the input navigation data. */ Axial = 0, Sagittal, - Frontal, + Coronal, /** * Axial plane "tilted" about the lateral vector so that it is coplanar * with the tool trajectory */ AxialOblique, /** * Sagittal plane "tilted" about the axial vector so that it is coplanar * with the tool trajectory */ SagittalOblique, /** * Slice plane normal to the tool trajectory */ Oblique }; /** * \brief Set/get the renderer that visualizes the navigation data */ itkSetObjectMacro(Renderer,BaseRenderer); itkGetConstObjectMacro(Renderer,BaseRenderer); /** * \brief Set/get the tip offset used for plane tracking * * This is an additional offset vector applied to the input navigation * data. It is defined in tool tip coordinates. In other words: * * \code * position_slice = position_input + orient_input.rotate(TipOffset) * \endcode * * Default is [0,0,0]. */ itkSetMacro(TipOffset, Vector3D); itkGetConstMacro(TipOffset,Vector3D); /** * \brief Set/get the tool trajectory used to define the cutting plane * normal direction. * * This vector, defined in tool tip coordinates, applies only when the * ViewDirection is Oblique. * * Default is [0,0,-1]. */ virtual void SetToolTrajectory(Vector3D direction); itkGetConstMacro(ToolTrajectory, Vector3D); /** * \brief Set/get the world vertical vector used to define the y-axis of the * cutting plane * * This vector, defined in world coordinates, applies only when the * ViewDirection is Oblique. It is projected onto the cutting plane to * define the vertical orientation of the slice. * * The direction of this vector does not matter (i.e. [0,1,0] is the same * as [0,-1,0]). The direction will be determined automatically by * choosing the one that is closest to the direction of the y-axis of the * PlaneGeometry before each update. This way, the anatomical axis * directions that get set initially will be maintained after every update * of this filter. * * Default is [0,1,0]. */ itkSetMacro(WorldVerticalVector, Vector3D); itkGetConstMacro(WorldVerticalVector, Vector3D); /** * \brief Set/get the orientation of the sliced plane * * Default is Axial. */ itkSetEnumMacro(ViewDirection,ViewDirection); itkGetEnumMacro(ViewDirection,ViewDirection); protected: NavigationDataSliceVisualization(); void GenerateData() override; BaseRenderer::Pointer m_Renderer; Vector3D m_TipOffset; Vector3D m_ToolTrajectory; Vector3D m_WorldVerticalVector; ViewDirection m_ViewDirection; }; } // end namespace mitk #endif // NEMOSLICEVISUALIZATIONFILTER_H diff --git a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp index 5ccc2dc29b..ca9a769dfd 100644 --- a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp +++ b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp @@ -1,757 +1,757 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSegTool2D.h" #include "mitkToolManager.h" #include "mitkBaseRenderer.h" #include "mitkDataStorage.h" #include "mitkPlaneGeometry.h" // Include of the new ImageExtractor #include "mitkMorphologicalOperations.h" #include "mitkPlanarCircle.h" #include "usGetModuleContext.h" // Includes for 3DSurfaceInterpolation #include "mitkImageTimeSelector.h" #include "mitkImageToContourFilter.h" #include "mitkSurfaceInterpolationController.h" // includes for resling and overwriting #include #include #include #include #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include #include "mitkAbstractTransformGeometry.h" #include "mitkLabelSetImage.h" #include "mitkContourModelUtils.h" #include "itkImageRegionIterator.h" #define ROUND(a) ((a) > 0 ? (int)((a) + 0.5) : -(int)(0.5 - (a))) bool mitk::SegTool2D::m_SurfaceInterpolationEnabled = true; mitk::SegTool2D::SliceInformation::SliceInformation(const mitk::Image* aSlice, const mitk::PlaneGeometry* aPlane, mitk::TimeStepType aTimestep) : slice(aSlice), plane(aPlane), timestep(aTimestep) { } mitk::SegTool2D::SegTool2D(const char *type, const us::Module *interactorModule) : Tool(type, interactorModule), m_Contourmarkername("Position") { Tool::m_EventConfig = "DisplayConfigBlockLMB.xml"; } mitk::SegTool2D::~SegTool2D() { } bool mitk::SegTool2D::FilterEvents(InteractionEvent *interactionEvent, DataNode *) { const auto *positionEvent = dynamic_cast(interactionEvent); bool isValidEvent = (positionEvent && // Only events of type mitk::InteractionPositionEvent interactionEvent->GetSender()->GetMapperID() == BaseRenderer::Standard2D // Only events from the 2D renderwindows ); return isValidEvent; } bool mitk::SegTool2D::DetermineAffectedImageSlice(const Image *image, const PlaneGeometry *plane, int &affectedDimension, int &affectedSlice) { assert(image); assert(plane); // compare normal of plane to the three axis vectors of the image Vector3D normal = plane->GetNormal(); Vector3D imageNormal0 = image->GetSlicedGeometry()->GetAxisVector(0); Vector3D imageNormal1 = image->GetSlicedGeometry()->GetAxisVector(1); Vector3D imageNormal2 = image->GetSlicedGeometry()->GetAxisVector(2); normal.Normalize(); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); imageNormal0.SetVnlVector(vnl_cross_3d(normal.GetVnlVector(), imageNormal0.GetVnlVector())); imageNormal1.SetVnlVector(vnl_cross_3d(normal.GetVnlVector(), imageNormal1.GetVnlVector())); imageNormal2.SetVnlVector(vnl_cross_3d(normal.GetVnlVector(), imageNormal2.GetVnlVector())); double eps(0.00001); // axial if (imageNormal2.GetNorm() <= eps) { affectedDimension = 2; } // sagittal else if (imageNormal1.GetNorm() <= eps) { affectedDimension = 1; } - // frontal + // coronal else if (imageNormal0.GetNorm() <= eps) { affectedDimension = 0; } else { affectedDimension = -1; // no idea return false; } // determine slice number in image BaseGeometry *imageGeometry = image->GetGeometry(0); Point3D testPoint = imageGeometry->GetCenter(); Point3D projectedPoint; plane->Project(testPoint, projectedPoint); Point3D indexPoint; imageGeometry->WorldToIndex(projectedPoint, indexPoint); affectedSlice = ROUND(indexPoint[affectedDimension]); MITK_DEBUG << "indexPoint " << indexPoint << " affectedDimension " << affectedDimension << " affectedSlice " << affectedSlice; // check if this index is still within the image if (affectedSlice < 0 || affectedSlice >= static_cast(image->GetDimension(affectedDimension))) return false; return true; } void mitk::SegTool2D::UpdateSurfaceInterpolation(const Image *slice, const Image *workingImage, const PlaneGeometry *plane, bool detectIntersection) { std::vector slices = { SliceInformation(slice, plane, 0)}; Self::UpdateSurfaceInterpolation(slices, workingImage, detectIntersection); } void mitk::SegTool2D::RemoveContourFromInterpolator(const SliceInformation& sliceInfo) { mitk::SurfaceInterpolationController::ContourPositionInformation contourInfo; contourInfo.contourNormal = sliceInfo.plane->GetNormal(); contourInfo.contourPoint = sliceInfo.plane->GetOrigin(); mitk::SurfaceInterpolationController::GetInstance()->RemoveContour(contourInfo); } void mitk::SegTool2D::UpdateSurfaceInterpolation(const std::vector& sliceInfos, const Image* workingImage, bool detectIntersection) { if (!m_SurfaceInterpolationEnabled) return; //Remark: the ImageTimeSelector is just needed to extract a timestep/channel of //the image in order to get the image dimension (time dimension and channel dimension //stripped away). Therfore it is OK to always use time step 0 and channel 0 mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(workingImage); timeSelector->SetTimeNr(0); timeSelector->SetChannelNr(0); timeSelector->Update(); const auto dimRefImg = timeSelector->GetOutput()->GetDimension(); if (dimRefImg != 3) return; std::vector contourList; contourList.reserve(sliceInfos.size()); ImageToContourFilter::Pointer contourExtractor = ImageToContourFilter::New(); std::vector relevantSlices = sliceInfos; if (detectIntersection) { relevantSlices.clear(); for (const auto& sliceInfo : sliceInfos) { // Test whether there is something to extract or whether the slice just contains intersections of others mitk::Image::Pointer slice2 = sliceInfo.slice->Clone(); mitk::MorphologicalOperations::Erode(slice2, 2, mitk::MorphologicalOperations::Ball); contourExtractor->SetInput(slice2); contourExtractor->Update(); mitk::Surface::Pointer contour = contourExtractor->GetOutput(); if (contour->GetVtkPolyData()->GetNumberOfPoints() == 0) { Self::RemoveContourFromInterpolator(sliceInfo); } else { relevantSlices.push_back(sliceInfo); } } } if (relevantSlices.empty()) return; for (const auto& sliceInfo : relevantSlices) { contourExtractor->SetInput(sliceInfo.slice); contourExtractor->Update(); mitk::Surface::Pointer contour = contourExtractor->GetOutput(); if (contour->GetVtkPolyData()->GetNumberOfPoints() == 0) { Self::RemoveContourFromInterpolator(sliceInfo); } else { contour->DisconnectPipeline(); contourList.push_back(contour); } } mitk::SurfaceInterpolationController::GetInstance()->AddNewContours(contourList); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const InteractionPositionEvent *positionEvent, const Image *image, unsigned int component /*= 0*/) { if (!positionEvent) { return nullptr; } assert(positionEvent->GetSender()); // sure, right? const auto timeStep = positionEvent->GetSender()->GetTimeStep(image); // get the timestep of the visible part (time-wise) of the image return GetAffectedImageSliceAs2DImage(positionEvent->GetSender()->GetCurrentWorldPlaneGeometry(), image, timeStep, component); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(const PlaneGeometry* planeGeometry, const Image* image, TimePointType timePoint, unsigned int component /*= 0*/) { if (!image || !planeGeometry) { return nullptr; } if (!image->GetTimeGeometry()->IsValidTimePoint(timePoint)) return nullptr; return SegTool2D::GetAffectedImageSliceAs2DImage(planeGeometry, image, image->GetTimeGeometry()->TimePointToTimeStep(timePoint), component); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const PlaneGeometry *planeGeometry, const Image *image, TimeStepType timeStep, unsigned int component /*= 0*/) { if (!image || !planeGeometry) { return nullptr; } // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // set to false to extract a slice reslice->SetOverwriteMode(false); reslice->Modified(); // use ExtractSliceFilter with our specific vtkImageReslice for overwriting and extracting mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput(image); extractor->SetTimeStep(timeStep); extractor->SetWorldGeometry(planeGeometry); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry(image->GetTimeGeometry()->GetGeometryForTimeStep(timeStep)); // additionally extract the given component // default is 0; the extractor checks for multi-component images extractor->SetComponent(component); extractor->Modified(); extractor->Update(); Image::Pointer slice = extractor->GetOutput(); return slice; } mitk::Image::Pointer mitk::SegTool2D::GetAffectedWorkingSlice(const InteractionPositionEvent *positionEvent) const { const auto workingNode = this->GetWorkingDataNode(); if (!workingNode) { return nullptr; } const auto *workingImage = dynamic_cast(workingNode->GetData()); if (!workingImage) { return nullptr; } return GetAffectedImageSliceAs2DImage(positionEvent, workingImage); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedReferenceSlice(const InteractionPositionEvent *positionEvent) const { DataNode* referenceNode = this->GetReferenceDataNode(); if (!referenceNode) { return nullptr; } auto *referenceImage = dynamic_cast(referenceNode->GetData()); if (!referenceImage) { return nullptr; } int displayedComponent = 0; if (referenceNode->GetIntProperty("Image.Displayed Component", displayedComponent)) { // found the displayed component return GetAffectedImageSliceAs2DImage(positionEvent, referenceImage, displayedComponent); } else { return GetAffectedImageSliceAs2DImage(positionEvent, referenceImage); } } mitk::Image::Pointer mitk::SegTool2D::GetAffectedReferenceSlice(const PlaneGeometry* planeGeometry, TimeStepType timeStep) const { DataNode* referenceNode = this->GetReferenceDataNode(); if (!referenceNode) { return nullptr; } auto* referenceImage = dynamic_cast(referenceNode->GetData()); if (!referenceImage) { return nullptr; } int displayedComponent = 0; if (referenceNode->GetIntProperty("Image.Displayed Component", displayedComponent)) { // found the displayed component return GetAffectedImageSliceAs2DImage(planeGeometry, referenceImage, timeStep, displayedComponent); } else { return GetAffectedImageSliceAs2DImage(planeGeometry, referenceImage, timeStep); } } void mitk::SegTool2D::Activated() { Superclass::Activated(); this->GetToolManager()->SelectedTimePointChanged += mitk::MessageDelegate(this, &mitk::SegTool2D::OnTimePointChangedInternal); m_LastTimePointTriggered = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); } void mitk::SegTool2D::Deactivated() { this->GetToolManager()->SelectedTimePointChanged -= mitk::MessageDelegate(this, &mitk::SegTool2D::OnTimePointChangedInternal); Superclass::Deactivated(); } void mitk::SegTool2D::OnTimePointChangedInternal() { if (m_IsTimePointChangeAware && nullptr != this->GetWorkingDataNode()) { const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); if (timePoint != m_LastTimePointTriggered) { m_LastTimePointTriggered = timePoint; this->OnTimePointChanged(); } } } void mitk::SegTool2D::OnTimePointChanged() { //default implementation does nothing } mitk::DataNode* mitk::SegTool2D::GetWorkingDataNode() const { if (nullptr != this->GetToolManager()) { return this->GetToolManager()->GetWorkingData(0); } return nullptr; } mitk::Image* mitk::SegTool2D::GetWorkingData() const { auto node = this->GetWorkingDataNode(); if (nullptr != node) { return dynamic_cast(node->GetData()); } return nullptr; } mitk::DataNode* mitk::SegTool2D::GetReferenceDataNode() const { if (nullptr != this->GetToolManager()) { return this->GetToolManager()->GetReferenceData(0); } return nullptr; } mitk::Image* mitk::SegTool2D::GetReferenceData() const { auto node = this->GetReferenceDataNode(); if (nullptr != node) { return dynamic_cast(node->GetData()); } return nullptr; } void mitk::SegTool2D::WriteBackSegmentationResult(const InteractionPositionEvent *positionEvent, const Image * segmentationResult) { if (!positionEvent) return; const PlaneGeometry *planeGeometry((positionEvent->GetSender()->GetCurrentWorldPlaneGeometry())); const auto *abstractTransformGeometry( dynamic_cast(positionEvent->GetSender()->GetCurrentWorldPlaneGeometry())); if (planeGeometry && segmentationResult && !abstractTransformGeometry) { const auto workingNode = this->GetWorkingDataNode(); auto *image = dynamic_cast(workingNode->GetData()); const auto timeStep = positionEvent->GetSender()->GetTimeStep(image); this->WriteBackSegmentationResult(planeGeometry, segmentationResult, timeStep); } } void mitk::SegTool2D::WriteBackSegmentationResult(const DataNode* workingNode, const PlaneGeometry* planeGeometry, const Image* segmentationResult, TimeStepType timeStep) { if (!planeGeometry || !segmentationResult) return; SliceInformation sliceInfo(segmentationResult, const_cast(planeGeometry), timeStep); Self::WriteBackSegmentationResults(workingNode, { sliceInfo }, true); } void mitk::SegTool2D::WriteBackSegmentationResult(const PlaneGeometry *planeGeometry, const Image * segmentationResult, TimeStepType timeStep) { if (!planeGeometry || !segmentationResult) return; SliceInformation sliceInfo(segmentationResult, const_cast(planeGeometry), timeStep); WriteBackSegmentationResults({ sliceInfo }, true); } void mitk::SegTool2D::WriteBackSegmentationResults(const std::vector &sliceList, bool writeSliceToVolume) { if (sliceList.empty()) { return; } if (nullptr == m_LastEventSender) { MITK_WARN << "Cannot write tool results. Tool seems to be in an invalid state, as no interaction event was recieved but is expected."; return; } const auto workingNode = this->GetWorkingDataNode(); mitk::SegTool2D::WriteBackSegmentationResults(workingNode, sliceList, writeSliceToVolume); // the first geometry is needed otherwise restoring the position is not working const auto* plane3 = dynamic_cast(dynamic_cast( m_LastEventSender->GetSliceNavigationController()->GetCurrentGeometry3D()) ->GetPlaneGeometry(0)); unsigned int slicePosition = m_LastEventSender->GetSliceNavigationController()->GetSlice()->GetPos(); /* A cleaner solution would be to add a contour marker for each slice info. It currently does not work as the contour markers expect that the plane is always the plane of slice 0. Had not the time to do it properly no. Should be solved by T28146*/ this->AddContourmarker(plane3, slicePosition); } void mitk::SegTool2D::WriteBackSegmentationResults(const DataNode* workingNode, const std::vector& sliceList, bool writeSliceToVolume) { if (sliceList.empty()) { return; } if (nullptr == workingNode) { mitkThrow() << "Cannot write slice to working node. Working node is invalid."; } auto* image = dynamic_cast(workingNode->GetData()); if (nullptr == image) { mitkThrow() << "Cannot write slice to working node. Working node does not contain an image."; } for (const auto& sliceInfo : sliceList) { if (writeSliceToVolume && nullptr != sliceInfo.plane && sliceInfo.slice.IsNotNull()) { mitk::SegTool2D::WriteSliceToVolume(image, sliceInfo, true); } } mitk::SegTool2D::UpdateSurfaceInterpolation(sliceList, image, false); // also mark its node as modified (T27308). Can be removed if T27307 // is properly solved if (workingNode != nullptr) workingNode->Modified(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::SegTool2D::WriteSliceToVolume(Image* workingImage, const PlaneGeometry* planeGeometry, const Image* slice, TimeStepType timeStep, bool allowUndo) { SliceInformation sliceInfo(slice, planeGeometry, timeStep); WriteSliceToVolume(workingImage, sliceInfo , allowUndo); } void mitk::SegTool2D::WriteSliceToVolume(Image* workingImage, const SliceInformation &sliceInfo, bool allowUndo) { if (nullptr == workingImage) { mitkThrow() << "Cannot write slice to working node. Working node does not contain an image."; } DiffSliceOperation* undoOperation = nullptr; if (allowUndo) { /*============= BEGIN undo/redo feature block ========================*/ // Create undo operation by caching the not yet modified slices mitk::Image::Pointer originalSlice = GetAffectedImageSliceAs2DImage(sliceInfo.plane, workingImage, sliceInfo.timestep); undoOperation = new DiffSliceOperation(workingImage, originalSlice, dynamic_cast(originalSlice->GetGeometry()), sliceInfo.timestep, sliceInfo.plane); /*============= END undo/redo feature block ========================*/ } // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk // reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // Set the slice as 'input' // casting const away is needed and OK as long the OverwriteMode of // mitkVTKImageOverwrite is true. // Reason: because then the input slice is not touched but // used to overwrite the input of the ExtractSliceFilter. auto noneConstSlice = const_cast(sliceInfo.slice.GetPointer()); reslice->SetInputSlice(noneConstSlice->GetVtkImageData()); // set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput(workingImage); extractor->SetTimeStep(sliceInfo.timestep); extractor->SetWorldGeometry(sliceInfo.plane); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry(workingImage->GetGeometry(sliceInfo.timestep)); extractor->Modified(); extractor->Update(); // the image was modified within the pipeline, but not marked so workingImage->Modified(); workingImage->GetVtkImageData()->Modified(); if (allowUndo) { /*============= BEGIN undo/redo feature block ========================*/ // specify the redo operation with the edited slice auto* doOperation = new DiffSliceOperation(workingImage, extractor->GetOutput(), dynamic_cast(sliceInfo.slice->GetGeometry()), sliceInfo.timestep, sliceInfo.plane); // create an operation event for the undo stack OperationEvent* undoStackItem = new OperationEvent(DiffSliceOperationApplier::GetInstance(), doOperation, undoOperation, "Segmentation"); // add it to the undo controller UndoStackItem::IncCurrObjectEventId(); UndoStackItem::IncCurrGroupEventId(); UndoController::GetCurrentUndoModel()->SetOperationEvent(undoStackItem); /*============= END undo/redo feature block ========================*/ } } void mitk::SegTool2D::SetShowMarkerNodes(bool status) { m_ShowMarkerNodes = status; } void mitk::SegTool2D::SetEnable3DInterpolation(bool enabled) { m_SurfaceInterpolationEnabled = enabled; } int mitk::SegTool2D::AddContourmarker(const PlaneGeometry* planeGeometry, unsigned int sliceIndex) { if (planeGeometry == nullptr) return -1; us::ServiceReference serviceRef = us::GetModuleContext()->GetServiceReference(); PlanePositionManagerService *service = us::GetModuleContext()->GetService(serviceRef); unsigned int size = service->GetNumberOfPlanePositions(); unsigned int id = service->AddNewPlanePosition(planeGeometry, sliceIndex); mitk::PlanarCircle::Pointer contourMarker = mitk::PlanarCircle::New(); mitk::Point2D p1; planeGeometry->Map(planeGeometry->GetCenter(), p1); mitk::Point2D p2 = p1; p2[0] -= planeGeometry->GetSpacing()[0]; p2[1] -= planeGeometry->GetSpacing()[1]; contourMarker->PlaceFigure(p1); contourMarker->SetCurrentControlPoint(p1); contourMarker->SetPlaneGeometry(planeGeometry->Clone()); std::stringstream markerStream; auto workingNode = this->GetWorkingDataNode(); markerStream << m_Contourmarkername; markerStream << " "; markerStream << id + 1; DataNode::Pointer rotatedContourNode = DataNode::New(); rotatedContourNode->SetData(contourMarker); rotatedContourNode->SetProperty("name", StringProperty::New(markerStream.str())); rotatedContourNode->SetProperty("isContourMarker", BoolProperty::New(true)); rotatedContourNode->SetBoolProperty("PlanarFigureInitializedWindow", true, m_LastEventSender); rotatedContourNode->SetProperty("includeInBoundingBox", BoolProperty::New(false)); rotatedContourNode->SetProperty("helper object", mitk::BoolProperty::New(!m_ShowMarkerNodes)); rotatedContourNode->SetProperty("planarfigure.drawcontrolpoints", BoolProperty::New(false)); rotatedContourNode->SetProperty("planarfigure.drawname", BoolProperty::New(false)); rotatedContourNode->SetProperty("planarfigure.drawoutline", BoolProperty::New(false)); rotatedContourNode->SetProperty("planarfigure.drawshadow", BoolProperty::New(false)); if (planeGeometry) { if (id == size) { this->GetToolManager()->GetDataStorage()->Add(rotatedContourNode, workingNode); } else { mitk::NodePredicateProperty::Pointer isMarker = mitk::NodePredicateProperty::New("isContourMarker", mitk::BoolProperty::New(true)); mitk::DataStorage::SetOfObjects::ConstPointer markers = this->GetToolManager()->GetDataStorage()->GetDerivations(workingNode, isMarker); for (auto iter = markers->begin(); iter != markers->end(); ++iter) { std::string nodeName = (*iter)->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int markerId = atof(nodeName.substr(t + 1).c_str()) - 1; if (id == markerId) { return id; } } this->GetToolManager()->GetDataStorage()->Add(rotatedContourNode, workingNode); } } return id; } void mitk::SegTool2D::InteractiveSegmentationBugMessage(const std::string &message) const { MITK_ERROR << "********************************************************************************" << std::endl << " " << message << std::endl << "********************************************************************************" << std::endl << " " << std::endl << " If your image is rotated or the 2D views don't really contain the patient image, try to press the " "button next to the image selection. " << std::endl << " " << std::endl << " Please file a BUG REPORT: " << std::endl << " https://phabricator.mitk.org/" << std::endl << " Contain the following information:" << std::endl << " - What image were you working on?" << std::endl << " - Which region of the image?" << std::endl << " - Which tool did you use?" << std::endl << " - What did you do?" << std::endl << " - What happened (not)? What did you expect?" << std::endl; } void mitk::SegTool2D::WritePreviewOnWorkingImage( Image *targetSlice, const Image *sourceSlice, const Image *workingImage, int paintingPixelValue) { if (nullptr == targetSlice) { mitkThrow() << "Cannot write preview on working image. Target slice does not point to a valid instance."; } if (nullptr == sourceSlice) { mitkThrow() << "Cannot write preview on working image. Source slice does not point to a valid instance."; } if (nullptr == workingImage) { mitkThrow() << "Cannot write preview on working image. Working image does not point to a valid instance."; } auto constVtkSource = sourceSlice->GetVtkImageData(); /*Need to const cast because Vtk interface does not support const correctly. (or I am not experienced enough to use it correctly)*/ auto nonConstVtkSource = const_cast(constVtkSource); ContourModelUtils::FillSliceInSlice(nonConstVtkSource, targetSlice->GetVtkImageData(), workingImage, paintingPixelValue, 1.0); } diff --git a/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.cpp b/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.cpp index 9aa912fb4a..c22961b79f 100644 --- a/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.cpp +++ b/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.cpp @@ -1,612 +1,612 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkImageNavigatorView.h" #include #include #include #include #include #include #include #include #include #include #include #include const std::string QmitkImageNavigatorView::VIEW_ID = "org.mitk.views.imagenavigator"; QmitkImageNavigatorView::QmitkImageNavigatorView() : m_AxialStepper(nullptr) , m_SagittalStepper(nullptr) - , m_FrontalStepper(nullptr) + , m_CoronalStepper(nullptr) , m_TimeStepper(nullptr) , m_Parent(nullptr) , m_IRenderWindowPart(nullptr) { } QmitkImageNavigatorView::~QmitkImageNavigatorView() { } void QmitkImageNavigatorView::CreateQtPartControl(QWidget *parent) { // create GUI widgets m_Parent = parent; m_Controls.setupUi(parent); connect(m_Controls.m_XWorldCoordinateSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnMillimetreCoordinateValueChanged())); connect(m_Controls.m_YWorldCoordinateSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnMillimetreCoordinateValueChanged())); connect(m_Controls.m_ZWorldCoordinateSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnMillimetreCoordinateValueChanged())); m_Parent->setEnabled(false); mitk::IRenderWindowPart* renderPart = this->GetRenderWindowPart(); this->RenderWindowPartActivated(renderPart); } void QmitkImageNavigatorView::SetFocus () { m_Controls.m_XWorldCoordinateSpinBox->setFocus(); } void QmitkImageNavigatorView::RenderWindowPartActivated(mitk::IRenderWindowPart* renderWindowPart) { if (this->m_IRenderWindowPart != renderWindowPart) { this->m_IRenderWindowPart = renderWindowPart; this->m_Parent->setEnabled(true); QmitkRenderWindow* renderWindow = renderWindowPart->GetQmitkRenderWindow("axial"); if (renderWindow) { if (m_AxialStepper) m_AxialStepper->deleteLater(); m_AxialStepper = new QmitkStepperAdapter(m_Controls.m_SliceNavigatorAxial, renderWindow->GetSliceNavigationController()->GetSlice(), "sliceNavigatorAxialFromSimpleExample"); m_Controls.m_SliceNavigatorAxial->setEnabled(true); m_Controls.m_AxialLabel->setEnabled(true); m_Controls.m_ZWorldCoordinateSpinBox->setEnabled(true); connect(m_AxialStepper, SIGNAL(Refetch()), this, SLOT(OnRefetch())); connect(m_AxialStepper, SIGNAL(Refetch()), this, SLOT(UpdateStatusBar())); } else { m_Controls.m_SliceNavigatorAxial->setEnabled(false); m_Controls.m_AxialLabel->setEnabled(false); m_Controls.m_ZWorldCoordinateSpinBox->setEnabled(false); } renderWindow = renderWindowPart->GetQmitkRenderWindow("sagittal"); if (renderWindow) { if (m_SagittalStepper) m_SagittalStepper->deleteLater(); m_SagittalStepper = new QmitkStepperAdapter(m_Controls.m_SliceNavigatorSagittal, renderWindow->GetSliceNavigationController()->GetSlice(), "sliceNavigatorSagittalFromSimpleExample"); m_Controls.m_SliceNavigatorSagittal->setEnabled(true); m_Controls.m_SagittalLabel->setEnabled(true); m_Controls.m_YWorldCoordinateSpinBox->setEnabled(true); connect(m_SagittalStepper, SIGNAL(Refetch()), this, SLOT(OnRefetch())); connect(m_SagittalStepper, SIGNAL(Refetch()), this, SLOT(UpdateStatusBar())); } else { m_Controls.m_SliceNavigatorSagittal->setEnabled(false); m_Controls.m_SagittalLabel->setEnabled(false); m_Controls.m_YWorldCoordinateSpinBox->setEnabled(false); } renderWindow = renderWindowPart->GetQmitkRenderWindow("coronal"); if (renderWindow) { - if (m_FrontalStepper) m_FrontalStepper->deleteLater(); - m_FrontalStepper = new QmitkStepperAdapter(m_Controls.m_SliceNavigatorFrontal, + if (m_CoronalStepper) m_CoronalStepper->deleteLater(); + m_CoronalStepper = new QmitkStepperAdapter(m_Controls.m_SliceNavigatorCoronal, renderWindow->GetSliceNavigationController()->GetSlice(), - "sliceNavigatorFrontalFromSimpleExample"); - m_Controls.m_SliceNavigatorFrontal->setEnabled(true); + "sliceNavigatorCoronalFromSimpleExample"); + m_Controls.m_SliceNavigatorCoronal->setEnabled(true); m_Controls.m_CoronalLabel->setEnabled(true); m_Controls.m_XWorldCoordinateSpinBox->setEnabled(true); - connect(m_FrontalStepper, SIGNAL(Refetch()), this, SLOT(OnRefetch())); - connect(m_FrontalStepper, SIGNAL(Refetch()), this, SLOT(UpdateStatusBar())); + connect(m_CoronalStepper, SIGNAL(Refetch()), this, SLOT(OnRefetch())); + connect(m_CoronalStepper, SIGNAL(Refetch()), this, SLOT(UpdateStatusBar())); } else { - m_Controls.m_SliceNavigatorFrontal->setEnabled(false); + m_Controls.m_SliceNavigatorCoronal->setEnabled(false); m_Controls.m_CoronalLabel->setEnabled(false); m_Controls.m_XWorldCoordinateSpinBox->setEnabled(false); } mitk::SliceNavigationController* timeController = renderWindowPart->GetTimeNavigationController(); if (timeController) { if (m_TimeStepper) m_TimeStepper->deleteLater(); m_TimeStepper = new QmitkStepperAdapter(m_Controls.m_SliceNavigatorTime, timeController->GetTime(), "sliceNavigatorTimeFromSimpleExample"); m_Controls.m_SliceNavigatorTime->setEnabled(true); m_Controls.m_TimeLabel->setEnabled(true); connect(m_TimeStepper, SIGNAL(Refetch()), this, SLOT(UpdateStatusBar())); } else { m_Controls.m_SliceNavigatorTime->setEnabled(false); m_Controls.m_TimeLabel->setEnabled(false); } this->OnRefetch(); this->UpdateStatusBar(); } } void QmitkImageNavigatorView::UpdateStatusBar() { if (m_IRenderWindowPart != nullptr) { mitk::Point3D position = m_IRenderWindowPart->GetSelectedPosition(); mitk::BaseRenderer::Pointer baseRenderer = mitk::BaseRenderer::GetInstance(m_IRenderWindowPart->GetActiveQmitkRenderWindow()->GetVtkRenderWindow()); auto globalCurrentTimePoint = baseRenderer->GetTime(); mitk::TNodePredicateDataType::Pointer isImageData = mitk::TNodePredicateDataType::New(); mitk::DataStorage::SetOfObjects::ConstPointer nodes = GetDataStorage()->GetSubset(isImageData).GetPointer(); if (nodes.IsNotNull()) { mitk::Image::Pointer image3D; mitk::DataNode::Pointer node; mitk::DataNode::Pointer topSourceNode; int component = 0; node = mitk::FindTopmostVisibleNode(nodes, position, globalCurrentTimePoint, baseRenderer); if (node.IsNotNull()) { bool isBinary(false); node->GetBoolProperty("binary", isBinary); if (isBinary) { mitk::DataStorage::SetOfObjects::ConstPointer sourcenodes = GetDataStorage()->GetSources(node, nullptr, true); if (!sourcenodes->empty()) { topSourceNode = mitk::FindTopmostVisibleNode(sourcenodes, position, globalCurrentTimePoint, baseRenderer); } if (topSourceNode.IsNotNull()) { image3D = dynamic_cast(topSourceNode->GetData()); topSourceNode->GetIntProperty("Image.Displayed Component", component); } else { image3D = dynamic_cast(node->GetData()); node->GetIntProperty("Image.Displayed Component", component); } } else { image3D = dynamic_cast(node->GetData()); node->GetIntProperty("Image.Displayed Component", component); } } // get the position and pixel value from the image and build up status bar text auto statusBar = mitk::StatusBar::GetInstance(); if (image3D.IsNotNull() && statusBar != nullptr) { itk::Index<3> p; image3D->GetGeometry()->WorldToIndex(position, p); auto pixelType = image3D->GetChannelDescriptor().GetPixelType().GetPixelType(); if (pixelType == itk::IOPixelEnum::RGB || pixelType == itk::IOPixelEnum::RGBA) { std::string pixelValue = "Pixel RGB(A) value: "; pixelValue.append(ConvertCompositePixelValueToString(image3D, p)); statusBar->DisplayImageInfo(position, p, globalCurrentTimePoint, pixelValue.c_str()); } else if (pixelType == itk::IOPixelEnum::DIFFUSIONTENSOR3D || pixelType == itk::IOPixelEnum::SYMMETRICSECONDRANKTENSOR) { std::string pixelValue = "See ODF Details view. "; statusBar->DisplayImageInfo(position, p, globalCurrentTimePoint, pixelValue.c_str()); } else { itk::Index<3> p; image3D->GetGeometry()->WorldToIndex(position, p); mitk::ScalarType pixelValue; mitkPixelTypeMultiplex5( mitk::FastSinglePixelAccess, image3D->GetChannelDescriptor().GetPixelType(), image3D, image3D->GetVolumeData(image3D->GetTimeGeometry()->TimePointToTimeStep(globalCurrentTimePoint)), p, pixelValue, component); statusBar->DisplayImageInfo(position, p, globalCurrentTimePoint, pixelValue); } } else { statusBar->DisplayImageInfoInvalid(); } } } } void QmitkImageNavigatorView::RenderWindowPartDeactivated(mitk::IRenderWindowPart* /*renderWindowPart*/) { m_IRenderWindowPart = nullptr; m_Parent->setEnabled(false); } int QmitkImageNavigatorView::GetSizeFlags(bool width) { if(!width) { return berry::Constants::MIN | berry::Constants::MAX | berry::Constants::FILL; } else { return 0; } } int QmitkImageNavigatorView::ComputePreferredSize(bool width, int /*availableParallel*/, int /*availablePerpendicular*/, int preferredResult) { if(width==false) { return 200; } else { return preferredResult; } } int QmitkImageNavigatorView::GetClosestAxisIndex(mitk::Vector3D normal) { // cos(theta) = normal . axis // cos(theta) = (a, b, c) . (d, e, f) // cos(theta) = (a, b, c) . (1, 0, 0) = a // cos(theta) = (a, b, c) . (0, 1, 0) = b // cos(theta) = (a, b, c) . (0, 0, 1) = c double absCosThetaWithAxis[3]; for (int i = 0; i < 3; i++) { absCosThetaWithAxis[i] = fabs(normal[i]); } int largestIndex = 0; double largestValue = absCosThetaWithAxis[0]; for (int i = 1; i < 3; i++) { if (absCosThetaWithAxis[i] > largestValue) { largestValue = absCosThetaWithAxis[i]; largestIndex = i; } } return largestIndex; } void QmitkImageNavigatorView::SetBorderColors() { if (m_IRenderWindowPart) { QString decoColor; QmitkRenderWindow* renderWindow = m_IRenderWindowPart->GetQmitkRenderWindow("axial"); if (renderWindow) { decoColor = GetDecorationColorOfGeometry(renderWindow); mitk::PlaneGeometry::ConstPointer geometry = renderWindow->GetSliceNavigationController()->GetCurrentPlaneGeometry(); if (geometry.IsNotNull()) { mitk::Vector3D normal = geometry->GetNormal(); int axis = this->GetClosestAxisIndex(normal); this->SetBorderColor(axis, decoColor); } } renderWindow = m_IRenderWindowPart->GetQmitkRenderWindow("sagittal"); if (renderWindow) { decoColor = GetDecorationColorOfGeometry(renderWindow); mitk::PlaneGeometry::ConstPointer geometry = renderWindow->GetSliceNavigationController()->GetCurrentPlaneGeometry(); if (geometry.IsNotNull()) { mitk::Vector3D normal = geometry->GetNormal(); int axis = this->GetClosestAxisIndex(normal); this->SetBorderColor(axis, decoColor); } } renderWindow = m_IRenderWindowPart->GetQmitkRenderWindow("coronal"); if (renderWindow) { decoColor = GetDecorationColorOfGeometry(renderWindow); mitk::PlaneGeometry::ConstPointer geometry = renderWindow->GetSliceNavigationController()->GetCurrentPlaneGeometry(); if (geometry.IsNotNull()) { mitk::Vector3D normal = geometry->GetNormal(); int axis = this->GetClosestAxisIndex(normal); this->SetBorderColor(axis, decoColor); } } } } QString QmitkImageNavigatorView::GetDecorationColorOfGeometry(QmitkRenderWindow* renderWindow) { QColor color; float rgb[3] = {1.0f, 1.0f, 1.0f}; float rgbMax = 255.0f; mitk::BaseRenderer::GetInstance(renderWindow->GetVtkRenderWindow())->GetCurrentWorldPlaneGeometryNode()->GetColor(rgb); color.setRed(static_cast(rgb[0]*rgbMax + 0.5)); color.setGreen(static_cast(rgb[1]*rgbMax + 0.5)); color.setBlue(static_cast(rgb[2]*rgbMax + 0.5)); QString colorAsString = QString(color.name()); return colorAsString; } void QmitkImageNavigatorView::SetBorderColor(int axis, QString colorAsStyleSheetString) { if (axis == 0) { this->SetBorderColor(m_Controls.m_XWorldCoordinateSpinBox, colorAsStyleSheetString); } else if (axis == 1) { this->SetBorderColor(m_Controls.m_YWorldCoordinateSpinBox, colorAsStyleSheetString); } else if (axis == 2) { this->SetBorderColor(m_Controls.m_ZWorldCoordinateSpinBox, colorAsStyleSheetString); } } void QmitkImageNavigatorView::SetBorderColor(QDoubleSpinBox *spinBox, QString colorAsStyleSheetString) { assert(spinBox); spinBox->setStyleSheet(QString("border: 2px solid ") + colorAsStyleSheetString + ";"); } void QmitkImageNavigatorView::SetStepSizes() { this->SetStepSize(0); this->SetStepSize(1); this->SetStepSize(2); } void QmitkImageNavigatorView::SetStepSize(int axis) { if (m_IRenderWindowPart) { mitk::BaseGeometry::ConstPointer geometry = m_IRenderWindowPart->GetActiveQmitkRenderWindow()->GetSliceNavigationController()->GetInputWorldGeometry3D(); if (geometry.IsNotNull()) { mitk::Point3D crossPositionInIndexCoordinates; mitk::Point3D crossPositionInIndexCoordinatesPlus1; mitk::Point3D crossPositionInMillimetresPlus1; mitk::Vector3D transformedAxisDirection; mitk::Point3D crossPositionInMillimetres = m_IRenderWindowPart->GetSelectedPosition(); geometry->WorldToIndex(crossPositionInMillimetres, crossPositionInIndexCoordinates); crossPositionInIndexCoordinatesPlus1 = crossPositionInIndexCoordinates; crossPositionInIndexCoordinatesPlus1[axis] += 1; geometry->IndexToWorld(crossPositionInIndexCoordinatesPlus1, crossPositionInMillimetresPlus1); transformedAxisDirection = crossPositionInMillimetresPlus1 - crossPositionInMillimetres; int closestAxisInMillimetreSpace = this->GetClosestAxisIndex(transformedAxisDirection); double stepSize = transformedAxisDirection.GetNorm(); this->SetStepSize(closestAxisInMillimetreSpace, stepSize); } } } void QmitkImageNavigatorView::SetStepSize(int axis, double stepSize) { if (axis == 0) { m_Controls.m_XWorldCoordinateSpinBox->setSingleStep(stepSize); } else if (axis == 1) { m_Controls.m_YWorldCoordinateSpinBox->setSingleStep(stepSize); } else if (axis == 2) { m_Controls.m_ZWorldCoordinateSpinBox->setSingleStep(stepSize); } } void QmitkImageNavigatorView::OnMillimetreCoordinateValueChanged() { if (m_IRenderWindowPart) { mitk::TimeGeometry::ConstPointer geometry = m_IRenderWindowPart->GetActiveQmitkRenderWindow()->GetSliceNavigationController()->GetInputWorldTimeGeometry(); if (geometry.IsNotNull()) { mitk::Point3D positionInWorldCoordinates; positionInWorldCoordinates[0] = m_Controls.m_XWorldCoordinateSpinBox->value(); positionInWorldCoordinates[1] = m_Controls.m_YWorldCoordinateSpinBox->value(); positionInWorldCoordinates[2] = m_Controls.m_ZWorldCoordinateSpinBox->value(); m_IRenderWindowPart->SetSelectedPosition(positionInWorldCoordinates); } } } void QmitkImageNavigatorView::OnRefetch() { if (m_IRenderWindowPart) { mitk::BaseGeometry::ConstPointer geometry = m_IRenderWindowPart->GetActiveQmitkRenderWindow()->GetSliceNavigationController()->GetInputWorldGeometry3D(); mitk::TimeGeometry::ConstPointer timeGeometry = m_IRenderWindowPart->GetActiveQmitkRenderWindow()->GetSliceNavigationController()->GetInputWorldTimeGeometry(); if (geometry.IsNull() && timeGeometry.IsNotNull()) { mitk::TimeStepType timeStep = m_IRenderWindowPart->GetActiveQmitkRenderWindow()->GetSliceNavigationController()->GetTime()->GetPos(); geometry = timeGeometry->GetGeometryForTimeStep(timeStep); SetVisibilityOfTimeSlider(timeGeometry->CountTimeSteps()); } if (geometry.IsNotNull()) { mitk::BoundingBox::BoundsArrayType bounds = geometry->GetBounds(); mitk::Point3D cornerPoint1InIndexCoordinates; cornerPoint1InIndexCoordinates[0] = bounds[0]; cornerPoint1InIndexCoordinates[1] = bounds[2]; cornerPoint1InIndexCoordinates[2] = bounds[4]; mitk::Point3D cornerPoint2InIndexCoordinates; cornerPoint2InIndexCoordinates[0] = bounds[1]; cornerPoint2InIndexCoordinates[1] = bounds[3]; cornerPoint2InIndexCoordinates[2] = bounds[5]; if (!geometry->GetImageGeometry()) { cornerPoint1InIndexCoordinates[0] += 0.5; cornerPoint1InIndexCoordinates[1] += 0.5; cornerPoint1InIndexCoordinates[2] += 0.5; cornerPoint2InIndexCoordinates[0] -= 0.5; cornerPoint2InIndexCoordinates[1] -= 0.5; cornerPoint2InIndexCoordinates[2] -= 0.5; } mitk::Point3D crossPositionInWorldCoordinates = m_IRenderWindowPart->GetSelectedPosition(); mitk::Point3D cornerPoint1InWorldCoordinates; mitk::Point3D cornerPoint2InWorldCoordinates; geometry->IndexToWorld(cornerPoint1InIndexCoordinates, cornerPoint1InWorldCoordinates); geometry->IndexToWorld(cornerPoint2InIndexCoordinates, cornerPoint2InWorldCoordinates); m_Controls.m_XWorldCoordinateSpinBox->blockSignals(true); m_Controls.m_YWorldCoordinateSpinBox->blockSignals(true); m_Controls.m_ZWorldCoordinateSpinBox->blockSignals(true); m_Controls.m_XWorldCoordinateSpinBox->setMinimum(std::min(cornerPoint1InWorldCoordinates[0], cornerPoint2InWorldCoordinates[0])); m_Controls.m_YWorldCoordinateSpinBox->setMinimum(std::min(cornerPoint1InWorldCoordinates[1], cornerPoint2InWorldCoordinates[1])); m_Controls.m_ZWorldCoordinateSpinBox->setMinimum(std::min(cornerPoint1InWorldCoordinates[2], cornerPoint2InWorldCoordinates[2])); m_Controls.m_XWorldCoordinateSpinBox->setMaximum(std::max(cornerPoint1InWorldCoordinates[0], cornerPoint2InWorldCoordinates[0])); m_Controls.m_YWorldCoordinateSpinBox->setMaximum(std::max(cornerPoint1InWorldCoordinates[1], cornerPoint2InWorldCoordinates[1])); m_Controls.m_ZWorldCoordinateSpinBox->setMaximum(std::max(cornerPoint1InWorldCoordinates[2], cornerPoint2InWorldCoordinates[2])); m_Controls.m_XWorldCoordinateSpinBox->setValue(crossPositionInWorldCoordinates[0]); m_Controls.m_YWorldCoordinateSpinBox->setValue(crossPositionInWorldCoordinates[1]); m_Controls.m_ZWorldCoordinateSpinBox->setValue(crossPositionInWorldCoordinates[2]); m_Controls.m_XWorldCoordinateSpinBox->blockSignals(false); m_Controls.m_YWorldCoordinateSpinBox->blockSignals(false); m_Controls.m_ZWorldCoordinateSpinBox->blockSignals(false); /// Calculating 'inverse direction' property. mitk::AffineTransform3D::MatrixType matrix = geometry->GetIndexToWorldTransform()->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetInverse(); for (int worldAxis = 0; worldAxis < 3; ++worldAxis) { QmitkRenderWindow* renderWindow = worldAxis == 0 ? m_IRenderWindowPart->GetQmitkRenderWindow("sagittal") : worldAxis == 1 ? m_IRenderWindowPart->GetQmitkRenderWindow("coronal") : m_IRenderWindowPart->GetQmitkRenderWindow("axial"); if (renderWindow) { const mitk::BaseGeometry* rendererGeometry = renderWindow->GetRenderer()->GetCurrentWorldGeometry(); /// Because of some problems with the current way of event signalling, /// 'Modified' events are sent out from the stepper while the renderer /// does not have a geometry yet. Therefore, we do a nullptr check here. /// See bug T22122. This check can be resolved after T22122 got fixed. if (rendererGeometry) { int dominantAxis = itk::Function::Max3( inverseMatrix[0][worldAxis], inverseMatrix[1][worldAxis], inverseMatrix[2][worldAxis]); bool referenceGeometryAxisInverted = inverseMatrix[dominantAxis][worldAxis] < 0; bool rendererZAxisInverted = rendererGeometry->GetAxisVector(2)[worldAxis] < 0; /// `referenceGeometryAxisInverted` tells if the direction of the corresponding axis /// of the reference geometry is flipped compared to the 'world direction' or not. /// /// `rendererZAxisInverted` tells if direction of the renderer geometry z axis is /// flipped compared to the 'world direction' or not. This is the same as the indexing /// direction in the slice navigation controller and matches the 'top' property when /// initialising the renderer planes. (If 'top' was true then the direction is /// inverted.) /// /// The world direction can be +1 ('up') that means right, anterior or superior, or /// it can be -1 ('down') that means left, posterior or inferior, respectively. /// /// If these two do not match, we have to invert the index between the slice navigation /// controller and the slider navigator widget, so that the user can see and control /// the index according to the reference geometry, rather than the slice navigation /// controller. The index in the slice navigation controller depends on in which way /// the reference geometry has been resliced for the renderer, and it does not necessarily /// match neither the world direction, nor the direction of the corresponding axis of /// the reference geometry. Hence, it is a merely internal information that should not /// be exposed to the GUI. /// /// So that one can navigate in the same world direction by dragging the slider /// right, regardless of the direction of the corresponding axis of the reference /// geometry, we invert the direction of the controls if the reference geometry axis /// is inverted but the direction is not ('inversDirection' is false) or the other /// way around. bool inverseDirection = referenceGeometryAxisInverted != rendererZAxisInverted; QmitkSliderNavigatorWidget* navigatorWidget = worldAxis == 0 ? m_Controls.m_SliceNavigatorSagittal : - worldAxis == 1 ? m_Controls.m_SliceNavigatorFrontal : + worldAxis == 1 ? m_Controls.m_SliceNavigatorCoronal : m_Controls.m_SliceNavigatorAxial; navigatorWidget->SetInverseDirection(inverseDirection); // This should be a preference (see T22254) // bool invertedControls = referenceGeometryAxisInverted != inverseDirection; // navigatorWidget->SetInvertedControls(invertedControls); } } } } this->SetBorderColors(); } } void QmitkImageNavigatorView::SetVisibilityOfTimeSlider(std::size_t timeSteps) { m_Controls.m_SliceNavigatorTime->setVisible(timeSteps > 1); m_Controls.m_TimeLabel->setVisible(timeSteps > 1); } diff --git a/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.h b/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.h index 22f6fd5185..a9d687bf67 100644 --- a/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.h +++ b/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorView.h @@ -1,100 +1,100 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef _QMITKIMAGENAVIGATORVIEW_H_INCLUDED #define _QMITKIMAGENAVIGATORVIEW_H_INCLUDED #include #include #include #include "ui_QmitkImageNavigatorViewControls.h" class QmitkStepperAdapter; /*! * \ingroup org_mitk_gui_qt_imagenavigator_internal * * \class QmitkImageNavigatorView * * \brief Provides a means to scan quickly through a dataset via Axial, * Coronal and Sagittal sliders, displaying millimetre location and stepper position. * * For images, the stepper position corresponds to a voxel index. For other datasets * such as a surface, it corresponds to a sub-division of the bounding box. * * \sa QmitkAbstractView */ class QmitkImageNavigatorView : public QmitkAbstractView, public mitk::IRenderWindowPartListener, public berry::ISizeProvider { // this is needed for all Qt objects that should have a MOC object (everything that derives from QObject) Q_OBJECT public: static const std::string VIEW_ID; QmitkImageNavigatorView(); ~QmitkImageNavigatorView() override; void CreateQtPartControl(QWidget *parent) override; int GetSizeFlags(bool width) override; int ComputePreferredSize(bool width, int /*availableParallel*/, int /*availablePerpendicular*/, int preferredResult) override; protected slots: void OnMillimetreCoordinateValueChanged(); void OnRefetch(); void UpdateStatusBar(); protected: void SetFocus() override; void RenderWindowPartActivated(mitk::IRenderWindowPart *renderWindowPart) override; void RenderWindowPartDeactivated(mitk::IRenderWindowPart *renderWindowPart) override; void SetBorderColors(); void SetBorderColor(QDoubleSpinBox *spinBox, QString colorAsStyleSheetString); void SetBorderColor(int axis, QString colorAsStyleSheetString); void SetStepSizes(); void SetStepSize(int axis); void SetStepSize(int axis, double stepSize); int GetClosestAxisIndex(mitk::Vector3D normal); void SetVisibilityOfTimeSlider(std::size_t timeSteps); Ui::QmitkImageNavigatorViewControls m_Controls; QmitkStepperAdapter* m_AxialStepper; QmitkStepperAdapter* m_SagittalStepper; - QmitkStepperAdapter* m_FrontalStepper; + QmitkStepperAdapter* m_CoronalStepper; QmitkStepperAdapter* m_TimeStepper; QWidget* m_Parent; mitk::IRenderWindowPart* m_IRenderWindowPart; /** * @brief GetDecorationColorOfGeometry helper method to get the color of a helper geometry node. * @param renderWindow The renderwindow of the geometry * @return the color for decoration in QString format (#RRGGBB). */ QString GetDecorationColorOfGeometry(QmitkRenderWindow *renderWindow); }; #endif // _QMITKIMAGENAVIGATORVIEW_H_INCLUDED diff --git a/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorViewControls.ui b/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorViewControls.ui index de96d1e32b..e32f176466 100644 --- a/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorViewControls.ui +++ b/Plugins/org.mitk.gui.qt.imagenavigator/src/internal/QmitkImageNavigatorViewControls.ui @@ -1,244 +1,244 @@ QmitkImageNavigatorViewControls 0 0 360 440 0 0 QmitkTemplate 0 0 0 0 0 0 - + 0 0 0 0 0 0 Axial 0 0 Sagittal 0 0 8 false 2 -100000.000000000000000 100000.000000000000000 Qt::Vertical 20 413 0 0 Time 0 0 Coronal 0 0 Loc. (mm) 0 0 8 false 2 -100000.000000000000000 100000.000000000000000 0 0 8 false 2 -100000.000000000000000 100000.000000000000000 QmitkSliderNavigatorWidget QWidget
QmitkSliderNavigatorWidget.h
1
QmitkDataStorageComboBox.h