diff --git a/Modules/PlanarFigure/src/DataManagement/mitkPlanarFigure.cpp b/Modules/PlanarFigure/src/DataManagement/mitkPlanarFigure.cpp index d135f3e58a..eb64366acd 100644 --- a/Modules/PlanarFigure/src/DataManagement/mitkPlanarFigure.cpp +++ b/Modules/PlanarFigure/src/DataManagement/mitkPlanarFigure.cpp @@ -1,781 +1,781 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkPlanarFigure.h" #include "mitkPlaneGeometry.h" #include #include #include mitk::PlanarFigure::PlanarFigure() : m_SelectedControlPoint(-1), m_PreviewControlPointVisible(false), m_FigurePlaced(false), m_PlaneGeometry(nullptr), m_PolyLineUpToDate(false), m_HelperLinesUpToDate(false), m_FeaturesUpToDate(false), m_FeaturesMTime(0) { m_HelperPolyLinesToBePainted = BoolContainerType::New(); m_DisplaySize.first = 0.0; m_DisplaySize.second = 0; this->SetProperty("closed", mitk::BoolProperty::New(false)); // Currently only single-time-step geometries are supported this->InitializeTimeGeometry(1); } mitk::PlanarFigure::PlanarFigure(const Self &other) : BaseData(other), m_ControlPoints(other.m_ControlPoints), m_NumberOfControlPoints(other.m_NumberOfControlPoints), m_SelectedControlPoint(other.m_SelectedControlPoint), m_PolyLines(other.m_PolyLines), m_HelperPolyLines(other.m_HelperPolyLines), m_PreviewControlPoint(other.m_PreviewControlPoint), m_PreviewControlPointVisible(other.m_PreviewControlPointVisible), m_FigurePlaced(other.m_FigurePlaced), - m_PlaneGeometry(other.m_PlaneGeometry), // do not clone since SetPlaneGeometry() doesn't clone either m_PolyLineUpToDate(other.m_PolyLineUpToDate), m_HelperLinesUpToDate(other.m_HelperLinesUpToDate), m_FeaturesUpToDate(other.m_FeaturesUpToDate), m_Features(other.m_Features), m_FeaturesMTime(other.m_FeaturesMTime), m_DisplaySize(other.m_DisplaySize) { m_HelperPolyLinesToBePainted = BoolContainerType::New(); for (unsigned long i = 0; i < other.m_HelperPolyLinesToBePainted->Size(); ++i) { m_HelperPolyLinesToBePainted->InsertElement(i, other.m_HelperPolyLinesToBePainted->GetElement(i)); } + m_PlaneGeometry = dynamic_cast(GetGeometry(0)); } void mitk::PlanarFigure::SetPlaneGeometry(mitk::PlaneGeometry *geometry) { this->SetGeometry(geometry); m_PlaneGeometry = dynamic_cast(GetGeometry(0)); // geometry; } const mitk::PlaneGeometry *mitk::PlanarFigure::GetPlaneGeometry() const { return m_PlaneGeometry; } bool mitk::PlanarFigure::IsClosed() const { mitk::BoolProperty *closed = dynamic_cast(this->GetProperty("closed").GetPointer()); if (closed != nullptr) { return closed->GetValue(); } return false; } void mitk::PlanarFigure::PlaceFigure(const mitk::Point2D &point) { for (unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i) { m_ControlPoints.push_back(this->ApplyControlPointConstraints(i, point)); } m_FigurePlaced = true; m_SelectedControlPoint = 1; } bool mitk::PlanarFigure::AddControlPoint(const mitk::Point2D &point, int position) { // if we already have the maximum number of control points, do nothing if (m_NumberOfControlPoints < this->GetMaximumNumberOfControlPoints()) { // if position has not been defined or position would be the last control point, just append the new one // we also append a new point if we click onto the line between the first two control-points if the second // control-point is selected // -> special case for PlanarCross if (position == -1 || position > (int)m_NumberOfControlPoints - 1 || (position == 1 && m_SelectedControlPoint == 2)) { if (m_ControlPoints.size() > this->GetMaximumNumberOfControlPoints() - 1) { // get rid of deprecated control points in the list. This is necessary // as ::ResetNumberOfControlPoints() only sets the member, does not resize the list! m_ControlPoints.resize(this->GetNumberOfControlPoints()); } m_ControlPoints.push_back(this->ApplyControlPointConstraints(m_NumberOfControlPoints, point)); m_SelectedControlPoint = m_NumberOfControlPoints; } else { // insert the point at the given position and set it as selected point auto iter = m_ControlPoints.begin() + position; m_ControlPoints.insert(iter, this->ApplyControlPointConstraints(position, point)); for (unsigned int i = 0; i < m_ControlPoints.size(); ++i) { if (point == m_ControlPoints.at(i)) { m_SelectedControlPoint = i; } } } // polylines & helperpolylines need to be repainted m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; // one control point more ++m_NumberOfControlPoints; return true; } else { return false; } } bool mitk::PlanarFigure::SetControlPoint(unsigned int index, const Point2D &point, bool createIfDoesNotExist) { bool controlPointSetCorrectly = false; if (createIfDoesNotExist) { if (m_NumberOfControlPoints <= index) { m_ControlPoints.push_back(this->ApplyControlPointConstraints(index, point)); m_NumberOfControlPoints++; } else { m_ControlPoints.at(index) = this->ApplyControlPointConstraints(index, point); } controlPointSetCorrectly = true; } else if (index < m_NumberOfControlPoints) { m_ControlPoints.at(index) = this->ApplyControlPointConstraints(index, point); controlPointSetCorrectly = true; } else { return false; } if (controlPointSetCorrectly) { m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; } return controlPointSetCorrectly; } bool mitk::PlanarFigure::SetCurrentControlPoint(const Point2D &point) { if ((m_SelectedControlPoint < 0) || (m_SelectedControlPoint >= (int)m_NumberOfControlPoints)) { return false; } return this->SetControlPoint(m_SelectedControlPoint, point, false); } unsigned int mitk::PlanarFigure::GetNumberOfControlPoints() const { return m_NumberOfControlPoints; } bool mitk::PlanarFigure::SelectControlPoint(unsigned int index) { if (index < this->GetNumberOfControlPoints()) { m_SelectedControlPoint = index; return true; } else { return false; } } bool mitk::PlanarFigure::DeselectControlPoint() { bool wasSelected = (m_SelectedControlPoint != -1); m_SelectedControlPoint = -1; return wasSelected; } void mitk::PlanarFigure::SetPreviewControlPoint(const Point2D &point) { m_PreviewControlPoint = point; m_PreviewControlPointVisible = true; } void mitk::PlanarFigure::ResetPreviewContolPoint() { m_PreviewControlPointVisible = false; } mitk::Point2D mitk::PlanarFigure::GetPreviewControlPoint() const { return m_PreviewControlPoint; } bool mitk::PlanarFigure::IsPreviewControlPointVisible() const { return m_PreviewControlPointVisible; } mitk::Point2D mitk::PlanarFigure::GetControlPoint(unsigned int index) const { if (index < m_NumberOfControlPoints) { return m_ControlPoints.at(index); } itkExceptionMacro(<< "GetControlPoint(): Invalid index!"); } mitk::Point3D mitk::PlanarFigure::GetWorldControlPoint(unsigned int index) const { Point3D point3D; if ((m_PlaneGeometry != nullptr) && (index < m_NumberOfControlPoints)) { m_PlaneGeometry->Map(m_ControlPoints.at(index), point3D); return point3D; } itkExceptionMacro(<< "GetWorldControlPoint(): Invalid index!"); } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) { mitk::PlanarFigure::PolyLineType polyLine; if (index > m_PolyLines.size() || !m_PolyLineUpToDate) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.at(index); } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) const { return m_PolyLines.at(index); } void mitk::PlanarFigure::ClearPolyLines() { for (std::vector::size_type i = 0; i < m_PolyLines.size(); i++) { m_PolyLines.at(i).clear(); } m_PolyLineUpToDate = false; } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetHelperPolyLine(unsigned int index, double mmPerDisplayUnit, unsigned int displayHeight) { mitk::PlanarFigure::PolyLineType helperPolyLine; if (index < m_HelperPolyLines.size()) { // m_HelperLinesUpToDate does not cover changes in zoom-level, so we have to check previous values of the // two parameters as well if (!m_HelperLinesUpToDate || m_DisplaySize.first != mmPerDisplayUnit || m_DisplaySize.second != displayHeight) { this->GenerateHelperPolyLine(mmPerDisplayUnit, displayHeight); m_HelperLinesUpToDate = true; // store these parameters to be able to check next time if somebody zoomed in or out m_DisplaySize.first = mmPerDisplayUnit; m_DisplaySize.second = displayHeight; } helperPolyLine = m_HelperPolyLines.at(index); } return helperPolyLine; } void mitk::PlanarFigure::ClearHelperPolyLines() { for (std::vector::size_type i = 0; i < m_HelperPolyLines.size(); i++) { m_HelperPolyLines.at(i).clear(); } m_HelperLinesUpToDate = false; } /** \brief Returns the number of features available for this PlanarFigure * (such as, radius, area, ...). */ unsigned int mitk::PlanarFigure::GetNumberOfFeatures() const { return m_Features.size(); } int mitk::PlanarFigure::GetControlPointForPolylinePoint(int indexOfPolylinePoint, int /*polyLineIndex*/) const { return indexOfPolylinePoint; } const char *mitk::PlanarFigure::GetFeatureName(unsigned int index) const { if (index < m_Features.size()) { return m_Features[index].Name.c_str(); } else { return nullptr; } } const char *mitk::PlanarFigure::GetFeatureUnit(unsigned int index) const { if (index < m_Features.size()) { return m_Features[index].Unit.c_str(); } else { return nullptr; } } double mitk::PlanarFigure::GetQuantity(unsigned int index) const { if (index < m_Features.size()) { return m_Features[index].Quantity; } else { return 0.0; } } bool mitk::PlanarFigure::IsFeatureActive(unsigned int index) const { if (index < m_Features.size()) { return m_Features[index].Active; } else { return false; } } bool mitk::PlanarFigure::IsFeatureVisible(unsigned int index) const { if (index < m_Features.size()) { return m_Features[index].Visible; } else { return false; } } void mitk::PlanarFigure::SetFeatureVisible(unsigned int index, bool visible) { if (index < m_Features.size()) { m_Features[index].Visible = visible; } } void mitk::PlanarFigure::EvaluateFeatures() { if (!m_FeaturesUpToDate || !m_PolyLineUpToDate) { if (!m_PolyLineUpToDate) { this->GeneratePolyLine(); } this->EvaluateFeaturesInternal(); m_FeaturesUpToDate = true; } } void mitk::PlanarFigure::UpdateOutputInformation() { // Bounds are NOT calculated here, since the PlaneGeometry defines a fixed // frame (= bounds) for the planar figure. Superclass::UpdateOutputInformation(); this->GetTimeGeometry()->Update(); } void mitk::PlanarFigure::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::PlanarFigure::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::PlanarFigure::VerifyRequestedRegion() { return true; } void mitk::PlanarFigure::SetRequestedRegion(const itk::DataObject * /*data*/) { } void mitk::PlanarFigure::ResetNumberOfControlPoints(int numberOfControlPoints) { // DO NOT resize the list here, will cause crash!! m_NumberOfControlPoints = numberOfControlPoints; } mitk::Point2D mitk::PlanarFigure::ApplyControlPointConstraints(unsigned int /*index*/, const Point2D &point) { if (m_PlaneGeometry == nullptr) { return point; } Point2D indexPoint; m_PlaneGeometry->WorldToIndex(point, indexPoint); BoundingBox::BoundsArrayType bounds = m_PlaneGeometry->GetBounds(); if (indexPoint[0] < bounds[0]) { indexPoint[0] = bounds[0]; } if (indexPoint[0] > bounds[1]) { indexPoint[0] = bounds[1]; } if (indexPoint[1] < bounds[2]) { indexPoint[1] = bounds[2]; } if (indexPoint[1] > bounds[3]) { indexPoint[1] = bounds[3]; } Point2D constrainedPoint; m_PlaneGeometry->IndexToWorld(indexPoint, constrainedPoint); return constrainedPoint; } unsigned int mitk::PlanarFigure::AddFeature(const char *featureName, const char *unitName) { unsigned int index = m_Features.size(); Feature newFeature(featureName, unitName); m_Features.push_back(newFeature); return index; } void mitk::PlanarFigure::SetFeatureName(unsigned int index, const char *featureName) { if (index < m_Features.size()) { m_Features[index].Name = featureName; } } void mitk::PlanarFigure::SetFeatureUnit(unsigned int index, const char *unitName) { if (index < m_Features.size()) { m_Features[index].Unit = unitName; } } void mitk::PlanarFigure::SetQuantity(unsigned int index, double quantity) { if (index < m_Features.size()) { m_Features[index].Quantity = quantity; } } void mitk::PlanarFigure::ActivateFeature(unsigned int index) { if (index < m_Features.size()) { m_Features[index].Active = true; } } void mitk::PlanarFigure::DeactivateFeature(unsigned int index) { if (index < m_Features.size()) { m_Features[index].Active = false; } } void mitk::PlanarFigure::InitializeTimeGeometry(unsigned int timeSteps) { mitk::PlaneGeometry::Pointer geometry2D = mitk::PlaneGeometry::New(); geometry2D->Initialize(); // The geometry is propagated automatically to all time steps, // if EvenlyTimed is true... ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry2D, timeSteps); SetTimeGeometry(timeGeometry); } void mitk::PlanarFigure::PrintSelf(std::ostream &os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << this->GetNameOfClass() << ":\n"; if (this->IsClosed()) os << indent << "This figure is closed\n"; else os << indent << "This figure is not closed\n"; os << indent << "Minimum number of control points: " << this->GetMinimumNumberOfControlPoints() << std::endl; os << indent << "Maximum number of control points: " << this->GetMaximumNumberOfControlPoints() << std::endl; os << indent << "Current number of control points: " << this->GetNumberOfControlPoints() << std::endl; os << indent << "Control points:" << std::endl; for (unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i) { // os << indent.GetNextIndent() << i << ": " << m_ControlPoints->ElementAt( i ) << std::endl; os << indent.GetNextIndent() << i << ": " << m_ControlPoints.at(i) << std::endl; } os << indent << "Geometry:\n"; this->GetPlaneGeometry()->Print(os, indent.GetNextIndent()); } unsigned short mitk::PlanarFigure::GetPolyLinesSize() { if (!m_PolyLineUpToDate) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.size(); } unsigned short mitk::PlanarFigure::GetHelperPolyLinesSize() const { return m_HelperPolyLines.size(); } bool mitk::PlanarFigure::IsHelperToBePainted(unsigned int index) const { return m_HelperPolyLinesToBePainted->GetElement(index); } bool mitk::PlanarFigure::ResetOnPointSelect() { return false; } bool mitk::PlanarFigure::ResetOnPointSelectNeeded() const { return false; } void mitk::PlanarFigure::RemoveControlPoint(unsigned int index) { if (index > m_ControlPoints.size()) return; if ((m_ControlPoints.size() - 1) < this->GetMinimumNumberOfControlPoints()) return; ControlPointListType::iterator iter; iter = m_ControlPoints.begin() + index; m_ControlPoints.erase(iter); m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; --m_NumberOfControlPoints; } void mitk::PlanarFigure::RemoveLastControlPoint() { RemoveControlPoint(m_ControlPoints.size() - 1); } void mitk::PlanarFigure::SetNumberOfPolyLines(unsigned int numberOfPolyLines) { m_PolyLines.resize(numberOfPolyLines); } void mitk::PlanarFigure::SetNumberOfHelperPolyLines(unsigned int numberOfHerlperPolyLines) { m_HelperPolyLines.resize(numberOfHerlperPolyLines); } void mitk::PlanarFigure::AppendPointToPolyLine(unsigned int index, PolyLineElement element) { if (index < m_PolyLines.size()) { m_PolyLines[index].push_back(element); m_PolyLineUpToDate = false; } else { MITK_ERROR << "Tried to add point to PolyLine " << index + 1 << ", although only " << m_PolyLines.size() << " exists"; } } void mitk::PlanarFigure::AppendPointToHelperPolyLine(unsigned int index, PolyLineElement element) { if (index < m_HelperPolyLines.size()) { m_HelperPolyLines[index].push_back(element); m_HelperLinesUpToDate = false; } else { MITK_ERROR << "Tried to add point to HelperPolyLine " << index + 1 << ", although only " << m_HelperPolyLines.size() << " exists"; } } bool mitk::PlanarFigure::Equals(const mitk::PlanarFigure &other) const { // check geometries if (this->GetPlaneGeometry() && other.GetPlaneGeometry()) { if (!Equal(*(this->GetPlaneGeometry()), *(other.GetPlaneGeometry()), mitk::eps, true)) { return false; } } else { MITK_ERROR << "Geometry is not equal"; return false; } // check isPlaced member if (this->m_FigurePlaced != other.m_FigurePlaced) { MITK_ERROR << "Is_Placed is not equal"; return false; } // check closed property if (this->IsClosed() != other.IsClosed()) { MITK_ERROR << "Is_closed is not equal"; return false; } // check poly lines if (this->m_PolyLines.size() != other.m_PolyLines.size()) { return false; } else { auto itThis = this->m_PolyLines.begin(); auto itEnd = this->m_PolyLines.end(); auto itOther = other.m_PolyLines.begin(); while (itThis != itEnd) { if (itThis->size() != itOther->size()) return false; else { auto itLineThis = itThis->begin(); auto itLineEnd = itThis->end(); auto itLineOther = itOther->begin(); while (itLineThis != itLineEnd) { Point2D p1 = *itLineThis; Point2D p2 = *itLineOther; ScalarType delta = fabs(p1[0] - p2[0]) + fabs(p1[1] - p2[1]); if (delta > .001) { MITK_ERROR << "Poly line is not equal"; MITK_ERROR << p1 << "/" << p2; return false; } ++itLineThis; ++itLineOther; } } ++itThis; ++itOther; } } // check features if (this->GetNumberOfFeatures() != other.GetNumberOfFeatures()) { MITK_ERROR << "Number of Features is Different"; return false; } else { auto itThis = m_Features.begin(); auto itEnd = m_Features.end(); auto itOther = other.m_Features.begin(); while (itThis != itEnd) { if ((itThis->Quantity - itOther->Quantity) > .001) { MITK_ERROR << "Quantity is Different" << itThis->Quantity << "/" << itOther->Quantity; return false; } if (itThis->Unit.compare(itOther->Unit) != 0) { MITK_ERROR << "Unit is Different" << itThis->Unit << "/" << itOther->Unit; return false; } if (itThis->Name.compare(itOther->Name) != 0) { MITK_ERROR << "Name of Measure is Different " << itThis->Name << "/ " << itOther->Name; ; return false; } ++itThis; ++itOther; } } return true; } bool mitk::Equal(const mitk::PlanarFigure &leftHandSide, const mitk::PlanarFigure &rightHandSide, ScalarType /*eps*/, bool /*verbose*/) { // FIXME: use eps and verbose return leftHandSide.Equals(rightHandSide); }