diff --git a/Modules/ImageStatistics/itkMultiGaussianImageSource.hxx b/Modules/ImageStatistics/itkMultiGaussianImageSource.hxx index e98e7f9dc3..7b4fef2344 100644 --- a/Modules/ImageStatistics/itkMultiGaussianImageSource.hxx +++ b/Modules/ImageStatistics/itkMultiGaussianImageSource.hxx @@ -1,1000 +1,992 @@ /*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ /*========================================================================= * * Portions of this file are subject to the VTK Toolkit Version 3 copyright. * * Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen * * For complete copyright, license and disclaimer of warranty information * please refer to the NOTICE file at the top of the ITK source tree. * *=========================================================================*/ #ifndef __itkMultiGaussianImageSource_hxx #define __itkMultiGaussianImageSource_hxx #include #include #include #include "itkMultiGaussianImageSource.h" #include "itkImageRegionIterator.h" #include "itkObjectFactory.h" #include "itkProgressReporter.h" #include "stdlib.h" namespace itk { /** * */ template< class TOutputImage > MultiGaussianImageSource< TOutputImage > ::MultiGaussianImageSource() { //Initial image is 100 wide in each direction. for ( unsigned int i = 0; i < TOutputImage::GetImageDimension(); i++ ) { m_Size[i] = 100; m_Spacing[i] = 1.0; m_Origin[i] = 0.0; m_SphereMidpoint[i] = 0; } m_NumberOfGaussians = 0; m_Radius = 1; m_RadiusStepNumber = 5; m_MeanValue = 0; m_Min = NumericTraits< OutputImagePixelType >::NonpositiveMin(); m_Max = NumericTraits< OutputImagePixelType >::max(); } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > MultiGaussianImageSource< TOutputImage > ::~MultiGaussianImageSource() {} //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::SetSize(SizeValueArrayType sizeArray) { const unsigned int count = TOutputImage::ImageDimension; unsigned int i; for ( i = 0; i < count; i++ ) { if ( sizeArray[i] != this->m_Size[i] ) { break; } } if ( i < count ) { this->Modified(); for ( i = 0; i < count; i++ ) { this->m_Size[i] = sizeArray[i]; } } } template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::SizeValueType * MultiGaussianImageSource< TOutputImage > ::GetSize() const { return this->m_Size.GetSize(); } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::SetSpacing(SpacingValueArrayType spacingArray) { const unsigned int count = TOutputImage::ImageDimension; unsigned int i; for ( i = 0; i < count; i++ ) { if ( spacingArray[i] != this->m_Spacing[i] ) { break; } } if ( i < count ) { this->Modified(); for ( i = 0; i < count; i++ ) { this->m_Spacing[i] = spacingArray[i]; } } } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::SetOrigin(PointValueArrayType originArray) { const unsigned int count = TOutputImage::ImageDimension; unsigned int i; for ( i = 0; i < count; i++ ) { if ( originArray[i] != this->m_Origin[i] ) { break; } } if ( i < count ) { this->Modified(); for ( i = 0; i < count; i++ ) { this->m_Origin[i] = originArray[i]; } } } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::PointValueType * MultiGaussianImageSource< TOutputImage > ::GetOrigin() const { for ( unsigned int i = 0; i < TOutputImage::ImageDimension; i++ ) { this->m_OriginArray[i] = this->m_Origin[i]; } return this->m_OriginArray; } template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::SpacingValueType * MultiGaussianImageSource< TOutputImage > ::GetSpacing() const { for ( unsigned int i = 0; i < TOutputImage::ImageDimension; i++ ) { this->m_SpacingArray[i] = this->m_Spacing[i]; } return this->m_SpacingArray; } //----------------------------------------------------------------------------------------------------------------------- /** * */ template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "Max: " << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_Max ) << std::endl; os << indent << "Min: " << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_Min ) << std::endl; os << indent << "Origin: ["; unsigned int ii = 0; while( ii < TOutputImage::ImageDimension - 1 ) { os << m_Origin[ii] << ", "; ++ii; } os << m_Origin[ii] << "]" << std::endl; os << indent << "Spacing: ["; ii = 0; while( ii < TOutputImage::ImageDimension - 1 ) { os << m_Spacing[ii] << ", "; ++ii; } os << m_Spacing[ii] << "]" << std::endl; os << indent << "Size: ["; ii = 0; while( ii < TOutputImage::ImageDimension - 1 ) { os << m_Size[ii] << ", "; ++ii; } os << m_Size[ii] << "]" << std::endl; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > unsigned int MultiGaussianImageSource< TOutputImage > ::GetNumberOfGaussians() const { return this->m_NumberOfGaussians; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::RadiusType MultiGaussianImageSource< TOutputImage > ::GetRadius() const { return this->m_Radius; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::SetRadius( RadiusType radius ) { this->m_Radius = radius; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::SetNumberOfGausssians( unsigned int n ) { this->m_NumberOfGaussians = n; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::SetRegionOfInterest( ItkVectorType roiMin, ItkVectorType roiMax ) { m_RegionOfInterestMax.operator=(roiMax); m_RegionOfInterestMin.operator=(roiMin); } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::OutputImagePixelType MultiGaussianImageSource< TOutputImage > ::GetMaxMeanValue() const { return m_MeanValue; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::OutputImagePixelType MultiGaussianImageSource< TOutputImage > ::GetMaxValueInSphere() const { return m_MaxValueInSphere; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::IndexType MultiGaussianImageSource< TOutputImage > ::GetMaxValueIndexInSphere() const { return m_MaxValueIndexInSphere; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::OutputImagePixelType MultiGaussianImageSource< TOutputImage > ::GetMinValueInSphere() const { return m_MinValueInSphere; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::IndexType MultiGaussianImageSource< TOutputImage > ::GetMinValueIndexInSphere() const { return m_MinValueIndexInSphere; } //----------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const typename MultiGaussianImageSource< TOutputImage >::IndexType MultiGaussianImageSource< TOutputImage > ::GetSphereMidpoint() const { return m_SphereMidpoint; } //----------------------------------------------------------------------------------------------------------------------- /* Calculate and return value of the integral of the gaussian in a cuboid region with the dimension 3: in the x-axis between xMin and xMax and in the y-axis between yMin and yMax and in the z-axis also between zMin and zMax. */ template< class TOutputImage > double MultiGaussianImageSource< TOutputImage > ::MultiGaussianFunctionValueAtCuboid(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax) { double mean = 0; double summand0, summand1, summand2, value, factor; for(unsigned int n = 0; n < m_NumberOfGaussians; ++n) { - //TODO - //summand0 = FunctionPhi((xMax - m_CenterX[n] * m_Spacing[0]) / (m_SigmaX[n] * m_Spacing[0]) ) - FunctionPhi((xMin - m_CenterX[n] * m_Spacing[0]) / (m_SigmaX[n] * m_Spacing[0]) ); - //summand1 = FunctionPhi((yMax - m_CenterY[n] * m_Spacing[1]) / (m_SigmaY[n] * m_Spacing[1]) ) - FunctionPhi((yMin - m_CenterY[n] * m_Spacing[1]) / (m_SigmaY[n] * m_Spacing[1]) ); - //summand2 = FunctionPhi((zMax - m_CenterZ[n] * m_Spacing[2]) / (m_SigmaZ[n] * m_Spacing[2]) ) - FunctionPhi((zMin - m_CenterZ[n] * m_Spacing[2]) / (m_SigmaZ[n] * m_Spacing[2]) ); summand0 = FunctionPhi((xMax - m_CenterX[n]) / m_SigmaX[n] ) - FunctionPhi((xMin - m_CenterX[n]) / m_SigmaX[n] ); summand1 = FunctionPhi((yMax - m_CenterY[n]) / m_SigmaY[n] ) - FunctionPhi((yMin - m_CenterY[n]) / m_SigmaY[n] ); summand2 = FunctionPhi((zMax - m_CenterZ[n]) / m_SigmaZ[n] ) - FunctionPhi((zMin - m_CenterZ[n]) / m_SigmaZ[n] ); value = summand0 * summand1 * summand2; - factor = (m_SigmaX[n] * m_SigmaY[n] * m_SigmaZ[n] ) * pow(2.0 * itk::Math::pi, 1.5 ); // * / - // ( ((xMax - m_CenterX[n]) / m_SigmaX[n] - (xMin - m_CenterX[n]) / m_SigmaX[n]) - // * ((yMax - m_CenterY[n]) / m_SigmaY[n] - (yMin - m_CenterY[n]) / m_SigmaY[n]) - // * ((zMax - m_CenterZ[n]) / m_SigmaZ[n] - (zMin - m_CenterZ[n]) / m_SigmaZ[n])); - // 1 / ((xMax - xMin) * (yMax - yMin) * (zMax - zMin) * pow(2.0 * itk::Math::pi, 1.5 ));// (m_SigmaX[n] * m_SigmaY[n] * m_SigmaZ[n] ) / ((xMax - xMin) * (yMax - yMin) * (zMax - zMin)); //* pow(2.0 * itk::Math::pi, 1.5 )); + factor = (m_SigmaX[n] * m_SigmaY[n] * m_SigmaZ[n] ) * pow(2.0 * itk::Math::pi, 1.5 ); mean = mean + factor * value * m_Altitude[n]; - // m_Volume = m_Volume + (xMax - xMin) * (yMax - yMin) * (zMax - zMin); - } return mean; } //--------------------------------------------------------------------------------------------------------------------- /* Returns the linear interpolation of the values of the standard normal distribution function. This values could be seen in the vector m_NormalDistValues. */ template< class TOutputImage > double MultiGaussianImageSource< TOutputImage > ::FunctionPhi(double value) { double phiAtValue; //linear interpolation between the values int indexValue = static_cast( 100 * value); if( indexValue > 409 ) { return phiAtValue = 1.0; } else if( indexValue < -409 ) { return phiAtValue = 0.0; } else if( indexValue == 409 ) { return phiAtValue = m_NormalDistValues[409]; } else if( indexValue == -409 ) { return phiAtValue = 1.0 - m_NormalDistValues[409]; } else { bool negative = false; if (indexValue < 0.0) { negative = true; value = -value; } int indexUp = static_cast( 100 * value) + 1; int indexDown = static_cast( 100 * value); double alpha = 100.0 * value - static_cast(indexDown); phiAtValue = (1.0 - alpha) * m_NormalDistValues[indexDown] + alpha * m_NormalDistValues[indexUp] ; if(negative) { phiAtValue = 1.0 - phiAtValue; } return phiAtValue; } } //---------------------------------------------------------------------------------------------------------------------- /* Set the midpoint of the cuboid in a vector m_Midpoints. This cuboids discretise the sphere with the octree method. Set the radius of the cuboid ( = 0.5 * length of the side of the cuboid ) in the vector m_RadiusCuboid. */ template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::InsertPoints( PointType globalCoordinateMidpointCuboid, double cuboidRadius) { MapContainerPoints::ElementIdentifier id = m_Midpoints.Size(); m_Midpoints.InsertElement(id, globalCoordinateMidpointCuboid); m_RadiusCuboid.InsertElement(id, cuboidRadius); } //---------------------------------------------------------------------------------------------------------------------- /* This recursive method realise the octree method. It subdivide a cuboid in eight cuboids, when this cuboid crosses the boundary of sphere. If the cuboid is inside the sphere, it calculates the integral and, if uncommented, insert the midpoint of the cuboid in the m_Midpoints vector. */ template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::CalculateEdgesInSphere( PointType globalCoordinateMidpointCuboid, PointType globalCoordinateMidpointSphere, double cuboidRadius, int level ) { double xMin, xMax, yMin, yMax, zMin, zMax; double cuboidRadiusRecursion = cuboidRadius; PointType newMidpoint; int intersect = IntersectTheSphere( globalCoordinateMidpointCuboid, globalCoordinateMidpointSphere, cuboidRadiusRecursion); if( (intersect == 1) ) { if (level < 4) { // cuboid intersect the sphere -> call CalculateEdgesInSphere (this method) for the subdivided cuboid cuboidRadiusRecursion = cuboidRadiusRecursion / 2.0; for(int i = -1; i < 2; i+=2) { for(int k = -1; k < 2; k+=2) { for(int j = -1; j < 2; j+=2) { newMidpoint[0] = globalCoordinateMidpointCuboid[0] + static_cast(i) * cuboidRadiusRecursion; newMidpoint[1] = globalCoordinateMidpointCuboid[1] + static_cast(k) * cuboidRadiusRecursion; newMidpoint[2] = globalCoordinateMidpointCuboid[2] + static_cast(j) * cuboidRadiusRecursion; this->CalculateEdgesInSphere( newMidpoint, globalCoordinateMidpointSphere, cuboidRadiusRecursion, level + 1 ); } } } } // last step of recursion -> on the boundary else { // Calculate the integral and take the half of it (because we are on the boundary) xMin = globalCoordinateMidpointCuboid[0] - cuboidRadius; xMax = globalCoordinateMidpointCuboid[0] + cuboidRadius; yMin = globalCoordinateMidpointCuboid[1] - cuboidRadius; yMax = globalCoordinateMidpointCuboid[1] + cuboidRadius; zMin = globalCoordinateMidpointCuboid[2] - cuboidRadius; zMax = globalCoordinateMidpointCuboid[2] + cuboidRadius; // size is in index coordinate -> multiply by the spacing -> global coordinate of the image boundary // yz Plane bool yzPlaneNotCrossYSection = xMin >= m_Origin[0] && xMax <= m_Size[0] * m_Spacing[0]; // xz Plane bool xzPlaneNotCrossYSection = yMin >= m_Origin[1] && yMax <= m_Size[1] * m_Spacing[1]; // xy Plane bool xyPlaneNotCrossZSection = zMin >= m_Origin[2] && zMax <= m_Size[2] * m_Spacing[2]; //check if the boundary of the integral is inside the image if( yzPlaneNotCrossYSection && xzPlaneNotCrossYSection && xyPlaneNotCrossZSection) { //double temp = this->MultiGaussianFunctionValueAtCuboid( xMin, xMax, yMin, yMax, zMin, zMax ) * 0.5; m_meanValueTemp = m_meanValueTemp + this->MultiGaussianFunctionValueAtCuboid( xMin, xMax, yMin, yMax, zMin, zMax ) * 0.5; m_Volume = m_Volume + pow( 2.0 * cuboidRadius, 3.0) / 2.0; } } } else if(intersect == 2) { // cuboid in the sphere // To insert the midpoint and the radius of the cuboid in a vector, so that we can visualise the midpoints, uncomment the next line and the line WriteXMLToTestTheCuboidInsideTheSphere(); // InsertPoints(globalCoordinateMidpointCuboid, cuboidRadius); // Calculate the integral boundary xMin = globalCoordinateMidpointCuboid[0] - cuboidRadius; xMax = globalCoordinateMidpointCuboid[0] + cuboidRadius; yMin = globalCoordinateMidpointCuboid[1] - cuboidRadius; yMax = globalCoordinateMidpointCuboid[1] + cuboidRadius; zMin = globalCoordinateMidpointCuboid[2] - cuboidRadius; zMax = globalCoordinateMidpointCuboid[2] + cuboidRadius; // size is in index coordinate -> multiply by the spacing -> global coordinate of the image boundary // yz Plane bool yzPlaneAtOriginCrossXSection = xMin <= m_Origin[0] && xMax >= m_Origin[0]; bool yzPlaneAtImageBorderCrossXSection = xMin <= m_Size[0] * m_Spacing[0] && xMax >= m_Size[0] * m_Spacing[0]; bool yzPlaneNotCrossYSection = xMin >= m_Origin[0] && xMax <= m_Size[0] * m_Spacing[0]; // xz Plane bool xzPlaneAtOriginCrossYSection = yMin <= m_Origin[1] && yMax >= m_Origin[1]; bool xzPlaneAtImageBorderCrossYSection = yMin <= m_Size[1] * m_Spacing[1] && yMax >= m_Size[1] * m_Spacing[1]; bool xzPlaneNotCrossYSection = yMin >= m_Origin[1] && yMax <= m_Size[1] * m_Spacing[1]; // xy Plane bool xyPlaneAtOriginCrossZSection = zMin <= m_Origin[2] && zMax >= m_Origin[2]; bool xyPlaneAtImageBorderCrossZSection = zMin <= m_Size[2] * m_Spacing[2] && zMax >= m_Size[2] * m_Spacing[2]; bool xyPlaneNotCrossZSection = zMin >= m_Origin[2] && zMax <= m_Size[2] * m_Spacing[2]; if( yzPlaneNotCrossYSection && xzPlaneNotCrossYSection && xyPlaneNotCrossZSection) { m_meanValueTemp = m_meanValueTemp + this->MultiGaussianFunctionValueAtCuboid( xMin, xMax, yMin, yMax, zMin, zMax ); m_Volume = m_Volume + pow( 2.0 * cuboidRadius, 3.0); } // check if the boundary of the image intersect the cuboid and if yes, change the limits of the cuboid to be only inside the image; therefor we cut the sphere and neglect the part of it outside the image else if( // one plane crosses the cuboid ( (yzPlaneAtOriginCrossXSection && xzPlaneNotCrossYSection && xyPlaneNotCrossZSection) || (yzPlaneAtImageBorderCrossXSection && xzPlaneNotCrossYSection && xyPlaneNotCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneAtOriginCrossYSection && xyPlaneNotCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneAtImageBorderCrossYSection && xyPlaneNotCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneNotCrossYSection && xyPlaneAtOriginCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneNotCrossYSection && xyPlaneAtImageBorderCrossZSection) ) || // two plane cross the cuboid (on the image edges possible) ( (yzPlaneAtOriginCrossXSection && xzPlaneAtOriginCrossYSection && xyPlaneNotCrossZSection) || ( (yzPlaneAtOriginCrossXSection && xzPlaneNotCrossYSection && xyPlaneAtOriginCrossZSection) || (yzPlaneAtImageBorderCrossXSection && xzPlaneAtImageBorderCrossYSection && xyPlaneNotCrossZSection) || (yzPlaneAtImageBorderCrossXSection && xzPlaneNotCrossYSection && xyPlaneAtImageBorderCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneAtOriginCrossYSection && xyPlaneNotCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneAtOriginCrossYSection && xyPlaneAtOriginCrossZSection) || (yzPlaneAtImageBorderCrossXSection && xzPlaneAtImageBorderCrossYSection && xyPlaneNotCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneAtImageBorderCrossYSection && xyPlaneAtImageBorderCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneAtImageBorderCrossYSection && xyPlaneAtOriginCrossZSection) || (yzPlaneAtOriginCrossXSection && xzPlaneNotCrossYSection && xyPlaneAtOriginCrossZSection) || (yzPlaneNotCrossYSection && xzPlaneAtImageBorderCrossYSection && xyPlaneAtImageBorderCrossZSection)) || (yzPlaneAtImageBorderCrossXSection && xzPlaneNotCrossYSection && xyPlaneAtImageBorderCrossZSection) ) ) { // x-Axis if(xMin <= m_Origin[0] && xMax >= m_Origin[0]) { xMin = m_Origin[0]; }else if(xMin <= m_Size[0] * m_Spacing[0] && xMax >= m_Size[0] * m_Spacing[0]) { xMax = m_Size[0] * m_Spacing[0]; } // y-Axis if(yMin <= m_Origin[1] && yMax >= m_Origin[1]) { yMin = m_Origin[1]; }else if(yMin <= m_Size[1] * m_Spacing[1] && yMax >= m_Size[1] * m_Spacing[1]) { yMax = m_Size[1] * m_Spacing[1]; } // z-Axis if(zMin <= m_Origin[2] && zMax >= m_Origin[2]) { zMin = m_Origin[2]; }else if(zMin <= m_Size[2] * m_Spacing[2] && zMax >= m_Size[2] * m_Spacing[2]) { zMax = m_Size[2] * m_Spacing[2]; } m_meanValueTemp = m_meanValueTemp + this->MultiGaussianFunctionValueAtCuboid( xMin, xMax, yMin, yMax, zMin, zMax ); m_Volume = m_Volume + (xMax - xMin) * (yMax - yMin) * (zMax - zMin) ; } } } //----------------------------------------------------------------------------------------------------------------------- /* Start the octree recursion in eigth directions for the sphere with midpoint globalCoordinateMidpointSphere and, if uncommented, write this in a file, so that we can visualise it. */ template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::GenerateCuboidSegmentationInSphere(PointType globalCoordinateMidpointSphere) { double cuboidRadius = m_Radius * 0.5; PointType newMidpoint; for(int i = -1; i < 2; i+=2) { for(int k = -1; k < 2; k+=2) { for(int j = -1; j < 2; j+=2) { newMidpoint[0] = globalCoordinateMidpointSphere[0] + static_cast(i) * cuboidRadius; newMidpoint[1] = globalCoordinateMidpointSphere[1] + static_cast(k) * cuboidRadius; newMidpoint[2] = globalCoordinateMidpointSphere[2] + static_cast(j) * cuboidRadius; CalculateEdgesInSphere( newMidpoint, globalCoordinateMidpointSphere, cuboidRadius, 0); } } } if(m_WriteMPS) { m_WriteMPS = 0; // uncomment to write an .mps file to visualise the midpoints // std::cout << "Wrote .xml to visualise the midpoints." << std::endl; // WriteXMLToTestTheCuboidInsideTheSphere(); } } //---------------------------------------------------------------------------------------------------------------------- /* This class allows by the method CalculateTheMidpointAndTheMeanValueWithOctree() to find a sphere with a specified radius that has a maximal mean value over all sphere with that radius with midpoint inside or at the boundary of the image. We approximaze the sphere with the octree recursiv method. CalculateTheMidpointAndTheMeanValueWithOctree works as follows: 1. The for-loops traverse the region of interest and assume the current point to be the wanted sphere midpoint. 2. Calculate the mean value for that sphere. 3. Compare with the until-now-found-maximum and take the bigger one. */ template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::CalculateTheMidpointAndTheMeanValueWithOctree() { m_MeanValue = 0.0; double meanValueTemp; PointType midpoint; MapContainerPoints::ElementIdentifier cuboidNumber = m_Midpoints.Size(); - SetNormalDistributionValues(); + // SetNormalDistributionValues(); double radius; //double xMin, xMax, yMin, yMax, zMin, zMax; m_WriteMPS = 1; PointType globalCoordinateMidpointSphere; IndexType index; OutputImageRegionType regionOfInterest; IndexType indexR; indexR.SetElement( 0, m_RegionOfInterestMin[0] ); indexR.SetElement( 1, m_RegionOfInterestMin[1] ); indexR.SetElement( 2, m_RegionOfInterestMin[2] ); regionOfInterest.SetIndex(indexR); SizeType sizeROI; sizeROI.SetElement( 0, m_RegionOfInterestMax[0] - m_RegionOfInterestMin[0] ); sizeROI.SetElement( 1, m_RegionOfInterestMax[1] - m_RegionOfInterestMin[1] ); sizeROI.SetElement( 2, m_RegionOfInterestMax[2] - m_RegionOfInterestMin[2] ); regionOfInterest.SetSize(sizeROI); typename TOutputImage::Pointer image = this->GetOutput(0); IteratorType regionOfInterestIterator(image, regionOfInterest); for(regionOfInterestIterator.GoToBegin(); !regionOfInterestIterator.IsAtEnd(); ++regionOfInterestIterator) { index = regionOfInterestIterator.GetIndex(); image->TransformIndexToPhysicalPoint(index, globalCoordinateMidpointSphere); m_Volume = 0.0; m_meanValueTemp = 0.0; this->GenerateCuboidSegmentationInSphere(globalCoordinateMidpointSphere); meanValueTemp = m_meanValueTemp / m_Volume; // std::cout << "index: " << index <<" meanvalue: " << meanValueTemp << std::endl; if(meanValueTemp > m_MeanValue) { m_GlobalCoordinate = globalCoordinateMidpointSphere; m_MeanValue = meanValueTemp; m_SphereMidpoint = index; } } } //---------------------------------------------------------------------------------------------------------------------- /* Check if a cuboid intersect the sphere boundary. Returns 2, if the cuboid is inside the sphere; returns 1, if the cuboid intersects the sphere boundary and 0, if the cuboid is out of the sphere. */ template< class TOutputImage > unsigned int MultiGaussianImageSource< TOutputImage > ::IntersectTheSphere( PointType globalCoordinateMidpointCuboid, PointType globalCoordinateMidpointSphere, double cuboidRadius) { unsigned int intersect = 1; PointType cuboidEdge; int count = 0; for(int i = -1; i < 2; i+=2) { for(int k = -1; k < 2; k+=2) { for(int j = -1; j < 2; j+=2) { cuboidEdge[0] = globalCoordinateMidpointCuboid[0] + static_cast(i) * cuboidRadius; cuboidEdge[1] = globalCoordinateMidpointCuboid[1] + static_cast(k) * cuboidRadius; cuboidEdge[2] = globalCoordinateMidpointCuboid[2] + static_cast(j) * cuboidRadius; count = count + ( globalCoordinateMidpointSphere.SquaredEuclideanDistanceTo(cuboidEdge) <= m_Radius * m_Radius ); } } } if ( count == 0 ) { // cuboid not in the sphere intersect = 0; } if (count == 8 ) { // cuboid in the sphere intersect = 2; } return intersect; } //---------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > const double MultiGaussianImageSource< TOutputImage > ::MultiGaussianFunctionValueAtPoint(double x, double y, double z) { //this claculate the mean value in the voxel //integrate over the voxel with midpoint [x, y, z] double summand0, summand1, summand2, power, value = 0.0, factor; double xMin, xMax, yMin, yMax, zMin, zMax, mean; mean = 0.0; // the for-loop represent the sum of the gaussian function xMin = x - m_Spacing[0] / 2.0; xMax = x + m_Spacing[0] / 2.0; yMin = y - m_Spacing[1] / 2.0; yMax = y + m_Spacing[1] / 2.0; zMin = z - m_Spacing[2] / 2.0; zMax = z + m_Spacing[2] / 2.0; - for( unsigned int n =0; n < m_NumberOfGaussians; ++n ) + for( unsigned int n = 0; n < m_NumberOfGaussians; ++n ) { - - summand0 = FunctionPhi((xMax - m_CenterX[n]) / m_SigmaX[n] ) - FunctionPhi((xMin - m_CenterX[n]) / m_SigmaX[n] ); - summand1 = FunctionPhi((yMax - m_CenterY[n]) / m_SigmaY[n] ) - FunctionPhi((yMin - m_CenterY[n]) / m_SigmaY[n] ); - summand2 = FunctionPhi((zMax - m_CenterZ[n]) / m_SigmaZ[n] ) - FunctionPhi((zMin - m_CenterZ[n]) / m_SigmaZ[n] ); + summand0 = FunctionPhi( (xMax - m_CenterX[n]) / m_SigmaX[n] ) - FunctionPhi( (xMin - m_CenterX[n]) / m_SigmaX[n] ); + summand1 = FunctionPhi( (yMax - m_CenterY[n]) / m_SigmaY[n] ) - FunctionPhi( (yMin - m_CenterY[n]) / m_SigmaY[n] ); + summand2 = FunctionPhi( (zMax - m_CenterZ[n]) / m_SigmaZ[n] ) - FunctionPhi( (zMin - m_CenterZ[n]) / m_SigmaZ[n] ); value = summand0 * summand1 * summand2; - factor = (m_SigmaX[n] * m_SigmaY[n] * m_SigmaZ[n] ) * pow(2.0 * itk::Math::pi, 1.5 ); + factor = ( m_SigmaX[n] * m_SigmaY[n] * m_SigmaZ[n] ) * pow( 2.0 * itk::Math::pi, 1.5 ); mean = mean + factor * value * m_Altitude[n]; } value = mean / (m_Spacing[0] * m_Spacing[1] * m_Spacing[2] ); + /* //this calculate the value of the gaussian at the midpoint of the voxel: double summand0, summand1, summand2, power, value = 0.0; // the for-loop represent the sum of the gaussian function for(unsigned int n =0; n < m_NumberOfGaussians; ++n) { summand0 = ( x - m_CenterX[n] ) / m_SigmaX[n]; summand1 = ( y - m_CenterY[n] ) / m_SigmaY[n]; summand2 = ( z - m_CenterZ[n] ) / m_SigmaZ[n]; power = summand0 * summand0 + summand1 * summand1 + summand2 * summand2; value = value + m_Altitude[n] * pow(itk::Math::e, -0.5 * power); } */ + // std::cout << "X: " << xMin << " " << x << " "<< xMax << " Y: "<< yMin << " " << y << " " << yMax << " Z: "<< zMin << " "<< z << " " << zMax << " value: " << value << std::endl; return value; } //---------------------------------------------------------------------------------------------------------------------- template< class TOutputImage > void MultiGaussianImageSource< TOutputImage > ::AddGaussian( VectorType x, VectorType y, VectorType z, VectorType sx, VectorType sy, VectorType sz, VectorType altitude) { for(unsigned int i = 0; i < x.size(); ++i) { - // NOT ?? the x,y,z are given in index coordinates -> multiply by the spacing aand save the global coordinate + m_CenterX.push_back( x[i] ); m_CenterY.push_back( y[i] ); m_CenterZ.push_back( z[i] ); m_SigmaX.push_back( sx[i] ); m_SigmaY.push_back( sy[i] ); m_SigmaZ.push_back( sz[i] ); m_Altitude.push_back(altitude[i]); } } //----------------------------------------------------------------------------------------------------------------------- template< typename TOutputImage > void MultiGaussianImageSource< TOutputImage > ::GenerateOutputInformation() { TOutputImage *output; IndexType index; index.Fill(0); output = this->GetOutput(0); typename TOutputImage::RegionType largestPossibleRegion; largestPossibleRegion.SetSize(this->m_Size); largestPossibleRegion.SetIndex(index); output->SetLargestPossibleRegion(largestPossibleRegion); output->SetSpacing(m_Spacing); output->SetOrigin(m_Origin); } //----------------------------------------------------------------------------------------------------------------------- template< typename TOutputImage > void MultiGaussianImageSource< TOutputImage > ::GenerateData() { itkDebugMacro(<< "Generating a image of scalars "); double valueReal; IndexType index; typedef typename TOutputImage::PixelType scalarType; typename TOutputImage::Pointer image = this->GetOutput(0); image = this->GetOutput(0); image->SetBufferedRegion( image->GetRequestedRegion() ); image->Allocate(); IteratorType imageIt(image, image->GetLargestPossibleRegion()); PointType globalCoordinate; + this->SetNormalDistributionValues(); for(imageIt.GoToBegin(); !imageIt.IsAtEnd(); ++imageIt) { valueReal = 0.0; index = imageIt.GetIndex(); image->TransformIndexToPhysicalPoint(imageIt.GetIndex(), globalCoordinate); valueReal = MultiGaussianFunctionValueAtPoint(globalCoordinate[0], globalCoordinate[1] ,globalCoordinate[2]); imageIt.Set(valueReal); } } //----------------------------------------------------------------------------------------------------------------------- /*This method is used to write a .mps file, so that we can visualize the midpoints of the approximated sphere as a scatterplot (for example with MITK Workbench). */ template< typename TOutputImage > void MultiGaussianImageSource< TOutputImage > ::WriteXMLToTestTheCuboidInsideTheSphere() { std::stringstream ss; int numberSummand = 1.0; //write an .mps test file itk::DOMNodeXMLWriter::Pointer xmlWriter; typedef itk::DOMNode::Pointer DOMNodeType; DOMNodeType domXML, domPointSetFile, domFileVersion, domPointSet, domPoint, domId, domX, domY, domZ; xmlWriter = itk::DOMNodeXMLWriter::New(); domXML = itk::DOMNode::New(); domXML->SetName("?xml"); domPointSetFile = itk::DOMNode::New(); domPointSetFile->SetName("point_set_file"); //domFileVersion = itk::DOMNode::New(); //domFileVersion->SetName("file_version"); domPointSet = itk::DOMNode::New(); domPointSet->SetName("point_set"); ss.str(""); ss << 1.0; domXML->SetAttribute("version", ss.str()); domXML->AddChildAtBegin(domPointSetFile); //domPointSetFile -> AddChildAtBegin(domFileVersion); domPointSetFile -> AddChildAtBegin(domPointSet); int cap = m_Midpoints.Size(); for(unsigned int iter = 0 ; iter < cap; ++iter) { domPoint = itk::DOMNode::New(); domPoint->SetName("point"); domX = itk::DOMNode::New(); domX->SetName("x"); domY = itk::DOMNode::New(); domY->SetName("y"); domZ = itk::DOMNode::New(); domZ->SetName("z"); domId = itk::DOMNode::New(); domId->SetName("id"); ss.str(""); ss << numberSummand; domId->AddTextChildAtBegin(ss.str()); domPoint -> AddChildAtEnd(domId); double scaleFactor = 10.0; PointType point = m_Midpoints.GetElement( numberSummand - 1 ); ss.str(""); ss << point[0] * scaleFactor; domX->AddTextChildAtBegin(ss.str()); domPoint -> AddChildAtEnd(domX); ss.str(""); ss << point[1] * scaleFactor; domY->AddTextChildAtBegin(ss.str()); domPoint -> AddChildAtEnd(domY); ss.str(""); ss << point[2] * scaleFactor; domZ->AddTextChildAtBegin(ss.str()); domPoint -> AddChildAtEnd(domZ); domPointSet -> AddChildAtEnd(domPoint); numberSummand += 1.0; } // .mps (Data) ss.str(""); ss << "C:/temp/CuboidsInTheSphere.mps"; std::string name = ss.str(); char * fileNamePointer = (char*) name.c_str(); xmlWriter->SetFileName( fileNamePointer); xmlWriter->SetInput( domXML ); xmlWriter->Update(); } //----------------------------------------------------------------------------------------------------------------------- template< typename TOutputImage > void MultiGaussianImageSource< TOutputImage > ::CalculateMaxAndMinInSphere() { IndexType index; MultiGaussianImageSource< TOutputImage >::OutputImagePixelType value; m_MaxValueInSphere = std::numeric_limits::min(); m_MinValueInSphere = std::numeric_limits::max(); int radInt; OutputImageRegionType cuboidRegion; IndexType indexR; SizeType sizeR; int indexRegion, sizeRegion; for( unsigned int i = 0; i < 3; ++i ) { radInt = static_cast(m_Radius/m_Spacing[i]); indexRegion = m_SphereMidpoint[i] - radInt; if( m_Origin[i] > indexRegion ) { indexR.SetElement(i, m_Origin[i] ); } else { indexR.SetElement(i, indexRegion ); } sizeRegion = 2 *radInt + 1; if(indexR[i] + sizeRegion > m_Size[i]) { std::cout << "Not the entire sphere is in the image!" << std::endl; sizeR.SetElement(i, m_Size[i] - indexRegion ); } else { sizeR.SetElement(i, sizeRegion ); } } cuboidRegion.SetIndex(indexR); cuboidRegion.SetSize(sizeR); typename TOutputImage::Pointer image = this->GetOutput(0); IteratorType cuboidRegionOfInterestIterator(image, cuboidRegion); PointType globalCoordinate; for(cuboidRegionOfInterestIterator.GoToBegin(); !cuboidRegionOfInterestIterator.IsAtEnd(); ++cuboidRegionOfInterestIterator) { index = cuboidRegionOfInterestIterator.GetIndex(); if(IsInImage(index)) { image->TransformIndexToPhysicalPoint(cuboidRegionOfInterestIterator.GetIndex(), globalCoordinate); if( m_GlobalCoordinate.EuclideanDistanceTo(globalCoordinate) <= m_Radius ) { value = cuboidRegionOfInterestIterator.Get(); if(m_MaxValueInSphere < value) { m_MaxValueInSphere = value; m_MaxValueIndexInSphere = index; } if(m_MinValueInSphere > value) { m_MinValueInSphere = value; m_MinValueIndexInSphere = index; } } } } } //----------------------------------------------------------------------------------------------------------------------- template< typename TOutputImage > bool MultiGaussianImageSource< TOutputImage > ::IsInImage(IndexType index) { bool isInImage = 0; if(index[0] >= m_Origin[0] && index[0] <= m_Size[0] && index[1] >= m_Origin[1] && index[1] <= m_Size[1] && index[2] >= m_Origin[2] && index[2] <= m_Size[2]) { isInImage = 1; } return isInImage; } //----------------------------------------------------------------------------------------------------------------------- template< typename TOutputImage > void MultiGaussianImageSource< TOutputImage > ::SetNormalDistributionValues() { double temp[410] = { 0.5 , 0.50399 , 0.50798, 0.51197, 0.51595, 0.51994, 0.52392, 0.5279, 0.53188, 0.53586, 0.53983, 0.5438, 0.54776, 0.55172, 0.55567, 0.55962, 0.56356, 0.56749, 0.57142, 0.57535, 0.57926, 0.58317, 0.58706, 0.59095, 0.59483 , 0.59871, 0.60257, 0.60642, 0.61026, 0.61409, 0.61791, 0.62172, 0.62552, 0.6293, 0.63307, 0.63683, 0.64058, 0.64431, 0.64803, 0.65173, 0.65542, 0.6591, 0.66276, 0.6664, 0.67003, 0.67364, 0.67724, 0.68082, 0.68439, 0.68793, 0.69146, 0.69497, 0.69847, 0.70194, 0.7054, 0.70884, 0.71226, 0.71566, 0.71904, 0.7224, 0.72575, 0.72907, 0.73237, 0.73565, 0.73891, 0.74215, 0.74537, 0.74857, 0.75175, 0.7549, 0.75804, 0.76115, 0.76424, 0.7673, 0.77035, 0.77337, 0.77637, 0.77935, 0.7823, 0.78524, 0.78814, 0.79103, 0.79389, 0.79673, 0.79955, 0.80234, 0.80511, 0.80785, 0.81057, 0.81327, 0.81594, 0.81859, 0.82121, 0.82381, 0.82639, 0.82894, 0.83147, 0.83398, 0.83646, 0.83891, 0.84134, 0.84375, 0.84614, 0.84849, 0.85083, 0.85314, 0.85543, 0.85769, 0.85993, 0.86214, 0.86433, 0.8665, 0.86864, 0.87076, 0.87286, 0.87493, 0.87698, 0.879, 0.881, 0.88298, 0.88493, 0.88686, 0.88877, 0.89065, 0.89251, 0.89435, 0.89617, 0.89796, 0.89973, 0.90147, 0.9032, 0.9049, 0.90658, 0.90824, 0.90988, 0.91149, 0.91309, 0.91466, 0.91621, 0.91774, 0.91924, 0.92073, 0.9222, 0.92364, 0.92507, 0.92647, 0.92785, 0.92922, 0.93056, 0.93189, 0.93319, 0.93448, 0.93574, 0.93699, 0.93822, 0.93943, 0.94062, 0.94179, 0.94295, 0.94408, 0.9452, 0.9463, 0.94738, 0.94845, 0.9495, 0.95053, 0.95154, 0.95254, 0.95352, 0.95449, 0.95543, 0.95637, 0.95728, 0.95818, 0.95907, 0.95994, 0.9608, 0.96164, 0.96246, 0.96327, 0.96407, 0.96485, 0.96562, 0.96638, 0.96712, 0.96784, 0.96856, 0.96926, 0.96995, 0.97062, 0.97128, 0.97193, 0.97257, 0.9732, 0.97381, 0.97441, 0.975, 0.97558, 0.97615, 0.9767, 0.97725, 0.97778, 0.97831, 0.97882, 0.97932, 0.97982, 0.9803, 0.98077, 0.98124, 0.98169, 0.98214, 0.98257, 0.983, 0.98341, 0.98382, 0.98422, 0.98461, 0.985, 0.98537, 0.98574, 0.9861, 0.98645, 0.98679, 0.98713, 0.98745, 0.98778, 0.98809, 0.9884, 0.9887, 0.98899, 0.98928, 0.98956, 0.98983, 0.9901, 0.99036, 0.99061, 0.99086, 0.99111, 0.99134, 0.99158, 0.9918, 0.99202, 0.99224, 0.99245, 0.99266, 0.99286, 0.99305, 0.99324, 0.99343, 0.99361, 0.99379, 0.99396, 0.99413, 0.9943, 0.99446, 0.99461, 0.99477, 0.99492, 0.99506, 0.9952, 0.99534, 0.99547, 0.9956, 0.99573, 0.99585, 0.99598, 0.99609, 0.99621, 0.99632, 0.99643, 0.99653, 0.99664, 0.99674, 0.99683, 0.99693, 0.99702, 0.99711, 0.9972, 0.99728, 0.99736, 0.99744, 0.99752, 0.9976, 0.99767, 0.99774, 0.99781, 0.99788, 0.99795, 0.99801, 0.99807, 0.99813, 0.99819, 0.99825, 0.99831, 0.99836, 0.99841, 0.99846, 0.99851, 0.99856, 0.99861, 0.99865, 0.99869, 0.99874, 0.99878, 0.99882, 0.99886, 0.99889, 0.99893, 0.99896, 0.999, 0.99903, 0.99906, 0.9991, 0.99913, 0.99916, 0.99918, 0.99921, 0.99924, 0.99926, 0.99929, 0.99931, 0.99934, 0.99936, 0.99938, 0.9994, 0.99942, 0.99944, 0.99946, 0.99948, 0.9995, 0.99952, 0.99953, 0.99955, 0.99957, 0.99958, 0.9996, 0.99961, 0.99962, 0.99964, 0.99965, 0.99966, 0.99968, 0.99969, 0.9997, 0.99971, 0.99972, 0.99973, 0.99974, 0.99975, 0.99976, 0.99977, 0.99978, 0.99978, 0.99979, 0.9998, 0.99981, 0.99981, 0.99982, 0.99983, 0.99983, 0.99984, 0.99985, 0.99985, 0.99986, 0.99986, 0.99987, 0.99987, 0.99988, 0.99988, 0.99989, 0.99989, 0.9999, 0.9999, 0.9999, 0.99991, 0.99991, 0.99992, 0.99992, 0.99992, 0.99992, 0.99993, 0.99993, 0.99993, 0.99994, 0.99994, 0.99994, 0.99994, 0.99995, 0.99995, 0.99995, 0.99995, 0.99995, 0.99996, 0.99996, 0.99996, 0.99996, 0.99996, 0.99996, 0.99997, 0.99997, 0.99997, 0.99997, 0.99997, 0.99997, 0.99997, 0.99997, 0.99998, 0.99998, 0.99998, 0.99998 }; for(int i=0; i < 410; i++) { m_NormalDistValues[i] = temp[i]; } } } // end namespace itk #endif \ No newline at end of file