diff --git a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp index 363d7d85c5..dcf020abe3 100644 --- a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp +++ b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp @@ -1,476 +1,490 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSegTool2D.h" #include "mitkToolManager.h" #include "mitkDataStorage.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkExtractImageFilter.h" #include "mitkExtractDirectedPlaneImageFilter.h" //Include of the new ImageExtractor #include "mitkExtractDirectedPlaneImageFilterNew.h" #include "mitkPlanarCircle.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkOverwriteDirectedPlaneImageFilter.h" #include "mitkMorphologicalOperations.h" #include "usGetModuleContext.h" //Includes for 3DSurfaceInterpolation #include "mitkImageToContourFilter.h" #include "mitkSurfaceInterpolationController.h" +#include "mitkImageTimeSelector.h" //includes for resling and overwriting #include #include #include #include #include #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include "mitkAbstractTransformGeometry.h" #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) bool mitk::SegTool2D::m_SurfaceInterpolationEnabled = true; mitk::SegTool2D::SegTool2D(const char* type) :Tool(type), m_LastEventSender(NULL), m_LastEventSlice(0), m_Contourmarkername ("Position"), m_ShowMarkerNodes (false) { } mitk::SegTool2D::~SegTool2D() { } bool mitk::SegTool2D::FilterEvents(InteractionEvent* interactionEvent, DataNode*dataNode) { const InteractionPositionEvent* positionEvent = dynamic_cast( interactionEvent ); bool isValidEvent = ( positionEvent && // Only events of type mitk::InteractionPositionEvent interactionEvent->GetSender()->GetMapperID() == BaseRenderer::Standard2D // Only events from the 2D renderwindows ); return isValidEvent; } bool mitk::SegTool2D::DetermineAffectedImageSlice( const Image* image, const PlaneGeometry* plane, int& affectedDimension, int& affectedSlice ) { assert(image); assert(plane); // compare normal of plane to the three axis vectors of the image Vector3D normal = plane->GetNormal(); Vector3D imageNormal0 = image->GetSlicedGeometry()->GetAxisVector(0); Vector3D imageNormal1 = image->GetSlicedGeometry()->GetAxisVector(1); Vector3D imageNormal2 = image->GetSlicedGeometry()->GetAxisVector(2); normal.Normalize(); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); imageNormal0.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal0.GetVnlVector()) ); imageNormal1.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal1.GetVnlVector()) ); imageNormal2.SetVnlVector( vnl_cross_3d(normal.GetVnlVector(),imageNormal2.GetVnlVector()) ); double eps( 0.00001 ); // axial if ( imageNormal2.GetNorm() <= eps ) { affectedDimension = 2; } // sagittal else if ( imageNormal1.GetNorm() <= eps ) { affectedDimension = 1; } // frontal else if ( imageNormal0.GetNorm() <= eps ) { affectedDimension = 0; } else { affectedDimension = -1; // no idea return false; } // determine slice number in image BaseGeometry* imageGeometry = image->GetGeometry(0); Point3D testPoint = imageGeometry->GetCenter(); Point3D projectedPoint; plane->Project( testPoint, projectedPoint ); Point3D indexPoint; imageGeometry->WorldToIndex( projectedPoint, indexPoint ); affectedSlice = ROUND( indexPoint[affectedDimension] ); MITK_DEBUG << "indexPoint " << indexPoint << " affectedDimension " << affectedDimension << " affectedSlice " << affectedSlice; // check if this index is still within the image if ( affectedSlice < 0 || affectedSlice >= static_cast(image->GetDimension(affectedDimension)) ) return false; return true; } void mitk::SegTool2D::UpdateSurfaceInterpolation (const Image* slice, const Image* workingImage, const PlaneGeometry *plane, bool detectIntersection) { if (!m_SurfaceInterpolationEnabled) return; ImageToContourFilter::Pointer contourExtractor = ImageToContourFilter::New(); mitk::Surface::Pointer contour; if (detectIntersection) { // Test whether there is something to extract or whether the slice just contains intersections of others mitk::Image::Pointer slice2 = slice->Clone(); mitk::MorphologicalOperations::Erode(slice2, 2, mitk::MorphologicalOperations::Ball); contourExtractor->SetInput(slice2); contourExtractor->Update(); contour = contourExtractor->GetOutput(); if (contour->GetVtkPolyData()->GetNumberOfPoints() == 0) { // Remove contour! mitk::SurfaceInterpolationController::ContourPositionInformation contourInfo; contourInfo.contourNormal = plane->GetNormal(); contourInfo.contourPoint = plane->GetOrigin(); mitk::SurfaceInterpolationController::GetInstance()->RemoveContour(contourInfo); return; } } contourExtractor->SetInput(slice); contourExtractor->Update(); contour = contourExtractor->GetOutput(); - if (contour->GetVtkPolyData()->GetNumberOfPoints() != 0 && workingImage->GetDimension() == 3) + mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); + timeSelector->SetInput( workingImage ); + timeSelector->SetTimeNr( 0 ); + timeSelector->SetChannelNr( 0 ); + timeSelector->Update(); + Image::Pointer dimRefImg = timeSelector->GetOutput(); + + if (contour->GetVtkPolyData()->GetNumberOfPoints() != 0 && dimRefImg->GetDimension() == 3)//dimension to be changed { mitk::SurfaceInterpolationController::GetInstance()->AddNewContour( contour ); contour->DisconnectPipeline(); } else { // Remove contour! mitk::SurfaceInterpolationController::ContourPositionInformation contourInfo; contourInfo.contourNormal = plane->GetNormal(); contourInfo.contourPoint = plane->GetOrigin(); mitk::SurfaceInterpolationController::GetInstance()->RemoveContour(contourInfo); } } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const InteractionPositionEvent* positionEvent, const Image* image) { if (!positionEvent) return NULL; assert( positionEvent->GetSender() ); // sure, right? unsigned int timeStep = positionEvent->GetSender()->GetTimeStep( image ); // get the timestep of the visible part (time-wise) of the image // first, we determine, which slice is affected const PlaneGeometry* planeGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); return this->GetAffectedImageSliceAs2DImage(planeGeometry, image, timeStep); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const PlaneGeometry* planeGeometry, const Image* image, unsigned int timeStep) { if ( !image || !planeGeometry ) return NULL; //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); //set to false to extract a slice reslice->SetOverwriteMode(false); reslice->Modified(); //use ExtractSliceFilter with our specific vtkImageReslice for overwriting and extracting mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( image ); extractor->SetTimeStep( timeStep ); extractor->SetWorldGeometry( planeGeometry ); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry( image->GetTimeGeometry()->GetGeometryForTimeStep( timeStep ) ); extractor->Modified(); extractor->Update(); Image::Pointer slice = extractor->GetOutput(); /*============= BEGIN undo feature block ========================*/ //specify the undo operation with the non edited slice m_undoOperation = new DiffSliceOperation(const_cast(image), extractor->GetVtkOutput(), dynamic_cast(slice->GetGeometry()), timeStep, const_cast(planeGeometry)); /*============= END undo feature block ========================*/ return slice; } mitk::Image::Pointer mitk::SegTool2D::GetAffectedWorkingSlice(const InteractionPositionEvent* positionEvent) { DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); if ( !workingNode ) return NULL; Image* workingImage = dynamic_cast(workingNode->GetData()); if ( !workingImage ) return NULL; return GetAffectedImageSliceAs2DImage( positionEvent, workingImage ); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedReferenceSlice(const InteractionPositionEvent* positionEvent) { DataNode* referenceNode( m_ToolManager->GetReferenceData(0) ); if ( !referenceNode ) return NULL; Image* referenceImage = dynamic_cast(referenceNode->GetData()); if ( !referenceImage ) return NULL; return GetAffectedImageSliceAs2DImage( positionEvent, referenceImage ); } void mitk::SegTool2D::WriteBackSegmentationResult (const InteractionPositionEvent* positionEvent, Image* slice) { if(!positionEvent) return; const PlaneGeometry* planeGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); const AbstractTransformGeometry* abstractTransformGeometry( dynamic_cast (positionEvent->GetSender()->GetCurrentWorldPlaneGeometry() ) ); if( planeGeometry && slice && !abstractTransformGeometry) { DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast(workingNode->GetData()); unsigned int timeStep = positionEvent->GetSender()->GetTimeStep( image ); this->WriteBackSegmentationResult(planeGeometry, slice, timeStep); } } void mitk::SegTool2D::WriteBackSegmentationResult (const PlaneGeometry* planeGeometry, Image* slice, unsigned int timeStep) { if(!planeGeometry || !slice) return; SliceInformation sliceInfo (slice, const_cast(planeGeometry), timeStep); this->WriteSliceToVolume(sliceInfo); DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast(workingNode->GetData()); this->UpdateSurfaceInterpolation(slice, image, planeGeometry, false); if (m_SurfaceInterpolationEnabled) this->AddContourmarker(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::SegTool2D::WriteBackSegmentationResult(std::vector sliceList, bool writeSliceToVolume) { std::vector contourList; contourList.reserve(sliceList.size()); ImageToContourFilter::Pointer contourExtractor = ImageToContourFilter::New(); DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast(workingNode->GetData()); + mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); + timeSelector->SetInput( image ); + timeSelector->SetTimeNr( 0 ); + timeSelector->SetChannelNr( 0 ); + timeSelector->Update(); + Image::Pointer dimRefImg = timeSelector->GetOutput(); for (unsigned int i = 0; i < sliceList.size(); ++i) { SliceInformation currentSliceInfo = sliceList.at(i); if(writeSliceToVolume) this->WriteSliceToVolume(currentSliceInfo); - if (m_SurfaceInterpolationEnabled && image->GetDimension() == 3) + if (m_SurfaceInterpolationEnabled && dimRefImg->GetDimension() == 3) { currentSliceInfo.slice->DisconnectPipeline(); contourExtractor->SetInput(currentSliceInfo.slice); contourExtractor->Update(); mitk::Surface::Pointer contour = contourExtractor->GetOutput(); contour->DisconnectPipeline(); contourList.push_back(contour); } } mitk::SurfaceInterpolationController::GetInstance()->AddNewContours(contourList); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::SegTool2D::WriteSliceToVolume(mitk::SegTool2D::SliceInformation sliceInfo) { DataNode* workingNode( m_ToolManager->GetWorkingData(0) ); Image* image = dynamic_cast(workingNode->GetData()); //Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); //Set the slice as 'input' reslice->SetInputSlice(sliceInfo.slice->GetVtkImageData()); //set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput( image ); extractor->SetTimeStep( sliceInfo.timestep ); extractor->SetWorldGeometry( sliceInfo.plane ); extractor->SetVtkOutputRequest(true); extractor->SetResliceTransformByGeometry( image->GetGeometry( sliceInfo.timestep ) ); extractor->Modified(); extractor->Update(); //the image was modified within the pipeline, but not marked so image->Modified(); image->GetVtkImageData()->Modified(); /*============= BEGIN undo feature block ========================*/ //specify the undo operation with the edited slice m_doOperation = new DiffSliceOperation(image, extractor->GetVtkOutput(),dynamic_cast(sliceInfo.slice->GetGeometry()), sliceInfo.timestep, sliceInfo.plane); //create an operation event for the undo stack OperationEvent* undoStackItem = new OperationEvent( DiffSliceOperationApplier::GetInstance(), m_doOperation, m_undoOperation, "Segmentation" ); //add it to the undo controller UndoController::GetCurrentUndoModel()->SetOperationEvent( undoStackItem ); //clear the pointers as the operation are stored in the undocontroller and also deleted from there m_undoOperation = NULL; m_doOperation = NULL; /*============= END undo feature block ========================*/ } void mitk::SegTool2D::SetShowMarkerNodes(bool status) { m_ShowMarkerNodes = status; } void mitk::SegTool2D::SetEnable3DInterpolation(bool enabled) { m_SurfaceInterpolationEnabled = enabled; } int mitk::SegTool2D::AddContourmarker() { if (m_LastEventSender == NULL) return -1; us::ServiceReference serviceRef = us::GetModuleContext()->GetServiceReference(); PlanePositionManagerService* service = us::GetModuleContext()->GetService(serviceRef); unsigned int slicePosition = m_LastEventSender->GetSliceNavigationController()->GetSlice()->GetPos(); // the first geometry is needed otherwise restoring the position is not working const mitk::PlaneGeometry* plane = dynamic_cast (dynamic_cast< const mitk::SlicedGeometry3D*>( m_LastEventSender->GetSliceNavigationController()->GetCurrentGeometry3D())->GetPlaneGeometry(0)); unsigned int size = service->GetNumberOfPlanePositions(); unsigned int id = service->AddNewPlanePosition(plane, slicePosition); mitk::PlanarCircle::Pointer contourMarker = mitk::PlanarCircle::New(); mitk::Point2D p1; plane->Map(plane->GetCenter(), p1); mitk::Point2D p2 = p1; p2[0] -= plane->GetSpacing()[0]; p2[1] -= plane->GetSpacing()[1]; contourMarker->PlaceFigure( p1 ); contourMarker->SetCurrentControlPoint( p1 ); contourMarker->SetPlaneGeometry( const_cast(plane)); std::stringstream markerStream; mitk::DataNode* workingNode (m_ToolManager->GetWorkingData(0)); markerStream << m_Contourmarkername ; markerStream << " "; markerStream << id+1; DataNode::Pointer rotatedContourNode = DataNode::New(); rotatedContourNode->SetData(contourMarker); rotatedContourNode->SetProperty( "name", StringProperty::New(markerStream.str()) ); rotatedContourNode->SetProperty( "isContourMarker", BoolProperty::New(true)); rotatedContourNode->SetBoolProperty( "PlanarFigureInitializedWindow", true, m_LastEventSender ); rotatedContourNode->SetProperty( "includeInBoundingBox", BoolProperty::New(false)); rotatedContourNode->SetProperty( "helper object", mitk::BoolProperty::New(!m_ShowMarkerNodes)); rotatedContourNode->SetProperty( "planarfigure.drawcontrolpoints", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawname", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawoutline", BoolProperty::New(false)); rotatedContourNode->SetProperty( "planarfigure.drawshadow", BoolProperty::New(false)); if (plane) { if ( id == size ) { m_ToolManager->GetDataStorage()->Add(rotatedContourNode, workingNode); } else { mitk::NodePredicateProperty::Pointer isMarker = mitk::NodePredicateProperty::New("isContourMarker", mitk::BoolProperty::New(true)); mitk::DataStorage::SetOfObjects::ConstPointer markers = m_ToolManager->GetDataStorage()->GetDerivations(workingNode,isMarker); for ( mitk::DataStorage::SetOfObjects::const_iterator iter = markers->begin(); iter != markers->end(); ++iter) { std::string nodeName = (*iter)->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int markerId = atof(nodeName.substr(t+1).c_str())-1; if(id == markerId) { return id; } } m_ToolManager->GetDataStorage()->Add(rotatedContourNode, workingNode); } } return id; } void mitk::SegTool2D::InteractiveSegmentationBugMessage( const std::string& message ) { MITK_ERROR << "********************************************************************************" << std::endl << " " << message << std::endl << "********************************************************************************" << std::endl << " " << std::endl << " If your image is rotated or the 2D views don't really contain the patient image, try to press the button next to the image selection. " << std::endl << " " << std::endl << " Please file a BUG REPORT: " << std::endl << " http://bugs.mitk.org" << std::endl << " Contain the following information:" << std::endl << " - What image were you working on?" << std::endl << " - Which region of the image?" << std::endl << " - Which tool did you use?" << std::endl << " - What did you do?" << std::endl << " - What happened (not)? What did you expect?" << std::endl; } diff --git a/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp b/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp index 8ca9cd910a..bbe2eebbf6 100644 --- a/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp +++ b/Modules/SurfaceInterpolation/mitkSurfaceInterpolationController.cpp @@ -1,632 +1,652 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSurfaceInterpolationController.h" #include "mitkMemoryUtilities.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkImageToSurfaceFilter.h" #include "mitkImageTimeSelector.h" // Check whether the given contours are coplanar bool ContoursCoplanar(mitk::SurfaceInterpolationController::ContourPositionInformation leftHandSide, mitk::SurfaceInterpolationController::ContourPositionInformation rightHandSide) { // Here we check two things: // 1. Whether the normals of both contours are at least parallel // 2. Whether both contours lie in the same plane // Check for coplanarity: // a. Span a vector between two points one from each contour // b. Calculate dot product for the vector and one of the normals // c. If the dot is zero the two vectors are orthogonal and the contours are coplanar double vec[3]; vec[0] = leftHandSide.contourPoint[0] - rightHandSide.contourPoint[0]; vec[1] = leftHandSide.contourPoint[1] - rightHandSide.contourPoint[1]; vec[2] = leftHandSide.contourPoint[2] - rightHandSide.contourPoint[2]; double n[3]; n[0] = rightHandSide.contourNormal[0]; n[1] = rightHandSide.contourNormal[1]; n[2] = rightHandSide.contourNormal[2]; double dot = vtkMath::Dot(n, vec); double n2[3]; n2[0] = leftHandSide.contourNormal[0]; n2[1] = leftHandSide.contourNormal[1]; n2[2] = leftHandSide.contourNormal[2]; // The normals of both contours have to be parallel but not of the same orientation double lengthLHS = leftHandSide.contourNormal.GetNorm(); double lengthRHS = rightHandSide.contourNormal.GetNorm(); double dot2 = vtkMath::Dot(n, n2); bool contoursParallel = mitk::Equal(fabs(lengthLHS*lengthRHS), fabs(dot2), 0.001); if (mitk::Equal(dot, 0.0, 0.001) && contoursParallel) return true; else return false; } mitk::SurfaceInterpolationController::ContourPositionInformation CreateContourPositionInformation(mitk::Surface::Pointer contour) { mitk::SurfaceInterpolationController::ContourPositionInformation contourInfo; contourInfo.contour = contour; double n[3]; double p[3]; contour->GetVtkPolyData()->GetPoints()->GetPoint(0, p); vtkPolygon::ComputeNormal(contour->GetVtkPolyData()->GetPoints(), n); contourInfo.contourNormal = n; contourInfo.contourPoint = p; return contourInfo; } mitk::SurfaceInterpolationController::SurfaceInterpolationController() :m_SelectedSegmentation(0), m_CurrentTimeStep(0) { m_ReduceFilter = ReduceContourSetFilter::New(); m_NormalsFilter = ComputeContourSetNormalsFilter::New(); m_InterpolateSurfaceFilter = CreateDistanceImageFromSurfaceFilter::New(); m_ReduceFilter->SetUseProgressBar(false); // m_ReduceFilter->SetProgressStepSize(1); m_NormalsFilter->SetUseProgressBar(true); m_NormalsFilter->SetProgressStepSize(1); m_InterpolateSurfaceFilter->SetUseProgressBar(true); m_InterpolateSurfaceFilter->SetProgressStepSize(7); m_Contours = Surface::New(); m_PolyData = vtkSmartPointer::New(); vtkSmartPointer points = vtkSmartPointer::New(); m_PolyData->SetPoints(points); m_InterpolationResult = 0; m_CurrentNumberOfReducedContours = 0; } mitk::SurfaceInterpolationController::~SurfaceInterpolationController() { //Removing all observers std::map::iterator dataIter = m_SegmentationObserverTags.begin(); for (; dataIter != m_SegmentationObserverTags.end(); ++dataIter ) { (*dataIter).first->RemoveObserver( (*dataIter).second ); } m_SegmentationObserverTags.clear(); } mitk::SurfaceInterpolationController* mitk::SurfaceInterpolationController::GetInstance() { static mitk::SurfaceInterpolationController::Pointer m_Instance; if ( m_Instance.IsNull() ) { m_Instance = SurfaceInterpolationController::New(); } return m_Instance; } void mitk::SurfaceInterpolationController::AddNewContour (mitk::Surface::Pointer newContour) { if( newContour->GetVtkPolyData()->GetNumberOfPoints() > 0) { ContourPositionInformation contourInfo = CreateContourPositionInformation(newContour); this->AddToInterpolationPipeline(contourInfo); this->Modified(); } } void mitk::SurfaceInterpolationController::AddNewContours(std::vector newContours) { for (unsigned int i = 0; i < newContours.size(); ++i) { if( newContours.at(i)->GetVtkPolyData()->GetNumberOfPoints() > 0) { ContourPositionInformation contourInfo = CreateContourPositionInformation(newContours.at(i)); this->AddToInterpolationPipeline(contourInfo); } } this->Modified(); } void mitk::SurfaceInterpolationController::AddToInterpolationPipeline(ContourPositionInformation contourInfo, unsigned int ts) { int pos (-1); unsigned int numTimeSteps = m_SelectedSegmentation->GetTimeSteps(); if ( ts >= numTimeSteps ) { MITK_ERROR << "Invalid time step requested for interpolation pipeline."; return; } ContourPositionInformationVec2D currentContours = m_ListOfInterpolationSessions[m_SelectedSegmentation]; ContourPositionInformationList currentContourList = currentContours[m_CurrentTimeStep]; mitk::Surface* newContour = contourInfo.contour; for (unsigned int i = 0; i < currentContourList.size(); i++) { ContourPositionInformation contourFromList = currentContourList.at(i); if (ContoursCoplanar(contourInfo, contourFromList)) { pos = i; break; } } //Don't save a new empty contour if (pos == -1 && newContour->GetVtkPolyData()->GetNumberOfPoints() > 0) { m_ReduceFilter->SetInput(m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep].size(), newContour); m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep].push_back(contourInfo); } else if (pos != -1 && newContour->GetVtkPolyData()->GetNumberOfPoints() > 0) { m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep].at(pos) = contourInfo; m_ReduceFilter->SetInput(pos, newContour); } else if (newContour->GetVtkPolyData()->GetNumberOfPoints() == 0) { this->RemoveContour(contourInfo); } m_ReduceFilter->Update(); m_CurrentNumberOfReducedContours = m_ReduceFilter->GetNumberOfOutputs(); + mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); + timeSelector->SetInput( m_SelectedSegmentation ); + timeSelector->SetTimeNr( m_CurrentTimeStep ); + timeSelector->SetChannelNr( 0 ); + timeSelector->Update(); + mitk::Image::Pointer refSegImage = timeSelector->GetOutput(); + + //m_NormalsFilter->SetSegmentationBinaryImage(m_SelectedSegmentation); + m_NormalsFilter->SetSegmentationBinaryImage(refSegImage);//maybe leading to crash for (unsigned int i = 0; i < m_CurrentNumberOfReducedContours; i++) { m_NormalsFilter->SetInput(i, m_ReduceFilter->GetOutput(i)); m_InterpolateSurfaceFilter->SetInput(i, m_NormalsFilter->GetOutput(i)); } } bool mitk::SurfaceInterpolationController::RemoveContour(ContourPositionInformation contourInfo, unsigned int ts) { if(!m_SelectedSegmentation) { return false; } unsigned int numTimeSteps = m_SelectedSegmentation->GetTimeSteps(); if ( ts >= numTimeSteps ) { return false; } ContourPositionInformationList::iterator it = m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep].begin(); while (it != m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep].end()) { ContourPositionInformation currentContour = (*it); if (ContoursCoplanar(currentContour, contourInfo)) { m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep].erase(it); this->ReinitializeInterpolation(); return true; } ++it; } return false; } const mitk::Surface* mitk::SurfaceInterpolationController::GetContour(ContourPositionInformation contourInfo, unsigned int ts ) { if(!m_SelectedSegmentation) { return 0; } unsigned int numTimeSteps = m_SelectedSegmentation->GetTimeSteps(); if ( ts >= numTimeSteps ) { return 0; } ContourPositionInformationList contourList = m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep]; for (unsigned int i = 0; i < contourList.size(); ++i) { ContourPositionInformation currentContour = contourList.at(i); if (ContoursCoplanar(contourInfo, currentContour)) return currentContour.contour; } return 0; } unsigned int mitk::SurfaceInterpolationController::GetNumberOfContours( unsigned int ts ) { if(!m_SelectedSegmentation) { return -1; } unsigned int numTimeSteps = m_SelectedSegmentation->GetTimeSteps(); if ( ts >= numTimeSteps ) { return -1; } return m_ListOfInterpolationSessions[m_SelectedSegmentation][m_CurrentTimeStep].size(); } void mitk::SurfaceInterpolationController::Interpolate() { if (m_CurrentNumberOfReducedContours< 2) { //If no interpolation is possible reset the interpolation result m_InterpolationResult = 0; return; } //Setting up progress bar mitk::ProgressBar::GetInstance()->AddStepsToDo(10); // create a surface from the distance-image mitk::ImageToSurfaceFilter::Pointer imageToSurfaceFilter = mitk::ImageToSurfaceFilter::New(); imageToSurfaceFilter->SetInput( m_InterpolateSurfaceFilter->GetOutput() ); imageToSurfaceFilter->SetThreshold( 0 ); imageToSurfaceFilter->SetSmooth(true); imageToSurfaceFilter->SetSmoothIteration(20); imageToSurfaceFilter->Update(); m_InterpolationResult = imageToSurfaceFilter->GetOutput(); vtkSmartPointer polyDataAppender = vtkSmartPointer::New(); for (unsigned int i = 0; i < m_ListOfInterpolationSessions[m_SelectedSegmentation].size(); i++) { polyDataAppender->AddInputData(m_ListOfInterpolationSessions[m_SelectedSegmentation].at(i)[m_CurrentTimeStep].contour->GetVtkPolyData()); } polyDataAppender->Update(); m_Contours->SetVtkPolyData(polyDataAppender->GetOutput()); //Last progress step mitk::ProgressBar::GetInstance()->Progress(20); m_InterpolationResult->DisconnectPipeline(); } mitk::Surface::Pointer mitk::SurfaceInterpolationController::GetInterpolationResult() { return m_InterpolationResult; } mitk::Surface* mitk::SurfaceInterpolationController::GetContoursAsSurface() { return m_Contours; } void mitk::SurfaceInterpolationController::SetDataStorage(DataStorage::Pointer ds) { m_DataStorage = ds; } void mitk::SurfaceInterpolationController::SetMinSpacing(double minSpacing) { m_ReduceFilter->SetMinSpacing(minSpacing); } void mitk::SurfaceInterpolationController::SetMaxSpacing(double maxSpacing) { m_ReduceFilter->SetMaxSpacing(maxSpacing); m_NormalsFilter->SetMaxSpacing(maxSpacing); } void mitk::SurfaceInterpolationController::SetDistanceImageVolume(unsigned int distImgVolume) { m_InterpolateSurfaceFilter->SetDistanceImageVolume(distImgVolume); } mitk::Image::Pointer mitk::SurfaceInterpolationController::GetCurrentSegmentation() { return m_SelectedSegmentation; } mitk::Image* mitk::SurfaceInterpolationController::GetImage() { return m_InterpolateSurfaceFilter->GetOutput(); } double mitk::SurfaceInterpolationController::EstimatePortionOfNeededMemory() { double numberOfPointsAfterReduction = m_ReduceFilter->GetNumberOfPointsAfterReduction()*3; double sizeOfPoints = pow(numberOfPointsAfterReduction,2)*sizeof(double); double totalMem = mitk::MemoryUtilities::GetTotalSizeOfPhysicalRam(); double percentage = sizeOfPoints/totalMem; return percentage; } unsigned int mitk::SurfaceInterpolationController::GetNumberOfInterpolationSessions() { return m_ListOfInterpolationSessions.size(); } template void mitk::SurfaceInterpolationController::GetImageBase(itk::Image* input, itk::ImageBase<3>::Pointer& result) { result->Graft(input); } void mitk::SurfaceInterpolationController::SetCurrentSegmentationInterpolationList(mitk::Image::Pointer segmentation) { this->SetCurrentInterpolationSession(segmentation); } void mitk::SurfaceInterpolationController::SetCurrentInterpolationSession(mitk::Image::Pointer currentSegmentationImage) { if (currentSegmentationImage.GetPointer() == m_SelectedSegmentation) return; if (currentSegmentationImage.IsNull()) { m_SelectedSegmentation = 0; return; } m_SelectedSegmentation = currentSegmentationImage.GetPointer(); ContourListMap::iterator it = m_ListOfInterpolationSessions.find(currentSegmentationImage.GetPointer()); // If the session does not exist yet create a new ContourPositionPairList otherwise reinitialize the interpolation pipeline if (it == m_ListOfInterpolationSessions.end()) { ContourPositionInformationVec2D newList; m_ListOfInterpolationSessions.insert(std::pair(m_SelectedSegmentation, newList)); m_InterpolationResult = 0; m_CurrentNumberOfReducedContours = 0; itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction(this, &SurfaceInterpolationController::OnSegmentationDeleted); m_SegmentationObserverTags.insert( std::pair( m_SelectedSegmentation, m_SelectedSegmentation->AddObserver( itk::DeleteEvent(), command ) ) ); } this->ReinitializeInterpolation(); } bool mitk::SurfaceInterpolationController::ReplaceInterpolationSession(mitk::Image::Pointer oldSession, mitk::Image::Pointer newSession) { if (oldSession.IsNull() || newSession.IsNull()) return false; if (oldSession.GetPointer() == newSession.GetPointer()) return false; if (!mitk::Equal(*(oldSession->GetGeometry()), *(newSession->GetGeometry()), mitk::eps, false)) return false; ContourListMap::iterator it = m_ListOfInterpolationSessions.find(oldSession.GetPointer()); if (it == m_ListOfInterpolationSessions.end()) return false; ContourPositionInformationVec2D oldList = (*it).second; m_ListOfInterpolationSessions.insert(std::pair(newSession.GetPointer(), oldList)); itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction(this, &SurfaceInterpolationController::OnSegmentationDeleted); m_SegmentationObserverTags.insert( std::pair( newSession, newSession->AddObserver( itk::DeleteEvent(), command ) ) ); if (m_SelectedSegmentation == oldSession) m_SelectedSegmentation = newSession; - m_NormalsFilter->SetSegmentationBinaryImage(m_SelectedSegmentation); + + mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); + timeSelector->SetInput( m_SelectedSegmentation ); + timeSelector->SetTimeNr( m_CurrentTimeStep ); + timeSelector->SetChannelNr( 0 ); + timeSelector->Update(); + mitk::Image::Pointer refSegImage = timeSelector->GetOutput(); + + //m_NormalsFilter->SetSegmentationBinaryImage(m_SelectedSegmentation); + m_NormalsFilter->SetSegmentationBinaryImage(refSegImage); this->RemoveInterpolationSession(oldSession); return true; } void mitk::SurfaceInterpolationController::RemoveSegmentationFromContourList(mitk::Image *segmentation) { this->RemoveInterpolationSession(segmentation); } void mitk::SurfaceInterpolationController::RemoveInterpolationSession(mitk::Image::Pointer segmentationImage) { if (segmentationImage) { if (m_SelectedSegmentation == segmentationImage) { m_NormalsFilter->SetSegmentationBinaryImage(NULL); m_SelectedSegmentation = 0; } m_ListOfInterpolationSessions.erase(segmentationImage); // Remove observer std::map::iterator pos = m_SegmentationObserverTags.find(segmentationImage); if (pos != m_SegmentationObserverTags.end()) { segmentationImage->RemoveObserver((*pos).second); m_SegmentationObserverTags.erase(pos); } } } void mitk::SurfaceInterpolationController::RemoveAllInterpolationSessions() { //Removing all observers std::map::iterator dataIter = m_SegmentationObserverTags.begin(); while (dataIter != m_SegmentationObserverTags.end()) { mitk::Image* image = (*dataIter).first; image->RemoveObserver((*dataIter).second); ++dataIter; } m_SegmentationObserverTags.clear(); m_SelectedSegmentation = 0; m_ListOfInterpolationSessions.clear(); } void mitk::SurfaceInterpolationController::ReinitializeInterpolation(mitk::Surface::Pointer contours) { // 1. detect coplanar contours // 2. merge coplanar contours into a single surface // 4. add contour to pipeline // Split the surface into separate polygons vtkSmartPointer existingPolys; vtkSmartPointer existingPoints; existingPolys = contours->GetVtkPolyData()->GetPolys(); existingPoints = contours->GetVtkPolyData()->GetPoints(); existingPolys->InitTraversal(); vtkSmartPointer ids = vtkSmartPointer::New(); typedef std::pair PointNormalPair; std::vector list; std::vector > pointsList; int count (0); for( existingPolys->InitTraversal(); existingPolys->GetNextCell(ids);) { // Get the points vtkSmartPointer points = vtkSmartPointer::New(); existingPoints->GetPoints(ids, points); ++count; pointsList.push_back(points); PointNormalPair p_n; double n[3]; vtkPolygon::ComputeNormal(points, n); p_n.first = n; double p[3]; existingPoints->GetPoint(ids->GetId(0), p); p_n.second = p; ContourPositionInformation p_info; p_info.contourNormal = n; p_info.contourPoint = p; list.push_back(p_info); continue; } // Detect and sort coplanar polygons std::vector::iterator outer = list.begin(); std::vector< std::vector< vtkSmartPointer > > relatedPoints; while (outer != list.end()) { std::vector::iterator inner = outer; ++inner; std::vector< vtkSmartPointer > rel; std::vector< vtkSmartPointer >::iterator pointsIter = pointsList.begin(); rel.push_back((*pointsIter)); pointsIter = pointsList.erase(pointsIter); while (inner != list.end()) { if(ContoursCoplanar((*outer),(*inner))) { inner = list.erase(inner); rel.push_back((*pointsIter)); pointsIter = pointsList.erase(pointsIter); } else { ++inner; ++pointsIter; } } relatedPoints.push_back(rel); ++outer; } // Build the separate surfaces again std::vector finalSurfaces; for (unsigned int i = 0; i < relatedPoints.size(); ++i) { vtkSmartPointer contourSurface = vtkSmartPointer::New(); vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer polygons = vtkSmartPointer::New(); unsigned int pointId (0); for (unsigned int j = 0; j < relatedPoints.at(i).size(); ++j) { unsigned int numPoints = relatedPoints.at(i).at(j)->GetNumberOfPoints(); vtkSmartPointer polygon = vtkSmartPointer::New(); polygon->GetPointIds()->SetNumberOfIds(numPoints); polygon->GetPoints()->SetNumberOfPoints(numPoints); vtkSmartPointer currentPoints = relatedPoints.at(i).at(j); for (unsigned k = 0; k < numPoints; ++k) { points->InsertPoint(pointId, currentPoints->GetPoint(k)); polygon->GetPointIds()->SetId(k, pointId); ++pointId; } polygons->InsertNextCell(polygon); } contourSurface->SetPoints(points); contourSurface->SetPolys(polygons); contourSurface->BuildLinks(); mitk::Surface::Pointer surface = mitk::Surface::New(); surface->SetVtkPolyData(contourSurface); finalSurfaces.push_back(surface); } // Add detected contours to interpolation pipeline this->AddNewContours(finalSurfaces); } void mitk::SurfaceInterpolationController::OnSegmentationDeleted(const itk::Object *caller, const itk::EventObject &/*event*/) { mitk::Image* tempImage = dynamic_cast(const_cast(caller)); if (tempImage) { if (m_SelectedSegmentation == tempImage) { m_NormalsFilter->SetSegmentationBinaryImage(NULL); m_SelectedSegmentation = 0; } m_SegmentationObserverTags.erase(tempImage); m_ListOfInterpolationSessions.erase(tempImage); } } void mitk::SurfaceInterpolationController::ReinitializeInterpolation() { - m_NormalsFilter->SetSegmentationBinaryImage(m_SelectedSegmentation); + mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); + timeSelector->SetInput( m_SelectedSegmentation ); + timeSelector->SetTimeNr( m_CurrentTimeStep ); + timeSelector->SetChannelNr( 0 ); + timeSelector->Update(); + mitk::Image::Pointer refSegImage = timeSelector->GetOutput(); + + //m_NormalsFilter->SetSegmentationBinaryImage(m_SelectedSegmentation); + m_NormalsFilter->SetSegmentationBinaryImage(refSegImage); // If session has changed reset the pipeline m_ReduceFilter->Reset(); m_NormalsFilter->Reset(); m_InterpolateSurfaceFilter->Reset(); itk::ImageBase<3>::Pointer itkImage = itk::ImageBase<3>::New(); - mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); - timeSelector->SetInput( m_SelectedSegmentation ); - timeSelector->SetTimeNr( 0 ); - timeSelector->SetChannelNr( 0 ); - timeSelector->Update(); - mitk::Image::Pointer refImage = timeSelector->GetOutput(); //AccessFixedDimensionByItk_1( m_SelectedSegmentation, GetImageBase, 3, itkImage ); - AccessFixedDimensionByItk_1( refImage, GetImageBase, 3, itkImage ); + AccessFixedDimensionByItk_1( refSegImage, GetImageBase, 3, itkImage ); m_InterpolateSurfaceFilter->SetReferenceImage(itkImage.GetPointer()); unsigned int numTimeSteps = m_SelectedSegmentation->GetTimeSteps(); m_ListOfInterpolationSessions[m_SelectedSegmentation].resize( numTimeSteps ); for (unsigned int i = 0; i < m_ListOfInterpolationSessions[m_SelectedSegmentation].size(); i++) { unsigned int numContours = m_ListOfInterpolationSessions[m_SelectedSegmentation][i].size(); for ( unsigned int c = 0; c < numContours; ++c ) { m_ReduceFilter->SetInput(i, m_ListOfInterpolationSessions[m_SelectedSegmentation][i][c].contour); } } m_ReduceFilter->Update(); m_CurrentNumberOfReducedContours = m_ReduceFilter->GetNumberOfOutputs(); for (unsigned int i = 0; i < m_CurrentNumberOfReducedContours; i++) { m_NormalsFilter->SetInput(i, m_ReduceFilter->GetOutput(i)); m_InterpolateSurfaceFilter->SetInput(i, m_NormalsFilter->GetOutput(i)); } Modified(); }