diff --git a/Modules/DiffusionImaging/DiffusionCore/include/Rendering/mitkOdfVtkMapper2D.txx b/Modules/DiffusionImaging/DiffusionCore/include/Rendering/mitkOdfVtkMapper2D.txx index c2f796c13a..6e06fd997c 100644 --- a/Modules/DiffusionImaging/DiffusionCore/include/Rendering/mitkOdfVtkMapper2D.txx +++ b/Modules/DiffusionImaging/DiffusionCore/include/Rendering/mitkOdfVtkMapper2D.txx @@ -1,984 +1,984 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __mitkOdfVtkMapper2D_txx__ #define __mitkOdfVtkMapper2D_txx__ #include "mitkOdfVtkMapper2D.h" #include "mitkDataNode.h" #include "mitkBaseRenderer.h" #include "mitkMatrixConvert.h" #include "mitkGeometry3D.h" #include "mitkTimeGeometry.h" #include "mitkOdfNormalizationMethodProperty.h" #include "mitkOdfScaleByProperty.h" #include "mitkProperties.h" #include "mitkTensorImage.h" #include "mitkShImage.h" #include "vtkSphereSource.h" #include "vtkPropCollection.h" #include "vtkMaskedGlyph3D.h" #include "vtkGlyph2D.h" #include "vtkGlyph3D.h" #include "vtkMaskedProgrammableGlyphFilter.h" #include "vtkImageData.h" #include "vtkLinearTransform.h" #include "vtkCamera.h" #include "vtkPointData.h" #include "vtkTransformPolyDataFilter.h" #include "vtkTransform.h" #include "vtkOdfSource.h" #include "vtkDoubleArray.h" #include "vtkLookupTable.h" #include "vtkProperty.h" #include "vtkPolyDataNormals.h" #include "vtkLight.h" #include "vtkLightCollection.h" #include "vtkMath.h" #include "vtkFloatArray.h" #include "vtkDelaunay2D.h" #include "vtkMapper.h" #include #include #include "vtkRenderer.h" #include "itkOrientationDistributionFunction.h" #include "itkFixedArray.h" #include #include "vtkOpenGLRenderer.h" #define _USE_MATH_DEFINES #include #include template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfTransform = vtkSmartPointer::New(); template vtkSmartPointer mitk::OdfVtkMapper2D::m_OdfSource = vtkSmartPointer::New(); template float mitk::OdfVtkMapper2D::m_Scaling; template int mitk::OdfVtkMapper2D::m_Normalization; template int mitk::OdfVtkMapper2D::m_ScaleBy; template float mitk::OdfVtkMapper2D::m_IndexParam1; template float mitk::OdfVtkMapper2D::m_IndexParam2; template bool mitk::OdfVtkMapper2D::m_ToggleTensorEllipsoidView = false; template bool mitk::OdfVtkMapper2D::m_ToggleColourisationMode = false; template bool mitk::OdfVtkMapper2D::m_ToggleGlyphPlacementMode = true; template vtkSmartPointer mitk::OdfVtkMapper2D::m_ColourScalars = nullptr; template vnl_matrix mitk::OdfVtkMapper2D::m_Sh2Basis = mitk::sh::CalcShBasisForDirections(2, itk::PointShell >::DistributePointShell()->as_matrix()); template vnl_matrix mitk::OdfVtkMapper2D::m_Sh4Basis = mitk::sh::CalcShBasisForDirections(4, itk::PointShell >::DistributePointShell()->as_matrix()); template vnl_matrix mitk::OdfVtkMapper2D::m_Sh6Basis = mitk::sh::CalcShBasisForDirections(6, itk::PointShell >::DistributePointShell()->as_matrix()); template vnl_matrix mitk::OdfVtkMapper2D::m_Sh8Basis = mitk::sh::CalcShBasisForDirections(8, itk::PointShell >::DistributePointShell()->as_matrix()); template vnl_matrix mitk::OdfVtkMapper2D::m_Sh10Basis = mitk::sh::CalcShBasisForDirections(10, itk::PointShell >::DistributePointShell()->as_matrix()); template vnl_matrix mitk::OdfVtkMapper2D::m_Sh12Basis = mitk::sh::CalcShBasisForDirections(12, itk::PointShell >::DistributePointShell()->as_matrix()); template mitk::OdfVtkMapper2D::LocalStorage::LocalStorage() { m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_PropAssemblies.push_back(vtkPropAssembly::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes.push_back(vtkAppendPolyData::New()); m_OdfsPlanes[0]->AddInputData(vtkPolyData::New()); m_OdfsPlanes[1]->AddInputData(vtkPolyData::New()); m_OdfsPlanes[2]->AddInputData(vtkPolyData::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors.push_back(vtkActor::New()); m_OdfsActors[0]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[1]->GetProperty()->SetInterpolationToGouraud(); m_OdfsActors[2]->GetProperty()->SetInterpolationToGouraud(); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); m_OdfsMappers.push_back(vtkPolyDataMapper::New()); - vtkLookupTable *lut = vtkLookupTable::New(); + vtkSmartPointer lut = vtkSmartPointer::New(); m_OdfsMappers[0]->SetLookupTable(lut); m_OdfsMappers[1]->SetLookupTable(lut); m_OdfsMappers[2]->SetLookupTable(lut); m_OdfsActors[0]->SetMapper(m_OdfsMappers[0]); m_OdfsActors[1]->SetMapper(m_OdfsMappers[1]); m_OdfsActors[2]->SetMapper(m_OdfsMappers[2]); } template mitk::OdfVtkMapper2D ::OdfVtkMapper2D() { m_LastDisplayGeometry.push_back(OdfDisplayGeometry()); m_LastDisplayGeometry.push_back(OdfDisplayGeometry()); m_LastDisplayGeometry.push_back(OdfDisplayGeometry()); m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Planes.push_back(vtkPlane::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters.push_back(vtkCutter::New()); m_Cutters[0]->SetCutFunction( m_Planes[0] ); m_Cutters[0]->GenerateValues( 1, 0, 1 ); m_Cutters[1]->SetCutFunction( m_Planes[1] ); m_Cutters[1]->GenerateValues( 1, 0, 1 ); m_Cutters[2]->SetCutFunction( m_Planes[2] ); m_Cutters[2]->GenerateValues( 1, 0, 1 ); // Windowing the cutted planes in direction 1 m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_ThickPlanes1.push_back(vtkThickPlane::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1.push_back(vtkClipPolyData::New()); m_Clippers1[0]->SetClipFunction( m_ThickPlanes1[0] ); m_Clippers1[1]->SetClipFunction( m_ThickPlanes1[1] ); m_Clippers1[2]->SetClipFunction( m_ThickPlanes1[2] ); // Windowing the cutted planes in direction 2 m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_ThickPlanes2.push_back(vtkThickPlane::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2.push_back(vtkClipPolyData::New()); m_Clippers2[0]->SetClipFunction( m_ThickPlanes2[0] ); m_Clippers2[1]->SetClipFunction( m_ThickPlanes2[1] ); m_Clippers2[2]->SetClipFunction( m_ThickPlanes2[2] ); m_ShowMaxNumber = 500; } template mitk::OdfVtkMapper2D ::~OdfVtkMapper2D() { } template mitk::Image* mitk::OdfVtkMapper2D ::GetInput() { return static_cast ( m_DataNode->GetData() ); } template vtkProp* mitk::OdfVtkMapper2D ::GetVtkProp(mitk::BaseRenderer* renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); return localStorage->m_PropAssemblies[GetIndex(renderer)]; } template int mitk::OdfVtkMapper2D ::GetIndex(mitk::BaseRenderer* renderer) { if(!strcmp(renderer->GetName(),"stdmulti.widget1")) return 0; if(!strcmp(renderer->GetName(),"stdmulti.widget2")) return 1; if(!strcmp(renderer->GetName(),"stdmulti.widget3")) return 2; return 0; } template void mitk::OdfVtkMapper2D ::GlyphMethod(void *arg) { vtkMaskedProgrammableGlyphFilter* pfilter=(vtkMaskedProgrammableGlyphFilter*)arg; double point[3]; double debugpoint[3]; pfilter->GetPoint(point); pfilter->GetPoint(debugpoint); itk::Point p(point); Vector3D spacing = pfilter->GetGeometry()->GetSpacing(); p[0] /= spacing[0]; p[1] /= spacing[1]; p[2] /= spacing[2]; mitk::Point3D p2; pfilter->GetGeometry()->IndexToWorld( p, p2 ); point[0] = p2[0]; point[1] = p2[1]; point[2] = p2[2]; vtkPointData* data = pfilter->GetPointData(); vtkDataArray* image_vals = data->GetArray("vector"); vtkIdType id = pfilter->GetPointId(); m_OdfTransform->Identity(); m_OdfTransform->Translate(point[0],point[1],point[2]); typedef itk::OrientationDistributionFunction OdfType; OdfType odf; if( image_vals->GetNumberOfComponents()==6 && !m_ToggleTensorEllipsoidView ) { float tensorelems[6] = { (float)image_vals->GetComponent(id,0), (float)image_vals->GetComponent(id,1), (float)image_vals->GetComponent(id,2), (float)image_vals->GetComponent(id,3), (float)image_vals->GetComponent(id,4), (float)image_vals->GetComponent(id,5), }; itk::DiffusionTensor3D tensor(tensorelems); odf.InitFromTensor(tensor); } else if( image_vals->GetNumberOfComponents()==6 && m_ToggleTensorEllipsoidView ) { float tensorelems[6] = { (float)image_vals->GetComponent(id,0), (float)image_vals->GetComponent(id,1), (float)image_vals->GetComponent(id,2), (float)image_vals->GetComponent(id,3), (float)image_vals->GetComponent(id,4), (float)image_vals->GetComponent(id,5), }; itk::DiffusionTensor3D tensor( tensorelems ); odf.InitFromEllipsoid( tensor ); } else if (image_vals->GetNumberOfComponents() == ODF_SAMPLING_SIZE) { for(int i=0; iGetComponent(id,i); } else { int nrCoeffs = image_vals->GetNumberOfComponents(); Vector< float, N > odf_vals; vnl_vector< float > coeffs(nrCoeffs); for(int i=0; iGetComponent(id,i); switch (nrCoeffs) { case 6: odf_vals = ( m_Sh2Basis * coeffs ).data_block(); break; case 15: odf_vals = ( m_Sh4Basis * coeffs ).data_block(); break; case 28: odf_vals = ( m_Sh6Basis * coeffs ).data_block(); break; case 45: odf_vals = ( m_Sh8Basis * coeffs ).data_block(); break; case 66: odf_vals = ( m_Sh10Basis * coeffs ).data_block(); break; case 91: odf_vals = ( m_Sh12Basis * coeffs ).data_block(); break; default : mitkThrow() << "SH order larger 12 not supported in current ODF mapper version"; } for(int i=0; iSetUseCustomColor(true); vnl_vector_fixed d = odf.GetPrincipalDiffusionDirection(); m_OdfSource->SetColor(fabs(d[0])*255,fabs(d[1])*255,fabs(d[2])*255); } else { m_OdfSource->SetUseCustomColor(false); } switch(m_ScaleBy) { case ODFSB_NONE: m_OdfSource->SetScale(m_Scaling); break; case ODFSB_GFA: m_OdfSource->SetScale(m_Scaling*odf.GetGeneralizedFractionalAnisotropy()); break; case ODFSB_PC: m_OdfSource->SetScale(m_Scaling*odf.GetPrincipleCurvature(m_IndexParam1, m_IndexParam2, 0)); break; } m_OdfSource->SetNormalization(m_Normalization); m_OdfSource->SetOdf(odf); m_OdfSource->Modified(); } template typename mitk::OdfVtkMapper2D::OdfDisplayGeometry mitk::OdfVtkMapper2D ::MeasureDisplayedGeometry(mitk::BaseRenderer* renderer) { PlaneGeometry::ConstPointer worldPlaneGeometry = renderer->GetCurrentWorldPlaneGeometry(); // set up the cutter orientation according to the current geometry of // the renderers plane double vp[ 3 ], vnormal[ 3 ]; Point3D point = worldPlaneGeometry->GetOrigin(); Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( point.GetVnlVector(), vp ); vnl2vtk( normal.GetVnlVector(), vnormal ); Point2D dispSizeInMM = renderer->GetViewportSizeInMM(); Point2D displayGeometryOriginInMM = renderer->GetOriginInMM(); mitk::Vector2D size = dispSizeInMM.GetVectorFromOrigin(); mitk::Vector2D origin = displayGeometryOriginInMM.GetVectorFromOrigin(); // // |------O------| // | d2 | // L d1 M | // | | // |-------------| // mitk::Vector2D M; mitk::Vector2D L; mitk::Vector2D O; M[0] = origin[0] + size[0]/2; M[1] = origin[1] + size[1]/2; L[0] = origin[0]; L[1] = origin[1] + size[1]/2; O[0] = origin[0] + size[0]/2; O[1] = origin[1] + size[1]; mitk::Point2D point1; point1[0] = M[0]; point1[1] = M[1]; mitk::Point3D M3D; renderer->GetCurrentWorldPlaneGeometry()->Map(point1, M3D); point1[0] = L[0]; point1[1] = L[1]; mitk::Point3D L3D; renderer->GetCurrentWorldPlaneGeometry()->Map(point1, L3D); point1[0] = O[0]; point1[1] = O[1]; mitk::Point3D O3D; renderer->GetCurrentWorldPlaneGeometry()->Map(point1, O3D); double d1 = sqrt((M3D[0]-L3D[0])*(M3D[0]-L3D[0]) + (M3D[1]-L3D[1])*(M3D[1]-L3D[1]) + (M3D[2]-L3D[2])*(M3D[2]-L3D[2])); double d2 = sqrt((M3D[0]-O3D[0])*(M3D[0]-O3D[0]) + (M3D[1]-O3D[1])*(M3D[1]-O3D[1]) + (M3D[2]-O3D[2])*(M3D[2]-O3D[2])); double d = d1>d2 ? d1 : d2; d = d2; OdfDisplayGeometry retval; retval.vp[0] = vp[0]; retval.vp[1] = vp[1]; retval.vp[2] = vp[2]; retval.vnormal[0] = vnormal[0]; retval.vnormal[1] = vnormal[1]; retval.vnormal[2] = vnormal[2]; retval.normal[0] = normal[0]; retval.normal[1] = normal[1]; retval.normal[2] = normal[2]; retval.d = d; retval.d1 = d1; retval.d2 = d2; retval.M3D[0] = M3D[0]; retval.M3D[1] = M3D[1]; retval.M3D[2] = M3D[2]; retval.L3D[0] = L3D[0]; retval.L3D[1] = L3D[1]; retval.L3D[2] = L3D[2]; retval.O3D[0] = O3D[0]; retval.O3D[1] = O3D[1]; retval.O3D[2] = O3D[2]; retval.vp_original[0] = vp[0]; retval.vp_original[1] = vp[1]; retval.vp_original[2] = vp[2]; retval.vnormal_original[0] = vnormal[0]; retval.vnormal_original[1] = vnormal[1]; retval.vnormal_original[2] = vnormal[2]; retval.size[0] = size[0]; retval.size[1] = size[1]; retval.origin[0] = origin[0]; retval.origin[1] = origin[1]; return retval; } template void mitk::OdfVtkMapper2D ::Slice(mitk::BaseRenderer* renderer, OdfDisplayGeometry dispGeo) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); vtkLinearTransform * vtktransform = this->GetDataNode()->GetVtkTransform(this->GetTimestep()); int index = GetIndex(renderer); vtkSmartPointer inversetransform = vtkSmartPointer::New(); inversetransform->Identity(); inversetransform->Concatenate(vtktransform->GetLinearInverse()); double myscale[3]; ((vtkTransform*)vtktransform)->GetScale(myscale); myscale[0] = fabs(myscale[0]); myscale[1] = fabs(myscale[1]); myscale[2] = fabs(myscale[2]); inversetransform->PostMultiply(); inversetransform->Scale(myscale[0],myscale[1],myscale[2]); inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); // vtk works in axis align coords // thus the normal also must be axis align, since // we do not allow arbitrary cutting through volume // // vnormal should already be axis align, but in order // to get rid of precision effects, we set the two smaller // components to zero here int dims[3]; m_VtkImage->GetDimensions(dims); double spac[3]; m_VtkImage->GetSpacing(spac); if(fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[0]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[0]/spac[0]) < 0.4) dispGeo.vp[0] = 0.4*spac[0]; if(fabs(dispGeo.vp[0]/spac[0]) > (dims[0]-1)-0.4) dispGeo.vp[0] = ((dims[0]-1)-0.4)*spac[0]; dispGeo.vnormal[1] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[0]) && fabs(dispGeo.vnormal[1]) > fabs(dispGeo.vnormal[2]) ) { if(fabs(dispGeo.vp[1]/spac[1]) < 0.4) dispGeo.vp[1] = 0.4*spac[1]; if(fabs(dispGeo.vp[1]/spac[1]) > (dims[1]-1)-0.4) dispGeo.vp[1] = ((dims[1]-1)-0.4)*spac[1]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[2] = 0; } if(fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[1]) && fabs(dispGeo.vnormal[2]) > fabs(dispGeo.vnormal[0]) ) { if(fabs(dispGeo.vp[2]/spac[2]) < 0.4) dispGeo.vp[2] = 0.4*spac[2]; if(fabs(dispGeo.vp[2]/spac[2]) > (dims[2]-1)-0.4) dispGeo.vp[2] = ((dims[2]-1)-0.4)*spac[2]; dispGeo.vnormal[0] = 0; dispGeo.vnormal[1] = 0; } m_Planes[index]->SetTransform( (vtkAbstractTransform*)nullptr ); m_Planes[index]->SetOrigin( dispGeo.vp ); m_Planes[index]->SetNormal( dispGeo.vnormal ); vtkSmartPointer points; vtkSmartPointer tmppoints; vtkSmartPointer polydata; vtkSmartPointer pointdata; vtkSmartPointer delaunay; vtkSmartPointer cuttedPlane; // the cutter only works if we do not have a 2D-image // or if we have a 2D-image and want to see the whole image. // // for side views of 2D-images, we need some special treatment if(!( (dims[0] == 1 && dispGeo.vnormal[0] != 0) || (dims[1] == 1 && dispGeo.vnormal[1] != 0) || (dims[2] == 1 && dispGeo.vnormal[2] != 0) )) { m_Cutters[index]->SetCutFunction( m_Planes[index] ); m_Cutters[index]->SetInputData( m_VtkImage ); m_Cutters[index]->Update(); cuttedPlane = m_Cutters[index]->GetOutput(); } else { // cutting of a 2D-Volume does not work, // so we have to build up our own polydata object cuttedPlane = vtkPolyData::New(); points = vtkPoints::New(); points->SetNumberOfPoints(m_VtkImage->GetNumberOfPoints()); for(int i=0; iGetNumberOfPoints(); i++) { points->SetPoint(i, m_VtkImage->GetPoint(i)); } cuttedPlane->SetPoints(points); int nZero1, nZero2; if(dims[0]==1) { nZero1 = 1; nZero2 = 2; } else if(dims[1]==1) { nZero1 = 0; nZero2 = 2; } else { nZero1 = 0; nZero2 = 1; } tmppoints = vtkPoints::New(); for(int j=0; jGetNumberOfPoints(); j++){ double pt[3]; m_VtkImage->GetPoint(j,pt); tmppoints->InsertNextPoint(pt[nZero1],pt[nZero2],0); } polydata = vtkPolyData::New(); polydata->SetPoints( tmppoints ); delaunay = vtkDelaunay2D::New(); delaunay->SetInputData( polydata ); delaunay->Update(); vtkCellArray* polys = delaunay->GetOutput()->GetPolys(); cuttedPlane->SetPolys(polys); } if(cuttedPlane->GetNumberOfPoints()) { // WINDOWING HERE dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.O3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.O3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.O3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes1[index]->count = 0; m_ThickPlanes1[index]->SetTransform((vtkAbstractTransform*)nullptr ); m_ThickPlanes1[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes1[index]->SetThickness(dispGeo.d2); m_Clippers1[index]->SetClipFunction( m_ThickPlanes1[index] ); m_Clippers1[index]->SetInputData( cuttedPlane ); m_Clippers1[index]->SetInsideOut(1); m_Clippers1[index]->Update(); dispGeo.vnormal[0] = dispGeo.M3D[0]-dispGeo.L3D[0]; dispGeo.vnormal[1] = dispGeo.M3D[1]-dispGeo.L3D[1]; dispGeo.vnormal[2] = dispGeo.M3D[2]-dispGeo.L3D[2]; vtkMath::Normalize(dispGeo.vnormal); dispGeo.vp[0] = dispGeo.M3D[0]; dispGeo.vp[1] = dispGeo.M3D[1]; dispGeo.vp[2] = dispGeo.M3D[2]; inversetransform->TransformPoint( dispGeo.vp, dispGeo.vp ); inversetransform->TransformNormalAtPoint( dispGeo.vp, dispGeo.vnormal, dispGeo.vnormal ); m_ThickPlanes2[index]->count = 0; m_ThickPlanes2[index]->SetTransform((vtkAbstractTransform*)nullptr ); m_ThickPlanes2[index]->SetPose( dispGeo.vnormal, dispGeo.vp ); m_ThickPlanes2[index]->SetThickness(dispGeo.d1); m_Clippers2[index]->SetClipFunction( m_ThickPlanes2[index] ); m_Clippers2[index]->SetInputData( m_Clippers1[index]->GetOutput() ); m_Clippers2[index]->SetInsideOut(1); m_Clippers2[index]->Update(); cuttedPlane = m_Clippers2[index]->GetOutput (); if(cuttedPlane->GetNumberOfPoints()) { localStorage->m_OdfsPlanes[index]->RemoveAllInputs(); vtkSmartPointer normals = vtkSmartPointer::New(); normals->SetInputConnection( m_OdfSource->GetOutputPort() ); normals->SplittingOff(); normals->ConsistencyOff(); normals->AutoOrientNormalsOff(); normals->ComputePointNormalsOn(); normals->ComputeCellNormalsOff(); normals->FlipNormalsOff(); normals->NonManifoldTraversalOff(); vtkSmartPointer trans = vtkSmartPointer::New(); trans->SetInputConnection( normals->GetOutputPort() ); trans->SetTransform(m_OdfTransform); vtkSmartPointer glyphGenerator = vtkSmartPointer::New(); glyphGenerator->SetMaximumNumberOfPoints(std::min(m_ShowMaxNumber,(int)cuttedPlane->GetNumberOfPoints())); glyphGenerator->SetRandomMode( m_ToggleGlyphPlacementMode ); glyphGenerator->SetUseMaskPoints(1); glyphGenerator->SetSourceConnection(trans->GetOutputPort() ); glyphGenerator->SetInput(cuttedPlane); glyphGenerator->SetColorModeToColorBySource(); glyphGenerator->SetGeometry(this->GetDataNode()->GetData()->GetGeometry()); glyphGenerator->SetGlyphMethod(&(GlyphMethod),(void *)glyphGenerator); try { glyphGenerator->Update(); } catch( itk::ExceptionObject& err ) { std::cout << err << std::endl; } localStorage->m_OdfsPlanes[index]->AddInputConnection(glyphGenerator->GetOutputPort()); localStorage->m_OdfsPlanes[index]->Update(); } } localStorage->m_OdfsMappers[index]->ScalarVisibilityOn(); localStorage->m_OdfsMappers[index]->SetScalarModeToUsePointFieldData(); localStorage->m_OdfsMappers[index]->SelectColorArray("ODF_COLORS"); localStorage->m_PropAssemblies[index]->VisibilityOn(); if(localStorage->m_PropAssemblies[index]->GetParts()->IsItemPresent(localStorage->m_OdfsActors[index])) { localStorage->m_PropAssemblies[index]->RemovePart(localStorage->m_OdfsActors[index]); } localStorage->m_OdfsMappers[index]->SetInputData(localStorage->m_OdfsPlanes[index]->GetOutput()); localStorage->m_PropAssemblies[index]->AddPart(localStorage->m_OdfsActors[index]); } template bool mitk::OdfVtkMapper2D ::IsVisibleOdfs(mitk::BaseRenderer* renderer) { mitk::Image::Pointer input = const_cast(this->GetInput()); const TimeGeometry *inputTimeGeometry = input->GetTimeGeometry(); if(inputTimeGeometry==nullptr || inputTimeGeometry->CountTimeSteps()==0 || !inputTimeGeometry->IsValidTimeStep(this->GetTimestep())) return false; if(this->IsPlaneRotated(renderer)) return false; bool retval = false; switch(GetIndex(renderer)) { case 0: GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_T"); break; case 1: GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_S"); break; case 2: GetDataNode()->GetVisibility(retval, renderer, "VisibleOdfs_C"); break; } return retval; } template void mitk::OdfVtkMapper2D ::MitkRenderOverlay(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderOverlay(renderer->GetVtkRenderer()); } template void mitk::OdfVtkMapper2D ::MitkRenderOpaqueGeometry(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs( renderer )==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) { // adapt cam pos this->GetVtkProp(renderer)->RenderOpaqueGeometry( renderer->GetVtkRenderer() ); } } template void mitk::OdfVtkMapper2D ::MitkRenderTranslucentGeometry(mitk::BaseRenderer* renderer) { if ( this->IsVisibleOdfs(renderer)==false ) return; if ( this->GetVtkProp(renderer)->GetVisibility() ) this->GetVtkProp(renderer)->RenderTranslucentPolygonalGeometry(renderer->GetVtkRenderer()); } template void mitk::OdfVtkMapper2D ::Update(mitk::BaseRenderer* renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) return; mitk::Image::Pointer input = const_cast( this->GetInput() ); if ( input.IsNull() ) return ; std::string classname("TensorImage"); if(classname.compare(input->GetNameOfClass())==0) m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); std::string qclassname("OdfImage"); if(qclassname.compare(input->GetNameOfClass())==0) m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); std::string shclassname("ShImage"); if(shclassname.compare(input->GetNameOfClass())==0) m_VtkImage = dynamic_cast( this->GetInput() )->GetNonRgbVtkImageData(); if( m_VtkImage ) { // make sure, that we have point data with more than 1 component (as vectors) vtkPointData* pointData = m_VtkImage->GetPointData(); if ( pointData == nullptr ) { itkWarningMacro( << "m_VtkImage->GetPointData() returns NULL!" ); return ; } if ( pointData->GetNumberOfArrays() == 0 ) { itkWarningMacro( << "m_VtkImage->GetPointData()->GetNumberOfArrays() is 0!" ); return ; } else if ( pointData->GetArrayName( 0 ) == nullptr ) { m_VtkImage->GetPointData()->GetArray(0)->SetName("vector"); } GenerateDataForRenderer(renderer); } else { itkWarningMacro( << "m_VtkImage is NULL!" ); return ; } } template void mitk::OdfVtkMapper2D ::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); OdfDisplayGeometry dispGeo = MeasureDisplayedGeometry( renderer); if ((localStorage->m_LastUpdateTime >= m_DataNode->GetMTime()) //was the node modified? && (localStorage->m_LastUpdateTime >= m_DataNode->GetPropertyList()->GetMTime()) //was a property modified? && (localStorage->m_LastUpdateTime >= m_DataNode->GetPropertyList(renderer)->GetMTime()) && dispGeo.Equals(m_LastDisplayGeometry.at(GetIndex(renderer)))) { return; } localStorage->m_LastUpdateTime.Modified(); if(!IsVisibleOdfs(renderer)) { localStorage->m_OdfsActors[0]->VisibilityOff(); localStorage->m_OdfsActors[1]->VisibilityOff(); localStorage->m_OdfsActors[2]->VisibilityOff(); } else { localStorage->m_OdfsActors[0]->VisibilityOn(); localStorage->m_OdfsActors[1]->VisibilityOn(); localStorage->m_OdfsActors[2]->VisibilityOn(); m_OdfSource->SetAdditionalScale(GetMinImageSpacing(GetIndex(renderer))); ApplyPropertySettings(); Slice(renderer, dispGeo); m_LastDisplayGeometry[GetIndex(renderer)] = dispGeo; } } template double mitk::OdfVtkMapper2D::GetMinImageSpacing( int index ) { // Spacing adapted scaling double spacing[3]; m_VtkImage->GetSpacing(spacing); double min = spacing[0]; if(index==0) { min = spacing[0]; min = min > spacing[1] ? spacing[1] : min; } if(index==1) { min = spacing[1]; min = min > spacing[2] ? spacing[2] : min; } if(index==2) { min = spacing[0]; min = min > spacing[2] ? spacing[2] : min; } return min; } template void mitk::OdfVtkMapper2D ::ApplyPropertySettings() { this->GetDataNode()->GetFloatProperty( "Scaling", m_Scaling ); this->GetDataNode()->GetIntProperty( "ShowMaxNumber", m_ShowMaxNumber ); OdfNormalizationMethodProperty* nmp = dynamic_cast(this->GetDataNode()->GetProperty( "Normalization" )); if(nmp) m_Normalization = nmp->GetNormalization(); OdfScaleByProperty* sbp = dynamic_cast(this->GetDataNode()->GetProperty( "ScaleBy" )); if(sbp) m_ScaleBy = sbp->GetScaleBy(); this->GetDataNode()->GetFloatProperty( "IndexParam1", m_IndexParam1); this->GetDataNode()->GetFloatProperty( "IndexParam2", m_IndexParam2); this->GetDataNode()->GetBoolProperty( "DiffusionCore.Rendering.OdfVtkMapper.SwitchTensorView", m_ToggleTensorEllipsoidView ); this->GetDataNode()->GetBoolProperty( "DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", m_ToggleColourisationMode ); this->GetDataNode()->GetBoolProperty( "DiffusionCore.Rendering.OdfVtkMapper.RandomModeBit", m_ToggleGlyphPlacementMode); } template bool mitk::OdfVtkMapper2D ::IsPlaneRotated(mitk::BaseRenderer* renderer) { PlaneGeometry::ConstPointer worldPlaneGeometry = renderer->GetCurrentWorldPlaneGeometry(); double vnormal[ 3 ]; Vector3D normal = worldPlaneGeometry->GetNormal(); normal.Normalize(); vnl2vtk( normal.GetVnlVector(), vnormal ); mitk::Image* currentImage = dynamic_cast( this->GetDataNode()->GetData() ); if( currentImage == nullptr ) return false; mitk::Vector3D imageNormal0 = currentImage->GetSlicedGeometry()->GetAxisVector(0); mitk::Vector3D imageNormal1 = currentImage->GetSlicedGeometry()->GetAxisVector(1); mitk::Vector3D imageNormal2 = currentImage->GetSlicedGeometry()->GetAxisVector(2); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); double eps = 0.000001; // Did you mean: std::numeric_limits::epsilon(); ? int test = 0; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal0.GetVnlVector()))-1) > eps ) test++; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal1.GetVnlVector()))-1) > eps ) test++; if( fabs(fabs(dot_product(normal.GetVnlVector(),imageNormal2.GetVnlVector()))-1) > eps ) test++; if (test==3) return true; return false; } template void mitk::OdfVtkMapper2D ::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* /*renderer*/, bool /*overwrite*/) { node->SetProperty( "ShowMaxNumber", mitk::IntProperty::New( 500 ) ); node->SetProperty( "Normalization", mitk::OdfNormalizationMethodProperty::New()); mitk::OdfScaleByProperty::Pointer prop = mitk::OdfScaleByProperty::New(); prop->SetScaleByGFA(); node->SetProperty( "ScaleBy", prop); if (dynamic_cast(node->GetData())) { node->AddProperty( "DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", mitk::BoolProperty::New( true ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 3.0 ) ); } else { node->AddProperty( "DiffusionCore.Rendering.OdfVtkMapper.ColourisationModeBit", mitk::BoolProperty::New( false ) ); node->SetProperty( "Scaling", mitk::FloatProperty::New( 1.5 ) ); } node->SetProperty( "IndexParam1", mitk::FloatProperty::New(2)); node->SetProperty( "IndexParam2", mitk::FloatProperty::New(1)); node->SetProperty( "visible", mitk::BoolProperty::New( true ) ); node->SetProperty( "VisibleOdfs_T", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_C", mitk::BoolProperty::New( false ) ); node->SetProperty( "VisibleOdfs_S", mitk::BoolProperty::New( false ) ); node->SetProperty( "layer", mitk::IntProperty::New(100)); node->SetProperty( "DoRefresh", mitk::BoolProperty::New( true ) ); node->AddProperty( "DiffusionCore.Rendering.OdfVtkMapper.SwitchTensorView", mitk::BoolProperty::New( true) ); node->AddProperty( "DiffusionCore.Rendering.OdfVtkMapper.RandomModeBit", mitk::BoolProperty::New( true ) ); } #endif // __mitkOdfVtkMapper2D_txx__ diff --git a/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper2D.cpp b/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper2D.cpp index f87a75c3da..1231b5e3c7 100644 --- a/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper2D.cpp +++ b/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper2D.cpp @@ -1,277 +1,277 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkFiberBundleMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkDataNode.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class vtkShaderCallback : public vtkCommand { public: static vtkShaderCallback *New() { return new vtkShaderCallback; } mitk::BaseRenderer *renderer; mitk::DataNode *node; void Execute(vtkObject *, unsigned long, void*cbo) override { vtkShaderProgram *program = reinterpret_cast(cbo); float fiberOpacity; bool fiberFading = false; float fiberThickness = 0.0; node->GetOpacity(fiberOpacity, nullptr); node->GetFloatProperty("Fiber2DSliceThickness", fiberThickness); node->GetBoolProperty("Fiber2DfadeEFX", fiberFading); program->SetUniformf("fiberOpacity", fiberOpacity); program->SetUniformi("fiberFadingON", fiberFading); program->SetUniformf("fiberThickness", fiberThickness); if (this->renderer) { //get information about current position of views mitk::SliceNavigationController::Pointer sliceContr = renderer->GetSliceNavigationController(); mitk::PlaneGeometry::ConstPointer planeGeo = sliceContr->GetCurrentPlaneGeometry(); //generate according cutting planes based on the view position float planeNormal[3]; planeNormal[0] = planeGeo->GetNormal()[0]; planeNormal[1] = planeGeo->GetNormal()[1]; planeNormal[2] = planeGeo->GetNormal()[2]; float tmp1 = planeGeo->GetOrigin()[0] * planeNormal[0]; float tmp2 = planeGeo->GetOrigin()[1] * planeNormal[1]; float tmp3 = planeGeo->GetOrigin()[2] * planeNormal[2]; float thickness = tmp1 + tmp2 + tmp3; //attention, correct normalvector - float* a = new float[4]; + float a[4]; for (int i = 0; i < 3; ++i) a[i] = planeNormal[i]; a[3] = thickness; program->SetUniform4f("slicingPlane", a); } } vtkShaderCallback() { this->renderer = nullptr; } }; mitk::FiberBundleMapper2D::FiberBundleMapper2D() : m_LineWidth(1) { - m_lut = vtkLookupTable::New(); + m_lut = vtkSmartPointer::New(); m_lut->Build(); } mitk::FiberBundleMapper2D::~FiberBundleMapper2D() { } mitk::FiberBundle* mitk::FiberBundleMapper2D::GetInput() { return dynamic_cast< mitk::FiberBundle * > ( GetDataNode()->GetData() ); } void mitk::FiberBundleMapper2D::Update(mitk::BaseRenderer * renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) return; // Calculate time step of the input data for the specified renderer (integer value) // this method is implemented in mitkMapper this->CalculateTimeStep( renderer ); //check if updates occured in the node or on the display FBXLocalStorage *localStorage = m_LocalStorageHandler.GetLocalStorage(renderer); //set renderer independent shader properties const DataNode::Pointer node = this->GetDataNode(); float thickness = 2.0; if(!this->GetDataNode()->GetPropertyValue("Fiber2DSliceThickness",thickness)) MITK_INFO << "FIBER2D SLICE THICKNESS PROPERTY ERROR"; bool fiberfading = false; if(!this->GetDataNode()->GetPropertyValue("Fiber2DfadeEFX",fiberfading)) MITK_INFO << "FIBER2D SLICE FADE EFX PROPERTY ERROR"; mitk::FiberBundle* fiberBundle = this->GetInput(); if (fiberBundle==nullptr) return; int lineWidth = 0; node->GetIntProperty("LineWidth", lineWidth); if (m_LineWidth!=lineWidth) { m_LineWidth = lineWidth; fiberBundle->RequestUpdate2D(); } if ( localStorage->m_LastUpdateTimeGetCurrentWorldPlaneGeometryUpdateTime() || localStorage->m_LastUpdateTimeGetUpdateTime2D() ) { this->UpdateShaderParameter(renderer); this->GenerateDataForRenderer( renderer ); } } void mitk::FiberBundleMapper2D::UpdateShaderParameter(mitk::BaseRenderer *) { // see new vtkShaderCallback } // vtkActors and Mappers are feeded here void mitk::FiberBundleMapper2D::GenerateDataForRenderer(mitk::BaseRenderer *renderer) { mitk::FiberBundle* fiberBundle = this->GetInput(); //the handler of local storage gets feeded in this method with requested data for related renderwindow FBXLocalStorage *localStorage = m_LocalStorageHandler.GetLocalStorage(renderer); mitk::DataNode* node = this->GetDataNode(); if (node == nullptr) return; vtkSmartPointer fiberPolyData = fiberBundle->GetFiberPolyData(); if (fiberPolyData == nullptr) return; fiberPolyData->GetPointData()->AddArray(fiberBundle->GetFiberColors()); localStorage->m_FiberMapper->ScalarVisibilityOn(); localStorage->m_FiberMapper->SetScalarModeToUsePointFieldData(); localStorage->m_FiberMapper->SetLookupTable(m_lut); //apply the properties after the slice was set localStorage->m_PointActor->GetProperty()->SetOpacity(0.999); localStorage->m_FiberMapper->SelectColorArray("FIBER_COLORS"); localStorage->m_FiberMapper->SetInputData(fiberPolyData); localStorage->m_FiberMapper->SetVertexShaderCode( "//VTK::System::Dec\n" "attribute vec4 vertexMC;\n" "//VTK::Normal::Dec\n" "uniform mat4 MCDCMatrix;\n" "//VTK::Color::Dec\n" "varying vec4 positionWorld;\n" "varying vec4 colorVertex;\n" "void main(void)\n" "{\n" " colorVertex = scalarColor;\n" " positionWorld = vertexMC;\n" " gl_Position = MCDCMatrix * vertexMC;\n" "}\n" ); localStorage->m_FiberMapper->SetFragmentShaderCode( "//VTK::System::Dec\n" // always start with this line "//VTK::Output::Dec\n" // always have this line in your FS "uniform vec4 slicingPlane;\n" "uniform float fiberThickness;\n" "uniform int fiberFadingON;\n" "uniform float fiberOpacity;\n" "varying vec4 positionWorld;\n" "varying vec4 colorVertex;\n" "out vec4 out_Color;\n" "void main(void)\n" "{\n" " float r1 = dot(positionWorld.xyz, slicingPlane.xyz) - slicingPlane.w;\n" " if (abs(r1) >= fiberThickness)\n" " discard;\n" " if (fiberFadingON != 0)\n" " {\n" " float x = (r1 + fiberThickness) / (fiberThickness*2.0);\n" " x = 1.0 - x;\n" " out_Color = vec4(colorVertex.xyz*x, fiberOpacity);\n" " }\n" " else{\n" " out_Color = vec4(colorVertex.xyz,fiberOpacity);\n" " }\n" "}\n" ); vtkSmartPointer myCallback = vtkSmartPointer::New(); myCallback->renderer = renderer; myCallback->node = this->GetDataNode(); localStorage->m_FiberMapper->AddObserver(vtkCommand::UpdateShaderEvent,myCallback); localStorage->m_PointActor->SetMapper(localStorage->m_FiberMapper); localStorage->m_PointActor->GetProperty()->ShadingOn(); localStorage->m_PointActor->GetProperty()->SetLineWidth(m_LineWidth); // We have been modified => save this for next Update() localStorage->m_LastUpdateTime.Modified(); } vtkProp* mitk::FiberBundleMapper2D::GetVtkProp(mitk::BaseRenderer *renderer) { this->Update(renderer); return m_LocalStorageHandler.GetLocalStorage(renderer)->m_PointActor; } void mitk::FiberBundleMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { Superclass::SetDefaultProperties(node, renderer, overwrite); // node->SetProperty("shader",mitk::ShaderProperty::New("mitkShaderFiberClipping")); //add other parameters to propertylist node->AddProperty( "Fiber2DSliceThickness", mitk::FloatProperty::New(1.0f), renderer, overwrite ); node->AddProperty( "Fiber2DfadeEFX", mitk::BoolProperty::New(true), renderer, overwrite ); node->AddProperty( "color", mitk::ColorProperty::New(1.0,1.0,1.0), renderer, overwrite); } mitk::FiberBundleMapper2D::FBXLocalStorage::FBXLocalStorage() { m_PointActor = vtkSmartPointer::New(); m_FiberMapper = vtkSmartPointer::New(); } diff --git a/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper3D.cpp b/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper3D.cpp index 1b5a8310a8..88fbf014b5 100644 --- a/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper3D.cpp +++ b/Modules/DiffusionImaging/DiffusionIO/mitkFiberBundleMapper3D.cpp @@ -1,421 +1,421 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkFiberBundleMapper3D.h" #include #include #include #include #include #include #include #include #include #include #include #include #include class vtkShaderCallback3D : public vtkCommand { public: static vtkShaderCallback3D *New() { return new vtkShaderCallback3D; } mitk::BaseRenderer *renderer; mitk::DataNode *node; void Execute(vtkObject *, unsigned long, void* cbo) override { vtkShaderProgram *program = reinterpret_cast(cbo); float fiberOpacity; node->GetOpacity(fiberOpacity, nullptr); program->SetUniformf("fiberOpacity", fiberOpacity); if (this->renderer) { mitk::Vector3D plane_vec; plane_vec.Fill(0); node->GetPropertyValue("Fiber3DClippingPlane",plane_vec); float distance = plane_vec.GetNorm(); plane_vec.Normalize(); bool flip; node->GetBoolProperty("Fiber3DClippingPlaneFlip",flip); if (flip) { plane_vec *= -1; distance *= -1; } node->GetBoolProperty("Fiber3DClippingPlaneSecondFlip",flip); if (flip) { plane_vec *= -1; distance *= -1; } float a[4]; for (int i = 0; i < 3; ++i) a[i] = plane_vec[i]; a[3] = distance; program->SetUniform4f("slicingPlane", a); float v = 1; node->GetFloatProperty("light.ambient", v); program->SetUniformf("ambient", v); node->GetFloatProperty("light.diffuse", v); program->SetUniformf("diffuse", v); node->GetFloatProperty("light.specular", v); program->SetUniformf("intensity", v); node->GetFloatProperty("light.intensity", v); program->SetUniformf("intensity", v); bool enable_light = false; node->GetBoolProperty("light.enable_light", enable_light); program->SetUniformi("enable_light", enable_light); } } vtkShaderCallback3D() { this->renderer = nullptr; } }; mitk::FiberBundleMapper3D::FiberBundleMapper3D() : m_TubeRadius(0.0) , m_TubeSides(15) , m_LineWidth(1) { - m_lut = vtkLookupTable::New(); + m_lut = vtkSmartPointer::New(); m_lut->Build(); } mitk::FiberBundleMapper3D::~FiberBundleMapper3D() { } const mitk::FiberBundle* mitk::FiberBundleMapper3D::GetInput() { return static_cast ( GetDataNode()->GetData() ); } /* This method is called once the mapper gets new input, for UI rotation or changes in colorcoding this method is NOT called */ void mitk::FiberBundleMapper3D::InternalGenerateData(mitk::BaseRenderer *renderer) { m_FiberPolyData->GetPointData()->AddArray(m_FiberBundle->GetFiberColors()); float tmpopa; this->GetDataNode()->GetOpacity(tmpopa, nullptr); FBXLocalStorage3D *localStorage = m_LocalStorageHandler.GetLocalStorage(renderer); if (m_TubeRadius>0.0) { vtkSmartPointer tubeFilter = vtkSmartPointer::New(); tubeFilter->SetInputData(m_FiberPolyData); tubeFilter->SetNumberOfSides(m_TubeSides); tubeFilter->SetRadius(m_TubeRadius); tubeFilter->Update(); m_FiberPolyData = tubeFilter->GetOutput(); } else if (m_RibbonWidth>0.0) { vtkSmartPointer tubeFilter = vtkSmartPointer::New(); tubeFilter->SetInputData(m_FiberPolyData); tubeFilter->SetWidth(m_RibbonWidth); tubeFilter->Update(); m_FiberPolyData = tubeFilter->GetOutput(); } if (tmpopa<1) { vtkSmartPointer depthSort = vtkSmartPointer::New(); depthSort->SetInputData( m_FiberPolyData ); depthSort->SetCamera( renderer->GetVtkRenderer()->GetActiveCamera() ); depthSort->SetDirectionToBackToFront(); depthSort->Update(); localStorage->m_FiberMapper->SetInputConnection(depthSort->GetOutputPort()); } else { localStorage->m_FiberMapper->SetInputData(m_FiberPolyData); } if (m_Lighting) { float floatProp = 1.0; GetDataNode()->GetFloatProperty("light.ambient", floatProp); localStorage->m_FiberActor->GetProperty()->SetAmbient(floatProp); GetDataNode()->GetFloatProperty("light.diffuse", floatProp); localStorage->m_FiberActor->GetProperty()->SetDiffuse(floatProp); GetDataNode()->GetFloatProperty("light.specular", floatProp); localStorage->m_FiberActor->GetProperty()->SetSpecular(floatProp); GetDataNode()->GetFloatProperty("light.specularpower", floatProp); localStorage->m_FiberActor->GetProperty()->SetSpecularPower( floatProp ); mitk::ColorProperty* ambientC = dynamic_cast(GetDataNode()->GetProperty("light.ambientcolor")); mitk::ColorProperty* diffuseC = dynamic_cast(GetDataNode()->GetProperty("light.diffusecolor")); mitk::ColorProperty* specularC = dynamic_cast(GetDataNode()->GetProperty("light.specularcolor")); localStorage->m_FiberActor->GetProperty()->SetAmbientColor( ambientC->GetColor()[0], ambientC->GetColor()[1], ambientC->GetColor()[2] ); localStorage->m_FiberActor->GetProperty()->SetDiffuseColor( diffuseC->GetColor()[0], diffuseC->GetColor()[1], diffuseC->GetColor()[2] ); localStorage->m_FiberActor->GetProperty()->SetSpecularColor( specularC->GetColor()[0], specularC->GetColor()[1], specularC->GetColor()[2] ); localStorage->m_FiberActor->GetProperty()->SetLighting(true); } else { localStorage->m_FiberActor->GetProperty()->SetLighting(false); } localStorage->m_FiberMapper->SelectColorArray("FIBER_COLORS"); localStorage->m_FiberMapper->ScalarVisibilityOn(); localStorage->m_FiberMapper->SetScalarModeToUsePointFieldData(); localStorage->m_FiberActor->SetMapper(localStorage->m_FiberMapper); localStorage->m_FiberMapper->SetLookupTable(m_lut); // set Opacity localStorage->m_FiberActor->GetProperty()->SetOpacity((double) tmpopa); localStorage->m_FiberActor->GetProperty()->SetLineWidth(m_LineWidth); localStorage->m_FiberAssembly->AddPart(localStorage->m_FiberActor); // localStorage->m_FiberMapper->AddShaderReplacement( // vtkShader::Vertex, // "//VTK::Normal::Dec\n", // true, // "//VTK::Normal::Dec\n" // "uniform mat4 MCVCMatrix;\n" // "attribute vec3 normalMC;\n" // "uniform mat3 normalMatrix;\n" // "varying vec4 positionWorld;\n" // "varying vec4 colorVertex;\n" // "varying vec3 N;\n" // "varying vec4 v;\n", // false // ); localStorage->m_FiberMapper->SetVertexShaderCode( "//VTK::System::Dec\n" "attribute vec4 vertexMC;\n" "//VTK::Normal::Dec\n" "uniform mat4 MCDCMatrix;\n" "uniform mat4 MCVCMatrix;\n" "//VTK::Color::Dec\n" "attribute vec3 normalMC;\n" "uniform mat3 normalMatrix;\n" "varying vec4 positionWorld;\n" "varying vec4 colorVertex;\n" "varying vec3 N;\n" "varying vec4 v;\n" "void main(void)\n" "{\n" " colorVertex = scalarColor;\n" " positionWorld = vertexMC;\n" " v = MCVCMatrix * vertexMC;\n" " mat4 glNormalMatrix = transpose(inverse(MCVCMatrix));\n" " N = normalize(normalMatrix * normalMC);\n" " gl_Position = MCDCMatrix * vertexMC;\n" "}\n" ); localStorage->m_FiberMapper->SetFragmentShaderCode( "//VTK::System::Dec\n" // always start with this line "//VTK::Output::Dec\n" // always have this line in your FS "uniform vec4 slicingPlane;\n" "uniform float fiberOpacity;\n" "uniform float ambient;\n" "uniform float diffuse;\n" "uniform float specular;\n" "uniform float intensity;\n" "uniform int enable_light;\n" "varying vec4 positionWorld;\n" "varying vec4 colorVertex;\n" "varying vec3 N;\n" "varying vec4 v;\n" "out vec4 out_Color;\n" "void main(void)\n" "{\n" " float r1 = dot(positionWorld.xyz, slicingPlane.xyz) - slicingPlane.w;\n" " if ( r1 > 0 )\n" " discard;\n" " if (enable_light!=0)\n" " {\n" " vec3 L = normalize(-v.xyz);\n" // "normalize(gl_LightSource[0].position.xyz - v.xyz);\n" " vec3 E = normalize(-v.xyz); // we are in Eye Coordinates, so EyePos is (0,0,0)\n" " vec3 R = normalize(-reflect(L,N));\n" //calculate Diffuse Term: " float Idiff = diffuse * max(dot(N,L), 0.0);\n" " Idiff = clamp(Idiff, 0.0, 1.0);\n" // calculate Specular Term: " float Ispec = specular * pow(max(dot(R,E),0.0),0.3);\n" " Ispec = clamp(Ispec, 0.0, 1.0);\n" " out_Color = vec4(colorVertex.xyz, fiberOpacity)*(1-intensity) + vec4(colorVertex.xyz * (ambient + Idiff + Ispec) * intensity, fiberOpacity);\n" " }\n" " else\n" " {\n" " out_Color = vec4(colorVertex.xyz, fiberOpacity);\n" " }\n" "}\n" ); vtkSmartPointer myCallback = vtkSmartPointer::New(); myCallback->renderer = renderer; myCallback->node = this->GetDataNode(); localStorage->m_FiberMapper->AddObserver(vtkCommand::UpdateShaderEvent,myCallback); localStorage->m_LastUpdateTime.Modified(); } void mitk::FiberBundleMapper3D::GenerateDataForRenderer( mitk::BaseRenderer *renderer ) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) return; const DataNode* node = this->GetDataNode(); FBXLocalStorage3D* localStorage = m_LocalStorageHandler.GetLocalStorage(renderer); m_FiberBundle = dynamic_cast(node->GetData()); m_FiberPolyData = m_FiberBundle->GetFiberPolyData(); // this->ApplyShaderProperties(renderer, "shader_3d"); // did any rendering properties change? float tubeRadius = 0; node->GetFloatProperty("shape.tuberadius", tubeRadius); if (m_TubeRadius!=tubeRadius) { m_TubeRadius = tubeRadius; m_FiberBundle->RequestUpdate3D(); } int tubeSides = 0; node->GetIntProperty("shape.tubesides", tubeSides); if (m_TubeSides!=tubeSides) { m_TubeSides = tubeSides; m_FiberBundle->RequestUpdate3D(); } int lineWidth = 0; node->GetIntProperty("shape.linewidth", lineWidth); if (m_LineWidth!=lineWidth) { m_LineWidth = lineWidth; m_FiberBundle->RequestUpdate3D(); } float ribbonWidth = 0; node->GetFloatProperty("shape.ribbonwidth", ribbonWidth); if (m_RibbonWidth!=ribbonWidth) { m_RibbonWidth = ribbonWidth; m_FiberBundle->RequestUpdate3D(); } bool lighting = false; node->GetBoolProperty("light.enable", lighting); if (m_Lighting!=lighting) { m_Lighting = lighting; m_FiberBundle->RequestUpdate3D(); } if (localStorage->m_LastUpdateTime>=m_FiberBundle->GetUpdateTime3D()) return; // Calculate time step of the input data for the specified renderer (integer value) // this method is implemented in mitkMapper this->CalculateTimeStep( renderer ); this->InternalGenerateData(renderer); } void mitk::FiberBundleMapper3D::UpdateShaderParameter(mitk::BaseRenderer * ) { // see new vtkShaderCallback3D } void mitk::FiberBundleMapper3D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { Superclass::SetDefaultProperties(node, renderer, overwrite); mitk::Vector3D plane_vec; plane_vec.Fill(0.0); node->AddProperty( "Fiber3DClippingPlane", mitk::Vector3DProperty::New( plane_vec ), renderer, overwrite ); node->AddProperty( "Fiber3DClippingPlaneId", mitk::IntProperty::New( 0 ), renderer, overwrite ); node->AddProperty( "Fiber3DClippingPlaneFlip", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty( "Fiber3DClippingPlaneSecondFlip", mitk::BoolProperty::New( false ), renderer, overwrite ); node->AddProperty( "opacity", mitk::FloatProperty::New( 1.0 ), renderer, overwrite); node->AddProperty( "color", mitk::ColorProperty::New(1.0,1.0,1.0), renderer, overwrite); node->AddProperty( "pickable", mitk::BoolProperty::New( true ), renderer, overwrite); node->AddProperty( "shape.linewidth", mitk::IntProperty::New( true ), renderer, overwrite ); node->AddProperty( "shape.tuberadius",mitk::FloatProperty::New( 0.0 ), renderer, overwrite); node->AddProperty( "shape.tubesides",mitk::IntProperty::New( 15 ), renderer, overwrite); node->AddProperty( "shape.ribbonwidth", mitk::FloatProperty::New( 0.0 ), renderer, overwrite); node->AddProperty( "light.intensity", mitk::FloatProperty::New( 0.6 ), renderer, overwrite); node->AddProperty( "light.enable_light", mitk::BoolProperty::New( false ), renderer, overwrite); node->AddProperty( "light.ambient", mitk::FloatProperty::New( 0.05 ), renderer, overwrite); node->AddProperty( "light.diffuse", mitk::FloatProperty::New( 1.0 ), renderer, overwrite); node->AddProperty( "light.specular", mitk::FloatProperty::New( 0.0 ), renderer, overwrite); node->AddProperty( "light.specularpower", mitk::FloatProperty::New( 1.0 ), renderer, overwrite); node->AddProperty( "light.ambientcolor", mitk::ColorProperty::New(1,1,1), renderer, overwrite); node->AddProperty( "light.diffusecolor", mitk::ColorProperty::New(1,1,1), renderer, overwrite); node->AddProperty( "light.specularcolor", mitk::ColorProperty::New(1,1,1), renderer, overwrite); } vtkProp* mitk::FiberBundleMapper3D::GetVtkProp(mitk::BaseRenderer *renderer) { return m_LocalStorageHandler.GetLocalStorage(renderer)->m_FiberAssembly; } mitk::FiberBundleMapper3D::FBXLocalStorage3D::FBXLocalStorage3D() { m_FiberActor = vtkSmartPointer::New(); m_FiberMapper = vtkSmartPointer::New(); m_FiberAssembly = vtkSmartPointer::New(); } diff --git a/Modules/DiffusionImaging/DiffusionIO/mitkPeakImageMapper2D.cpp b/Modules/DiffusionImaging/DiffusionIO/mitkPeakImageMapper2D.cpp index e9d5e1a7ad..3eaba5361c 100644 --- a/Modules/DiffusionImaging/DiffusionIO/mitkPeakImageMapper2D.cpp +++ b/Modules/DiffusionImaging/DiffusionIO/mitkPeakImageMapper2D.cpp @@ -1,240 +1,240 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPeakImageMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkDataNode.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class vtkPeakShaderCallback : public vtkCommand { public: static vtkPeakShaderCallback *New() { return new vtkPeakShaderCallback; } mitk::BaseRenderer *renderer; mitk::DataNode *node; void Execute(vtkObject *, unsigned long, void*cbo) override { vtkShaderProgram *program = reinterpret_cast(cbo); mitk::Image* image = dynamic_cast(node->GetData()); mitk::Vector3D spacing = image->GetGeometry()->GetSpacing(); float minSpacing = 1; if(spacing[0]GetOpacity(peakOpacity, nullptr); program->SetUniformf("peakOpacity", peakOpacity); program->SetUniformf("clippingPlaneThickness", minSpacing/2); if (this->renderer) { //get information about current position of views mitk::SliceNavigationController::Pointer sliceContr = renderer->GetSliceNavigationController(); mitk::PlaneGeometry::ConstPointer planeGeo = sliceContr->GetCurrentPlaneGeometry(); //generate according cutting planes based on the view position float planeNormal[3]; planeNormal[0] = planeGeo->GetNormal()[0]; planeNormal[1] = planeGeo->GetNormal()[1]; planeNormal[2] = planeGeo->GetNormal()[2]; float tmp1 = planeGeo->GetOrigin()[0] * planeNormal[0]; float tmp2 = planeGeo->GetOrigin()[1] * planeNormal[1]; float tmp3 = planeGeo->GetOrigin()[2] * planeNormal[2]; float thickness = tmp1 + tmp2 + tmp3; //attention, correct normalvector float* a = new float[4]; for (int i = 0; i < 3; ++i) a[i] = planeNormal[i]; a[3] = thickness; program->SetUniform4f("slicingPlane", a); } } vtkPeakShaderCallback() { this->renderer = nullptr; } }; mitk::PeakImageMapper2D::PeakImageMapper2D() { - m_lut = vtkLookupTable::New(); + m_lut = vtkSmartPointer::New(); m_lut->Build(); } mitk::PeakImageMapper2D::~PeakImageMapper2D() { } mitk::PeakImage* mitk::PeakImageMapper2D::GetInput() { return dynamic_cast< mitk::PeakImage * > ( GetDataNode()->GetData() ); } void mitk::PeakImageMapper2D::UpdateVtkTransform(mitk::BaseRenderer *) { // don't apply transform since the peak polydata is already in world coordinates. return; } void mitk::PeakImageMapper2D::Update(mitk::BaseRenderer * renderer) { mitk::DataNode* node = this->GetDataNode(); if (node == nullptr) return; bool visible = true; node->GetVisibility(visible, renderer, "visible"); if ( !visible ) return; this->GenerateDataForRenderer( renderer ); } void mitk::PeakImageMapper2D::UpdateShaderParameter(mitk::BaseRenderer *) { // see new vtkPeakShaderCallback } // vtkActors and Mappers are feeded here void mitk::PeakImageMapper2D::GenerateDataForRenderer(mitk::BaseRenderer *renderer) { mitk::PeakImage* peakImage = this->GetInput(); //the handler of local storage gets feeded in this method with requested data for related renderwindow FBXLocalStorage *localStorage = m_LocalStorageHandler.GetLocalStorage(renderer); vtkSmartPointer polyData = peakImage->GetPolyData(); if (polyData == nullptr) return; localStorage->m_Mapper->ScalarVisibilityOn(); localStorage->m_Mapper->SetScalarModeToUsePointFieldData(); localStorage->m_Mapper->SetLookupTable(m_lut); //apply the properties after the slice was set // localStorage->m_PointActor->GetProperty()->SetOpacity(0.999); localStorage->m_Mapper->SelectColorArray("FIBER_COLORS"); localStorage->m_Mapper->SetInputData(polyData); localStorage->m_Mapper->SetVertexShaderCode( "//VTK::System::Dec\n" "attribute vec4 vertexMC;\n" "//VTK::Normal::Dec\n" "uniform mat4 MCDCMatrix;\n" "//VTK::Color::Dec\n" "varying vec4 positionWorld;\n" "varying vec4 colorVertex;\n" "void main(void)\n" "{\n" " colorVertex = scalarColor;\n" " positionWorld = vertexMC;\n" " gl_Position = MCDCMatrix * vertexMC;\n" "}\n" ); localStorage->m_Mapper->SetFragmentShaderCode( "//VTK::System::Dec\n" // always start with this line "//VTK::Output::Dec\n" // always have this line in your FS "uniform vec4 slicingPlane;\n" "uniform float clippingPlaneThickness;\n" "uniform float peakOpacity;\n" "varying vec4 positionWorld;\n" "varying vec4 colorVertex;\n" "out vec4 out_Color;\n" "void main(void)\n" "{\n" " float r1 = dot(positionWorld.xyz, slicingPlane.xyz) - slicingPlane.w;\n" " if (abs(r1) >= clippingPlaneThickness)\n" " discard;\n" " out_Color = vec4(colorVertex.xyz,peakOpacity);\n" "}\n" ); vtkSmartPointer myCallback = vtkSmartPointer::New(); myCallback->renderer = renderer; myCallback->node = this->GetDataNode(); localStorage->m_Mapper->AddObserver(vtkCommand::UpdateShaderEvent,myCallback); localStorage->m_PointActor->SetMapper(localStorage->m_Mapper); localStorage->m_PointActor->GetProperty()->ShadingOn(); float linewidth = 1.0; this->GetDataNode()->GetFloatProperty("shape.linewidth",linewidth); localStorage->m_PointActor->GetProperty()->SetLineWidth(linewidth); // We have been modified => save this for next Update() localStorage->m_LastUpdateTime.Modified(); } vtkProp* mitk::PeakImageMapper2D::GetVtkProp(mitk::BaseRenderer *renderer) { this->Update(renderer); return m_LocalStorageHandler.GetLocalStorage(renderer)->m_PointActor; } void mitk::PeakImageMapper2D::SetDefaultProperties(mitk::DataNode* node, mitk::BaseRenderer* renderer, bool overwrite) { Superclass::SetDefaultProperties(node, renderer, overwrite); //add other parameters to propertylist node->AddProperty( "color", mitk::ColorProperty::New(1.0,1.0,1.0), renderer, overwrite); node->AddProperty( "shape.linewidth", mitk::FloatProperty::New(1.0), renderer, overwrite); } mitk::PeakImageMapper2D::FBXLocalStorage::FBXLocalStorage() { m_PointActor = vtkSmartPointer::New(); m_Mapper = vtkSmartPointer::New(); } diff --git a/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberMapper3DTest.cpp b/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberMapper3DTest.cpp index 9bb495e950..12c5198d57 100644 --- a/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberMapper3DTest.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Testing/mitkFiberMapper3DTest.cpp @@ -1,124 +1,87 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include -#include - - -/*=================================================================== - -The Medical Imaging Interaction Toolkit (MITK) - -Copyright (c) German Cancer Research Center, -Division of Medical and Biological Informatics. -All rights reserved. - -This software is distributed WITHOUT ANY WARRANTY; without -even the implied warranty of MERCHANTABILITY or FITNESS FOR -A PARTICULAR PURPOSE. - -See LICENSE.txt or http://www.mitk.org for details. - -===================================================================*/ +#include #include "mitkTestingMacros.h" #include #include #include #include -#include #include -#include #include class mitkFiberMapper3DTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkFiberMapper3DTestSuite); MITK_TEST(Test1); CPPUNIT_TEST_SUITE_END(); typedef itk::Image ItkFloatImgType; private: /** Members used inside the different (sub-)tests. All members are initialized via setUp().*/ mitk::FiberBundle::Pointer fib; + mitk::DataNode::Pointer node; public: void setUp() override { fib = mitk::IOUtil::Load(GetTestDataFilePath("DiffusionImaging/FiberFit/Cluster_0.fib")); + + node = mitk::DataNode::New(); + node->SetData(fib); } void tearDown() override { } void AddGeneratedDataToStorage(mitk::DataStorage *dataStorage) { auto node = mitk::DataNode::New(); node->SetData(fib); dataStorage->Add(node); } void Test1() { - MITK_INFO << "1"; - omp_set_num_threads(1); - - MITK_INFO << "2"; - auto node = mitk::DataNode::New(); - node->SetData(fib); - - MITK_INFO << "3"; mitk::RenderingTestHelper renderingHelper(640, 480); renderingHelper.AddNodeToStorage(node); - - MITK_INFO << "4"; - renderingHelper.SetMapperID(mitk::BaseRenderer::Standard3D); + renderingHelper.SetMapperIDToRender3D(); renderingHelper.GetVtkRenderer()->SetBackground(0.0, 0.0, 0.0); - - MITK_INFO << "5"; mitk::RenderingManager::GetInstance()->InitializeViews(fib->GetGeometry(), mitk::RenderingManager::RequestType::REQUEST_UPDATE_ALL); - MITK_INFO << "6"; - renderingHelper.SaveReferenceScreenShot(mitk::IOUtil::GetTempPath()+"fib_renderingtest.png"); - MITK_INFO << "7"; - - CPPUNIT_ASSERT_MESSAGE("No rendering crash", true); -// MITK_INFO << "1"; -// char* argv[4]; -// argv[0] = (char*)""; -// argv[1] = (char*)""; -// argv[1] = (char*)"-V"; -// argv[3] = (char*)GetTestDataFilePath("fib_renderingtest.png").c_str(); -// MITK_INFO << "2"; -// CPPUNIT_ASSERT_MESSAGE("CompareRenderWindowAgainstReference test result positive?", renderingHelper.CompareRenderWindowAgainstReference(4, argv)); + renderingHelper.SaveReferenceScreenShot(mitk::IOUtil::GetTempPath()+"fib_3D.png"); + mitk::Image::Pointer test_image = mitk::IOUtil::Load(mitk::IOUtil::GetTempPath()+"fib_3D.png"); + mitk::Image::Pointer ref_image = mitk::IOUtil::Load(GetTestDataFilePath("DiffusionImaging/fib_renderingtest.png")); + MITK_ASSERT_EQUAL(test_image, ref_image, "Check if images are equal."); } - }; MITK_TEST_SUITE_REGISTRATION(mitkFiberMapper3D) diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/src/QmitkODFRenderWidget.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/src/QmitkODFRenderWidget.cpp index 8fe3c644ac..2fd0f35086 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/src/QmitkODFRenderWidget.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.reconstruction/src/QmitkODFRenderWidget.cpp @@ -1,123 +1,123 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkODFRenderWidget.h" #include #include #include #include QmitkODFRenderWidget::QmitkODFRenderWidget(QWidget* parent, Qt::WindowFlags f): QWidget(parent, f) { //create Layouts QmitkODFRenderWidgetLayout = new QHBoxLayout( this ); //Set Layout to widget this->setLayout(QmitkODFRenderWidgetLayout); //Create RenderWindow m_RenderWindow = new QmitkRenderWindow(this, "odf render widget"); m_RenderWindow->setMaximumSize(300,300); m_RenderWindow->GetRenderer()->SetMapperID( mitk::BaseRenderer::Standard3D ); //m_RenderWindow->SetLayoutIndex( 3 ); QmitkODFRenderWidgetLayout->addWidget( m_RenderWindow ); } QmitkODFRenderWidget::~QmitkODFRenderWidget() { } void QmitkODFRenderWidget::GenerateODF( itk::OrientationDistributionFunction odf ) { try { m_Surface = mitk::Surface::New(); m_ds = mitk::StandaloneDataStorage::New(); m_Node = mitk::DataNode::New(); vtkPolyData* m_TemplateOdf = itk::OrientationDistributionFunction::GetBaseMesh(); vtkPolyData *polyData = vtkPolyData::New(); vtkPoints *points = vtkPoints::New(); vtkFloatArray *scalars = vtkFloatArray::New(); for (int i=0; iGetPoints()->GetPoint(i,p); double val = odf[i]; p[0] *= val; p[1] *= val; p[2] *= val; points->InsertPoint(i,p); scalars->InsertTuple1(i, 1-val); } polyData->SetPoints(points); vtkCellArray* polys = m_TemplateOdf->GetPolys(); polyData->SetPolys(polys); polyData->GetPointData()->SetScalars(scalars); polys->Delete(); scalars->Delete(); points->Delete(); m_Surface->SetVtkPolyData(polyData); m_Node->SetData(m_Surface); mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); // assign an empty vtk lookup table to the odf renderer, it is the same // the ODF 2D Mapper has - vtkLookupTable *lut = vtkLookupTable::New(); + vtkSmartPointer lut = vtkSmartPointer::New(); mitkLut->SetVtkLookupTable( lut ); mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); mitkLutProp->SetLookupTable(mitkLut); m_Node->SetProperty( "LookupTable", mitkLutProp ); m_Node->SetProperty("scalar visibility", mitk::BoolProperty::New(true)); m_Node->SetProperty("color mode", mitk::BoolProperty::New(true)); m_Node->SetProperty("material.specularCoefficient", mitk::FloatProperty::New(0.5)); m_ds->Add(m_Node); m_RenderWindow->GetRenderer()->SetDataStorage( m_ds ); // adjust camera to current plane rotation mitk::PlaneGeometry::ConstPointer worldPlaneGeometry = mitk::BaseRenderer::GetInstance(m_RenderWindow->GetVtkRenderWindow())->GetCurrentWorldPlaneGeometry(); mitk::Vector3D normal = worldPlaneGeometry->GetNormal(); mitk::Vector3D up = worldPlaneGeometry->GetAxisVector(1); normal.Normalize(); up.Normalize(); vtkSmartPointer cam = vtkSmartPointer::New(); const double camPos[3] = {normal[0],normal[1],normal[2]}; const double camUp[3] = {up[0],up[1],up[2]}; cam->SetPosition(camPos); cam->SetViewUp(camUp); cam->SetParallelProjection(1); m_RenderWindow->GetRenderer()->GetVtkRenderer()->SetActiveCamera(cam); m_RenderWindow->update(); } catch (...) { } }