diff --git a/Modules/Core/test/mitkBaseGeometryTest.cpp b/Modules/Core/test/mitkBaseGeometryTest.cpp index 330313a7f7..07b5afaf36 100644 --- a/Modules/Core/test/mitkBaseGeometryTest.cpp +++ b/Modules/Core/test/mitkBaseGeometryTest.cpp @@ -1,1519 +1,1518 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkTestingMacros.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class vtkMatrix4x4; class vtkMatrixToLinearTransform; class vtkLinearTransform; typedef itk::BoundingBox BoundingBox; typedef itk::BoundingBox BoundingBoxType; typedef BoundingBoxType::BoundsArrayType BoundsArrayType; typedef BoundingBoxType::Pointer BoundingBoxPointer; // Dummy instance of abstract base class class DummyTestClass : public mitk::BaseGeometry { public: DummyTestClass(){}; DummyTestClass(const DummyTestClass &other) : BaseGeometry(other){}; ~DummyTestClass() override{}; mitkClassMacro(DummyTestClass, mitk::BaseGeometry); itkNewMacro(Self); mitkNewMacro1Param(Self, const Self &); itk::LightObject::Pointer InternalClone() const override { Self::Pointer newGeometry = new Self(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } protected: void PrintSelf(std::ostream & /*os*/, itk::Indent /*indent*/) const override{}; //##Documentation //## @brief Pre- and Post-functions are empty in BaseGeometry //## //## These virtual functions allow for a different beahiour in subclasses. //## Do implement them in every subclass of BaseGeometry. If not needed, use {}. //## If this class is inherited from a subclass of BaseGeometry, call {Superclass::Pre...();};, example: // SlicedGeometry3D class void PreSetSpacing(const mitk::Vector3D &/*aSpacing*/) override{}; }; class mitkBaseGeometryTestSuite : public mitk::TestFixture { // List of Tests CPPUNIT_TEST_SUITE(mitkBaseGeometryTestSuite); // Constructor MITK_TEST(TestConstructors); MITK_TEST(TestInitialize); // Set MITK_TEST(TestSetOrigin); MITK_TEST(TestSetBounds); MITK_TEST(TestSetFloatBounds); MITK_TEST(TestSetFloatBoundsDouble); MITK_TEST(TestSetFrameOfReferenceID); MITK_TEST(TestSetIndexToWorldTransform); MITK_TEST(TestSetIndexToWorldTransformWithoutChangingSpacing); MITK_TEST(TestSetIndexToWorldTransform_WithPointerToSameTransform); MITK_TEST(TestSetSpacing); MITK_TEST(TestTransferItkToVtkTransform); MITK_TEST(TestSetIndexToWorldTransformByVtkMatrix); MITK_TEST(TestSetIdentity); MITK_TEST(TestSetImageGeometry); // Equal MITK_TEST(Equal_CloneAndOriginal_ReturnsTrue); MITK_TEST(Equal_DifferentOrigin_ReturnsFalse); MITK_TEST(Equal_DifferentIndexToWorldTransform_ReturnsFalse); MITK_TEST(Equal_DifferentSpacing_ReturnsFalse); MITK_TEST(Equal_InputIsNull_ReturnsFalse); MITK_TEST(Equal_DifferentBoundingBox_ReturnsFalse); MITK_TEST(Equal_Transforms_MinorDifferences_And_Eps); // other Functions MITK_TEST(TestComposeTransform); MITK_TEST(TestComposeVtkMatrix); MITK_TEST(TestTranslate); MITK_TEST(TestIndexToWorld); MITK_TEST(TestExecuteOperation); MITK_TEST(TestCalculateBoundingBoxRelToTransform); // MITK_TEST(TestSetTimeBounds); MITK_TEST(TestIs2DConvertable); MITK_TEST(TestGetCornerPoint); MITK_TEST(TestExtentInMM); MITK_TEST(TestGetAxisVector); MITK_TEST(TestGetCenter); MITK_TEST(TestGetDiagonalLength); MITK_TEST(TestGetExtent); MITK_TEST(TestIsInside); MITK_TEST(TestGetMatrixColumn); // test IsSubGeometry MITK_TEST(IsSubGeometry_Spacing); MITK_TEST(IsSubGeometry_TransformMatrix); MITK_TEST(IsSubGeometry_Bounds); MITK_TEST(IsSubGeometry_Grid); CPPUNIT_TEST_SUITE_END(); // Used Variables private: mitk::Point3D aPoint; float aFloatSpacing[3]; mitk::Vector3D aSpacing; mitk::AffineTransform3D::Pointer aTransform; BoundingBoxPointer aBoundingBox; mitk::AffineTransform3D::MatrixType aMatrix; mitk::Point3D anotherPoint; mitk::Vector3D anotherSpacing; BoundingBoxPointer anotherBoundingBox; BoundingBoxPointer aThirdBoundingBox; mitk::AffineTransform3D::Pointer anotherTransform; mitk::AffineTransform3D::Pointer aThirdTransform; mitk::AffineTransform3D::MatrixType anotherMatrix; mitk::AffineTransform3D::MatrixType aThirdMatrix; DummyTestClass::Pointer aDummyGeometry; DummyTestClass::Pointer anotherDummyGeometry; public: // Set up for variables void setUp() override { mitk::FillVector3D(aFloatSpacing, 1, 1, 1); mitk::FillVector3D(aSpacing, 1, 1, 1); mitk::FillVector3D(aPoint, 0, 0, 0); // Transform aTransform = mitk::AffineTransform3D::New(); aTransform->SetIdentity(); aMatrix.SetIdentity(); anotherTransform = mitk::AffineTransform3D::New(); anotherMatrix.SetIdentity(); anotherMatrix(1, 1) = 2; anotherTransform->SetMatrix(anotherMatrix); aThirdTransform = mitk::AffineTransform3D::New(); aThirdMatrix.SetIdentity(); aThirdMatrix(1, 1) = 7; aThirdTransform->SetMatrix(aThirdMatrix); // Bounding Box float bounds[6] = {0, 1, 0, 1, 0, 1}; mitk::BoundingBox::BoundsArrayType b; const float *input = bounds; int j = 0; for (mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); j < 6; ++j) *it++ = (mitk::ScalarType)*input++; aBoundingBox = BoundingBoxType::New(); BoundingBoxType::PointsContainer::Pointer pointscontainer = BoundingBoxType::PointsContainer::New(); BoundingBoxType::PointType p; BoundingBoxType::PointIdentifier pointid; for (pointid = 0; pointid < 2; ++pointid) { unsigned int i; for (i = 0; i < 3; ++i) { p[i] = bounds[2 * i + pointid]; } pointscontainer->InsertElement(pointid, p); } aBoundingBox->SetPoints(pointscontainer); aBoundingBox->ComputeBoundingBox(); anotherBoundingBox = BoundingBoxType::New(); p[0] = 11; p[1] = 12; p[2] = 13; pointscontainer->InsertElement(1, p); anotherBoundingBox->SetPoints(pointscontainer); anotherBoundingBox->ComputeBoundingBox(); aThirdBoundingBox = BoundingBoxType::New(); p[0] = 22; p[1] = 23; p[2] = 24; pointscontainer->InsertElement(1, p); aThirdBoundingBox->SetPoints(pointscontainer); aThirdBoundingBox->ComputeBoundingBox(); mitk::FillVector3D(anotherPoint, 2, 3, 4); mitk::FillVector3D(anotherSpacing, 5, 6.5, 7); aDummyGeometry = DummyTestClass::New(); aDummyGeometry->Initialize(); anotherDummyGeometry = aDummyGeometry->Clone(); } void tearDown() override { aDummyGeometry = nullptr; anotherDummyGeometry = nullptr; } // Test functions void TestSetOrigin() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetOrigin(anotherPoint); CPPUNIT_ASSERT(mitk::Equal(anotherPoint, dummy->GetOrigin())); // undo changes, new and changed object need to be the same! dummy->SetOrigin(aPoint); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "TestSetOrigin"); } void TestSetImageGeometry() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetImageGeometry(true); CPPUNIT_ASSERT(dummy->GetImageGeometry()); // undo changes, new and changed object need to be the same! dummy->SetImageGeometry(false); CPPUNIT_ASSERT(dummy->GetImageGeometry() == false); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "TestSetImageGeometry"); } void TestSetFloatBounds() { float bounds[6] = {0, 11, 0, 12, 0, 13}; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetFloatBounds(bounds); MITK_ASSERT_EQUAL(BoundingBox::ConstPointer(dummy->GetBoundingBox()), anotherBoundingBox, "BoundingBox equality"); // Wrong bounds, test needs to fail bounds[1] = 7; dummy->SetFloatBounds(bounds); MITK_ASSERT_NOT_EQUAL( BoundingBox::ConstPointer(dummy->GetBoundingBox()), anotherBoundingBox, "BoundingBox not equal"); // undo changes, new and changed object need to be the same! float originalBounds[6] = {0, 1, 0, 1, 0, 1}; dummy->SetFloatBounds(originalBounds); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Undo and equal"); } void TestSetBounds() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetBounds(anotherBoundingBox->GetBounds()); MITK_ASSERT_EQUAL(BoundingBox::ConstPointer(dummy->GetBoundingBox()), anotherBoundingBox, "Setting bounds"); // Test needs to fail now dummy->SetBounds(aThirdBoundingBox->GetBounds()); MITK_ASSERT_NOT_EQUAL( BoundingBox::ConstPointer(dummy->GetBoundingBox()), anotherBoundingBox, "Setting unequal bounds"); // undo changes, new and changed object need to be the same! dummy->SetBounds(aBoundingBox->GetBounds()); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Undo set bounds"); } void TestSetFloatBoundsDouble() { double bounds[6] = {0, 11, 0, 12, 0, 13}; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetFloatBounds(bounds); MITK_ASSERT_EQUAL(BoundingBox::ConstPointer(dummy->GetBoundingBox()), anotherBoundingBox, "Float bounds"); // Test needs to fail now bounds[3] = 7; dummy->SetFloatBounds(bounds); MITK_ASSERT_NOT_EQUAL( BoundingBox::ConstPointer(dummy->GetBoundingBox()), anotherBoundingBox, "Float bounds unequal"); // undo changes, new and changed object need to be the same! double originalBounds[6] = {0, 1, 0, 1, 0, 1}; dummy->SetFloatBounds(originalBounds); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Undo set float bounds"); } void TestSetFrameOfReferenceID() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetFrameOfReferenceID(5); CPPUNIT_ASSERT(dummy->GetFrameOfReferenceID() == 5); // undo changes, new and changed object need to be the same! dummy->SetFrameOfReferenceID(0); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Undo set frame of reference"); } void TestSetIndexToWorldTransform() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); MITK_ASSERT_EQUAL(anotherTransform, mitk::AffineTransform3D::Pointer(dummy->GetIndexToWorldTransform()), "Compare IndexToWorldTransform 1"); // Test needs to fail now dummy->SetIndexToWorldTransform(aThirdTransform); MITK_ASSERT_NOT_EQUAL(anotherTransform, mitk::AffineTransform3D::Pointer(dummy->GetIndexToWorldTransform()), "Compare IndexToWorldTransform 2"); // undo changes, new and changed object need to be the same! dummy->SetIndexToWorldTransform(aTransform); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Compare IndexToWorldTransform 3"); } void TestSetIndexToWorldTransformWithoutChangingSpacing() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransformWithoutChangingSpacing(anotherTransform); CPPUNIT_ASSERT(mitk::Equal(aSpacing, dummy->GetSpacing(), mitk::eps, true)); // calculate a new version of anotherTransform, so that the spacing should be the same as the original spacing of // aTransform. mitk::AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = anotherTransform->GetMatrix().GetVnlMatrix(); mitk::VnlVector col; col = vnlmatrix.get_column(0); col.normalize(); col *= aSpacing[0]; vnlmatrix.set_column(0, col); col = vnlmatrix.get_column(1); col.normalize(); col *= aSpacing[1]; vnlmatrix.set_column(1, col); col = vnlmatrix.get_column(2); col.normalize(); col *= aSpacing[2]; vnlmatrix.set_column(2, col); mitk::Matrix3D matrix; matrix = vnlmatrix; anotherTransform->SetMatrix(matrix); CPPUNIT_ASSERT(mitk::Equal(anotherTransform, dummy->GetIndexToWorldTransform(), mitk::eps, true)); } void TestSetIndexToWorldTransform_WithPointerToSameTransform() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetOrigin(anotherPoint); dummy->SetIndexToWorldTransform(anotherTransform); dummy->SetSpacing(anotherSpacing); mitk::AffineTransform3D::Pointer testTransfrom = dummy->GetIndexToWorldTransform(); mitk::Vector3D modifiedPoint = anotherPoint.GetVectorFromOrigin() * 2.; testTransfrom->SetOffset(modifiedPoint); dummy->SetIndexToWorldTransform(testTransfrom); CPPUNIT_ASSERT(mitk::Equal(modifiedPoint, dummy->GetOrigin().GetVectorFromOrigin())); } void TestSetIndexToWorldTransformByVtkMatrix() { vtkMatrix4x4 *vtkmatrix; vtkmatrix = vtkMatrix4x4::New(); vtkmatrix->Identity(); vtkmatrix->SetElement(1, 1, 2); DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransformByVtkMatrix(vtkmatrix); MITK_ASSERT_EQUAL(anotherTransform, mitk::AffineTransform3D::Pointer(dummy->GetIndexToWorldTransform()), "Compare IndexToWorldTransformByVtkMatrix 1"); // test needs to fail now vtkmatrix->SetElement(1, 1, 7); dummy->SetIndexToWorldTransformByVtkMatrix(vtkmatrix); MITK_ASSERT_NOT_EQUAL(anotherTransform, mitk::AffineTransform3D::Pointer(dummy->GetIndexToWorldTransform()), "Compare IndexToWorldTransformByVtkMatrix 2"); // undo changes, new and changed object need to be the same! vtkmatrix->SetElement(1, 1, 1); dummy->SetIndexToWorldTransformByVtkMatrix(vtkmatrix); vtkmatrix->Delete(); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Compare IndexToWorldTransformByVtkMatrix 3"); } void TestSetIdentity() { DummyTestClass::Pointer dummy = DummyTestClass::New(); // Change IndextoWorldTransform and Origin dummy->SetIndexToWorldTransform(anotherTransform); dummy->SetOrigin(anotherPoint); // Set Identity should reset ITWT and Origin dummy->SetIdentity(); MITK_ASSERT_EQUAL( aTransform, mitk::AffineTransform3D::Pointer(dummy->GetIndexToWorldTransform()), "Test set identity 1"); CPPUNIT_ASSERT(mitk::Equal(aPoint, dummy->GetOrigin())); CPPUNIT_ASSERT(mitk::Equal(aSpacing, dummy->GetSpacing())); // new and changed object need to be the same! DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Test set identity 2"); } void TestSetSpacing() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetSpacing(anotherSpacing); CPPUNIT_ASSERT(mitk::Equal(anotherSpacing, dummy->GetSpacing())); // undo changes, new and changed object need to be the same! dummy->SetSpacing(aSpacing); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Dummy spacing"); } void TestTransferItkToVtkTransform() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); // calls TransferItkToVtkTransform mitk::AffineTransform3D::Pointer dummyTransform = dummy->GetIndexToWorldTransform(); CPPUNIT_ASSERT(mitk::MatrixEqualElementWise(anotherMatrix, dummyTransform->GetMatrix())); } void TestConstructors() { // test standard constructor DummyTestClass::Pointer dummy1 = DummyTestClass::New(); bool test = dummy1->IsValid(); CPPUNIT_ASSERT(test == true); CPPUNIT_ASSERT(dummy1->GetFrameOfReferenceID() == 0); CPPUNIT_ASSERT(dummy1->GetIndexToWorldTransformLastModified() == 0); CPPUNIT_ASSERT(mitk::Equal(dummy1->GetSpacing(), aSpacing)); CPPUNIT_ASSERT(mitk::Equal(dummy1->GetOrigin(), aPoint)); CPPUNIT_ASSERT(dummy1->GetImageGeometry() == false); MITK_ASSERT_EQUAL( mitk::AffineTransform3D::Pointer(dummy1->GetIndexToWorldTransform()), aTransform, "Contructor test 1"); MITK_ASSERT_EQUAL( mitk::BaseGeometry::BoundingBoxType::ConstPointer(dummy1->GetBoundingBox()), aBoundingBox, "Constructor test 2"); DummyTestClass::Pointer dummy2 = DummyTestClass::New(); dummy2->SetOrigin(anotherPoint); float bounds[6] = {0, 11, 0, 12, 0, 13}; dummy2->SetFloatBounds(bounds); dummy2->SetIndexToWorldTransform(anotherTransform); dummy2->SetSpacing(anotherSpacing); DummyTestClass::Pointer dummy3 = DummyTestClass::New(*dummy2); MITK_ASSERT_EQUAL(dummy3, dummy2, "Dummy contructor"); } // Equal Tests void Equal_CloneAndOriginal_ReturnsTrue() { MITK_ASSERT_EQUAL(aDummyGeometry, anotherDummyGeometry, "Clone test"); } void Equal_DifferentOrigin_ReturnsFalse() { anotherDummyGeometry->SetOrigin(anotherPoint); MITK_ASSERT_NOT_EQUAL(aDummyGeometry, anotherDummyGeometry, "Different origin test"); } void Equal_DifferentIndexToWorldTransform_ReturnsFalse() { anotherDummyGeometry->SetIndexToWorldTransform(anotherTransform); MITK_ASSERT_NOT_EQUAL(aDummyGeometry, anotherDummyGeometry, "Different index to world"); } void Equal_DifferentSpacing_ReturnsFalse() { anotherDummyGeometry->SetSpacing(anotherSpacing); MITK_ASSERT_NOT_EQUAL(aDummyGeometry, anotherDummyGeometry, "Different spacing"); } void Equal_InputIsNull_ReturnsFalse() { DummyTestClass::Pointer geometryNull = nullptr; CPPUNIT_ASSERT_THROW(MITK_ASSERT_EQUAL(geometryNull, anotherDummyGeometry, "Input is null"), mitk::Exception); } void Equal_DifferentBoundingBox_ReturnsFalse() { // create different bounds to make the comparison false mitk::ScalarType bounds[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; anotherDummyGeometry->SetBounds(bounds); MITK_ASSERT_NOT_EQUAL(aDummyGeometry, anotherDummyGeometry, "Different bounding box"); } void Equal_Transforms_MinorDifferences_And_Eps() { // Verifies that the eps parameter is evaluated properly // when comparing two mitk::BaseGeometry::TransformTypes aMatrix.SetIdentity(); anotherMatrix.SetIdentity(); aMatrix(0, 1) = 0.0002; aTransform->SetMatrix(aMatrix); anotherMatrix(0, 1) = 0.0002; anotherTransform->SetMatrix(anotherMatrix); anotherTransform->SetMatrix(aMatrix); CPPUNIT_ASSERT_MESSAGE("Exact same transforms are mitk::Equal() for eps=mitk::eps", mitk::Equal(aTransform, anotherTransform, mitk::eps, true)); CPPUNIT_ASSERT_MESSAGE("Exact same transforms are mitk::Equal() for eps=vnl_math::eps", mitk::Equal(aTransform, anotherTransform, vnl_math::eps, true)); anotherMatrix(0, 1) = 0.0002 + mitk::eps; anotherTransform->SetMatrix(anotherMatrix); CPPUNIT_ASSERT_MESSAGE("Transforms of diff mitk::eps are !mitk::Equal() for eps=vnl_math::eps", !mitk::Equal(aTransform, anotherTransform, vnl_math::eps, true)); CPPUNIT_ASSERT_MESSAGE("Transforms of diff mitk::eps are !mitk::Equal() for eps=mitk::eps-1%", !mitk::Equal(aTransform, anotherTransform, mitk::eps * 0.99, true)); CPPUNIT_ASSERT_MESSAGE("Transforms of diff mitk::eps _are_ mitk::Equal() for eps=mitk::eps+1%", mitk::Equal(aTransform, anotherTransform, mitk::eps * 1.01, true)); } void TestComposeTransform() { // Create Transformations to set and compare mitk::AffineTransform3D::Pointer transform1; transform1 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix1; matrix1.SetIdentity(); matrix1(1, 1) = 2; transform1->SetMatrix(matrix1); // Spacing = 2 mitk::AffineTransform3D::Pointer transform2; transform2 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix2; matrix2.SetIdentity(); matrix2(1, 1) = 2; transform2->SetMatrix(matrix2); // Spacing = 2 mitk::AffineTransform3D::Pointer transform3; transform3 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix3; matrix3.SetIdentity(); matrix3(1, 1) = 4; transform3->SetMatrix(matrix3); // Spacing = 4 mitk::AffineTransform3D::Pointer transform4; transform4 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix4; matrix4.SetIdentity(); matrix4(1, 1) = 0.25; transform4->SetMatrix(matrix4); // Spacing = 0.25 // Vector to compare spacing mitk::Vector3D expectedSpacing; expectedSpacing.Fill(1.0); expectedSpacing[1] = 4; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(transform1); // Spacing = 2 dummy->Compose(transform2); // Spacing = 4 CPPUNIT_ASSERT(mitk::Equal(dummy->GetSpacing(), expectedSpacing)); MITK_ASSERT_EQUAL( transform3, mitk::AffineTransform3D::Pointer(dummy->GetIndexToWorldTransform()), "Compose transform 2"); // 4=4 // undo changes, new and changed object need to be the same! dummy->Compose(transform4); // Spacing = 1 DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Compose transform 3"); // 1=1 } void TestComposeVtkMatrix() { // Create Transformations to set and compare mitk::AffineTransform3D::Pointer transform1; transform1 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix1; matrix1.SetIdentity(); matrix1(1, 1) = 2; transform1->SetMatrix(matrix1); // Spacing = 2 vtkMatrix4x4 *vtkmatrix2; vtkmatrix2 = vtkMatrix4x4::New(); vtkmatrix2->Identity(); vtkmatrix2->SetElement(1, 1, 2); // Spacing = 2 mitk::AffineTransform3D::Pointer transform3; transform3 = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix3; matrix3.SetIdentity(); matrix3(1, 1) = 4; transform3->SetMatrix(matrix3); // Spacing = 4 vtkMatrix4x4 *vtkmatrix4; vtkmatrix4 = vtkMatrix4x4::New(); vtkmatrix4->Identity(); vtkmatrix4->SetElement(1, 1, 0.25); // Spacing = 0.25 // Vector to compare spacing mitk::Vector3D expectedSpacing; expectedSpacing.Fill(1.0); expectedSpacing[1] = 4; DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(transform1); // Spacing = 2 dummy->Compose(vtkmatrix2); // Spacing = 4 vtkmatrix2->Delete(); MITK_ASSERT_EQUAL( transform3, mitk::AffineTransform3D::Pointer(dummy->GetIndexToWorldTransform()), "Compose vtk matrix"); // 4=4 CPPUNIT_ASSERT(mitk::Equal(dummy->GetSpacing(), expectedSpacing)); // undo changes, new and changed object need to be the same! dummy->Compose(vtkmatrix4); // Spacing = 1 vtkmatrix4->Delete(); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Compose vtk"); // 1=1 } void TestTranslate() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetOrigin(anotherPoint); CPPUNIT_ASSERT(mitk::Equal(anotherPoint, dummy->GetOrigin())); // use some random values for translation mitk::Vector3D translationVector; translationVector.SetElement(0, 17.5f); translationVector.SetElement(1, -32.3f); translationVector.SetElement(2, 4.0f); // compute ground truth mitk::Point3D tmpResult = anotherPoint + translationVector; dummy->Translate(translationVector); CPPUNIT_ASSERT(mitk::Equal(dummy->GetOrigin(), tmpResult)); // undo changes translationVector *= -1; dummy->Translate(translationVector); CPPUNIT_ASSERT(mitk::Equal(dummy->GetOrigin(), anotherPoint)); // undo changes, new and changed object need to be the same! translationVector.SetElement(0, -1 * anotherPoint[0]); translationVector.SetElement(1, -1 * anotherPoint[1]); translationVector.SetElement(2, -1 * anotherPoint[2]); dummy->Translate(translationVector); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Translate test"); } // a part of the test requires axis-parallel coordinates int testIndexAndWorldConsistency(DummyTestClass::Pointer dummyGeometry) { // Testing consistency of index and world coordinate systems mitk::Point3D origin = dummyGeometry->GetOrigin(); mitk::Point3D dummyPoint; // Testing index->world->index conversion consistency dummyGeometry->WorldToIndex(origin, dummyPoint); dummyGeometry->IndexToWorld(dummyPoint, dummyPoint); CPPUNIT_ASSERT(mitk::EqualArray(dummyPoint, origin, 3, mitk::eps, true)); // Testing WorldToIndex(origin, mitk::Point3D)==(0,0,0) mitk::Point3D globalOrigin; mitk::FillVector3D(globalOrigin, 0, 0, 0); mitk::Point3D originContinuousIndex; dummyGeometry->WorldToIndex(origin, originContinuousIndex); CPPUNIT_ASSERT(mitk::EqualArray(originContinuousIndex, globalOrigin, 3, mitk::eps, true)); // Testing WorldToIndex(origin, itk::Index)==(0,0,0) itk::Index<3> itkindex; dummyGeometry->WorldToIndex(origin, itkindex); itk::Index<3> globalOriginIndex; mitk::vtk2itk(globalOrigin, globalOriginIndex); CPPUNIT_ASSERT(mitk::EqualArray(itkindex, globalOriginIndex, 3, mitk::eps, true)); // Testing WorldToIndex(origin-0.5*spacing, itk::Index)==(0,0,0) mitk::Vector3D halfSpacingStep = dummyGeometry->GetSpacing() * 0.5; mitk::Matrix3D rotation; mitk::Point3D originOffCenter = origin - halfSpacingStep; dummyGeometry->WorldToIndex(originOffCenter, itkindex); CPPUNIT_ASSERT(mitk::EqualArray(itkindex, globalOriginIndex, 3, mitk::eps, true)); // Testing WorldToIndex(origin+0.5*spacing-eps, itk::Index)==(0,0,0) originOffCenter = origin + halfSpacingStep; originOffCenter -= 0.0001; dummyGeometry->WorldToIndex(originOffCenter, itkindex); CPPUNIT_ASSERT(mitk::EqualArray(itkindex, globalOriginIndex, 3, mitk::eps, true)); // Testing WorldToIndex(origin+0.5*spacing, itk::Index)==(1,1,1)"); originOffCenter = origin + halfSpacingStep; itk::Index<3> global111; mitk::FillVector3D(global111, 1, 1, 1); dummyGeometry->WorldToIndex(originOffCenter, itkindex); CPPUNIT_ASSERT(mitk::EqualArray(itkindex, global111, 3, mitk::eps, true)); // Testing WorldToIndex(GetCenter())==BoundingBox.GetCenter mitk::Point3D center = dummyGeometry->GetCenter(); mitk::Point3D centerContIndex; dummyGeometry->WorldToIndex(center, centerContIndex); mitk::BoundingBox::ConstPointer boundingBox = dummyGeometry->GetBoundingBox(); mitk::BoundingBox::PointType centerBounds = boundingBox->GetCenter(); CPPUNIT_ASSERT(mitk::Equal(centerContIndex, centerBounds)); // Testing GetCenter()==IndexToWorld(BoundingBox.GetCenter) center = dummyGeometry->GetCenter(); mitk::Point3D centerBoundsInWorldCoords; dummyGeometry->IndexToWorld(centerBounds, centerBoundsInWorldCoords); CPPUNIT_ASSERT(mitk::Equal(center, centerBoundsInWorldCoords)); // Test using random point, // Testing consistency of index and world coordinate systems mitk::Point3D point; mitk::FillVector3D(point, 3.5, -2, 4.6); // Testing index->world->index conversion consistency dummyGeometry->WorldToIndex(point, dummyPoint); dummyGeometry->IndexToWorld(dummyPoint, dummyPoint); CPPUNIT_ASSERT(mitk::EqualArray(dummyPoint, point, 3, mitk::eps, true)); return EXIT_SUCCESS; } int testIndexAndWorldConsistencyForVectors(DummyTestClass::Pointer dummyGeometry) { // Testing consistency of index and world coordinate systems for vectors mitk::Vector3D xAxisMM = dummyGeometry->GetAxisVector(0); mitk::Vector3D xAxisContinuousIndex; mitk::Point3D p, pIndex, origin; origin = dummyGeometry->GetOrigin(); p[0] = xAxisMM[0] + origin[0]; p[1] = xAxisMM[1] + origin[1]; p[2] = xAxisMM[2] + origin[2]; dummyGeometry->WorldToIndex(p, pIndex); dummyGeometry->WorldToIndex(xAxisMM, xAxisContinuousIndex); CPPUNIT_ASSERT(mitk::Equal(xAxisContinuousIndex[0], pIndex[0])); CPPUNIT_ASSERT(mitk::Equal(xAxisContinuousIndex[1], pIndex[1])); CPPUNIT_ASSERT(mitk::Equal(xAxisContinuousIndex[2], pIndex[2])); dummyGeometry->IndexToWorld(xAxisContinuousIndex, xAxisContinuousIndex); dummyGeometry->IndexToWorld(pIndex, p); CPPUNIT_ASSERT(xAxisContinuousIndex == xAxisMM); CPPUNIT_ASSERT(mitk::Equal(xAxisContinuousIndex[0], p[0] - origin[0])); CPPUNIT_ASSERT(mitk::Equal(xAxisContinuousIndex[1], p[1] - origin[1])); CPPUNIT_ASSERT(mitk::Equal(xAxisContinuousIndex[2], p[2] - origin[2])); // Test consictency for random vector mitk::Vector3D vector; mitk::FillVector3D(vector, 2.5, -3.2, 8.1); mitk::Vector3D vectorContinuousIndex; p[0] = vector[0] + origin[0]; p[1] = vector[1] + origin[1]; p[2] = vector[2] + origin[2]; dummyGeometry->WorldToIndex(p, pIndex); dummyGeometry->WorldToIndex(vector, vectorContinuousIndex); CPPUNIT_ASSERT(mitk::Equal(vectorContinuousIndex[0], pIndex[0])); CPPUNIT_ASSERT(mitk::Equal(vectorContinuousIndex[1], pIndex[1])); CPPUNIT_ASSERT(mitk::Equal(vectorContinuousIndex[2], pIndex[2])); dummyGeometry->IndexToWorld(vectorContinuousIndex, vectorContinuousIndex); dummyGeometry->IndexToWorld(pIndex, p); CPPUNIT_ASSERT(vectorContinuousIndex == vector); CPPUNIT_ASSERT(mitk::Equal(vectorContinuousIndex[0], p[0] - origin[0])); CPPUNIT_ASSERT(mitk::Equal(vectorContinuousIndex[1], p[1] - origin[1])); CPPUNIT_ASSERT(mitk::Equal(vectorContinuousIndex[2], p[2] - origin[2])); return EXIT_SUCCESS; } int testIndexAndWorldConsistencyForIndex(DummyTestClass::Pointer dummyGeometry) { // Testing consistency of index and world coordinate systems // creating testing data itk::Index<4> itkIndex4, itkIndex4b; itk::Index<3> itkIndex3, itkIndex3b; itk::Index<2> itkIndex2, itkIndex2b; itk::Index<3> mitkIndex, mitkIndexb; itkIndex4[0] = itkIndex4[1] = itkIndex4[2] = itkIndex4[3] = 4; itkIndex3[0] = itkIndex3[1] = itkIndex3[2] = 6; itkIndex2[0] = itkIndex2[1] = 2; mitkIndex[0] = mitkIndex[1] = mitkIndex[2] = 13; // check for constistency mitk::Point3D point; dummyGeometry->IndexToWorld(itkIndex2, point); dummyGeometry->WorldToIndex(point, itkIndex2b); CPPUNIT_ASSERT(((itkIndex2b[0] == itkIndex2[0]) && (itkIndex2b[1] == itkIndex2[1]))); // Testing itk::index<2> for IndexToWorld/WorldToIndex consistency dummyGeometry->IndexToWorld(itkIndex3, point); dummyGeometry->WorldToIndex(point, itkIndex3b); CPPUNIT_ASSERT( ((itkIndex3b[0] == itkIndex3[0]) && (itkIndex3b[1] == itkIndex3[1]) && (itkIndex3b[2] == itkIndex3[2]))); // Testing itk::index<3> for IndexToWorld/WorldToIndex consistency dummyGeometry->IndexToWorld(itkIndex4, point); dummyGeometry->WorldToIndex(point, itkIndex4b); CPPUNIT_ASSERT(((itkIndex4b[0] == itkIndex4[0]) && (itkIndex4b[1] == itkIndex4[1]) && (itkIndex4b[2] == itkIndex4[2]) && (itkIndex4b[3] == 0))); // Testing itk::index<3> for IndexToWorld/WorldToIndex consistency dummyGeometry->IndexToWorld(mitkIndex, point); dummyGeometry->WorldToIndex(point, mitkIndexb); CPPUNIT_ASSERT( ((mitkIndexb[0] == mitkIndex[0]) && (mitkIndexb[1] == mitkIndex[1]) && (mitkIndexb[2] == mitkIndex[2]))); // Testing mitk::Index for IndexToWorld/WorldToIndex consistency return EXIT_SUCCESS; } void TestIndexToWorld() { DummyTestClass::Pointer dummy = DummyTestClass::New(); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); // Geometry must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Dummy index to world"); // Test with other geometries dummy->SetOrigin(anotherPoint); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); dummy->SetIndexToWorldTransform(anotherTransform); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); dummy->SetOrigin(anotherPoint); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); dummy->SetSpacing(anotherSpacing); testIndexAndWorldConsistency(dummy); testIndexAndWorldConsistencyForVectors(dummy); testIndexAndWorldConsistencyForIndex(dummy); } void TestExecuteOperation() { DummyTestClass::Pointer dummy = DummyTestClass::New(); // Do same Operations with new Dummy and compare DummyTestClass::Pointer newDummy = DummyTestClass::New(); // Test operation Nothing auto opN = new mitk::Operation(mitk::OpNOTHING); dummy->ExecuteOperation(opN); MITK_ASSERT_EQUAL(dummy, newDummy, "Dummy execute operation 1"); // Test operation Move auto opP = new mitk::PointOperation(mitk::OpMOVE, anotherPoint); dummy->ExecuteOperation(opP); CPPUNIT_ASSERT(mitk::Equal(anotherPoint, dummy->GetOrigin())); newDummy->SetOrigin(anotherPoint); MITK_ASSERT_EQUAL(dummy, newDummy, "Dummy execute operation 2"); // Test operation Scale, Scale sets spacing to scale+1 mitk::Point3D spacing; spacing[0] = anotherSpacing[0] - 1.; spacing[1] = anotherSpacing[1] - 1.; spacing[2] = anotherSpacing[2] - 1.; auto opS = new mitk::ScaleOperation(mitk::OpSCALE, spacing, anotherPoint); dummy->ExecuteOperation(opS); CPPUNIT_ASSERT(mitk::Equal(anotherSpacing, dummy->GetSpacing())); newDummy->SetSpacing(anotherSpacing); MITK_ASSERT_EQUAL(dummy, newDummy, "Dummy execute operation 3"); // change Geometry to test more cases dummy->SetIndexToWorldTransform(anotherTransform); dummy->SetSpacing(anotherSpacing); // Testing a rotation of the geometry double angle = 35.0; mitk::Vector3D rotationVector; mitk::FillVector3D(rotationVector, 1, 0, 0); mitk::Point3D center = dummy->GetCenter(); auto opR = new mitk::RotationOperation(mitk::OpROTATE, center, rotationVector, angle); dummy->ExecuteOperation(opR); mitk::Matrix3D rotation; mitk::GetRotation(dummy, rotation); mitk::Vector3D voxelStep = rotation * anotherSpacing; mitk::Vector3D voxelStepIndex; dummy->WorldToIndex(voxelStep, voxelStepIndex); mitk::Vector3D expectedVoxelStepIndex; expectedVoxelStepIndex.Fill(1); CPPUNIT_ASSERT(mitk::Equal(voxelStepIndex, expectedVoxelStepIndex)); delete opR; delete opN; delete opS; delete opP; } void TestCalculateBoundingBoxRelToTransform() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetExtentInMM(0, 15); dummy->SetExtentInMM(1, 20); dummy->SetExtentInMM(2, 8); mitk::BoundingBox::Pointer dummyBoundingBox = dummy->CalculateBoundingBoxRelativeToTransform(anotherTransform); mitk::BoundingBox::PointsContainer::Pointer pointscontainer = mitk::BoundingBox::PointsContainer::New(); mitk::BoundingBox::PointIdentifier pointid = 0; unsigned char i; mitk::AffineTransform3D::Pointer inverse = mitk::AffineTransform3D::New(); anotherTransform->GetInverse(inverse); for (i = 0; i < 8; ++i) pointscontainer->InsertElement(pointid++, inverse->TransformPoint(dummy->GetCornerPoint(i))); mitk::BoundingBox::Pointer result = mitk::BoundingBox::New(); result->SetPoints(pointscontainer); result->ComputeBoundingBox(); MITK_ASSERT_EQUAL(result, dummyBoundingBox, "BBox rel to transform"); // dummy still needs to be unchanged, except for extend DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetExtentInMM(0, 15); newDummy->SetExtentInMM(1, 20); newDummy->SetExtentInMM(2, 8); MITK_ASSERT_EQUAL(dummy, newDummy, "Dummy BBox"); } // void TestSetTimeBounds(){ // mitk::TimeBounds timeBounds; // timeBounds[0] = 1; // timeBounds[1] = 9; // DummyTestClass::Pointer dummy = DummyTestClass::New(); // dummy->SetTimeBounds(timeBounds); // mitk::TimeBounds timeBounds2 = dummy->GetTimeBounds(); // CPPUNIT_ASSERT(timeBounds[0]==timeBounds2[0]); // CPPUNIT_ASSERT(timeBounds[1]==timeBounds2[1]); // //undo changes, new and changed object need to be the same! // timeBounds[0]=mitk::ScalarTypeNumericTraits::NonpositiveMin(); // timeBounds[1]=mitk::ScalarTypeNumericTraits::max(); // DummyTestClass::Pointer newDummy = DummyTestClass::New(); // CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); //} void TestIs2DConvertable() { DummyTestClass::Pointer dummy = DummyTestClass::New(); // new initialized geometry is 2D convertable CPPUNIT_ASSERT(dummy->Is2DConvertable()); // Wrong Spacing needs to fail dummy->SetSpacing(anotherSpacing); CPPUNIT_ASSERT(dummy->Is2DConvertable() == false); // undo dummy->SetSpacing(aSpacing); CPPUNIT_ASSERT(dummy->Is2DConvertable()); // Wrong Origin needs to fail dummy->SetOrigin(anotherPoint); CPPUNIT_ASSERT(dummy->Is2DConvertable() == false); // undo dummy->SetOrigin(aPoint); CPPUNIT_ASSERT(dummy->Is2DConvertable()); // third dimension must not be transformed mitk::AffineTransform3D::Pointer dummyTransform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType dummyMatrix; dummyMatrix.SetIdentity(); dummyTransform->SetMatrix(dummyMatrix); dummy->SetIndexToWorldTransform(dummyTransform); // identity matrix is 2DConvertable CPPUNIT_ASSERT(dummy->Is2DConvertable()); dummyMatrix(0, 2) = 3; dummyTransform->SetMatrix(dummyMatrix); CPPUNIT_ASSERT(dummy->Is2DConvertable() == false); dummyMatrix.SetIdentity(); dummyMatrix(1, 2) = 0.4; dummyTransform->SetMatrix(dummyMatrix); CPPUNIT_ASSERT(dummy->Is2DConvertable() == false); dummyMatrix.SetIdentity(); dummyMatrix(2, 2) = 3; dummyTransform->SetMatrix(dummyMatrix); CPPUNIT_ASSERT(dummy->Is2DConvertable() == false); dummyMatrix.SetIdentity(); dummyMatrix(2, 1) = 3; dummyTransform->SetMatrix(dummyMatrix); CPPUNIT_ASSERT(dummy->Is2DConvertable() == false); dummyMatrix.SetIdentity(); dummyMatrix(2, 0) = 3; dummyTransform->SetMatrix(dummyMatrix); CPPUNIT_ASSERT(dummy->Is2DConvertable() == false); // undo changes, new and changed object need to be the same! dummyMatrix.SetIdentity(); dummyTransform->SetMatrix(dummyMatrix); DummyTestClass::Pointer newDummy = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy, newDummy, "Is 2D convertable"); } void TestGetCornerPoint() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); double bounds[6] = {0, 11, 0, 12, 0, 13}; dummy->SetFloatBounds(bounds); mitk::Point3D corner, refCorner; // Corner 0 mitk::FillVector3D(refCorner, bounds[0], bounds[2], bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(0); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(true, true, true); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Corner 1 mitk::FillVector3D(refCorner, bounds[0], bounds[2], bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(1); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(true, true, false); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Corner 2 mitk::FillVector3D(refCorner, bounds[0], bounds[3], bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(2); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(true, false, true); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Corner 3 mitk::FillVector3D(refCorner, bounds[0], bounds[3], bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(3); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(true, false, false); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Corner 4 mitk::FillVector3D(refCorner, bounds[1], bounds[2], bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(4); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(false, true, true); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Corner 5 mitk::FillVector3D(refCorner, bounds[1], bounds[2], bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(5); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(false, true, false); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Corner 6 mitk::FillVector3D(refCorner, bounds[1], bounds[3], bounds[4]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(6); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(false, false, true); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Corner 7 mitk::FillVector3D(refCorner, bounds[1], bounds[3], bounds[5]); refCorner = anotherTransform->TransformPoint(refCorner); corner = dummy->GetCornerPoint(7); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); corner = dummy->GetCornerPoint(false, false, false); CPPUNIT_ASSERT(mitk::Equal(refCorner, corner)); // Wrong Corner needs to fail CPPUNIT_ASSERT_THROW(dummy->GetCornerPoint(20), itk::ExceptionObject); // dummy geometry must not have changed! DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetIndexToWorldTransform(anotherTransform); newDummy->SetFloatBounds(bounds); MITK_ASSERT_EQUAL(dummy, newDummy, "Corner point"); } void TestExtentInMM() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetExtentInMM(0, 50); CPPUNIT_ASSERT(mitk::Equal(50., dummy->GetExtentInMM(0))); // Vnl Matrix has changed. The next line only works because the spacing is 1! CPPUNIT_ASSERT( mitk::Equal(50., dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0).magnitude())); // Smaller extent than original dummy->SetExtentInMM(0, 5); CPPUNIT_ASSERT(mitk::Equal(5., dummy->GetExtentInMM(0))); CPPUNIT_ASSERT( mitk::Equal(5., dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0).magnitude())); dummy->SetExtentInMM(1, 4); CPPUNIT_ASSERT(mitk::Equal(4., dummy->GetExtentInMM(1))); CPPUNIT_ASSERT( mitk::Equal(4., dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(1).magnitude())); dummy->SetExtentInMM(2, 2.5); CPPUNIT_ASSERT(mitk::Equal(2.5, dummy->GetExtentInMM(2))); CPPUNIT_ASSERT( mitk::Equal(2.5, dummy->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).magnitude())); } void TestGetAxisVector() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); double bounds[6] = {0, 11, 0, 12, 0, 13}; dummy->SetFloatBounds(bounds); mitk::Vector3D vector; mitk::FillVector3D(vector, bounds[1], 0, 0); dummy->IndexToWorld(vector, vector); CPPUNIT_ASSERT(mitk::Equal(dummy->GetAxisVector(0), vector)); mitk::FillVector3D(vector, 0, bounds[3], 0); dummy->IndexToWorld(vector, vector); CPPUNIT_ASSERT(mitk::Equal(dummy->GetAxisVector(1), vector)); mitk::FillVector3D(vector, 0, 0, bounds[5]); dummy->IndexToWorld(vector, vector); CPPUNIT_ASSERT(mitk::Equal(dummy->GetAxisVector(2), vector)); } void TestGetCenter() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); double bounds[6] = {0, 11, 2, 12, 1, 13}; dummy->SetFloatBounds(bounds); mitk::Point3D refCenter; for (int i = 0; i < 3; i++) refCenter.SetElement(i, (bounds[2 * i] + bounds[2 * i + 1]) / 2.0); dummy->IndexToWorld(refCenter, refCenter); CPPUNIT_ASSERT(mitk::Equal(dummy->GetCenter(), refCenter)); } void TestGetDiagonalLength() { DummyTestClass::Pointer dummy = DummyTestClass::New(); double bounds[6] = {1, 3, 5, 8, 7.5, 11.5}; dummy->SetFloatBounds(bounds); // 3-1=2, 8-5=3, 11.5-7.5=4; 2^2+3^2+4^2 = 29 double expectedLength = sqrt(29.); CPPUNIT_ASSERT(mitk::Equal(expectedLength, dummy->GetDiagonalLength(), mitk::eps, true)); CPPUNIT_ASSERT(mitk::Equal(29., dummy->GetDiagonalLength2(), mitk::eps, true)); // dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetFloatBounds(bounds); MITK_ASSERT_EQUAL(dummy, newDummy, "Diagonal length"); } void TestGetExtent() { DummyTestClass::Pointer dummy = DummyTestClass::New(); double bounds[6] = {1, 3, 5, 8, 7.5, 11.5}; dummy->SetFloatBounds(bounds); CPPUNIT_ASSERT(mitk::Equal(2., dummy->GetExtent(0))); CPPUNIT_ASSERT(mitk::Equal(3., dummy->GetExtent(1))); CPPUNIT_ASSERT(mitk::Equal(4., dummy->GetExtent(2))); // dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetFloatBounds(bounds); MITK_ASSERT_EQUAL(dummy, newDummy, "Extend"); } void TestIsInside() { DummyTestClass::Pointer dummy = DummyTestClass::New(); double bounds[6] = {1, 3, 5, 8, 7.5, 11.5}; dummy->SetFloatBounds(bounds); mitk::Point3D insidePoint; mitk::Point3D outsidePoint; mitk::FillVector3D(insidePoint, 2, 6, 7.6); mitk::FillVector3D(outsidePoint, 0, 9, 8.2); CPPUNIT_ASSERT(dummy->IsIndexInside(insidePoint)); CPPUNIT_ASSERT(false == dummy->IsIndexInside(outsidePoint)); dummy->IndexToWorld(insidePoint, insidePoint); dummy->IndexToWorld(outsidePoint, outsidePoint); CPPUNIT_ASSERT(dummy->IsInside(insidePoint)); CPPUNIT_ASSERT(false == dummy->IsInside(outsidePoint)); // dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetFloatBounds(bounds); MITK_ASSERT_EQUAL(dummy, newDummy, "Is inside"); } void TestInitialize() { // test standard constructor DummyTestClass::Pointer dummy1 = DummyTestClass::New(); DummyTestClass::Pointer dummy2 = DummyTestClass::New(); dummy2->SetOrigin(anotherPoint); dummy2->SetBounds(anotherBoundingBox->GetBounds()); // mitk::TimeBounds timeBounds; // timeBounds[0] = 1; // timeBounds[1] = 9; // dummy2->SetTimeBounds(timeBounds); dummy2->SetIndexToWorldTransform(anotherTransform); dummy2->SetSpacing(anotherSpacing); dummy1->InitializeGeometry(dummy2); MITK_ASSERT_EQUAL(dummy1, dummy2, "Initialize 1"); dummy1->Initialize(); DummyTestClass::Pointer dummy3 = DummyTestClass::New(); MITK_ASSERT_EQUAL(dummy3, dummy1, "Initialize 2"); } void TestGetMatrixColumn() { DummyTestClass::Pointer dummy = DummyTestClass::New(); dummy->SetIndexToWorldTransform(anotherTransform); mitk::Vector3D testVector, refVector; testVector.SetVnlVector(dummy->GetMatrixColumn(0)); mitk::FillVector3D(refVector, 1, 0, 0); CPPUNIT_ASSERT(testVector == refVector); testVector.SetVnlVector(dummy->GetMatrixColumn(1)); mitk::FillVector3D(refVector, 0, 2, 0); CPPUNIT_ASSERT(testVector == refVector); testVector.SetVnlVector(dummy->GetMatrixColumn(2)); mitk::FillVector3D(refVector, 0, 0, 1); CPPUNIT_ASSERT(testVector == refVector); // dummy must not have changed DummyTestClass::Pointer newDummy = DummyTestClass::New(); newDummy->SetIndexToWorldTransform(anotherTransform); MITK_ASSERT_EQUAL(dummy, newDummy, "GetMatrixColumn"); } void IsSubGeometry_Spacing() { CPPUNIT_ASSERT(mitk::IsSubGeometry(*aDummyGeometry, *aDummyGeometry, mitk::eps, true)); - mitk::Vector3D spacing = aDummyGeometry->GetSpacing(); for (unsigned int i = 0; i < 3; ++i) { mitk::Vector3D wrongSpacing = aDummyGeometry->GetSpacing(); wrongSpacing[i] += mitk::eps * 2; auto wrongGeometry = aDummyGeometry->Clone(); wrongGeometry->SetSpacing(wrongSpacing); CPPUNIT_ASSERT(!mitk::IsSubGeometry(*wrongGeometry, *aDummyGeometry, mitk::eps, true)); } for (unsigned int i = 0; i < 3; ++i) { mitk::Vector3D wrongSpacing = aDummyGeometry->GetSpacing(); wrongSpacing[i] -= mitk::eps * 2; auto wrongGeometry = aDummyGeometry->Clone(); wrongGeometry->SetSpacing(wrongSpacing); CPPUNIT_ASSERT(!mitk::IsSubGeometry(*wrongGeometry, *aDummyGeometry, mitk::eps, true)); } } void IsSubGeometry_TransformMatrix() { CPPUNIT_ASSERT(mitk::IsSubGeometry(*aDummyGeometry, *aDummyGeometry, mitk::eps, true)); for (unsigned int i = 0; i < 3; ++i) { for (unsigned int j = 0; j < 3; ++j) { itk::Matrix wrongMatrix = aDummyGeometry->GetIndexToWorldTransform()->GetMatrix(); wrongMatrix[i][j] += mitk::eps * 2; auto wrongGeometry = aDummyGeometry->Clone(); wrongGeometry->GetIndexToWorldTransform()->SetMatrix(wrongMatrix); CPPUNIT_ASSERT(!mitk::IsSubGeometry(*wrongGeometry, *aDummyGeometry, mitk::eps, true)); } } } void IsSubGeometry_Bounds() { IsSubGeometry_Bounds_internal(false); IsSubGeometry_Bounds_internal(true); } void IsSubGeometry_Bounds_internal(bool isImage) { auto newBounds = aDummyGeometry->GetBounds(); newBounds[0] = 10; newBounds[1] = 20; newBounds[2] = 10; newBounds[3] = 20; newBounds[4] = 10; newBounds[5] = 20; aDummyGeometry->SetBounds(newBounds); aDummyGeometry->SetImageGeometry(isImage); CPPUNIT_ASSERT(mitk::IsSubGeometry(*aDummyGeometry, *aDummyGeometry, mitk::eps, true)); for (unsigned int i = 0; i < 6; ++i) { auto legalBounds = newBounds; if (i % 2 == 0) { legalBounds[i] += 1; } else { legalBounds[i] -= 1; } auto legalGeometry = aDummyGeometry->Clone(); legalGeometry->SetBounds(legalBounds); CPPUNIT_ASSERT(mitk::IsSubGeometry(*legalGeometry, *aDummyGeometry, mitk::eps, true)); } for (unsigned int i = 0; i < 6; ++i) { auto wrongBounds = aDummyGeometry->GetBounds(); if (i % 2 == 0) { wrongBounds[i] -= 1; } else { wrongBounds[i] += 1; } auto wrongGeometry = aDummyGeometry->Clone(); wrongGeometry->SetBounds(wrongBounds); CPPUNIT_ASSERT(!mitk::IsSubGeometry(*wrongGeometry, *aDummyGeometry, mitk::eps, true)); } } void IsSubGeometry_Grid() { IsSubGeometry_Grid_internal(true); IsSubGeometry_Grid_internal(false); } void IsSubGeometry_Grid_internal(bool isImage) { auto newBounds = aDummyGeometry->GetBounds(); newBounds[0] = 0; newBounds[1] = 20; newBounds[2] = 0; newBounds[3] = 20; newBounds[4] = 0; newBounds[5] = 20; aDummyGeometry->SetBounds(newBounds); aDummyGeometry->SetImageGeometry(isImage); auto smallerGeometry = aDummyGeometry->Clone(); newBounds[0] = 5; newBounds[1] = 10; newBounds[2] = 5; newBounds[3] = 10; newBounds[4] = 5; newBounds[5] = 10; smallerGeometry->SetBounds(newBounds); //legal negative shift for (unsigned int i = 0; i < 3; ++i) { auto legalOrigin = smallerGeometry->GetOrigin(); legalOrigin[i] -= smallerGeometry->GetSpacing()[i]; auto legalGeometry = smallerGeometry->Clone(); legalGeometry->SetOrigin(legalOrigin); CPPUNIT_ASSERT(mitk::IsSubGeometry(*legalGeometry, *aDummyGeometry, mitk::eps, true)); } //legal positive shift for (unsigned int i = 0; i < 3; ++i) { auto legalOrigin = smallerGeometry->GetOrigin(); legalOrigin[i] += smallerGeometry->GetSpacing()[i]; auto legalGeometry = smallerGeometry->Clone(); legalGeometry->SetOrigin(legalOrigin); CPPUNIT_ASSERT(mitk::IsSubGeometry(*legalGeometry, *aDummyGeometry, mitk::eps, true)); } //wrong negative shift for (unsigned int i = 0; i < 3; ++i) { auto wrongOrigin = smallerGeometry->GetOrigin(); wrongOrigin[i] -= 2 * mitk::eps; auto wrongGeometry = smallerGeometry->Clone(); wrongGeometry->SetOrigin(wrongOrigin); CPPUNIT_ASSERT(!mitk::IsSubGeometry(*wrongGeometry, *aDummyGeometry, mitk::eps, true)); } //wrong positive shift for (unsigned int i = 0; i < 3; ++i) { auto wrongOrigin = smallerGeometry->GetOrigin(); wrongOrigin[i] += 2 * mitk::eps; auto wrongGeometry = smallerGeometry->Clone(); wrongGeometry->SetOrigin(wrongOrigin); CPPUNIT_ASSERT(!mitk::IsSubGeometry(*wrongGeometry, *aDummyGeometry, mitk::eps, true)); } } /* void (){ DummyTestClass::Pointer dummy = DummyTestClass::New(); CPPUNIT_ASSERT(); //undo changes, new and changed object need to be the same! DummyTestClass::Pointer newDummy = DummyTestClass::New(); CPPUNIT_ASSERT(mitk::Equal(dummy,newDummy,mitk::eps,true)); } */ }; // end class mitkBaseGeometryTestSuite MITK_TEST_SUITE_REGISTRATION(mitkBaseGeometry) diff --git a/Modules/Core/test/mitkNodePredicateSubGeometryTest.cpp b/Modules/Core/test/mitkNodePredicateSubGeometryTest.cpp index e4f271fc73..e931e20e27 100644 --- a/Modules/Core/test/mitkNodePredicateSubGeometryTest.cpp +++ b/Modules/Core/test/mitkNodePredicateSubGeometryTest.cpp @@ -1,244 +1,243 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkGeometry3D.h" #include "mitkBaseDataTestImplementation.h" #include "mitkNodePredicateSubGeometry.h" #include "mitkDataNode.h" #include "mitkTestFixture.h" #include "mitkTestingMacros.h" class mitkNodePredicateSubGeometryTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkNodePredicateSubGeometryTestSuite); MITK_TEST(Check_InvalidConstructor); MITK_TEST(Check_Spacing); MITK_TEST(Check_TransformMatrix); MITK_TEST(Check_Bounds); MITK_TEST(Check_Grid); CPPUNIT_TEST_SUITE_END(); private: mitk::BaseDataTestImplementation::Pointer m_Data; mitk::DataNode::Pointer m_Node; mitk::Geometry3D::Pointer m_RefGeometry; mitk::Geometry3D::Pointer m_AnotherGeometry3D; public: /** * @brief Setup Always call this method before each Test-case to ensure correct and new intialization of the used members * for a new test case. (If the members are not used in a test, the method does not need to be called). */ void setUp() override { m_RefGeometry = mitk::Geometry3D::New(); m_RefGeometry->Initialize(); m_Data = mitk::BaseDataTestImplementation::New(); m_Data->SetClonedGeometry(m_RefGeometry); m_Node = mitk::DataNode::New(); m_Node->SetData(m_Data); m_AnotherGeometry3D = m_RefGeometry->Clone(); } void tearDown() override { m_RefGeometry = nullptr; m_AnotherGeometry3D = nullptr; m_Data = nullptr; } void Check_InvalidConstructor() { m_RefGeometry = nullptr; CPPUNIT_ASSERT_THROW(mitk::NodePredicateSubGeometry::New(m_RefGeometry, 3), mitk::Exception); CPPUNIT_ASSERT_THROW(mitk::NodePredicateSubGeometry::New(m_RefGeometry), mitk::Exception); } void Check_CloneAndOriginal() { mitk::NodePredicateSubGeometry::Pointer predicate = mitk::NodePredicateSubGeometry::New(m_RefGeometry); CPPUNIT_ASSERT(predicate->CheckNode(m_Node)); } void Check_Spacing() { mitk::NodePredicateSubGeometry::Pointer predicate = mitk::NodePredicateSubGeometry::New(m_RefGeometry); - mitk::Vector3D spacing = m_RefGeometry->GetSpacing(); for (unsigned int i = 0; i < 3; ++i) { mitk::Vector3D wrongSpacing = m_RefGeometry->GetSpacing(); wrongSpacing[i] += mitk::eps * 2; auto wrongGeometry = m_RefGeometry->Clone(); wrongGeometry->SetSpacing(wrongSpacing); m_Node->GetData()->SetGeometry(wrongGeometry); CPPUNIT_ASSERT(!predicate->CheckNode(m_Node)); } for (unsigned int i = 0; i < 3; ++i) { mitk::Vector3D wrongSpacing = m_RefGeometry->GetSpacing(); wrongSpacing[i] -= mitk::eps * 2; auto wrongGeometry = m_RefGeometry->Clone(); wrongGeometry->SetSpacing(wrongSpacing); m_Node->GetData()->SetGeometry(wrongGeometry); CPPUNIT_ASSERT(!predicate->CheckNode(m_Node)); } } void Check_TransformMatrix() { mitk::NodePredicateSubGeometry::Pointer predicate = mitk::NodePredicateSubGeometry::New(m_RefGeometry); for (unsigned int i = 0; i < 3; ++i) { for (unsigned int j = 0; j < 3; ++j) { itk::Matrix wrongMatrix = m_RefGeometry->GetIndexToWorldTransform()->GetMatrix(); wrongMatrix[i][j] += mitk::eps * 2; auto wrongGeometry = m_RefGeometry->Clone(); wrongGeometry->GetIndexToWorldTransform()->SetMatrix(wrongMatrix); m_Node->GetData()->SetGeometry(wrongGeometry); CPPUNIT_ASSERT(!predicate->CheckNode(m_Node)); } } } void Check_Bounds() { auto newBounds = m_RefGeometry->GetBounds(); newBounds[0] = 10; newBounds[1] = 20; newBounds[2] = 10; newBounds[3] = 20; newBounds[4] = 10; newBounds[5] = 20; m_RefGeometry->SetBounds(newBounds); mitk::NodePredicateSubGeometry::Pointer predicate = mitk::NodePredicateSubGeometry::New(m_RefGeometry); for (unsigned int i = 0; i < 6; ++i) { auto legalBounds = newBounds; if (i % 2 == 0) { legalBounds[i] += 1; } else { legalBounds[i] -= 1; } auto legalGeometry = m_RefGeometry->Clone(); legalGeometry->SetBounds(legalBounds); m_Node->GetData()->SetGeometry(legalGeometry); CPPUNIT_ASSERT(predicate->CheckNode(m_Node)); } for (unsigned int i = 0; i < 6; ++i) { auto wrongBounds = m_RefGeometry->GetBounds(); if (i % 2 == 0) { wrongBounds[i] -= 1; } else { wrongBounds[i] += 1; } auto wrongGeometry = m_RefGeometry->Clone(); wrongGeometry->SetBounds(wrongBounds); m_Node->GetData()->SetGeometry(wrongGeometry); CPPUNIT_ASSERT(!predicate->CheckNode(m_Node)); } } void Check_Grid() { auto newBounds = m_RefGeometry->GetBounds(); newBounds[0] = 0; newBounds[1] = 20; newBounds[2] = 0; newBounds[3] = 20; newBounds[4] = 0; newBounds[5] = 20; m_RefGeometry->SetBounds(newBounds); mitk::NodePredicateSubGeometry::Pointer predicate = mitk::NodePredicateSubGeometry::New(m_RefGeometry); auto smallerGeometry = m_RefGeometry->Clone(); newBounds[0] = 5; newBounds[1] = 10; newBounds[2] = 5; newBounds[3] = 10; newBounds[4] = 5; newBounds[5] = 10; smallerGeometry->SetBounds(newBounds); //legal negative shift for (unsigned int i = 0; i < 3; ++i) { auto legalOrigin = smallerGeometry->GetOrigin(); legalOrigin[i] -= smallerGeometry->GetSpacing()[i]; auto legalGeometry = smallerGeometry->Clone(); legalGeometry->SetOrigin(legalOrigin); m_Node->GetData()->SetGeometry(legalGeometry); CPPUNIT_ASSERT(predicate->CheckNode(m_Node)); } //legal positive shift for (unsigned int i = 0; i < 3; ++i) { auto legalOrigin = smallerGeometry->GetOrigin(); legalOrigin[i] += smallerGeometry->GetSpacing()[i]; auto legalGeometry = smallerGeometry->Clone(); legalGeometry->SetOrigin(legalOrigin); m_Node->GetData()->SetGeometry(legalGeometry); CPPUNIT_ASSERT(predicate->CheckNode(m_Node)); } //wrong negative shift for (unsigned int i = 0; i < 3; ++i) { auto wrongOrigin = smallerGeometry->GetOrigin(); wrongOrigin[i] -= 2 * mitk::eps; auto wrongGeometry = smallerGeometry->Clone(); wrongGeometry->SetOrigin(wrongOrigin); m_Node->GetData()->SetGeometry(wrongGeometry); CPPUNIT_ASSERT(!predicate->CheckNode(m_Node)); } //wrong positive shift for (unsigned int i = 0; i < 3; ++i) { auto wrongOrigin = smallerGeometry->GetOrigin(); wrongOrigin[i] += 2 * mitk::eps; auto wrongGeometry = smallerGeometry->Clone(); wrongGeometry->SetOrigin(wrongOrigin); m_Node->GetData()->SetGeometry(wrongGeometry); CPPUNIT_ASSERT(!predicate->CheckNode(m_Node)); } } }; MITK_TEST_SUITE_REGISTRATION(mitkNodePredicateSubGeometry)