diff --git a/Modules/Core/include/mitkBaseGeometry.h b/Modules/Core/include/mitkBaseGeometry.h index 833189965d..4d00557d8d 100644 --- a/Modules/Core/include/mitkBaseGeometry.h +++ b/Modules/Core/include/mitkBaseGeometry.h @@ -1,752 +1,763 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkBaseGeometry_h #define mitkBaseGeometry_h #include "mitkOperationActor.h" #include #include #include "itkScalableAffineTransform.h" #include "mitkNumericTypes.h" #include #include #include #include #include #include class vtkMatrix4x4; class vtkMatrixToLinearTransform; class vtkLinearTransform; namespace mitk { //##Documentation //## @brief Standard 3D-BoundingBox typedef //## //## Standard 3D-BoundingBox typedef to get rid of template arguments (3D, type). typedef itk::BoundingBox BoundingBox; //##Documentation //## @brief Standard typedef for time-bounds typedef itk::FixedArray TimeBounds; typedef itk::FixedArray FixedArrayType; //##Documentation //## @brief BaseGeometry Describes the geometry of a data object //## //## The class holds //## \li a bounding box which is axes-parallel in intrinsic coordinates //## (often integer indices of pixels), to be accessed by //## GetBoundingBox() //## \li a transform to convert intrinsic coordinates into a //## world-coordinate system with coordinates in millimeters //## and milliseconds (all are floating point values), to //## be accessed by GetIndexToWorldTransform() //## \li an origin and spacing to define the geometry //## //## BaseGeometry and its sub-classes allow converting between //## intrinsic coordinates (called index or unit coordinates) //## and world-coordinates (called world or mm coordinates), //## e.g. WorldToIndex. //## In case you need integer index coordinates, provide an //## mitk::Index3D (or itk::Index) as target variable to //## WorldToIndex, otherwise you will get a continuous index //## (floating point values). //## //## An important sub-class is SlicedGeometry3D, which describes //## data objects consisting of slices, e.g., objects of type Image. //## Conversions between world coordinates (in mm) and unit coordinates //## (e.g., pixels in the case of an Image) can be performed. //## //## For more information on related classes, see \ref Geometry. //## //## BaseGeometry instances referring to an Image need a slightly //## different definition of corners, see SetImageGeometry. This //## is usually automatically called by Image. //## //## BaseGeometry have to be initialized in the method GenerateOutputInformation() //## of BaseProcess (or CopyInformation/ UpdateOutputInformation of BaseData, //## if possible, e.g., by analyzing pic tags in Image) subclasses. See also //## itk::ProcessObject::GenerateOutputInformation(), //## itk::DataObject::CopyInformation() and //## itk::DataObject::UpdateOutputInformation(). //## //## At least, it can return the bounding box of the data object. //## //## The BaseGeometry class is an abstract class. The most simple implementation //## is the subclass Geometry3D. //## //## Rule: everything is in mm (ms) if not stated otherwise. //## @ingroup Geometry class MITKCORE_EXPORT BaseGeometry : public itk::Object, public OperationActor { public: mitkClassMacroItkParent(BaseGeometry, itk::Object); itkCloneMacro(Self); // ********************************** TypeDef ********************************** typedef GeometryTransformHolder::TransformType TransformType; typedef itk::BoundingBox BoundingBoxType; typedef BoundingBoxType::BoundsArrayType BoundsArrayType; typedef BoundingBoxType::Pointer BoundingBoxPointer; // ********************************** Origin, Spacing ********************************** //##Documentation //## @brief Get the origin, e.g. the upper-left corner of the plane const Point3D GetOrigin() const; //##Documentation //## @brief Set the origin, i.e. the upper-left corner of the plane //## void SetOrigin(const Point3D &origin); //##Documentation //## @brief Get the spacing (size of a pixel). //## const mitk::Vector3D GetSpacing() const; //##Documentation //## @brief Set the spacing (m_Spacing). //## //##The spacing is also changed in the IndexToWorldTransform. void SetSpacing(const mitk::Vector3D &aSpacing, bool enforceSetSpacing = false); //##Documentation //## @brief Get the origin as VnlVector //## //## \sa GetOrigin VnlVector GetOriginVnl() const; // ********************************** other functions ********************************** //##Documentation //## @brief Get the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkGetConstMacro(FrameOfReferenceID, unsigned int); //##Documentation //## @brief Set the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkSetMacro(FrameOfReferenceID, unsigned int); itkGetConstMacro(IndexToWorldTransformLastModified, unsigned long); //##Documentation //## @brief Overload of function Modified() to prohibit several calls of Modified() using the ModifiedLock class. //## //## For the use of Modified(), see class ModifiedLock. void Modified() const override; friend class ModifiedLock; //##Documentation //## @brief Is this BaseGeometry in a state that is valid? //## //## This function returns always true in the BaseGeometry class. Other implementations are possible in subclasses. virtual bool IsValid() const; // ********************************** Initialize ********************************** //##Documentation //## @brief Initialize the BaseGeometry void Initialize(); void InitializeGeometry(Self *newGeometry) const; // ********************************** Transformations Set/Get ********************************** //##Documentation //## @brief Get the transformation used to convert from index //## to world coordinates mitk::AffineTransform3D *GetIndexToWorldTransform(); //##Documentation //## @brief Get the transformation used to convert from index //## to world coordinates const mitk::AffineTransform3D *GetIndexToWorldTransform() const; //## @brief Set the transformation used to convert from index //## to world coordinates. The spacing of the new transform is //## copied to m_spacing. void SetIndexToWorldTransform(mitk::AffineTransform3D *transform); //##Documentation //## @brief Convenience method for setting the ITK transform //## (m_IndexToWorldTransform) via an vtkMatrix4x4.The spacing of //## the new transform is copied to m_spacing. //## \sa SetIndexToWorldTransform void SetIndexToWorldTransformByVtkMatrix(vtkMatrix4x4 *vtkmatrix); //## @brief Set the transformation used to convert from index //## to world coordinates.This function keeps the original spacing. void SetIndexToWorldTransformWithoutChangingSpacing(mitk::AffineTransform3D *transform); //##Documentation //## @brief Convenience method for setting the ITK transform //## (m_IndexToWorldTransform) via an vtkMatrix4x4. This function keeps the original spacing. //## \sa SetIndexToWorldTransform void SetIndexToWorldTransformByVtkMatrixWithoutChangingSpacing(vtkMatrix4x4 *vtkmatrix); //## Get the Vtk Matrix which describes the transform. vtkMatrix4x4 *GetVtkMatrix(); //##Documentation //## @brief Get the m_IndexToWorldTransform as a vtkLinearTransform vtkLinearTransform *GetVtkTransform() const; //##Documentation //## @brief Set the transform to identity, the spacing to 1 and origin to 0 //## void SetIdentity(); // ********************************** Transformations ********************************** //##Documentation //## @brief Compose new IndexToWorldTransform with a given transform. //## //## This method composes m_IndexToWorldTransform with another transform, //## modifying self to be the composition of self and other. //## If the argument pre is true, then other is precomposed with self; //## that is, the resulting transformation consists of first applying //## other to the source, followed by self. If pre is false or omitted, //## then other is post-composed with self; that is the resulting //## transformation consists of first applying self to the source, //## followed by other. //## This method also changes m_spacing. void Compose(const TransformType *other, bool pre = false); //##Documentation //## @brief Compose new IndexToWorldTransform with a given vtkMatrix4x4. //## //## Converts the vtkMatrix4x4 into a itk-transform and calls the previous method. void Compose(const vtkMatrix4x4 *vtkmatrix, bool pre = false); //##Documentation //## @brief Translate the origin by a vector //## void Translate(const Vector3D &vector); //##Documentation //##@brief executes affine operations (translate, rotate, scale) void ExecuteOperation(Operation *operation) override; //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (continuous!) index coordinates //## \warning If you need (discrete) integer index coordinates (e.g., for iterating easily over an image), //## use WorldToIndex(const mitk::Point3D& pt_mm, itk::Index &index). //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Point3D &pt_mm, mitk::Point3D &pt_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (discrete!) index coordinates. //## This method rounds to integer indices! //## For further information about coordinates types, please see the Geometry documentation template void WorldToIndex(const mitk::Point3D &pt_mm, itk::Index &index) const { typedef itk::Index IndexType; mitk::Point3D pt_units; this->WorldToIndex(pt_mm, pt_units); int i, dim = index.GetIndexDimension(); if (dim > 3) { index.Fill(0); dim = 3; } for (i = 0; i < dim; ++i) { index[i] = itk::Math::RoundHalfIntegerUp(pt_units[i]); } } //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em point to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Point3D &pt_units, mitk::Point3D &pt_mm) const; //##Documentation //## @brief Convert (discrete) index coordinates of a \em point to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation template void IndexToWorld(const itk::Index &index, mitk::Point3D &pt_mm) const { mitk::Point3D pt_units; pt_units.Fill(0); int i, dim = index.GetIndexDimension(); if (dim > 3) { dim = 3; } for (i = 0; i < dim; ++i) { pt_units[i] = index[i]; } IndexToWorld(pt_units, pt_mm); } //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point3D) is not used. If possible, please use void IndexToWorld(const // mitk::Vector3D& vec_units, mitk::Vector3D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Point3D &atPt3d_units, const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point3D) is not used. If possible, please use void WorldToIndex(const // mitk::Vector3D& vec_mm, mitk::Vector3D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const; //##Documentation //## @brief Deprecated for use with ITK version 3.10 or newer. //## Convert ITK physical coordinates of a \em point (in mm, //## but without a rotation) into MITK world coordinates (in mm) //## //## For more information, see WorldToItkPhysicalPoint. template void ItkPhysicalPointToWorld(const itk::Point &itkPhysicalPoint, mitk::Point3D &pt_mm) const { mitk::vtk2itk(itkPhysicalPoint, pt_mm); } //##Documentation //## @brief Deprecated for use with ITK version 3.10 or newer. //## Convert world coordinates (in mm) of a \em point to //## ITK physical coordinates (in mm, but without a possible rotation) //## //## This method is useful if you have want to access an mitk::Image //## via an itk::Image. ITK v3.8 and older did not support rotated (tilted) //## images, i.e., ITK images are always parallel to the coordinate axes. //## When accessing a (possibly rotated) mitk::Image via an itk::Image //## the rotational part of the transformation in the BaseGeometry is //## simply discarded; in other word: only the origin and spacing is //## used by ITK, not the complete matrix available in MITK. //## With WorldToItkPhysicalPoint you can convert an MITK world //## coordinate (including the rotation) into a coordinate that //## can be used with the ITK image as a ITK physical coordinate //## (excluding the rotation). template void WorldToItkPhysicalPoint(const mitk::Point3D &pt_mm, itk::Point &itkPhysicalPoint) const { mitk::vtk2itk(pt_mm, itkPhysicalPoint); } // ********************************** BoundingBox ********************************** /** Get the bounding box */ itkGetConstObjectMacro(BoundingBox, BoundingBoxType); // a bit of a misuse, but we want only doxygen to see the following: #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get bounding box (in index/unit coordinates) itkGetConstObjectMacro(BoundingBox, BoundingBoxType); //##Documentation //## @brief Get bounding box (in index/unit coordinates) as a BoundsArrayType const BoundsArrayType GetBounds() const; #endif const BoundsArrayType GetBounds() const; //##Documentation //## \brief Set the bounding box (in index/unit coordinates) //## //## Only possible via the BoundsArray to make clear that a //## copy of the bounding-box is stored, not a reference to it. void SetBounds(const BoundsArrayType &bounds); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a float array void SetFloatBounds(const float bounds[6]); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a double array void SetFloatBounds(const double bounds[6]); //##Documentation //## @brief Get a VnlVector along bounding-box in the specified //## @a direction, length is spacing //## //## \sa GetAxisVector VnlVector GetMatrixColumn(unsigned int direction) const; //##Documentation //## @brief Calculates a bounding-box around the geometry relative //## to a coordinate system defined by a transform //## mitk::BoundingBox::Pointer CalculateBoundingBoxRelativeToTransform(const mitk::AffineTransform3D *transform) const; //##Documentation //## @brief Set the time bounds (in ms) // void SetTimeBounds(const TimeBounds& timebounds); // ********************************** Geometry ********************************** #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get the extent of the bounding box (in index/unit coordinates) //## //## To access the extent in mm use GetExtentInMM ScalarType GetExtent(unsigned int direction) const; #endif /** Get the extent of the bounding box */ ScalarType GetExtent(unsigned int direction) const; //##Documentation //## @brief Get the extent of the bounding-box in the specified @a direction in mm //## //## Equals length of GetAxisVector(direction). ScalarType GetExtentInMM(int direction) const; //##Documentation //## @brief Get vector along bounding-box in the specified @a direction in mm //## //## The length of the vector is the size of the bounding-box in the //## specified @a direction in mm //## \sa GetMatrixColumn Vector3D GetAxisVector(unsigned int direction) const; //##Documentation //## @brief Checks, if the given geometry can be converted to 2D without information loss //## e.g. when a 2D image is saved, the matrix is usually cropped to 2x2, and when you load it back to MITK //## it will be filled with standard values. This function checks, if information would be lost during this //## procedure virtual bool Is2DConvertable(); //##Documentation //## @brief Get the center of the bounding-box in mm //## Point3D GetCenter() const; //##Documentation //## @brief Get the squared length of the diagonal of the bounding-box in mm //## double GetDiagonalLength2() const; //##Documentation //## @brief Get the length of the diagonal of the bounding-box in mm //## double GetDiagonalLength() const; //##Documentation //## @brief Get the position of the corner number \a id (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(int id) const; //##Documentation //## @brief Get the position of a corner (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(bool xFront = true, bool yFront = true, bool zFront = true) const; //##Documentation //## @brief Set the extent of the bounding-box in the specified @a direction in mm //## //## @note This changes the matrix in the transform, @a not the bounds, which are given in units! void SetExtentInMM(int direction, ScalarType extentInMM); //##Documentation //## @brief Test whether the point \a p (world coordinates in mm) is //## inside the bounding box bool IsInside(const mitk::Point3D &p) const; //##Documentation //## @brief Test whether the point \a p ((continuous!)index coordinates in units) is //## inside the bounding box bool IsIndexInside(const mitk::Point3D &index) const; //##Documentation //## @brief Convenience method for working with ITK indices template bool IsIndexInside(const itk::Index &index) const { int i, dim = index.GetIndexDimension(); Point3D pt_index; pt_index.Fill(0); for (i = 0; i < dim; ++i) { pt_index[i] = index[i]; } return IsIndexInside(pt_index); } // ********************************* Image Geometry ******************************** //##Documentation //## @brief When switching from an Image Geometry to a normal Geometry (and the other way around), you have to //change // the origin as well (See Geometry Documentation)! This function will change the "isImageGeometry" bool flag and // changes the origin respectively. virtual void ChangeImageGeometryConsideringOriginOffset(const bool isAnImageGeometry); //##Documentation //## @brief Is this an ImageGeometry? //## //## For more information, see SetImageGeometry itkGetConstMacro(ImageGeometry, bool) //##Documentation //## @brief Define that this BaseGeometry is referring to an Image //## //## A geometry referring to an Image needs a slightly different //## definition of the position of the corners (see GetCornerPoint). //## The position of a voxel is defined by the position of its center. //## If we would use the origin (position of the (center of) the first //## voxel) as a corner and display this point, it would seem to be //## \em not at the corner but a bit within the image. Even worse for //## the opposite corner of the image: here the corner would appear //## outside the image (by half of the voxel diameter). Thus, we have //## to correct for this and to be able to do that, we need to know //## that the BaseGeometry is referring to an Image. itkSetMacro(ImageGeometry, bool); itkBooleanMacro(ImageGeometry); const GeometryTransformHolder *GetGeometryTransformHolder() const; + //##Documentation + //## @brief One to one mapping of axes to world orientations. + //## + //## The result is stored in the output argument that must be an array of three int values. + //## The elements of the array will be the axis indices that correspond to the sagittal, + //## coronal and axial orientations, in this order. It is guaranteed that each axis will + //## be mapped to different orientations. + //## + //## @param axes Output argument that will store the axis indices for each orientation. + void MapAxesToOrientations(int axes[]) const; + protected: // ********************************** Constructor ********************************** BaseGeometry(); BaseGeometry(const BaseGeometry &other); ~BaseGeometry() override; itk::LightObject::Pointer InternalClone() const override = 0; void PrintSelf(std::ostream &os, itk::Indent indent) const override; static const std::string GetTransformAsString(TransformType *transformType); itkGetConstMacro(NDimensions, unsigned int); bool IsBoundingBoxNull() const; bool IsIndexToWorldTransformNull() const; void SetVtkMatrixDeepCopy(vtkTransform *vtktransform); void _SetSpacing(const mitk::Vector3D &aSpacing, bool enforceSetSpacing = false); //##Documentation //## @brief PreSetSpacing //## //## These virtual function allows a different beahiour in subclasses. //## Do implement them in every subclass of BaseGeometry. If not needed, use //## {Superclass::PreSetSpacing();}; virtual void PreSetSpacing(const mitk::Vector3D & /*aSpacing*/){}; //##Documentation //## @brief CheckBounds //## //## This function is called in SetBounds. Assertions can be implemented in this function (see PlaneGeometry.cpp). //## If you implement this function in a subclass, make sure, that all classes were your class inherits from //## have an implementation of CheckBounds //## (e.g. inheritance BaseGeometry <- A <- B. Implementation of CheckBounds in class B needs implementation in A as // well!) virtual void CheckBounds(const BoundsArrayType & /*bounds*/){}; //##Documentation //## @brief CheckIndexToWorldTransform //## //## This function is called in SetIndexToWorldTransform. Assertions can be implemented in this function (see // PlaneGeometry.cpp). //## In Subclasses of BaseGeometry, implement own conditions or call Superclass::CheckBounds(bounds);. virtual void CheckIndexToWorldTransform(mitk::AffineTransform3D * /*transform*/){}; private: GeometryTransformHolder *m_GeometryTransform; void InitializeGeometryTransformHolder(const BaseGeometry *otherGeometry); //##Documentation //## @brief Bounding Box, which is axes-parallel in intrinsic coordinates //## (often integer indices of pixels) BoundingBoxPointer m_BoundingBox; unsigned int m_FrameOfReferenceID; // mitk::TimeBounds m_TimeBounds; static const unsigned int m_NDimensions = 3; mutable TransformType::Pointer m_InvertedTransform; mutable unsigned long m_IndexToWorldTransformLastModified; bool m_ImageGeometry; //##Documentation //## @brief ModifiedLockFlag is used to prohibit the call of Modified() //## //## For the use of this Flag, see class ModifiedLock. This flag should only be set //## by the ModifiedLock class! bool m_ModifiedLockFlag; //##Documentation //## @brief ModifiedcalledFlag is used to collect calls of Modified(). //## //## For the use of this Flag, see class ModifiedLock. This flag should only be set //## by the Modified() function! mutable bool m_ModifiedCalledFlag; }; // ********************************** Equal Functions ********************************** // // Static compare functions mainly for testing // /** * @brief Equal A function comparing two geometries for being identical. * * @ingroup MITKTestingAPI * * The function compares the spacing, origin, axisvectors, extents, the matrix of the * IndexToWorldTransform (elementwise), the bounding (elementwise) and the ImageGeometry flag. * * The parameter eps is a tolarence value for all methods which are internally used for comparison. * If you want to use different tolerance values for different parts of the geometry, feel free to use * the other comparison methods and write your own implementation of Equal. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param coordinateEps Tolerance for comparison of all spatial aspects (spacing, origin and grid alignment). * You can use mitk::eps in most cases. * @param directionEps Tolerance for comparison of all directional aspects (axis). You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITKCORE_EXPORT bool Equal(const mitk::BaseGeometry& leftHandSide, const mitk::BaseGeometry& rightHandSide, ScalarType coordinateEps, ScalarType directionEps, bool verbose = false); /** * @brief Equal A function comparing two geometries for being identical. * * @ingroup MITKTestingAPI * * This is an overloaded version that uses a single tolerance for spatial and directional aspects. For more details, * see the other overloaded version. * * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITKCORE_EXPORT bool Equal(const mitk::BaseGeometry &leftHandSide, const mitk::BaseGeometry &rightHandSide, ScalarType eps = mitk::eps, bool verbose = false); /** * @brief Equal A function comparing two transforms (TransformType) for being identical. * * @ingroup MITKTestingAPI * * The function compares the IndexToWorldTransform (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparison. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITKCORE_EXPORT bool Equal(const mitk::BaseGeometry::TransformType &leftHandSide, const mitk::BaseGeometry::TransformType &rightHandSide, ScalarType eps, bool verbose); /** * @brief Equal A function comparing two bounding boxes (BoundingBoxType) for being identical. * * @ingroup MITKTestingAPI * * The function compares the bounds (elementwise). * * The parameter eps is a tolarence value for all methods which are internally used for comparison. * @param rightHandSide Compare this against leftHandSide. * @param leftHandSide Compare this against rightHandSide. * @param eps Tolarence for comparison. You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False in any other case. */ MITKCORE_EXPORT bool Equal(const mitk::BaseGeometry::BoundingBoxType &leftHandSide, const mitk::BaseGeometry::BoundingBoxType &rightHandSide, ScalarType eps, bool verbose); /** * @brief A function checks if a test geometry is a sub geometry of * a given reference geometry. * * Sub geometry means that both geometries have the same voxel grid (same spacing, same axes, * origin is on voxel grid), but the bounding box of the checked geometry is contained or equal * to the bounding box of the reference geometry.\n * By this definition equal geometries are always sub geometries of each other. * * The function checks the spacing, origin, axis vectors, extents, the matrix of the * IndexToWorldTransform (elementwise), the bounding (elementwise) and the ImageGeometry flag. * * The parameter eps is a tolerance value for all methods which are internally used for comparison. * @param testGeo Geometry that should be checked if it is a sub geometry of referenceGeo. * @param referenceGeo Geometry that should contain testedGeometry as sub geometry. * @param coordinateEps Tolerance for comparison of all spatial aspects (spacing, origin and grid alignment). * You can use mitk::eps in most cases. * @param directionEps Tolerance for comparison of all directional aspects (axis). You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparisons are true. False otherwise. */ MITKCORE_EXPORT bool IsSubGeometry(const mitk::BaseGeometry& testGeo, const mitk::BaseGeometry& referenceGeo, ScalarType coordinateEps, ScalarType directionEps, bool verbose = false); /** * @brief A function checks if a test geometry is a sub geometry of * a given reference geometry. * * This is a overloaded version that uses a single tolerance for spatial and directional aspects. For more details, * see the other overloaded version. * * @param testGeo Geometry that should be checked if it is a sub geometry of referenceGeo. * @param referenceGeo Geometry that should contain testedGeometry as sub geometry. * @param eps Tolarence for comparison (both spatial and directional). You can use mitk::eps in most cases. * @param verbose Flag indicating if the user wants detailed console output or not. * @return True, if all comparison are true. False otherwise. */ MITKCORE_EXPORT bool IsSubGeometry(const mitk::BaseGeometry& testGeo, const mitk::BaseGeometry& referenceGeo, ScalarType eps = mitk::eps, bool verbose = false); } // namespace mitk #endif diff --git a/Modules/Core/include/mitkPlaneGeometry.h b/Modules/Core/include/mitkPlaneGeometry.h index 0fec6a0794..81a0c3c0e1 100644 --- a/Modules/Core/include/mitkPlaneGeometry.h +++ b/Modules/Core/include/mitkPlaneGeometry.h @@ -1,608 +1,606 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkPlaneGeometry_h #define mitkPlaneGeometry_h #include #include #include #include #include namespace mitk { template class Line; typedef Line Line3D; /** * \brief Describes the geometry of a plane object * * Describes a two-dimensional manifold, i.e., to put it simply, * an object that can be described using a 2D coordinate-system. * * PlaneGeometry can map points between 3D world coordinates * (in mm) and the described 2D coordinate-system (in mm) by first projecting * the 3D point onto the 2D manifold and then calculating the 2D-coordinates * (in mm). These 2D-mm-coordinates can be further converted into * 2D-unit-coordinates (e.g., pixels), giving a parameter representation of * the object with parameter values inside a rectangle * (e.g., [0,0]..[width, height]), which is the bounding box (bounding range * in z-direction always [0]..[1]). * * A PlaneGeometry describes the 2D representation within a 3D object (derived from BaseGeometry). For example, * a single CT-image (slice) is 2D in the sense that you can access the * pixels using 2D-coordinates, but is also 3D, as the pixels are really * voxels, thus have an extension (thickness) in the 3rd dimension. * * * Optionally, a reference BaseGeometry can be specified, which usually would * be the geometry associated with the underlying dataset. This is currently * used for calculating the intersection of inclined / rotated planes * (represented as PlaneGeometry) with the bounding box of the associated * BaseGeometry. * * \warning The PlaneGeometry are not necessarily up-to-date and not even * initialized. As described in the previous paragraph, one of the * Generate-/Copy-/UpdateOutputInformation methods have to initialize it. * mitk::BaseData::GetPlaneGeometry() makes sure, that the PlaneGeometry is * up-to-date before returning it (by setting the update extent appropriately * and calling UpdateOutputInformation). * * Rule: everything is in mm (or ms for temporal information) if not * stated otherwise. * \ingroup Geometry */ class PlaneGeometry; /** \deprecatedSince{2014_10} This class is deprecated. Please use PlaneGeometry instead. */ DEPRECATED(typedef PlaneGeometry Geometry2D); /** * \brief Describes a two-dimensional, rectangular plane * * \ingroup Geometry */ class MITKCORE_EXPORT PlaneGeometry : public BaseGeometry { public: mitkClassMacro(PlaneGeometry, BaseGeometry); /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self); itkCloneMacro(Self); virtual void IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const; virtual void WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point2D) is not used. If possible, please use void IndexToWorld(const // mitk::Vector2D& vec_units, mitk::Vector2D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Point2D &atPt2d_untis, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point2D) is not used. If possible, please use void WorldToIndex(const // mitk::Vector2D& vec_mm, mitk::Vector2D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; /** * \brief Initialize a plane with orientation \a AnatomicalPlane * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \warning A former version of this method created a geometry with unit * spacing. For unit spacing use * * \code * // for in-plane unit spacing: * thisgeometry->SetSizeInUnits(thisgeometry->GetExtentInMM(0), * thisgeometry->GetExtentInMM(1)); * // additionally, for unit spacing in normal direction (former version * // did not do this): * thisgeometry->SetExtentInMM(2, 1.0); * \endcode */ virtual void InitializeStandardPlane(const BaseGeometry *geometry3D, AnatomicalPlane planeorientation = AnatomicalPlane::Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize a plane with orientation \a AnatomicalPlane * (default: axial) with respect to \a BaseGeometry (default: identity). * Spacing also taken from \a BaseGeometry. * * \param geometry3D * \param top if \a true, create plane at top, otherwise at bottom * (for AnatomicalPlane Axial, for other plane locations respectively) * \param planeorientation * \param frontside * \param rotated */ virtual void InitializeStandardPlane(const BaseGeometry *geometry3D, bool top, AnatomicalPlane planeorientation = AnatomicalPlane::Axial, bool frontside = true, bool rotated = false); /** * \brief Initialize a plane with orientation \a AnatomicalPlane * (default: axial) with respect to \a transform (default: identity) * given width and height in units. * * \a Rotated means rotated by 180 degrees (1/2 rotation) within the plane. * Rotation by 90 degrees (1/4 rotation) is not implemented as of now. * * \a Frontside/Backside: * Viewed from below = frontside in the axial case; * (radiologist's view versus neuro-surgeon's view, see: * http://www.itk.org/Wiki/images/e/ed/DICOM-OrientationDiagram-Radiologist-vs-NeuroSurgeon.png ) * Viewed from front = frontside in the coronal case; * Viewed from left = frontside in the sagittal case. * * \a Cave/Caution: Currently only RPI, LAI, LPS and RAS in the three standard planes are covered, * i.e. 12 cases of 144: 3 standard planes * 48 coordinate orientations = 144 cases. */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const AffineTransform3D *transform = nullptr, AnatomicalPlane planeorientation = AnatomicalPlane::Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize plane with orientation \a AnatomicalPlane * (default: axial) given width, height and spacing. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const Vector3D &spacing, AnatomicalPlane planeorientation = AnatomicalPlane::Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false, bool top = true); /** * \brief Initialize plane by width and height in pixels, right-/down-vector * (itk) to describe orientation in world-space (vectors will be normalized) * and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing before * they are set in the matrix. * * This overloaded version of InitializeStandardPlane() creates only righthanded * coordinate orientations, unless spacing contains 1 or 3 negative entries. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by width and height in pixels, * right-/down-vector (vnl) to describe orientation in world-space (vectors * will be normalized) and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing * before they are set in the matrix. * * This overloaded version of InitializeStandardPlane() creates only righthanded * coordinate orientations, unless spacing contains 1 or 3 negative entries. * */ virtual void InitializeStandardPlane(ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by right-/down-vector (itk) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane(const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by right-/down-vector (vnl) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane(const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing = nullptr); /** * \brief Initialize plane by origin and normal (size is 1.0 mm in * all directions, direction of right-/down-vector valid but * undefined). * \warning This function can only produce righthanded coordinate orientation, not lefthanded. */ virtual void InitializePlane(const Point3D &origin, const Vector3D &normal); /** * \brief Initialize plane by right-/down-vector. * * \warning The vectors are set into the matrix as they are, * \em without normalization! * This function creates a righthanded IndexToWorldTransform, * only a negative thickness could still make it lefthanded. */ void SetMatrixByVectors(const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness = 1.0); /** * \brief Check if matrix is a rotation matrix: * - determinant is 1? * - R*R^T is ID? * Output warning otherwise. */ static bool CheckRotationMatrix(AffineTransform3D *transform, double epsilon=1e-6); /** * \brief Normal of the plane * */ Vector3D GetNormal() const; /** * \brief Normal of the plane as VnlVector * */ VnlVector GetNormalVnl() const; virtual ScalarType SignedDistance(const Point3D &pt3d_mm) const; /** * \brief Calculates, whether a point is below or above the plane. There are two different *calculation methods, with or without consideration of the bounding box. */ virtual bool IsAbove(const Point3D &pt3d_mm, bool considerBoundingBox = false) const; /** * \brief Distance of the point from the plane * (bounding-box \em not considered) * */ ScalarType DistanceFromPlane(const Point3D &pt3d_mm) const; /** * \brief Signed distance of the point from the plane * (bounding-box \em not considered) * * > 0 : point is in the direction of the direction vector. */ inline ScalarType SignedDistanceFromPlane(const Point3D &pt3d_mm) const { ScalarType len = GetNormalVnl().two_norm(); if (len == 0) return 0; return (pt3d_mm - GetOrigin()) * GetNormal() / len; } /** * \brief Distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ ScalarType DistanceFromPlane(const PlaneGeometry *plane) const { return fabs(SignedDistanceFromPlane(plane)); } /** * \brief Signed distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ inline ScalarType SignedDistanceFromPlane(const PlaneGeometry *plane) const { if (IsParallel(plane)) { return SignedDistance(plane->GetOrigin()); } return 0; } /** * \brief Calculate the intersecting line of two planes * * \return \a true planes are intersecting * \return \a false planes do not intersect */ bool IntersectionLine(const PlaneGeometry *plane, Line3D &crossline) const; /** * \brief Calculate two points where another plane intersects the border of this plane * * \return number of intersection points (0..2). First interection point (if existing) * is returned in \a lineFrom, second in \a lineTo. */ unsigned int IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo) const; /** * \brief Calculate the angle between two planes * * \return angle in radiants */ double Angle(const PlaneGeometry *plane) const; /** * \brief Calculate the angle between the plane and a line * * \return angle in radiants */ double Angle(const Line3D &line) const; /** * \brief Calculate intersection point between the plane and a line * * \param line * \param intersectionPoint intersection point * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPoint(const Line3D &line, Point3D &intersectionPoint) const; /** * \brief Calculate line parameter of intersection point between the * plane and a line * * \param line * \param t parameter of line: intersection point is * line.GetPoint()+t*line.GetDirection() * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPointParam(const Line3D &line, double &t) const; /** * \brief Returns whether the plane is parallel to another plane * * @return true iff the normal vectors both point to the same or exactly oposit direction */ bool IsParallel(const PlaneGeometry *plane) const; /** * \brief Returns whether the point is on the plane * (bounding-box \em not considered) */ bool IsOnPlane(const Point3D &point) const; /** * \brief Returns whether the line is on the plane * (bounding-box \em not considered) */ bool IsOnPlane(const Line3D &line) const; /** * \brief Returns whether the plane is on the plane * (bounding-box \em not considered) * * @return true if the normal vector of the planes point to the same or the exactly oposit direction and * the distance of the planes is < eps * */ bool IsOnPlane(const PlaneGeometry *plane) const; /** * \brief Returns the lot from the point to the plane */ Point3D ProjectPointOntoPlane(const Point3D &pt) const; itk::LightObject::Pointer InternalClone() const override; /** Implements operation to re-orient the plane */ void ExecuteOperation(Operation *operation) override; /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 2D point in mm (\a pt2d_mm). * * The result is a 2D point in mm (\a pt2d_mm) relative to the upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Point3D &pt3d_mm, mitk::Point3D * &projectedPt3d_mm) */ virtual bool Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const; /** * \brief Converts a 2D point given in mm (\a pt2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D point in mm, \a pt3d_mm). * * To convert a 2D point given in units (e.g., pixels in case of an * image) into a 2D point given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const; /** * \brief Set the width and height of this 2D-geometry in units by calling * SetBounds. This does \a not change the extent in mm! * * For an image, this is the number of pixels in x-/y-direction. * \note In contrast to calling SetBounds directly, this does \a not change * the extent in mm! */ virtual void SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height); /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 3D point in mm (\a projectedPt3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 2D vector in mm (\a vec2d_mm). * * The result is a 2D vector in mm (\a vec2d_mm) relative to the * upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D * &projectedVec3d_mm) */ virtual bool Map(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const; /** * \brief Converts a 2D vector given in mm (\a vec2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D vector in mm, \a vec3d_mm). * * To convert a 2D vector given in units (e.g., pixels in case of an * image) into a 2D vector given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * DEPRECATED. Use Project(vector,vector) instead * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Distance of the point from the geometry * (bounding-box \em not considered) * */ inline ScalarType Distance(const Point3D &pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } /** * \brief Set the geometrical frame of reference in which this PlaneGeometry * is placed. * * This would usually be the BaseGeometry of the underlying dataset, but * setting it is optional. */ void SetReferenceGeometry(const mitk::BaseGeometry *geometry); /** * \brief Get the geometrical frame of reference for this PlaneGeometry. */ const BaseGeometry *GetReferenceGeometry() const; bool HasReferenceGeometry() const; - static std::vector< int > CalculateDominantAxes(mitk::AffineTransform3D::MatrixType::InternalMatrixType& rotation_matrix); - protected: PlaneGeometry(); PlaneGeometry(const PlaneGeometry &other); ~PlaneGeometry() override; void PrintSelf(std::ostream &os, itk::Indent indent) const override; const mitk::BaseGeometry *m_ReferenceGeometry; //##Documentation //## @brief PreSetSpacing //## //## These virtual function allows a different beahiour in subclasses. //## Do implement them in every subclass of BaseGeometry. If not needed, use //## {Superclass::PreSetSpacing();}; void PreSetSpacing(const mitk::Vector3D &aSpacing) override { Superclass::PreSetSpacing(aSpacing); }; //##Documentation //## @brief CheckBounds //## //## This function is called in SetBounds. Assertions can be implemented in this function (see PlaneGeometry.cpp). //## If you implement this function in a subclass, make sure, that all classes were your class inherits from //## have an implementation of CheckBounds //## (e.g. inheritance BaseGeometry <- A <- B. Implementation of CheckBounds in class B needs implementation in A as // well!) void CheckBounds(const BoundsArrayType &bounds) override; //##Documentation //## @brief CheckIndexToWorldTransform //## //## This function is called in SetIndexToWorldTransform. Assertions can be implemented in this function (see // PlaneGeometry.cpp). //## In Subclasses of BaseGeometry, implement own conditions or call Superclass::CheckBounds(bounds);. void CheckIndexToWorldTransform(mitk::AffineTransform3D *transform) override; private: /** * \brief Compares plane with another plane: \a true if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator==(const PlaneGeometry *) const { return false; }; /** * \brief Compares plane with another plane: \a false if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator!=(const PlaneGeometry *) const { return false; }; }; } // namespace mitk #endif diff --git a/Modules/Core/src/DataManagement/mitkBaseGeometry.cpp b/Modules/Core/src/DataManagement/mitkBaseGeometry.cpp index 55ea6e4b07..6a3a8352e7 100644 --- a/Modules/Core/src/DataManagement/mitkBaseGeometry.cpp +++ b/Modules/Core/src/DataManagement/mitkBaseGeometry.cpp @@ -1,1101 +1,1185 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include #include #include #include #include "mitkApplyTransformMatrixOperation.h" #include "mitkBaseGeometry.h" #include "mitkGeometryTransformHolder.h" #include "mitkInteractionConst.h" #include "mitkMatrixConvert.h" #include "mitkModifiedLock.h" #include "mitkPointOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkRotationOperation.h" #include "mitkScaleOperation.h" #include "mitkVector.h" #include "mitkMatrix.h" mitk::BaseGeometry::BaseGeometry() : Superclass(), mitk::OperationActor(), m_FrameOfReferenceID(0), m_IndexToWorldTransformLastModified(0), m_ImageGeometry(false), m_ModifiedLockFlag(false), m_ModifiedCalledFlag(false) { m_GeometryTransform = new GeometryTransformHolder(); Initialize(); } mitk::BaseGeometry::BaseGeometry(const BaseGeometry &other) : Superclass(), mitk::OperationActor(), m_FrameOfReferenceID(other.m_FrameOfReferenceID), m_IndexToWorldTransformLastModified(other.m_IndexToWorldTransformLastModified), m_ImageGeometry(other.m_ImageGeometry), m_ModifiedLockFlag(false), m_ModifiedCalledFlag(false) { m_GeometryTransform = new GeometryTransformHolder(*other.GetGeometryTransformHolder()); other.InitializeGeometry(this); } mitk::BaseGeometry::~BaseGeometry() { delete m_GeometryTransform; } void mitk::BaseGeometry::SetVtkMatrixDeepCopy(vtkTransform *vtktransform) { m_GeometryTransform->SetVtkMatrixDeepCopy(vtktransform); } const mitk::Point3D mitk::BaseGeometry::GetOrigin() const { return m_GeometryTransform->GetOrigin(); } void mitk::BaseGeometry::SetOrigin(const Point3D &origin) { mitk::ModifiedLock lock(this); if (origin != GetOrigin()) { m_GeometryTransform->SetOrigin(origin); Modified(); } } const mitk::Vector3D mitk::BaseGeometry::GetSpacing() const { return m_GeometryTransform->GetSpacing(); } void mitk::BaseGeometry::Initialize() { float b[6] = {0, 1, 0, 1, 0, 1}; SetFloatBounds(b); m_GeometryTransform->Initialize(); m_FrameOfReferenceID = 0; m_ImageGeometry = false; } void mitk::BaseGeometry::SetFloatBounds(const float bounds[6]) { mitk::BoundingBox::BoundsArrayType b; const float *input = bounds; int i = 0; for (mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); i < 6; ++i) *it++ = (mitk::ScalarType)*input++; SetBounds(b); } void mitk::BaseGeometry::SetFloatBounds(const double bounds[6]) { mitk::BoundingBox::BoundsArrayType b; const double *input = bounds; int i = 0; for (mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); i < 6; ++i) *it++ = (mitk::ScalarType)*input++; SetBounds(b); } /** Initialize the geometry */ void mitk::BaseGeometry::InitializeGeometry(BaseGeometry *newGeometry) const { newGeometry->SetBounds(m_BoundingBox->GetBounds()); newGeometry->SetFrameOfReferenceID(GetFrameOfReferenceID()); newGeometry->InitializeGeometryTransformHolder(this); newGeometry->m_ImageGeometry = m_ImageGeometry; } void mitk::BaseGeometry::InitializeGeometryTransformHolder(const BaseGeometry *otherGeometry) { this->m_GeometryTransform->Initialize(otherGeometry->GetGeometryTransformHolder()); } /** Set the bounds */ void mitk::BaseGeometry::SetBounds(const BoundsArrayType &bounds) { mitk::ModifiedLock lock(this); this->CheckBounds(bounds); m_BoundingBox = BoundingBoxType::New(); BoundingBoxType::PointsContainer::Pointer pointscontainer = BoundingBoxType::PointsContainer::New(); BoundingBoxType::PointType p; BoundingBoxType::PointIdentifier pointid; for (pointid = 0; pointid < 2; ++pointid) { unsigned int i; for (i = 0; i < m_NDimensions; ++i) { p[i] = bounds[2 * i + pointid]; } pointscontainer->InsertElement(pointid, p); } m_BoundingBox->SetPoints(pointscontainer); m_BoundingBox->ComputeBoundingBox(); this->Modified(); } void mitk::BaseGeometry::SetIndexToWorldTransform(mitk::AffineTransform3D *transform) { mitk::ModifiedLock lock(this); CheckIndexToWorldTransform(transform); m_GeometryTransform->SetIndexToWorldTransform(transform); Modified(); } void mitk::BaseGeometry::SetIndexToWorldTransformWithoutChangingSpacing(mitk::AffineTransform3D *transform) { // security check mitk::Vector3D originalSpacing = this->GetSpacing(); mitk::ModifiedLock lock(this); CheckIndexToWorldTransform(transform); m_GeometryTransform->SetIndexToWorldTransformWithoutChangingSpacing(transform); Modified(); // Security check. Spacig must not have changed if (!mitk::Equal(originalSpacing, this->GetSpacing())) { MITK_WARN << "Spacing has changed in a method, where the spacing must not change."; assert(false); } } const mitk::BaseGeometry::BoundsArrayType mitk::BaseGeometry::GetBounds() const { assert(m_BoundingBox.IsNotNull()); return m_BoundingBox->GetBounds(); } bool mitk::BaseGeometry::IsValid() const { return true; } void mitk::BaseGeometry::SetSpacing(const mitk::Vector3D &aSpacing, bool enforceSetSpacing) { PreSetSpacing(aSpacing); _SetSpacing(aSpacing, enforceSetSpacing); } void mitk::BaseGeometry::_SetSpacing(const mitk::Vector3D &aSpacing, bool enforceSetSpacing) { m_GeometryTransform->SetSpacing(aSpacing, enforceSetSpacing); } mitk::Vector3D mitk::BaseGeometry::GetAxisVector(unsigned int direction) const { Vector3D frontToBack; frontToBack.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(direction).as_ref()); frontToBack *= GetExtent(direction); return frontToBack; } mitk::ScalarType mitk::BaseGeometry::GetExtent(unsigned int direction) const { assert(m_BoundingBox.IsNotNull()); if (direction >= m_NDimensions) mitkThrow() << "Direction is too big. This geometry is for 3D Data"; BoundsArrayType bounds = m_BoundingBox->GetBounds(); return bounds[direction * 2 + 1] - bounds[direction * 2]; } bool mitk::BaseGeometry::Is2DConvertable() { bool isConvertableWithoutLoss = true; do { if (this->GetSpacing()[2] != 1) { isConvertableWithoutLoss = false; break; } if (this->GetOrigin()[2] != 0) { isConvertableWithoutLoss = false; break; } mitk::Vector3D col0, col1, col2; col0.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0).as_ref()); col1.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(1).as_ref()); col2.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).as_ref()); if ((col0[2] != 0) || (col1[2] != 0) || (col2[0] != 0) || (col2[1] != 0) || (col2[2] != 1)) { isConvertableWithoutLoss = false; break; } } while (false); return isConvertableWithoutLoss; } mitk::Point3D mitk::BaseGeometry::GetCenter() const { assert(m_BoundingBox.IsNotNull()); Point3D c = m_BoundingBox->GetCenter(); if (m_ImageGeometry) { // Get Center returns the middel of min and max pixel index. In corner based images, this is the right position. // In center based images (imageGeometry == true), the index needs to be shifted back. c[0] -= 0.5; c[1] -= 0.5; c[2] -= 0.5; } this->IndexToWorld(c, c); return c; } double mitk::BaseGeometry::GetDiagonalLength2() const { Vector3D diagonalvector = GetCornerPoint() - GetCornerPoint(false, false, false); return diagonalvector.GetSquaredNorm(); } double mitk::BaseGeometry::GetDiagonalLength() const { return sqrt(GetDiagonalLength2()); } mitk::Point3D mitk::BaseGeometry::GetCornerPoint(int id) const { assert(id >= 0); assert(this->IsBoundingBoxNull() == false); BoundingBox::BoundsArrayType bounds = this->GetBoundingBox()->GetBounds(); Point3D cornerpoint; switch (id) { case 0: FillVector3D(cornerpoint, bounds[0], bounds[2], bounds[4]); break; case 1: FillVector3D(cornerpoint, bounds[0], bounds[2], bounds[5]); break; case 2: FillVector3D(cornerpoint, bounds[0], bounds[3], bounds[4]); break; case 3: FillVector3D(cornerpoint, bounds[0], bounds[3], bounds[5]); break; case 4: FillVector3D(cornerpoint, bounds[1], bounds[2], bounds[4]); break; case 5: FillVector3D(cornerpoint, bounds[1], bounds[2], bounds[5]); break; case 6: FillVector3D(cornerpoint, bounds[1], bounds[3], bounds[4]); break; case 7: FillVector3D(cornerpoint, bounds[1], bounds[3], bounds[5]); break; default: { itkExceptionMacro(<< "A cube only has 8 corners. These are labeled 0-7."); } } if (m_ImageGeometry) { // Here i have to adjust the 0.5 offset manually, because the cornerpoint is the corner of the // bounding box. The bounding box itself is no image, so it is corner-based FillVector3D(cornerpoint, cornerpoint[0] - 0.5, cornerpoint[1] - 0.5, cornerpoint[2] - 0.5); } return this->GetIndexToWorldTransform()->TransformPoint(cornerpoint); } mitk::Point3D mitk::BaseGeometry::GetCornerPoint(bool xFront, bool yFront, bool zFront) const { assert(this->IsBoundingBoxNull() == false); BoundingBox::BoundsArrayType bounds = this->GetBoundingBox()->GetBounds(); Point3D cornerpoint; cornerpoint[0] = (xFront ? bounds[0] : bounds[1]); cornerpoint[1] = (yFront ? bounds[2] : bounds[3]); cornerpoint[2] = (zFront ? bounds[4] : bounds[5]); if (m_ImageGeometry) { // Here i have to adjust the 0.5 offset manually, because the cornerpoint is the corner of the // bounding box. The bounding box itself is no image, so it is corner-based FillVector3D(cornerpoint, cornerpoint[0] - 0.5, cornerpoint[1] - 0.5, cornerpoint[2] - 0.5); } return this->GetIndexToWorldTransform()->TransformPoint(cornerpoint); } mitk::ScalarType mitk::BaseGeometry::GetExtentInMM(int direction) const { return this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(direction).magnitude() * GetExtent(direction); } void mitk::BaseGeometry::SetExtentInMM(int direction, ScalarType extentInMM) { mitk::ModifiedLock lock(this); ScalarType len = GetExtentInMM(direction); if (fabs(len - extentInMM) >= mitk::eps) { AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = m_GeometryTransform->GetVnlMatrix(); if (len > extentInMM) vnlmatrix.set_column(direction, vnlmatrix.get_column(direction) / len * extentInMM); else vnlmatrix.set_column(direction, vnlmatrix.get_column(direction) * extentInMM / len); Matrix3D matrix; matrix = vnlmatrix; m_GeometryTransform->SetMatrix(matrix); Modified(); } } bool mitk::BaseGeometry::IsInside(const mitk::Point3D &p) const { mitk::Point3D index; WorldToIndex(p, index); return IsIndexInside(index); } bool mitk::BaseGeometry::IsIndexInside(const mitk::Point3D &index) const { bool inside = false; // if it is an image geometry, we need to convert the index to discrete values // this is done by applying the rounding function also used in WorldToIndex (see line 323) if (m_ImageGeometry) { mitk::Point3D discretIndex; discretIndex[0] = itk::Math::RoundHalfIntegerUp(index[0]); discretIndex[1] = itk::Math::RoundHalfIntegerUp(index[1]); discretIndex[2] = itk::Math::RoundHalfIntegerUp(index[2]); inside = this->GetBoundingBox()->IsInside(discretIndex); // we have to check if the index is at the upper border of each dimension, // because the boundingbox is not centerbased if (inside) { const BoundingBox::BoundsArrayType &bounds = this->GetBoundingBox()->GetBounds(); if ((discretIndex[0] == bounds[1]) || (discretIndex[1] == bounds[3]) || (discretIndex[2] == bounds[5])) inside = false; } } else inside = this->GetBoundingBox()->IsInside(index); return inside; } void mitk::BaseGeometry::WorldToIndex(const mitk::Point3D &pt_mm, mitk::Point3D &pt_units) const { mitk::Vector3D tempIn, tempOut; const TransformType::OffsetType &offset = this->GetIndexToWorldTransform()->GetOffset(); tempIn = pt_mm.GetVectorFromOrigin() - offset; WorldToIndex(tempIn, tempOut); pt_units = Point3D(tempOut); } void mitk::BaseGeometry::WorldToIndex(const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const { // Get WorldToIndex transform if (m_IndexToWorldTransformLastModified != this->GetIndexToWorldTransform()->GetMTime()) { if (!m_InvertedTransform) { m_InvertedTransform = TransformType::New(); } if (!this->GetIndexToWorldTransform()->GetInverse(m_InvertedTransform.GetPointer())) { itkExceptionMacro("Internal ITK matrix inversion error, cannot proceed."); } m_IndexToWorldTransformLastModified = this->GetIndexToWorldTransform()->GetMTime(); } // Check for valid matrix inversion const TransformType::MatrixType &inverse = m_InvertedTransform->GetMatrix(); if (inverse.GetVnlMatrix().has_nans()) { itkExceptionMacro("Internal ITK matrix inversion error, cannot proceed. Matrix was: " << std::endl << this->GetIndexToWorldTransform()->GetMatrix() << "Suggested inverted matrix is:" << std::endl << inverse); } vec_units = inverse * vec_mm; } void mitk::BaseGeometry::WorldToIndex(const mitk::Point3D & /*atPt3d_mm*/, const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const { MITK_WARN << "Warning! Call of the deprecated function BaseGeometry::WorldToIndex(point, vec, vec). Use " "BaseGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } mitk::VnlVector mitk::BaseGeometry::GetOriginVnl() const { return GetOrigin().GetVnlVector(); } vtkLinearTransform *mitk::BaseGeometry::GetVtkTransform() const { return m_GeometryTransform->GetVtkTransform(); } void mitk::BaseGeometry::SetIdentity() { mitk::ModifiedLock lock(this); m_GeometryTransform->SetIdentity(); Modified(); } void mitk::BaseGeometry::Compose(const mitk::BaseGeometry::TransformType *other, bool pre) { mitk::ModifiedLock lock(this); m_GeometryTransform->Compose(other, pre); Modified(); } void mitk::BaseGeometry::Compose(const vtkMatrix4x4 *vtkmatrix, bool pre) { mitk::BaseGeometry::TransformType::Pointer itkTransform = mitk::BaseGeometry::TransformType::New(); TransferVtkMatrixToItkTransform(vtkmatrix, itkTransform.GetPointer()); Compose(itkTransform, pre); } void mitk::BaseGeometry::Translate(const Vector3D &vector) { if ((vector[0] != 0) || (vector[1] != 0) || (vector[2] != 0)) { this->SetOrigin(this->GetOrigin() + vector); } } void mitk::BaseGeometry::IndexToWorld(const mitk::Point3D &pt_units, mitk::Point3D &pt_mm) const { pt_mm = this->GetIndexToWorldTransform()->TransformPoint(pt_units); } void mitk::BaseGeometry::IndexToWorld(const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const { vec_mm = this->GetIndexToWorldTransform()->TransformVector(vec_units); } void mitk::BaseGeometry::ExecuteOperation(Operation *operation) { mitk::ModifiedLock lock(this); vtkTransform *vtktransform = vtkTransform::New(); vtktransform->SetMatrix(this->GetVtkMatrix()); switch (operation->GetOperationType()) { case OpNOTHING: break; case OpMOVE: { auto *pointOp = dynamic_cast(operation); if (pointOp == nullptr) { MITK_ERROR << "Point move operation is null!"; return; } mitk::Point3D newPos = pointOp->GetPoint(); ScalarType data[3]; vtktransform->GetPosition(data); vtktransform->PostMultiply(); vtktransform->Translate(newPos[0], newPos[1], newPos[2]); vtktransform->PreMultiply(); break; } case OpSCALE: { auto *scaleOp = dynamic_cast(operation); if (scaleOp == nullptr) { MITK_ERROR << "Scale operation is null!"; return; } mitk::Point3D newScale = scaleOp->GetScaleFactor(); ScalarType scalefactor[3]; scalefactor[0] = 1 + (newScale[0] / GetMatrixColumn(0).magnitude()); scalefactor[1] = 1 + (newScale[1] / GetMatrixColumn(1).magnitude()); scalefactor[2] = 1 + (newScale[2] / GetMatrixColumn(2).magnitude()); mitk::Point3D anchor = scaleOp->GetScaleAnchorPoint(); vtktransform->PostMultiply(); vtktransform->Translate(-anchor[0], -anchor[1], -anchor[2]); vtktransform->Scale(scalefactor[0], scalefactor[1], scalefactor[2]); vtktransform->Translate(anchor[0], anchor[1], anchor[2]); break; } case OpROTATE: { auto *rotateOp = dynamic_cast(operation); if (rotateOp == nullptr) { MITK_ERROR << "Rotation operation is null!"; return; } Vector3D rotationVector = rotateOp->GetVectorOfRotation(); Point3D center = rotateOp->GetCenterOfRotation(); ScalarType angle = rotateOp->GetAngleOfRotation(); vtktransform->PostMultiply(); vtktransform->Translate(-center[0], -center[1], -center[2]); vtktransform->RotateWXYZ(angle, rotationVector[0], rotationVector[1], rotationVector[2]); vtktransform->Translate(center[0], center[1], center[2]); vtktransform->PreMultiply(); break; } case OpRESTOREPLANEPOSITION: { // Copy necessary to avoid vtk warning vtkMatrix4x4 *matrix = vtkMatrix4x4::New(); TransferItkTransformToVtkMatrix( dynamic_cast(operation)->GetTransform().GetPointer(), matrix); vtktransform->SetMatrix(matrix); matrix->Delete(); break; } case OpAPPLYTRANSFORMMATRIX: { auto *applyMatrixOp = dynamic_cast(operation); vtktransform->SetMatrix(applyMatrixOp->GetMatrix()); break; } default: vtktransform->Delete(); return; } this->SetVtkMatrixDeepCopy(vtktransform); Modified(); vtktransform->Delete(); } mitk::VnlVector mitk::BaseGeometry::GetMatrixColumn(unsigned int direction) const { return this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(direction).as_ref(); } mitk::BoundingBox::Pointer mitk::BaseGeometry::CalculateBoundingBoxRelativeToTransform( const mitk::AffineTransform3D *transform) const { mitk::BoundingBox::PointsContainer::Pointer pointscontainer = mitk::BoundingBox::PointsContainer::New(); mitk::BoundingBox::PointIdentifier pointid = 0; unsigned char i; if (transform != nullptr) { mitk::AffineTransform3D::Pointer inverse = mitk::AffineTransform3D::New(); transform->GetInverse(inverse); for (i = 0; i < 8; ++i) pointscontainer->InsertElement(pointid++, inverse->TransformPoint(GetCornerPoint(i))); } else { for (i = 0; i < 8; ++i) pointscontainer->InsertElement(pointid++, GetCornerPoint(i)); } mitk::BoundingBox::Pointer result = mitk::BoundingBox::New(); result->SetPoints(pointscontainer); result->ComputeBoundingBox(); return result; } const std::string mitk::BaseGeometry::GetTransformAsString(TransformType *transformType) { std::ostringstream out; out << '['; for (int i = 0; i < 3; ++i) { out << '['; for (int j = 0; j < 3; ++j) out << transformType->GetMatrix().GetVnlMatrix().get(i, j) << ' '; out << ']'; } out << "]["; for (int i = 0; i < 3; ++i) out << transformType->GetOffset()[i] << ' '; out << "]\0"; return out.str(); } void mitk::BaseGeometry::SetIndexToWorldTransformByVtkMatrix(vtkMatrix4x4 *vtkmatrix) { m_GeometryTransform->SetIndexToWorldTransformByVtkMatrix(vtkmatrix); } void mitk::BaseGeometry::SetIndexToWorldTransformByVtkMatrixWithoutChangingSpacing(vtkMatrix4x4 *vtkmatrix) { m_GeometryTransform->SetIndexToWorldTransformByVtkMatrixWithoutChangingSpacing(vtkmatrix); } void mitk::BaseGeometry::IndexToWorld(const mitk::Point3D & /*atPt3d_units*/, const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const { MITK_WARN << "Warning! Call of the deprecated function BaseGeometry::IndexToWorld(point, vec, vec). Use " "BaseGeometry::IndexToWorld(vec, vec) instead!"; // vec_mm = m_IndexToWorldTransform->TransformVector(vec_units); this->IndexToWorld(vec_units, vec_mm); } vtkMatrix4x4 *mitk::BaseGeometry::GetVtkMatrix() { return m_GeometryTransform->GetVtkMatrix(); } bool mitk::BaseGeometry::IsBoundingBoxNull() const { return m_BoundingBox.IsNull(); } bool mitk::BaseGeometry::IsIndexToWorldTransformNull() const { return m_GeometryTransform->IsIndexToWorldTransformNull(); } void mitk::BaseGeometry::ChangeImageGeometryConsideringOriginOffset(const bool isAnImageGeometry) { // If Geometry is switched to ImageGeometry, you have to put an offset to the origin, because // imageGeometries origins are pixel-center-based // ... and remove the offset, if you switch an imageGeometry back to a normal geometry // For more information please see the Geometry documentation page if (m_ImageGeometry == isAnImageGeometry) return; const BoundingBox::BoundsArrayType &boundsarray = this->GetBoundingBox()->GetBounds(); Point3D originIndex; FillVector3D(originIndex, boundsarray[0], boundsarray[2], boundsarray[4]); if (isAnImageGeometry == true) FillVector3D(originIndex, originIndex[0] + 0.5, originIndex[1] + 0.5, originIndex[2] + 0.5); else FillVector3D(originIndex, originIndex[0] - 0.5, originIndex[1] - 0.5, originIndex[2] - 0.5); Point3D originWorld; originWorld = GetIndexToWorldTransform()->TransformPoint(originIndex); // instead could as well call IndexToWorld(originIndex,originWorld); SetOrigin(originWorld); this->SetImageGeometry(isAnImageGeometry); } void mitk::BaseGeometry::PrintSelf(std::ostream &os, itk::Indent indent) const { os << indent << " IndexToWorldTransform: "; if (this->IsIndexToWorldTransformNull()) os << "nullptr" << std::endl; else { // from itk::MatrixOffsetTransformBase unsigned int i, j; os << std::endl; os << indent << "Matrix: " << std::endl; for (i = 0; i < 3; i++) { os << indent.GetNextIndent(); for (j = 0; j < 3; j++) { os << this->GetIndexToWorldTransform()->GetMatrix()[i][j] << " "; } os << std::endl; } os << indent << "Offset: " << this->GetIndexToWorldTransform()->GetOffset() << std::endl; os << indent << "Center: " << this->GetIndexToWorldTransform()->GetCenter() << std::endl; os << indent << "Translation: " << this->GetIndexToWorldTransform()->GetTranslation() << std::endl; auto inverse = mitk::AffineTransform3D::New(); if (this->GetIndexToWorldTransform()->GetInverse(inverse)) { os << indent << "Inverse: " << std::endl; for (i = 0; i < 3; i++) { os << indent.GetNextIndent(); for (j = 0; j < 3; j++) { os << inverse->GetMatrix()[i][j] << " "; } os << std::endl; } } // from itk::ScalableAffineTransform os << indent << "Scale : "; for (i = 0; i < 3; i++) { os << this->GetIndexToWorldTransform()->GetScale()[i] << " "; } os << std::endl; } os << indent << " BoundingBox: "; if (this->IsBoundingBoxNull()) os << "nullptr" << std::endl; else { os << indent << "( "; for (unsigned int i = 0; i < 3; i++) { os << this->GetBoundingBox()->GetBounds()[2 * i] << "," << this->GetBoundingBox()->GetBounds()[2 * i + 1] << " "; } os << " )" << std::endl; } os << indent << " Origin: " << this->GetOrigin() << std::endl; os << indent << " ImageGeometry: " << this->GetImageGeometry() << std::endl; os << indent << " Spacing: " << this->GetSpacing() << std::endl; } void mitk::BaseGeometry::Modified() const { if (!m_ModifiedLockFlag) Superclass::Modified(); else m_ModifiedCalledFlag = true; } mitk::AffineTransform3D *mitk::BaseGeometry::GetIndexToWorldTransform() { return m_GeometryTransform->GetIndexToWorldTransform(); } const mitk::AffineTransform3D *mitk::BaseGeometry::GetIndexToWorldTransform() const { return m_GeometryTransform->GetIndexToWorldTransform(); } const mitk::GeometryTransformHolder *mitk::BaseGeometry::GetGeometryTransformHolder() const { return m_GeometryTransform; } +void mitk::BaseGeometry::MapAxesToOrientations(int axes[]) const +{ + auto affineTransform = this->GetIndexToWorldTransform(); + auto matrix = affineTransform->GetMatrix(); + matrix.GetVnlMatrix().normalize_columns(); + auto inverseMatrix = matrix.GetInverse(); + + bool mapped[3] = {false, false, false}; + + // We need to allow an epsilon difference to ignore rounding. + const double eps = 0.0001; + + for (int orientation = 0; orientation < 3; ++orientation) + { + auto absX = std::abs(inverseMatrix[0][orientation]); + auto absY = std::abs(inverseMatrix[1][orientation]); + auto absZ = std::abs(inverseMatrix[2][orientation]); + + // First we check if there is a single maximum value. If there is, we found the axis + // that corresponds to the given orientation. If there is no single maximum value, + // we choose one from the the two or three axes that have the maximum value, but we + // need to make sure that we do not map the same axis to different orientations. + // Equal values are valid if the volume is rotated by exactly 45 degrees around one + // axis. If the volume is rotated by 45 degrees around two axes, you will get single + // maximum values at the same axes for two different orientations. In this case, + // the axis is mapped to one of the orientations, and for the other orientation we + // choose a different axis that has not been mapped yet, even if it is not a maximum. + + if (absX > absY + eps) + { + if (absX > absZ + eps) + { + // x is the greatest + int axis = !mapped[0] ? 0 : !mapped[1] ? 1 : 2; + axes[orientation] = axis; + mapped[axis] = true; + } + else + { + // z is the greatest OR x and z are equal and greater than y + int axis = !mapped[2] ? 2 : !mapped[0] ? 0 : 1; + axes[orientation] = axis; + mapped[axis] = true; + } + } + else if (absY > absX + eps) + { + if (absY > absZ + eps) + { + // y is the greatest + int axis = !mapped[1] ? 1 : !mapped[2] ? 2 : 0; + axes[orientation] = axis; + mapped[axis] = true; + } + else + { + // z is the greatest OR y and z are equal and greater than x + int axis = !mapped[2] ? 2 : !mapped[1] ? 1 : 0; + axes[orientation] = axis; + mapped[axis] = true; + } + } + else + { + if (absZ > absX + eps) + { + // z is the greatest + int axis = !mapped[2] ? 2 : !mapped[0] ? 0 : 1; + axes[orientation] = axis; + mapped[axis] = true; + } + else + { + // x and y are equal and greater than z OR x and y and z are equal + int axis = !mapped[0] ? 0 : !mapped[1] ? 1 : 2; + axes[orientation] = axis; + mapped[axis] = true; + } + } + } + + assert(mapped[0] && mapped[1] && mapped[2]); +} + bool mitk::Equal(const mitk::BaseGeometry::BoundingBoxType &leftHandSide, const mitk::BaseGeometry::BoundingBoxType &rightHandSide, ScalarType eps, bool verbose) { bool result = true; BaseGeometry::BoundsArrayType rightBounds = rightHandSide.GetBounds(); BaseGeometry::BoundsArrayType leftBounds = leftHandSide.GetBounds(); BaseGeometry::BoundsArrayType::Iterator itLeft = leftBounds.Begin(); for (BaseGeometry::BoundsArrayType::Iterator itRight = rightBounds.Begin(); itRight != rightBounds.End(); ++itRight) { if ((!mitk::Equal(*itLeft, *itRight, eps))) { if (verbose) { MITK_INFO << "[( Geometry3D::BoundingBoxType )] bounds are not equal."; MITK_INFO << "rightHandSide is " << setprecision(12) << *itRight << " : leftHandSide is " << *itLeft << " and tolerance is " << eps; } result = false; } itLeft++; } return result; } bool mitk::Equal(const mitk::BaseGeometry &leftHandSide, const mitk::BaseGeometry &rightHandSide, ScalarType coordinateEps, ScalarType directionEps, bool verbose) { bool result = true; // Compare spacings if (!mitk::Equal(leftHandSide.GetSpacing(), rightHandSide.GetSpacing(), coordinateEps)) { if (verbose) { MITK_INFO << "[( Geometry3D )] Spacing differs."; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetSpacing() << " : leftHandSide is " << leftHandSide.GetSpacing() << " and tolerance is " << coordinateEps; } result = false; } // Compare Origins if (!mitk::Equal(leftHandSide.GetOrigin(), rightHandSide.GetOrigin(), coordinateEps)) { if (verbose) { MITK_INFO << "[( Geometry3D )] Origin differs."; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetOrigin() << " : leftHandSide is " << leftHandSide.GetOrigin() << " and tolerance is " << coordinateEps; } result = false; } // Compare Axis and Extents for (unsigned int i = 0; i < 3; ++i) { if (!mitk::Equal(leftHandSide.GetAxisVector(i), rightHandSide.GetAxisVector(i), directionEps)) { if (verbose) { MITK_INFO << "[( Geometry3D )] AxisVector #" << i << " differ"; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetAxisVector(i) << " : leftHandSide is " << leftHandSide.GetAxisVector(i) << " and tolerance is " << directionEps; } result = false; } if (!mitk::Equal(leftHandSide.GetExtent(i), rightHandSide.GetExtent(i), coordinateEps)) { if (verbose) { MITK_INFO << "[( Geometry3D )] Extent #" << i << " differ"; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetExtent(i) << " : leftHandSide is " << leftHandSide.GetExtent(i) << " and tolerance is " << coordinateEps; } result = false; } } // Compare ImageGeometry Flag if (rightHandSide.GetImageGeometry() != leftHandSide.GetImageGeometry()) { if (verbose) { MITK_INFO << "[( Geometry3D )] GetImageGeometry is different."; MITK_INFO << "rightHandSide is " << rightHandSide.GetImageGeometry() << " : leftHandSide is " << leftHandSide.GetImageGeometry(); } result = false; } // Compare FrameOfReference ID if (rightHandSide.GetFrameOfReferenceID() != leftHandSide.GetFrameOfReferenceID()) { if (verbose) { MITK_INFO << "[( Geometry3D )] GetFrameOfReferenceID is different."; MITK_INFO << "rightHandSide is " << rightHandSide.GetFrameOfReferenceID() << " : leftHandSide is " << leftHandSide.GetFrameOfReferenceID(); } result = false; } // Compare BoundingBoxes if (!mitk::Equal(*leftHandSide.GetBoundingBox(), *rightHandSide.GetBoundingBox(), coordinateEps, verbose)) { result = false; } // Compare IndexToWorldTransform Matrix if (!mitk::Equal(*leftHandSide.GetIndexToWorldTransform(), *rightHandSide.GetIndexToWorldTransform(), directionEps, verbose)) { result = false; } return result; } bool mitk::Equal(const mitk::BaseGeometry& leftHandSide, const mitk::BaseGeometry& rightHandSide, ScalarType eps, bool verbose) { return Equal(leftHandSide, rightHandSide, eps, eps, verbose); } bool mitk::Equal(const mitk::BaseGeometry::TransformType &leftHandSide, const mitk::BaseGeometry::TransformType &rightHandSide, ScalarType eps, bool verbose) { // Compare IndexToWorldTransform Matrix if (!mitk::MatrixEqualElementWise(leftHandSide.GetMatrix(), rightHandSide.GetMatrix(), eps)) { if (verbose) { MITK_INFO << "[( Geometry3D::TransformType )] Index to World Transformation matrix differs."; MITK_INFO << "rightHandSide is " << setprecision(12) << rightHandSide.GetMatrix() << " : leftHandSide is " << leftHandSide.GetMatrix() << " and tolerance is " << eps; } return false; } return true; } bool mitk::IsSubGeometry(const mitk::BaseGeometry& testGeo, const mitk::BaseGeometry& referenceGeo, ScalarType coordinateEps, ScalarType directionEps, bool verbose) { bool result = true; // Compare spacings (must be equal) const auto testedSpacing = testGeo.GetSpacing(); if (!mitk::Equal(testedSpacing, referenceGeo.GetSpacing(), coordinateEps)) { if (verbose) { MITK_INFO << "[( Geometry3D )] Spacing differs."; MITK_INFO << "testedGeometry is " << setprecision(12) << testedSpacing << " : referenceGeometry is " << referenceGeo.GetSpacing() << " and tolerance is " << coordinateEps; } result = false; } // Compare ImageGeometry Flag (must be equal) if (referenceGeo.GetImageGeometry() != testGeo.GetImageGeometry()) { if (verbose) { MITK_INFO << "[( Geometry3D )] GetImageGeometry is different."; MITK_INFO << "referenceGeo is " << referenceGeo.GetImageGeometry() << " : testGeo is " << testGeo.GetImageGeometry(); } result = false; } // Compare IndexToWorldTransform Matrix (must be equal -> same axis directions) if (!Equal(*(testGeo.GetIndexToWorldTransform()), *(referenceGeo.GetIndexToWorldTransform()), directionEps, verbose)) { result = false; } //check if the geometry is within or equal to the bounds of reference geomentry. for (int i = 0; i<8; ++i) { auto testCorner = testGeo.GetCornerPoint(i); bool isInside = false; mitk::Point3D testCornerIndex; referenceGeo.WorldToIndex(testCorner, testCornerIndex); std::bitset bs(i); //To regard the coordinateEps, we subtract or add it to the index elements //depending on whether it was constructed by a lower or an upper bound value //(see implementation of BaseGeometry::GetCorner()). if (bs.test(0)) { testCornerIndex[2] -= coordinateEps; } else { testCornerIndex[2] += coordinateEps; } if (bs.test(1)) { testCornerIndex[1] -= coordinateEps; } else { testCornerIndex[1] += coordinateEps; } if (bs.test(2)) { testCornerIndex[0] -= coordinateEps; } else { testCornerIndex[0] += coordinateEps; } isInside = referenceGeo.IsIndexInside(testCornerIndex); if (!isInside) { if (verbose) { MITK_INFO << "[( Geometry3D )] corner point is not inside. "; MITK_INFO << "referenceGeo is " << setprecision(12) << referenceGeo << " : tested corner is " << testGeo.GetCornerPoint(i); } result = false; } } // check grid of test geometry is on the grid of the reference geometry. This is important as the // boundingbox is only checked for containing the tested geometry, but if a corner (one is enough // as we know that axis and spacing are equal, due to equal transfor (see above)) of the tested geometry // is on the grid it is really a sub geometry (as they have the same spacing and axis). auto cornerOffset = testGeo.GetCornerPoint(0) - referenceGeo.GetCornerPoint(0); mitk::Vector3D cornerIndexOffset; referenceGeo.WorldToIndex(cornerOffset, cornerIndexOffset); for (unsigned int i = 0; i < 3; ++i) { auto pixelCountContinous = cornerIndexOffset[i]; auto pixelCount = std::round(pixelCountContinous); if (std::abs(pixelCount - pixelCountContinous) > coordinateEps) { if (verbose) { MITK_INFO << "[( Geometry3D )] Tested geometry is not on the grid of the reference geometry. "; MITK_INFO << "referenceGeo is " << setprecision(15) << referenceGeo << " : tested corner offset in pixels is " << pixelCountContinous << " for axis "< #include #include namespace mitk { PlaneGeometry::PlaneGeometry() : Superclass(), m_ReferenceGeometry(nullptr) { Initialize(); } PlaneGeometry::~PlaneGeometry() {} PlaneGeometry::PlaneGeometry(const PlaneGeometry &other) : Superclass(other), m_ReferenceGeometry(other.m_ReferenceGeometry) { } bool PlaneGeometry::CheckRotationMatrix(mitk::AffineTransform3D *transform, double epsilon) { bool rotation = true; auto matrix = transform->GetMatrix().GetVnlMatrix(); matrix.normalize_columns(); auto det = vnl_determinant(matrix); if (fabs(det-1.0) > epsilon) { MITK_WARN << "Invalid rotation matrix! Determinant != 1 (" << det << ")"; rotation = false; } vnl_matrix_fixed id; id.set_identity(); auto should_be_id = matrix*matrix.transpose(); should_be_id -= id; auto max = should_be_id.absolute_value_max(); if (max > epsilon) { MITK_WARN << "Invalid rotation matrix! R*R^T != ID. Max value: " << max << " (should be 0)"; rotation = false; } return rotation; } void PlaneGeometry::CheckIndexToWorldTransform(mitk::AffineTransform3D *transform) { this->CheckRotationMatrix(transform); } void PlaneGeometry::CheckBounds(const BoundingBox::BoundsArrayType &bounds) { // error: unused parameter 'bounds' // this happens in release mode, where the assert macro is defined empty // hence we "use" the parameter: (void)bounds; // currently the unit rectangle must be starting at the origin [0,0] assert(bounds[0] == 0); assert(bounds[2] == 0); // the unit rectangle must be two-dimensional assert(bounds[1] > 0); assert(bounds[3] > 0); } void PlaneGeometry::IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const { pt_mm[0] = GetExtentInMM(0) / GetExtent(0) * pt_units[0]; pt_mm[1] = GetExtentInMM(1) / GetExtent(1) * pt_units[1]; } void PlaneGeometry::WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const { pt_units[0] = pt_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); pt_units[1] = pt_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::IndexToWorld(const Point2D & /*atPt2d_units*/, const Vector2D &vec_units, Vector2D &vec_mm) const { MITK_WARN << "Warning! Call of the deprecated function PlaneGeometry::IndexToWorld(point, vec, vec). Use " "PlaneGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void PlaneGeometry::IndexToWorld(const Vector2D &vec_units, Vector2D &vec_mm) const { vec_mm[0] = (GetExtentInMM(0) / GetExtent(0)) * vec_units[0]; vec_mm[1] = (GetExtentInMM(1) / GetExtent(1)) * vec_units[1]; } void PlaneGeometry::WorldToIndex(const Point2D & /*atPt2d_mm*/, const Vector2D &vec_mm, Vector2D &vec_units) const { MITK_WARN << "Warning! Call of the deprecated function PlaneGeometry::WorldToIndex(point, vec, vec). Use " "PlaneGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void PlaneGeometry::WorldToIndex(const Vector2D &vec_mm, Vector2D &vec_units) const { vec_units[0] = vec_mm[0] * (1.0 / (GetExtentInMM(0) / GetExtent(0))); vec_units[1] = vec_mm[1] * (1.0 / (GetExtentInMM(1) / GetExtent(1))); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const Vector3D &spacing, AnatomicalPlane planeorientation, ScalarType zPosition, bool frontside, bool rotated, bool top) { AffineTransform3D::Pointer transform; transform = AffineTransform3D::New(); AffineTransform3D::MatrixType matrix; AffineTransform3D::MatrixType::InternalMatrixType &vnlmatrix = matrix.GetVnlMatrix(); vnlmatrix.set_identity(); vnlmatrix(0, 0) = spacing[0]; vnlmatrix(1, 1) = spacing[1]; vnlmatrix(2, 2) = spacing[2]; transform->SetIdentity(); transform->SetMatrix(matrix); InitializeStandardPlane(width, height, transform.GetPointer(), planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, mitk::ScalarType height, const AffineTransform3D *transform /* = nullptr */, AnatomicalPlane planeorientation /* = Axial */, mitk::ScalarType zPosition /* = 0 */, bool frontside /* = true */, bool rotated /* = false */, bool top /* = true */) { Superclass::Initialize(); /// construct standard view. // We define at the moment "frontside" as: axial from above, // coronal from front (nose), sagittal from right. // TODO: Double check with medicals doctors or radiologists [ ]. // We define the orientation in patient's view, e.g. LAI is in a axial cut // (parallel to the triangle ear-ear-nose): // first axis: To the left ear of the patient // seecond axis: To the nose of the patient // third axis: To the legs of the patient. // Options are: L/R left/right; A/P anterior/posterior; I/S inferior/superior // (AKA caudal/cranial). // We note on all cases in the following switch block r.h. for right handed // or l.h. for left handed to describe the different cases. // However, which system is chosen is defined at the end of the switch block. // CAVE / be careful: the vectors right and bottom are relative to the plane // and do NOT describe e.g. the right side of the patient. Point3D origin; /** Bottom means downwards, DV means Direction Vector. Both relative to the image! */ VnlVector rightDV(3), bottomDV(3); /** Origin of this plane is by default a zero vector and implicitly in the top-left corner: */ origin.Fill(0); /** This is different to all definitions in MITK, except the QT mouse clicks. * But it is like this here and we don't want to change a running system. * Just be aware, that IN THIS FUNCTION we define the origin at the top left (e.g. your screen). */ /** NormalDirection defines which axis (i.e. column index in the transform matrix) * is perpendicular to the plane: */ int normalDirection; switch (planeorientation) // Switch through our limited choice of standard planes: { case AnatomicalPlane::Original: /** Orientation 'Original' shall be done like the axial plane, * for whatever reasons. */ case AnatomicalPlane::Axial: if (frontside) // Radiologist's view from below. A cut along the triangle ear-ear-nose. { if (rotated == false) /** Origin in the top-left corner, x=[1; 0; 0], y=[0; 1; 0], z=[0; 0; 1], * origin=[0,0,zpos]: LAI (r.h.) * * 0---rightDV----> | * | | * | Picture of a finite, rectangular plane | * | ( insert LOLCAT-scan here ^_^ ) | * | | * v _________________________________________| * */ { FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else // Origin rotated to the bottom-right corner, x=[-1; 0; 0], y=[0; -1; 0], z=[0; 0; 1], // origin=[w,h,zpos]: RPI (r.h.) { // Caveat emptor: Still using top-left as origin of index coordinate system! FillVector3D(origin, width, height, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } else // 'Backside, not frontside.' Neuro-Surgeons's view from above patient. { if (rotated == false) // x=[-1; 0; 0], y=[0; 1; 0], z=[0; 0; 1], origin=[w,0,zpos]: RAS (r.h.) { FillVector3D(origin, width, 0, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else // Origin in the bottom-left corner, x=[1; 0; 0], y=[0; -1; 0], z=[0; 0; 1], // origin=[0,h,zpos]: LPS (r.h.) { FillVector3D(origin, 0, height, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } normalDirection = 2; // That is S=Superior=z=third_axis=middlefinger in righthanded LPS-system. break; case AnatomicalPlane::Coronal: // Coronal=Frontal plane; cuts through patient's ear-ear-heel-heel: if (frontside) { if (rotated == false) // x=[1; 0; 0], y=[0; 0; 1], z=[0; 1; 0], origin=[0,zpos,0]: LAI (r.h.) { FillVector3D(origin, 0, zPosition, 0); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[-1;0;0], y=[0;0;-1], z=[0;1;0], origin=[w,zpos,h]: RAS (r.h.) { FillVector3D(origin, width, zPosition, height); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if (rotated == false) // x=[-1;0;0], y=[0;0;1], z=[0;1;0], origin=[w,zpos,0]: RPI (r.h.) { FillVector3D(origin, width, zPosition, 0); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[1;0;0], y=[0;1;0], z=[0;0;-1], origin=[0,zpos,h]: LPS (r.h.) { FillVector3D(origin, 0, zPosition, height); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 1; // Normal vector = posterior direction. break; case AnatomicalPlane::Sagittal: // Sagittal=Medial plane, the symmetry-plane mirroring your face. if (frontside) { if (rotated == false) // x=[0;1;0], y=[0;0;1], z=[1;0;0], origin=[zpos,0,0]: LAI (r.h.) { FillVector3D(origin, zPosition, 0, 0); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[0;-1;0], y=[0;0;-1], z=[1;0;0], origin=[zpos,w,h]: LPS (r.h.) { FillVector3D(origin, zPosition, width, height); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if (rotated == false) // x=[0;-1;0], y=[0;0;1], z=[1;0;0], origin=[zpos,w,0]: RPI (r.h.) { FillVector3D(origin, zPosition, width, 0); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, 1); } else // x=[0;1;0], y=[0;0;-1], z=[1;0;0], origin=[zpos,0,h]: RAS (r.h.) { FillVector3D(origin, zPosition, 0, height); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 0; // Normal vector = Lateral direction: Left in a LPS-system. break; default: itkExceptionMacro("unknown AnatomicalPlane"); } VnlVector normal(3); FillVector3D(normal, 0, 0, 0); normal[normalDirection] = top ? 1 : -1; if ( transform != nullptr ) { origin = transform->TransformPoint( origin ); rightDV = transform->TransformVector( rightDV ).as_ref(); bottomDV = transform->TransformVector( bottomDV ).as_ref(); normal = transform->TransformVector( normal ).as_ref(); } ScalarType bounds[6] = {0, width, 0, height, 0, 1}; this->SetBounds(bounds); AffineTransform3D::Pointer planeTransform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV.as_ref()); matrix.GetVnlMatrix().set_column(1, bottomDV.as_ref()); matrix.GetVnlMatrix().set_column(2, normal.as_ref()); planeTransform->SetMatrix(matrix); planeTransform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); this->SetIndexToWorldTransform(planeTransform); this->SetOrigin(origin); } - - std::vector< int > PlaneGeometry::CalculateDominantAxes(mitk::AffineTransform3D::MatrixType::InternalMatrixType& rotation_matrix) - { - std::vector< int > axes; - - bool dominant_axis_error = false; - for (int i = 0; i < 3; ++i) - { - int dominantAxis = itk::Function::Max3( - rotation_matrix[0][i], - rotation_matrix[1][i], - rotation_matrix[2][i] - ); - - for (int j=0; jSetReferenceGeometry(geometry3D); ScalarType width, height; - // Inspired by: - // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 - - mitk::AffineTransform3D::MatrixType matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); - + auto matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); matrix.GetVnlMatrix().normalize_columns(); - mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetTranspose(); + auto inverseMatrix = matrix.GetInverse(); + + // The index of the sagittal, coronal and axial axes in the reference geometry. + int axes[3]; + geometry3D->MapAxesToOrientations(axes); - /// The index of the sagittal, coronal and axial axes in the reference geometry. - auto axes = CalculateDominantAxes(inverseMatrix); - /// The direction of the sagittal, coronal and axial axes in the reference geometry. - /// +1 means that the direction is straight, i.e. greater index translates to greater - /// world coordinate. -1 means that the direction is inverted. + // The direction of the sagittal, coronal and axial axes in the reference geometry. + // +1 means that the direction is straight, i.e. greater index translates to greater + // world coordinate. -1 means that the direction is inverted. int directions[3]; ScalarType extents[3]; ScalarType spacings[3]; for (int i=0; i<3; ++i) { - int dominantAxis = axes.at(i); - directions[i] = itk::Function::Sign(inverseMatrix[dominantAxis][i]); - extents[i] = geometry3D->GetExtent(dominantAxis); - spacings[i] = geometry3D->GetSpacing()[dominantAxis]; + int axis = axes[i]; + directions[i] = itk::Function::Sign(inverseMatrix[axis][i]); + extents[i] = geometry3D->GetExtent(axis); + spacings[i] = geometry3D->GetSpacing()[axis]; } // matrix(column) = inverseTransformMatrix(row) * flippedAxes * spacing matrix[0][0] = inverseMatrix[axes[0]][0] * directions[0] * spacings[0]; matrix[1][0] = inverseMatrix[axes[0]][1] * directions[0] * spacings[0]; matrix[2][0] = inverseMatrix[axes[0]][2] * directions[0] * spacings[0]; matrix[0][1] = inverseMatrix[axes[1]][0] * directions[1] * spacings[1]; matrix[1][1] = inverseMatrix[axes[1]][1] * directions[1] * spacings[1]; matrix[2][1] = inverseMatrix[axes[1]][2] * directions[1] * spacings[1]; matrix[0][2] = inverseMatrix[axes[2]][0] * directions[2] * spacings[2]; matrix[1][2] = inverseMatrix[axes[2]][1] * directions[2] * spacings[2]; matrix[2][2] = inverseMatrix[axes[2]][2] * directions[2] * spacings[2]; /// The "world origin" is the corner with the lowest physical coordinates. /// We use it as a reference point so that we get the correct anatomical /// orientations. Point3D worldOrigin = geometry3D->GetOrigin(); for (int i = 0; i < 3; ++i) { /// The distance of the plane origin from the world origin in voxels. double offset = directions[i] > 0 ? 0.0 : extents[i]; if (geometry3D->GetImageGeometry()) { offset += directions[i] * 0.5; } for (int j = 0; j < 3; ++j) { worldOrigin[j] -= offset * matrix[j][i]; } } switch(planeorientation) { case AnatomicalPlane::Original: /** Orientation 'Original' shall be done like the axial plane orientation, * for whatever reasons. */ case AnatomicalPlane::Axial: width = extents[0]; height = extents[1]; break; case AnatomicalPlane::Coronal: width = extents[0]; height = extents[2]; break; case AnatomicalPlane::Sagittal: width = extents[1]; height = extents[2]; break; default: itkExceptionMacro("unknown AnatomicalPlane"); } ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); AffineTransform3D::Pointer transform = AffineTransform3D::New(); transform->SetMatrix(matrix); transform->SetOffset(worldOrigin.GetVectorFromOrigin()); InitializeStandardPlane( width, height, transform, planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane(const BaseGeometry *geometry3D, bool top, AnatomicalPlane planeorientation, bool frontside, bool rotated) { /// The index of the sagittal, coronal and axial axes in world coordinate system. int worldAxis; switch(planeorientation) { case AnatomicalPlane::Original: /** Orientation 'Original' shall be done like the axial plane orientation, * for whatever reasons. */ case AnatomicalPlane::Axial: worldAxis = 2; break; case AnatomicalPlane::Coronal: worldAxis = 1; break; case AnatomicalPlane::Sagittal: worldAxis = 0; break; default: itkExceptionMacro("unknown AnatomicalPlane"); } - // Inspired by: - // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 - - mitk::AffineTransform3D::ConstPointer affineTransform = geometry3D->GetIndexToWorldTransform(); - mitk::AffineTransform3D::MatrixType matrix = affineTransform->GetMatrix(); - matrix.GetVnlMatrix().normalize_columns(); - mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetInverse(); - - /// The index of the sagittal, coronal and axial axes in the reference geometry. - int dominantAxis = CalculateDominantAxes(inverseMatrix).at(worldAxis); + int axes[3]; + geometry3D->MapAxesToOrientations(axes); + int axis = axes[worldAxis]; - ScalarType zPosition = top ? 0.5 : geometry3D->GetExtent(dominantAxis) - 0.5; + ScalarType zPosition = top ? 0.5 : geometry3D->GetExtent(axis) - 0.5; InitializeStandardPlane(geometry3D, planeorientation, zPosition, frontside, rotated, top); } void PlaneGeometry::InitializeStandardPlane(const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing) { InitializeStandardPlane(rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing); } void PlaneGeometry::InitializeStandardPlane(const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing) { ScalarType width = rightVector.two_norm(); ScalarType height = downVector.two_norm(); InitializeStandardPlane(width, height, rightVector, downVector, spacing); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing) { InitializeStandardPlane(width, height, rightVector.GetVnlVector(), downVector.GetVnlVector(), spacing); } void PlaneGeometry::InitializeStandardPlane(mitk::ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing) { assert(width > 0); assert(height > 0); VnlVector rightDV = rightVector; rightDV.normalize(); VnlVector downDV = downVector; downDV.normalize(); VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); // Crossproduct vnl_cross_3d is always righthanded, but that is okay here // because in this method we create a new IndexToWorldTransform and // spacing with 1 or 3 negative components could still make it lefthanded. if (spacing != nullptr) { rightDV *= (*spacing)[0]; downDV *= (*spacing)[1]; normal *= (*spacing)[2]; } AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, downDV); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); ScalarType bounds[6] = {0, width, 0, height, 0, 1}; this->SetBounds(bounds); this->SetIndexToWorldTransform(transform); } void PlaneGeometry::InitializePlane(const Point3D &origin, const Vector3D &normal) { VnlVector rightVectorVnl(3), downVectorVnl; if (Equal(normal[1], 0.0f) == false) { FillVector3D(rightVectorVnl, 1.0f, -normal[0] / normal[1], 0.0f); rightVectorVnl.normalize(); } else { FillVector3D(rightVectorVnl, 0.0f, 1.0f, 0.0f); } downVectorVnl = vnl_cross_3d(normal.GetVnlVector(), rightVectorVnl); downVectorVnl.normalize(); // Crossproduct vnl_cross_3d is always righthanded. InitializeStandardPlane(rightVectorVnl, downVectorVnl); SetOrigin(origin); } void PlaneGeometry::SetMatrixByVectors(const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness /* = 1.0 */) { VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); normal *= thickness; // Crossproduct vnl_cross_3d is always righthanded, but that is okay here // because in this method we create a new IndexToWorldTransform and // a negative thickness could still make it lefthanded. AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightVector); matrix.GetVnlMatrix().set_column(1, downVector); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); SetIndexToWorldTransform(transform); } Vector3D PlaneGeometry::GetNormal() const { Vector3D frontToBack; frontToBack.SetVnlVector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).as_ref()); return frontToBack; } VnlVector PlaneGeometry::GetNormalVnl() const { return this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2).as_ref(); } ScalarType PlaneGeometry::DistanceFromPlane(const Point3D &pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } ScalarType PlaneGeometry::SignedDistance(const Point3D &pt3d_mm) const { return SignedDistanceFromPlane(pt3d_mm); } bool PlaneGeometry::IsAbove(const Point3D &pt3d_mm, bool considerBoundingBox) const { if (considerBoundingBox) { Point3D pt3d_units; BaseGeometry::WorldToIndex(pt3d_mm, pt3d_units); return (pt3d_units[2] > this->GetBoundingBox()->GetBounds()[4]); } else return SignedDistanceFromPlane(pt3d_mm) > 0; } bool PlaneGeometry::IntersectionLine(const PlaneGeometry* plane, Line3D& crossline) const { Vector3D normal = this->GetNormal(); normal.Normalize(); Vector3D planeNormal = plane->GetNormal(); planeNormal.Normalize(); Vector3D direction = itk::CrossProduct(normal, planeNormal); if (direction.GetSquaredNorm() < eps) return false; crossline.SetDirection(direction); double N1dN2 = normal * planeNormal; double determinant = 1.0 - N1dN2 * N1dN2; Vector3D origin = this->GetOrigin().GetVectorFromOrigin(); Vector3D planeOrigin = plane->GetOrigin().GetVectorFromOrigin(); double d1 = normal * origin; double d2 = planeNormal * planeOrigin; double c1 = (d1 - d2 * N1dN2) / determinant; double c2 = (d2 - d1 * N1dN2) / determinant; Vector3D p = normal * c1 + planeNormal * c2; crossline.GetPoint()[0] = p.GetVnlVector()[0]; crossline.GetPoint()[1] = p.GetVnlVector()[1]; crossline.GetPoint()[2] = p.GetVnlVector()[2]; return true; } unsigned int PlaneGeometry::IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo) const { Line3D crossline; if (this->IntersectionLine(plane, crossline) == false) return 0; Point2D point2; Vector2D direction2; this->Map(crossline.GetPoint(), point2); this->Map(crossline.GetPoint(), crossline.GetDirection(), direction2); return Line3D::RectangleLineIntersection( 0, 0, GetExtentInMM(0), GetExtentInMM(1), point2, direction2, lineFrom, lineTo); } double PlaneGeometry::Angle(const PlaneGeometry *plane) const { return angle(plane->GetMatrixColumn(2), GetMatrixColumn(2)); } double PlaneGeometry::Angle(const Line3D &line) const { return vnl_math::pi_over_2 - angle(line.GetDirection().GetVnlVector(), GetMatrixColumn(2)); } bool PlaneGeometry::IntersectionPoint(const Line3D &line, Point3D &intersectionPoint) const { Vector3D planeNormal = this->GetNormal(); planeNormal.Normalize(); Vector3D lineDirection = line.GetDirection(); lineDirection.Normalize(); double t = planeNormal * lineDirection; if (fabs(t) < eps) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = (planeNormal * diff) / t; intersectionPoint = line.GetPoint() + lineDirection * t; return true; } bool PlaneGeometry::IntersectionPointParam(const Line3D &line, double &t) const { Vector3D planeNormal = this->GetNormal(); Vector3D lineDirection = line.GetDirection(); t = planeNormal * lineDirection; if (fabs(t) < eps) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = (planeNormal * diff) / t; return true; } bool PlaneGeometry::IsParallel(const PlaneGeometry *plane) const { return ((Angle(plane) < 10.0 * mitk::sqrteps) || (Angle(plane) > (vnl_math::pi - 10.0 * sqrteps))); } bool PlaneGeometry::IsOnPlane(const Point3D &point) const { return Distance(point) < eps; } bool PlaneGeometry::IsOnPlane(const Line3D &line) const { return ((Distance(line.GetPoint()) < eps) && (Distance(line.GetPoint2()) < eps)); } bool PlaneGeometry::IsOnPlane(const PlaneGeometry *plane) const { return (IsParallel(plane) && (Distance(plane->GetOrigin()) < eps)); } Point3D PlaneGeometry::ProjectPointOntoPlane(const Point3D &pt) const { ScalarType len = this->GetNormalVnl().two_norm(); return pt - this->GetNormal() * this->SignedDistanceFromPlane(pt) / len; } itk::LightObject::Pointer PlaneGeometry::InternalClone() const { Self::Pointer newGeometry = new PlaneGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void PlaneGeometry::ExecuteOperation(Operation *operation) { vtkTransform *transform = vtkTransform::New(); transform->SetMatrix(this->GetVtkMatrix()); switch (operation->GetOperationType()) { case OpORIENT: { auto *planeOp = dynamic_cast(operation); if (planeOp == nullptr) { return; } Point3D center = planeOp->GetPoint(); Vector3D orientationVector = planeOp->GetNormal(); Vector3D defaultVector; FillVector3D(defaultVector, 0.0, 0.0, 1.0); Vector3D rotationAxis = itk::CrossProduct(orientationVector, defaultVector); // double rotationAngle = acos( orientationVector[2] / orientationVector.GetNorm() ); double rotationAngle = atan2((double)rotationAxis.GetNorm(), (double)(orientationVector * defaultVector)); rotationAngle *= 180.0 / vnl_math::pi; transform->PostMultiply(); transform->Identity(); transform->Translate(center[0], center[1], center[2]); transform->RotateWXYZ(rotationAngle, rotationAxis[0], rotationAxis[1], rotationAxis[2]); transform->Translate(-center[0], -center[1], -center[2]); break; } case OpRESTOREPLANEPOSITION: { auto *op = dynamic_cast(operation); if (op == nullptr) { return; } AffineTransform3D::Pointer transform2 = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(0)); matrix.GetVnlMatrix().set_column(1, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(1)); matrix.GetVnlMatrix().set_column(2, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(2)); transform2->SetMatrix(matrix); Vector3D offset = op->GetTransform()->GetOffset(); transform2->SetOffset(offset); this->SetIndexToWorldTransform(transform2); ScalarType bounds[6] = {0, op->GetWidth(), 0, op->GetHeight(), 0, 1}; this->SetBounds(bounds); this->Modified(); transform->Delete(); return; } default: Superclass::ExecuteOperation(operation); transform->Delete(); return; } this->SetVtkMatrixDeepCopy(transform); this->Modified(); transform->Delete(); } void PlaneGeometry::PrintSelf(std::ostream &os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << " ScaleFactorMMPerUnitX: " << GetExtentInMM(0) / GetExtent(0) << std::endl; os << indent << " ScaleFactorMMPerUnitY: " << GetExtentInMM(1) / GetExtent(1) << std::endl; os << indent << " Normal: " << GetNormal() << std::endl; } bool PlaneGeometry::Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const { assert(this->IsBoundingBoxNull() == false); Point3D pt3d_units; Superclass::WorldToIndex(pt3d_mm, pt3d_units); pt2d_mm[0] = pt3d_units[0] * GetExtentInMM(0) / GetExtent(0); pt2d_mm[1] = pt3d_units[1] * GetExtentInMM(1) / GetExtent(1); pt3d_units[2] = 0; return this->GetBoundingBox()->IsInside(pt3d_units); } void PlaneGeometry::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { // pt2d_mm is measured from the origin of the world geometry (at least it called form BaseRendere::Mouse...Event) Point3D pt3d_units; pt3d_units[0] = pt2d_mm[0] / (GetExtentInMM(0) / GetExtent(0)); pt3d_units[1] = pt2d_mm[1] / (GetExtentInMM(1) / GetExtent(1)); pt3d_units[2] = 0; // pt3d_units is a continuous index. We divided it with the Scale Factor (= spacing in x and y) to convert it from mm // to index units. // pt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); // now we convert the 3d index to a 3D world point in mm. We could have used IndexToWorld as well as // GetITW->Transform... } void PlaneGeometry::SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height) { ScalarType bounds[6] = {0, width, 0, height, 0, 1}; ScalarType extent, newextentInMM; if (GetExtent(0) > 0) { extent = GetExtent(0); if (width > extent) newextentInMM = GetExtentInMM(0) / width * extent; else newextentInMM = GetExtentInMM(0) * extent / width; SetExtentInMM(0, newextentInMM); } if (GetExtent(1) > 0) { extent = GetExtent(1); if (width > extent) newextentInMM = GetExtentInMM(1) / height * extent; else newextentInMM = GetExtentInMM(1) * extent / height; SetExtentInMM(1, newextentInMM); } SetBounds(bounds); } bool PlaneGeometry::Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(this->IsBoundingBoxNull() == false); Point3D pt3d_units; Superclass::WorldToIndex(pt3d_mm, pt3d_units); pt3d_units[2] = 0; projectedPt3d_mm = GetIndexToWorldTransform()->TransformPoint(pt3d_units); return this->GetBoundingBox()->IsInside(pt3d_units); } bool PlaneGeometry::Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { assert(this->IsBoundingBoxNull() == false); Vector3D vec3d_units; Superclass::WorldToIndex(vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); return true; } bool PlaneGeometry::Project(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { MITK_WARN << "Deprecated function! Call Project(vec3D,vec3D) instead."; assert(this->IsBoundingBoxNull() == false); Vector3D vec3d_units; Superclass::WorldToIndex(atPt3d_mm, vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); Point3D pt3d_units; Superclass::WorldToIndex(atPt3d_mm, pt3d_units); return this->GetBoundingBox()->IsInside(pt3d_units); } bool PlaneGeometry::Map(const mitk::Point3D &atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { Point2D pt2d_mm_start, pt2d_mm_end; Point3D pt3d_mm_end; bool inside = Map(atPt3d_mm, pt2d_mm_start); pt3d_mm_end = atPt3d_mm + vec3d_mm; inside &= Map(pt3d_mm_end, pt2d_mm_end); vec2d_mm = pt2d_mm_end - pt2d_mm_start; return inside; } void PlaneGeometry::Map(const mitk::Point2D & /*atPt2d_mm*/, const mitk::Vector2D & /*vec2d_mm*/, mitk::Vector3D & /*vec3d_mm*/) const { //@todo implement parallel to the other Map method! assert(false); } void PlaneGeometry::SetReferenceGeometry(const mitk::BaseGeometry *geometry) { m_ReferenceGeometry = geometry; } const mitk::BaseGeometry *PlaneGeometry::GetReferenceGeometry() const { return m_ReferenceGeometry; } bool PlaneGeometry::HasReferenceGeometry() const { return (m_ReferenceGeometry != nullptr); } } // namespace diff --git a/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp b/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp index 6e23ef32d9..d03779a6a1 100644 --- a/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp +++ b/Modules/Core/src/DataManagement/mitkSlicedGeometry3D.cpp @@ -1,962 +1,960 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include "mitkSlicedGeometry3D.h" #include "mitkAbstractTransformGeometry.h" #include "mitkApplyTransformMatrixOperation.h" #include "mitkInteractionConst.h" #include "mitkPlaneGeometry.h" #include "mitkPlaneOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkRotationOperation.h" #include "mitkSliceNavigationController.h" const mitk::ScalarType PI = 3.14159265359; mitk::SlicedGeometry3D::SlicedGeometry3D() : m_EvenlySpaced(true), m_Slices(0), m_ReferenceGeometry(nullptr), m_SliceNavigationController(nullptr) { m_DirectionVector.Fill(0); this->InitializeSlicedGeometry(m_Slices); } mitk::SlicedGeometry3D::SlicedGeometry3D(const SlicedGeometry3D &other) : Superclass(other), m_EvenlySpaced(other.m_EvenlySpaced), m_Slices(other.m_Slices), m_ReferenceGeometry(other.m_ReferenceGeometry), m_SliceNavigationController(other.m_SliceNavigationController) { m_DirectionVector.Fill(0); SetSpacing(other.GetSpacing()); SetDirectionVector(other.GetDirectionVector()); if (m_EvenlySpaced) { assert(!other.m_PlaneGeometries.empty() && "This may happen when you use one of the old Initialize methods, which had a bool parameter that is implicitly casted to the number of slices now."); PlaneGeometry::Pointer geometry = other.m_PlaneGeometries[0]->Clone(); assert(geometry.IsNotNull()); SetPlaneGeometry(geometry, 0); } else { unsigned int s; for (s = 0; s < other.m_Slices; ++s) { if (other.m_PlaneGeometries[s].IsNull()) { assert(other.m_EvenlySpaced); m_PlaneGeometries[s] = nullptr; } else { PlaneGeometry *geometry2D = other.m_PlaneGeometries[s]->Clone(); assert(geometry2D != nullptr); SetPlaneGeometry(geometry2D, s); } } } } mitk::SlicedGeometry3D::~SlicedGeometry3D() { } mitk::PlaneGeometry *mitk::SlicedGeometry3D::GetPlaneGeometry(int s) const { mitk::PlaneGeometry::Pointer geometry2D = nullptr; if (this->IsValidSlice(s)) { geometry2D = m_PlaneGeometries[s]; // If (a) m_EvenlySpaced==true, (b) we don't have a PlaneGeometry stored // for the requested slice, and (c) the first slice (s=0) // is a PlaneGeometry instance, then we calculate the geometry of the // requested as the plane of the first slice shifted by m_Spacing[2]*s // in the direction of m_DirectionVector. if ((m_EvenlySpaced) && (geometry2D.IsNull())) { PlaneGeometry *firstSlice = m_PlaneGeometries[0]; if (firstSlice != nullptr && dynamic_cast(m_PlaneGeometries[0].GetPointer()) == nullptr) { if ((m_DirectionVector[0] == 0.0) && (m_DirectionVector[1] == 0.0) && (m_DirectionVector[2] == 0.0)) { m_DirectionVector = firstSlice->GetNormal(); m_DirectionVector.Normalize(); } Vector3D direction; direction = m_DirectionVector * this->GetSpacing()[2]; mitk::PlaneGeometry::Pointer requestedslice; requestedslice = static_cast(firstSlice->Clone().GetPointer()); requestedslice->SetOrigin(requestedslice->GetOrigin() + direction * s); geometry2D = requestedslice; m_PlaneGeometries[s] = geometry2D; } } return geometry2D; } else { return nullptr; } } const mitk::BoundingBox *mitk::SlicedGeometry3D::GetBoundingBox() const { assert(this->IsBoundingBoxNull() == false); return Superclass::GetBoundingBox(); } bool mitk::SlicedGeometry3D::SetPlaneGeometry(mitk::PlaneGeometry *geometry2D, int s) { if (this->IsValidSlice(s)) { m_PlaneGeometries[s] = geometry2D; m_PlaneGeometries[s]->SetReferenceGeometry(m_ReferenceGeometry); return true; } return false; } void mitk::SlicedGeometry3D::InitializeSlicedGeometry(unsigned int slices) { Superclass::Initialize(); m_Slices = slices; PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); Vector3D spacing; spacing.Fill(1.0); this->SetSpacing(spacing); m_DirectionVector.Fill(0); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced(mitk::PlaneGeometry *geometry2D, unsigned int slices) { assert(geometry2D != nullptr); this->InitializeEvenlySpaced(geometry2D, geometry2D->GetExtentInMM(2) / geometry2D->GetExtent(2), slices); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced(mitk::PlaneGeometry *geometry2D, mitk::ScalarType zSpacing, unsigned int slices) { assert(geometry2D != nullptr); assert(geometry2D->GetExtent(0) > 0); assert(geometry2D->GetExtent(1) > 0); geometry2D->Register(); Superclass::Initialize(); m_Slices = slices; BoundingBox::BoundsArrayType bounds = geometry2D->GetBounds(); bounds[4] = 0; bounds[5] = slices; // clear and reserve PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); Vector3D directionVector = geometry2D->GetAxisVector(2); directionVector.Normalize(); directionVector *= zSpacing; // Normally we should use the following four lines to create a copy of // the transform contained in geometry2D, because it may not be changed // by us. But we know that SetSpacing creates a new transform without // changing the old (coming from geometry2D), so we can use the fifth // line instead. We check this at (**). // // AffineTransform3D::Pointer transform = AffineTransform3D::New(); // transform->SetMatrix(geometry2D->GetIndexToWorldTransform()->GetMatrix()); // transform->SetOffset(geometry2D->GetIndexToWorldTransform()->GetOffset()); // SetIndexToWorldTransform(transform); this->SetIndexToWorldTransform(geometry2D->GetIndexToWorldTransform()); mitk::Vector3D spacing; FillVector3D(spacing, geometry2D->GetExtentInMM(0) / bounds[1], geometry2D->GetExtentInMM(1) / bounds[3], zSpacing); this->SetDirectionVector(directionVector); this->SetBounds(bounds); this->SetPlaneGeometry(geometry2D, 0); this->SetSpacing(spacing, true); this->SetEvenlySpaced(); // this->SetTimeBounds( geometry2D->GetTimeBounds() ); assert(this->GetIndexToWorldTransform() != geometry2D->GetIndexToWorldTransform()); // (**) see above. this->SetFrameOfReferenceID(geometry2D->GetFrameOfReferenceID()); this->SetImageGeometry(geometry2D->GetImageGeometry()); geometry2D->UnRegister(); } void mitk::SlicedGeometry3D::InitializePlanes(const mitk::BaseGeometry *geometry3D, mitk::AnatomicalPlane orientation, bool top, bool frontside, bool rotated) { m_ReferenceGeometry = geometry3D; PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane(geometry3D, top, orientation, frontside, rotated); int worldAxis = orientation == AnatomicalPlane::Sagittal ? 0 : orientation == AnatomicalPlane::Coronal ? 1 : 2; - // Inspired by: - // http://www.na-mic.org/Wiki/index.php/Coordinate_System_Conversion_Between_ITK_and_Slicer3 + int axes[3]; + geometry3D->MapAxesToOrientations(axes); + int axis = axes[worldAxis]; - mitk::AffineTransform3D::MatrixType matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); - matrix.GetVnlMatrix().normalize_columns(); - mitk::AffineTransform3D::MatrixType::InternalMatrixType inverseMatrix = matrix.GetTranspose(); - - int dominantAxis = planeGeometry->CalculateDominantAxes(inverseMatrix).at(worldAxis); - ScalarType viewSpacing = geometry3D->GetSpacing()[dominantAxis]; - - /// Although the double value returned by GetExtent() holds a round number, - /// you need to add 0.5 to safely convert it to unsigned it. I have seen a - /// case when the result was less by one without this. - auto slices = static_cast(geometry3D->GetExtent(dominantAxis) + 0.5); - if ( slices == 0 && geometry3D->GetExtent(dominantAxis) > 0) { - // require at least one slice if there is _some_ extent - slices = 1; + ScalarType viewSpacing = geometry3D->GetSpacing()[axis]; + unsigned int slices = static_cast(geometry3D->GetExtent(axis) + 0.5); + + if (slices == 0 && geometry3D->GetExtent(axis) > 0) + { + // require at least one slice if there is _some_ extent + slices = 1; } #ifndef NDEBUG - int upDirection = itk::Function::Sign(inverseMatrix[dominantAxis][worldAxis]); + auto matrix = geometry3D->GetIndexToWorldTransform()->GetMatrix(); + matrix.GetVnlMatrix().normalize_columns(); + auto inverseMatrix = matrix.GetInverse(); + + int upDirection = itk::Function::Sign(inverseMatrix[axis][worldAxis]); /// The normal vector of an imaginary plane that points from the world origin (bottom left back /// corner or the world, with the lowest physical coordinates) towards the inside of the volume, /// along the renderer axis. Length is the slice thickness. - Vector3D worldPlaneNormal = inverseMatrix.get_row(dominantAxis) * (upDirection * viewSpacing); + Vector3D worldPlaneNormal = inverseMatrix.get_row(axis) * (upDirection * viewSpacing); /// The normal of the standard plane geometry just created. Vector3D standardPlaneNormal = planeGeometry->GetNormal(); /// The standard plane must be parallel to the 'world plane'. The normal of the standard plane /// must point against the world plane if and only if 'top' is 'false'. The length of the /// standard plane normal must be equal to the slice thickness. assert((standardPlaneNormal - (top ? 1.0 : -1.0) * worldPlaneNormal).GetSquaredNorm() < 0.000001); #endif this->InitializeEvenlySpaced(planeGeometry, viewSpacing, slices); #ifndef NDEBUG /// The standard plane normal and the z axis vector of the sliced geometry must point in /// the same direction. Vector3D zAxisVector = this->GetAxisVector(2); Vector3D upscaledStandardPlaneNormal = standardPlaneNormal; upscaledStandardPlaneNormal *= slices; assert((zAxisVector - upscaledStandardPlaneNormal).GetSquaredNorm() < 0.000001); /// You can use this test is to check the handedness of the coordinate system of the current /// geometry. In principle, you can use either left- or right-handed coordinate systems, but /// you normally want it to be consistent, that is the handedness should be the same across /// the renderers of the same viewer. // ScalarType det = vnl_det(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix()); // MITK_DEBUG << "world axis: " << worldAxis << (det > 0 ? " ; right-handed" : " ; left-handed"); #endif } void mitk::SlicedGeometry3D::ReinitializePlanes(const Point3D ¢er, const Point3D &referencePoint) { // Need a reference frame to align the rotated planes if (!m_ReferenceGeometry) { return; } // Get first plane of plane stack PlaneGeometry *firstPlane = m_PlaneGeometries[0]; // If plane stack is empty, exit if (!firstPlane || dynamic_cast(firstPlane)) { return; } // Calculate the "directed" spacing when taking the plane (defined by its axes // vectors and normal) as the reference coordinate frame. // // This is done by calculating the radius of the ellipsoid defined by the // original volume spacing axes, in the direction of the respective axis of the // reference frame. mitk::Vector3D axis0 = firstPlane->GetAxisVector(0); mitk::Vector3D axis1 = firstPlane->GetAxisVector(1); mitk::Vector3D normal = firstPlane->GetNormal(); normal.Normalize(); Vector3D spacing; spacing[0] = this->CalculateSpacing(axis0); spacing[1] = this->CalculateSpacing(axis1); spacing[2] = this->CalculateSpacing(normal); Superclass::SetSpacing(spacing); // Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above. ScalarType directedExtent = std::abs(m_ReferenceGeometry->GetExtentInMM(0) * normal[0]) + std::abs(m_ReferenceGeometry->GetExtentInMM(1) * normal[1]) + std::abs(m_ReferenceGeometry->GetExtentInMM(2) * normal[2]); if (directedExtent >= spacing[2]) { m_Slices = static_cast(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } // The origin of our "first plane" needs to be adapted to this new extent. // To achieve this, we first calculate the current distance to the volume's // center, and then shift the origin in the direction of the normal by the // difference between this distance and half of the new extent. double centerOfRotationDistance = firstPlane->SignedDistanceFromPlane(center); if (centerOfRotationDistance > 0) { firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * (centerOfRotationDistance - directedExtent / 2.0)); m_DirectionVector = normal; } else { firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * (directedExtent / 2.0 + centerOfRotationDistance)); m_DirectionVector = -normal; } // Now we adjust this distance according with respect to the given reference // point: we need to make sure that the point is touched by one slice of the // new slice stack. double referencePointDistance = firstPlane->SignedDistanceFromPlane(referencePoint); auto referencePointSlice = static_cast(referencePointDistance / spacing[2]); double alignmentValue = referencePointDistance / spacing[2] - referencePointSlice; firstPlane->SetOrigin(firstPlane->GetOrigin() + normal * alignmentValue * spacing[2]); // Finally, we can clear the previous geometry stack and initialize it with // our re-initialized "first plane". m_PlaneGeometries.assign(m_Slices, PlaneGeometry::Pointer(nullptr)); if (m_Slices > 0) { m_PlaneGeometries[0] = firstPlane; } // Reinitialize SNC with new number of slices m_SliceNavigationController->GetStepper()->SetSteps(m_Slices); this->Modified(); } double mitk::SlicedGeometry3D::CalculateSpacing(const mitk::Vector3D &d) const { // Need the spacing of the underlying dataset / geometry if (!m_ReferenceGeometry) { return 1.0; } const mitk::Vector3D &spacing = m_ReferenceGeometry->GetSpacing(); return SlicedGeometry3D::CalculateSpacing(spacing, d); } double mitk::SlicedGeometry3D::CalculateSpacing(const mitk::Vector3D &spacing, const mitk::Vector3D &d) { // The following can be derived from the ellipsoid equation // // 1 = x^2/a^2 + y^2/b^2 + z^2/c^2 // // where (a,b,c) = spacing of original volume (ellipsoid radii) // and (x,y,z) = scaled coordinates of vector d (according to ellipsoid) // double scaling = d[0] * d[0] / (spacing[0] * spacing[0]) + d[1] * d[1] / (spacing[1] * spacing[1]) + d[2] * d[2] / (spacing[2] * spacing[2]); scaling = sqrt(scaling); return (sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]) / scaling); } mitk::Vector3D mitk::SlicedGeometry3D::AdjustNormal(const mitk::Vector3D &normal) const { TransformType::Pointer inverse = TransformType::New(); m_ReferenceGeometry->GetIndexToWorldTransform()->GetInverse(inverse); Vector3D transformedNormal = inverse->TransformVector(normal); transformedNormal.Normalize(); return transformedNormal; } void mitk::SlicedGeometry3D::SetImageGeometry(const bool isAnImageGeometry) { Superclass::SetImageGeometry(isAnImageGeometry); unsigned int s; for (s = 0; s < m_Slices; ++s) { mitk::BaseGeometry *geometry = m_PlaneGeometries[s]; if (geometry != nullptr) { geometry->SetImageGeometry(isAnImageGeometry); } } } void mitk::SlicedGeometry3D::ChangeImageGeometryConsideringOriginOffset(const bool isAnImageGeometry) { unsigned int s; for (s = 0; s < m_Slices; ++s) { mitk::BaseGeometry *geometry = m_PlaneGeometries[s]; if (geometry != nullptr) { geometry->ChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } } Superclass::ChangeImageGeometryConsideringOriginOffset(isAnImageGeometry); } bool mitk::SlicedGeometry3D::IsValidSlice(int s) const { return ((s >= 0) && (s < (int)m_Slices)); } const mitk::BaseGeometry *mitk::SlicedGeometry3D::GetReferenceGeometry() const { return m_ReferenceGeometry; } void mitk::SlicedGeometry3D::SetReferenceGeometry(const BaseGeometry *referenceGeometry) { m_ReferenceGeometry = referenceGeometry; std::vector::iterator it; for (it = m_PlaneGeometries.begin(); it != m_PlaneGeometries.end(); ++it) { (*it)->SetReferenceGeometry(referenceGeometry); } } bool mitk::SlicedGeometry3D::HasReferenceGeometry() const { return ( m_ReferenceGeometry != nullptr ); } void mitk::SlicedGeometry3D::PreSetSpacing(const mitk::Vector3D &aSpacing) { bool hasEvenlySpacedPlaneGeometry = false; mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; BoundingBox::BoundsArrayType bounds; // Check for valid spacing if (!(aSpacing[0] > 0 && aSpacing[1] > 0 && aSpacing[2] > 0)) { mitkThrow() << "You try to set a spacing with at least one element equal or " "smaller to \"0\". This might lead to a crash during rendering. Please double" " check your data!"; } // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if ((m_EvenlySpaced) && (m_PlaneGeometries.size() > 0)) { const PlaneGeometry *planeGeometry = m_PlaneGeometries[0]; if (planeGeometry && !dynamic_cast(planeGeometry)) { this->WorldToIndex(planeGeometry->GetOrigin(), origin); this->WorldToIndex(planeGeometry->GetAxisVector(0), rightDV); this->WorldToIndex(planeGeometry->GetAxisVector(1), bottomDV); bounds = planeGeometry->GetBounds(); hasEvenlySpacedPlaneGeometry = true; } } BaseGeometry::_SetSpacing(aSpacing); mitk::PlaneGeometry::Pointer firstGeometry; // In case of evenly-spaced data: re-initialize instances of PlaneGeometry, // since the spacing influences them if (hasEvenlySpacedPlaneGeometry) { // create planeGeometry according to new spacing this->IndexToWorld(origin, origin); this->IndexToWorld(rightDV, rightDV); this->IndexToWorld(bottomDV, bottomDV); mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->SetImageGeometry(this->GetImageGeometry()); planeGeometry->SetReferenceGeometry(m_ReferenceGeometry); // Store spacing, as Initialize... needs a pointer mitk::Vector3D lokalSpacing = this->GetSpacing(); planeGeometry->InitializeStandardPlane(rightDV.GetVnlVector(), bottomDV.GetVnlVector(), &lokalSpacing); planeGeometry->SetOrigin(origin); planeGeometry->SetBounds(bounds); firstGeometry = planeGeometry; } else if ((m_EvenlySpaced) && (m_PlaneGeometries.size() > 0)) { firstGeometry = m_PlaneGeometries[0].GetPointer(); } // clear and reserve PlaneGeometry::Pointer gnull = nullptr; m_PlaneGeometries.assign(m_Slices, gnull); if (m_Slices > 0) { m_PlaneGeometries[0] = firstGeometry; } this->Modified(); } void mitk::SlicedGeometry3D::SetSliceNavigationController(SliceNavigationController *snc) { m_SliceNavigationController = snc; } mitk::SliceNavigationController *mitk::SlicedGeometry3D::GetSliceNavigationController() { return m_SliceNavigationController; } void mitk::SlicedGeometry3D::SetEvenlySpaced(bool on) { if (m_EvenlySpaced != on) { m_EvenlySpaced = on; this->Modified(); } } void mitk::SlicedGeometry3D::SetDirectionVector(const mitk::Vector3D &directionVector) { Vector3D newDir = directionVector; newDir.Normalize(); if (newDir != m_DirectionVector) { m_DirectionVector = newDir; this->Modified(); } } // void // mitk::SlicedGeometry3D::SetTimeBounds( const mitk::TimeBounds& timebounds ) //{ // Superclass::SetTimeBounds( timebounds ); // // unsigned int s; // for ( s = 0; s < m_Slices; ++s ) // { // if(m_Geometry2Ds[s].IsNotNull()) // { // m_Geometry2Ds[s]->SetTimeBounds( timebounds ); // } // } // m_TimeBounds = timebounds; //} itk::LightObject::Pointer mitk::SlicedGeometry3D::InternalClone() const { Self::Pointer newGeometry = new SlicedGeometry3D(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::SlicedGeometry3D::PrintSelf(std::ostream &os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << " EvenlySpaced: " << m_EvenlySpaced << std::endl; if (m_EvenlySpaced) { os << indent << " DirectionVector: " << m_DirectionVector << std::endl; } os << indent << " Slices: " << m_Slices << std::endl; os << std::endl; os << indent << " GetPlaneGeometry(0): "; if (this->GetPlaneGeometry(0) == nullptr) { os << "nullptr" << std::endl; } else { this->GetPlaneGeometry(0)->Print(os, indent); } } void mitk::SlicedGeometry3D::ExecuteOperation(Operation *operation) { PlaneGeometry::Pointer geometry2D; ApplyTransformMatrixOperation *applyMatrixOp; Point3D center; switch (operation->GetOperationType()) { case OpNOTHING: break; case OpROTATE: if (m_EvenlySpaced) { // Need a reference frame to align the rotation if (m_ReferenceGeometry) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Save first slice PlaneGeometry::Pointer geometry2D = m_PlaneGeometries[0]; auto *rotOp = dynamic_cast(operation); // Generate a RotationOperation using the dataset center instead of // the supplied rotation center. This is necessary so that the rotated // zero-plane does not shift away. The supplied center is instead used // to adjust the slice stack afterwards. Point3D center = m_ReferenceGeometry->GetCenter(); RotationOperation centeredRotation( rotOp->GetOperationType(), center, rotOp->GetVectorOfRotation(), rotOp->GetAngleOfRotation()); // Rotate first slice geometry2D->ExecuteOperation(¢eredRotation); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes(center, rotOp->GetCenterOfRotation()); geometry2D->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(rotOp->GetCenterOfRotation()); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation(¢eredRotation); } else { // we also have to consider the case, that there is no reference geometry available. if (m_PlaneGeometries.size() > 0) { // Reach through to all slices in my container for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { // Test for empty slices, which can happen if evenly spaced geometry if ((*iter).IsNotNull()) { (*iter)->ExecuteOperation(operation); } } // rotate overall geometry auto *rotOp = dynamic_cast(operation); BaseGeometry::ExecuteOperation(rotOp); } } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpORIENT: if (m_EvenlySpaced) { // get operation data auto *planeOp = dynamic_cast(operation); // Get first slice PlaneGeometry::Pointer planeGeometry = m_PlaneGeometries[0]; // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation. If not all available, stop here if (!m_ReferenceGeometry || (!planeGeometry || dynamic_cast(planeGeometry.GetPointer())) || !planeOp) { break; } // General Behavior: // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // // 1st Step: Reorient Normal Vector of first plane // Point3D center = planeOp->GetPoint(); // m_ReferenceGeometry->GetCenter(); mitk::Vector3D currentNormal = planeGeometry->GetNormal(); mitk::Vector3D newNormal; if (planeOp->AreAxisDefined()) { // If planeOp was defined by one centerpoint and two axis vectors newNormal = CrossProduct(planeOp->GetAxisVec0(), planeOp->GetAxisVec1()); } else { // If planeOp was defined by one centerpoint and one normal vector newNormal = planeOp->GetNormal(); } // Get Rotation axis und angle currentNormal.Normalize(); newNormal.Normalize(); ScalarType rotationAngle = angle(currentNormal.GetVnlVector(), newNormal.GetVnlVector()); rotationAngle *= 180.0 / vnl_math::pi; // from rad to deg Vector3D rotationAxis = itk::CrossProduct(currentNormal, newNormal); if (std::abs(rotationAngle - 180) < mitk::eps) { // current Normal and desired normal are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis should be ANY vector that is 90� to current Normal mitk::Vector3D helpNormal; helpNormal = currentNormal; helpNormal[0] += 1; helpNormal[1] -= 1; helpNormal[2] += 1; helpNormal.Normalize(); rotationAxis = itk::CrossProduct(helpNormal, currentNormal); } RotationOperation centeredRotation(mitk::OpROTATE, center, rotationAxis, rotationAngle); // Rotate first slice planeGeometry->ExecuteOperation(¢eredRotation); // Reinitialize planes and select slice, if my rotations are all done. if (!planeOp->AreAxisDefined()) { // Clear the slice stack and adjust it according to the center of // rotation and plane position (see documentation of ReinitializePlanes) this->ReinitializePlanes(center, planeOp->GetPoint()); planeGeometry->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(planeOp->GetPoint()); m_SliceNavigationController->AdjustSliceStepperRange(); } } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation(¢eredRotation); // // 2nd step. If axis vectors were defined, rotate the plane around its normal to fit these // if (planeOp->AreAxisDefined()) { mitk::Vector3D vecAxixNew = planeOp->GetAxisVec0(); vecAxixNew.Normalize(); mitk::Vector3D VecAxisCurr = planeGeometry->GetAxisVector(0); VecAxisCurr.Normalize(); ScalarType rotationAngle = angle(VecAxisCurr.GetVnlVector(), vecAxixNew.GetVnlVector()); rotationAngle = rotationAngle * 180 / PI; // Rad to Deg // we rotate around the normal of the plane, but we do not know, if we need to rotate clockwise // or anti-clockwise. So we rotate around the crossproduct of old and new Axisvector. // Since both axis vectors lie in the plane, the crossproduct is the planes normal or the negative planes // normal rotationAxis = itk::CrossProduct(VecAxisCurr, vecAxixNew); if (std::abs(rotationAngle - 180) < mitk::eps) { // current axisVec and desired axisVec are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis can be just plane Normal. (have to rotate by 180�) rotationAxis = newNormal; } // Perform Rotation mitk::RotationOperation op(mitk::OpROTATE, center, rotationAxis, rotationAngle); planeGeometry->ExecuteOperation(&op); // Apply changes on first slice to whole slice stack this->ReinitializePlanes(center, planeOp->GetPoint()); planeGeometry->SetSpacing(this->GetSpacing()); if (m_SliceNavigationController) { m_SliceNavigationController->SelectSliceByPoint(planeOp->GetPoint()); m_SliceNavigationController->AdjustSliceStepperRange(); } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) BaseGeometry::ExecuteOperation(&op); } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpRESTOREPLANEPOSITION: if (m_EvenlySpaced) { // Save first slice PlaneGeometry::Pointer planeGeometry = m_PlaneGeometries[0]; auto *restorePlaneOp = dynamic_cast(operation); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation if (m_ReferenceGeometry && (planeGeometry && dynamic_cast(planeGeometry.GetPointer()) == nullptr) && restorePlaneOp) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Rotate first slice planeGeometry->ExecuteOperation(restorePlaneOp); m_DirectionVector = restorePlaneOp->GetDirectionVector(); double centerOfRotationDistance = planeGeometry->SignedDistanceFromPlane(m_ReferenceGeometry->GetCenter()); if (centerOfRotationDistance <= 0) { m_DirectionVector = -m_DirectionVector; } Vector3D spacing = restorePlaneOp->GetSpacing(); Superclass::SetSpacing(spacing); // /*Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above.*/ ScalarType directedExtent = std::abs(m_ReferenceGeometry->GetExtentInMM(0) * m_DirectionVector[0]) + std::abs(m_ReferenceGeometry->GetExtentInMM(1) * m_DirectionVector[1]) + std::abs(m_ReferenceGeometry->GetExtentInMM(2) * m_DirectionVector[2]); if (directedExtent >= spacing[2]) { m_Slices = static_cast(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } m_PlaneGeometries.assign(m_Slices, PlaneGeometry::Pointer(nullptr)); if (m_Slices > 0) { m_PlaneGeometries[0] = planeGeometry; } m_SliceNavigationController->GetStepper()->SetSteps(m_Slices); this->Modified(); // End Reinitialization if (m_SliceNavigationController) { m_SliceNavigationController->GetStepper()->SetPos(restorePlaneOp->GetPos()); m_SliceNavigationController->AdjustSliceStepperRange(); } BaseGeometry::ExecuteOperation(restorePlaneOp); } } else { // Reach through to all slices for (auto iter = m_PlaneGeometries.begin(); iter != m_PlaneGeometries.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpAPPLYTRANSFORMMATRIX: // Clear all generated geometries and then transform only the first slice. // The other slices will be re-generated on demand // Save first slice geometry2D = m_PlaneGeometries[0]; applyMatrixOp = dynamic_cast(operation); // Apply transformation to first plane geometry2D->ExecuteOperation(applyMatrixOp); // Generate a ApplyTransformMatrixOperation using the dataset center instead of // the supplied rotation center. The supplied center is instead used to adjust the // slice stack afterwards (see OpROTATE). center = m_ReferenceGeometry->GetCenter(); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes(center, applyMatrixOp->GetReferencePoint()); BaseGeometry::ExecuteOperation(applyMatrixOp); break; default: // let handle by base class if we don't do anything BaseGeometry::ExecuteOperation(operation); } this->Modified(); } diff --git a/Modules/Core/test/mitkPlaneGeometryTest.cpp b/Modules/Core/test/mitkPlaneGeometryTest.cpp index e64ebc6e26..737222fc05 100644 --- a/Modules/Core/test/mitkPlaneGeometryTest.cpp +++ b/Modules/Core/test/mitkPlaneGeometryTest.cpp @@ -1,1093 +1,1084 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkAffineTransform3D.h" #include "mitkBaseGeometry.h" #include "mitkGeometry3D.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include "mitkPlaneGeometry.h" #include "mitkRotationOperation.h" #include "mitkSlicedGeometry3D.h" #include "mitkThinPlateSplineCurvedGeometry.h" #include #include #include #include #include #include #include #include static const mitk::ScalarType testEps = 1E-9; // the epsilon used in this test == at least float precision. class mitkPlaneGeometryTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkPlaneGeometryTestSuite); MITK_TEST(TestInitializeStandardPlane); MITK_TEST(TestProjectPointOntoPlane); MITK_TEST(TestPlaneGeometryCloning); MITK_TEST(TestInheritance); MITK_TEST(TestSetExtendInMM); MITK_TEST(TestRotate); MITK_TEST(TestClone); MITK_TEST(TestPlaneComparison); MITK_TEST(TestAxialInitialization); MITK_TEST(TestCoronalInitialization); MITK_TEST(TestSagittalInitialization); MITK_TEST(TestLefthandedCoordinateSystem); - MITK_TEST(TestDominantAxesError); MITK_TEST(TestCheckRotationMatrix); // Currently commented out, see See bug 15990 // MITK_TEST(testPlaneGeometryInitializeOrder); MITK_TEST(TestIntersectionPoint); MITK_TEST(TestCase1210); CPPUNIT_TEST_SUITE_END(); private: // private test members that are initialized by setUp() mitk::PlaneGeometry::Pointer planegeometry; mitk::Point3D origin; mitk::Vector3D right, bottom, normal, spacing; mitk::ScalarType width, height; mitk::ScalarType widthInMM, heightInMM, thicknessInMM; public: void setUp() override { planegeometry = mitk::PlaneGeometry::New(); width = 100; widthInMM = width; height = 200; heightInMM = height; thicknessInMM = 1.0; mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); mitk::FillVector3D(normal, 0, 0, thicknessInMM); mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right, bottom); planegeometry->SetOrigin(origin); planegeometry->SetSpacing(spacing); } void tearDown() override {} // This test verifies inheritance behaviour, this test will fail if the behaviour changes in the future void TestInheritance() { mitk::PlaneGeometry::Pointer plane = mitk::PlaneGeometry::New(); mitk::Geometry3D::Pointer g3d = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Planegeometry should not be castable to Geometry 3D", g3d.IsNull()); mitk::BaseGeometry::Pointer base = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Planegeometry should be castable to BaseGeometry", base.IsNotNull()); g3d = mitk::Geometry3D::New(); base = dynamic_cast(g3d.GetPointer()); CPPUNIT_ASSERT_MESSAGE("Geometry3D should be castable to BaseGeometry", base.IsNotNull()); mitk::SlicedGeometry3D::Pointer sliced = mitk::SlicedGeometry3D::New(); g3d = dynamic_cast(sliced.GetPointer()); CPPUNIT_ASSERT_MESSAGE("SlicedGeometry3D should not be castable to Geometry3D", g3d.IsNull()); mitk::ThinPlateSplineCurvedGeometry::Pointer thin = mitk::ThinPlateSplineCurvedGeometry::New(); plane = dynamic_cast(thin.GetPointer()); CPPUNIT_ASSERT_MESSAGE("AbstractTransformGeometry should be castable to PlaneGeometry", plane.IsNotNull()); plane = mitk::PlaneGeometry::New(); mitk::AbstractTransformGeometry::Pointer atg = dynamic_cast(plane.GetPointer()); CPPUNIT_ASSERT_MESSAGE("PlaneGeometry should not be castable to AbstractTransofrmGeometry", atg.IsNull()); } - void TestDominantAxesError() - { - auto image = mitk::IOUtil::Load(GetTestDataFilePath("NotQuiteARotationMatrix.nrrd")); - auto matrix = image->GetGeometry()->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().transpose(); - std::vector< int > axes = mitk::PlaneGeometry::CalculateDominantAxes(matrix); - CPPUNIT_ASSERT_MESSAGE("Domiant axes cannot be determined in this dataset. Output should be default ordering.", axes.at(0)==0 && axes.at(1)==1 && axes.at(2)==2); - } - void TestCheckRotationMatrix() { auto image = mitk::IOUtil::Load(GetTestDataFilePath("NotQuiteARotationMatrix.nrrd")); bool is_rotation = mitk::PlaneGeometry::CheckRotationMatrix(image->GetGeometry()->GetIndexToWorldTransform(), 1e-8); CPPUNIT_ASSERT_MESSAGE("Since the test data matrix is not quite a rotation matrix, this should be detected.", !is_rotation); } void TestLefthandedCoordinateSystem() { /** * @brief This method tests InitializeStandardPlane() and IndexToWorld() * with a left-handed coordinate orientation or indexToWorldMatrix. * * Of course this test does not use standard Parameters, which are right-handed. * See also discussion of bug #11477: https://phabricator.mitk.org/T11477 */ planegeometry = mitk::PlaneGeometry::New(); width = 100; widthInMM = 5; height = 200; heightInMM = 3; thicknessInMM = 1.0; mitk::FillVector3D(right, widthInMM, 0, 0); mitk::FillVector3D(bottom, 0, heightInMM, 0); // This one negative sign results in lefthanded coordinate orientation and det(matrix) < 0. mitk::FillVector3D(normal, 0, 0, -thicknessInMM); mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType matrix; mitk::AffineTransform3D::MatrixType::InternalMatrixType &vnl_matrix = matrix.GetVnlMatrix(); vnl_matrix.set_column(0, right); vnl_matrix.set_column(1, bottom); vnl_matrix.set_column(2, normal); // making sure that we didn't screw up this special test case or else fail deadly: assert(vnl_determinant(vnl_matrix) < 0.0); transform->SetIdentity(); transform->SetMatrix(matrix); planegeometry->InitializeStandardPlane(width, height, transform); // Crux of the matter. CPPUNIT_ASSERT_MESSAGE( "Testing if IndexToWorldMatrix is correct after InitializeStandardPlane( width, height, transform ) ", mitk::MatrixEqualElementWise(planegeometry->GetIndexToWorldTransform()->GetMatrix(), matrix)); mitk::Point3D p_index; p_index[0] = 10.; p_index[1] = 10.; p_index[2] = 0.; mitk::Point3D p_world; mitk::Point3D p_expectedResult; p_expectedResult[0] = 50.; p_expectedResult[1] = 30.; p_expectedResult[2] = 0.; ((mitk::BaseGeometry::Pointer)planegeometry)->IndexToWorld(p_index, p_world); // Crux of the matter. CPPUNIT_ASSERT_MESSAGE("Testing if IndexToWorld(a,b) function works correctly with lefthanded matrix ", mitk::Equal(p_world, p_expectedResult, testEps)); } // See bug 1210 // Test does not use standard Parameters void TestCase1210() { mitk::PlaneGeometry::Pointer planegeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; mitk::Vector3D right, down, spacing; mitk::FillVector3D(origin, 4.5, 7.3, 11.2); mitk::FillVector3D(right, 1.015625, 1.015625, 1.1999969482421875); mitk::FillVector3D(down, 1.4012984643248170709237295832899161312802619418765e-45, 0, 0); mitk::FillVector3D(spacing, 0, 1.4713633875410579244699160624544119378442750389703e-43, 9.2806360452222355258639080851310540729807238879469e-32); std::cout << "Testing InitializeStandardPlane(rightVector, downVector, spacing = nullptr): " << std::endl; CPPUNIT_ASSERT_NO_THROW(planegeometry->InitializeStandardPlane(right, down, &spacing)); /* std::cout << "Testing width, height and thickness (in units): "; if((mitk::Equal(planegeometry->GetExtent(0),width)==false) || (mitk::Equal(planegeometry->GetExtent(1),height)==false) || (mitk::Equal(planegeometry->GetExtent(2),1)==false) ) { std::cout<<"[FAILED]"<GetExtentInMM(0),widthInMM)==false) || (mitk::Equal(planegeometry->GetExtentInMM(1),heightInMM)==false) || (mitk::Equal(planegeometry->GetExtentInMM(2),thicknessInMM)==false) ) { std::cout<<"[FAILED]"< 0. * */ // Test does not use standard Parameters void TestIntersectionPoint() { // init plane with its parameter mitk::PlaneGeometry::Pointer myPlaneGeometry = mitk::PlaneGeometry::New(); mitk::Point3D origin; origin[0] = 0.0; origin[1] = 2.0; origin[2] = 0.0; mitk::Vector3D normal; normal[0] = 0.0; normal[1] = 1.0; normal[2] = 0.0; myPlaneGeometry->InitializePlane(origin, normal); // generate points and line for intersection testing // point distance of given line > 1 mitk::Point3D pointP1; pointP1[0] = 2.0; pointP1[1] = 1.0; pointP1[2] = 0.0; mitk::Point3D pointP2; pointP2[0] = 2.0; pointP2[1] = 4.0; pointP2[2] = 0.0; mitk::Vector3D lineDirection; lineDirection[0] = pointP2[0] - pointP1[0]; lineDirection[1] = pointP2[1] - pointP1[1]; lineDirection[2] = pointP2[2] - pointP1[2]; mitk::Line3D xingline(pointP1, lineDirection); mitk::Point3D calcXingPoint; myPlaneGeometry->IntersectionPoint(xingline, calcXingPoint); // point distance of given line < 1 mitk::Point3D pointP3; pointP3[0] = 2.0; pointP3[1] = 2.2; pointP3[2] = 0.0; mitk::Point3D pointP4; pointP4[0] = 2.0; pointP4[1] = 1.7; pointP4[2] = 0.0; mitk::Vector3D lineDirection2; lineDirection2[0] = pointP4[0] - pointP3[0]; lineDirection2[1] = pointP4[1] - pointP3[1]; lineDirection2[2] = pointP4[2] - pointP3[2]; mitk::Line3D xingline2(pointP3, lineDirection2); mitk::Point3D calcXingPoint2; myPlaneGeometry->IntersectionPoint(xingline2, calcXingPoint2); // intersection points must be the same CPPUNIT_ASSERT_MESSAGE("Failed to calculate Intersection Point", calcXingPoint == calcXingPoint2); } /** * @brief This method tests method ProjectPointOntoPlane. * * See also bug #3409. */ // Test does not use standard Parameters void TestProjectPointOntoPlane() { mitk::PlaneGeometry::Pointer myPlaneGeometry = mitk::PlaneGeometry::New(); // create normal mitk::Vector3D normal; normal[0] = 0.0; normal[1] = 0.0; normal[2] = 1.0; // create origin mitk::Point3D origin; origin[0] = -27.582859; origin[1] = 50; origin[2] = 200.27742; // initialize plane geometry myPlaneGeometry->InitializePlane(origin, normal); // output to describe the test std::cout << "Testing PlaneGeometry according to bug #3409" << std::endl; std::cout << "Our normal is: " << normal << std::endl; std::cout << "So ALL projected points should have exactly the same z-value!" << std::endl; // create a number of points mitk::Point3D myPoints[5]; myPoints[0][0] = -27.582859; myPoints[0][1] = 50.00; myPoints[0][2] = 200.27742; myPoints[1][0] = -26.58662; myPoints[1][1] = 50.00; myPoints[1][2] = 200.19026; myPoints[2][0] = -26.58662; myPoints[2][1] = 50.00; myPoints[2][2] = 200.33124; myPoints[3][0] = 104.58662; myPoints[3][1] = 452.12313; myPoints[3][2] = 866.41236; myPoints[4][0] = -207.58662; myPoints[4][1] = 312.00; myPoints[4][2] = -300.12346; // project points onto plane mitk::Point3D myProjectedPoints[5]; for (unsigned int i = 0; i < 5; ++i) { myProjectedPoints[i] = myPlaneGeometry->ProjectPointOntoPlane(myPoints[i]); } // compare z-values with z-value of plane (should be equal) bool allPointsOnPlane = true; for (auto &myProjectedPoint : myProjectedPoints) { if (fabs(myProjectedPoint[2] - origin[2]) > mitk::sqrteps) { allPointsOnPlane = false; } } CPPUNIT_ASSERT_MESSAGE("All points lie not on the same plane", allPointsOnPlane); } void TestPlaneGeometryCloning() { mitk::PlaneGeometry::Pointer geometry2D = createPlaneGeometry(); try { mitk::PlaneGeometry::Pointer clone = geometry2D->Clone(); itk::Matrix matrix = clone->GetIndexToWorldTransform()->GetMatrix(); CPPUNIT_ASSERT_MESSAGE("Test if matrix element exists...", matrix[0][0] == 31); double origin = geometry2D->GetOrigin()[0]; CPPUNIT_ASSERT_MESSAGE("First Point of origin as expected...", mitk::Equal(origin, 8)); double spacing = geometry2D->GetSpacing()[0]; CPPUNIT_ASSERT_MESSAGE("First Point of spacing as expected...", mitk::Equal(spacing, 31)); } catch (...) { CPPUNIT_FAIL("Error during access on a member of cloned geometry"); } // direction [row] [column] MITK_TEST_OUTPUT(<< "Casting a rotated 2D ITK Image to a MITK Image and check if Geometry is still same"); } void TestPlaneGeometryInitializeOrder() { mitk::Vector3D mySpacing; mySpacing[0] = 31; mySpacing[1] = 0.1; mySpacing[2] = 5.4; mitk::Point3D myOrigin; myOrigin[0] = 8; myOrigin[1] = 9; myOrigin[2] = 10; mitk::AffineTransform3D::Pointer myTransform = mitk::AffineTransform3D::New(); itk::Matrix transMatrix; transMatrix.Fill(0); transMatrix[0][0] = 1; transMatrix[1][1] = 2; transMatrix[2][2] = 4; myTransform->SetMatrix(transMatrix); mitk::PlaneGeometry::Pointer geometry2D1 = mitk::PlaneGeometry::New(); geometry2D1->SetIndexToWorldTransform(myTransform); geometry2D1->SetSpacing(mySpacing); geometry2D1->SetOrigin(myOrigin); mitk::PlaneGeometry::Pointer geometry2D2 = mitk::PlaneGeometry::New(); geometry2D2->SetSpacing(mySpacing); geometry2D2->SetOrigin(myOrigin); geometry2D2->SetIndexToWorldTransform(myTransform); mitk::PlaneGeometry::Pointer geometry2D3 = mitk::PlaneGeometry::New(); geometry2D3->SetIndexToWorldTransform(myTransform); geometry2D3->SetSpacing(mySpacing); geometry2D3->SetOrigin(myOrigin); geometry2D3->SetIndexToWorldTransform(myTransform); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 1 matches that of Geometry 2.", mitk::Equal(geometry2D1->GetOrigin(), geometry2D2->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 1 match those of Geometry 3.", mitk::Equal(geometry2D1->GetOrigin(), geometry2D3->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Origin of Geometry 2 match those of Geometry 3.", mitk::Equal(geometry2D2->GetOrigin(), geometry2D3->GetOrigin())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 1 match those of Geometry 2.", mitk::Equal(geometry2D1->GetSpacing(), geometry2D2->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 1 match those of Geometry 3.", mitk::Equal(geometry2D1->GetSpacing(), geometry2D3->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Spacing of Geometry 2 match those of Geometry 3.", mitk::Equal(geometry2D2->GetSpacing(), geometry2D3->GetSpacing())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 1 match those of Geometry 2.", compareMatrix(geometry2D1->GetIndexToWorldTransform()->GetMatrix(), geometry2D2->GetIndexToWorldTransform()->GetMatrix())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 1 match those of Geometry 3.", compareMatrix(geometry2D1->GetIndexToWorldTransform()->GetMatrix(), geometry2D3->GetIndexToWorldTransform()->GetMatrix())); CPPUNIT_ASSERT_MESSAGE("Transformation of Geometry 2 match those of Geometry 3.", compareMatrix(geometry2D2->GetIndexToWorldTransform()->GetMatrix(), geometry2D3->GetIndexToWorldTransform()->GetMatrix())); } void TestInitializeStandardPlane() { CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: width", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: height", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: depth", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: width in mm", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: heght in mm", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: depth in mm", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorRight", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorBottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with default Spacing: AxisVectorNormal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mitk::Vector3D spacing; thicknessInMM = 1.5; normal.Normalize(); normal *= thicknessInMM; mitk::FillVector3D(spacing, 1.0, 1.0, thicknessInMM); planegeometry->InitializeStandardPlane(right.GetVnlVector(), bottom.GetVnlVector(), &spacing); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: width", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: height", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: depth", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: width in mm", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: height in mm", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: depth in mm", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorRight", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorBottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing correct Standard Plane initialization with custom Spacing: AxisVectorNormal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); ; } void TestSetExtendInMM() { normal.Normalize(); normal *= thicknessInMM; planegeometry->SetExtentInMM(2, thicknessInMM); CPPUNIT_ASSERT_MESSAGE("Testing SetExtentInMM(2, ...), querying by GetExtentInMM(2): ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetExtentInMM(2, ...), querying by GetAxisVector(2) and comparing to normal: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); planegeometry->SetOrigin(origin); CPPUNIT_ASSERT_MESSAGE("Testing SetOrigin", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Right", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() after SetOrigin: Normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestRotate() { // Changing the IndexToWorldTransform to a rotated version by SetIndexToWorldTransform() (keep origin): mitk::AffineTransform3D::Pointer transform = mitk::AffineTransform3D::New(); mitk::AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = planegeometry->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); mitk::VnlVector axis(3); mitk::FillVector3D(axis, 1.0, 1.0, 1.0); axis.normalize(); vnl_quaternion rotation(axis, 0.223); vnlmatrix = rotation.rotation_matrix_transpose() * vnlmatrix; mitk::Matrix3D matrix; matrix = vnlmatrix; transform->SetMatrix(matrix); transform->SetOffset(planegeometry->GetIndexToWorldTransform()->GetOffset()); right.SetVnlVector(rotation.rotation_matrix_transpose() * right.GetVnlVector()); bottom.SetVnlVector(rotation.rotation_matrix_transpose() * bottom.GetVnlVector()); normal.SetVnlVector(rotation.rotation_matrix_transpose() * normal.GetVnlVector()); planegeometry->SetIndexToWorldTransform(transform); // The origin changed,because m_Origin=m_IndexToWorldTransform->GetOffset()+GetAxisVector(2)*0.5 // and the AxisVector changes due to the rotation. In other words: the rotation was done around // the corner of the box, not around the planes origin. Now change it to a rotation around // the origin, simply by re-setting the origin to the original one: planegeometry->SetOrigin(origin); CPPUNIT_ASSERT_MESSAGE("Testing whether SetIndexToWorldTransform kept origin: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); mitk::Point2D point; point[0] = 4; point[1] = 3; mitk::Point2D dummy; planegeometry->WorldToIndex(point, dummy); planegeometry->IndexToWorld(dummy, dummy); CPPUNIT_ASSERT_MESSAGE("Testing consistency of index and world coordinates.", dummy == point); CPPUNIT_ASSERT_MESSAGE("Testing width of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness of rotated version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: right ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of rotated version: normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(0).GetNorm(), planegeometry->GetExtentInMM(0), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(1).GetNorm(), planegeometry->GetExtentInMM(1), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(2).GetNorm(), planegeometry->GetExtentInMM(2), testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); width *= 2; height *= 3; planegeometry->SetSizeInUnits(width, height); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing SetSizeInUnits() of rotated version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of version with changed size in units: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: right ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: bottom", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of version with changed size in units: normal", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(0).GetNorm(), planegeometry->GetExtentInMM(0), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(1).GetNorm(), planegeometry->GetExtentInMM(1), testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing GetAxisVector(direction).GetNorm() != planegeometry->GetExtentInMM(direction) of rotated version: ", mitk::Equal(planegeometry->GetAxisVector(2).GetNorm(), planegeometry->GetExtentInMM(2), testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestClone() { mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); // Cave: Statement below is negated! CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry.IsNull()) || (clonedplanegeometry->GetReferenceCount() != 1))); CPPUNIT_ASSERT_MESSAGE("Testing origin of cloned version: ", mitk::Equal(clonedplanegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing extent (in units) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of cloned version: ", mitk::Equal(clonedplanegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: right", mitk::Equal(clonedplanegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: bottom", mitk::Equal(clonedplanegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of cloned version: normal", mitk::Equal(clonedplanegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(clonedplanegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestSagittalInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); mitk::PlaneGeometry::Pointer clonedplanegeometry = planegeometry->Clone(); // Testing InitializeStandardPlane(clonedplanegeometry, anatomicalplane = Sagittal, zPosition = 0, frontside=true): planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::AnatomicalPlane::Sagittal); mitk::Vector3D newright, newbottom, newnormal; mitk::ScalarType newthicknessInMM; newright = bottom; newthicknessInMM = widthInMM / width * 1.0; // extent in normal direction is 1; newnormal = right; newnormal.Normalize(); newnormal *= newthicknessInMM; newbottom = normal; newbottom.Normalize(); newbottom *= thicknessInMM; CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagittally initialized version:", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0, testEps)); // ok, corner was fine, so we can dare to believe the origin is ok. origin = planegeometry->GetOrigin(); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of sagittally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagittally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagittally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of sagittally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), newnormal, testEps)); mappingTests2D(planegeometry, height, 1, heightInMM, thicknessInMM, origin, newright, newbottom); // set origin back to the one of the axial slice: origin = clonedplanegeometry->GetOrigin(); // Testing backside initialization: InitializeStandardPlane(clonedplanegeometry, anatomicalplane = Axial, zPosition // = 0, frontside=false, rotated=true): planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::AnatomicalPlane::Axial, 0, false, true); mitk::Point3D backsideorigin; backsideorigin = origin + clonedplanegeometry->GetAxisVector(1); //+clonedplanegeometry->GetAxisVector(2); CPPUNIT_ASSERT_MESSAGE("Testing origin of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetOrigin(), backsideorigin, testEps)); mitk::Point3D backsidecornerpoint0; backsidecornerpoint0 = cornerpoint0 + clonedplanegeometry->GetAxisVector(1); //+clonedplanegeometry->GetAxisVector(2); CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of sagittally initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), backsidecornerpoint0, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in units) of backsidedly, axially initialized version " "(should be same as in mm due to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width, height and thickness (in mm) of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), -bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of backsidedly, axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, backsideorigin, right, -bottom); } void TestCoronalInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); //-------- mitk::Vector3D newright, newbottom, newnormal; mitk::ScalarType newthicknessInMM; // Testing InitializeStandardPlane(clonedplanegeometry, anatomicalplane = Coronal, zPosition = 0, frontside=true) planegeometry->InitializeStandardPlane(clonedplanegeometry, mitk::AnatomicalPlane::Coronal); newright = right; newbottom = normal; newbottom.Normalize(); newbottom *= thicknessInMM; newthicknessInMM = heightInMM / height * 1.0 /*extent in normal direction is 1*/; newnormal = -bottom; newnormal.Normalize(); newnormal *= newthicknessInMM; CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of coronally initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0, testEps)); // ok, corner was fine, so we can dare to believe the origin is ok. origin = planegeometry->GetOrigin(); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in units) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, width, 1, widthInMM, thicknessInMM, origin, newright, newbottom); // Changing plane to in-plane unit spacing using SetSizeInUnits: planegeometry->SetSizeInUnits(planegeometry->GetExtentInMM(0), planegeometry->GetExtentInMM(1)); CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), newthicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, widthInMM, thicknessInMM, widthInMM, thicknessInMM, origin, newright, newbottom); // Changing plane to unit spacing also in normal direction using SetExtentInMM(2, 1.0): planegeometry->SetExtentInMM(2, 1.0); newnormal.Normalize(); CPPUNIT_ASSERT_MESSAGE("Testing origin of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in units) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE( "Testing width, height and thickness (in mm) of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), 1.0, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), newright, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), newbottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of unit spaced, coronally initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), -newnormal, testEps)); // T22254: Flipped sign mappingTests2D(planegeometry, widthInMM, thicknessInMM, widthInMM, thicknessInMM, origin, newright, newbottom); } void TestAxialInitialization() { mitk::Point3D cornerpoint0 = planegeometry->GetCornerPoint(0); // Clone, move, rotate and test for 'IsParallel' and 'IsOnPlane' mitk::PlaneGeometry::Pointer clonedplanegeometry = dynamic_cast(planegeometry->Clone().GetPointer()); CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry.IsNull()) || (clonedplanegeometry->GetReferenceCount() != 1))); std::cout << "Testing InitializeStandardPlane(clonedplanegeometry, anatomicalplane = Axial, zPosition = 0, " "frontside=true): " << std::endl; planegeometry->InitializeStandardPlane(clonedplanegeometry); CPPUNIT_ASSERT_MESSAGE("Testing origin of axially initialized version: ", mitk::Equal(planegeometry->GetOrigin(), origin)); CPPUNIT_ASSERT_MESSAGE("Testing GetCornerPoint(0) of axially initialized version: ", mitk::Equal(planegeometry->GetCornerPoint(0), cornerpoint0)); CPPUNIT_ASSERT_MESSAGE("Testing width (in units) of axially initialized version (should be same as in mm due to " "unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(0), width, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in units) of axially initialized version (should be same as in mm due to " "unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(1), height, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in units) of axially initialized version (should be same as in mm due " "to unit spacing, except for thickness, which is always 1): ", mitk::Equal(planegeometry->GetExtent(2), 1, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing width (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(0), widthInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing height (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(1), heightInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing thickness (in mm) of axially initialized version: ", mitk::Equal(planegeometry->GetExtentInMM(2), thicknessInMM, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(0), right, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(1), bottom, testEps)); CPPUNIT_ASSERT_MESSAGE("Testing GetAxisVector() of axially initialized version: ", mitk::Equal(planegeometry->GetAxisVector(2), normal, testEps)); mappingTests2D(planegeometry, width, height, widthInMM, heightInMM, origin, right, bottom); } void TestPlaneComparison() { // Clone, move, rotate and test for 'IsParallel' and 'IsOnPlane' mitk::PlaneGeometry::Pointer clonedplanegeometry2 = dynamic_cast(planegeometry->Clone().GetPointer()); CPPUNIT_ASSERT_MESSAGE("Testing Clone(): ", !((clonedplanegeometry2.IsNull()) || (clonedplanegeometry2->GetReferenceCount() != 1))); CPPUNIT_ASSERT_MESSAGE("Testing whether original and clone are at the same position", clonedplanegeometry2->IsOnPlane(planegeometry.GetPointer())); CPPUNIT_ASSERT_MESSAGE(" Asserting that origin is on the plane cloned plane:", clonedplanegeometry2->IsOnPlane(origin)); mitk::VnlVector newaxis(3); mitk::FillVector3D(newaxis, 1.0, 1.0, 1.0); newaxis.normalize(); vnl_quaternion rotation2(newaxis, 0.0); mitk::Vector3D clonednormal = clonedplanegeometry2->GetNormal(); mitk::Point3D clonedorigin = clonedplanegeometry2->GetOrigin(); auto planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 180.0); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE(" Asserting that a flipped plane is still on the original plane: ", clonedplanegeometry2->IsOnPlane(planegeometry.GetPointer())); clonedorigin += clonednormal; clonedplanegeometry2->SetOrigin(clonedorigin); CPPUNIT_ASSERT_MESSAGE("Testing if the translated (cloned, flipped) plane is parallel to its origin plane: ", clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 0.5); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-parallel plane gets recognized as not parallel [rotation +0.5 degree] : ", !clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), -1.0); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-parallel plane gets recognized as not parallel [rotation -0.5 degree] : ", !clonedplanegeometry2->IsParallel(planegeometry)); delete planerot; planerot = new mitk::RotationOperation(mitk::OpROTATE, origin, clonedplanegeometry2->GetAxisVector(0), 360.5); clonedplanegeometry2->ExecuteOperation(planerot); CPPUNIT_ASSERT_MESSAGE("Testing if a non-parallel plane gets recognized as parallel [rotation 360 degree] : ", clonedplanegeometry2->IsParallel(planegeometry)); } private: // helper Methods for the Tests mitk::PlaneGeometry::Pointer createPlaneGeometry() { mitk::Vector3D mySpacing; mySpacing[0] = 31; mySpacing[1] = 0.1; mySpacing[2] = 5.4; mitk::Point3D myOrigin; myOrigin[0] = 8; myOrigin[1] = 9; myOrigin[2] = 10; mitk::AffineTransform3D::Pointer myTransform = mitk::AffineTransform3D::New(); itk::Matrix transMatrix; transMatrix.Fill(0); transMatrix[0][0] = 1; transMatrix[1][1] = 2; transMatrix[2][2] = 4; myTransform->SetMatrix(transMatrix); mitk::PlaneGeometry::Pointer geometry2D = mitk::PlaneGeometry::New(); geometry2D->SetIndexToWorldTransform(myTransform); geometry2D->SetSpacing(mySpacing); geometry2D->SetOrigin(myOrigin); return geometry2D; } bool compareMatrix(itk::Matrix left, itk::Matrix right) { bool equal = true; for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) equal &= mitk::Equal(left[i][j], right[i][j]); return equal; } /** * This function tests for correct mapping and is called several times from other tests **/ void mappingTests2D(const mitk::PlaneGeometry *planegeometry, const mitk::ScalarType &width, const mitk::ScalarType &height, const mitk::ScalarType &widthInMM, const mitk::ScalarType &heightInMM, const mitk::Point3D &origin, const mitk::Vector3D &right, const mitk::Vector3D &bottom) { std::cout << "Testing mapping Map(pt2d_mm(x=widthInMM/2.3,y=heightInMM/2.5), pt3d_mm) and compare with expected: "; mitk::Point2D pt2d_mm; mitk::Point3D pt3d_mm, expected_pt3d_mm; pt2d_mm[0] = widthInMM / 2.3; pt2d_mm[1] = heightInMM / 2.5; expected_pt3d_mm = origin + right * (pt2d_mm[0] / right.GetNorm()) + bottom * (pt2d_mm[1] / bottom.GetNorm()); planegeometry->Map(pt2d_mm, pt3d_mm); CPPUNIT_ASSERT_MESSAGE( "Testing mapping Map(pt2d_mm(x=widthInMM/2.3,y=heightInMM/2.5), pt3d_mm) and compare with expected", mitk::Equal(pt3d_mm, expected_pt3d_mm, testEps)); std::cout << "Testing mapping Map(pt3d_mm, pt2d_mm) and compare with expected: "; mitk::Point2D testpt2d_mm; planegeometry->Map(pt3d_mm, testpt2d_mm); std::cout << std::setprecision(12) << "Expected pt2d_mm " << pt2d_mm << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_mm " << testpt2d_mm << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing mapping Map(pt3d_mm, pt2d_mm) and compare with expected", mitk::Equal(pt2d_mm, testpt2d_mm, 10 * mitk::eps)); std::cout << "Testing IndexToWorld(pt2d_units, pt2d_mm) and compare with expected: "; mitk::Point2D pt2d_units; pt2d_units[0] = width / 2.0; pt2d_units[1] = height / 2.0; pt2d_mm[0] = widthInMM / 2.0; pt2d_mm[1] = heightInMM / 2.0; planegeometry->IndexToWorld(pt2d_units, testpt2d_mm); std::cout << std::setprecision(12) << "Expected pt2d_mm " << pt2d_mm << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_mm " << testpt2d_mm << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing IndexToWorld(pt2d_units, pt2d_mm) and compare with expected: ", mitk::Equal(pt2d_mm, testpt2d_mm, 10 * mitk::eps)); std::cout << "Testing WorldToIndex(pt2d_mm, pt2d_units) and compare with expected: "; mitk::Point2D testpt2d_units; planegeometry->WorldToIndex(pt2d_mm, testpt2d_units); std::cout << std::setprecision(12) << "Expected pt2d_units " << pt2d_units << std::endl; std::cout << std::setprecision(12) << "Result testpt2d_units " << testpt2d_units << std::endl; std::cout << std::setprecision(12) << "10*mitk::eps " << 10 * mitk::eps << std::endl; // This eps is temporarily set to 10*mitk::eps. See bug #15037 for details. CPPUNIT_ASSERT_MESSAGE("Testing WorldToIndex(pt2d_mm, pt2d_units) and compare with expected:", mitk::Equal(pt2d_units, testpt2d_units, 10 * mitk::eps)); } }; MITK_TEST_SUITE_REGISTRATION(mitkPlaneGeometry)