diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp index 26d4854584..43dd584645 100755 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/Fiberfox.cpp @@ -1,253 +1,253 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include using namespace mitk; /*! * \brief Command line interface to Fiberfox. * Simulate a diffusion-weighted image from a tractogram using the specified parameter file. */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("Fiberfox"); parser.setCategory("Diffusion Simulation Tools"); parser.setContributor("MIC"); parser.setDescription("Command line interface to Fiberfox." " Simulate a diffusion-weighted image from a tractogram using the specified parameter file."); parser.setArgumentPrefix("--", "-"); parser.addArgument("", "o", mitkCommandLineParser::OutputFile, "Output root:", "output root", us::Any(), false); parser.addArgument("", "i", mitkCommandLineParser::String, "Input:", "Input tractogram or diffusion-weighted image.", us::Any(), false); parser.addArgument("parameters", "p", mitkCommandLineParser::InputFile, "Parameter file:", "fiberfox parameter file (.ffp)", us::Any(), false); parser.addArgument("template", "t", mitkCommandLineParser::String, "Template image:", "Use parameters of the template diffusion-weighted image.", us::Any()); parser.addArgument("verbose", "v", mitkCommandLineParser::Bool, "Output additional images:", "output volume fraction images etc.", us::Any()); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) { return EXIT_FAILURE; } std::string outName = us::any_cast(parsedArgs["o"]); std::string paramName = us::any_cast(parsedArgs["parameters"]); std::string input=""; if (parsedArgs.count("i")) input = us::any_cast(parsedArgs["i"]); bool verbose = false; if (parsedArgs.count("verbose")) verbose = us::any_cast(parsedArgs["verbose"]); FiberfoxParameters parameters; parameters.LoadParameters(paramName); // Test if /path/dir is an existing directory: std::string file_extension = ""; if( itksys::SystemTools::FileIsDirectory( outName ) ) { while( *(--(outName.cend())) == '/') { outName.pop_back(); } outName = outName + '/'; parameters.m_Misc.m_OutputPath = outName; outName = outName + parameters.m_Misc.m_OutputPrefix; // using default m_OutputPrefix as initialized. } else { // outName is NOT an existing directory, so we need to remove all trailing slashes: while( *(--(outName.cend())) == '/') { outName.pop_back(); } // now split up the given outName into directory and (prefix of) filename: if( ! itksys::SystemTools::GetFilenamePath( outName ).empty() && itksys::SystemTools::FileIsDirectory(itksys::SystemTools::GetFilenamePath( outName ) ) ) { parameters.m_Misc.m_OutputPath = itksys::SystemTools::GetFilenamePath( outName ) + '/'; } else { parameters.m_Misc.m_OutputPath = itksys::SystemTools::GetCurrentWorkingDirectory() + '/'; } file_extension = itksys::SystemTools::GetFilenameExtension(outName); if( ! itksys::SystemTools::GetFilenameWithoutExtension( outName ).empty() ) { parameters.m_Misc.m_OutputPrefix = itksys::SystemTools::GetFilenameWithoutExtension( outName ); } else { parameters.m_Misc.m_OutputPrefix = "fiberfox"; } outName = parameters.m_Misc.m_OutputPath + parameters.m_Misc.m_OutputPrefix; } // check if log file already exists and avoid overwriting existing files: std::string NameTest = outName; int c = 0; while( itksys::SystemTools::FileExists( outName + ".log" ) && c <= std::numeric_limits::max() ) { outName = NameTest + "_" + boost::lexical_cast(c); ++c; } mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images", "Fiberbundles"}, {}); mitk::BaseData::Pointer inputData = mitk::IOUtil::Load(input, &functor)[0]; itk::TractsToDWIImageFilter< short >::Pointer tractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); if ( dynamic_cast(inputData.GetPointer()) ) // simulate dataset from fibers { tractsToDwiFilter->SetFiberBundle(dynamic_cast(inputData.GetPointer())); if (parsedArgs.count("template")) { MITK_INFO << "Loading template image"; typedef itk::VectorImage< short, 3 > ItkDwiType; typedef itk::Image< short, 3 > ItkImageType; mitk::BaseData::Pointer templateData = mitk::IOUtil::Load(us::any_cast(parsedArgs["template"]), &functor)[0]; mitk::Image::Pointer template_image = dynamic_cast(templateData.GetPointer()); if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(template_image)) { ItkDwiType::Pointer itkVectorImagePointer = mitk::DiffusionPropertyHelper::GetItkVectorImage(template_image); parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(template_image)); parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(template_image)); } else { ItkImageType::Pointer itkImagePointer = ItkImageType::New(); mitk::CastToItkImage(template_image, itkImagePointer); parameters.m_SignalGen.m_ImageRegion = itkImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkImagePointer->GetDirection(); } } } else if ( dynamic_cast(inputData.GetPointer()) ) // add artifacts to existing image { typedef itk::VectorImage< short, 3 > ItkDwiType; mitk::Image::Pointer diffImg = dynamic_cast(inputData.GetPointer()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); parameters.m_SignalGen.m_SignalScale = 1; parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); tractsToDwiFilter->SetInputImage(itkVectorImagePointer); } if (verbose) { MITK_DEBUG << outName << ".ffp"; parameters.SaveParameters(outName+".ffp"); } tractsToDwiFilter->SetParameters(parameters); tractsToDwiFilter->Update(); mitk::Image::Pointer image = mitk::GrabItkImageMemory(tractsToDwiFilter->GetOutput()); - mitk::DiffusionPropertyHelper::SetGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); + mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); mitk::DiffusionPropertyHelper::SetReferenceBValue(image, parameters.m_SignalGen.GetBvalue()); mitk::DiffusionPropertyHelper::InitializeImage(image); if (file_extension=="") mitk::IOUtil::Save(image, "DWI_NIFTI", outName+".nii.gz"); else if (file_extension==".nii" || file_extension==".nii.gz") mitk::IOUtil::Save(image, "DWI_NIFTI", outName+file_extension); else mitk::IOUtil::Save(image, outName+file_extension); if (verbose) { std::vector< itk::TractsToDWIImageFilter< short >::ItkDoubleImgType::Pointer > volumeFractions = tractsToDwiFilter->GetVolumeFractions(); for (unsigned int k=0; kInitializeByItk(volumeFractions.at(k).GetPointer()); image->SetVolume(volumeFractions.at(k)->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Compartment"+boost::lexical_cast(k+1)+".nii.gz"); } if (tractsToDwiFilter->GetPhaseImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkPhase = tractsToDwiFilter->GetPhaseImage(); image = mitk::GrabItkImageMemory( itkPhase.GetPointer() ); mitk::IOUtil::Save(image, outName+"_Phase.nii.gz"); } if (tractsToDwiFilter->GetKspaceImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkImage = tractsToDwiFilter->GetKspaceImage(); image = mitk::GrabItkImageMemory( itkImage.GetPointer() ); mitk::IOUtil::Save(image, outName+"_kSpace.nii.gz"); } int c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_real = tractsToDwiFilter->GetOutputImagesReal(); for (auto real : output_real) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(real.GetPointer()); image->SetVolume(real->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Coil-"+boost::lexical_cast(c)+"-real.nii.gz"); ++c; } c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_imag = tractsToDwiFilter->GetOutputImagesImag(); for (auto imag : output_imag) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(imag.GetPointer()); image->SetVolume(imag->GetBufferPointer()); mitk::IOUtil::Save(image, outName+"_Coil-"+boost::lexical_cast(c)+"-imag.nii.gz"); ++c; } } return EXIT_SUCCESS; } diff --git a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/FiberfoxOptimization.cpp b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/FiberfoxOptimization.cpp index bc0c8bedd0..dc4547ce02 100644 --- a/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/FiberfoxOptimization.cpp +++ b/Modules/DiffusionImaging/DiffusionCmdApps/Fiberfox/FiberfoxOptimization.cpp @@ -1,849 +1,849 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include "mitkCommandLineParser.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace mitk; double CalcErrorSignal(const std::vector& histo_mod, itk::VectorImage< short, 3 >* reference, itk::VectorImage< short, 3 >* simulation, itk::Image< unsigned char,3 >::ConstPointer mask, itk::Image< double,3 >::ConstPointer fa) { typedef itk::Image< double, 3 > DoubleImageType; typedef itk::VectorImage< short, 3 > DwiImageType; if (fa.IsNotNull()) { itk::ImageRegionIterator< DwiImageType > it1(reference, reference->GetLargestPossibleRegion()); itk::ImageRegionIterator< DwiImageType > it2(simulation, simulation->GetLargestPossibleRegion()); itk::ImageRegionConstIterator< DoubleImageType > it3(fa, fa->GetLargestPossibleRegion()); unsigned int count = 0; double error = 0; while(!it1.IsAtEnd()) { if (mask.IsNull() || (mask.IsNotNull() && mask->GetLargestPossibleRegion().IsInside(it1.GetIndex()) && mask->GetPixel(it1.GetIndex())>0) ) { double fa = it3.Get(); if (fa>0) { double mod = 1.0; for (int i=histo_mod.size()-1; i>=0; --i) if (fa >= (double)i/histo_mod.size()) { mod = histo_mod.at(i); break; } for (unsigned int i=0; iGetVectorLength(); ++i) { if (it1.Get()[i]>0) { double diff = (double)it2.Get()[i]/it1.Get()[i] - 1.0; error += std::pow(mod, 4) * fabs(diff); count++; } } } } ++it1; ++it2; ++it3; } return error/count; } else { itk::ImageRegionIterator< DwiImageType > it1(reference, reference->GetLargestPossibleRegion()); itk::ImageRegionIterator< DwiImageType > it2(simulation, simulation->GetLargestPossibleRegion()); unsigned int count = 0; double error = 0; while(!it1.IsAtEnd()) { if (mask.IsNull() || (mask.IsNotNull() && mask->GetLargestPossibleRegion().IsInside(it1.GetIndex()) && mask->GetPixel(it1.GetIndex())>0) ) { for (unsigned int i=0; iGetVectorLength(); ++i) { if (it1.Get()[i]>0) { double diff = (double)it2.Get()[i]/it1.Get()[i] - 1.0; error += fabs(diff); count++; } } } ++it1; ++it2; } return error/count; } return -1; } double CalcErrorFA(const std::vector& histo_mod, mitk::Image::Pointer dwi1, const itk::VectorImage< short, 3 >* dwi2, itk::Image< unsigned char,3 >::ConstPointer mask, itk::Image< double,3 >::ConstPointer fa1, itk::Image< double,3 >::ConstPointer md1, bool b0_contrast) { typedef itk::TensorDerivedMeasurementsFilter MeasurementsType; typedef itk::Image< double, 3 > DoubleImageType; typedef itk::VectorImage< short, 3 > DwiType; DwiType::Pointer dwi1_itk = mitk::DiffusionPropertyHelper::GetItkVectorImage(dwi1); typedef itk::DiffusionTensor3DReconstructionImageFilter TensorReconstructionImageFilterType; DoubleImageType::Pointer fa2; { mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientContainerCopy = mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::New(); for(auto it = mitk::DiffusionPropertyHelper::GetGradientContainer(dwi1)->Begin(); it != mitk::DiffusionPropertyHelper::GetGradientContainer(dwi1)->End(); it++) gradientContainerCopy->push_back(it.Value()); typename itk::ImageDuplicator>::Pointer duplicator = itk::ImageDuplicator>::New(); duplicator->SetInputImage(dwi2); duplicator->Update(); auto working_dwi = duplicator->GetOutput(); TensorReconstructionImageFilterType::Pointer tensorReconstructionFilter = TensorReconstructionImageFilterType::New(); tensorReconstructionFilter->SetBValue( mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi1) ); tensorReconstructionFilter->SetGradientImage(gradientContainerCopy, working_dwi ); tensorReconstructionFilter->Update(); MeasurementsType::Pointer measurementsCalculator = MeasurementsType::New(); measurementsCalculator->SetInput( tensorReconstructionFilter->GetOutput() ); measurementsCalculator->SetMeasure(MeasurementsType::FA); measurementsCalculator->Update(); fa2 = measurementsCalculator->GetOutput(); } DoubleImageType::Pointer md2; if (md1.IsNotNull()) { typename itk::ImageDuplicator>::Pointer duplicator = itk::ImageDuplicator>::New(); duplicator->SetInputImage(dwi2); duplicator->Update(); auto working_dwi = duplicator->GetOutput(); typedef itk::AdcImageFilter< short, double > AdcFilterType; AdcFilterType::Pointer filter = AdcFilterType::New(); filter->SetInput( working_dwi ); filter->SetGradientDirections( mitk::DiffusionPropertyHelper::GetGradientContainer(dwi1) ); filter->SetB_value( mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi1) ); filter->SetFitSignal(false); filter->Update(); md2 = filter->GetOutput(); } itk::ImageRegionConstIterator< DoubleImageType > it1(fa1, fa1->GetLargestPossibleRegion()); itk::ImageRegionConstIterator< DoubleImageType > it2(fa2, fa2->GetLargestPossibleRegion()); itk::ImageRegionConstIterator< itk::VectorImage< short, 3 > > it_diff1(dwi1_itk, dwi1_itk->GetLargestPossibleRegion()); itk::ImageRegionConstIterator< itk::VectorImage< short, 3 > > it_diff2(dwi2, dwi2->GetLargestPossibleRegion()); unsigned int count = 0; double error = 0; if (md1.IsNotNull() && md2.IsNotNull()) { itk::ImageRegionConstIterator< DoubleImageType > it3(md1, md1->GetLargestPossibleRegion()); itk::ImageRegionConstIterator< DoubleImageType > it4(md2, md2->GetLargestPossibleRegion()); while(!it1.IsAtEnd()) { if (mask.IsNull() || (mask.IsNotNull() && mask->GetLargestPossibleRegion().IsInside(it1.GetIndex()) && mask->GetPixel(it1.GetIndex())>0) ) { double fa = it1.Get(); if (fa>0 && it3.Get()>0) { double mod = 1.0; for (int i=histo_mod.size()-1; i>=0; --i) if (fa >= (double)i/histo_mod.size()) { mod = histo_mod.at(i); break; } double fa_diff = std::fabs(it2.Get()/fa - 1.0); double md_diff = std::fabs(it4.Get()/it3.Get() - 1.0); error += mod * (fa_diff + md_diff); count += 2; if (b0_contrast && it_diff1.Get()[0]>0) { double b0_diff = (double)it_diff2.Get()[0]/it_diff1.Get()[0] - 1.0; error += std::fabs(b0_diff); ++count; } } } ++it1; ++it2; ++it3; ++it4; ++it_diff1; ++it_diff2; } } else { unsigned int count = 0; double error = 0; while(!it1.IsAtEnd()) { if (mask.IsNull() || (mask.IsNotNull() && mask->GetLargestPossibleRegion().IsInside(it1.GetIndex()) && mask->GetPixel(it1.GetIndex())>0) ) { double fa = it1.Get(); if (fa>0) { double mod = 1.0; for (int i=histo_mod.size()-1; i>=0; --i) if (fa >= (double)i/histo_mod.size()) { mod = histo_mod.at(i); break; } double fa_diff = fabs(it2.Get()/fa - 1.0); error += mod * fa_diff; ++count; if (b0_contrast && it_diff1.Get()[0]>0) { double b0_diff = (double)it_diff2.Get()[0]/it_diff1.Get()[0] - 1.0; error += std::fabs(b0_diff); ++count; } } } ++it1; ++it2; ++it_diff1; ++it_diff2; } } return error/count; } FiberfoxParameters MakeProposalScale(FiberfoxParameters old_params, double temperature) { FiberfoxParameters new_params(old_params); std::random_device r; std::default_random_engine randgen(r()); std::normal_distribution normal_dist(0, new_params.m_SignalGen.m_SignalScale*0.1*temperature); double add = 0; while (add == 0) add = normal_dist(randgen); new_params.m_SignalGen.m_SignalScale += add; MITK_INFO << "Proposal Signal Scale: " << new_params.m_SignalGen.m_SignalScale << " (" << add << ")"; return new_params; } FiberfoxParameters MakeProposalRelaxation(FiberfoxParameters old_params, double temperature) { FiberfoxParameters new_params(old_params); std::random_device r; std::default_random_engine randgen(r()); std::uniform_int_distribution uint1(0, 3); int prop = uint1(randgen); switch(prop) { case 0: { int model_index = rand()%new_params.m_NonFiberModelList.size(); double t2 = new_params.m_NonFiberModelList[model_index]->GetT2(); std::normal_distribution normal_dist(0, t2*0.1*temperature); double add = 0; while (add == 0) add = normal_dist(randgen); if ( (t2+add)*1.5 > new_params.m_NonFiberModelList[model_index]->GetT1() ) add = -add; t2 += add; new_params.m_NonFiberModelList[model_index]->SetT2(t2); MITK_INFO << "Proposal T2 (Non-Fiber " << model_index << "): " << t2 << " (" << add << ")"; break; } case 1: { int model_index = rand()%new_params.m_FiberModelList.size(); double t2 = new_params.m_FiberModelList[model_index]->GetT2(); std::normal_distribution normal_dist(0, t2*0.1*temperature); double add = 0; while (add == 0) add = normal_dist(randgen); if ( (t2+add)*1.5 > new_params.m_FiberModelList[model_index]->GetT1() ) add = -add; t2 += add; new_params.m_FiberModelList[model_index]->SetT2(t2); MITK_INFO << "Proposal T2 (Fiber " << model_index << "): " << t2 << " (" << add << ")"; break; } case 2: { int model_index = rand()%new_params.m_NonFiberModelList.size(); double t1 = new_params.m_NonFiberModelList[model_index]->GetT1(); std::normal_distribution normal_dist(0, t1*0.1*temperature); double add = 0; while (add == 0) add = normal_dist(randgen); if ( t1+add < new_params.m_NonFiberModelList[model_index]->GetT2() * 1.5 ) add = -add; t1 += add; new_params.m_NonFiberModelList[model_index]->SetT1(t1); MITK_INFO << "Proposal T1 (Non-Fiber " << model_index << "): " << t1 << " (" << add << ")"; break; } case 3: { int model_index = rand()%new_params.m_FiberModelList.size(); double t1 = new_params.m_FiberModelList[model_index]->GetT1(); std::normal_distribution normal_dist(0, t1*0.1*temperature); double add = 0; while (add == 0) add = normal_dist(randgen); if ( t1+add < new_params.m_FiberModelList[model_index]->GetT2() * 1.5 ) add = -add; t1 += add; new_params.m_FiberModelList[model_index]->SetT1(t1); MITK_INFO << "Proposal T1 (Fiber " << model_index << "): " << t1 << " (" << add << ")"; break; } } return new_params; } double UpdateDiffusivity(double d, double temperature) { std::random_device r; std::default_random_engine randgen(r()); std::normal_distribution normal_dist(0, d*0.1*temperature); double add = 0; while (add == 0) add = normal_dist(randgen); if (d+add > 0.0025) d -= add; else if ( d+add < 0.0 ) d -= add; else d += add; return d; } void ProposeDiffusivities(mitk::DiffusionSignalModel<>* signalModel, double temperature) { if (dynamic_cast*>(signalModel)) { mitk::StickModel<>* m = dynamic_cast*>(signalModel); double new_d = UpdateDiffusivity(m->GetDiffusivity(), temperature); MITK_INFO << "d: " << new_d << " (" << new_d-m->GetDiffusivity() << ")"; m->SetDiffusivity(new_d); } else if (dynamic_cast*>(signalModel)) { mitk::TensorModel<>* m = dynamic_cast*>(signalModel); double new_d1 = UpdateDiffusivity(m->GetDiffusivity1(), temperature); double new_d2 = UpdateDiffusivity(m->GetDiffusivity2(), temperature); while (new_d1GetDiffusivity2(), temperature); MITK_INFO << "d1: " << new_d1 << " (" << new_d1-m->GetDiffusivity1() << ")"; MITK_INFO << "d2: " << new_d2 << " (" << new_d2-m->GetDiffusivity2() << ")"; m->SetDiffusivity1(new_d1); m->SetDiffusivity2(new_d2); m->SetDiffusivity3(new_d2); } else if (dynamic_cast*>(signalModel)) { mitk::BallModel<>* m = dynamic_cast*>(signalModel); double new_d = UpdateDiffusivity(m->GetDiffusivity(), temperature); MITK_INFO << "d: " << new_d << " (" << new_d-m->GetDiffusivity() << ")"; m->SetDiffusivity(new_d); } else if (dynamic_cast*>(signalModel)) { mitk::AstroStickModel<>* m = dynamic_cast*>(signalModel); double new_d = UpdateDiffusivity(m->GetDiffusivity(), temperature); MITK_INFO << "d: " << new_d << " (" << new_d-m->GetDiffusivity() << ")"; m->SetDiffusivity(new_d); } } FiberfoxParameters MakeProposalDiff(FiberfoxParameters old_params, double temperature) { FiberfoxParameters new_params(old_params); std::random_device r; std::default_random_engine randgen(r()); std::uniform_int_distribution uint1(0, new_params.m_FiberModelList.size() - 1); unsigned int prop = uint1(randgen); MITK_INFO << "Proposal D (Fiber " << prop << ")"; ProposeDiffusivities( new_params.m_FiberModelList[prop], temperature ); return new_params; } FiberfoxParameters MakeProposalVolume(double old_tdi_thr, double old_sqrt, double& new_tdi_thr, double& new_sqrt, FiberfoxParameters old_params, std::vector< itk::Image< double, 3 >::Pointer > frac, double temperature) { FiberfoxParameters new_params(old_params); MITK_INFO << "Proposal Volume"; std::random_device r; std::default_random_engine randgen(r()); { std::normal_distribution normal_dist(0, old_tdi_thr*0.1*temperature); new_tdi_thr = old_tdi_thr + normal_dist(randgen); while (new_tdi_thr<=0.01) { new_tdi_thr = old_tdi_thr + normal_dist(randgen); } } { std::normal_distribution normal_dist(0, old_sqrt*0.1*temperature); new_sqrt = old_sqrt + normal_dist(randgen); while (new_sqrt<=0.01) { new_sqrt = old_sqrt + normal_dist(randgen); } } itk::TdiToVolumeFractionFilter< double >::Pointer fraction_generator = itk::TdiToVolumeFractionFilter< double >::New(); fraction_generator->SetTdiThreshold(new_tdi_thr); fraction_generator->SetSqrt(new_sqrt); fraction_generator->SetInput(0, frac.at(0)); fraction_generator->SetInput(1, frac.at(1)); fraction_generator->SetInput(2, frac.at(2)); fraction_generator->SetInput(3, frac.at(3)); fraction_generator->SetInput(4, frac.at(4)); fraction_generator->Update(); new_params.m_FiberModelList[0]->SetVolumeFractionImage(fraction_generator->GetOutput(0)); new_params.m_FiberModelList[1]->SetVolumeFractionImage(fraction_generator->GetOutput(1)); new_params.m_NonFiberModelList[0]->SetVolumeFractionImage(fraction_generator->GetOutput(2)); new_params.m_NonFiberModelList[1]->SetVolumeFractionImage(fraction_generator->GetOutput(3)); MITK_INFO << "TDI Threshold: " << new_tdi_thr << " (" << new_tdi_thr-old_tdi_thr << ")"; MITK_INFO << "SQRT: " << new_sqrt << " (" << new_sqrt-old_sqrt << ")"; return new_params; } /*! * \brief Command line interface to optimize Fiberfox parameters. */ int main(int argc, char* argv[]) { mitkCommandLineParser parser; parser.setTitle("FiberfoxOptimization"); parser.setCategory("Optimize Fiberfox Parameters"); parser.setContributor("MIC"); parser.setArgumentPrefix("--", "-"); parser.beginGroup("1. Mandatory Input:"); parser.addArgument("parameters", "p", mitkCommandLineParser::InputFile, "Parameter File:", "fiberfox parameter file (.ffp)", us::Any(), false); parser.addArgument("tracts", "t", mitkCommandLineParser::String, "Input Tractogram:", "Input tractogram.", us::Any(), false); parser.addArgument("", "o", mitkCommandLineParser::String, "Output Folder:", "", us::Any(), false); parser.addArgument("dmri", "d", mitkCommandLineParser::String, "Target image:", "Target dMRI to approximate.", us::Any(), false); parser.addArgument("mask", "", mitkCommandLineParser::InputFile, "Mask image:", "Error is only calculated inside the mask image", false); parser.endGroup(); parser.beginGroup("2. Parameters to optimize:"); parser.addArgument("no_diff", "", mitkCommandLineParser::Bool, "Don't optimize diffusivities:", "Don't optimize diffusivities"); parser.addArgument("no_relax", "", mitkCommandLineParser::Bool, "Don't optimize relaxation times:", "Don't optimize relaxation times"); parser.addArgument("no_scale", "", mitkCommandLineParser::Bool, "Don't optimize signal scale:", "Don't optimize global signal scale"); parser.endGroup(); parser.beginGroup("3. Error measure:"); parser.addArgument("fa_error", "", mitkCommandLineParser::Bool, "Optimize FA", "Optimize FA instead of raw signal. Requires FA image."); parser.addArgument("fa_image", "", mitkCommandLineParser::InputFile, "FA image:", "Weight error by FA histogram. Always necessary with option fa_error!"); parser.addArgument("md_image", "", mitkCommandLineParser::InputFile, "MD image:", "Optimize MD in conjunction with FA (recommended when optimizing FA)."); parser.addArgument("use_histo", "", mitkCommandLineParser::Bool, "Use histogram modifiers:", "Modify error per voxel by corresponding FA frequency."); parser.addArgument("raise_histo", "", mitkCommandLineParser::Float, "Raise histogram modifiers:", "Raise histogram modifiers by the specified power.", 1.0); parser.endGroup(); parser.beginGroup("4. Optimization of volume fraction maps:"); parser.addArgument("tdi", "", mitkCommandLineParser::InputFile, "TDI:", "tract density image"); parser.addArgument("wm", "", mitkCommandLineParser::InputFile, "WM:", "white matter volume fraction image"); parser.addArgument("gm", "", mitkCommandLineParser::InputFile, "GM:", "gray matter volume fraction image"); parser.addArgument("dgm", "", mitkCommandLineParser::InputFile, "DGM:", "subcortical gray matter volume fraction image"); parser.addArgument("csf", "", mitkCommandLineParser::InputFile, "CSF:", "CSF volume fraction image"); parser.addArgument("tdi_threshold", "", mitkCommandLineParser::Float, "", "", 0.75); parser.addArgument("sqrt", "", mitkCommandLineParser::Float, "", "", 1.0); parser.endGroup(); parser.beginGroup("5. General parameters:"); parser.addArgument("iterations", "", mitkCommandLineParser::Int, "Iterations:", "Number of optimizations steps", 1000); parser.addArgument("start_temp", "", mitkCommandLineParser::Float, "Start temperature:", "Higher temperature means larger parameter change proposals", 1.0); parser.addArgument("end_temp", "", mitkCommandLineParser::Float, "End temperature:", "Higher temperature means larger parameter change proposals", 0.1); parser.endGroup(); std::map parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; std::string paramName = us::any_cast(parsedArgs["parameters"]); std::string out_folder = us::any_cast(parsedArgs["o"]); std::string tract_file = us::any_cast(parsedArgs["tracts"]); MITK_INFO << "Loading target dMRI and parameters"; FiberfoxParameters parameters; parameters.LoadParameters(paramName); typedef itk::VectorImage< short, 3 > ItkDwiType; mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Diffusion Weighted Images", "Fiberbundles"}, {}); mitk::Image::Pointer dwi = mitk::IOUtil::Load(us::any_cast(parsedArgs["dmri"]), &functor); ItkDwiType::Pointer reference = mitk::DiffusionPropertyHelper::GetItkVectorImage(dwi); parameters.m_SignalGen.m_ImageRegion = reference->GetLargestPossibleRegion(); parameters.m_SignalGen.m_ImageSpacing = reference->GetSpacing(); parameters.m_SignalGen.m_ImageOrigin = reference->GetOrigin(); parameters.m_SignalGen.m_ImageDirection = reference->GetDirection(); parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi)); parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(dwi)); auto tracts = mitk::IOUtil::Load(tract_file, &functor); int iterations=1000; if (parsedArgs.count("iterations")) iterations = us::any_cast(parsedArgs["iterations"]); float start_temp=1.0; if (parsedArgs.count("start_temp")) start_temp = us::any_cast(parsedArgs["start_temp"]); float end_temp=0.1; if (parsedArgs.count("end_temp")) end_temp = us::any_cast(parsedArgs["end_temp"]); float tdi_threshold=0.75; if (parsedArgs.count("tdi_threshold")) tdi_threshold = us::any_cast(parsedArgs["tdi_threshold"]); float raise_histo=1.0; if (parsedArgs.count("raise_histo")) raise_histo = us::any_cast(parsedArgs["raise_histo"]); float sqrt=1.0; if (parsedArgs.count("sqrt")) sqrt = us::any_cast(parsedArgs["sqrt"]); bool fa_error=false; if (parsedArgs.count("fa_error")) fa_error = true; bool use_histo=false; if (parsedArgs.count("use_histo")) use_histo = true; std::string fa_file = ""; if (parsedArgs.count("fa_image")) fa_file = us::any_cast(parsedArgs["fa_image"]); std::string md_file = ""; if (parsedArgs.count("md_image")) md_file = us::any_cast(parsedArgs["md_image"]); std::vector< int > possible_proposals; if (!parsedArgs.count("no_diff")) { MITK_INFO << "Optimizing diffusivities"; possible_proposals.push_back(0); } if (!parsedArgs.count("no_relax")) { MITK_INFO << "Optimizing relaxation constants"; possible_proposals.push_back(1); } if (!parsedArgs.count("no_scale")) { MITK_INFO << "Optimizing global signal scale"; possible_proposals.push_back(2); } mitk::LocaleSwitch localeSwitch("C"); itk::ImageFileReader< itk::Image< unsigned char, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< unsigned char, 3 > >::New(); reader->SetFileName( us::any_cast(parsedArgs["mask"]) ); reader->Update(); itk::Image< unsigned char,3 >::ConstPointer mask = reader->GetOutput(); std::vector< itk::Image< double, 3 >::Pointer > fracs; if ( parsedArgs.count("tdi")>0 && parsedArgs.count("wm")>0 && parsedArgs.count("gm")>0 && parsedArgs.count("dgm")>0 && parsedArgs.count("csf")>0 ) { MITK_INFO << "Optimizing volume fractions"; { itk::ImageFileReader< itk::Image< double, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< double, 3 > >::New(); reader->SetFileName( us::any_cast(parsedArgs["tdi"]) ); reader->Update(); fracs.push_back(reader->GetOutput()); } { itk::ImageFileReader< itk::Image< double, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< double, 3 > >::New(); reader->SetFileName( us::any_cast(parsedArgs["wm"]) ); reader->Update(); fracs.push_back(reader->GetOutput()); } { itk::ImageFileReader< itk::Image< double, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< double, 3 > >::New(); reader->SetFileName( us::any_cast(parsedArgs["gm"]) ); reader->Update(); fracs.push_back(reader->GetOutput()); } { itk::ImageFileReader< itk::Image< double, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< double, 3 > >::New(); reader->SetFileName( us::any_cast(parsedArgs["dgm"]) ); reader->Update(); fracs.push_back(reader->GetOutput()); } { itk::ImageFileReader< itk::Image< double, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< double, 3 > >::New(); reader->SetFileName( us::any_cast(parsedArgs["csf"]) ); reader->Update(); fracs.push_back(reader->GetOutput()); } MITK_INFO << "Initial sqrt: " << sqrt; MITK_INFO << "Initial TDI threshold: " << tdi_threshold; possible_proposals.push_back(3); } std::vector< double > histogram_modifiers; itk::Image< double,3 >::ConstPointer fa_image = nullptr; if (fa_file.compare("")!=0) { itk::ImageFileReader< itk::Image< double, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< double, 3 > >::New(); reader->SetFileName( fa_file ); reader->Update(); fa_image = reader->GetOutput(); if (use_histo) { int binsPerDimension = 10; using ImageToHistogramFilterType = itk::Statistics::MaskedImageToHistogramFilter< itk::Image< double,3 >, itk::Image< unsigned char,3 > >; ImageToHistogramFilterType::HistogramType::MeasurementVectorType lowerBound(binsPerDimension); lowerBound.Fill(0.0); ImageToHistogramFilterType::HistogramType::MeasurementVectorType upperBound(binsPerDimension); upperBound.Fill(1.0); ImageToHistogramFilterType::HistogramType::SizeType size(1); size.Fill(binsPerDimension); ImageToHistogramFilterType::Pointer imageToHistogramFilter = ImageToHistogramFilterType::New(); imageToHistogramFilter->SetInput( fa_image ); imageToHistogramFilter->SetHistogramBinMinimum( lowerBound ); imageToHistogramFilter->SetHistogramBinMaximum( upperBound ); imageToHistogramFilter->SetHistogramSize( size ); imageToHistogramFilter->SetMaskImage(mask); imageToHistogramFilter->SetMaskValue(1); imageToHistogramFilter->Update(); ImageToHistogramFilterType::HistogramType* histogram = imageToHistogramFilter->GetOutput(); unsigned int max = 0; for(unsigned int i = 0; i < histogram->GetSize()[0]; ++i) { if (histogram->GetFrequency(i)>max) max = histogram->GetFrequency(i); } MITK_INFO << "FA histogram modifiers:"; for(unsigned int i = 0; i < histogram->GetSize()[0]; ++i) { histogram_modifiers.push_back( std::pow(1.0 - (double)histogram->GetFrequency(i)/(double)max, raise_histo) ); MITK_INFO << histogram_modifiers.back(); } } if (fa_error) MITK_INFO << "Using FA error measure."; } itk::Image< double,3 >::ConstPointer md_image = nullptr; if (md_file.compare("")!=0) { itk::ImageFileReader< itk::Image< double, 3 > >::Pointer reader = itk::ImageFileReader< itk::Image< double, 3 > >::New(); reader->SetFileName( md_file ); reader->Update(); md_image = reader->GetOutput(); if (fa_error) MITK_INFO << "Using MD error measure."; } if (fa_error && fa_image.IsNull()) { MITK_INFO << "Incompatible options. Need FA image to calculate FA error."; return EXIT_FAILURE; } if (possible_proposals.empty()) { MITK_INFO << "Incompatible options. Nothing to optimize."; return EXIT_FAILURE; } itk::TractsToDWIImageFilter< short >::Pointer tractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); tractsToDwiFilter->SetFiberBundle(tracts); tractsToDwiFilter->SetParameters(parameters); tractsToDwiFilter->Update(); ItkDwiType::Pointer sim = tractsToDwiFilter->GetOutput(); { mitk::Image::Pointer image = mitk::GrabItkImageMemory( tractsToDwiFilter->GetOutput() ); - mitk::DiffusionPropertyHelper::SetGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); + mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); mitk::DiffusionPropertyHelper::SetReferenceBValue(image, parameters.m_SignalGen.GetBvalue()); mitk::DiffusionPropertyHelper::InitializeImage( image ); mitk::IOUtil::Save(image, out_folder + "/initial.dwi"); } double old_tdi_thr = tdi_threshold; double old_sqrt = sqrt; double new_tdi_thr = old_tdi_thr; double new_sqrt = old_sqrt; MITK_INFO << "\n\n"; MITK_INFO << "Iterations: " << iterations; MITK_INFO << "start_temp: " << start_temp; MITK_INFO << "end_temp: " << end_temp; double alpha = log(end_temp/start_temp); int accepted = 0; double last_error = 9999999; if (fa_error) { MITK_INFO << "Calculating FA error"; last_error = CalcErrorFA(histogram_modifiers, dwi, sim, mask, fa_image, md_image, true); } else { MITK_INFO << "Calculating raw-image error"; last_error = CalcErrorSignal(histogram_modifiers, reference, sim, mask, fa_image); } MITK_INFO << "Initial E = " << last_error; MITK_INFO << "\n\n**************************************************************************************"; std::random_device r; std::default_random_engine randgen(r()); std::uniform_int_distribution uint1(0, possible_proposals.size()-1); for (int i=0; i::Pointer tractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); tractsToDwiFilter->SetFiberBundle(dynamic_cast(tracts.GetPointer())); tractsToDwiFilter->SetParameters(proposal); tractsToDwiFilter->Update(); ItkDwiType::Pointer sim = tractsToDwiFilter->GetOutput(); std::cout.rdbuf (old); // <-- restore double new_error = 9999999; if (fa_error && fa_image.IsNotNull()) new_error = CalcErrorFA(histogram_modifiers, dwi, sim, mask, fa_image, md_image, true); else new_error = CalcErrorSignal(histogram_modifiers, reference, sim, mask, fa_image); MITK_INFO << "E = " << new_error << "(" << new_error-last_error << ")"; if (last_errorGetOutput() ); - mitk::DiffusionPropertyHelper::SetGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); + mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(image, parameters.m_SignalGen.GetItkGradientContainer()); mitk::DiffusionPropertyHelper::SetReferenceBValue(image, parameters.m_SignalGen.GetBvalue()); mitk::DiffusionPropertyHelper::InitializeImage( image ); mitk::IOUtil::Save(image, out_folder + "/optimized.dwi"); proposal.SaveParameters(out_folder + "/optimized.ffp"); std::cout.rdbuf (old); // <-- restore accepted++; old_tdi_thr = new_tdi_thr; old_sqrt = new_sqrt; MITK_INFO << "Accepted (acc. rate " << (float)accepted/(i+1) << ")"; parameters = FiberfoxParameters(proposal); last_error = new_error; } MITK_INFO << "\n\n\n"; } return EXIT_SUCCESS; } diff --git a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp index a1bbc8189a..0ee9195b1f 100644 --- a/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp +++ b/Plugins/org.mitk.gui.qt.diffusionimaging.fiberfox/src/internal/QmitkFiberfoxView.cpp @@ -1,2125 +1,2125 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ // Blueberry #include #include // Qmitk #include "QmitkFiberfoxView.h" // MITK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RAPIDXML_NO_EXCEPTIONS #include #include #include #include #include "usModuleRegistry.h" #include #include #include #include #include #include #include #include #include #include "mitkNodePredicateDataType.h" #include #include #include #include #define _USE_MATH_DEFINES #include QmitkFiberfoxWorker::QmitkFiberfoxWorker(QmitkFiberfoxView* view) : m_View(view) { } void QmitkFiberfoxWorker::run() { try{ m_View->m_TractsToDwiFilter->Update(); } catch( ... ) { } m_View->m_Thread.quit(); } const std::string QmitkFiberfoxView::VIEW_ID = "org.mitk.views.fiberfoxview"; QmitkFiberfoxView::QmitkFiberfoxView() : QmitkAbstractView() , m_Controls( 0 ) , m_SelectedImageNode( nullptr ) , m_Worker(this) , m_ThreadIsRunning(false) { m_Worker.moveToThread(&m_Thread); connect(&m_Thread, SIGNAL(started()), this, SLOT(BeforeThread())); connect(&m_Thread, SIGNAL(started()), &m_Worker, SLOT(run())); connect(&m_Thread, SIGNAL(finished()), this, SLOT(AfterThread())); // connect(&m_Thread, SIGNAL(terminated()), this, SLOT(AfterThread())); m_SimulationTimer = new QTimer(this); } void QmitkFiberfoxView::KillThread() { MITK_INFO << "Aborting DWI simulation."; m_TractsToDwiFilter->SetAbortGenerateData(true); m_Controls->m_AbortSimulationButton->setEnabled(false); m_Controls->m_AbortSimulationButton->setText("Aborting simulation ..."); } void QmitkFiberfoxView::BeforeThread() { m_SimulationTime = QTime::currentTime(); m_SimulationTimer->start(100); m_Controls->m_AbortSimulationButton->setVisible(true); m_Controls->m_GenerateImageButton->setVisible(false); m_Controls->m_SimulationStatusText->setVisible(true); m_ThreadIsRunning = true; } void QmitkFiberfoxView::AfterThread() { UpdateSimulationStatus(); m_SimulationTimer->stop(); m_Controls->m_AbortSimulationButton->setVisible(false); m_Controls->m_AbortSimulationButton->setEnabled(true); m_Controls->m_AbortSimulationButton->setText("Abort simulation"); m_Controls->m_GenerateImageButton->setVisible(true); m_ThreadIsRunning = false; QString statusText; FiberfoxParameters parameters; mitk::Image::Pointer mitkImage = mitk::Image::New(); statusText = QString(m_TractsToDwiFilter->GetStatusText().c_str()); if (m_TractsToDwiFilter->GetAbortGenerateData()) { MITK_INFO << "Simulation aborted."; return; } parameters = m_TractsToDwiFilter->GetParameters(); mitkImage = mitk::GrabItkImageMemory( m_TractsToDwiFilter->GetOutput() ); - mitk::DiffusionPropertyHelper::SetGradientContainer(mitkImage, parameters.m_SignalGen.GetItkGradientContainer()); + mitk::DiffusionPropertyHelper::SetOriginalGradientContainer(mitkImage, parameters.m_SignalGen.GetItkGradientContainer()); mitk::DiffusionPropertyHelper::SetReferenceBValue(mitkImage, parameters.m_SignalGen.GetBvalue()); mitk::DiffusionPropertyHelper::InitializeImage( mitkImage ); parameters.m_Misc.m_ResultNode->SetData( mitkImage ); GetDataStorage()->Add(parameters.m_Misc.m_ResultNode, parameters.m_Misc.m_ParentNode); parameters.m_Misc.m_ResultNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New(m_TractsToDwiFilter->GetLevelWindow()) ); if (m_Controls->m_VolumeFractionsBox->isChecked()) { if (m_TractsToDwiFilter->GetPhaseImage().IsNotNull()) { mitk::Image::Pointer phaseImage = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkPhase = m_TractsToDwiFilter->GetPhaseImage(); phaseImage = mitk::GrabItkImageMemory( itkPhase.GetPointer() ); mitk::DataNode::Pointer phaseNode = mitk::DataNode::New(); phaseNode->SetData( phaseImage ); phaseNode->SetName("Phase Image"); GetDataStorage()->Add(phaseNode, parameters.m_Misc.m_ResultNode); } if (m_TractsToDwiFilter->GetKspaceImage().IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer itkImage = m_TractsToDwiFilter->GetKspaceImage(); image = mitk::GrabItkImageMemory( itkImage.GetPointer() ); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("k-Space"); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); } { mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData(m_TractsToDwiFilter->GetCoilPointset()); node->SetName("Coil Positions"); node->SetProperty("pointsize", mitk::FloatProperty::New(parameters.m_SignalGen.m_ImageSpacing[0]/4)); node->SetProperty("color", mitk::ColorProperty::New(0, 1, 0)); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); } int c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_real = m_TractsToDwiFilter->GetOutputImagesReal(); for (auto real : output_real) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(real.GetPointer()); image->SetVolume(real->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Coil-"+QString::number(c).toStdString()+"-real"); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); ++c; } c = 1; std::vector< itk::TractsToDWIImageFilter< short >::DoubleDwiType::Pointer > output_imag = m_TractsToDwiFilter->GetOutputImagesImag(); for (auto imag : output_imag) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(imag.GetPointer()); image->SetVolume(imag->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Coil-"+QString::number(c).toStdString()+"-imag"); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); ++c; } std::vector< itk::TractsToDWIImageFilter< short >::ItkDoubleImgType::Pointer > volumeFractions = m_TractsToDwiFilter->GetVolumeFractions(); for (unsigned int k=0; kInitializeByItk(volumeFractions.at(k).GetPointer()); image->SetVolume(volumeFractions.at(k)->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("CompartmentVolume-"+QString::number(k).toStdString()); GetDataStorage()->Add(node, parameters.m_Misc.m_ResultNode); } } m_TractsToDwiFilter = nullptr; if (parameters.m_Misc.m_AfterSimulationMessage.size()>0) QMessageBox::information( nullptr, "Warning", parameters.m_Misc.m_AfterSimulationMessage.c_str()); mitk::BaseData::Pointer basedata = parameters.m_Misc.m_ResultNode->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if (!parameters.m_Misc.m_OutputPath.empty()) { try{ QString outputFileName(parameters.m_Misc.m_OutputPath.c_str()); outputFileName += parameters.m_Misc.m_ResultNode->GetName().c_str(); outputFileName.replace(QString("."), QString("_")); SaveParameters(outputFileName+".ffp"); outputFileName += ".dwi"; QString status("Saving output image to "); status += outputFileName; m_Controls->m_SimulationStatusText->append(status); mitk::IOUtil::Save(mitkImage, outputFileName.toStdString()); m_Controls->m_SimulationStatusText->append("File saved successfully."); } catch (itk::ExceptionObject &e) { QString status("Exception during DWI writing: "); status += e.GetDescription(); m_Controls->m_SimulationStatusText->append(status); } catch (...) { m_Controls->m_SimulationStatusText->append("Unknown exception during DWI writing!"); } } parameters.m_SignalGen.m_FrequencyMap = nullptr; } void QmitkFiberfoxView::UpdateSimulationStatus() { QString statusText = QString(m_TractsToDwiFilter->GetStatusText().c_str()); if (QString::compare(m_SimulationStatusText,statusText)!=0) { m_Controls->m_SimulationStatusText->clear(); m_Controls->m_SimulationStatusText->setText(statusText); QScrollBar *vScrollBar = m_Controls->m_SimulationStatusText->verticalScrollBar(); vScrollBar->triggerAction(QScrollBar::SliderToMaximum); } } // Destructor QmitkFiberfoxView::~QmitkFiberfoxView() { delete m_SimulationTimer; } void QmitkFiberfoxView::CreateQtPartControl( QWidget *parent ) { // build up qt view, unless already done if ( !m_Controls ) { // create GUI widgets from the Qt Designer's .ui file m_Controls = new Ui::QmitkFiberfoxViewControls; m_Controls->setupUi( parent ); m_Controls->m_StickWidget1->setVisible(true); m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); m_Controls->m_BallWidget1->setVisible(true); m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_BallWidget2->SetT1(4500); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_AstrosticksWidget2->SetT1(4500); m_Controls->m_DotWidget1->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_DotWidget2->SetT1(4500); m_Controls->m_PrototypeWidget1->setVisible(false); m_Controls->m_PrototypeWidget2->setVisible(false); m_Controls->m_PrototypeWidget3->setVisible(false); m_Controls->m_PrototypeWidget4->setVisible(false); m_Controls->m_PrototypeWidget3->SetMinFa(0.0); m_Controls->m_PrototypeWidget3->SetMaxFa(0.15); m_Controls->m_PrototypeWidget4->SetMinFa(0.0); m_Controls->m_PrototypeWidget4->SetMaxFa(0.15); m_Controls->m_PrototypeWidget3->SetMinAdc(0.0); m_Controls->m_PrototypeWidget3->SetMaxAdc(0.001); m_Controls->m_PrototypeWidget4->SetMinAdc(0.003); m_Controls->m_PrototypeWidget4->SetMaxAdc(0.004); m_Controls->m_Comp2FractionFrame->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_NoiseFrame->setVisible(false); m_Controls->m_GhostFrame->setVisible(false); m_Controls->m_DistortionsFrame->setVisible(false); m_Controls->m_EddyFrame->setVisible(false); m_Controls->m_SpikeFrame->setVisible(false); m_Controls->m_AliasingFrame->setVisible(false); m_Controls->m_MotionArtifactFrame->setVisible(false); m_Controls->m_DriftFrame->setVisible(false); m_ParameterFile = QDir::currentPath()+"/param.ffp"; m_Controls->m_AbortSimulationButton->setVisible(false); m_Controls->m_SimulationStatusText->setVisible(false); m_Controls->m_FrequencyMapBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp1VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp2VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp3VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_Comp4VolumeFraction->SetDataStorage(this->GetDataStorage()); m_Controls->m_MaskComboBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_TemplateComboBox->SetDataStorage(this->GetDataStorage()); m_Controls->m_FiberBundleComboBox->SetDataStorage(this->GetDataStorage()); mitk::TNodePredicateDataType::Pointer isFiberBundle = mitk::TNodePredicateDataType::New(); mitk::TNodePredicateDataType::Pointer isMitkImage = mitk::TNodePredicateDataType::New(); mitk::NodePredicateIsDWI::Pointer isDwi = mitk::NodePredicateIsDWI::New( ); mitk::NodePredicateDataType::Pointer isDti = mitk::NodePredicateDataType::New("TensorImage"); mitk::NodePredicateDataType::Pointer isOdf = mitk::NodePredicateDataType::New("Odfmage"); mitk::NodePredicateOr::Pointer isDiffusionImage = mitk::NodePredicateOr::New(isDwi, isDti); isDiffusionImage = mitk::NodePredicateOr::New(isDiffusionImage, isOdf); mitk::NodePredicateNot::Pointer noDiffusionImage = mitk::NodePredicateNot::New(isDiffusionImage); mitk::NodePredicateAnd::Pointer isNonDiffMitkImage = mitk::NodePredicateAnd::New(isMitkImage, noDiffusionImage); mitk::NodePredicateProperty::Pointer isBinaryPredicate = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateAnd::Pointer isBinaryMitkImage = mitk::NodePredicateAnd::New( isNonDiffMitkImage, isBinaryPredicate ); m_Controls->m_FrequencyMapBox->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp1VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp1VolumeFraction->SetZeroEntryText("--"); m_Controls->m_Comp2VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp2VolumeFraction->SetZeroEntryText("--"); m_Controls->m_Comp3VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp3VolumeFraction->SetZeroEntryText("--"); m_Controls->m_Comp4VolumeFraction->SetPredicate(isNonDiffMitkImage); m_Controls->m_Comp4VolumeFraction->SetZeroEntryText("--"); m_Controls->m_MaskComboBox->SetPredicate(isBinaryMitkImage); m_Controls->m_MaskComboBox->SetZeroEntryText("--"); m_Controls->m_TemplateComboBox->SetPredicate(isMitkImage); m_Controls->m_TemplateComboBox->SetZeroEntryText("--"); m_Controls->m_FiberBundleComboBox->SetPredicate(isFiberBundle); m_Controls->m_FiberBundleComboBox->SetZeroEntryText("--"); QFont font; font.setFamily("Courier"); font.setStyleHint(QFont::Monospace); font.setFixedPitch(true); font.setPointSize(7); m_Controls->m_SimulationStatusText->setFont(font); connect( m_SimulationTimer, SIGNAL(timeout()), this, SLOT(UpdateSimulationStatus()) ); connect((QObject*) m_Controls->m_AbortSimulationButton, SIGNAL(clicked()), (QObject*) this, SLOT(KillThread())); connect((QObject*) m_Controls->m_GenerateImageButton, SIGNAL(clicked()), (QObject*) this, SLOT(GenerateImage())); connect((QObject*) m_Controls->m_AddNoise, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddNoise(int))); connect((QObject*) m_Controls->m_AddGhosts, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddGhosts(int))); connect((QObject*) m_Controls->m_AddDistortions, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddDistortions(int))); connect((QObject*) m_Controls->m_AddEddy, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddEddy(int))); connect((QObject*) m_Controls->m_AddSpikes, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddSpikes(int))); connect((QObject*) m_Controls->m_AddAliasing, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddAliasing(int))); connect((QObject*) m_Controls->m_AddMotion, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddMotion(int))); connect((QObject*) m_Controls->m_AddDrift, SIGNAL(stateChanged(int)), (QObject*) this, SLOT(OnAddDrift(int))); connect((QObject*) m_Controls->m_Compartment1Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp1ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment2Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp2ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment3Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp3ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_Compartment4Box, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(Comp4ModelFrameVisibility(int))); connect((QObject*) m_Controls->m_AdvancedOptionsBox_2, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(ShowAdvancedOptions(int))); connect((QObject*) m_Controls->m_UseBvalsBvecsBox, SIGNAL( stateChanged(int)), (QObject*) this, SLOT(OnBvalsBvecsCheck(int))); connect((QObject*) m_Controls->m_SaveParametersButton, SIGNAL(clicked()), (QObject*) this, SLOT(SaveParameters())); connect((QObject*) m_Controls->m_LoadParametersButton, SIGNAL(clicked()), (QObject*) this, SLOT(LoadParameters())); connect((QObject*) m_Controls->m_OutputPathButton, SIGNAL(clicked()), (QObject*) this, SLOT(SetOutputPath())); connect((QObject*) m_Controls->m_LoadBvalsButton, SIGNAL(clicked()), (QObject*) this, SLOT(SetBvalsEdit())); connect((QObject*) m_Controls->m_LoadBvecsButton, SIGNAL(clicked()), (QObject*) this, SLOT(SetBvecsEdit())); connect((QObject*) m_Controls->m_MaskComboBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnMaskSelected(int))); connect((QObject*) m_Controls->m_TemplateComboBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnTemplateSelected(int))); connect((QObject*) m_Controls->m_FiberBundleComboBox, SIGNAL(currentIndexChanged(int)), (QObject*) this, SLOT(OnFibSelected(int))); } UpdateGui(); } void QmitkFiberfoxView::OnMaskSelected(int ) { UpdateGui(); } void QmitkFiberfoxView::OnTemplateSelected(int ) { UpdateGui(); } void QmitkFiberfoxView::OnFibSelected(int ) { UpdateGui(); } void QmitkFiberfoxView::OnBvalsBvecsCheck(int ) { UpdateGui(); } void QmitkFiberfoxView::UpdateParametersFromGui() { m_Parameters.ClearSignalParameters(); m_Parameters.m_Misc.m_CheckAdvancedSignalOptionsBox = m_Controls->m_AdvancedOptionsBox_2->isChecked(); m_Parameters.m_Misc.m_CheckOutputVolumeFractionsBox = m_Controls->m_VolumeFractionsBox->isChecked(); std::string outputPath = m_Controls->m_SavePathEdit->text().toStdString(); if (outputPath.compare("-")!=0) { m_Parameters.m_Misc.m_OutputPath = outputPath; m_Parameters.m_Misc.m_OutputPath += "/"; } if (m_Controls->m_MaskComboBox->GetSelectedNode().IsNotNull()) { mitk::Image::Pointer mitkMaskImage = dynamic_cast(m_Controls->m_MaskComboBox->GetSelectedNode()->GetData()); mitk::CastToItkImage(mitkMaskImage, m_Parameters.m_SignalGen.m_MaskImage); itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(m_Parameters.m_SignalGen.m_MaskImage); duplicator->Update(); m_Parameters.m_SignalGen.m_MaskImage = duplicator->GetOutput(); } if (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull() && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( m_Controls->m_TemplateComboBox->GetSelectedNode())) // use parameters of selected DWI { mitk::Image::Pointer dwi = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(dwi, itkVectorImagePointer); m_Parameters.m_SignalGen.m_ImageRegion = itkVectorImagePointer->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkVectorImagePointer->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkVectorImagePointer->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkVectorImagePointer->GetDirection(); m_Parameters.SetBvalue(mitk::DiffusionPropertyHelper::GetReferenceBValue(dwi)); - m_Parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(dwi)); + m_Parameters.SetGradienDirections(mitk::DiffusionPropertyHelper::GetOriginalGradientContainer(dwi)); } else if (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull()) // use geometry of selected image { mitk::Image::Pointer img = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); itk::Image< float, 3 >::Pointer itkImg = itk::Image< float, 3 >::New(); CastToItkImage< itk::Image< float, 3 > >(img, itkImg); m_Parameters.m_SignalGen.m_ImageRegion = itkImg->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkImg->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkImg->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkImg->GetDirection(); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) { double bval; m_Parameters.SetGradienDirections( mitk::gradients::ReadBvalsBvecs(m_Controls->m_LoadBvalsEdit->text().toStdString(), m_Controls->m_LoadBvecsEdit->text().toStdString(), bval) ); m_Parameters.SetBvalue(bval); } else { m_Parameters.SetNumWeightedVolumes(m_Controls->m_NumGradientsBox->value()); m_Parameters.SetBvalue(m_Controls->m_BvalueBox->value()); m_Parameters.GenerateGradientHalfShell(); } } else if (m_Parameters.m_SignalGen.m_MaskImage.IsNotNull()) // use geometry of mask image { ItkUcharImgType::Pointer itkImg = m_Parameters.m_SignalGen.m_MaskImage; m_Parameters.m_SignalGen.m_ImageRegion = itkImg->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkImg->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkImg->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkImg->GetDirection(); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) { double bval; m_Parameters.SetGradienDirections( mitk::gradients::ReadBvalsBvecs(m_Controls->m_LoadBvalsEdit->text().toStdString(), m_Controls->m_LoadBvecsEdit->text().toStdString(), bval) ); m_Parameters.SetBvalue(bval); } else { m_Parameters.SetNumWeightedVolumes(m_Controls->m_NumGradientsBox->value()); m_Parameters.SetBvalue(m_Controls->m_BvalueBox->value()); m_Parameters.GenerateGradientHalfShell(); } } else // use GUI parameters { m_Parameters.m_SignalGen.m_ImageRegion.SetSize(0, m_Controls->m_SizeX->value()); m_Parameters.m_SignalGen.m_ImageRegion.SetSize(1, m_Controls->m_SizeY->value()); m_Parameters.m_SignalGen.m_ImageRegion.SetSize(2, m_Controls->m_SizeZ->value()); m_Parameters.m_SignalGen.m_ImageSpacing[0] = m_Controls->m_SpacingX->value(); m_Parameters.m_SignalGen.m_ImageSpacing[1] = m_Controls->m_SpacingY->value(); m_Parameters.m_SignalGen.m_ImageSpacing[2] = m_Controls->m_SpacingZ->value(); m_Parameters.m_SignalGen.m_ImageOrigin[0] = m_Parameters.m_SignalGen.m_ImageSpacing[0]/2; m_Parameters.m_SignalGen.m_ImageOrigin[1] = m_Parameters.m_SignalGen.m_ImageSpacing[1]/2; m_Parameters.m_SignalGen.m_ImageOrigin[2] = m_Parameters.m_SignalGen.m_ImageSpacing[2]/2; m_Parameters.m_SignalGen.m_ImageDirection.SetIdentity(); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) { double bval; m_Parameters.SetGradienDirections( mitk::gradients::ReadBvalsBvecs(m_Controls->m_LoadBvalsEdit->text().toStdString(), m_Controls->m_LoadBvecsEdit->text().toStdString(), bval) ); m_Parameters.SetBvalue(bval); } else { m_Parameters.SetNumWeightedVolumes(m_Controls->m_NumGradientsBox->value()); m_Parameters.SetBvalue(m_Controls->m_BvalueBox->value()); m_Parameters.GenerateGradientHalfShell(); } } // signal relaxation m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; if (m_Controls->m_RelaxationBox->isChecked()) { m_Parameters.m_SignalGen.m_DoSimulateRelaxation = true; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Relaxation", BoolProperty::New(true)); m_Parameters.m_Misc.m_ArtifactModelString += "_RELAX"; } m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = m_Parameters.m_SignalGen.m_DoSimulateRelaxation; // N/2 ghosts m_Parameters.m_Misc.m_DoAddGhosts = m_Controls->m_AddGhosts->isChecked(); m_Parameters.m_SignalGen.m_KspaceLineOffset = m_Controls->m_kOffsetBox->value(); if (m_Controls->m_AddGhosts->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_GHOST"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Ghost", DoubleProperty::New(m_Parameters.m_SignalGen.m_KspaceLineOffset)); } // Aliasing m_Parameters.m_Misc.m_DoAddAliasing = m_Controls->m_AddAliasing->isChecked(); m_Parameters.m_SignalGen.m_CroppingFactor = (100-m_Controls->m_WrapBox->value())/100; if (m_Controls->m_AddAliasing->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_ALIASING"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Aliasing", DoubleProperty::New(m_Controls->m_WrapBox->value())); } // Spikes m_Parameters.m_Misc.m_DoAddSpikes = m_Controls->m_AddSpikes->isChecked(); m_Parameters.m_SignalGen.m_Spikes = m_Controls->m_SpikeNumBox->value(); m_Parameters.m_SignalGen.m_SpikeAmplitude = m_Controls->m_SpikeScaleBox->value(); if (m_Controls->m_AddSpikes->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_SPIKES"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Spikes.Number", IntProperty::New(m_Parameters.m_SignalGen.m_Spikes)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Spikes.Amplitude", DoubleProperty::New(m_Parameters.m_SignalGen.m_SpikeAmplitude)); } // Drift m_Parameters.m_SignalGen.m_DoAddDrift = m_Controls->m_AddDrift->isChecked(); m_Parameters.m_SignalGen.m_Drift = m_Controls->m_DriftFactor->value()/100; if (m_Controls->m_AddDrift->isChecked()) { m_Parameters.m_Misc.m_ArtifactModelString += "_DRIFT"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Drift", FloatProperty::New(m_Parameters.m_SignalGen.m_Drift)); } // gibbs ringing m_Parameters.m_SignalGen.m_DoAddGibbsRinging = m_Controls->m_AddGibbsRinging->isChecked(); if (m_Controls->m_AddGibbsRinging->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Ringing", BoolProperty::New(true)); m_Parameters.m_Misc.m_ArtifactModelString += "_RINGING"; } // add distortions m_Parameters.m_Misc.m_DoAddDistortions = m_Controls->m_AddDistortions->isChecked(); if (m_Controls->m_AddDistortions->isChecked() && m_Controls->m_FrequencyMapBox->GetSelectedNode().IsNotNull()) { mitk::DataNode::Pointer fMapNode = m_Controls->m_FrequencyMapBox->GetSelectedNode(); mitk::Image* img = dynamic_cast(fMapNode->GetData()); ItkFloatImgType::Pointer itkImg = ItkFloatImgType::New(); CastToItkImage< ItkFloatImgType >(img, itkImg); if (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNull()) // use geometry of frequency map { m_Parameters.m_SignalGen.m_ImageRegion = itkImg->GetLargestPossibleRegion(); m_Parameters.m_SignalGen.m_ImageSpacing = itkImg->GetSpacing(); m_Parameters.m_SignalGen.m_ImageOrigin = itkImg->GetOrigin(); m_Parameters.m_SignalGen.m_ImageDirection = itkImg->GetDirection(); } m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; itk::ImageDuplicator::Pointer duplicator = itk::ImageDuplicator::New(); duplicator->SetInputImage(itkImg); duplicator->Update(); m_Parameters.m_SignalGen.m_FrequencyMap = duplicator->GetOutput(); m_Parameters.m_Misc.m_ArtifactModelString += "_DISTORTED"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Distortions", BoolProperty::New(true)); } m_Parameters.m_SignalGen.m_EddyStrength = m_Controls->m_EddyGradientStrength->value(); m_Parameters.m_Misc.m_DoAddEddyCurrents = m_Controls->m_AddEddy->isChecked(); if (m_Controls->m_AddEddy->isChecked()) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_EDDY"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Eddy-strength", DoubleProperty::New(m_Parameters.m_SignalGen.m_EddyStrength)); } // Motion m_Parameters.m_SignalGen.m_DoAddMotion = false; m_Parameters.m_SignalGen.m_DoRandomizeMotion = m_Controls->m_RandomMotion->isChecked(); m_Parameters.m_SignalGen.m_Translation[0] = m_Controls->m_MaxTranslationBoxX->value(); m_Parameters.m_SignalGen.m_Translation[1] = m_Controls->m_MaxTranslationBoxY->value(); m_Parameters.m_SignalGen.m_Translation[2] = m_Controls->m_MaxTranslationBoxZ->value(); m_Parameters.m_SignalGen.m_Rotation[0] = m_Controls->m_MaxRotationBoxX->value(); m_Parameters.m_SignalGen.m_Rotation[1] = m_Controls->m_MaxRotationBoxY->value(); m_Parameters.m_SignalGen.m_Rotation[2] = m_Controls->m_MaxRotationBoxZ->value(); m_Parameters.m_SignalGen.m_MotionVolumes.clear(); m_Parameters.m_Misc.m_MotionVolumesBox = m_Controls->m_MotionVolumesBox->text().toStdString(); if ( m_Controls->m_AddMotion->isChecked()) { m_Parameters.m_SignalGen.m_DoAddMotion = true; m_Parameters.m_Misc.m_ArtifactModelString += "_MOTION"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Random", BoolProperty::New(m_Parameters.m_SignalGen.m_DoRandomizeMotion)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-x", DoubleProperty::New(m_Parameters.m_SignalGen.m_Translation[0])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-y", DoubleProperty::New(m_Parameters.m_SignalGen.m_Translation[1])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Translation-z", DoubleProperty::New(m_Parameters.m_SignalGen.m_Translation[2])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-x", DoubleProperty::New(m_Parameters.m_SignalGen.m_Rotation[0])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-y", DoubleProperty::New(m_Parameters.m_SignalGen.m_Rotation[1])); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Motion.Rotation-z", DoubleProperty::New(m_Parameters.m_SignalGen.m_Rotation[2])); if ( m_Parameters.m_Misc.m_MotionVolumesBox == "random" ) { for ( size_t i=0; i < m_Parameters.m_SignalGen.GetNumVolumes(); ++i ) { m_Parameters.m_SignalGen.m_MotionVolumes.push_back( bool( rand()%2 ) ); } MITK_DEBUG << "QmitkFiberfoxView.cpp: Case m_Misc.m_MotionVolumesBox == \"random\"."; } else if ( ! m_Parameters.m_Misc.m_MotionVolumesBox.empty() ) { std::stringstream stream( m_Parameters.m_Misc.m_MotionVolumesBox ); std::vector numbers; int number = std::numeric_limits::max(); while( stream >> number ) { if( number < std::numeric_limits::max() ) { numbers.push_back( number ); } } // If a list of negative numbers is given: if( *(std::min_element( numbers.begin(), numbers.end() )) < 0 && *(std::max_element( numbers.begin(), numbers.end() )) <= 0 ) // cave: -0 == +0 { for ( size_t i=0; i < m_Parameters.m_SignalGen.GetNumVolumes(); ++i ) { m_Parameters.m_SignalGen.m_MotionVolumes.push_back( true ); } // set all true except those given. for( auto iter = std::begin( numbers ); iter != std::end( numbers ); ++iter ) { if ( -(*iter) < (int)m_Parameters.m_SignalGen.GetNumVolumes() && -(*iter) >= 0 ) { m_Parameters.m_SignalGen.m_MotionVolumes.at( -(*iter) ) = false; } } MITK_DEBUG << "QmitkFiberfoxView.cpp: Case list of negative numbers."; } // If a list of positive numbers is given: else if( *(std::min_element( numbers.begin(), numbers.end() )) >= 0 && *(std::max_element( numbers.begin(), numbers.end() )) >= 0 ) { for ( size_t i=0; i < m_Parameters.m_SignalGen.GetNumVolumes(); ++i ) { m_Parameters.m_SignalGen.m_MotionVolumes.push_back( false ); } // set all false except those given. for( auto iter = std::begin( numbers ); iter != std::end( numbers ); ++iter ) { if ( *iter < (int)m_Parameters.m_SignalGen.GetNumVolumes() && *iter >= 0 ) { m_Parameters.m_SignalGen.m_MotionVolumes.at( *iter ) = true; } } MITK_DEBUG << "QmitkFiberfoxView.cpp: Case list of positive numbers."; } else { MITK_ERROR << "QmitkFiberfoxView.cpp: Inconsistent list of numbers in m_MotionVolumesBox."; } } else { MITK_WARN << "QmitkFiberfoxView.cpp: Unrecognised parameters.m_Misc.m_MotionVolumesBox: " << m_Parameters.m_Misc.m_MotionVolumesBox; m_Parameters.m_Misc.m_MotionVolumesBox = "random"; // set default. for (unsigned int i=0; im_AcquisitionTypeBox->currentIndex(); m_Parameters.m_SignalGen.m_CoilSensitivityProfile = (SignalGenerationParameters::CoilSensitivityProfile)m_Controls->m_CoilSensBox->currentIndex(); m_Parameters.m_SignalGen.m_NumberOfCoils = m_Controls->m_NumCoilsBox->value(); m_Parameters.m_SignalGen.m_PartialFourier = m_Controls->m_PartialFourier->value(); m_Parameters.m_SignalGen.m_ReversePhase = m_Controls->m_ReversePhaseBox->isChecked(); m_Parameters.m_SignalGen.m_tLine = m_Controls->m_LineReadoutTimeBox->value(); m_Parameters.m_SignalGen.m_tInhom = m_Controls->m_T2starBox->value(); m_Parameters.m_SignalGen.m_tEcho = m_Controls->m_TEbox->value(); m_Parameters.m_SignalGen.m_tRep = m_Controls->m_TRbox->value(); m_Parameters.m_SignalGen.m_DoDisablePartialVolume = m_Controls->m_EnforcePureFiberVoxelsBox->isChecked(); m_Parameters.m_SignalGen.m_AxonRadius = m_Controls->m_FiberRadius->value(); m_Parameters.m_SignalGen.m_SignalScale = m_Controls->m_SignalScaleBox->value(); double voxelVolume = m_Parameters.m_SignalGen.m_ImageSpacing[0] * m_Parameters.m_SignalGen.m_ImageSpacing[1] * m_Parameters.m_SignalGen.m_ImageSpacing[2]; if ( m_Parameters.m_SignalGen.m_SignalScale*voxelVolume > itk::NumericTraits::max()*0.75 ) { m_Parameters.m_SignalGen.m_SignalScale = itk::NumericTraits::max()*0.75/voxelVolume; m_Controls->m_SignalScaleBox->setValue(m_Parameters.m_SignalGen.m_SignalScale); QMessageBox::information( nullptr, "Warning", "Maximum signal exceeding data type limits. Automatically adjusted to " + QString::number(m_Parameters.m_SignalGen.m_SignalScale) + " to obtain a maximum signal of 75% of the data type maximum." " Relaxation and other effects that affect the signal intensities are not accounted for."); } // Noise m_Parameters.m_Misc.m_DoAddNoise = m_Controls->m_AddNoise->isChecked(); m_Parameters.m_SignalGen.m_NoiseVariance = m_Controls->m_NoiseLevel->value(); if (m_Controls->m_AddNoise->isChecked()) { switch (m_Controls->m_NoiseDistributionBox->currentIndex()) { case 0: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_COMPLEX-GAUSSIAN-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Complex Gaussian")); } break; } case 1: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_NoiseModel = std::make_shared< mitk::RicianNoiseModel >(); m_Parameters.m_Misc.m_ArtifactModelString += "_RICIAN-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Rician")); m_Parameters.m_NoiseModel->SetNoiseVariance(m_Parameters.m_SignalGen.m_NoiseVariance); } break; } case 2: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_NoiseModel = std::make_shared< mitk::ChiSquareNoiseModel >(); m_Parameters.m_Misc.m_ArtifactModelString += "_CHISQUARED-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Chi-squared")); m_Parameters.m_NoiseModel->SetNoiseVariance(m_Parameters.m_SignalGen.m_NoiseVariance); } break; } default: { if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_SignalGen.m_SimulateKspaceAcquisition = true; m_Parameters.m_Misc.m_ArtifactModelString += "_COMPLEX-GAUSSIAN-"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Distribution", StringProperty::New("Complex Gaussian")); } break; } } if (m_Parameters.m_SignalGen.m_NoiseVariance>0) { m_Parameters.m_Misc.m_ArtifactModelString += QString::number(m_Parameters.m_SignalGen.m_NoiseVariance).toStdString(); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Noise-Variance", DoubleProperty::New(m_Parameters.m_SignalGen.m_NoiseVariance)); } } // signal models { // compartment 1 switch (m_Controls->m_Compartment1Box->currentIndex()) { case 0: { mitk::StickModel* model = new mitk::StickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_StickWidget1->GetD()); model->SetT2(m_Controls->m_StickWidget1->GetT2()); model->SetT1(m_Controls->m_StickWidget1->GetT1()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Stick"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Stick") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D", DoubleProperty::New(m_Controls->m_StickWidget1->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(model->GetT2()) ); break; } case 1: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_ZeppelinWidget1->GetD1()); model->SetDiffusivity2(m_Controls->m_ZeppelinWidget1->GetD2()); model->SetDiffusivity3(m_Controls->m_ZeppelinWidget1->GetD2()); model->SetT2(m_Controls->m_ZeppelinWidget1->GetT2()); model->SetT1(m_Controls->m_ZeppelinWidget1->GetT1()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Zeppelin"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Zeppelin") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget1->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(model->GetT2()) ); break; } case 2: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_TensorWidget1->GetD1()); model->SetDiffusivity2(m_Controls->m_TensorWidget1->GetD2()); model->SetDiffusivity3(m_Controls->m_TensorWidget1->GetD3()); model->SetT2(m_Controls->m_TensorWidget1->GetT2()); model->SetT1(m_Controls->m_TensorWidget1->GetT1()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Tensor"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Tensor") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D1", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D2", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.D3", DoubleProperty::New(m_Controls->m_TensorWidget1->GetD3()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.T2", DoubleProperty::New(model->GetT2()) ); break; } case 3: { mitk::RawShModel* model = new mitk::RawShModel(); m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetMaxNumKernels(m_Controls->m_PrototypeWidget1->GetNumberOfSamples()); model->SetFaRange(m_Controls->m_PrototypeWidget1->GetMinFa(), m_Controls->m_PrototypeWidget1->GetMaxFa()); model->SetAdcRange(m_Controls->m_PrototypeWidget1->GetMinAdc(), m_Controls->m_PrototypeWidget1->GetMaxAdc()); model->m_CompartmentId = 1; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Prototype"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Description", StringProperty::New("Intra-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment1.Model", StringProperty::New("Prototype") ); break; } } if (m_Controls->m_Comp1VolumeFraction->GetSelectedNode().IsNotNull()) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp1VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer comp1VolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, comp1VolumeImage); m_Parameters.m_FiberModelList.back()->SetVolumeFractionImage(comp1VolumeImage); } // compartment 2 switch (m_Controls->m_Compartment2Box->currentIndex()) { case 0: break; case 1: { mitk::StickModel* model = new mitk::StickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_StickWidget2->GetD()); model->SetT2(m_Controls->m_StickWidget2->GetT2()); model->SetT1(m_Controls->m_StickWidget2->GetT1()); model->m_CompartmentId = 2; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Stick"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Stick") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D", DoubleProperty::New(m_Controls->m_StickWidget2->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(model->GetT2()) ); break; } case 2: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_ZeppelinWidget2->GetD1()); model->SetDiffusivity2(m_Controls->m_ZeppelinWidget2->GetD2()); model->SetDiffusivity3(m_Controls->m_ZeppelinWidget2->GetD2()); model->SetT2(m_Controls->m_ZeppelinWidget2->GetT2()); model->SetT1(m_Controls->m_ZeppelinWidget2->GetT1()); model->m_CompartmentId = 2; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Zeppelin"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Zeppelin") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_ZeppelinWidget2->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(model->GetT2()) ); break; } case 3: { mitk::TensorModel* model = new mitk::TensorModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity1(m_Controls->m_TensorWidget2->GetD1()); model->SetDiffusivity2(m_Controls->m_TensorWidget2->GetD2()); model->SetDiffusivity3(m_Controls->m_TensorWidget2->GetD3()); model->SetT2(m_Controls->m_TensorWidget2->GetT2()); model->SetT1(m_Controls->m_TensorWidget2->GetT1()); model->m_CompartmentId = 2; m_Parameters.m_FiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Tensor"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Description", StringProperty::New("Inter-axonal compartment") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.Model", StringProperty::New("Tensor") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D1", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD1()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D2", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.D3", DoubleProperty::New(m_Controls->m_TensorWidget2->GetD3()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment2.T2", DoubleProperty::New(model->GetT2()) ); break; } } if (m_Controls->m_Comp2VolumeFraction->GetSelectedNode().IsNotNull() && m_Parameters.m_FiberModelList.size()==2) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp2VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer comp1VolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, comp1VolumeImage); m_Parameters.m_FiberModelList.back()->SetVolumeFractionImage(comp1VolumeImage); } // compartment 3 switch (m_Controls->m_Compartment3Box->currentIndex()) { case 0: { mitk::BallModel* model = new mitk::BallModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_BallWidget1->GetD()); model->SetT2(m_Controls->m_BallWidget1->GetT2()); model->SetT1(m_Controls->m_BallWidget1->GetT1()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Ball"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Ball") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_BallWidget1->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(model->GetT2()) ); break; } case 1: { mitk::AstroStickModel* model = new mitk::AstroStickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_AstrosticksWidget1->GetD()); model->SetT2(m_Controls->m_AstrosticksWidget1->GetT2()); model->SetT1(m_Controls->m_AstrosticksWidget1->GetT1()); model->SetRandomizeSticks(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Astrosticks"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Astrosticks") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget1->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(model->GetT2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget1->GetRandomizeSticks()) ); break; } case 2: { mitk::DotModel* model = new mitk::DotModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetT2(m_Controls->m_DotWidget1->GetT2()); model->SetT1(m_Controls->m_DotWidget1->GetT1()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Dot"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Dot") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.T2", DoubleProperty::New(model->GetT2()) ); break; } case 3: { mitk::RawShModel* model = new mitk::RawShModel(); m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetMaxNumKernels(m_Controls->m_PrototypeWidget3->GetNumberOfSamples()); model->SetFaRange(m_Controls->m_PrototypeWidget3->GetMinFa(), m_Controls->m_PrototypeWidget3->GetMaxFa()); model->SetAdcRange(m_Controls->m_PrototypeWidget3->GetMinAdc(), m_Controls->m_PrototypeWidget3->GetMaxAdc()); model->m_CompartmentId = 3; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Prototype"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Description", StringProperty::New("Extra-axonal compartment 1") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment3.Model", StringProperty::New("Prototype") ); break; } } if (m_Controls->m_Comp3VolumeFraction->GetSelectedNode().IsNotNull()) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp3VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer comp1VolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, comp1VolumeImage); m_Parameters.m_NonFiberModelList.back()->SetVolumeFractionImage(comp1VolumeImage); } switch (m_Controls->m_Compartment4Box->currentIndex()) { case 0: break; case 1: { mitk::BallModel* model = new mitk::BallModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_BallWidget2->GetD()); model->SetT2(m_Controls->m_BallWidget2->GetT2()); model->SetT1(m_Controls->m_BallWidget2->GetT1()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Ball"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Ball") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_BallWidget2->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(model->GetT2()) ); break; } case 2: { mitk::AstroStickModel* model = new mitk::AstroStickModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetBvalue(m_Parameters.m_SignalGen.GetBvalue()); model->SetDiffusivity(m_Controls->m_AstrosticksWidget2->GetD()); model->SetT2(m_Controls->m_AstrosticksWidget2->GetT2()); model->SetT1(m_Controls->m_AstrosticksWidget2->GetT1()); model->SetRandomizeSticks(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Astrosticks"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Astrosticks") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.D", DoubleProperty::New(m_Controls->m_AstrosticksWidget2->GetD()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(model->GetT2()) ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.RandomSticks", BoolProperty::New(m_Controls->m_AstrosticksWidget2->GetRandomizeSticks()) ); break; } case 3: { mitk::DotModel* model = new mitk::DotModel(); model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetT2(m_Controls->m_DotWidget2->GetT2()); model->SetT1(m_Controls->m_DotWidget2->GetT1()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Dot"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Dot") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.T2", DoubleProperty::New(model->GetT2()) ); break; } case 4: { mitk::RawShModel* model = new mitk::RawShModel(); m_Parameters.m_SignalGen.m_DoSimulateRelaxation = false; model->SetGradientList(m_Parameters.m_SignalGen.GetGradientDirections()); model->SetMaxNumKernels(m_Controls->m_PrototypeWidget4->GetNumberOfSamples()); model->SetFaRange(m_Controls->m_PrototypeWidget4->GetMinFa(), m_Controls->m_PrototypeWidget4->GetMaxFa()); model->SetAdcRange(m_Controls->m_PrototypeWidget4->GetMinAdc(), m_Controls->m_PrototypeWidget4->GetMaxAdc()); model->m_CompartmentId = 4; m_Parameters.m_NonFiberModelList.push_back(model); m_Parameters.m_Misc.m_SignalModelString += "Prototype"; m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Description", StringProperty::New("Extra-axonal compartment 2") ); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Compartment4.Model", StringProperty::New("Prototype") ); break; } } if (m_Controls->m_Comp4VolumeFraction->GetSelectedNode().IsNotNull() && m_Parameters.m_NonFiberModelList.size()==2) { mitk::DataNode::Pointer volumeNode = m_Controls->m_Comp4VolumeFraction->GetSelectedNode(); ItkDoubleImgType::Pointer compVolumeImage = ItkDoubleImgType::New(); mitk::Image* img = dynamic_cast(volumeNode->GetData()); CastToItkImage< ItkDoubleImgType >(img, compVolumeImage); m_Parameters.m_NonFiberModelList.back()->SetVolumeFractionImage(compVolumeImage); } } m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.SignalScale", IntProperty::New(m_Parameters.m_SignalGen.m_SignalScale)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.FiberRadius", IntProperty::New(m_Parameters.m_SignalGen.m_AxonRadius)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Tinhom", DoubleProperty::New(m_Parameters.m_SignalGen.m_tInhom)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Tline", DoubleProperty::New(m_Parameters.m_SignalGen.m_tLine)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.TE", DoubleProperty::New(m_Parameters.m_SignalGen.m_tEcho)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.b-value", DoubleProperty::New(m_Parameters.m_SignalGen.GetBvalue())); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.NoPartialVolume", BoolProperty::New(m_Parameters.m_SignalGen.m_DoDisablePartialVolume)); m_Parameters.m_Misc.m_ResultNode->AddProperty("Fiberfox.Relaxation", BoolProperty::New(m_Parameters.m_SignalGen.m_DoSimulateRelaxation)); m_Parameters.m_Misc.m_ResultNode->AddProperty("binary", BoolProperty::New(false)); } void QmitkFiberfoxView::SaveParameters(QString filename) { UpdateParametersFromGui(); std::vector< int > bVals = m_Parameters.m_SignalGen.GetBvalues(); std::cout << "b-values: "; for (auto v : bVals) std::cout << v << " "; std::cout << std::endl; bool ok = true; bool first = true; bool dosampling = false; mitk::Image::Pointer diffImg = nullptr; itk::Image< itk::DiffusionTensor3D< double >, 3 >::Pointer tensorImage = nullptr; const int shOrder = 2; typedef itk::AnalyticalDiffusionQballReconstructionImageFilter QballFilterType; QballFilterType::CoefficientImageType::Pointer itkFeatureImage = nullptr; ItkDoubleImgType::Pointer adcImage = nullptr; for (unsigned int i=0; i* model = nullptr; if (i* >(m_Parameters.m_FiberModelList.at(i)); } else { model = dynamic_cast< mitk::RawShModel<>* >(m_Parameters.m_NonFiberModelList.at(i-m_Parameters.m_FiberModelList.size())); } if ( model!=nullptr && model->GetNumberOfKernels() <= 0 ) { if (first==true) { if ( QMessageBox::question(nullptr, "Prototype signal sampling", "Do you want to sample prototype signals from the selected diffusion-weighted imag and save them?", QMessageBox::Yes, QMessageBox::No) == QMessageBox::Yes ) dosampling = true; first = false; if ( dosampling && (m_Controls->m_TemplateComboBox->GetSelectedNode().IsNull() || !mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()) ) ) ) { QMessageBox::information(nullptr, "Parameter file not saved", "No diffusion-weighted image selected to sample signal from."); return; } else if (dosampling) { diffImg = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, double > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New(); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); filter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); filter->Update(); tensorImage = filter->GetOutput(); QballFilterType::Pointer qballfilter = QballFilterType::New(); qballfilter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); qballfilter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); qballfilter->SetLambda(0.006); qballfilter->SetNormalizationMethod(QballFilterType::QBAR_RAW_SIGNAL); qballfilter->Update(); itkFeatureImage = qballfilter->GetCoefficientImage(); itk::AdcImageFilter< short, double >::Pointer adcFilter = itk::AdcImageFilter< short, double >::New(); adcFilter->SetInput( itkVectorImagePointer ); adcFilter->SetGradientDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); adcFilter->SetB_value(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); adcFilter->Update(); adcImage = adcFilter->GetOutput(); } } typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, double > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New(); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); filter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); filter->Update(); tensorImage = filter->GetOutput(); QballFilterType::Pointer qballfilter = QballFilterType::New(); qballfilter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); qballfilter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); qballfilter->SetLambda(0.006); qballfilter->SetNormalizationMethod(QballFilterType::QBAR_RAW_SIGNAL); qballfilter->Update(); itkFeatureImage = qballfilter->GetCoefficientImage(); itk::AdcImageFilter< short, double >::Pointer adcFilter = itk::AdcImageFilter< short, double >::New(); adcFilter->SetInput( itkVectorImagePointer ); adcFilter->SetGradientDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); adcFilter->SetB_value(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); adcFilter->Update(); adcImage = adcFilter->GetOutput(); if (dosampling && diffImg.IsNotNull()) { ok = model->SampleKernels(diffImg, m_Parameters.m_SignalGen.m_MaskImage, tensorImage, itkFeatureImage, adcImage); if (!ok) { QMessageBox::information( nullptr, "Parameter file not saved", "No valid prototype signals could be sampled."); return; } } } } m_Parameters.SaveParameters(filename.toStdString()); m_ParameterFile = filename; } void QmitkFiberfoxView::SaveParameters() { QString filename = QFileDialog::getSaveFileName( 0, tr("Save Parameters"), m_ParameterFile, tr("Fiberfox Parameters (*.ffp)") ); SaveParameters(filename); } void QmitkFiberfoxView::LoadParameters() { QString filename = QFileDialog::getOpenFileName(0, tr("Load Parameters"), QString(itksys::SystemTools::GetFilenamePath(m_ParameterFile.toStdString()).c_str()), tr("Fiberfox Parameters (*.ffp)") ); if(filename.isEmpty() || filename.isNull()) return; m_ParameterFile = filename; m_Parameters.LoadParameters(filename.toStdString()); if (m_Parameters.m_MissingTags.size()>0) { QString missing("Parameter file might be corrupted. The following parameters could not be read: "); missing += QString(m_Parameters.m_MissingTags.c_str()); missing += "\nDefault values have been assigned to the missing parameters."; QMessageBox::information( nullptr, "Warning!", missing); } // image generation parameters m_Controls->m_SizeX->setValue(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)); m_Controls->m_SizeY->setValue(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)); m_Controls->m_SizeZ->setValue(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(2)); m_Controls->m_SpacingX->setValue(m_Parameters.m_SignalGen.m_ImageSpacing[0]); m_Controls->m_SpacingY->setValue(m_Parameters.m_SignalGen.m_ImageSpacing[1]); m_Controls->m_SpacingZ->setValue(m_Parameters.m_SignalGen.m_ImageSpacing[2]); m_Controls->m_NumGradientsBox->setValue(m_Parameters.m_SignalGen.GetNumWeightedVolumes()); m_Controls->m_BvalueBox->setValue(m_Parameters.m_SignalGen.GetBvalue()); m_Controls->m_SignalScaleBox->setValue(m_Parameters.m_SignalGen.m_SignalScale); m_Controls->m_TEbox->setValue(m_Parameters.m_SignalGen.m_tEcho); m_Controls->m_LineReadoutTimeBox->setValue(m_Parameters.m_SignalGen.m_tLine); m_Controls->m_T2starBox->setValue(m_Parameters.m_SignalGen.m_tInhom); m_Controls->m_FiberRadius->setValue(m_Parameters.m_SignalGen.m_AxonRadius); m_Controls->m_RelaxationBox->setChecked(m_Parameters.m_SignalGen.m_DoSimulateRelaxation); m_Controls->m_EnforcePureFiberVoxelsBox->setChecked(m_Parameters.m_SignalGen.m_DoDisablePartialVolume); m_Controls->m_ReversePhaseBox->setChecked(m_Parameters.m_SignalGen.m_ReversePhase); m_Controls->m_PartialFourier->setValue(m_Parameters.m_SignalGen.m_PartialFourier); m_Controls->m_TRbox->setValue(m_Parameters.m_SignalGen.m_tRep); m_Controls->m_NumCoilsBox->setValue(m_Parameters.m_SignalGen.m_NumberOfCoils); m_Controls->m_CoilSensBox->setCurrentIndex(m_Parameters.m_SignalGen.m_CoilSensitivityProfile); m_Controls->m_AcquisitionTypeBox->setCurrentIndex(m_Parameters.m_SignalGen.m_AcquisitionType); if (!m_Parameters.m_Misc.m_BvalsFile.empty()) { m_Controls->m_UseBvalsBvecsBox->setChecked(true); m_Controls->m_LoadBvalsEdit->setText(QString(m_Parameters.m_Misc.m_BvalsFile.c_str())); } else m_Controls->m_LoadBvalsEdit->setText("-"); if (!m_Parameters.m_Misc.m_BvecsFile.empty()) { m_Controls->m_UseBvalsBvecsBox->setChecked(true); m_Controls->m_LoadBvecsEdit->setText(QString(m_Parameters.m_Misc.m_BvecsFile.c_str())); } else m_Controls->m_LoadBvecsEdit->setText("-"); if (m_Parameters.m_NoiseModel!=nullptr) { m_Controls->m_AddNoise->setChecked(m_Parameters.m_Misc.m_DoAddNoise); if (dynamic_cast*>(m_Parameters.m_NoiseModel.get())) { m_Controls->m_NoiseDistributionBox->setCurrentIndex(0); } else if (dynamic_cast*>(m_Parameters.m_NoiseModel.get())) { m_Controls->m_NoiseDistributionBox->setCurrentIndex(1); } m_Controls->m_NoiseLevel->setValue(m_Parameters.m_NoiseModel->GetNoiseVariance()); } else { m_Controls->m_AddNoise->setChecked(m_Parameters.m_Misc.m_DoAddNoise); m_Controls->m_NoiseLevel->setValue(m_Parameters.m_SignalGen.m_NoiseVariance); } m_Controls->m_VolumeFractionsBox->setChecked(m_Parameters.m_Misc.m_CheckOutputVolumeFractionsBox); m_Controls->m_AdvancedOptionsBox_2->setChecked(m_Parameters.m_Misc.m_CheckAdvancedSignalOptionsBox); m_Controls->m_AddGhosts->setChecked(m_Parameters.m_Misc.m_DoAddGhosts); m_Controls->m_AddAliasing->setChecked(m_Parameters.m_Misc.m_DoAddAliasing); m_Controls->m_AddDistortions->setChecked(m_Parameters.m_Misc.m_DoAddDistortions); m_Controls->m_AddSpikes->setChecked(m_Parameters.m_Misc.m_DoAddSpikes); m_Controls->m_AddEddy->setChecked(m_Parameters.m_Misc.m_DoAddEddyCurrents); m_Controls->m_AddDrift->setChecked(m_Parameters.m_SignalGen.m_DoAddDrift); m_Controls->m_kOffsetBox->setValue(m_Parameters.m_SignalGen.m_KspaceLineOffset); m_Controls->m_WrapBox->setValue(100*(1-m_Parameters.m_SignalGen.m_CroppingFactor)); m_Controls->m_DriftFactor->setValue(100*m_Parameters.m_SignalGen.m_Drift); m_Controls->m_SpikeNumBox->setValue(m_Parameters.m_SignalGen.m_Spikes); m_Controls->m_SpikeScaleBox->setValue(m_Parameters.m_SignalGen.m_SpikeAmplitude); m_Controls->m_EddyGradientStrength->setValue(m_Parameters.m_SignalGen.m_EddyStrength); m_Controls->m_AddGibbsRinging->setChecked(m_Parameters.m_SignalGen.m_DoAddGibbsRinging); m_Controls->m_AddMotion->setChecked(m_Parameters.m_SignalGen.m_DoAddMotion); m_Controls->m_RandomMotion->setChecked(m_Parameters.m_SignalGen.m_DoRandomizeMotion); m_Controls->m_MotionVolumesBox->setText(QString(m_Parameters.m_Misc.m_MotionVolumesBox.c_str())); m_Controls->m_MaxTranslationBoxX->setValue(m_Parameters.m_SignalGen.m_Translation[0]); m_Controls->m_MaxTranslationBoxY->setValue(m_Parameters.m_SignalGen.m_Translation[1]); m_Controls->m_MaxTranslationBoxZ->setValue(m_Parameters.m_SignalGen.m_Translation[2]); m_Controls->m_MaxRotationBoxX->setValue(m_Parameters.m_SignalGen.m_Rotation[0]); m_Controls->m_MaxRotationBoxY->setValue(m_Parameters.m_SignalGen.m_Rotation[1]); m_Controls->m_MaxRotationBoxZ->setValue(m_Parameters.m_SignalGen.m_Rotation[2]); m_Controls->m_Compartment1Box->setCurrentIndex(0); m_Controls->m_Compartment2Box->setCurrentIndex(0); m_Controls->m_Compartment3Box->setCurrentIndex(0); m_Controls->m_Compartment4Box->setCurrentIndex(0); for (unsigned int i=0; i* signalModel = nullptr; if (iGetVolumeFractionImage().IsNotNull() ) { compVolNode = mitk::DataNode::New(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(signalModel->GetVolumeFractionImage().GetPointer()); image->SetVolume(signalModel->GetVolumeFractionImage()->GetBufferPointer()); compVolNode->SetData( image ); compVolNode->SetName("Compartment volume "+QString::number(signalModel->m_CompartmentId).toStdString()); GetDataStorage()->Add(compVolNode); } switch (signalModel->m_CompartmentId) { case 1: { if (compVolNode.IsNotNull()) m_Controls->m_Comp1VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::StickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_StickWidget1->SetT2(model->GetT2()); m_Controls->m_StickWidget1->SetT1(model->GetT1()); m_Controls->m_StickWidget1->SetD(model->GetDiffusivity()); m_Controls->m_Compartment1Box->setCurrentIndex(0); break; } else if (dynamic_cast*>(signalModel)) { mitk::TensorModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_TensorWidget1->SetT2(model->GetT2()); m_Controls->m_TensorWidget1->SetT1(model->GetT1()); m_Controls->m_TensorWidget1->SetD1(model->GetDiffusivity1()); m_Controls->m_TensorWidget1->SetD2(model->GetDiffusivity2()); m_Controls->m_TensorWidget1->SetD3(model->GetDiffusivity3()); m_Controls->m_Compartment1Box->setCurrentIndex(2); break; } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_PrototypeWidget1->SetNumberOfSamples(model->GetMaxNumKernels()); m_Controls->m_PrototypeWidget1->SetMinFa(model->GetFaRange().first); m_Controls->m_PrototypeWidget1->SetMaxFa(model->GetFaRange().second); m_Controls->m_PrototypeWidget1->SetMinAdc(model->GetAdcRange().first); m_Controls->m_PrototypeWidget1->SetMaxAdc(model->GetAdcRange().second); m_Controls->m_Compartment1Box->setCurrentIndex(3); break; } break; } case 2: { if (compVolNode.IsNotNull()) m_Controls->m_Comp2VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::StickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_StickWidget2->SetT2(model->GetT2()); m_Controls->m_StickWidget2->SetT1(model->GetT1()); m_Controls->m_StickWidget2->SetD(model->GetDiffusivity()); m_Controls->m_Compartment2Box->setCurrentIndex(1); break; } else if (dynamic_cast*>(signalModel)) { mitk::TensorModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_TensorWidget2->SetT2(model->GetT2()); m_Controls->m_TensorWidget2->SetT1(model->GetT1()); m_Controls->m_TensorWidget2->SetD1(model->GetDiffusivity1()); m_Controls->m_TensorWidget2->SetD2(model->GetDiffusivity2()); m_Controls->m_TensorWidget2->SetD3(model->GetDiffusivity3()); m_Controls->m_Compartment2Box->setCurrentIndex(3); break; } break; } case 3: { if (compVolNode.IsNotNull()) m_Controls->m_Comp3VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::BallModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_BallWidget1->SetT2(model->GetT2()); m_Controls->m_BallWidget1->SetT1(model->GetT1()); m_Controls->m_BallWidget1->SetD(model->GetDiffusivity()); m_Controls->m_Compartment3Box->setCurrentIndex(0); break; } else if (dynamic_cast*>(signalModel)) { mitk::AstroStickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_AstrosticksWidget1->SetT2(model->GetT2()); m_Controls->m_AstrosticksWidget1->SetT1(model->GetT1()); m_Controls->m_AstrosticksWidget1->SetD(model->GetDiffusivity()); m_Controls->m_AstrosticksWidget1->SetRandomizeSticks(model->GetRandomizeSticks()); m_Controls->m_Compartment3Box->setCurrentIndex(1); break; } else if (dynamic_cast*>(signalModel)) { mitk::DotModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_DotWidget1->SetT2(model->GetT2()); m_Controls->m_DotWidget1->SetT1(model->GetT1()); m_Controls->m_Compartment3Box->setCurrentIndex(2); break; } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_PrototypeWidget3->SetNumberOfSamples(model->GetMaxNumKernels()); m_Controls->m_PrototypeWidget3->SetMinFa(model->GetFaRange().first); m_Controls->m_PrototypeWidget3->SetMaxFa(model->GetFaRange().second); m_Controls->m_PrototypeWidget3->SetMinAdc(model->GetAdcRange().first); m_Controls->m_PrototypeWidget3->SetMaxAdc(model->GetAdcRange().second); m_Controls->m_Compartment3Box->setCurrentIndex(3); break; } break; } case 4: { if (compVolNode.IsNotNull()) m_Controls->m_Comp4VolumeFraction->SetSelectedNode(compVolNode); if (dynamic_cast*>(signalModel)) { mitk::BallModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_BallWidget2->SetT2(model->GetT2()); m_Controls->m_BallWidget2->SetT1(model->GetT1()); m_Controls->m_BallWidget2->SetD(model->GetDiffusivity()); m_Controls->m_Compartment4Box->setCurrentIndex(1); break; } else if (dynamic_cast*>(signalModel)) { mitk::AstroStickModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_AstrosticksWidget2->SetT2(model->GetT2()); m_Controls->m_AstrosticksWidget2->SetT1(model->GetT1()); m_Controls->m_AstrosticksWidget2->SetD(model->GetDiffusivity()); m_Controls->m_AstrosticksWidget2->SetRandomizeSticks(model->GetRandomizeSticks()); m_Controls->m_Compartment4Box->setCurrentIndex(2); break; } else if (dynamic_cast*>(signalModel)) { mitk::DotModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_DotWidget2->SetT2(model->GetT2()); m_Controls->m_DotWidget2->SetT1(model->GetT1()); m_Controls->m_Compartment4Box->setCurrentIndex(3); break; } else if (dynamic_cast*>(signalModel)) { mitk::RawShModel<>* model = dynamic_cast*>(signalModel); m_Controls->m_PrototypeWidget4->SetNumberOfSamples(model->GetMaxNumKernels()); m_Controls->m_PrototypeWidget4->SetMinFa(model->GetFaRange().first); m_Controls->m_PrototypeWidget4->SetMaxFa(model->GetFaRange().second); m_Controls->m_PrototypeWidget4->SetMinAdc(model->GetAdcRange().first); m_Controls->m_PrototypeWidget4->SetMaxAdc(model->GetAdcRange().second); m_Controls->m_Compartment4Box->setCurrentIndex(4); break; } break; } } } if ( m_Parameters.m_SignalGen.m_MaskImage ) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(m_Parameters.m_SignalGen.m_MaskImage.GetPointer()); image->SetVolume(m_Parameters.m_SignalGen.m_MaskImage->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Tissue mask"); GetDataStorage()->Add(node); m_Controls->m_MaskComboBox->SetSelectedNode(node); } if ( m_Parameters.m_SignalGen.m_FrequencyMap ) { mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk(m_Parameters.m_SignalGen.m_FrequencyMap.GetPointer()); image->SetVolume(m_Parameters.m_SignalGen.m_FrequencyMap->GetBufferPointer()); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Frequency map"); GetDataStorage()->Add(node); m_Controls->m_FrequencyMapBox->SetSelectedNode(node); } } void QmitkFiberfoxView::ShowAdvancedOptions(int state) { if (state) { m_Controls->m_AdvancedSignalOptionsFrame->setVisible(true); m_Controls->m_AdvancedOptionsBox_2->setChecked(true); } else { m_Controls->m_AdvancedSignalOptionsFrame->setVisible(false); m_Controls->m_AdvancedOptionsBox_2->setChecked(false); } } void QmitkFiberfoxView::Comp1ModelFrameVisibility(int index) { m_Controls->m_StickWidget1->setVisible(false); m_Controls->m_ZeppelinWidget1->setVisible(false); m_Controls->m_TensorWidget1->setVisible(false); m_Controls->m_PrototypeWidget1->setVisible(false); switch (index) { case 0: m_Controls->m_StickWidget1->setVisible(true); break; case 1: m_Controls->m_ZeppelinWidget1->setVisible(true); break; case 2: m_Controls->m_TensorWidget1->setVisible(true); break; case 3: m_Controls->m_PrototypeWidget1->setVisible(true); break; } } void QmitkFiberfoxView::Comp2ModelFrameVisibility(int index) { m_Controls->m_StickWidget2->setVisible(false); m_Controls->m_ZeppelinWidget2->setVisible(false); m_Controls->m_TensorWidget2->setVisible(false); m_Controls->m_Comp2FractionFrame->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_StickWidget2->setVisible(true); m_Controls->m_Comp2FractionFrame->setVisible(true); break; case 2: m_Controls->m_ZeppelinWidget2->setVisible(true); m_Controls->m_Comp2FractionFrame->setVisible(true); break; case 3: m_Controls->m_TensorWidget2->setVisible(true); m_Controls->m_Comp2FractionFrame->setVisible(true); break; } } void QmitkFiberfoxView::Comp3ModelFrameVisibility(int index) { m_Controls->m_BallWidget1->setVisible(false); m_Controls->m_AstrosticksWidget1->setVisible(false); m_Controls->m_DotWidget1->setVisible(false); m_Controls->m_PrototypeWidget3->setVisible(false); switch (index) { case 0: m_Controls->m_BallWidget1->setVisible(true); break; case 1: m_Controls->m_AstrosticksWidget1->setVisible(true); break; case 2: m_Controls->m_DotWidget1->setVisible(true); break; case 3: m_Controls->m_PrototypeWidget3->setVisible(true); break; } } void QmitkFiberfoxView::Comp4ModelFrameVisibility(int index) { m_Controls->m_BallWidget2->setVisible(false); m_Controls->m_AstrosticksWidget2->setVisible(false); m_Controls->m_DotWidget2->setVisible(false); m_Controls->m_PrototypeWidget4->setVisible(false); m_Controls->m_Comp4FractionFrame->setVisible(false); switch (index) { case 0: break; case 1: m_Controls->m_BallWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 2: m_Controls->m_AstrosticksWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 3: m_Controls->m_DotWidget2->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; case 4: m_Controls->m_PrototypeWidget4->setVisible(true); m_Controls->m_Comp4FractionFrame->setVisible(true); break; } } void QmitkFiberfoxView::OnAddMotion(int value) { if (value>0) m_Controls->m_MotionArtifactFrame->setVisible(true); else m_Controls->m_MotionArtifactFrame->setVisible(false); } void QmitkFiberfoxView::OnAddDrift(int value) { if (value>0) m_Controls->m_DriftFrame->setVisible(true); else m_Controls->m_DriftFrame->setVisible(false); } void QmitkFiberfoxView::OnAddAliasing(int value) { if (value>0) m_Controls->m_AliasingFrame->setVisible(true); else m_Controls->m_AliasingFrame->setVisible(false); } void QmitkFiberfoxView::OnAddSpikes(int value) { if (value>0) m_Controls->m_SpikeFrame->setVisible(true); else m_Controls->m_SpikeFrame->setVisible(false); } void QmitkFiberfoxView::OnAddEddy(int value) { if (value>0) m_Controls->m_EddyFrame->setVisible(true); else m_Controls->m_EddyFrame->setVisible(false); } void QmitkFiberfoxView::OnAddDistortions(int value) { if (value>0) m_Controls->m_DistortionsFrame->setVisible(true); else m_Controls->m_DistortionsFrame->setVisible(false); } void QmitkFiberfoxView::OnAddGhosts(int value) { if (value>0) m_Controls->m_GhostFrame->setVisible(true); else m_Controls->m_GhostFrame->setVisible(false); } void QmitkFiberfoxView::OnAddNoise(int value) { if (value>0) m_Controls->m_NoiseFrame->setVisible(true); else m_Controls->m_NoiseFrame->setVisible(false); } QmitkFiberfoxView::GradientListType QmitkFiberfoxView::GenerateHalfShell(int NPoints) { NPoints *= 2; GradientListType pointshell; int numB0 = NPoints/20; if (numB0==0) numB0=1; GradientType g; g.Fill(0.0); for (int i=0; i theta; theta.set_size(NPoints); vnl_vector phi; phi.set_size(NPoints); double C = sqrt(4*itk::Math::pi); phi(0) = 0.0; phi(NPoints-1) = 0.0; for(int i=0; i0 && i std::vector > QmitkFiberfoxView::MakeGradientList() { std::vector > retval; vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); // Add 0 vector for B0 int numB0 = ndirs/10; if (numB0==0) numB0=1; itk::Vector v; v.Fill(0.0); for (int i=0; i v; v[0] = U->get(0,i); v[1] = U->get(1,i); v[2] = U->get(2,i); retval.push_back(v); } return retval; } void QmitkFiberfoxView::GenerateImage() { if (m_Controls->m_FiberBundleComboBox->GetSelectedNode().IsNull() && !mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( m_Controls->m_TemplateComboBox->GetSelectedNode())) { mitk::Image::Pointer image = mitk::ImageGenerator::GenerateGradientImage( m_Controls->m_SizeX->value(), m_Controls->m_SizeY->value(), m_Controls->m_SizeZ->value(), m_Controls->m_SpacingX->value(), m_Controls->m_SpacingY->value(), m_Controls->m_SpacingZ->value()); mitk::Point3D origin; origin[0] = m_Controls->m_SpacingX->value()/2; origin[1] = m_Controls->m_SpacingY->value()/2; origin[2] = m_Controls->m_SpacingZ->value()/2; image->SetOrigin(origin); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetData( image ); node->SetName("Dummy"); unsigned int window = m_Controls->m_SizeX->value()*m_Controls->m_SizeY->value()*m_Controls->m_SizeZ->value(); unsigned int level = window/2; mitk::LevelWindow lw; lw.SetLevelWindow(level, window); node->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( lw ) ); GetDataStorage()->Add(node); m_SelectedImageNode = node; mitk::BaseData::Pointer basedata = node->GetData(); if (basedata.IsNotNull()) { mitk::RenderingManager::GetInstance()->InitializeViews( basedata->GetTimeGeometry(), mitk::RenderingManager::REQUEST_UPDATE_ALL, true ); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } UpdateGui(); QMessageBox::information(nullptr, "Template image generated", "You have selected no fiber bundle or diffusion-weighted image, which can be used to simulate a new diffusion-weighted image. A template image with the specified geometry has been generated that can be used to draw artificial fibers (see view 'Fiber Generator')."); } else if (m_Controls->m_FiberBundleComboBox->GetSelectedNode().IsNotNull()) SimulateImageFromFibers(m_Controls->m_FiberBundleComboBox->GetSelectedNode()); else if ( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( m_Controls->m_TemplateComboBox->GetSelectedNode()) ) SimulateForExistingDwi(m_Controls->m_TemplateComboBox->GetSelectedNode()); else QMessageBox::information(nullptr, "No image generated", "You have selected no fiber bundle or diffusion-weighted image, which can be used to simulate a new diffusion-weighted image."); } void QmitkFiberfoxView::SetFocus() { } void QmitkFiberfoxView::SimulateForExistingDwi(mitk::DataNode* imageNode) { bool isDiffusionImage( mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(imageNode->GetData())) ); if ( !isDiffusionImage ) { return; } UpdateParametersFromGui(); mitk::Image::Pointer diffImg = dynamic_cast(imageNode->GetData()); ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); m_TractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); m_Parameters.m_Misc.m_ParentNode = imageNode; m_Parameters.m_SignalGen.m_SignalScale = 1; m_Parameters.m_Misc.m_ResultNode->SetName(m_Parameters.m_Misc.m_ParentNode->GetName() +"_D"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(2)).toStdString() +"_S"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[0]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[1]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[2]).toStdString() +"_b"+QString::number(m_Parameters.m_SignalGen.GetBvalue()).toStdString() +"_"+m_Parameters.m_Misc.m_SignalModelString +m_Parameters.m_Misc.m_ArtifactModelString); m_TractsToDwiFilter->SetParameters(m_Parameters); m_TractsToDwiFilter->SetInputImage(itkVectorImagePointer); m_Thread.start(QThread::LowestPriority); } void QmitkFiberfoxView::SimulateImageFromFibers(mitk::DataNode* fiberNode) { mitk::FiberBundle::Pointer fiberBundle = dynamic_cast(fiberNode->GetData()); if (fiberBundle->GetNumFibers()<=0) { return; } UpdateParametersFromGui(); m_TractsToDwiFilter = itk::TractsToDWIImageFilter< short >::New(); m_Parameters.m_Misc.m_ParentNode = fiberNode; m_Parameters.m_Misc.m_ResultNode->SetName(m_Parameters.m_Misc.m_ParentNode->GetName() +"_D"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(0)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(1)).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageRegion.GetSize(2)).toStdString() +"_S"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[0]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[1]).toStdString() +"-"+QString::number(m_Parameters.m_SignalGen.m_ImageSpacing[2]).toStdString() +"_b"+QString::number(m_Parameters.m_SignalGen.GetBvalue()).toStdString() +"_"+m_Parameters.m_Misc.m_SignalModelString +m_Parameters.m_Misc.m_ArtifactModelString); if ( m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull() && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast (m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()) ) ) { bool first = true; bool ok = true; mitk::Image::Pointer diffImg = dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()); itk::Image< itk::DiffusionTensor3D< double >, 3 >::Pointer tensorImage = nullptr; const int shOrder = 2; typedef itk::AnalyticalDiffusionQballReconstructionImageFilter QballFilterType; QballFilterType::CoefficientImageType::Pointer itkFeatureImage = nullptr; ItkDoubleImgType::Pointer adcImage = nullptr; for (unsigned int i=0; i* model = nullptr; if (i* >(m_Parameters.m_FiberModelList.at(i)); else model = dynamic_cast< mitk::RawShModel<>* >(m_Parameters.m_NonFiberModelList.at(i-m_Parameters.m_FiberModelList.size())); if (model!=0 && model->GetNumberOfKernels()<=0) { if (first==true) { ItkDwiType::Pointer itkVectorImagePointer = ItkDwiType::New(); mitk::CastToItkImage(diffImg, itkVectorImagePointer); typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, double > TensorReconstructionImageFilterType; TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New(); filter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); filter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); filter->Update(); tensorImage = filter->GetOutput(); QballFilterType::Pointer qballfilter = QballFilterType::New(); qballfilter->SetGradientImage(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg), itkVectorImagePointer ); qballfilter->SetBValue(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); qballfilter->SetLambda(0.006); qballfilter->SetNormalizationMethod(QballFilterType::QBAR_RAW_SIGNAL); qballfilter->Update(); itkFeatureImage = qballfilter->GetCoefficientImage(); itk::AdcImageFilter< short, double >::Pointer adcFilter = itk::AdcImageFilter< short, double >::New(); adcFilter->SetInput( itkVectorImagePointer ); adcFilter->SetGradientDirections(mitk::DiffusionPropertyHelper::GetGradientContainer(diffImg)); adcFilter->SetB_value(mitk::DiffusionPropertyHelper::GetReferenceBValue(diffImg)); adcFilter->Update(); adcImage = adcFilter->GetOutput(); } ok = model->SampleKernels(diffImg, m_Parameters.m_SignalGen.m_MaskImage, tensorImage, itkFeatureImage, adcImage); if (!ok) break; } } if (!ok) { QMessageBox::information( nullptr, "Simulation cancelled", "No valid prototype signals could be sampled."); return; } } else if ( m_Controls->m_Compartment1Box->currentIndex()==3 || m_Controls->m_Compartment3Box->currentIndex()==3 || m_Controls->m_Compartment4Box->currentIndex()==4 ) { QMessageBox::information( nullptr, "Simulation cancelled", "Prototype signal but no diffusion-weighted image selected to sample signal from."); return; } m_TractsToDwiFilter->SetParameters(m_Parameters); m_TractsToDwiFilter->SetFiberBundle(fiberBundle); m_Thread.start(QThread::LowestPriority); } void QmitkFiberfoxView::SetBvalsEdit() { // SELECT FOLDER DIALOG std::string filename; filename = QFileDialog::getOpenFileName(nullptr, "Select bvals file", QString(filename.c_str())).toStdString(); if (filename.empty()) m_Controls->m_LoadBvalsEdit->setText("-"); else m_Controls->m_LoadBvalsEdit->setText(QString(filename.c_str())); } void QmitkFiberfoxView::SetBvecsEdit() { // SELECT FOLDER DIALOG std::string filename; filename = QFileDialog::getOpenFileName(nullptr, "Select bvecs file", QString(filename.c_str())).toStdString(); if (filename.empty()) m_Controls->m_LoadBvecsEdit->setText("-"); else m_Controls->m_LoadBvecsEdit->setText(QString(filename.c_str())); } void QmitkFiberfoxView::SetOutputPath() { // SELECT FOLDER DIALOG std::string outputPath; outputPath = QFileDialog::getExistingDirectory(nullptr, "Save images to...", QString(outputPath.c_str())).toStdString(); if (outputPath.empty()) m_Controls->m_SavePathEdit->setText("-"); else { outputPath += "/"; m_Controls->m_SavePathEdit->setText(QString(outputPath.c_str())); } } void QmitkFiberfoxView::UpdateGui() { m_Controls->m_GeometryFrame->setEnabled(true); m_Controls->m_GeometryMessage->setVisible(false); m_Controls->m_DiffusionPropsMessage->setVisible(false); m_Controls->m_LoadGradientsFrame->setVisible(false); m_Controls->m_GenerateGradientsFrame->setVisible(false); if (m_Controls->m_UseBvalsBvecsBox->isChecked()) m_Controls->m_LoadGradientsFrame->setVisible(true); else m_Controls->m_GenerateGradientsFrame->setVisible(true); // Signal generation gui if (m_Controls->m_MaskComboBox->GetSelectedNode().IsNotNull() || m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull()) { m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); } if ( m_Controls->m_TemplateComboBox->GetSelectedNode().IsNotNull() && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage( dynamic_cast(m_Controls->m_TemplateComboBox->GetSelectedNode()->GetData()) ) ) { m_Controls->m_DiffusionPropsMessage->setVisible(true); m_Controls->m_GeometryMessage->setVisible(true); m_Controls->m_GeometryFrame->setEnabled(false); m_Controls->m_LoadGradientsFrame->setVisible(false); m_Controls->m_GenerateGradientsFrame->setVisible(false); } }