diff --git a/Core/Code/DataManagement/mitkBaseData.cpp b/Core/Code/DataManagement/mitkBaseData.cpp index 1a9cc3fd75..df043b8903 100644 --- a/Core/Code/DataManagement/mitkBaseData.cpp +++ b/Core/Code/DataManagement/mitkBaseData.cpp @@ -1,419 +1,371 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkBaseData.h" #include #include - +#include #define MITK_WEAKPOINTER_PROBLEM_WORKAROUND_ENABLED mitk::BaseData::BaseData() : m_RequestedRegionInitialized(false), m_SmartSourcePointer(NULL), m_SourceOutputIndexDuplicate(0), m_Initialized(true), m_Unregistering(false), m_CalculatingExternalReferenceCount(false), m_ExternalReferenceCount(-1) { - m_TimeSlicedGeometry = TimeSlicedGeometry::New(); m_TimeGeometry = mitk::ProportionalTimeGeometry::New(); m_PropertyList = PropertyList::New(); } mitk::BaseData::BaseData( const BaseData &other ): itk::DataObject(), mitk::OperationActor(), m_RequestedRegionInitialized(other.m_RequestedRegionInitialized), m_SmartSourcePointer(other.m_SmartSourcePointer), m_SourceOutputIndexDuplicate(other.m_SourceOutputIndexDuplicate), m_Initialized(other.m_Initialized), m_Unregistering(other.m_Unregistering), m_CalculatingExternalReferenceCount(other.m_CalculatingExternalReferenceCount), m_ExternalReferenceCount(other.m_ExternalReferenceCount) { - m_TimeSlicedGeometry = dynamic_cast(other.m_TimeSlicedGeometry->Clone().GetPointer()); - m_TimeGeometry = dynamic_cast(other.m_TimeGeometry->Clone().GetPointer()); + m_TimeGeometry = other.m_TimeGeometry->Clone().GetPointer(); m_PropertyList = other.m_PropertyList->Clone(); } mitk::BaseData::~BaseData() { m_SmartSourcePointer = NULL; } -void mitk::BaseData::InitializeTimeSlicedGeometry(unsigned int timeSteps) +void mitk::BaseData::InitializeTimeGeometry(unsigned int timeSteps) { - //Oldmitk::TimeSlicedGeometry::Pointer timeGeometry = this->GetTimeSlicedGeometry(); - mitk::Geometry3D::Pointer g3d = mitk::Geometry3D::New(); g3d->Initialize(); if ( timeSteps > 1 ) { mitk::ScalarType timeBounds[] = {0.0, 1.0}; g3d->SetTimeBounds( timeBounds ); } // The geometry is propagated automatically to the other items, // if EvenlyTimed is true... //Old timeGeometry->InitializeEvenlyTimed( g3d.GetPointer(), timeSteps ); TimeGeometry::Pointer timeGeometry = this->GetTimeGeometry(); timeGeometry->Expand(timeSteps); for (TimeStepType step = 0; step < timeSteps; ++step) { timeGeometry->SetTimeStepGeometry(g3d.GetPointer(),step); } } void mitk::BaseData::UpdateOutputInformation() { if ( this->GetSource() ) { this->GetSource()->UpdateOutputInformation(); } - if(m_TimeSlicedGeometry.IsNotNull()) - m_TimeSlicedGeometry->UpdateInformation(); if (m_TimeGeometry.IsNotNull()) { m_TimeGeometry->UpdateBoundingBox(); } } -const mitk::TimeSlicedGeometry* mitk::BaseData::OldGetUpdatedTimeSlicedGeometry() -{ - SetRequestedRegionToLargestPossibleRegion(); - - UpdateOutputInformation(); - - return NULL; -//Old return GetTimeSlicedGeometry(); -} - const mitk::TimeGeometry* mitk::BaseData::GetUpdatedTimeGeometry() { SetRequestedRegionToLargestPossibleRegion(); UpdateOutputInformation(); return GetTimeGeometry(); } void mitk::BaseData::Expand( unsigned int timeSteps ) { - if( m_TimeSlicedGeometry.IsNotNull() ) - m_TimeSlicedGeometry->ExpandToNumberOfTimeSteps( timeSteps ); + if (m_TimeGeometry.IsNotNull() ) + { + ProportionalTimeGeometry * propTimeGeometry = dynamic_cast (m_TimeGeometry.GetPointer()); + if (propTimeGeometry) + { + propTimeGeometry->Expand(timeSteps); + return; + } + + mitkThrow() << "TimeGeometry is of an unkown Type. Could not expand it. "; + } + else + { + this->InitializeTimeGeometry(timeSteps); + } } const mitk::Geometry3D* mitk::BaseData::GetUpdatedGeometry(int t) { SetRequestedRegionToLargestPossibleRegion(); UpdateOutputInformation(); return GetGeometry(t); } -void mitk::BaseData::SetGeometry(Geometry3D* aGeometry3D) +void mitk::BaseData::SetGeometry(Geometry3D* geometry) { -if(aGeometry3D!=NULL) + ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); + if(geometry!=NULL) { - TimeSlicedGeometry::Pointer timeSlicedGeometry = dynamic_cast(aGeometry3D); - if ( timeSlicedGeometry.IsNotNull() ) - m_TimeSlicedGeometry = timeSlicedGeometry; - else - { - timeSlicedGeometry = TimeSlicedGeometry::New(); - m_TimeSlicedGeometry = timeSlicedGeometry; - timeSlicedGeometry->InitializeEvenlyTimed(aGeometry3D, 1); - } - Modified(); - } - else if( m_TimeSlicedGeometry.IsNotNull() ) - { - m_TimeSlicedGeometry = NULL; - Modified(); + timeGeometry->Initialize(geometry, 1); } + SetTimeGeometry(timeGeometry); return; } void mitk::BaseData::SetTimeGeometry(TimeGeometry* geometry) { m_TimeGeometry = geometry; this->Modified(); } void mitk::BaseData::SetClonedGeometry(const Geometry3D* aGeometry3D) { SetGeometry(static_cast(aGeometry3D->Clone().GetPointer())); } void mitk::BaseData::SetClonedTimeGeometry(const TimeGeometry* geometry) { SetTimeGeometry((geometry->Clone().GetPointer())); } + void mitk::BaseData::SetClonedGeometry(const Geometry3D* aGeometry3D, unsigned int time) { - if (m_TimeSlicedGeometry) - { - m_TimeSlicedGeometry->SetGeometry3D(static_cast(aGeometry3D->Clone().GetPointer()), time); - } if (m_TimeGeometry) { m_TimeGeometry->SetTimeStepGeometry(static_cast(aGeometry3D->Clone().GetPointer()),time); } } bool mitk::BaseData::IsEmptyTimeStep(unsigned int) const { return IsInitialized() == false; } bool mitk::BaseData::IsEmpty() const { if(IsInitialized() == false) return true; const TimeGeometry* timeGeometry = const_cast(this)->GetUpdatedTimeGeometry(); if(timeGeometry == NULL) return true; unsigned int timeSteps = timeGeometry->GetNumberOfTimeSteps(); for ( unsigned int t = 0 ; t < timeSteps ; ++t ) { if(IsEmptyTimeStep(t) == false) return false; } return true; } itk::SmartPointer mitk::BaseData::GetSource() const { return static_cast(Superclass::GetSource().GetPointer()); } int mitk::BaseData::GetExternalReferenceCount() const { if(m_CalculatingExternalReferenceCount==false) //this is only needed because a smart-pointer to m_Outputs (private!!) must be created by calling GetOutputs. { m_CalculatingExternalReferenceCount = true; m_ExternalReferenceCount = -1; int realReferenceCount = GetReferenceCount(); if(GetSource().IsNull()) { m_ExternalReferenceCount = realReferenceCount; m_CalculatingExternalReferenceCount = false; return m_ExternalReferenceCount; } mitk::BaseProcess::DataObjectPointerArray outputs = m_SmartSourcePointer->GetOutputs(); unsigned int idx; for (idx = 0; idx < outputs.size(); ++idx) { //references of outputs that are not referenced from someone else (reference additional to the reference from this BaseProcess object) are interpreted as non-existent if(outputs[idx]==this) --realReferenceCount; } m_ExternalReferenceCount = realReferenceCount; if(m_ExternalReferenceCount<0) m_ExternalReferenceCount=0; m_CalculatingExternalReferenceCount = false; } else return -1; return m_ExternalReferenceCount; } void mitk::BaseData::UnRegister() const { #ifdef MITK_WEAKPOINTER_PROBLEM_WORKAROUND_ENABLED if(GetReferenceCount()>1) { Superclass::UnRegister(); if((m_Unregistering==false) && (m_SmartSourcePointer.IsNotNull())) { m_Unregistering=true; // the order of the following boolean statement is important: // this->GetSource() returns a SmartPointer, // which increases and afterwards decreases the reference count, // which may result in an ExternalReferenceCount of 0, causing // BaseProcess::UnRegister() to destroy us (also we already // about to do that). if((this->m_SmartSourcePointer->GetExternalReferenceCount()==0) || (this->GetSource().IsNull())) m_SmartSourcePointer=NULL; // now the reference count is zero and this object has been destroyed; thus nothing may be done after this line!! else m_Unregistering=false; } } else #endif Superclass::UnRegister(); // now the reference count is zero and this object has been destroyed; thus nothing may be done after this line!! } void mitk::BaseData::ConnectSource(itk::ProcessObject *arg, unsigned int idx) const { #ifdef MITK_WEAKPOINTER_PROBLEM_WORKAROUND_ENABLED itkDebugMacro( "connecting source " << arg << ", source output index " << idx); if ( GetSource().GetPointer() != arg || m_SourceOutputIndexDuplicate != idx) { m_SmartSourcePointer = dynamic_cast(arg); m_SourceOutputIndexDuplicate = idx; Modified(); } #endif } mitk::PropertyList::Pointer mitk::BaseData::GetPropertyList() const { return m_PropertyList; } mitk::BaseProperty::Pointer mitk::BaseData::GetProperty(const char *propertyKey) const { return m_PropertyList->GetProperty(propertyKey); } void mitk::BaseData::SetProperty(const char *propertyKey, BaseProperty* propertyValue) { m_PropertyList->SetProperty(propertyKey, propertyValue); } void mitk::BaseData::SetPropertyList(PropertyList *pList) { m_PropertyList = pList; } void mitk::BaseData::SetOrigin(const mitk::Point3D& origin) { - //Old - //mitk::TimeSlicedGeometry* timeSlicedGeometry = GetTimeSlicedGeometry(); - - //assert(timeSlicedGeometry!=NULL); - - //mitk::Geometry3D* geometry; - - //unsigned int steps = timeSlicedGeometry->GetTimeSteps(); - - //for(unsigned int timestep = 0; timestep < steps; ++timestep) - //{ - // geometry = GetGeometry(timestep); - // if(geometry != NULL) - // { - // geometry->SetOrigin(origin); - // } - // if(GetTimeSlicedGeometry()->GetEvenlyTimed()) - // { - // GetTimeSlicedGeometry()->InitializeEvenlyTimed(geometry, steps); - // break; - // } - //} - TimeGeometry* timeGeom = GetTimeGeometry(); assert (timeGeom != NULL); Geometry3D* geometry; TimeStepType steps = timeGeom->GetNumberOfTimeSteps(); for (TimeStepType timestep = 0; timestep < steps; ++timestep) { geometry = GetGeometry(timestep); if (geometry != NULL) { geometry->SetOrigin(origin); } } } unsigned long mitk::BaseData::GetMTime() const { unsigned long time = Superclass::GetMTime(); - if(m_TimeSlicedGeometry.IsNotNull()) + if(m_TimeGeometry.IsNotNull()) { - if((time < m_TimeSlicedGeometry->GetMTime())) + if((time < m_TimeGeometry->GetMTime())) { Modified(); return Superclass::GetMTime(); } - //unsigned long geometryTime = m_TimeSlicedGeometry->GetMTime(); - //if(time < geometryTime) - //{ - // return geometryTime; - //} } return time; } void mitk::BaseData::CopyInformation( const itk::DataObject* data ) { const Self* bd = dynamic_cast(data); if (bd != NULL) { -//Old m_TimeSlicedGeometry = dynamic_cast(bd->GetTimeSlicedGeometry()->Clone().GetPointer()); m_PropertyList = bd->GetPropertyList()->Clone(); } else { // pointer could not be cast back down; this can be the case if your filters input // and output objects differ in type; then you have to write your own GenerateOutputInformation method itkExceptionMacro(<< "mitk::BaseData::CopyInformation() cannot cast " << typeid(data).name() << " to " << typeid(Self*).name() ); } } bool mitk::BaseData::IsInitialized() const { return m_Initialized; } void mitk::BaseData::Clear() { this->ClearData(); this->InitializeEmpty(); } void mitk::BaseData::ClearData() { if(m_Initialized) { ReleaseData(); m_Initialized = false; } } void mitk::BaseData::ExecuteOperation(mitk::Operation* /*operation*/) { //empty by default. override if needed! } void mitk::BaseData::PrintSelf(std::ostream& os, itk::Indent indent) const { os << std::endl; -//Old os << indent << " TimeSlicedGeometry: "; -//Old if(GetTimeSlicedGeometry() == NULL) -//Old os << "NULL" << std::endl; -//Old else -//Old GetTimeSlicedGeometry()->Print(os, indent); + os << indent << " TimeGeometry: "; + if(GetTimeGeometry() == NULL) + os << "NULL" << std::endl; + else + GetTimeGeometry()->Print(os, indent); } - diff --git a/Core/Code/DataManagement/mitkBaseData.h b/Core/Code/DataManagement/mitkBaseData.h index ba4e0f6c87..ec6193603e 100644 --- a/Core/Code/DataManagement/mitkBaseData.h +++ b/Core/Code/DataManagement/mitkBaseData.h @@ -1,407 +1,394 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef BASEDATA_H_HEADER_INCLUDED_C1EBB6FA #define BASEDATA_H_HEADER_INCLUDED_C1EBB6FA #include #include "mitkBaseProcess.h" #include "mitkTimeGeometry.h" #include #include "mitkOperationActor.h" #include "mitkPropertyList.h" -//To be replaced -#include "mitkTimeSlicedGeometry.h" - - namespace mitk { //class BaseProcess; //##Documentation //## @brief Base of all data objects //## //## Base of all data objects, e.g., images, contours, surfaces etc. Inherits //## from itk::DataObject and thus can be included in a pipeline. //## Inherits also from OperationActor and can be used as a destination for Undo //## @ingroup Data class MITK_CORE_EXPORT BaseData : public itk::DataObject, public OperationActor { public: mitkClassMacro(BaseData,itk::DataObject) - //##Documentation - //## @brief Return the TimeSlicedGeometry of the data as const pointer. - //## - //## \warning No update will be called. Use GetUpdatedGeometry() if you cannot - //## be sure that the geometry is up-to-date. - //## - //## Normally used in GenerateOutputInformation of subclasses of BaseProcess. - const mitk::TimeSlicedGeometry* OldGetTimeSlicedGeometry() const - { - return m_TimeSlicedGeometry.GetPointer(); - } - + /** + * \brief Return the TimeGeo of the data as const pointer. + * + * \warning No update will be called. Use GetUpdatedGeometry() if you cannot + * be sure that the geometry is up-to-date. + * + * Normally used in GenerateOutputInformation of subclasses of BaseProcess. + */ const mitk::TimeGeometry* GetTimeGeometry() const { return m_TimeGeometry.GetPointer(); } - //##Documentation - //## @brief Return the TimeSlicedGeometry of the data as pointer. - //## - //## \warning No update will be called. Use GetUpdatedGeometry() if you cannot - //## be sure that the geometry is up-to-date. - //## - //## Normally used in GenerateOutputInformation of subclasses of BaseProcess. - mitk::TimeSlicedGeometry* OldGetTimeSlicedGeometry() - { - return m_TimeSlicedGeometry.GetPointer(); - } - + /** + * @brief Return the TimeGeometry of the data as pointer. + * + * \warning No update will be called. Use GetUpdatedGeometry() if you cannot + * be sure that the geometry is up-to-date. + * + * Normally used in GenerateOutputInformation of subclasses of BaseProcess. + */ mitk::TimeGeometry* GetTimeGeometry() { return m_TimeGeometry.GetPointer(); } - //##Documentation - //## @brief Return the Geometry3D of the data. - //## - //## The method does not simply return the value of the m_TimeSlicedGeometry - //## member. Before doing this, it makes sure that the TimeSlicedGeometry - //## is up-to-date (by setting the update extent to largest possible and - //## calling UpdateOutputInformation). - const mitk::TimeSlicedGeometry* OldGetUpdatedTimeSlicedGeometry(); + /** + * @brief Return the Geometry3D of the data. + * + * The method does not simply return the value of the m_TimeGeometry + * member. Before doing this, it makes sure that the TimeGeometry + * is up-to-date (by setting the update extent to largest possible and + * calling UpdateOutputInformation). + */ const mitk::TimeGeometry* GetUpdatedTimeGeometry(); - //##Documentation - //## @brief Expands the TimeSlicedGeometry to a number of TimeSteps. - //## - //## The method expands the TimeSlicedGeometry to the given number of TimeSteps, - //## filling newly created elements with empty geometries. Sub-classes should override - //## this method to handle the elongation of their data vectors, too. - //## Note that a shrinking is neither possible nor intended. + /** + * \brief Expands the TimeGeometry to a number of TimeSteps. + * + * The method expands the TimeGeometry to the given number of TimeSteps, + * filling newly created elements with empty geometries. Sub-classes should override + * this method to handle the elongation of their data vectors, too. + * Note that a shrinking is neither possible nor intended. + */ virtual void Expand( unsigned int timeSteps ); - //##Documentation - //## @brief Return the Geometry3D of the data at time \a t. - //## - //## The method does not simply return - //## m_TimeSlicedGeometry->GetGeometry(t). - //## Before doing this, it makes sure that the Geometry3D is up-to-date - //## (by setting the update extent appropriately and calling - //## UpdateOutputInformation). - //## - //## @todo Appropriate setting of the update extent is missing. + /** + * \brief Return the Geometry3D of the data at time \a t. + * + * The method does not simply return + * m_TimeGeometry->GetGeometry(t). + * Before doing this, it makes sure that the Geometry3D is up-to-date + * (by setting the update extent appropriately and calling + * UpdateOutputInformation). + * + * @todo Appropriate setting of the update extent is missing. + */ const mitk::Geometry3D* GetUpdatedGeometry(int t=0); //##Documentation - //## @brief Return the geometry, which is a TimeSlicedGeometry, of the data + //## @brief Return the geometry, which is a TimeGeometry, of the data //## as non-const pointer. //## //## \warning No update will be called. Use GetUpdatedGeometry() if you cannot //## be sure that the geometry is up-to-date. //## //## Normally used in GenerateOutputInformation of subclasses of BaseProcess. mitk::Geometry3D* GetGeometry(int t=0) const { - if(m_TimeSlicedGeometry.IsNull()) + if(m_TimeGeometry.IsNull()) return NULL; - return m_TimeSlicedGeometry->GetGeometry3D(t); + return m_TimeGeometry->GetGeometryForTimeStep(t); } //##Documentation //## @brief Helps to deal with the weak-pointer-problem. virtual void UnRegister() const; //##Documentation //## @brief for internal use only. Helps to deal with the //## weak-pointer-problem. virtual int GetExternalReferenceCount() const; //##Documentation //## @brief Update the information for this BaseData (the geometry in particular) //## so that it can be used as an output of a BaseProcess. //## //## This method is used in the pipeline mechanism to propagate information and //## initialize the meta data associated with a BaseData. Any implementation //## of this method in a derived class is assumed to call its source's //## BaseProcess::UpdateOutputInformation() which determines modified //## times, LargestPossibleRegions, and any extra meta data like spacing, //## origin, etc. Default implementation simply call's it's source's //## UpdateOutputInformation(). //## \note Implementations of this methods in derived classes must take care //## that the geometry is updated by calling - //## GetTimeSlicedGeometry()->UpdateInformation() + //## GetTimeGeometry()->UpdateInformation() //## \em after calling its source's BaseProcess::UpdateOutputInformation(). void UpdateOutputInformation(); //##Documentation //## @brief Set the RequestedRegion to the LargestPossibleRegion. //## //## This forces a filter to produce all of the output in one execution //## (i.e. not streaming) on the next call to Update(). void SetRequestedRegionToLargestPossibleRegion()=0; //##Documentation //## @brief Determine whether the RequestedRegion is outside of the BufferedRegion. //## //## This method returns true if the RequestedRegion //## is outside the BufferedRegion (true if at least one pixel is //## outside). This is used by the pipeline mechanism to determine //## whether a filter needs to re-execute in order to satisfy the //## current request. If the current RequestedRegion is already //## inside the BufferedRegion from the previous execution (and the //## current filter is up to date), then a given filter does not need //## to re-execute bool RequestedRegionIsOutsideOfTheBufferedRegion()=0; //##Documentation //## @brief Verify that the RequestedRegion is within the LargestPossibleRegion. //## //## If the RequestedRegion is not within the LargestPossibleRegion, //## then the filter cannot possibly satisfy the request. This method //## returns true if the request can be satisfied (even if it will be //## necessary to process the entire LargestPossibleRegion) and //## returns false otherwise. This method is used by //## PropagateRequestedRegion(). PropagateRequestedRegion() throws a //## InvalidRequestedRegionError exception if the requested region is //## not within the LargestPossibleRegion. virtual bool VerifyRequestedRegion() = 0; //##Documentation //## @brief Copy information from the specified data set. //## //## This method is part of the pipeline execution model. By default, a //## BaseProcess will copy meta-data from the first input to all of its //## outputs. See ProcessObject::GenerateOutputInformation(). Each //## subclass of DataObject is responsible for being able to copy //## whatever meta-data it needs from another DataObject. //## The default implementation of this method copies the time sliced geometry //## and the property list of an object. If a subclass overrides this //## method, it should always call its superclass' version. void CopyInformation(const itk::DataObject* data); //##Documentation //## @brief Check whether the data has been initialized, i.e., //## at least the Geometry and other header data has been set //## //## \warning Set to \a true by default for compatibility reasons. //## Set m_Initialized=false in constructors of sub-classes that //## support distinction between initialized and uninitialized state. virtual bool IsInitialized() const; //##Documentation //## @brief Calls ClearData() and InitializeEmpty(); //## \warning Only use in subclasses that reimplemented these methods. //## Just calling Clear from BaseData will reset an object to a not initialized, //## invalid state. virtual void Clear(); //##Documentation //## @brief Check whether object contains data (at //## a specified time), e.g., a set of points may be empty //## //## \warning Returns IsInitialized()==false by default for //## compatibility reasons. Override in sub-classes that //## support distinction between empty/non-empty state. virtual bool IsEmptyTimeStep(unsigned int t) const; //##Documentation //## @brief Check whether object contains data (at //## least at one point in time), e.g., a set of points //## may be empty //## //## \warning Returns IsInitialized()==false by default for //## compatibility reasons. Override in sub-classes that //## support distinction between empty/non-empty state. virtual bool IsEmpty() const; //##Documentation //## @brief Set the requested region from this data object to match the requested //## region of the data object passed in as a parameter. //## //## This method is implemented in the concrete subclasses of BaseData. void SetRequestedRegion(itk::DataObject *data)=0; //##Documentation //##@brief overwrite if the Data can be called by an Interactor (StateMachine). //## //## Empty by default. Overwrite and implement all the necessary operations here //## and get the necessary information from the parameter operation. void ExecuteOperation(Operation* operation); //##Documentation //## @brief Set the Geometry3D of the data, which will be referenced (not copied!). //## Assumes the data object has only 1 time step ( is a 3D object ). //## //## For convenience (and historic) reasons, it is also possible to set a complete - //## mitk::TimeSlicedGeometry*, which will be referenced (not copied!). + //## mitk::TimeGeometry*, which will be referenced (not copied!). //## //## @warning This method will normally be called internally by the sub-class of BaseData //## during initialization. //## \sa SetClonedGeometry virtual void SetGeometry(Geometry3D* aGeometry3D); virtual void SetTimeGeometry (TimeGeometry* geometry); //##Documentation //## @brief Set a clone of the provided geometry as Geometry3D of the data. //## Assumes the data object has only 1 time step ( is a 3D object ) //## //## \sa SetGeometry virtual void SetClonedGeometry(const Geometry3D* aGeometry3D); virtual void SetClonedTimeGeometry (const TimeGeometry* geometry); //##Documentation //## @brief Set a clone of the provided geometry as Geometry3D of a given time step. //## //## \sa SetGeometry virtual void SetClonedGeometry(const Geometry3D* aGeometry3D, unsigned int time); //##Documentation //## @brief Get the data's property list //## @sa GetProperty //## @sa m_PropertyList mitk::PropertyList::Pointer GetPropertyList() const; //##Documentation //## @brief Set the data's property list //## @sa SetProperty //## @sa m_PropertyList void SetPropertyList(PropertyList* propertyList); //##Documentation //## @brief Get the property (instance of BaseProperty) with key @a propertyKey from the PropertyList, //## and set it to this, respectively; //## @sa GetPropertyList //## @sa m_PropertyList //## @sa m_MapOfPropertyLists mitk::BaseProperty::Pointer GetProperty(const char *propertyKey) const; void SetProperty(const char *propertyKey, BaseProperty* property); //##Documentation //## @brief Convenience method for setting the origin of //## the Geometry3D instances of all time steps //## //## \warning Geometries contained in the Geometry3D will //## \em not be changed, e.g. in case the Geometry3D is a //## SlicedGeometry3D the origin will \em not be propagated //## to the contained slices. The sub-class SlicedData //## does this for the case that the SlicedGeometry3D is //## evenly spaced. virtual void SetOrigin(const Point3D& origin); /** \brief Get the process object that generated this data object. * * If there is no process object, then the data object has * been disconnected from the pipeline, or the data object * was created manually. (Note: we cannot use the GetObjectMacro() * defined in itkMacro because the mutual dependency of * DataObject and ProcessObject causes compile problems. Also, * a forward reference smart pointer is returned, not a smart pointer, * because of the circular dependency between the process and data object.) * * GetSource() returns a SmartPointer and not a WeakPointer * because it is assumed the code calling GetSource() wants to hold a * long term reference to the source. */ itk::SmartPointer GetSource() const; //##Documentation - //## @brief Get the number of time steps from the Timeslicedgeometry + //## @brief Get the number of time steps from the TimeGeometry //## As the base data has not a data vector given by itself, the number //## of time steps is defined over the time sliced geometry. In sub classes, //## a better implementation could be over the length of the data vector. unsigned int GetTimeSteps() const { - return m_TimeGeometry->GetNumberOfTimeSteps(); - return m_TimeSlicedGeometry->GetTimeSteps(); } //##Documentation //## @brief Get the modified time of the last change of the contents //## this data object or its geometry. virtual unsigned long GetMTime() const; protected: BaseData(); BaseData(const BaseData &other); ~BaseData(); //##Documentation - //## @brief Initialize the TimeSlicedGeometry for a number of time steps. - //## The TimeSlicedGeometry is initialized empty and evenly timed. + //## \brief Initialize the TimeGeometry for a number of time steps. + //## The TimeGeometry is initialized empty and evenly timed. //## In many cases it will be necessary to overwrite this in sub-classes. - virtual void InitializeTimeSlicedGeometry( unsigned int timeSteps = 1 ); + virtual void InitializeTimeGeometry( unsigned int timeSteps = 1 ); //##Documentation //## @brief reset to non-initialized state, release memory virtual void ClearData(); //##Documentation //## @brief Pure virtual; Must be used in subclasses to get a data object to a //## valid state. Should at least create one empty object and call - //## Superclass::InitializeTimeSlicedGeometry() to ensure an existing valid geometry + //## Superclass::InitializeTimeGeometry() to ensure an existing valid geometry virtual void InitializeEmpty(){} virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; bool m_RequestedRegionInitialized; bool m_LastRequestedRegionWasOutsideOfTheBufferedRegion; mutable itk::SmartPointer m_SmartSourcePointer; mutable unsigned int m_SourceOutputIndexDuplicate; //##Documentation //## @brief for internal use only. Helps to deal with the //## weak-pointer-problem. virtual void ConnectSource(itk::ProcessObject *arg, unsigned int idx) const; bool m_Initialized; private: //##Documentation //## @brief Helps to deal with the weak-pointer-problem. mutable bool m_Unregistering; //##Documentation //## @brief Helps to deal with the weak-pointer-problem. mutable bool m_CalculatingExternalReferenceCount; //##Documentation //## @brief Helps to deal with the weak-pointer-problem. mutable int m_ExternalReferenceCount; //##Documentation //## @brief PropertyList, f.e. to hold pic-tags, tracking-data,.. //## PropertyList::Pointer m_PropertyList; - TimeSlicedGeometry::Pointer m_TimeSlicedGeometry; TimeGeometry::Pointer m_TimeGeometry; //##Documentation //## @brief Helps to deal with the weak-pointer-problem. friend class mitk::BaseProcess; }; } // namespace mitk #endif /* BASEDATA_H_HEADER_INCLUDED_C1EBB6FA */ diff --git a/Core/Code/DataManagement/mitkBaseDataTestImplementation.h b/Core/Code/DataManagement/mitkBaseDataTestImplementation.h index 647e81f273..757d598fe6 100644 --- a/Core/Code/DataManagement/mitkBaseDataTestImplementation.h +++ b/Core/Code/DataManagement/mitkBaseDataTestImplementation.h @@ -1,59 +1,59 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef BASEDATAIMPLEMENTATION_H_HEADER_INCLUDED #define BASEDATAIMPLEMENTATION_H_HEADER_INCLUDED #include "mitkBaseData.h" namespace mitk { //##Documentation //## @brief Implementation of BaseData (for testing) //## //## As BaseData is an abstract class, we need an implementation for testing its methods //## @ingroup Data class BaseDataTestImplementation : public BaseData { public: mitkClassMacro(BaseDataTestImplementation, BaseData); itkNewMacro(Self); mitkCloneMacro(BaseDataTestImplementation); - virtual void InitializeTimeSlicedGeometry( unsigned int timeSteps /* = 1 */ ) + virtual void InitializeTimeGeometry( unsigned int timeSteps /* = 1 */ ) { - Superclass::InitializeTimeSlicedGeometry(timeSteps); + Superclass::InitializeTimeGeometry(timeSteps); } protected: virtual bool VerifyRequestedRegion(){return false;}; virtual bool RequestedRegionIsOutsideOfTheBufferedRegion(){return false;}; virtual void SetRequestedRegionToLargestPossibleRegion(){}; virtual void SetRequestedRegion(itk::DataObject * /*data*/){}; BaseDataTestImplementation(){}; virtual ~BaseDataTestImplementation(){}; }; } // namespace #endif // BASEDATA_H_HEADER_INCLUDED diff --git a/Core/Code/DataManagement/mitkPointSet.cpp b/Core/Code/DataManagement/mitkPointSet.cpp index 3ab0ec9162..fb163d8f47 100755 --- a/Core/Code/DataManagement/mitkPointSet.cpp +++ b/Core/Code/DataManagement/mitkPointSet.cpp @@ -1,796 +1,796 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPointSet.h" #include "mitkPointOperation.h" #include "mitkInteractionConst.h" mitk::PointSet::PointSet() { this->InitializeEmpty(); } mitk::PointSet::PointSet(const PointSet &other): BaseData(other) { // Copy overall geometry information this->SetGeometry(other.GetGeometry()); // Copy geometry information of every single timestep for (unsigned int t=0; t < other.GetTimeSteps(); t++) { this->SetClonedGeometry( other.GetGeometry(t) ); } // Expand to desired amount of timesteps this->Expand(other.GetTimeSteps()); // Copy points for (unsigned int t=0; t < other.GetTimeSteps(); t++) { for (int i=0; i< other.GetSize(t); i++) { this->InsertPoint(i, other.GetPoint(i,t), t); } } } mitk::PointSet::~PointSet() { this->ClearData(); } void mitk::PointSet::ClearData() { m_PointSetSeries.clear(); Superclass::ClearData(); } void mitk::PointSet::InitializeEmpty() { m_PointSetSeries.resize( 1 ); m_PointSetSeries[0] = DataType::New(); PointDataContainer::Pointer pointData = PointDataContainer::New(); m_PointSetSeries[0]->SetPointData( pointData ); m_CalculateBoundingBox = false; - Superclass::InitializeTimeSlicedGeometry(1); + Superclass::InitializeTimeGeometry(1); m_Initialized = true; } bool mitk::PointSet::IsEmptyTimeStep(unsigned int t) const { return IsInitialized() && (GetSize(t) == 0); } void mitk::PointSet::Expand( unsigned int timeSteps ) { // Check if the vector is long enough to contain the new element // at the given position. If not, expand it with sufficient pre-initialized // elements. // // NOTE: This method will never REDUCE the vector size; it should only // be used to make sure that the vector has enough elements to include the // specified time step. unsigned int oldSize = m_PointSetSeries.size(); if ( timeSteps > oldSize ) { Superclass::Expand( timeSteps ); m_PointSetSeries.resize( timeSteps ); for ( unsigned int i = oldSize; i < timeSteps; ++i ) { m_PointSetSeries[i] = DataType::New(); PointDataContainer::Pointer pointData = PointDataContainer::New(); m_PointSetSeries[i]->SetPointData( pointData ); } //if the size changes, then compute the bounding box m_CalculateBoundingBox = true; this->InvokeEvent( PointSetExtendTimeRangeEvent() ); } } unsigned int mitk::PointSet::GetPointSetSeriesSize() const { return m_PointSetSeries.size(); } int mitk::PointSet::GetSize( unsigned int t ) const { if ( t < m_PointSetSeries.size() ) { return m_PointSetSeries[t]->GetNumberOfPoints(); } else { return 0; } } mitk::PointSet::DataType::Pointer mitk::PointSet::GetPointSet( int t ) const { if ( t < (int)m_PointSetSeries.size() ) { return m_PointSetSeries[t]; } else { return NULL; } } int mitk::PointSet::SearchPoint( Point3D point, float distance, int t ) const { if ( t >= (int)m_PointSetSeries.size() ) { return -1; } // Out is the point which is checked to be the searched point PointType out; out.Fill( 0 ); PointType indexPoint; this->GetGeometry( t )->WorldToIndex(point, indexPoint); // Searching the first point in the Set, that is +- distance far away fro // the given point unsigned int i; PointsContainer::Iterator it, end; end = m_PointSetSeries[t]->GetPoints()->End(); int bestIndex = -1; distance = distance * distance; // To correct errors from converting index to world and world to index if (distance == 0.0) { distance = 0.000001; } ScalarType bestDist = distance; ScalarType dist, tmp; for ( it = m_PointSetSeries[t]->GetPoints()->Begin(), i = 0; it != end; ++it, ++i ) { bool ok = m_PointSetSeries[t]->GetPoints() ->GetElementIfIndexExists( it->Index(), &out ); if ( !ok ) { return -1; } else if ( indexPoint == out ) //if totally equal { return it->Index(); } //distance calculation tmp = out[0] - indexPoint[0]; dist = tmp * tmp; tmp = out[1] - indexPoint[1]; dist += tmp * tmp; tmp = out[2] - indexPoint[2]; dist += tmp * tmp; if ( dist < bestDist ) { bestIndex = it->Index(); bestDist = dist; } } return bestIndex; } mitk::PointSet::PointType mitk::PointSet::GetPoint( PointIdentifier id, int t ) const { PointType out; out.Fill(0); if ( (unsigned int) t >= m_PointSetSeries.size() ) { return out; } if ( m_PointSetSeries[t]->GetPoints()->IndexExists(id) ) { m_PointSetSeries[t]->GetPoint( id, &out ); this->GetGeometry(t)->IndexToWorld( out, out ); return out; } else { return out; } } bool mitk::PointSet ::GetPointIfExists( PointIdentifier id, PointType* point, int t ) const { if ( (unsigned int) t >= m_PointSetSeries.size() ) { return false; } if ( m_PointSetSeries[t]->GetPoints()->GetElementIfIndexExists(id, point) ) { this->GetGeometry( t )->IndexToWorld( *point, *point ); return true; } else { return false; } } void mitk::PointSet::SetPoint( PointIdentifier id, PointType point, int t ) { // Adapt the size of the data vector if necessary this->Expand( t+1 ); mitk::Point3D indexPoint; this->GetGeometry( t )->WorldToIndex( point, indexPoint ); m_PointSetSeries[t]->SetPoint( id, indexPoint ); PointDataType defaultPointData; defaultPointData.id = id; defaultPointData.selected = false; defaultPointData.pointSpec = mitk::PTUNDEFINED; m_PointSetSeries[t]->SetPointData( id, defaultPointData ); //boundingbox has to be computed anyway m_CalculateBoundingBox = true; this->Modified(); } void mitk::PointSet::SetPoint( PointIdentifier id, PointType point, PointSpecificationType spec, int t ) { // Adapt the size of the data vector if necessary this->Expand( t+1 ); mitk::Point3D indexPoint; this->GetGeometry( t )->WorldToIndex( point, indexPoint ); m_PointSetSeries[t]->SetPoint( id, indexPoint ); PointDataType defaultPointData; defaultPointData.id = id; defaultPointData.selected = false; defaultPointData.pointSpec = spec; m_PointSetSeries[t]->SetPointData( id, defaultPointData ); //boundingbox has to be computed anyway m_CalculateBoundingBox = true; this->Modified(); } void mitk::PointSet::InsertPoint( PointIdentifier id, PointType point, int t ) { if ( (unsigned int) t < m_PointSetSeries.size() ) { mitk::Point3D indexPoint; mitk::Geometry3D* tempGeometry = this->GetGeometry( t ); if (tempGeometry == NULL) { MITK_INFO<< __FILE__ << ", l." << __LINE__ << ": GetGeometry of "<< t <<" returned NULL!" << std::endl; return; } tempGeometry->WorldToIndex( point, indexPoint ); m_PointSetSeries[t]->GetPoints()->InsertElement( id, indexPoint ); PointDataType defaultPointData; defaultPointData.id = id; defaultPointData.selected = false; defaultPointData.pointSpec = mitk::PTUNDEFINED; m_PointSetSeries[t]->GetPointData()->InsertElement(id, defaultPointData); //boundingbox has to be computed anyway m_CalculateBoundingBox = true; this->Modified(); } } void mitk::PointSet::InsertPoint( PointIdentifier id, PointType point, PointSpecificationType spec, int t ) { if ( (unsigned int) t < m_PointSetSeries.size() ) { mitk::Point3D indexPoint; mitk::Geometry3D* tempGeometry = this->GetGeometry( t ); if (tempGeometry == NULL) { MITK_INFO<< __FILE__ << ", l." << __LINE__ << ": GetGeometry of "<< t <<" returned NULL!" << std::endl; return; } tempGeometry->WorldToIndex( point, indexPoint ); m_PointSetSeries[t]->GetPoints()->InsertElement( id, indexPoint ); PointDataType defaultPointData; defaultPointData.id = id; defaultPointData.selected = false; defaultPointData.pointSpec = spec; m_PointSetSeries[t]->GetPointData()->InsertElement(id, defaultPointData); //boundingbox has to be computed anyway m_CalculateBoundingBox = true; this->Modified(); } } bool mitk::PointSet::SwapPointPosition( PointIdentifier id, bool moveUpwards, int t ) { if(IndexExists(id, t) ) { PointType point = GetPoint(id,t); if(moveUpwards) {//up if(IndexExists(id-1,t)) { InsertPoint(id, GetPoint(id - 1, t), t); InsertPoint(id-1,point,t); this->Modified(); return true; } } else {//down if(IndexExists(id+1,t)) { InsertPoint(id, GetPoint(id + 1, t), t); InsertPoint(id+1,point,t); this->Modified(); return true; } } } return false; } bool mitk::PointSet::IndexExists( int position, int t ) const { if ( (unsigned int) t < m_PointSetSeries.size() ) { return m_PointSetSeries[t]->GetPoints()->IndexExists( position ); } else { return false; } } bool mitk::PointSet::GetSelectInfo( int position, int t ) const { if ( this->IndexExists( position, t ) ) { PointDataType pointData = { 0, false, PTUNDEFINED }; m_PointSetSeries[t]->GetPointData( position, &pointData ); return pointData.selected; } else { return false; } } void mitk::PointSet::SetSelectInfo( int position, bool selected, int t ) { if ( this->IndexExists( position, t ) ) { // timeStep to ms TimePointType timeInMS = this->GetTimeGeometry()->TimeStepToTimePoint( t ); // point Point3D point = this->GetPoint( position, t ); std::auto_ptr op; if (selected) { op.reset(new mitk::PointOperation(OpSELECTPOINT, timeInMS, point, position )); } else { op.reset(new mitk::PointOperation(OpDESELECTPOINT, timeInMS, point, position )); } this->ExecuteOperation( op.get() ); } } mitk::PointSpecificationType mitk::PointSet::GetSpecificationTypeInfo( int position, int t ) const { if ( this->IndexExists( position, t ) ) { PointDataType pointData = { 0, false, PTUNDEFINED }; m_PointSetSeries[t]->GetPointData( position, &pointData ); return pointData.pointSpec; } else { return PTUNDEFINED; } } int mitk::PointSet::GetNumberOfSelected( int t ) const { if ( (unsigned int) t >= m_PointSetSeries.size() ) { return 0; } int numberOfSelected = 0; PointDataIterator it; for ( it = m_PointSetSeries[t]->GetPointData()->Begin(); it != m_PointSetSeries[t]->GetPointData()->End(); it++ ) { if (it->Value().selected == true) { ++numberOfSelected; } } return numberOfSelected; } int mitk::PointSet::SearchSelectedPoint( int t ) const { if ( (unsigned int) t >= m_PointSetSeries.size() ) { return -1; } PointDataIterator it; for ( it = m_PointSetSeries[t]->GetPointData()->Begin(); it != m_PointSetSeries[t]->GetPointData()->End(); it++ ) { if ( it->Value().selected == true ) { return it->Index(); } } return -1; } void mitk::PointSet::ExecuteOperation( Operation* operation ) { int timeStep = -1; mitkCheckOperationTypeMacro(PointOperation, operation, pointOp); if ( pointOp ) { timeStep = this->GetTimeGeometry()->TimePointToTimeStep( pointOp->GetTimeInMS() ); } if ( timeStep < 0 ) { MITK_ERROR << "Time step (" << timeStep << ") outside of PointSet time bounds" << std::endl; return; } switch (operation->GetOperationType()) { case OpNOTHING: break; case OpINSERT://inserts the point at the given position and selects it. { int position = pointOp->GetIndex(); PointType pt; pt.CastFrom(pointOp->GetPoint()); //transfer from world to index coordinates mitk::Geometry3D* geometry = this->GetGeometry( timeStep ); if (geometry == NULL) { MITK_INFO<<"GetGeometry returned NULL!\n"; return; } geometry->WorldToIndex(pt, pt); m_PointSetSeries[timeStep]->GetPoints()->InsertElement(position, pt); PointDataType pointData = { static_cast(pointOp->GetIndex()), pointOp->GetSelected(), pointOp->GetPointType() }; m_PointSetSeries[timeStep]->GetPointData() ->InsertElement(position, pointData); this->Modified(); //boundingbox has to be computed m_CalculateBoundingBox = true; this->InvokeEvent( PointSetAddEvent() ); this->OnPointSetChange(); } break; case OpMOVE://moves the point given by index { PointType pt; pt.CastFrom(pointOp->GetPoint()); //transfer from world to index coordinates this->GetGeometry( timeStep )->WorldToIndex(pt, pt); // Copy new point into container m_PointSetSeries[timeStep]->SetPoint(pointOp->GetIndex(), pt); // Insert a default point data object to keep the containers in sync // (if no point data object exists yet) PointDataType pointData; if ( !m_PointSetSeries[timeStep]->GetPointData( pointOp->GetIndex(), &pointData ) ) { m_PointSetSeries[timeStep]->SetPointData( pointOp->GetIndex(), pointData ); } this->OnPointSetChange(); this->Modified(); //boundingbox has to be computed anyway m_CalculateBoundingBox = true; this->InvokeEvent( PointSetMoveEvent() ); } break; case OpREMOVE://removes the point at given by position { m_PointSetSeries[timeStep]->GetPoints()->DeleteIndex((unsigned)pointOp->GetIndex()); m_PointSetSeries[timeStep]->GetPointData()->DeleteIndex((unsigned)pointOp->GetIndex()); this->OnPointSetChange(); this->Modified(); //boundingbox has to be computed anyway m_CalculateBoundingBox = true; this->InvokeEvent( PointSetRemoveEvent() ); } break; case OpSELECTPOINT://select the given point { PointDataType pointData = {0, false, PTUNDEFINED}; m_PointSetSeries[timeStep]->GetPointData(pointOp->GetIndex(), &pointData); pointData.selected = true; m_PointSetSeries[timeStep]->SetPointData(pointOp->GetIndex(), pointData); this->Modified(); } break; case OpDESELECTPOINT://unselect the given point { PointDataType pointData = {0, false, PTUNDEFINED}; m_PointSetSeries[timeStep]->GetPointData(pointOp->GetIndex(), &pointData); pointData.selected = false; m_PointSetSeries[timeStep]->SetPointData(pointOp->GetIndex(), pointData); this->Modified(); } break; case OpSETPOINTTYPE: { PointDataType pointData = {0, false, PTUNDEFINED}; m_PointSetSeries[timeStep]->GetPointData(pointOp->GetIndex(), &pointData); pointData.pointSpec = pointOp->GetPointType(); m_PointSetSeries[timeStep]->SetPointData(pointOp->GetIndex(), pointData); this->Modified(); } break; case OpMOVEPOINTUP: // swap content of point with ID pointOp->GetIndex() with the point preceding it in the container // move point position within the pointset { PointIdentifier currentID = pointOp->GetIndex(); /* search for point with this id and point that precedes this one in the data container */ PointsContainer::STLContainerType points = m_PointSetSeries[timeStep]->GetPoints()->CastToSTLContainer(); PointsContainer::STLContainerType::iterator it = points.find(currentID); if (it == points.end()) // ID not found break; if (it == points.begin()) // we are at the first element, there is no previous element break; /* get and cache current point & pointdata and previous point & pointdata */ --it; PointIdentifier prevID = it->first; if (this->SwapPointContents(prevID, currentID, timeStep) == true) this->Modified(); } break; case OpMOVEPOINTDOWN: // move point position within the pointset { PointIdentifier currentID = pointOp->GetIndex(); /* search for point with this id and point that succeeds this one in the data container */ PointsContainer::STLContainerType points = m_PointSetSeries[timeStep]->GetPoints()->CastToSTLContainer(); PointsContainer::STLContainerType::iterator it = points.find(currentID); if (it == points.end()) // ID not found break; ++it; if (it == points.end()) // ID is already the last element, there is no succeeding element break; /* get and cache current point & pointdata and previous point & pointdata */ PointIdentifier nextID = it->first; if (this->SwapPointContents(nextID, currentID, timeStep) == true) this->Modified(); } break; default: itkWarningMacro("mitkPointSet could not understrand the operation. Please check!"); break; } //to tell the mappers, that the data is modified and has to be updated //only call modified if anything is done, so call in cases //this->Modified(); mitk::OperationEndEvent endevent(operation); ((const itk::Object*)this)->InvokeEvent(endevent); //*todo has to be done here, cause of update-pipeline not working yet // As discussed lately, don't mess with the rendering from inside data structures //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::PointSet::UpdateOutputInformation() { if ( this->GetSource( ) ) { this->GetSource( )->UpdateOutputInformation( ); } // // first make sure, that the associated time sliced geometry has // the same number of geometry 3d's as PointSets are present // TimeGeometry* timeGeometry = GetTimeGeometry(); if ( timeGeometry->GetNumberOfTimeSteps() != m_PointSetSeries.size() ) { itkExceptionMacro(<<"timeGeometry->GetNumberOfTimeSteps() != m_PointSetSeries.size() -- use Initialize(timeSteps) with correct number of timeSteps!"); } // This is needed to detect zero objects mitk::ScalarType nullpoint[]={0,0,0,0,0,0}; BoundingBox::BoundsArrayType itkBoundsNull(nullpoint); // // Iterate over the PointSets and update the Geometry // information of each of the items. // if (m_CalculateBoundingBox) { for ( unsigned int i = 0 ; i < m_PointSetSeries.size() ; ++i ) { const DataType::BoundingBoxType *bb = m_PointSetSeries[i]->GetBoundingBox(); BoundingBox::BoundsArrayType itkBounds = bb->GetBounds(); if ( m_PointSetSeries[i].IsNull() || (m_PointSetSeries[i]->GetNumberOfPoints() == 0) || (itkBounds == itkBoundsNull) ) { itkBounds = itkBoundsNull; continue; } // Ensure minimal bounds of 1.0 in each dimension for ( unsigned int j = 0; j < 3; ++j ) { if ( itkBounds[j*2+1] - itkBounds[j*2] < 1.0 ) { BoundingBox::CoordRepType center = (itkBounds[j*2] + itkBounds[j*2+1]) / 2.0; itkBounds[j*2] = center - 0.5; itkBounds[j*2+1] = center + 0.5; } } this->GetGeometry(i)->SetBounds(itkBounds); } m_CalculateBoundingBox = false; } this->GetTimeGeometry()->Update(); } void mitk::PointSet::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::PointSet::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::PointSet::VerifyRequestedRegion() { return true; } void mitk::PointSet::SetRequestedRegion( itk::DataObject * ) { } void mitk::PointSet::PrintSelf( std::ostream& os, itk::Indent indent ) const { Superclass::PrintSelf(os, indent); os << indent << "Number timesteps: " << m_PointSetSeries.size() << "\n"; unsigned int i = 0; for (PointSetSeries::const_iterator it = m_PointSetSeries.begin(); it != m_PointSetSeries.end(); ++it) { os << indent << "Timestep " << i++ << ": \n"; MeshType::Pointer ps = *it; itk::Indent nextIndent = indent.GetNextIndent(); ps->Print(os, nextIndent); MeshType::PointsContainer* points = ps->GetPoints(); MeshType::PointDataContainer* datas = ps->GetPointData(); MeshType::PointDataContainer::Iterator dataIterator = datas->Begin(); for (MeshType::PointsContainer::Iterator pointIterator = points->Begin(); pointIterator != points->End(); ++pointIterator, ++dataIterator) { os << nextIndent << "Point " << pointIterator->Index() << ": ["; os << pointIterator->Value().GetElement(0); for (unsigned int i = 1; i < PointType::GetPointDimension(); ++i) { os << ", " << pointIterator->Value().GetElement(i); } os << "]"; os << ", selected: " << dataIterator->Value().selected << ", point spec: " << dataIterator->Value().pointSpec << "\n"; } } } bool mitk::PointSet::SwapPointContents(PointIdentifier id1, PointIdentifier id2, int timeStep) { /* search and cache contents */ PointType p1; if (m_PointSetSeries[timeStep]->GetPoint(id1, &p1) == false) return false; PointDataType data1; if (m_PointSetSeries[timeStep]->GetPointData(id1, &data1) == false) return false; PointType p2; if (m_PointSetSeries[timeStep]->GetPoint(id2, &p2) == false) return false; PointDataType data2; if (m_PointSetSeries[timeStep]->GetPointData(id2, &data2) == false) return false; /* now swap contents */ m_PointSetSeries[timeStep]->SetPoint(id1, p2); m_PointSetSeries[timeStep]->SetPointData(id1, data2); m_PointSetSeries[timeStep]->SetPoint(id2, p1); m_PointSetSeries[timeStep]->SetPointData(id2, data1); return true; } diff --git a/Core/Code/DataManagement/mitkSurface.cpp b/Core/Code/DataManagement/mitkSurface.cpp index e46acac581..5993482106 100644 --- a/Core/Code/DataManagement/mitkSurface.cpp +++ b/Core/Code/DataManagement/mitkSurface.cpp @@ -1,386 +1,386 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSurface.h" #include "mitkInteractionConst.h" #include "mitkSurfaceOperation.h" #include #include static vtkPolyData* DeepCopy(vtkPolyData* other) { if (other == NULL) return NULL; vtkPolyData* copy = vtkPolyData::New(); copy->DeepCopy(other); return copy; } static void Delete(vtkPolyData* polyData) { if (polyData != NULL) polyData->Delete(); } static void Update(vtkPolyData* polyData) { if (polyData != NULL) polyData->Update(); } mitk::Surface::Surface() : m_CalculateBoundingBox(false) { this->InitializeEmpty(); } mitk::Surface::Surface(const mitk::Surface& other) : BaseData(other), m_LargestPossibleRegion(other.m_LargestPossibleRegion), m_RequestedRegion(other.m_RequestedRegion), m_CalculateBoundingBox(other.m_CalculateBoundingBox) { if(!other.m_PolyDatas.empty()) { m_PolyDatas.resize(other.m_PolyDatas.size()); std::transform(other.m_PolyDatas.begin(), other.m_PolyDatas.end(), m_PolyDatas.begin(), DeepCopy); } else { this->InitializeEmpty(); } } void mitk::Surface::Swap(mitk::Surface& other) { std::swap(m_PolyDatas, other.m_PolyDatas); std::swap(m_LargestPossibleRegion, other.m_LargestPossibleRegion); std::swap(m_RequestedRegion, other.m_RequestedRegion); std::swap(m_CalculateBoundingBox, other.m_CalculateBoundingBox); } mitk::Surface& mitk::Surface::operator=(Surface other) { this->Swap(other); return *this; } mitk::Surface::~Surface() { this->ClearData(); } void mitk::Surface::ClearData() { using ::Delete; std::for_each(m_PolyDatas.begin(), m_PolyDatas.end(), Delete); m_PolyDatas.clear(); Superclass::ClearData(); } const mitk::Surface::RegionType& mitk::Surface::GetLargestPossibleRegion() const { m_LargestPossibleRegion.SetIndex(3, 0); m_LargestPossibleRegion.SetSize(3, GetTimeGeometry()->GetNumberOfTimeSteps()); return m_LargestPossibleRegion; } const mitk::Surface::RegionType& mitk::Surface::GetRequestedRegion() const { return m_RequestedRegion; } void mitk::Surface::InitializeEmpty() { if (!m_PolyDatas.empty()) this->ClearData(); - Superclass::InitializeTimeSlicedGeometry(); + Superclass::InitializeTimeGeometry(); m_PolyDatas.push_back(NULL); m_Initialized = true; } void mitk::Surface::SetVtkPolyData(vtkPolyData* polyData, unsigned int t) { this->Expand(t + 1); if (m_PolyDatas[t] != NULL) { if (m_PolyDatas[t] == polyData) return; m_PolyDatas[t]->Delete(); } m_PolyDatas[t] = polyData; if(polyData != NULL) polyData->Register(NULL); m_CalculateBoundingBox = true; this->Modified(); this->UpdateOutputInformation(); } bool mitk::Surface::IsEmptyTimeStep(unsigned int t) const { if(!IsInitialized()) return false; vtkPolyData* polyData = const_cast(this)->GetVtkPolyData(t); return polyData == NULL || ( polyData->GetNumberOfLines() == 0 && polyData->GetNumberOfPolys() == 0 && polyData->GetNumberOfStrips() == 0 && polyData->GetNumberOfVerts() == 0 ); } vtkPolyData* mitk::Surface::GetVtkPolyData(unsigned int t) { if (t < m_PolyDatas.size()) { if(m_PolyDatas[t] == NULL && this->GetSource().IsNotNull()) { RegionType requestedRegion; requestedRegion.SetIndex(3, t); requestedRegion.SetSize(3, 1); this->SetRequestedRegion(&requestedRegion); this->GetSource()->Update(); } return m_PolyDatas[t]; } return NULL; } void mitk::Surface::UpdateOutputInformation() { if (this->GetSource().IsNotNull()) this->GetSource()->UpdateOutputInformation(); if (m_CalculateBoundingBox == true && !m_PolyDatas.empty()) this->CalculateBoundingBox(); else this->GetTimeGeometry()->Update(); } void mitk::Surface::CalculateBoundingBox() { TimeGeometry* timeSlicedGeometry = this->GetTimeGeometry(); if (timeSlicedGeometry->GetNumberOfTimeSteps() != m_PolyDatas.size()) mitkThrow() << "Number of geometry time steps is inconsistent with number of poly data pointers."; for (unsigned int i = 0; i < m_PolyDatas.size(); ++i) { vtkPolyData* polyData = m_PolyDatas[i]; vtkFloatingPointType bounds[6] = {0}; if (polyData != NULL && polyData->GetNumberOfPoints() > 0) { polyData->Update(); polyData->ComputeBounds(); polyData->GetBounds(bounds); } Geometry3D::Pointer geometry = timeSlicedGeometry->GetGeometryForTimeStep(i); if (geometry.IsNull()) mitkThrow() << "Time-sliced geometry is invalid (equals NULL)."; geometry->SetFloatBounds(bounds); } timeSlicedGeometry->Update(); m_CalculateBoundingBox = false; } void mitk::Surface::SetRequestedRegionToLargestPossibleRegion() { m_RequestedRegion = GetLargestPossibleRegion(); } bool mitk::Surface::RequestedRegionIsOutsideOfTheBufferedRegion() { RegionType::IndexValueType end = m_RequestedRegion.GetIndex(3) + m_RequestedRegion.GetSize(3); if(static_cast(m_PolyDatas.size()) < end) return true; for(RegionType::IndexValueType t = m_RequestedRegion.GetIndex(3); t < end; ++t) { if(m_PolyDatas[t] == NULL) return true; } return false; } bool mitk::Surface::VerifyRequestedRegion() { if(m_RequestedRegion.GetIndex(3) >= 0 && m_RequestedRegion.GetIndex(3) + m_RequestedRegion.GetSize(3) <= m_PolyDatas.size()) return true; return false; } void mitk::Surface::SetRequestedRegion(itk::DataObject* data) { mitk::Surface* surface = dynamic_cast(data); if (surface != NULL) m_RequestedRegion = surface->GetRequestedRegion(); else mitkThrow() << "Data object used to get requested region is not a mitk::Surface."; } void mitk::Surface::SetRequestedRegion(Surface::RegionType* region) { if (region == NULL) mitkThrow() << "Requested region is invalid (equals NULL)"; m_RequestedRegion = *region; } void mitk::Surface::CopyInformation(const itk::DataObject* data) { Superclass::CopyInformation(data); const mitk::Surface* surface = dynamic_cast(data); if (surface == NULL) mitkThrow() << "Data object used to get largest possible region is not a mitk::Surface."; m_LargestPossibleRegion = surface->GetLargestPossibleRegion(); } void mitk::Surface::Update() { using ::Update; if (this->GetSource().IsNull()) std::for_each(m_PolyDatas.begin(), m_PolyDatas.end(), Update); Superclass::Update(); } void mitk::Surface::Expand(unsigned int timeSteps) { if (timeSteps > m_PolyDatas.size()) { Superclass::Expand(timeSteps); m_PolyDatas.resize(timeSteps); m_CalculateBoundingBox = true; } } void mitk::Surface::ExecuteOperation(Operation* operation) { switch (operation->GetOperationType()) { case OpSURFACECHANGED: { mitk::SurfaceOperation* surfaceOperation = dynamic_cast(operation); if(surfaceOperation == NULL) break; unsigned int timeStep = surfaceOperation->GetTimeStep(); if(m_PolyDatas[timeStep] != NULL) { vtkPolyData* updatedPolyData = surfaceOperation->GetVtkPolyData(); if(updatedPolyData != NULL) { this->SetVtkPolyData(updatedPolyData, timeStep); this->CalculateBoundingBox(); this->Modified(); } } break; } default: return; } } unsigned int mitk::Surface::GetSizeOfPolyDataSeries() const { return m_PolyDatas.size(); } void mitk::Surface::Graft(const DataObject* data) { const Surface* surface = dynamic_cast(data); if(surface == NULL) mitkThrow() << "Data object used to graft surface is not a mitk::Surface."; this->CopyInformation(data); m_PolyDatas.clear(); for (unsigned int i = 0; i < surface->GetSizeOfPolyDataSeries(); ++i) { m_PolyDatas.push_back(vtkPolyData::New()); m_PolyDatas.back()->DeepCopy(const_cast(surface)->GetVtkPolyData(i)); } } void mitk::Surface::PrintSelf(std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "\nNumber PolyDatas: " << m_PolyDatas.size() << "\n"; unsigned int count = 0; for (std::vector::const_iterator it = m_PolyDatas.begin(); it != m_PolyDatas.end(); ++it) { os << "\n"; if(*it != NULL) { os << indent << "PolyData at time step " << count << ":\n"; os << indent << "Number of cells: " << (*it)->GetNumberOfCells() << "\n"; os << indent << "Number of points: " << (*it)->GetNumberOfPoints() << "\n\n"; os << indent << "VTKPolyData:\n"; (*it)->Print(os); } else { os << indent << "Empty PolyData at time step " << count << "\n"; } ++count; } } diff --git a/Core/Code/Testing/mitkBaseDataTest.cpp b/Core/Code/Testing/mitkBaseDataTest.cpp index 8712e950fa..3426f2ff58 100644 --- a/Core/Code/Testing/mitkBaseDataTest.cpp +++ b/Core/Code/Testing/mitkBaseDataTest.cpp @@ -1,121 +1,121 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkBaseDataTestImplementation.h" #include "mitkStringProperty.h" #include "mitkTestingMacros.h" #include #include #include "itkImage.h" int mitkBaseDataTest(int /*argc*/, char* /*argv*/[]) { MITK_TEST_BEGIN("BaseData") //Create a BaseData implementation MITK_INFO << "Creating a base data instance..."; mitk::BaseDataTestImplementation::Pointer baseDataImpl = mitk::BaseDataTestImplementation::New(); MITK_TEST_CONDITION_REQUIRED(baseDataImpl.IsNotNull(),"Testing instantiation"); MITK_TEST_CONDITION(baseDataImpl->IsInitialized(), "BaseDataTestImplementation is initialized"); MITK_TEST_CONDITION(baseDataImpl->IsEmpty(), "BaseDataTestImplementation is initialized and empty"); MITK_TEST_CONDITION(baseDataImpl->GetExternalReferenceCount()== baseDataImpl->GetReferenceCount(), "Checks external reference count!"); mitk::BaseDataTestImplementation::Pointer cloneBaseData = baseDataImpl->Clone(); MITK_TEST_CONDITION_REQUIRED(cloneBaseData.IsNotNull(),"Testing instantiation of base data clone"); MITK_TEST_CONDITION(cloneBaseData->IsInitialized(), "Clone of BaseDataTestImplementation is initialized"); MITK_TEST_CONDITION(cloneBaseData->IsEmpty(), "Clone of BaseDataTestImplementation is initialized and empty"); MITK_TEST_CONDITION(cloneBaseData->GetExternalReferenceCount()== cloneBaseData->GetReferenceCount(), "Checks external reference count of base data clone!"); MITK_INFO << "Testing setter and getter for geometries..."; //test method GetTimeSlicedGeometry() MITK_TEST_CONDITION(baseDataImpl->GetTimeGeometry(), "Testing creation of TimeSlicedGeometry"); - mitk::TimeSlicedGeometry* geo = NULL; - baseDataImpl->SetGeometry(geo); + mitk::TimeGeometry* geo = NULL; + baseDataImpl->SetTimeGeometry(geo); MITK_TEST_CONDITION(baseDataImpl->GetTimeGeometry() == NULL, "Reset Geometry"); mitk::ProportionalTimeGeometry::Pointer geo2 = mitk::ProportionalTimeGeometry::New(); baseDataImpl->SetTimeGeometry(geo2); geo2->Initialize(2); MITK_TEST_CONDITION(baseDataImpl->GetTimeGeometry() == geo2.GetPointer(), "Correct Reinit of TimeslicedGeometry"); //test method GetGeometry(int timeStep) MITK_TEST_CONDITION(baseDataImpl->GetGeometry(1) != NULL, "... and single Geometries"); //test method Expand(unsigned int timeSteps) baseDataImpl->Expand(5); MITK_TEST_CONDITION(baseDataImpl->GetTimeSteps() == 5, "Expand the geometry to further time slices!"); //test method GetUpdatedGeometry(int timeStep); mitk::Geometry3D::Pointer geo3 = mitk::Geometry3D::New(); mitk::ProportionalTimeGeometry::Pointer timeSlicedGeometry = dynamic_cast(baseDataImpl->GetTimeGeometry()); if (timeSlicedGeometry.IsNotNull() ) { timeSlicedGeometry->SetTimeStepGeometry(geo3,1); } MITK_TEST_CONDITION(baseDataImpl->GetUpdatedGeometry(1) == geo3, "Set Geometry for time step 1"); MITK_TEST_CONDITION(baseDataImpl->GetMTime()!= 0, "Check if modified time is set"); baseDataImpl->SetClonedGeometry(geo3, 1); float x[3]; x[0] = 2; x[1] = 4; x[2] = 6; mitk::Point3D p3d(x); baseDataImpl->SetOrigin(p3d); geo3->SetOrigin(p3d); MITK_TEST_CONDITION(baseDataImpl->GetGeometry(1)->GetOrigin() == geo3->GetOrigin(), "Testing Origin set"); cloneBaseData = baseDataImpl->Clone(); MITK_TEST_CONDITION(cloneBaseData->GetGeometry(1)->GetOrigin() == geo3->GetOrigin(), "Testing origin set in clone!"); MITK_TEST_CONDITION(!baseDataImpl->IsEmptyTimeStep(1), "Is not empty before clear()!"); baseDataImpl->Clear(); MITK_TEST_CONDITION(baseDataImpl->IsEmptyTimeStep(1), "...but afterwards!"); //test method Set-/GetProperty() baseDataImpl->SetProperty("property38", mitk::StringProperty::New("testproperty")); //baseDataImpl->SetProperty("visibility", mitk::BoolProperty::New()); MITK_TEST_CONDITION(baseDataImpl->GetProperty("property38")->GetValueAsString() == "testproperty","Check if base property is set correctly!"); cloneBaseData = baseDataImpl->Clone(); MITK_TEST_CONDITION(cloneBaseData->GetProperty("property38")->GetValueAsString() == "testproperty", "Testing origin set in clone!"); //test method Set-/GetPropertyList mitk::PropertyList::Pointer propertyList = mitk::PropertyList::New(); propertyList->SetFloatProperty("floatProperty1", 123.45); propertyList->SetBoolProperty("visibility",true); propertyList->SetStringProperty("nameXY","propertyName"); baseDataImpl->SetPropertyList(propertyList); bool value = false; MITK_TEST_CONDITION(baseDataImpl->GetPropertyList() == propertyList, "Check if base property list is set correctly!"); MITK_TEST_CONDITION(baseDataImpl->GetPropertyList()->GetBoolProperty("visibility", value) == true, "Check if base property is set correctly in the property list!"); //test method UpdateOutputInformation() baseDataImpl->UpdateOutputInformation(); MITK_TEST_CONDITION(baseDataImpl->GetUpdatedTimeGeometry() == geo2, "TimeSlicedGeometry update!"); //Test method CopyInformation() mitk::BaseDataTestImplementation::Pointer newBaseData = mitk::BaseDataTestImplementation::New(); newBaseData->CopyInformation(baseDataImpl); MITK_TEST_CONDITION_REQUIRED( newBaseData->GetTimeGeometry()->GetNumberOfTimeSteps() == 5, "Check copying of of Basedata Data Object!"); MITK_TEST_END() } diff --git a/Modules/MitkExt/DataManagement/mitkUnstructuredGrid.cpp b/Modules/MitkExt/DataManagement/mitkUnstructuredGrid.cpp index 3e1ec39945..53b415c29c 100644 --- a/Modules/MitkExt/DataManagement/mitkUnstructuredGrid.cpp +++ b/Modules/MitkExt/DataManagement/mitkUnstructuredGrid.cpp @@ -1,250 +1,250 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkUnstructuredGrid.h" #include #include void mitk::UnstructuredGrid::SetVtkUnstructuredGrid( vtkUnstructuredGrid* grid, unsigned int t ) { this->Expand(t); if(m_GridSeries[ t ] != NULL) { m_GridSeries[ t ]->Delete(); } m_GridSeries[ t ] = grid; // call m_VtkPolyData->Register(NULL) to tell the reference counting that we // want to keep a reference on the object if (m_GridSeries[t] != 0) m_GridSeries[t]->Register(grid); this->Modified(); m_CalculateBoundingBox = true; } void mitk::UnstructuredGrid::Expand(unsigned int timeSteps) { // check if the vector is long enough to contain the new element // at the given position. If not, expand it with sufficient zero-filled elements. if(timeSteps > m_GridSeries.size()) { Superclass::Expand(timeSteps); vtkUnstructuredGrid* pdnull = 0; m_GridSeries.resize( timeSteps, pdnull ); m_CalculateBoundingBox = true; } } void mitk::UnstructuredGrid::ClearData() { for ( VTKUnstructuredGridSeries::iterator it = m_GridSeries.begin(); it != m_GridSeries.end(); ++it ) { if ( ( *it ) != 0 ) ( *it )->Delete(); } m_GridSeries.clear(); Superclass::ClearData(); } void mitk::UnstructuredGrid::InitializeEmpty() { vtkUnstructuredGrid* pdnull = 0; m_GridSeries.resize( 1, pdnull ); - Superclass::InitializeTimeSlicedGeometry(1); + Superclass::InitializeTimeGeometry(1); m_Initialized = true; } vtkUnstructuredGrid* mitk::UnstructuredGrid::GetVtkUnstructuredGrid(unsigned int t) { if ( t < m_GridSeries.size() ) { vtkUnstructuredGrid* grid = m_GridSeries[ t ]; if((grid == 0) && (GetSource().GetPointer() != 0)) { RegionType requestedregion; requestedregion.SetIndex(3, t); requestedregion.SetSize(3, 1); SetRequestedRegion(&requestedregion); GetSource()->Update(); } grid = m_GridSeries[ t ]; return grid; } else return 0; } mitk::UnstructuredGrid::UnstructuredGrid() : m_CalculateBoundingBox( false ) { this->InitializeEmpty(); } mitk::UnstructuredGrid::UnstructuredGrid(const mitk::UnstructuredGrid &other) : BaseData(other), m_CalculateBoundingBox( other.m_CalculateBoundingBox ), m_LargestPossibleRegion(other.m_LargestPossibleRegion) { if(!other.m_Initialized) { this->InitializeEmpty(); } else { m_GridSeries = other.m_GridSeries; m_Initialized = other.m_Initialized; } this->SetRequestedRegion( const_cast(&other) ); } mitk::UnstructuredGrid::~UnstructuredGrid() { this->ClearData(); } void mitk::UnstructuredGrid::UpdateOutputInformation() { if ( this->GetSource() ) { this->GetSource()->UpdateOutputInformation(); } if ( ( m_CalculateBoundingBox ) && ( m_GridSeries.size() > 0 ) ) CalculateBoundingBox(); else GetTimeGeometry()->Update(); } void mitk::UnstructuredGrid::CalculateBoundingBox() { // // first make sure, that the associated time sliced geometry has // the same number of geometry 3d's as vtkUnstructuredGrids are present // TimeGeometry* timeGeometry = GetTimeGeometry(); if ( timeGeometry->GetNumberOfTimeSteps() != m_GridSeries.size() ) { itkExceptionMacro(<<"timeGeometry->GetNumberOfTimeSteps() != m_GridSeries.size() -- use Initialize(timeSteps) with correct number of timeSteps!"); } // // Iterate over the vtkUnstructuredGrids and update the Geometry // information of each of the items. // for ( unsigned int i = 0 ; i < m_GridSeries.size() ; ++i ) { vtkUnstructuredGrid* grid = m_GridSeries[ i ]; vtkFloatingPointType bounds[ ] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; if ( ( grid != 0 ) && ( grid->GetNumberOfCells() > 0 ) ) { grid->Update(); grid->ComputeBounds(); grid->GetBounds( bounds ); } mitk::Geometry3D::Pointer g3d = timeGeometry->GetGeometryForTimeStep( i ); assert( g3d.IsNotNull() ); g3d->SetFloatBounds( bounds ); } timeGeometry->Update(); mitk::BoundingBox::Pointer bb = const_cast( timeGeometry->GetBoundingBoxInWorld() ); itkDebugMacro( << "boundingbox min: "<< bb->GetMinimum()); itkDebugMacro( << "boundingbox max: "<< bb->GetMaximum()); m_CalculateBoundingBox = false; } void mitk::UnstructuredGrid::SetRequestedRegionToLargestPossibleRegion() { m_RequestedRegion = GetLargestPossibleRegion(); } bool mitk::UnstructuredGrid::RequestedRegionIsOutsideOfTheBufferedRegion() { RegionType::IndexValueType end = m_RequestedRegion.GetIndex(3)+m_RequestedRegion.GetSize(3); if(((RegionType::IndexValueType)m_GridSeries.size()) < end) return true; for( RegionType::IndexValueType t=m_RequestedRegion.GetIndex(3); t < end; ++t ) if(m_GridSeries[t] == 0) return true; return false; } bool mitk::UnstructuredGrid::VerifyRequestedRegion() { if( (m_RequestedRegion.GetIndex(3)>=0) && (m_RequestedRegion.GetIndex(3)+m_RequestedRegion.GetSize(3)<=m_GridSeries.size()) ) return true; return false; } void mitk::UnstructuredGrid::SetRequestedRegion( itk::DataObject *data ) { mitk::UnstructuredGrid *gridData; gridData = dynamic_cast(data); if (gridData) { m_RequestedRegion = gridData->GetRequestedRegion(); } else { // pointer could not be cast back down itkExceptionMacro( << "mitk::UnstructuredGrid::SetRequestedRegion(DataObject*) cannot cast " << typeid(data).name() << " to " << typeid(UnstructuredGrid*).name() ); } } void mitk::UnstructuredGrid::SetRequestedRegion(UnstructuredGrid::RegionType *region) //by arin { if(region != 0) { m_RequestedRegion = *region; } else { // pointer could not be cast back down itkExceptionMacro( << "mitk::UnstructuredGrid::SetRequestedRegion(UnstructuredGrid::RegionType*) cannot cast " << typeid(region).name() << " to " << typeid(UnstructuredGrid*).name() ); } } void mitk::UnstructuredGrid::CopyInformation( const itk::DataObject * data ) { Superclass::CopyInformation(data); } void mitk::UnstructuredGrid::Update() { if ( GetSource().IsNull() ) { for ( VTKUnstructuredGridSeries::iterator it = m_GridSeries.begin() ; it != m_GridSeries.end() ; ++it ) { if ( ( *it ) != 0 ) ( *it )->Update(); } } Superclass::Update(); } diff --git a/Modules/Segmentation/DataManagement/mitkContour.cpp b/Modules/Segmentation/DataManagement/mitkContour.cpp index a05f536e4b..b26104ee9b 100644 --- a/Modules/Segmentation/DataManagement/mitkContour.cpp +++ b/Modules/Segmentation/DataManagement/mitkContour.cpp @@ -1,165 +1,165 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkContour.h" #include mitk::Contour::Contour() : m_ContourPath (PathType::New()), m_CurrentWindow ( NULL ), m_BoundingBox (BoundingBoxType::New()), m_Vertices ( BoundingBoxType::PointsContainer::New() ), m_Closed ( true ), m_Selected ( false ), m_Width (3.0) { - Superclass::InitializeTimeSlicedGeometry(); + Superclass::InitializeTimeGeometry(); } mitk::Contour::Contour( const Contour & other ): BaseData(other), m_ContourPath(other.m_ContourPath), m_CurrentWindow(other.m_CurrentWindow), m_BoundingBox(other.m_BoundingBox), m_Vertices(other.m_Vertices), m_Closed(other.m_Closed), m_Selected(other.m_Selected), m_Width(other.m_Width) { } mitk::Contour::~Contour() { } void mitk::Contour::AddVertex(mitk::Point3D newPoint) { BoundingBoxType::PointType p; p.CastFrom(newPoint); m_Vertices->InsertElement(m_Vertices->Size(), p); ContinuousIndexType idx; idx.CastFrom(newPoint); m_ContourPath->AddVertex(idx); m_BoundingBox->SetPoints(m_Vertices); Modified(); } void mitk::Contour::UpdateOutputInformation() { // \todo probably we should do this additionally for each time-step float mitkBounds[6]; if (m_Vertices->Size() == 0) { mitkBounds[0] = 0.0; mitkBounds[1] = 0.0; mitkBounds[2] = 0.0; mitkBounds[3] = 0.0; mitkBounds[4] = 0.0; mitkBounds[5] = 0.0; } else { m_BoundingBox->ComputeBoundingBox(); BoundingBoxType::BoundsArrayType tmp = m_BoundingBox->GetBounds(); mitkBounds[0] = tmp[0]; mitkBounds[1] = tmp[1]; mitkBounds[2] = tmp[2]; mitkBounds[3] = tmp[3]; mitkBounds[4] = tmp[4]; mitkBounds[5] = tmp[5]; } Geometry3D* geometry3d = GetGeometry(0); geometry3d->SetBounds(mitkBounds); GetTimeGeometry()->Update(); } void mitk::Contour::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::Contour::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::Contour::VerifyRequestedRegion() { return true; } void mitk::Contour::SetRequestedRegion(itk::DataObject*) { } mitk::Contour::PathType::Pointer mitk::Contour::GetContourPath() const { return m_ContourPath; } void mitk::Contour::SetCurrentWindow(vtkRenderWindow* rw) { m_CurrentWindow = rw; } vtkRenderWindow* mitk::Contour::GetCurrentWindow() const { return m_CurrentWindow; } void mitk::Contour::Initialize() { m_ContourPath = PathType::New(); m_ContourPath->Initialize(); m_BoundingBox = BoundingBoxType::New(); m_Vertices = BoundingBoxType::PointsContainer::New(); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(1); SetTimeGeometry(timeGeometry); } unsigned int mitk::Contour::GetNumberOfPoints() const { return m_Vertices->Size(); } mitk::Contour::PointsContainerPointer mitk::Contour::GetPoints() const { return m_Vertices; } void mitk::Contour::SetPoints(mitk::Contour::PointsContainerPointer points) { m_Vertices = points; Modified(); } void mitk::Contour::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); os << indent << "Number of verticies: " << GetNumberOfPoints() << std::endl; mitk::Contour::PointsContainerIterator pointsIt = m_Vertices->Begin(), end = m_Vertices->End(); os << indent << "Verticies: " << std::endl; int i = 0; while ( pointsIt != end ) { os << indent << indent << i << ": " << pointsIt.Value() << std::endl; ++pointsIt; ++i; } } diff --git a/Modules/Segmentation/DataManagement/mitkContourModel.cpp b/Modules/Segmentation/DataManagement/mitkContourModel.cpp index aea9c45b70..a36ce32ef7 100644 --- a/Modules/Segmentation/DataManagement/mitkContourModel.cpp +++ b/Modules/Segmentation/DataManagement/mitkContourModel.cpp @@ -1,552 +1,552 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include mitk::ContourModel::ContourModel() { //set to initial state this->InitializeEmpty(); } mitk::ContourModel::ContourModel(const mitk::ContourModel &other) : m_ContourSeries(other.m_ContourSeries), m_lineInterpolation(other.m_lineInterpolation) { m_SelectedVertex = NULL; } mitk::ContourModel::~ContourModel() { m_SelectedVertex = NULL; this->m_ContourSeries.clear();//TODO check destruction } void mitk::ContourModel::AddVertex(mitk::Point3D &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep) ) { this->AddVertex(vertex, false, timestep); } } void mitk::ContourModel::AddVertex(mitk::Point3D &vertex, bool isControlPoint, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertex(vertex, isControlPoint); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified(); } } void mitk::ContourModel::AddVertex(VertexType &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertex(vertex); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified(); } } void mitk::ContourModel::AddVertexAtFront(mitk::Point3D &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep) ) { this->AddVertexAtFront(vertex, false, timestep); } } void mitk::ContourModel::AddVertexAtFront(mitk::Point3D &vertex, bool isControlPoint, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertexAtFront(vertex, isControlPoint); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified(); } } void mitk::ContourModel::AddVertexAtFront(VertexType &vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->AddVertexAtFront(vertex); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified(); } } void mitk::ContourModel::InsertVertexAtIndex(mitk::Point3D &vertex, int index, bool isControlPoint, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(index > 0 && this->m_ContourSeries[timestep]->GetSize() > index) { this->m_ContourSeries[timestep]->InsertVertexAtIndex(vertex, isControlPoint, index); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified(); } } } int mitk::ContourModel::GetNumberOfVertices( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->GetSize(); } return -1; } const mitk::ContourModel::VertexType* mitk::ContourModel::GetVertexAt(int index, int timestep) const { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->GetVertexAt(index); } return NULL; } void mitk::ContourModel::Close( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->Close(); this->InvokeEvent( ContourModelClosedEvent() ); this->Modified(); } } void mitk::ContourModel::Open( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->Open(); this->InvokeEvent( ContourModelClosedEvent() ); this->Modified(); } } void mitk::ContourModel::SetIsClosed(bool isClosed, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_ContourSeries[timestep]->SetIsClosed(isClosed); this->InvokeEvent( ContourModelClosedEvent() ); this->Modified(); } } bool mitk::ContourModel::IsEmptyTimeStep( int t) const { return (t < 0) || (this->m_ContourSeries.size() <= t); } void mitk::ContourModel::Concatenate(mitk::ContourModel* other, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if( !this->m_ContourSeries[timestep]->IsClosed() ) { this->m_ContourSeries[timestep]->Concatenate(other->m_ContourSeries[timestep]); this->InvokeEvent( ContourModelSizeChangeEvent() ); this->Modified(); } } } mitk::ContourModel::VertexIterator mitk::ContourModel::IteratorBegin( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IteratorBegin(); } else { mitkThrow() << "No iterator at invalid timestep " << timestep << ". There are only " << this->GetTimeSteps() << " timesteps available."; } } mitk::ContourModel::VertexIterator mitk::ContourModel::IteratorEnd( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IteratorEnd(); } else { mitkThrow() << "No iterator at invalid timestep " << timestep << ". There are only " << this->GetTimeSteps() << " timesteps available."; } } bool mitk::ContourModel::IsClosed( int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return this->m_ContourSeries[timestep]->IsClosed(); } return false; } bool mitk::ContourModel::SelectVertexAt(int index, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { return (this->m_SelectedVertex = this->m_ContourSeries[timestep]->GetVertexAt(index)); } return false; } bool mitk::ContourModel::SelectVertexAt(mitk::Point3D &point, float eps, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { this->m_SelectedVertex = this->m_ContourSeries[timestep]->GetVertexAt(point, eps); } return this->m_SelectedVertex != NULL; } bool mitk::ContourModel::RemoveVertex(VertexType* vertex, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(this->m_ContourSeries[timestep]->RemoveVertex(vertex)) { this->Modified(); this->InvokeEvent( ContourModelSizeChangeEvent() ); return true; } } return false; } bool mitk::ContourModel::RemoveVertexAt(int index, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(this->m_ContourSeries[timestep]->RemoveVertexAt(index)) { this->Modified(); this->InvokeEvent( ContourModelSizeChangeEvent() ); return true; } } return false; } bool mitk::ContourModel::RemoveVertexAt(mitk::Point3D &point, float eps, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { if(this->m_ContourSeries[timestep]->RemoveVertexAt(point, eps)) { this->Modified(); this->InvokeEvent( ContourModelSizeChangeEvent() ); return true; } } return false; } void mitk::ContourModel::ShiftSelectedVertex(mitk::Vector3D &translate) { if(this->m_SelectedVertex) { this->ShiftVertex(this->m_SelectedVertex,translate); this->Modified(); } } void mitk::ContourModel::ShiftContour(mitk::Vector3D &translate, int timestep) { if(!this->IsEmptyTimeStep(timestep)) { VertexListType* vList = this->m_ContourSeries[timestep]->GetVertexList(); VertexIterator it = vList->begin(); VertexIterator end = vList->end(); //shift all vertices while(it != end) { this->ShiftVertex((*it),translate); it++; } this->Modified(); this->InvokeEvent( ContourModelShiftEvent() ); } } void mitk::ContourModel::ShiftVertex(VertexType* vertex, mitk::Vector3D &vector) { vertex->Coordinates[0] += vector[0]; vertex->Coordinates[1] += vector[1]; vertex->Coordinates[2] += vector[2]; } void mitk::ContourModel::Clear(int timestep) { if(!this->IsEmptyTimeStep(timestep)) { //clear data at timestep this->m_ContourSeries[timestep]->Clear(); this->InitializeEmpty(); this->Modified(); } } void mitk::ContourModel::Expand( int timeSteps ) { int oldSize = this->m_ContourSeries.size(); if( timeSteps > 0 && timeSteps > oldSize ) { Superclass::Expand(timeSteps); //insert contours for each new timestep for( int i = oldSize; i < timeSteps; i++) { m_ContourSeries.push_back(mitk::ContourElement::New()); } this->InvokeEvent( ContourModelExpandTimeBoundsEvent() ); } } void mitk::ContourModel::SetRequestedRegionToLargestPossibleRegion () { //no support for regions } bool mitk::ContourModel::RequestedRegionIsOutsideOfTheBufferedRegion () { //no support for regions return false; } bool mitk::ContourModel::VerifyRequestedRegion () { //no support for regions return true; } const mitk::Geometry3D * mitk::ContourModel::GetUpdatedGeometry (int t) { return Superclass::GetUpdatedGeometry(t); } mitk::Geometry3D* mitk::ContourModel::GetGeometry (int t)const { return Superclass::GetGeometry(t); } void mitk::ContourModel::SetRequestedRegion (itk::DataObject *data) { //no support for regions } void mitk::ContourModel::Clear() { //clear data and set to initial state again this->ClearData(); this->InitializeEmpty(); this->Modified(); } void mitk::ContourModel::ClearData() { //call the superclass, this releases the data of BaseData Superclass::ClearData(); //clear out the time resolved contours this->m_ContourSeries.clear(); } void mitk::ContourModel::InitializeEmpty() { //clear data at timesteps this->m_ContourSeries.resize(0); this->m_ContourSeries.push_back(mitk::ContourElement::New()); //set number of timesteps to one - this->InitializeTimeSlicedGeometry(1); + this->InitializeTimeGeometry(1); m_SelectedVertex = NULL; this->m_lineInterpolation = ContourModel::LINEAR; } void mitk::ContourModel::UpdateOutputInformation() { if ( this->GetSource() ) { this->GetSource()->UpdateOutputInformation(); } //update the bounds of the geometry according to the stored vertices float mitkBounds[6]; //calculate the boundingbox at each timestep typedef itk::BoundingBox BoundingBoxType; typedef BoundingBoxType::PointsContainer PointsContainer; int timesteps = this->GetTimeSteps(); //iterate over the timesteps for(int currenTimeStep = 0; currenTimeStep < timesteps; currenTimeStep++) { if( dynamic_cast< mitk::PlaneGeometry* >(this->GetGeometry(currenTimeStep)) ) { //do not update bounds for 2D geometries, as they are unfortunately defined with min bounds 0! return; } else {//we have a 3D geometry -> let's update bounds //only update bounds if the contour was modified if (this->GetMTime() > this->GetGeometry(currenTimeStep)->GetBoundingBox()->GetMTime()) { mitkBounds[0] = 0.0; mitkBounds[1] = 0.0; mitkBounds[2] = 0.0; mitkBounds[3] = 0.0; mitkBounds[4] = 0.0; mitkBounds[5] = 0.0; BoundingBoxType::Pointer boundingBox = BoundingBoxType::New(); PointsContainer::Pointer points = PointsContainer::New(); VertexIterator it = this->IteratorBegin(currenTimeStep); VertexIterator end = this->IteratorEnd(currenTimeStep); //fill the boundingbox with the points while(it != end) { Point3D currentP = (*it)->Coordinates; BoundingBoxType::PointType p; p.CastFrom(currentP); points->InsertElement(points->Size(), p); it++; } //construct the new boundingBox boundingBox->SetPoints(points); boundingBox->ComputeBoundingBox(); BoundingBoxType::BoundsArrayType tmp = boundingBox->GetBounds(); mitkBounds[0] = tmp[0]; mitkBounds[1] = tmp[1]; mitkBounds[2] = tmp[2]; mitkBounds[3] = tmp[3]; mitkBounds[4] = tmp[4]; mitkBounds[5] = tmp[5]; //set boundingBox at current timestep Geometry3D* geometry3d = this->GetGeometry(currenTimeStep); geometry3d->SetBounds(mitkBounds); } } } GetTimeGeometry()->Update(); } void mitk::ContourModel::ExecuteOperation(mitk::Operation* operation) { //not supported yet }