diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp index 6bb21e6a39..1fc734192a 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp @@ -1,2010 +1,2016 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageStatisticsCalculator.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkExtractImageFilter.h" #include "mitkImageTimeSelector.h" #include "mitkITKImageImport.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace mitk { ImageStatisticsCalculator::ImageStatisticsCalculator() : m_MaskingMode( MASKING_MODE_NONE ), m_MaskingModeChanged( false ), m_IgnorePixelValue(0.0), m_DoIgnorePixelValue(false), m_IgnorePixelValueChanged(false), m_PlanarFigureAxis (0), m_PlanarFigureSlice (0), m_PlanarFigureCoordinate0 (0), m_PlanarFigureCoordinate1 (0), m_HistogramBinSize(1), m_UseDefaultBinSize(true), m_HotspotRadiusInMM(6.2035049089940), // radius of a 1cm3 sphere in mm m_CalculateHotspot(false), m_HotspotRadiusInMMChanged(false), m_HotspotMustBeCompletelyInsideImage(true) { m_EmptyHistogram = HistogramType::New(); m_EmptyHistogram->SetMeasurementVectorSize(1); HistogramType::SizeType histogramSize(1); histogramSize.Fill( 256 ); m_EmptyHistogram->Initialize( histogramSize ); m_EmptyStatistics.Reset(); } ImageStatisticsCalculator::~ImageStatisticsCalculator() { } void ImageStatisticsCalculator::SetUseDefaultBinSize(bool useDefault) { m_UseDefaultBinSize = useDefault; } ImageStatisticsCalculator::Statistics::Statistics(bool withHotspotStatistics) :m_HotspotStatistics(withHotspotStatistics ? new Statistics(false) : NULL) { Reset(); } ImageStatisticsCalculator::Statistics::Statistics(const Statistics& other) :m_HotspotStatistics( NULL) { this->SetLabel( other.GetLabel() ); this->SetN( other.GetN() ); this->SetMin( other.GetMin() ); this->SetMax( other.GetMax() ); this->SetMedian( other.GetMedian() ); this->SetMean( other.GetMean() ); this->SetVariance( other.GetVariance() ); this->SetSigma( other.GetSigma() ); this->SetRMS( other.GetRMS() ); this->SetMaxIndex( other.GetMaxIndex() ); this->SetMinIndex( other.GetMinIndex() ); this->SetHotspotIndex( other.GetHotspotIndex() ); if (other.m_HotspotStatistics) { this->m_HotspotStatistics = new Statistics(false); *this->m_HotspotStatistics = *other.m_HotspotStatistics; } } bool ImageStatisticsCalculator::Statistics::HasHotspotStatistics() const { return m_HotspotStatistics != NULL; } void ImageStatisticsCalculator::Statistics::SetHasHotspotStatistics(bool hasHotspotStatistics) { m_HasHotspotStatistics = hasHotspotStatistics; } ImageStatisticsCalculator::Statistics::~Statistics() { delete m_HotspotStatistics; } double ImageStatisticsCalculator::Statistics::GetVariance() const { return this->Variance; } void ImageStatisticsCalculator::Statistics::SetVariance( const double value ) { if( this->Variance != value ) { if( value < 0.0 ) { this->Variance = 0.0; // if given value is negative set variance to 0.0 } else { this->Variance = value; } } } double ImageStatisticsCalculator::Statistics::GetSigma() const { return this->Sigma; } void ImageStatisticsCalculator::Statistics::SetSigma( const double value ) { if( this->Sigma != value ) { // for some compiler the value != value works to check for NaN but not for all // but we can always be sure that the standard deviation is a positive value if( value != value || value < 0.0 ) { // if standard deviation is NaN we just assume 0.0 this->Sigma = 0.0; } else { this->Sigma = value; } } } void ImageStatisticsCalculator::Statistics::Reset(unsigned int dimension) { SetLabel(0); SetN( 0 ); SetMin( 0.0 ); SetMax( 0.0 ); SetMedian( 0.0 ); SetVariance( 0.0 ); SetMean( 0.0 ); SetSigma( 0.0 ); SetRMS( 0.0 ); vnl_vector zero; zero.set_size(dimension); for(unsigned int i = 0; i < dimension; ++i) { zero[i] = 0; } SetMaxIndex(zero); SetMinIndex(zero); SetHotspotIndex(zero); if (m_HotspotStatistics != NULL) { m_HotspotStatistics->Reset(dimension); } } const ImageStatisticsCalculator::Statistics& ImageStatisticsCalculator::Statistics::GetHotspotStatistics() const { if (m_HotspotStatistics) { return *m_HotspotStatistics; } else { throw std::logic_error("Object has no hostspot statistics, see HasHotspotStatistics()"); } } ImageStatisticsCalculator::Statistics& ImageStatisticsCalculator::Statistics::GetHotspotStatistics() { if (m_HotspotStatistics) { return *m_HotspotStatistics; } else { throw std::logic_error("Object has no hostspot statistics, see HasHotspotStatistics()"); } } ImageStatisticsCalculator::Statistics& ImageStatisticsCalculator::Statistics::operator=(ImageStatisticsCalculator::Statistics const& other) { if (this == &other) return *this; this->SetLabel( other.GetLabel() ); this->SetN( other.GetN() ); this->SetMin( other.GetMin() ); this->SetMax( other.GetMax() ); this->SetMean( other.GetMean() ); this->SetMedian( other.GetMedian() ); this->SetVariance( other.GetVariance() ); this->SetSigma( other.GetSigma() ); this->SetRMS( other.GetRMS() ); this->SetMinIndex( other.GetMinIndex() ); this->SetMaxIndex( other.GetMaxIndex() ); this->SetHotspotIndex( other.GetHotspotIndex() ); delete this->m_HotspotStatistics; this->m_HotspotStatistics = NULL; if (other.m_HotspotStatistics) { this->m_HotspotStatistics = new Statistics(false); *this->m_HotspotStatistics = *other.m_HotspotStatistics; } return *this; } void ImageStatisticsCalculator::SetImage( const mitk::Image *image ) { if ( m_Image != image ) { m_Image = image; this->Modified(); unsigned int numberOfTimeSteps = image->GetTimeSteps(); // Initialize vectors to time-size of this image m_ImageHistogramVector.resize( numberOfTimeSteps ); m_MaskedImageHistogramVector.resize( numberOfTimeSteps ); m_PlanarFigureHistogramVector.resize( numberOfTimeSteps ); m_ImageStatisticsVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsVector.resize( numberOfTimeSteps ); m_ImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_ImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); for ( unsigned int t = 0; t < image->GetTimeSteps(); ++t ) { m_ImageStatisticsTimeStampVector[t].Modified(); m_ImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetImageMask( const mitk::Image *imageMask ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_ImageMask != imageMask ) { m_ImageMask = imageMask; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_MaskedImageStatisticsTimeStampVector[t].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetPlanarFigure( mitk::PlanarFigure *planarFigure ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_PlanarFigure != planarFigure ) { m_PlanarFigure = planarFigure; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_PlanarFigureStatisticsTimeStampVector[t].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetMaskingMode( unsigned int mode ) { if ( m_MaskingMode != mode ) { m_MaskingMode = mode; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToNone() { if ( m_MaskingMode != MASKING_MODE_NONE ) { m_MaskingMode = MASKING_MODE_NONE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToImage() { if ( m_MaskingMode != MASKING_MODE_IMAGE ) { m_MaskingMode = MASKING_MODE_IMAGE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToPlanarFigure() { if ( m_MaskingMode != MASKING_MODE_PLANARFIGURE ) { m_MaskingMode = MASKING_MODE_PLANARFIGURE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetIgnorePixelValue(double value) { if ( m_IgnorePixelValue != value ) { m_IgnorePixelValue = value; if(m_DoIgnorePixelValue) { m_IgnorePixelValueChanged = true; } this->Modified(); } } double ImageStatisticsCalculator::GetIgnorePixelValue() { return m_IgnorePixelValue; } void ImageStatisticsCalculator::SetDoIgnorePixelValue(bool value) { if ( m_DoIgnorePixelValue != value ) { m_DoIgnorePixelValue = value; m_IgnorePixelValueChanged = true; this->Modified(); } } bool ImageStatisticsCalculator::GetDoIgnorePixelValue() { return m_DoIgnorePixelValue; } void ImageStatisticsCalculator::SetHistogramBinSize(unsigned int size) { this->m_HistogramBinSize = size; } unsigned int ImageStatisticsCalculator::GetHistogramBinSize() { return this->m_HistogramBinSize; } void ImageStatisticsCalculator::SetHotspotRadiusInMM(double value) { if ( m_HotspotRadiusInMM != value ) { m_HotspotRadiusInMM = value; if(m_CalculateHotspot) { m_HotspotRadiusInMMChanged = true; //MITK_INFO <<"Hotspot radius changed, new convolution required"; } this->Modified(); } } double ImageStatisticsCalculator::GetHotspotRadiusInMM() { return m_HotspotRadiusInMM; } void ImageStatisticsCalculator::SetCalculateHotspot(bool on) { if ( m_CalculateHotspot != on ) { m_CalculateHotspot = on; m_HotspotRadiusInMMChanged = true; //MITK_INFO <<"Hotspot calculation changed, new convolution required"; this->Modified(); } } bool ImageStatisticsCalculator::IsHotspotCalculated() { return m_CalculateHotspot; } void ImageStatisticsCalculator::SetHotspotMustBeCompletlyInsideImage(bool hotspotMustBeCompletelyInsideImage, bool warn) { m_HotspotMustBeCompletelyInsideImage = hotspotMustBeCompletelyInsideImage; if (!m_HotspotMustBeCompletelyInsideImage && warn) { MITK_WARN << "Hotspot calculation will extrapolate pixels at image borders. Be aware of the consequences for the hotspot location."; } } bool ImageStatisticsCalculator::GetHotspotMustBeCompletlyInsideImage() const { return m_HotspotMustBeCompletelyInsideImage; } bool ImageStatisticsCalculator::ComputeStatistics( unsigned int timeStep ) { if (m_Image.IsNull() ) { mitkThrow() << "Image not set!"; } if (!m_Image->IsInitialized()) { mitkThrow() << "Image not initialized!"; } if ( m_Image->GetReferenceCount() == 1 ) { // Image no longer valid; we are the only ones to still hold a reference on it return false; } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } // If a mask was set but we are the only ones to still hold a reference on // it, delete it. if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() == 1) ) { m_ImageMask = NULL; } // Check if statistics is already up-to-date unsigned long imageMTime = m_ImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long maskedImageMTime = m_MaskedImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long planarFigureMTime = m_PlanarFigureStatisticsTimeStampVector[timeStep].GetMTime(); bool imageStatisticsCalculationTrigger = m_ImageStatisticsCalculationTriggerVector[timeStep]; bool maskedImageStatisticsCalculationTrigger = m_MaskedImageStatisticsCalculationTriggerVector[timeStep]; bool planarFigureStatisticsCalculationTrigger = m_PlanarFigureStatisticsCalculationTriggerVector[timeStep]; if ( !m_IgnorePixelValueChanged && !m_HotspotRadiusInMMChanged && ((m_MaskingMode != MASKING_MODE_NONE) || (imageMTime > m_Image->GetMTime() && !imageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_IMAGE) || (maskedImageMTime > m_ImageMask->GetMTime() && !maskedImageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_PLANARFIGURE) || (planarFigureMTime > m_PlanarFigure->GetMTime() && !planarFigureStatisticsCalculationTrigger)) ) { // Statistics is up to date! if ( m_MaskingModeChanged ) { m_MaskingModeChanged = false; } else { return false; } } // Reset state changed flag m_MaskingModeChanged = false; m_IgnorePixelValueChanged = false; // Depending on masking mode, extract and/or generate the required image // and mask data from the user input this->ExtractImageAndMask( timeStep ); StatisticsContainer *statisticsContainer; HistogramContainer *histogramContainer; switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: if(!m_DoIgnorePixelValue) { statisticsContainer = &m_ImageStatisticsVector[timeStep]; histogramContainer = &m_ImageHistogramVector[timeStep]; m_ImageStatisticsTimeStampVector[timeStep].Modified(); m_ImageStatisticsCalculationTriggerVector[timeStep] = false; } else { statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; } break; case MASKING_MODE_IMAGE: statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; break; case MASKING_MODE_PLANARFIGURE: statisticsContainer = &m_PlanarFigureStatisticsVector[timeStep]; histogramContainer = &m_PlanarFigureHistogramVector[timeStep]; m_PlanarFigureStatisticsTimeStampVector[timeStep].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[timeStep] = false; break; } // Calculate statistics and histogram(s) if ( m_InternalImage->GetDimension() == 3 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 3, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 3, m_InternalImageMask3D.GetPointer(), statisticsContainer, histogramContainer ); } } else if ( m_InternalImage->GetDimension() == 2 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 2, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 2, m_InternalImageMask2D.GetPointer(), statisticsContainer, histogramContainer ); } } else { MITK_ERROR << "ImageStatistics: Image dimension not supported!"; } // Release unused image smart pointers to free memory m_InternalImage = mitk::Image::ConstPointer(); m_InternalImageMask3D = MaskImage3DType::Pointer(); m_InternalImageMask2D = MaskImage2DType::Pointer(); return true; } const ImageStatisticsCalculator::HistogramType * ImageStatisticsCalculator::GetHistogram( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return NULL; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep][label]; return m_ImageHistogramVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep][label]; } } const ImageStatisticsCalculator::HistogramContainer & ImageStatisticsCalculator::GetHistogramVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyHistogramContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep]; return m_ImageHistogramVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep]; } } const ImageStatisticsCalculator::Statistics & ImageStatisticsCalculator::GetStatistics( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatistics; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep][label]; return m_ImageStatisticsVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep][label]; } } const ImageStatisticsCalculator::StatisticsContainer & ImageStatisticsCalculator::GetStatisticsVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatisticsContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep]; return m_ImageStatisticsVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep]; } } void ImageStatisticsCalculator::ExtractImageAndMask( unsigned int timeStep ) { if ( m_Image.IsNull() ) { throw std::runtime_error( "Error: image empty!" ); } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput( m_Image ); imageTimeSelector->SetTimeNr( timeStep ); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceImage = imageTimeSelector->GetOutput(); switch ( m_MaskingMode ) { case MASKING_MODE_NONE: { m_InternalImage = timeSliceImage; m_InternalImageMask2D = NULL; m_InternalImageMask3D = NULL; if(m_DoIgnorePixelValue) { if( m_InternalImage->GetDimension() == 3 ) { if(itk::ImageIOBase::USHORT != timeSliceImage->GetPixelType().GetComponentType()) CastToItkImage( timeSliceImage, m_InternalImageMask3D ); else CastToItkImage( timeSliceImage->Clone(), m_InternalImageMask3D ); m_InternalImageMask3D->FillBuffer(1); } if( m_InternalImage->GetDimension() == 2 ) { if(itk::ImageIOBase::USHORT != timeSliceImage->GetPixelType().GetComponentType()) CastToItkImage( timeSliceImage, m_InternalImageMask2D ); else CastToItkImage( timeSliceImage->Clone(), m_InternalImageMask2D ); m_InternalImageMask2D->FillBuffer(1); } } break; } case MASKING_MODE_IMAGE: { if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() > 1) ) { if ( timeStep >= m_ImageMask->GetTimeSteps() ) { // Use the last mask time step in case the current time step is bigger than the total // number of mask time steps. // It makes more sense setting this to the last mask time step than to 0. // For instance if you have a mask with 2 time steps and an image with 5: // If time step 0 is selected, the mask will use time step 0. // If time step 1 is selected, the mask will use time step 1. // If time step 2+ is selected, the mask will use time step 1. // If you have a mask with only one time step instead, this will always default to 0. timeStep = m_ImageMask->GetTimeSteps() - 1; } ImageTimeSelector::Pointer maskedImageTimeSelector = ImageTimeSelector::New(); maskedImageTimeSelector->SetInput( m_ImageMask ); maskedImageTimeSelector->SetTimeNr( timeStep ); maskedImageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceMaskedImage = maskedImageTimeSelector->GetOutput(); m_InternalImage = timeSliceImage; CastToItkImage( timeSliceMaskedImage, m_InternalImageMask3D ); } else { throw std::runtime_error( "Error: image mask empty!" ); } break; } case MASKING_MODE_PLANARFIGURE: { m_InternalImageMask2D = NULL; if ( m_PlanarFigure.IsNull() ) { throw std::runtime_error( "Error: planar figure empty!" ); } if ( !m_PlanarFigure->IsClosed() ) { throw std::runtime_error( "Masking not possible for non-closed figures" ); } const BaseGeometry *imageGeometry = timeSliceImage->GetGeometry(); if ( imageGeometry == NULL ) { throw std::runtime_error( "Image geometry invalid!" ); } const PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); if ( planarFigurePlaneGeometry == NULL ) { throw std::runtime_error( "Planar-Figure not yet initialized!" ); } const PlaneGeometry *planarFigureGeometry = dynamic_cast< const PlaneGeometry * >( planarFigurePlaneGeometry ); if ( planarFigureGeometry == NULL ) { throw std::runtime_error( "Non-planar planar figures not supported!" ); } // Find principal direction of PlanarFigure in input image unsigned int axis; if ( !this->GetPrincipalAxis( imageGeometry, planarFigureGeometry->GetNormal(), axis ) ) { throw std::runtime_error( "Non-aligned planar figures not supported!" ); } m_PlanarFigureAxis = axis; // Find slice number corresponding to PlanarFigure in input image MaskImage3DType::IndexType index; imageGeometry->WorldToIndex( planarFigureGeometry->GetOrigin(), index ); unsigned int slice = index[axis]; m_PlanarFigureSlice = slice; // Extract slice with given position and direction from image unsigned int dimension = timeSliceImage->GetDimension(); if (dimension != 2) { ExtractImageFilter::Pointer imageExtractor = ExtractImageFilter::New(); imageExtractor->SetInput( timeSliceImage ); imageExtractor->SetSliceDimension( axis ); imageExtractor->SetSliceIndex( slice ); imageExtractor->Update(); m_InternalImage = imageExtractor->GetOutput(); } else { m_InternalImage = timeSliceImage; } // Compute mask from PlanarFigure AccessFixedDimensionByItk_1( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 2, axis ); } } if(m_DoIgnorePixelValue) { if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 3, m_InternalImageMask3D.GetPointer() ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 2, m_InternalImageMask2D.GetPointer() ); } } } bool ImageStatisticsCalculator::GetPrincipalAxis( const BaseGeometry *geometry, Vector3D vector, unsigned int &axis ) { vector.Normalize(); for ( unsigned int i = 0; i < 3; ++i ) { Vector3D axisVector = geometry->GetAxisVector( i ); axisVector.Normalize(); if ( fabs( fabs( axisVector * vector ) - 1.0) < mitk::eps ) { axis = i; return true; } } return false; } +unsigned int ImageStatisticsCalculator::calcNumberOfBins(mitk::ScalarType min, mitk::ScalarType max) +{ + return std::ceil( ( (max - min ) / m_HistogramBinSize) ); +} + + template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer *statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef typename ImageType::IndexType IndexType; typedef itk::Statistics::ScalarImageToHistogramGenerator< ImageType > HistogramGeneratorType; statisticsContainer->clear(); histogramContainer->clear(); // Progress listening... typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate ); // Issue 100 artificial progress events since ScalarIMageToHistogramGenerator // does not (yet?) support progress reporting this->InvokeEvent( itk::StartEvent() ); for ( unsigned int i = 0; i < 100; ++i ) { this->UnmaskedStatisticsProgressUpdate(); } // Calculate statistics (separate filter) typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( image ); unsigned long observerTag = statisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); statisticsFilter->Update(); statisticsFilter->RemoveObserver( observerTag ); this->InvokeEvent( itk::EndEvent() ); // Calculate minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( image ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); Statistics statistics; statistics.Reset(); statistics.SetLabel(1); statistics.SetN(image->GetBufferedRegion().GetNumberOfPixels()); statistics.SetMin(statisticsFilter->GetMinimum()); statistics.SetMax(statisticsFilter->GetMaximum()); statistics.SetMean(statisticsFilter->GetMean()); statistics.SetMedian(0.0); statistics.SetVariance(statisticsFilter->GetVariance()); statistics.SetSigma(statisticsFilter->GetSigma()); statistics.SetRMS(sqrt( statistics.GetMean() * statistics.GetMean() + statistics.GetSigma() * statistics.GetSigma() )); statistics.GetMinIndex().set_size(image->GetImageDimension()); statistics.GetMaxIndex().set_size(image->GetImageDimension()); vnl_vector tmpMaxIndex; vnl_vector tmpMinIndex; tmpMaxIndex.set_size(image->GetImageDimension() ); tmpMinIndex.set_size(image->GetImageDimension() ); for (unsigned int i=0; iGetIndexOfMaximum()[i]; tmpMinIndex[i] = minMaxFilter->GetIndexOfMinimum()[i]; } statistics.SetMinIndex(tmpMaxIndex); statistics.SetMinIndex(tmpMinIndex); if( IsHotspotCalculated() && VImageDimension == 3 ) { typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typename MaskImageType::Pointer nullMask; bool isHotspotDefined(false); Statistics hotspotStatistics = this->CalculateHotspotStatistics(image, nullMask.GetPointer(), m_HotspotRadiusInMM, isHotspotDefined, 0 ); if (isHotspotDefined) { statistics.SetHasHotspotStatistics(true); statistics.GetHotspotStatistics() = hotspotStatistics; } else { statistics.SetHasHotspotStatistics(false); } if(statistics.GetHotspotStatistics().HasHotspotStatistics() ) { MITK_DEBUG << "Hotspot statistics available"; statistics.SetHotspotIndex(hotspotStatistics.GetHotspotIndex()); } else { MITK_ERROR << "No hotspot statistics available!"; } } statisticsContainer->push_back( statistics ); // Calculate histogram unsigned int numberOfBins = 200; if (m_UseDefaultBinSize) m_HistogramBinSize = std::ceil( (statistics.GetMax() - statistics.GetMin() + 1)/numberOfBins ); else - numberOfBins = std::ceil( ( (statistics.GetMax() - statistics.GetMin() ) / m_HistogramBinSize) ); + numberOfBins = calcNumberOfBins(statistics.GetMin(), statistics.GetMax()); typename HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( image ); histogramGenerator->SetMarginalScale( 100 ); histogramGenerator->SetNumberOfBins( numberOfBins ); histogramGenerator->SetHistogramMin( statistics.GetMin() ); histogramGenerator->SetHistogramMax( statistics.GetMax() ); histogramGenerator->Compute(); histogramContainer->push_back( histogramGenerator->GetOutput() ); } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; itk::ImageRegionIterator itmask(maskImage, maskImage->GetLargestPossibleRegion()); itk::ImageRegionConstIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); while( !itmask.IsAtEnd() ) { if(m_IgnorePixelValue == itimage.Get()) { itmask.Set(0); } ++itmask; ++itimage; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef typename ImageType::PointType PointType; typedef typename ImageType::SpacingType SpacingType; typedef itk::LabelStatisticsImageFilter< ImageType, MaskImageType > LabelStatisticsFilterType; typedef itk::ChangeInformationImageFilter< MaskImageType > ChangeInformationFilterType; typedef itk::ExtractImageFilter< ImageType, ImageType > ExtractImageFilterType; statisticsContainer->clear(); histogramContainer->clear(); // Make sure that mask is set if ( maskImage == NULL ) { itkExceptionMacro( << "Mask image needs to be set!" ); } // Make sure that spacing of mask and image are the same SpacingType imageSpacing = image->GetSpacing(); SpacingType maskSpacing = maskImage->GetSpacing(); PointType zeroPoint; zeroPoint.Fill( 0.0 ); if ( (zeroPoint + imageSpacing).SquaredEuclideanDistanceTo( (zeroPoint + maskSpacing) ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same spacing as image! (Image spacing: " << imageSpacing << "; Mask spacing: " << maskSpacing << ")" ); } // Make sure that orientation of mask and image are the same typedef typename ImageType::DirectionType DirectionType; DirectionType imageDirection = image->GetDirection(); DirectionType maskDirection = maskImage->GetDirection(); for( int i = 0; i < imageDirection.ColumnDimensions; ++i ) { for( int j = 0; j < imageDirection.ColumnDimensions; ++j ) { double differenceDirection = imageDirection[i][j] - maskDirection[i][j]; if ( fabs( differenceDirection ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same direction as image! (Image direction: " << imageDirection << "; Mask direction: " << maskDirection << ")" ); } } } // Make sure that the voxels of mask and image are correctly "aligned", i.e., voxel boundaries are the same in both images PointType imageOrigin = image->GetOrigin(); PointType maskOrigin = maskImage->GetOrigin(); long offset[ImageType::ImageDimension]; typedef itk::ContinuousIndex ContinousIndexType; ContinousIndexType maskOriginContinousIndex, imageOriginContinousIndex; image->TransformPhysicalPointToContinuousIndex(maskOrigin, maskOriginContinousIndex); image->TransformPhysicalPointToContinuousIndex(imageOrigin, imageOriginContinousIndex); for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { double misalignment = maskOriginContinousIndex[i] - floor( maskOriginContinousIndex[i] + 0.5 ); if ( fabs( misalignment ) > mitk::eps ) { itkExceptionMacro( << "Pixels/voxels of mask and image are not sufficiently aligned! (Misalignment: " << misalignment << ")" ); } double indexCoordDistance = maskOriginContinousIndex[i] - imageOriginContinousIndex[i]; offset[i] = int( indexCoordDistance + image->GetBufferedRegion().GetIndex()[i] + 0.5 ); } // Adapt the origin and region (index/size) of the mask so that the origin of both are the same typename ChangeInformationFilterType::Pointer adaptMaskFilter; adaptMaskFilter = ChangeInformationFilterType::New(); adaptMaskFilter->ChangeOriginOn(); adaptMaskFilter->ChangeRegionOn(); adaptMaskFilter->SetInput( maskImage ); adaptMaskFilter->SetOutputOrigin( image->GetOrigin() ); adaptMaskFilter->SetOutputOffset( offset ); adaptMaskFilter->Update(); typename MaskImageType::Pointer adaptedMaskImage = adaptMaskFilter->GetOutput(); // Make sure that mask region is contained within image region if ( !image->GetLargestPossibleRegion().IsInside( adaptedMaskImage->GetLargestPossibleRegion() ) ) { itkExceptionMacro( << "Mask region needs to be inside of image region! (Image region: " << image->GetLargestPossibleRegion() << "; Mask region: " << adaptedMaskImage->GetLargestPossibleRegion() << ")" ); } // If mask region is smaller than image region, extract the sub-sampled region from the original image typename ImageType::SizeType imageSize = image->GetBufferedRegion().GetSize(); typename ImageType::SizeType maskSize = maskImage->GetBufferedRegion().GetSize(); bool maskSmallerImage = false; for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { if ( maskSize[i] < imageSize[i] ) { maskSmallerImage = true; } } typename ImageType::ConstPointer adaptedImage; if ( maskSmallerImage ) { typename ExtractImageFilterType::Pointer extractImageFilter = ExtractImageFilterType::New(); extractImageFilter->SetInput( image ); extractImageFilter->SetExtractionRegion( adaptedMaskImage->GetBufferedRegion() ); extractImageFilter->Update(); adaptedImage = extractImageFilter->GetOutput(); } else { adaptedImage = image; } // Initialize Filter typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( adaptedImage ); statisticsFilter->Update(); - int numberOfBins = std::floor( ( (statisticsFilter->GetMaximum() - statisticsFilter->GetMinimum() + 1) / m_HistogramBinSize) + 0.5 ); + int numberOfBins = calcNumberOfBins(statisticsFilter->GetMinimum(), statisticsFilter->GetMaximum()); typename LabelStatisticsFilterType::Pointer labelStatisticsFilter; labelStatisticsFilter = LabelStatisticsFilterType::New(); labelStatisticsFilter->SetInput( adaptedImage ); labelStatisticsFilter->SetLabelInput( adaptedMaskImage ); labelStatisticsFilter->UseHistogramsOn(); labelStatisticsFilter->SetHistogramParameters( numberOfBins, statisticsFilter->GetMinimum(), statisticsFilter->GetMaximum() ); // Add progress listening typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::MaskedStatisticsProgressUpdate ); unsigned long observerTag = labelStatisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); // Execute filter this->InvokeEvent( itk::StartEvent() ); // Make sure that only the mask region is considered (otherwise, if the mask region is smaller // than the image region, the Update() would result in an exception). labelStatisticsFilter->GetOutput()->SetRequestedRegion( adaptedMaskImage->GetLargestPossibleRegion() ); // Execute the filter labelStatisticsFilter->Update(); this->InvokeEvent( itk::EndEvent() ); labelStatisticsFilter->RemoveObserver( observerTag ); // Find all relevant labels of mask (other than 0) std::list< int > relevantLabels; bool maskNonEmpty = false; unsigned int i; for ( i = 1; i < 4096; ++i ) { if ( labelStatisticsFilter->HasLabel( i ) ) { relevantLabels.push_back( i ); maskNonEmpty = true; } } if ( maskNonEmpty ) { std::list< int >::iterator it; for ( it = relevantLabels.begin(), i = 0; it != relevantLabels.end(); ++it, ++i ) { Statistics statistics; // restore previous code histogramContainer->push_back( HistogramType::ConstPointer( labelStatisticsFilter->GetHistogram( (*it) ) ) ); statistics.SetLabel (*it); statistics.SetN(labelStatisticsFilter->GetCount( *it )); statistics.SetMin(labelStatisticsFilter->GetMinimum( *it )); statistics.SetMax(labelStatisticsFilter->GetMaximum( *it )); statistics.SetMean(labelStatisticsFilter->GetMean( *it )); statistics.SetMedian(labelStatisticsFilter->GetMedian( *it )); statistics.SetVariance(labelStatisticsFilter->GetVariance( *it )); statistics.SetSigma(labelStatisticsFilter->GetSigma( *it )); statistics.SetRMS(sqrt( statistics.GetMean() * statistics.GetMean() + statistics.GetSigma() * statistics.GetSigma() )); // restrict image to mask area for min/max index calculation typedef itk::MaskImageFilter< ImageType, MaskImageType, ImageType > MaskImageFilterType; typename MaskImageFilterType::Pointer masker = MaskImageFilterType::New(); bool isMinAndMaxSameValue = (statistics.GetMin() == statistics.GetMax()); // bug 17962: following is a workaround for the case when min and max are the same, we can probably find a nicer way here double outsideValue = (isMinAndMaxSameValue ? (statistics.GetMax()/2) : (statistics.GetMin()+statistics.GetMax())/2); masker->SetOutsideValue( outsideValue ); masker->SetInput1(adaptedImage); masker->SetInput2(adaptedMaskImage); masker->Update(); // get index of minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( masker->GetOutput() ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); typename MinMaxFilterType::IndexType tempMaxIndex = minMaxFilter->GetIndexOfMaximum(); // bug 17962: following is a workaround for the case when min and max are the same, we can probably find a nicer way here typename MinMaxFilterType::IndexType tempMinIndex = (isMinAndMaxSameValue ? minMaxFilter->GetIndexOfMaximum() : minMaxFilter->GetIndexOfMinimum()); // FIX BUG 14644 //If a PlanarFigure is used for segmentation the //adaptedImage is a single slice (2D). Adding the // 3. dimension. vnl_vector maxIndex; vnl_vector minIndex; maxIndex.set_size(m_Image->GetDimension()); minIndex.set_size(m_Image->GetDimension()); if (m_MaskingMode == MASKING_MODE_PLANARFIGURE && m_Image->GetDimension()==3) { maxIndex[m_PlanarFigureCoordinate0] = tempMaxIndex[0]; maxIndex[m_PlanarFigureCoordinate1] = tempMaxIndex[1]; maxIndex[m_PlanarFigureAxis] = m_PlanarFigureSlice; minIndex[m_PlanarFigureCoordinate0] = tempMinIndex[0] ; minIndex[m_PlanarFigureCoordinate1] = tempMinIndex[1]; minIndex[m_PlanarFigureAxis] = m_PlanarFigureSlice; } else { for (unsigned int i = 0; ipush_back( statistics ); } } else { histogramContainer->push_back( HistogramType::ConstPointer( m_EmptyHistogram ) ); statisticsContainer->push_back( Statistics() ); } } template ImageStatisticsCalculator::ImageExtrema ImageStatisticsCalculator::CalculateExtremaWorld( const itk::Image *inputImage, itk::Image *maskImage, double neccessaryDistanceToImageBorderInMM, unsigned int label) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef itk::ImageRegionConstIteratorWithIndex MaskImageIteratorType; typedef itk::ImageRegionConstIteratorWithIndex InputImageIndexIteratorType; typename ImageType::SpacingType spacing = inputImage->GetSpacing(); ImageExtrema minMax; minMax.Defined = false; minMax.MaxIndex.set_size(VImageDimension); minMax.MaxIndex.set_size(VImageDimension); typename ImageType::RegionType allowedExtremaRegion = inputImage->GetLargestPossibleRegion(); bool keepDistanceToImageBorders( neccessaryDistanceToImageBorderInMM > 0 ); if (keepDistanceToImageBorders) { long distanceInPixels[VImageDimension]; for(unsigned short dimension = 0; dimension < VImageDimension; ++dimension) { // To confirm that the whole hotspot is inside the image we have to keep a specific distance to the image-borders, which is as long as // the radius. To get the amount of indices we divide the radius by spacing and add 0.5 because voxels are center based: // For example with a radius of 2.2 and a spacing of 1 two indices are enough because 2.2 / 1 + 0.5 = 2.7 => 2. // But with a radius of 2.7 we need 3 indices because 2.7 / 1 + 0.5 = 3.2 => 3 distanceInPixels[dimension] = int( neccessaryDistanceToImageBorderInMM / spacing[dimension] + 0.5); } allowedExtremaRegion.ShrinkByRadius(distanceInPixels); } InputImageIndexIteratorType imageIndexIt(inputImage, allowedExtremaRegion); float maxValue = itk::NumericTraits::min(); float minValue = itk::NumericTraits::max(); typename ImageType::IndexType maxIndex; typename ImageType::IndexType minIndex; for(unsigned short i = 0; i < VImageDimension; ++i) { maxIndex[i] = 0; minIndex[i] = 0; } if (maskImage != NULL) { MaskImageIteratorType maskIt(maskImage, maskImage->GetLargestPossibleRegion()); typename ImageType::IndexType imageIndex; typename ImageType::PointType worldPosition; typename ImageType::IndexType maskIndex; for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) { imageIndex = maskIndex = maskIt.GetIndex(); if(maskIt.Get() == label) { if( allowedExtremaRegion.IsInside(imageIndex) ) { imageIndexIt.SetIndex( imageIndex ); double value = imageIndexIt.Get(); minMax.Defined = true; //Calculate minimum, maximum and corresponding index-values if( value > maxValue ) { maxIndex = imageIndexIt.GetIndex(); maxValue = value; } if(value < minValue ) { minIndex = imageIndexIt.GetIndex(); minValue = value; } } } } } else { for(imageIndexIt.GoToBegin(); !imageIndexIt.IsAtEnd(); ++imageIndexIt) { double value = imageIndexIt.Get(); minMax.Defined = true; //Calculate minimum, maximum and corresponding index-values if( value > maxValue ) { maxIndex = imageIndexIt.GetIndex(); maxValue = value; } if(value < minValue ) { minIndex = imageIndexIt.GetIndex(); minValue = value; } } } minMax.MaxIndex.set_size(VImageDimension); minMax.MinIndex.set_size(VImageDimension); for(unsigned int i = 0; i < minMax.MaxIndex.size(); ++i) { minMax.MaxIndex[i] = maxIndex[i]; } for(unsigned int i = 0; i < minMax.MinIndex.size(); ++i) { minMax.MinIndex[i] = minIndex[i]; } minMax.Max = maxValue; minMax.Min = minValue; return minMax; } template itk::Size ImageStatisticsCalculator ::CalculateConvolutionKernelSize(double spacing[VImageDimension], double radiusInMM) { typedef itk::Image< float, VImageDimension > KernelImageType; typedef typename KernelImageType::SizeType SizeType; SizeType maskSize; for(unsigned int i = 0; i < VImageDimension; ++i) { maskSize[i] = static_cast( 2 * radiusInMM / spacing[i]); // We always want an uneven size to have a clear center point in the convolution mask if(maskSize[i] % 2 == 0 ) { ++maskSize[i]; } } return maskSize; } template itk::SmartPointer< itk::Image > ImageStatisticsCalculator ::GenerateHotspotSearchConvolutionKernel(double mmPerPixel[VImageDimension], double radiusInMM) { std::stringstream ss; for (unsigned int i = 0; i < VImageDimension; ++i) { ss << mmPerPixel[i]; if (i < VImageDimension -1) ss << ","; } MITK_DEBUG << "Update convolution kernel for spacing (" << ss.str() << ") and radius " << radiusInMM << "mm"; double radiusInMMSquared = radiusInMM * radiusInMM; typedef itk::Image< float, VImageDimension > KernelImageType; typename KernelImageType::Pointer convolutionKernel = KernelImageType::New(); // Calculate size and allocate mask image typedef typename KernelImageType::SizeType SizeType; SizeType maskSize = this->CalculateConvolutionKernelSize(mmPerPixel, radiusInMM); Point3D convolutionMaskCenterIndex; convolutionMaskCenterIndex.Fill(0.0); for(unsigned int i = 0; i < VImageDimension; ++i) { convolutionMaskCenterIndex[i] = 0.5 * (double)(maskSize[i]-1); } typedef typename KernelImageType::IndexType IndexType; IndexType maskIndex; maskIndex.Fill(0); typedef typename KernelImageType::RegionType RegionType; RegionType maskRegion; maskRegion.SetSize(maskSize); maskRegion.SetIndex(maskIndex); convolutionKernel->SetRegions(maskRegion); convolutionKernel->SetSpacing(mmPerPixel); convolutionKernel->Allocate(); // Fill mask image values by subsampling the image grid typedef itk::ImageRegionIteratorWithIndex MaskIteratorType; MaskIteratorType maskIt(convolutionKernel,maskRegion); int numberOfSubVoxelsPerDimension = 2; // per dimension! int numberOfSubVoxels = ::pow( static_cast(numberOfSubVoxelsPerDimension), static_cast(VImageDimension) ); double subVoxelSizeInPixels = 1.0 / (double)numberOfSubVoxelsPerDimension; double valueOfOneSubVoxel = 1.0 / (double)numberOfSubVoxels; double maskValue = 0.0; Point3D subVoxelIndexPosition; double distanceSquared = 0.0; typedef itk::ContinuousIndex ContinuousIndexType; for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) { ContinuousIndexType indexPoint(maskIt.GetIndex()); Point3D voxelPosition; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { voxelPosition[dimension] = indexPoint[dimension]; } maskValue = 0.0; Vector3D subVoxelOffset; subVoxelOffset.Fill(0.0); // iterate sub-voxels by iterating all possible offsets for (subVoxelOffset[0] = -0.5 + subVoxelSizeInPixels / 2.0; subVoxelOffset[0] < +0.5; subVoxelOffset[0] += subVoxelSizeInPixels) { for (subVoxelOffset[1] = -0.5 + subVoxelSizeInPixels / 2.0; subVoxelOffset[1] < +0.5; subVoxelOffset[1] += subVoxelSizeInPixels) { for (subVoxelOffset[2] = -0.5 + subVoxelSizeInPixels / 2.0; subVoxelOffset[2] < +0.5; subVoxelOffset[2] += subVoxelSizeInPixels) { subVoxelIndexPosition = voxelPosition + subVoxelOffset; // this COULD be integrated into the for-loops if neccessary (add voxelPosition to initializer and end condition) distanceSquared = (subVoxelIndexPosition[0]-convolutionMaskCenterIndex[0]) * mmPerPixel[0] * (subVoxelIndexPosition[0]-convolutionMaskCenterIndex[0]) * mmPerPixel[0] + (subVoxelIndexPosition[1]-convolutionMaskCenterIndex[1]) * mmPerPixel[1] * (subVoxelIndexPosition[1]-convolutionMaskCenterIndex[1]) * mmPerPixel[1] + (subVoxelIndexPosition[2]-convolutionMaskCenterIndex[2]) * mmPerPixel[2] * (subVoxelIndexPosition[2]-convolutionMaskCenterIndex[2]) * mmPerPixel[2]; if (distanceSquared <= radiusInMMSquared) { maskValue += valueOfOneSubVoxel; } } } } maskIt.Set( maskValue ); } return convolutionKernel; } template itk::SmartPointer > ImageStatisticsCalculator::GenerateConvolutionImage( const itk::Image* inputImage ) { double mmPerPixel[VImageDimension]; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { mmPerPixel[dimension] = inputImage->GetSpacing()[dimension]; } // update convolution kernel typedef itk::Image< float, VImageDimension > KernelImageType; typename KernelImageType::Pointer convolutionKernel = this->GenerateHotspotSearchConvolutionKernel(mmPerPixel, m_HotspotRadiusInMM); // update convolution image typedef itk::Image< TPixel, VImageDimension > InputImageType; typedef itk::Image< TPixel, VImageDimension > ConvolutionImageType; typedef itk::FFTConvolutionImageFilter ConvolutionFilterType; typename ConvolutionFilterType::Pointer convolutionFilter = ConvolutionFilterType::New(); typedef itk::ConstantBoundaryCondition BoundaryConditionType; BoundaryConditionType boundaryCondition; boundaryCondition.SetConstant(0.0); if (GetHotspotMustBeCompletlyInsideImage()) { // overwrite default boundary condition convolutionFilter->SetBoundaryCondition(&boundaryCondition); } convolutionFilter->SetInput(inputImage); convolutionFilter->SetKernelImage(convolutionKernel); convolutionFilter->SetNormalize(true); MITK_DEBUG << "Update Convolution image for hotspot search"; convolutionFilter->UpdateLargestPossibleRegion(); typename ConvolutionImageType::Pointer convolutionImage = convolutionFilter->GetOutput(); convolutionImage->SetSpacing( inputImage->GetSpacing() ); // only workaround because convolution filter seems to ignore spacing of input image m_HotspotRadiusInMMChanged = false; return convolutionImage; } template < typename TPixel, unsigned int VImageDimension> void ImageStatisticsCalculator ::FillHotspotMaskPixels( itk::Image* maskImage, itk::Point sphereCenter, double sphereRadiusInMM) { typedef itk::Image< TPixel, VImageDimension > MaskImageType; typedef itk::ImageRegionIteratorWithIndex MaskImageIteratorType; MaskImageIteratorType maskIt(maskImage, maskImage->GetLargestPossibleRegion()); typename MaskImageType::IndexType maskIndex; typename MaskImageType::PointType worldPosition; for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) { maskIndex = maskIt.GetIndex(); maskImage->TransformIndexToPhysicalPoint(maskIndex, worldPosition); maskIt.Set( worldPosition.EuclideanDistanceTo(sphereCenter) <= sphereRadiusInMM ? 1 : 0 ); } } template < typename TPixel, unsigned int VImageDimension> ImageStatisticsCalculator::Statistics ImageStatisticsCalculator::CalculateHotspotStatistics( const itk::Image* inputImage, itk::Image* maskImage, double radiusInMM, bool& isHotspotDefined, unsigned int label) { // get convolution image (updated in GenerateConvolutionImage()) typedef itk::Image< TPixel, VImageDimension > InputImageType; typedef itk::Image< TPixel, VImageDimension > ConvolutionImageType; typedef itk::Image< float, VImageDimension > KernelImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; //typename ConvolutionImageType::Pointer convolutionImage = dynamic_cast(this->GenerateConvolutionImage(inputImage)); typename ConvolutionImageType::Pointer convolutionImage = this->GenerateConvolutionImage(inputImage); if (convolutionImage.IsNull()) { MITK_ERROR << "Empty convolution image in CalculateHotspotStatistics(). We should never reach this state (logic error)."; throw std::logic_error("Empty convolution image in CalculateHotspotStatistics()"); } // find maximum in convolution image, given the current mask double requiredDistanceToBorder = m_HotspotMustBeCompletelyInsideImage ? m_HotspotRadiusInMM : -1.0; ImageExtrema convolutionImageInformation = CalculateExtremaWorld(convolutionImage.GetPointer(), maskImage, requiredDistanceToBorder, label); isHotspotDefined = convolutionImageInformation.Defined; if (!isHotspotDefined) { m_EmptyStatistics.Reset(VImageDimension); MITK_ERROR << "No origin of hotspot-sphere was calculated! Returning empty statistics"; return m_EmptyStatistics; } else { // create a binary mask around the "hotspot" region, fill the shape of a sphere around our hotspot center typedef itk::ImageDuplicator< InputImageType > DuplicatorType; typename DuplicatorType::Pointer copyMachine = DuplicatorType::New(); copyMachine->SetInputImage(inputImage); copyMachine->Update(); typedef itk::CastImageFilter< InputImageType, MaskImageType > CastFilterType; typename CastFilterType::Pointer caster = CastFilterType::New(); caster->SetInput( copyMachine->GetOutput() ); caster->Update(); typename MaskImageType::Pointer hotspotMaskITK = caster->GetOutput(); typedef typename InputImageType::IndexType IndexType; IndexType maskCenterIndex; for (unsigned int d =0; d< VImageDimension;++d) maskCenterIndex[d]=convolutionImageInformation.MaxIndex[d]; typename ConvolutionImageType::PointType maskCenter; inputImage->TransformIndexToPhysicalPoint(maskCenterIndex,maskCenter); this->FillHotspotMaskPixels(hotspotMaskITK.GetPointer(), maskCenter, radiusInMM); // calculate statistics within the binary mask typedef itk::LabelStatisticsImageFilter< InputImageType, MaskImageType> LabelStatisticsFilterType; typename LabelStatisticsFilterType::Pointer labelStatisticsFilter; labelStatisticsFilter = LabelStatisticsFilterType::New(); labelStatisticsFilter->SetInput( inputImage ); labelStatisticsFilter->SetLabelInput( hotspotMaskITK ); labelStatisticsFilter->Update(); Statistics hotspotStatistics; hotspotStatistics.SetHotspotIndex(convolutionImageInformation.MaxIndex); hotspotStatistics.SetMean(convolutionImageInformation.Max); if ( labelStatisticsFilter->HasLabel( 1 ) ) { hotspotStatistics.SetLabel (1); hotspotStatistics.SetN(labelStatisticsFilter->GetCount(1)); hotspotStatistics.SetMin(labelStatisticsFilter->GetMinimum(1)); hotspotStatistics.SetMax(labelStatisticsFilter->GetMaximum(1)); hotspotStatistics.SetMedian(labelStatisticsFilter->GetMedian(1)); hotspotStatistics.SetVariance(labelStatisticsFilter->GetVariance(1)); hotspotStatistics.SetSigma(labelStatisticsFilter->GetSigma(1)); hotspotStatistics.SetRMS(sqrt( hotspotStatistics.GetMean() * hotspotStatistics.GetMean() + hotspotStatistics.GetSigma() * hotspotStatistics.GetSigma() )); MITK_DEBUG << "Statistics for inside hotspot: Mean " << hotspotStatistics.GetMean() << ", SD " << hotspotStatistics.GetSigma() << ", Max " << hotspotStatistics.GetMax() << ", Min " << hotspotStatistics.GetMin(); } else { MITK_ERROR << "Uh oh! Unable to calculate statistics for hotspot region..."; return m_EmptyStatistics; } return hotspotStatistics; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, MaskImage2DType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with 1. typename CastFilterType::Pointer castFilter = CastFilterType::New(); castFilter->SetInput( image ); castFilter->Update(); castFilter->GetOutput()->FillBuffer( 1 ); // all PolylinePoints of the PlanarFigure are stored in a vtkPoints object. // These points are used by the vtkLassoStencilSource to create // a vtkImageStencil. const mitk::PlaneGeometry *planarFigurePlaneGeometry = m_PlanarFigure->GetPlaneGeometry(); const typename PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const mitk::BaseGeometry *imageGeometry3D = m_Image->GetGeometry( 0 ); // If there is a second poly line in a closed planar figure, treat it as a hole. PlanarFigure::PolyLineType planarFigureHolePolyline; if (m_PlanarFigure->GetPolyLinesSize() == 2) planarFigureHolePolyline = m_PlanarFigure->GetPolyLine(1); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } m_PlanarFigureCoordinate0= i0; m_PlanarFigureCoordinate1= i1; // store the polyline contour as vtkPoints object bool outOfBounds = false; vtkSmartPointer points = vtkSmartPointer::New(); typename PlanarFigure::PolyLineType::const_iterator it; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image planarFigurePlaneGeometry->Map( *it, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { outOfBounds = true; } imageGeometry3D->WorldToIndex( point3D, point3D ); points->InsertNextPoint( point3D[i0], point3D[i1], 0 ); } vtkSmartPointer holePoints = NULL; if (!planarFigureHolePolyline.empty()) { holePoints = vtkSmartPointer::New(); Point3D point3D; PlanarFigure::PolyLineType::const_iterator end = planarFigureHolePolyline.end(); for (it = planarFigureHolePolyline.begin(); it != end; ++it) { planarFigurePlaneGeometry->Map(*it, point3D); imageGeometry3D->WorldToIndex(point3D, point3D); holePoints->InsertNextPoint(point3D[i0], point3D[i1], 0); } } // mark a malformed 2D planar figure ( i.e. area = 0 ) as out of bounds // this can happen when all control points of a rectangle lie on the same line = two of the three extents are zero double bounds[6] = {0, 0, 0, 0, 0, 0}; points->GetBounds( bounds ); bool extent_x = (fabs(bounds[0] - bounds[1])) < mitk::eps; bool extent_y = (fabs(bounds[2] - bounds[3])) < mitk::eps; bool extent_z = (fabs(bounds[4] - bounds[5])) < mitk::eps; // throw an exception if a closed planar figure is deformed, i.e. has only one non-zero extent if ( m_PlanarFigure->IsClosed() && ((extent_x && extent_y) || (extent_x && extent_z) || (extent_y && extent_z))) { mitkThrow() << "Figure has a zero area and cannot be used for masking."; } if ( outOfBounds ) { throw std::runtime_error( "Figure at least partially outside of image bounds!" ); } // create a vtkLassoStencilSource and set the points of the Polygon vtkSmartPointer lassoStencil = vtkSmartPointer::New(); lassoStencil->SetShapeToPolygon(); lassoStencil->SetPoints( points ); vtkSmartPointer holeLassoStencil = NULL; if (holePoints.GetPointer() != NULL) { holeLassoStencil = vtkSmartPointer::New(); holeLassoStencil->SetShapeToPolygon(); holeLassoStencil->SetPoints(holePoints); } // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< MaskImage2DType > ImageImportType; typedef itk::VTKImageExport< MaskImage2DType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( castFilter->GetOutput() ); vtkSmartPointer vtkImporter = vtkSmartPointer::New(); this->ConnectPipelines( itkExporter, vtkImporter ); // Apply the generated image stencil to the input image vtkSmartPointer imageStencilFilter = vtkSmartPointer::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencilConnection(lassoStencil->GetOutputPort()); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); vtkSmartPointer holeStencilFilter = NULL; if (holeLassoStencil.GetPointer() != NULL) { holeStencilFilter = vtkSmartPointer::New(); holeStencilFilter->SetInputConnection(imageStencilFilter->GetOutputPort()); holeStencilFilter->SetStencilConnection(holeLassoStencil->GetOutputPort()); holeStencilFilter->ReverseStencilOn(); holeStencilFilter->SetBackgroundValue(0); holeStencilFilter->Update(); } // Export from VTK back to ITK vtkSmartPointer vtkExporter = vtkSmartPointer::New(); vtkExporter->SetInputConnection( holeStencilFilter.GetPointer() == NULL ? imageStencilFilter->GetOutputPort() : holeStencilFilter->GetOutputPort()); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); typedef itk::ImageDuplicator< ImageImportType::OutputImageType > DuplicatorType; DuplicatorType::Pointer duplicator = DuplicatorType::New(); duplicator->SetInputImage( itkImporter->GetOutput() ); duplicator->Update(); // Store mask m_InternalImageMask2D = duplicator->GetOutput(); } void ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate() { // Need to throw away every second progress event to reach a final count of // 100 since two consecutive filters are used in this case static int updateCounter = 0; if ( updateCounter++ % 2 == 0 ) { this->InvokeEvent( itk::ProgressEvent() ); } } void ImageStatisticsCalculator::MaskedStatisticsProgressUpdate() { this->InvokeEvent( itk::ProgressEvent() ); } } diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h index d39faba4a8..ca185523d1 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h @@ -1,573 +1,579 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _MITK_IMAGESTATISTICSCALCULATOR_H #define _MITK_IMAGESTATISTICSCALCULATOR_H #include #include "MitkImageStatisticsExports.h" #include #include #include "mitkImage.h" #include "mitkPlanarFigure.h" #ifndef __itkHistogram_h #include #endif #include #include // just a helper to unclutter our code // to be replaced with references to m_Member (when deprecated public members in Statistics are removed) #define mitkSetGetConstMacro(name, type) \ virtual type Get##name() const \ { \ return this->name; \ } \ \ virtual void Set##name(const type _arg) \ { \ if ( this->name != _arg ) \ { \ this->name = _arg; \ } \ } namespace mitk { /** * \brief Class for calculating statistics and histogram for an (optionally * masked) image. * * Images can be masked by either a label image (of the same dimensions as * the original image) or by a closed mitk::PlanarFigure, e.g. a circle or * polygon. When masking with a planar figure, the slice corresponding to the * plane containing the figure is extracted and then clipped with contour * defined by the figure. Planar figures need to be aligned along the main axes * of the image (axial, sagittal, coronal). Planar figures on arbitrary * rotated planes are not supported. * * For each operating mode (no masking, masking by image, masking by planar * figure), the calculated statistics and histogram are cached so that, when * switching back and forth between operation modes without modifying mask or * image, the information doesn't need to be recalculated. * * The class also has the possibility to calculate the location and separate * statistics for a region called "hotspot". The hotspot is a sphere of * user-defined size and its location is chosen in a way that the average * pixel value within the sphere is maximized. * * \warning Hotspot calculation does not work in case of 2D-images! * * Note: currently time-resolved and multi-channel pictures are not properly * supported. * * \section HotspotStatistics_caption Calculation of hotspot statistics * * Since calculation of hotspot location and statistics is not * straight-forward, the following paragraphs will describe it in more detail. * * Note: Calculation of hotspot statistics is optional and set to off by default. * Multilabel-masks are supported. * * \subsection HotspotStatistics_description Hotspot Definition * * The hotspot of an image is motivated from PET readings. It is defined * as a spherical region of fixed size which maximizes the average pixel value * within the region. The following image illustrates the concept: the * colored areas are different image intensities and the hotspot is located * in the hottest region of the image. * * Note: Only hotspots are calculated for which the whole hotspot-sphere is * inside the image by default. This behaviour can be changed by * by calling SetHotspotMustBeCompletlyInsideImage(). * \warning Note that SetHotspotMustBeCompletlyInsideImage(false) may overrate * "hot" regions at image borders, because they have a stronger influence on the * mean value! Think clearly about this fact and make sure this is what you * want/need in your application, before calling * SetHotspotMustBeCompletlyInsideImage(false)! * * * \image html hotspotexample.JPG * * \subsection HotspotStatistics_calculation Hotspot Calculation * * Since only the size of the hotspot is known initially, we need to calculate * two aspects (both implemented in CalculateHotspotStatistics() ): * - the hotspot location * - statistics of the pixels within the hotspot. * * Finding the hotspot location requires to calculate the average value at each * position. This is done by convolution of the image with a sperical kernel * image which reflects partial volumes (important in the case of low-resolution * PET images). * * Once the hotspot location is known, calculating the actual statistics is a * simple task which is implemented in CalculateHotspotStatistics() using a second * instance of the ImageStatisticsCalculator. * * Step 1: Finding the hotspot by image convolution * * As described above, we use image convolution with a rasterized sphere to * average the image at each position. To handle coarse resolutions, which would * normally force us to decide for partially contained voxels whether to count * them or not, we supersample the kernel image and use non-integer kernel values * (see GenerateHotspotSearchConvolutionKernel()), which reflect the volume part that is contained in the * sphere. For example, if three subvoxels are inside the sphere, the corresponding * kernel voxel gets a value of 0.75 (3 out of 4 subvoxels, see 2D example below). * * \image html convolutionkernelsupersampling.jpg * * Convolution itself is done by means of the itkFFTConvolutionImageFilter. * To find the hotspot location, we simply iterate the averaged image and find a * maximum location (see CalculateExtremaWorld()). In case of images with multiple * maxima the method returns value and corresponding index of the extrema that is * found by the iterator first. * * Step 2: Computation of hotspot statistics * * Once the hotspot location is found, statistics for the region are calculated * by simply iterating the input image and regarding all pixel centers inside the * hotspot-sphere for statistics. * \warning Index positions of maximum/minimum are not provided, because they are not necessarily unique * \todo If index positions of maximum/minimum are required, output needs to be changed to multiple positions / regions, etc. * * \subsection HotspotStatistics_tests Tests * * To check the correctness of the hotspot calculation, a special class * (\ref hotspottestdoc) has been created, which generates images with * known hotspot location and statistics. A number of unit tests use this class * to first generate an image of known properites and then verify that * ImageStatisticsCalculator is able to reproduce the known statistics. * */ class MitkImageStatistics_EXPORT ImageStatisticsCalculator : public itk::Object { public: /** \brief Enum for possible masking modi. */ enum { MASKING_MODE_NONE = 0, MASKING_MODE_IMAGE = 1, MASKING_MODE_PLANARFIGURE = 2 }; typedef itk::Statistics::Histogram HistogramType; typedef HistogramType::ConstIterator HistogramConstIteratorType; /** \brief Class for common statistics, includig hotspot properties. */ class MitkImageStatistics_EXPORT Statistics { public: Statistics(bool withHotspotStatistics = true); Statistics(const Statistics& other); virtual ~Statistics(); Statistics& operator=(Statistics const& stats); const Statistics& GetHotspotStatistics() const; // real statistics Statistics& GetHotspotStatistics(); // real statistics bool HasHotspotStatistics() const; void SetHasHotspotStatistics(bool hasHotspotStatistics); // set a flag. if set, return empty hotspotstatistics object void Reset(unsigned int dimension = 2); mitkSetGetConstMacro(Label, unsigned int) mitkSetGetConstMacro(N, unsigned int) mitkSetGetConstMacro(Min, double) mitkSetGetConstMacro(Max, double) mitkSetGetConstMacro(Mean, double) mitkSetGetConstMacro(Median, double) double GetVariance() const; /** \brief Set variance * * This method checks whether the variance is negative: * The reason that the variance may be negative is that the underlying itk::LabelStatisticsImageFilter uses a naïve algorithm * for calculating the variance ( http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance ) which can lead to negative values * due to rounding errors. * * If the variance is negative the value will be set to 0.0, else the given value will be set. */ void SetVariance( const double ); double GetSigma() const; /** \brief Set standard deviation (sigma) * * This method checks if the given standard deviation is a positive value. This is done because the underlying itk::LabelStatisticsImageFilter uses * a naïve algorithm to calculate the variance. This may lead to a negative variance and because the square root of the variance is taken it also * leads to NaN for sigma. * * If the given value is not reasonable the value will be set to 0.0, else the given value will be set. * * \see SetVariance() */ void SetSigma( const double ); mitkSetGetConstMacro(RMS, double) mitkSetGetConstMacro(MinIndex, vnl_vector) mitkSetGetConstMacro(MaxIndex, vnl_vector) mitkSetGetConstMacro(HotspotIndex, vnl_vector) private: unsigned int Label; unsigned int N; double Min; double Max; double Mean; double Median; double Variance; double Sigma; double RMS; vnl_vector MinIndex; vnl_vector MaxIndex; Statistics* m_HotspotStatistics; bool m_HasHotspotStatistics; vnl_vector HotspotIndex; //< index of hotspotsphere origin }; typedef std::vector< HistogramType::ConstPointer > HistogramContainer; typedef std::vector< Statistics > StatisticsContainer; mitkClassMacro( ImageStatisticsCalculator, itk::Object ); itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** \brief Automatically calculate bin size to obtain 200 bins. */ void SetUseDefaultBinSize(bool useDefault); /** \brief Set image from which to compute statistics. */ void SetImage( const mitk::Image *image ); /** \brief Set image for masking. */ void SetImageMask( const mitk::Image *imageMask ); /** \brief Set planar figure for masking. */ void SetPlanarFigure( mitk::PlanarFigure *planarFigure ); /** \brief Set/Get operation mode for masking */ void SetMaskingMode( unsigned int mode ); /** \brief Set/Get operation mode for masking */ itkGetMacro( MaskingMode, unsigned int ); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToNone(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToImage(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToPlanarFigure(); /** \brief Set a pixel value for pixels that will be ignored in the statistics */ void SetIgnorePixelValue(double value); /** \brief Get the pixel value for pixels that will be ignored in the statistics */ double GetIgnorePixelValue(); /** \brief Set whether a pixel value should be ignored in the statistics */ void SetDoIgnorePixelValue(bool doit); /** \brief Get whether a pixel value will be ignored in the statistics */ bool GetDoIgnorePixelValue(); /** \brief Set bin size for histogram resolution.*/ void SetHistogramBinSize( unsigned int size); /** \brief Get bin size for histogram resolution.*/ unsigned int GetHistogramBinSize(); /** \brief Sets the radius for the hotspot */ void SetHotspotRadiusInMM (double hotspotRadiusInMM); /** \brief Returns the radius of the hotspot */ double GetHotspotRadiusInMM(); /** \brief Sets whether the hotspot should be calculated */ void SetCalculateHotspot(bool calculateHotspot); /** \brief Returns true whether the hotspot should be calculated, otherwise false */ bool IsHotspotCalculated(); /** \brief Sets flag whether hotspot is completly inside the image. Please note that if set to false it can be possible that statistics are calculated for which the whole hotspot is not inside the image! \warning regarding positions at the image centers may produce unexpected hotspot locations, please see \ref HotspotStatistics_description */ void SetHotspotMustBeCompletlyInsideImage(bool hotspotIsCompletlyInsideImage, bool warn = true); /** \brief Returns true if hotspot has to be completly inside the image. */ bool GetHotspotMustBeCompletlyInsideImage() const; /** \brief Compute statistics (together with histogram) for the current * masking mode. * * Computation is not executed if statistics is already up to date. In this * case, false is returned; otherwise, true.*/ virtual bool ComputeStatistics( unsigned int timeStep = 0 ); /** \brief Retrieve the histogram depending on the current masking mode. * * \param label The label for which to retrieve the histogram in multi-label situations (ascending order). */ const HistogramType *GetHistogram( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve the histogram depending on the current masking mode (for all image labels. */ const HistogramContainer &GetHistogramVector( unsigned int timeStep = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode. * * \param label The label for which to retrieve the statistics in multi-label situations (ascending order). */ const Statistics &GetStatistics( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode (for all image labels). */ const StatisticsContainer &GetStatisticsVector( unsigned int timeStep = 0 ) const; protected: typedef std::vector< HistogramContainer > HistogramVector; typedef std::vector< StatisticsContainer > StatisticsVector; typedef std::vector< itk::TimeStamp > TimeStampVectorType; typedef std::vector< bool > BoolVectorType; typedef itk::Image< unsigned short, 3 > MaskImage3DType; typedef itk::Image< unsigned short, 2 > MaskImage2DType; ImageStatisticsCalculator(); virtual ~ImageStatisticsCalculator(); /** \brief Depending on the masking mode, the image and mask from which to * calculate statistics is extracted from the original input image and mask * data. * * For example, a when using a PlanarFigure as mask, the 2D image slice * corresponding to the PlanarFigure will be extracted from the original * image. If masking is disabled, the original image is simply passed * through. */ void ExtractImageAndMask( unsigned int timeStep = 0 ); /** \brief If the passed vector matches any of the three principal axes * of the passed geometry, the ínteger value corresponding to the axis * is set and true is returned. */ bool GetPrincipalAxis( const BaseGeometry *geometry, Vector3D vector, unsigned int &axis ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer* statisticsContainer, HistogramContainer *histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ); template < typename TPixel, unsigned int VImageDimension > void InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ); class ImageExtrema { public: bool Defined; double Max; double Min; vnl_vector MaxIndex; vnl_vector MinIndex; ImageExtrema() :Defined(false) ,Max(itk::NumericTraits::min()) ,Min(itk::NumericTraits::max()) { } }; /** \brief Calculates minimum, maximum, mean value and their * corresponding indices in a given ROI. As input the function * needs an image and a mask. Returns an ImageExtrema object. */ template ImageExtrema CalculateExtremaWorld( const itk::Image *inputImage, itk::Image *maskImage, double neccessaryDistanceToImageBorderInMM, unsigned int label); /** \brief Calculates the hotspot statistics depending on * masking mode. Hotspot statistics are calculated for a * hotspot which is completly located inside the image by default. */ template < typename TPixel, unsigned int VImageDimension> Statistics CalculateHotspotStatistics( const itk::Image *inputImage, itk::Image *maskImage, double radiusInMM, bool& isHotspotDefined, unsigned int label); /** Connection from ITK to VTK */ template void ConnectPipelines(ITK_Exporter exporter, vtkSmartPointer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } /** Connection from VTK to ITK */ template void ConnectPipelines(vtkSmartPointer exporter, ITK_Importer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } void UnmaskedStatisticsProgressUpdate(); void MaskedStatisticsProgressUpdate(); /** \brief Returns size of convolution kernel depending on spacing and radius. */ template itk::Size CalculateConvolutionKernelSize(double spacing[VImageDimension], double radiusInMM); /** \brief Generates image of kernel which is needed for convolution. */ template itk::SmartPointer< itk::Image > GenerateHotspotSearchConvolutionKernel(double spacing[VImageDimension], double radiusInMM); /** \brief Convolves image with spherical kernel image. Used for hotspot calculation. */ template itk::SmartPointer< itk::Image > GenerateConvolutionImage( const itk::Image* inputImage ); /** \brief Fills pixels of the spherical hotspot mask. */ template < typename TPixel, unsigned int VImageDimension> void FillHotspotMaskPixels( itk::Image* maskImage, itk::Point sphereCenter, double sphereRadiusInMM); /** m_Image contains the input image (e.g. 2D, 3D, 3D+t)*/ mitk::Image::ConstPointer m_Image; mitk::Image::ConstPointer m_ImageMask; mitk::PlanarFigure::Pointer m_PlanarFigure; HistogramVector m_ImageHistogramVector; HistogramVector m_MaskedImageHistogramVector; HistogramVector m_PlanarFigureHistogramVector; HistogramType::Pointer m_EmptyHistogram; HistogramContainer m_EmptyHistogramContainer; StatisticsVector m_ImageStatisticsVector; StatisticsVector m_MaskedImageStatisticsVector; StatisticsVector m_PlanarFigureStatisticsVector; StatisticsVector m_MaskedImageHotspotStatisticsVector; Statistics m_EmptyStatistics; StatisticsContainer m_EmptyStatisticsContainer; unsigned int m_MaskingMode; bool m_MaskingModeChanged; /** m_InternalImage contains a image volume at one time step (e.g. 2D, 3D)*/ mitk::Image::ConstPointer m_InternalImage; MaskImage3DType::Pointer m_InternalImageMask3D; MaskImage2DType::Pointer m_InternalImageMask2D; TimeStampVectorType m_ImageStatisticsTimeStampVector; TimeStampVectorType m_MaskedImageStatisticsTimeStampVector; TimeStampVectorType m_PlanarFigureStatisticsTimeStampVector; BoolVectorType m_ImageStatisticsCalculationTriggerVector; BoolVectorType m_MaskedImageStatisticsCalculationTriggerVector; BoolVectorType m_PlanarFigureStatisticsCalculationTriggerVector; double m_IgnorePixelValue; bool m_DoIgnorePixelValue; bool m_IgnorePixelValueChanged; unsigned int m_PlanarFigureAxis; // Normal axis for PlanarFigure unsigned int m_PlanarFigureSlice; // Slice which contains PlanarFigure int m_PlanarFigureCoordinate0; // First plane-axis for PlanarFigure int m_PlanarFigureCoordinate1; // Second plane-axis for PlanarFigure unsigned int m_HistogramBinSize; ///Bin size for histogram resoluion. bool m_UseDefaultBinSize; double m_HotspotRadiusInMM; bool m_CalculateHotspot; bool m_HotspotRadiusInMMChanged; bool m_HotspotMustBeCompletelyInsideImage; + +private: + + unsigned int calcNumberOfBins(mitk::ScalarType min, mitk::ScalarType max); + + }; } // namespace #endif