diff --git a/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.cpp b/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.cpp index 3195aa55ef..837e741fc2 100644 --- a/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.cpp +++ b/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.cpp @@ -1,211 +1,212 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "SimpleRenderWindowView.h" #include #include "org_mitk_example_gui_customviewer_views_Activator.h" #include #include #include +#include #include #include /** * \brief Helper class adapted from QmitkAbstractRenderEditor by defining the correct plugin context. * * This helper class adapted from QmitkAbstractRenderEditor provides the rendering manager interface. */ // //! [SimpleRenderWindowViewHelper] class AbstractRenderWindowViewPrivate { public: AbstractRenderWindowViewPrivate() : m_RenderingManagerInterface(mitk::MakeRenderingManagerInterface(mitk::RenderingManager::GetInstance())) // //! [SimpleRenderWindowViewHelper] { } ~AbstractRenderWindowViewPrivate() { delete m_RenderingManagerInterface; } mitk::IRenderingManager *m_RenderingManagerInterface; }; const std::string SimpleRenderWindowView::VIEW_ID = "org.mitk.customviewer.views.simplerenderwindowview"; SimpleRenderWindowView::SimpleRenderWindowView() : m_RenderWindow(nullptr), d(new AbstractRenderWindowViewPrivate) { } SimpleRenderWindowView::~SimpleRenderWindowView() { } QmitkRenderWindow *SimpleRenderWindowView::GetActiveQmitkRenderWindow() const { return m_RenderWindow; } QHash SimpleRenderWindowView::GetRenderWindows() const { QHash wnds; wnds.insert("axial", m_RenderWindow); return wnds; } QHash SimpleRenderWindowView::GetQmitkRenderWindows() const { QHash wnds; wnds.insert("axial", m_RenderWindow); return wnds; } QmitkRenderWindow *SimpleRenderWindowView::GetRenderWindow(const QString &id) const { if (id == "axial") { return m_RenderWindow; } return nullptr; } QmitkRenderWindow *SimpleRenderWindowView::GetQmitkRenderWindow(const QString &id) const { if (id == "axial") { return m_RenderWindow; } return nullptr; } QmitkRenderWindow *SimpleRenderWindowView::GetQmitkRenderWindow(const mitk::AnatomicalPlane& orientation) const { if (orientation == mitk::AnatomicalPlane::Axial) { return m_RenderWindow; } return 0; } void SimpleRenderWindowView::SetFocus() { m_RenderWindow->setFocus(); } // //! [SimpleRenderWindowViewCreatePartControl] void SimpleRenderWindowView::CreateQtPartControl(QWidget *parent) { QVBoxLayout *layout = new QVBoxLayout(parent); layout->setContentsMargins(0, 0, 0, 0); m_RenderWindow = new QmitkRenderWindow(parent); layout->addWidget(m_RenderWindow); mitk::DataStorage::Pointer ds = this->GetDataStorage(); m_RenderWindow->GetRenderer()->SetDataStorage(ds); this->RequestUpdate(); } // //! [SimpleRenderWindowViewCreatePartControl] mitk::IRenderingManager *SimpleRenderWindowView::GetRenderingManager() const { // we use the global rendering manager here. This should maybe replaced // by a local one, managing only the render windows specific for the view return d->m_RenderingManagerInterface; } void SimpleRenderWindowView::RequestUpdate(mitk::RenderingManager::RequestType requestType) { if (GetRenderingManager()) GetRenderingManager()->RequestUpdateAll(requestType); } void SimpleRenderWindowView::ForceImmediateUpdate(mitk::RenderingManager::RequestType requestType) { if (GetRenderingManager()) GetRenderingManager()->ForceImmediateUpdateAll(requestType); } void SimpleRenderWindowView::InitializeViews(const mitk::TimeGeometry* /*geometry*/, bool /*resetCamera*/) { // not implemented } void SimpleRenderWindowView::SetInteractionReferenceGeometry(const mitk::TimeGeometry* /*referenceGeometry*/) { // not implemented } bool SimpleRenderWindowView::HasCoupledRenderWindows() const { return false; } -mitk::SliceNavigationController *SimpleRenderWindowView::GetTimeNavigationController() const +mitk::TimeNavigationController *SimpleRenderWindowView::GetTimeNavigationController() const { if (GetRenderingManager()) return GetRenderingManager()->GetTimeNavigationController(); return nullptr; } mitk::Point3D SimpleRenderWindowView::GetSelectedPosition(const QString& /*id*/) const { const mitk::PlaneGeometry* pg = m_RenderWindow->GetSliceNavigationController()->GetCurrentPlaneGeometry(); if (pg) { return pg->GetCenter(); } else { return mitk::Point3D(); } } void SimpleRenderWindowView::SetSelectedPosition(const mitk::Point3D&, const QString&) { } mitk::TimePointType SimpleRenderWindowView::GetSelectedTimePoint(const QString& /*id*/) const { auto timeNavigator = this->GetTimeNavigationController(); if (nullptr != timeNavigator) { return timeNavigator->GetSelectedTimePoint(); } return 0; } void SimpleRenderWindowView::EnableDecorations(bool enable, const QStringList& decorations) { if (decorations.isEmpty() || decorations.contains(DECORATION_MENU)) { m_RenderWindow->ActivateMenuWidget(enable); } } bool SimpleRenderWindowView::IsDecorationEnabled(const QString& decoration) const { if (decoration == DECORATION_MENU) { return m_RenderWindow->GetActivateMenuWidgetFlag(); } return false; } QStringList SimpleRenderWindowView::GetDecorations() const { QStringList decorations; decorations << DECORATION_MENU; return decorations; } diff --git a/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.h b/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.h index 7f055389b9..9c76c3e79c 100644 --- a/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.h +++ b/Examples/Plugins/org.mitk.example.gui.customviewer.views/src/internal/SimpleRenderWindowView.h @@ -1,162 +1,162 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef SimpleRenderWindowView_H_ #define SimpleRenderWindowView_H_ #include #include #include class QmitkRenderWindow; class AbstractRenderWindowViewPrivate; /** * \brief A view class suited for the ViewerPerspective within the custom viewer plug-in. * * This view class contributes data node rendering functionality to the ViewerPerspective. * Being a subclass of QmitkAbstractView, this class yields access to the data storage and * thus is interconnected with the mitk::QmitkDataManagerView present in the same perspective. * As a subclass of mitk::IRenderWindowPart, this class provides an instance of QmitkRenderWindow. * A SimpleRenderWindowView instance is part of the ViewerPerspective for data visualization. */ // //! [SimpleRenderWindowViewDeclaration] class SimpleRenderWindowView : public QmitkAbstractView, public mitk::IRenderWindowPart // //! [SimpleRenderWindowViewDeclaration] { Q_OBJECT public: /** * Standard constructor. */ SimpleRenderWindowView(); ~SimpleRenderWindowView() override; /** * String based view identifier. */ static const std::string VIEW_ID; berryObjectMacro(SimpleRenderWindowView); // ------------------- mitk::IRenderWindowPart ---------------------- /** * \see mitk::IRenderWindowPart::GetActiveQmitkRenderWindow() */ QmitkRenderWindow *GetActiveQmitkRenderWindow() const override; QHash GetRenderWindows() const; /** * \see mitk::IRenderWindowPart::GetQmitkRenderWindows() */ QHash GetQmitkRenderWindows() const override; QmitkRenderWindow *GetRenderWindow(const QString &id) const; /** * \see mitk::IRenderWindowPart::GetQmitkRenderWindow(QString) */ QmitkRenderWindow *GetQmitkRenderWindow(const QString &id) const override; /** * \see mitk::IRenderWindowPart::GetQmitkRenderWindow(mitk::AnatomicalPlane) */ QmitkRenderWindow *GetQmitkRenderWindow(const mitk::AnatomicalPlane &orientation) const override; /** * \see mitk::QmitkAbstractRenderEditor::GetRenderingManager() */ mitk::IRenderingManager *GetRenderingManager() const override; /** * \see mitk::QmitkAbstractRenderEditor::RequestUpdate() */ void RequestUpdate( mitk::RenderingManager::RequestType requestType = mitk::RenderingManager::REQUEST_UPDATE_ALL) override; /** * \see mitk::QmitkAbstractRenderEditor::ForceImmediateUpdate() */ void ForceImmediateUpdate(mitk::RenderingManager::RequestType) override; /** * \see mitk::IRenderWindowPart::InitializeViews() */ void InitializeViews(const mitk::TimeGeometry* geometry, bool resetCamera) override; /** * \see mitk::IRenderWindowPart::SetInteractionReferenceGeometry() */ void SetInteractionReferenceGeometry(const mitk::TimeGeometry* referenceGeometry) override; /** * \see mitk::IRenderWindowPart::HasCoupledRenderWindows */ bool HasCoupledRenderWindows() const override; /** * \see mitk::IRenderWindowPart::GetTimeNavigationController() */ - mitk::SliceNavigationController *GetTimeNavigationController() const override; + mitk::TimeNavigationController* GetTimeNavigationController() const override; /** * \see mitk::IRenderWindowPart::GetSelectionPosition() */ mitk::Point3D GetSelectedPosition(const QString& id = QString()) const override; /** * \see mitk::IRenderWindowPart::SetSelectedPosition() */ void SetSelectedPosition(const mitk::Point3D& pos, const QString& id = QString()) override; /** * \see mitk::IRenderWindowPart::GetSelectedTimePoint() */ mitk::TimePointType GetSelectedTimePoint(const QString& id = QString()) const override; /** * \see mitk::IRenderWindowPart::EnableDecorations() */ void EnableDecorations(bool enable, const QStringList& decorations = QStringList()) override; /** * \see mitk::IRenderWindowPart::IsDecorationEnabled() */ bool IsDecorationEnabled(const QString& decoration) const override; /** * \see mitk::IRenderWindowPart::GetDecorations() */ QStringList GetDecorations() const override; protected: void SetFocus() override; /** * Creates the QmitkRenderWindow whose renderer is being connected to the view's data storage. */ void CreateQtPartControl(QWidget *parent) override; private: /** * The view's render window. */ QmitkRenderWindow *m_RenderWindow; QScopedPointer d; }; #endif /*SimpleRenderWindowView_H_*/ diff --git a/Examples/Plugins/org.mitk.example.gui.imaging/src/internal/simpleexample/QmitkSimpleExampleView.cpp b/Examples/Plugins/org.mitk.example.gui.imaging/src/internal/simpleexample/QmitkSimpleExampleView.cpp index 989d3d2d40..dd2ee9e05f 100644 --- a/Examples/Plugins/org.mitk.example.gui.imaging/src/internal/simpleexample/QmitkSimpleExampleView.cpp +++ b/Examples/Plugins/org.mitk.example.gui.imaging/src/internal/simpleexample/QmitkSimpleExampleView.cpp @@ -1,276 +1,276 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkSimpleExampleView.h" #include #include #include #include #include -#include "QmitkRenderWindow.h" -#include "QmitkStepperAdapter.h" +#include +#include +#include #include "mitkNodePredicateNot.h" #include "mitkNodePredicateProperty.h" #include "mitkProperties.h" #include #include #include const std::string QmitkSimpleExampleView::VIEW_ID = "org.mitk.views.simpleexample"; QmitkSimpleExampleView::QmitkSimpleExampleView() : m_Controls(nullptr), m_NavigatorsInitialized(false), m_Parent(nullptr) { } QmitkSimpleExampleView::~QmitkSimpleExampleView() { } void QmitkSimpleExampleView::CreateQtPartControl(QWidget *parent) { if (!m_Controls) { m_Parent = parent; // create GUI widgets m_Controls = new Ui::QmitkSimpleExampleViewControls; m_Controls->setupUi(parent); this->CreateConnections(); this->RenderWindowPartActivated(this->GetRenderWindowPart(mitk::WorkbenchUtil::OPEN)); } } void QmitkSimpleExampleView::SetFocus() { m_Controls->renderWindowComboBox->setFocus(); } void QmitkSimpleExampleView::RenderWindowPartActivated(mitk::IRenderWindowPart *renderWindowPart) { if (renderWindowPart == nullptr) { m_Parent->setEnabled(false); return; } QHashIterator renderIter(renderWindowPart->GetQmitkRenderWindows()); while (renderIter.hasNext()) { renderIter.next(); m_Controls->renderWindowComboBox->addItem(renderIter.key()); } RenderWindowSelected(m_Controls->renderWindowComboBox->currentText()); - m_TimeStepper.reset(new QmitkStepperAdapter(m_Controls->timeSliceNavigationWidget, - renderWindowPart->GetTimeNavigationController()->GetStepper())); - m_MovieStepper.reset(new QmitkStepperAdapter(m_Controls->movieNavigatorTime, - renderWindowPart->GetTimeNavigationController()->GetStepper())); + auto* timeController = mitk::RenderingManager::GetInstance()->GetTimeNavigationController(); + m_TimeStepper.reset(new QmitkStepperAdapter(m_Controls->timeSliceNavigationWidget, timeController->GetStepper())); + m_MovieStepper.reset(new QmitkStepperAdapter(m_Controls->movieNavigatorTime, timeController->GetStepper())); m_Parent->setEnabled(true); } void QmitkSimpleExampleView::RenderWindowPartDeactivated(mitk::IRenderWindowPart * /*renderWindowPart*/) { m_Parent->setEnabled(false); m_SliceStepper.reset(); m_TimeStepper.reset(); m_MovieStepper.reset(); m_Controls->renderWindowComboBox->clear(); } void QmitkSimpleExampleView::CreateConnections() { if (m_Controls) { connect(m_Controls->renderWindowComboBox, SIGNAL(currentIndexChanged(QString)), this, SLOT(RenderWindowSelected(QString))); connect(m_Controls->stereoSelect, SIGNAL(activated(int)), this, SLOT(StereoSelectionChanged(int))); connect(m_Controls->reInitializeNavigatorsButton, SIGNAL(clicked()), this, SLOT(InitNavigators())); connect(m_Controls->m_TakeScreenshotBtn, SIGNAL(clicked()), this, SLOT(OnTakeScreenshot())); connect(m_Controls->m_TakeHighResScreenShotBtn, SIGNAL(clicked()), this, SLOT(OnTakeHighResolutionScreenshot())); } } void QmitkSimpleExampleView::InitNavigators() { /* get all nodes that have not set "includeInBoundingBox" to false */ mitk::NodePredicateNot::Pointer pred = mitk::NodePredicateNot::New( mitk::NodePredicateProperty::New("includeInBoundingBox", mitk::BoolProperty::New(false))); mitk::DataStorage::SetOfObjects::ConstPointer rs = this->GetDataStorage()->GetSubset(pred); /* calculate bounding geometry of these nodes */ auto bounds = this->GetDataStorage()->ComputeBoundingGeometry3D(rs); /* initialize the views to the bounding geometry */ m_NavigatorsInitialized = mitk::RenderingManager::GetInstance()->InitializeViews(bounds); } void QmitkSimpleExampleView::StereoSelectionChanged(int id) { /* From vtkRenderWindow.h tells us about stereo rendering: Set/Get what type of stereo rendering to use. CrystalEyes mode uses frame-sequential capabilities available in OpenGL to drive LCD shutter glasses and stereo projectors. RedBlue mode is a simple type of stereo for use with red-blue glasses. Anaglyph mode is a superset of RedBlue mode, but the color output channels can be configured using the AnaglyphColorMask and the color of the original image can be (somewhat maintained using AnaglyphColorSaturation; the default colors for Anaglyph mode is red-cyan. Interlaced stereo mode produces a composite image where horizontal lines alternate between left and right views. StereoLeft and StereoRight modes choose one or the other stereo view. Dresden mode is yet another stereoscopic interleaving. */ auto *renderWindowPart = this->GetRenderWindowPart(mitk::WorkbenchUtil::OPEN); vtkRenderWindow *vtkrenderwindow = renderWindowPart->GetQmitkRenderWindow("3d")->GetVtkRenderWindow(); // note: foreground vtkRenderers (at least the department logo renderer) produce errors in stereoscopic visualization. // Therefore, we disable the logo visualization during stereo rendering. switch (id) { case 0: vtkrenderwindow->StereoRenderOff(); break; case 1: vtkrenderwindow->SetStereoTypeToRedBlue(); vtkrenderwindow->StereoRenderOn(); renderWindowPart->EnableDecorations(false, QStringList(mitk::IRenderWindowPart::DECORATION_LOGO)); break; case 2: vtkrenderwindow->SetStereoTypeToDresden(); vtkrenderwindow->StereoRenderOn(); renderWindowPart->EnableDecorations(false, QStringList(mitk::IRenderWindowPart::DECORATION_LOGO)); break; } mitk::BaseRenderer::GetInstance(vtkrenderwindow)->SetMapperID(mitk::BaseRenderer::Standard3D); renderWindowPart->RequestUpdate(); } QmitkRenderWindow *QmitkSimpleExampleView::GetSelectedRenderWindow() const { QString id = m_Controls->renderWindowComboBox->currentText(); if (id.isEmpty()) { return nullptr; } else { return this->GetRenderWindowPart(mitk::WorkbenchUtil::OPEN)->GetQmitkRenderWindow(id); } } void QmitkSimpleExampleView::OnTakeHighResolutionScreenshot() { QString filter; QString fileName = QFileDialog::getSaveFileName( nullptr, "Save screenshot to...", QDir::currentPath(), m_PNGExtension + ";;" + m_JPGExtension, &filter); vtkRenderer *renderer = this->GetSelectedRenderWindow()->GetRenderer()->GetVtkRenderer(); if (renderer == nullptr) return; this->TakeScreenshot(renderer, 4, fileName, filter); } void QmitkSimpleExampleView::OnTakeScreenshot() { QString filter; QString fileName = QFileDialog::getSaveFileName( nullptr, "Save screenshot to...", QDir::currentPath(), m_PNGExtension + ";;" + m_JPGExtension, &filter); QmitkRenderWindow *renWin = this->GetSelectedRenderWindow(); if (renWin == nullptr) return; vtkRenderer *renderer = renWin->GetRenderer()->GetVtkRenderer(); if (renderer == nullptr) return; this->TakeScreenshot(renderer, 1, fileName, filter); } void QmitkSimpleExampleView::TakeScreenshot(vtkRenderer *renderer, unsigned int magnificationFactor, QString fileName, QString filter) { if ((renderer == nullptr) || (magnificationFactor < 1) || fileName.isEmpty()) return; bool doubleBuffering(renderer->GetRenderWindow()->GetDoubleBuffer()); renderer->GetRenderWindow()->DoubleBufferOff(); vtkImageWriter *fileWriter = nullptr; QFileInfo fi(fileName); QString suffix = fi.suffix().toLower(); if (suffix.isEmpty() || (suffix != "png" && suffix != "jpg" && suffix != "jpeg")) { if (filter == m_PNGExtension) { suffix = "png"; } else if (filter == m_JPGExtension) { suffix = "jpg"; } fileName += "." + suffix; } if (suffix.compare("jpg", Qt::CaseInsensitive) == 0 || suffix.compare("jpeg", Qt::CaseInsensitive) == 0) { vtkJPEGWriter *w = vtkJPEGWriter::New(); w->SetQuality(100); w->ProgressiveOff(); fileWriter = w; } else // default is png { fileWriter = vtkPNGWriter::New(); } vtkRenderLargeImage *magnifier = vtkRenderLargeImage::New(); magnifier->SetInput(renderer); magnifier->SetMagnification(magnificationFactor); fileWriter->SetInputConnection(magnifier->GetOutputPort()); fileWriter->SetFileName(fileName.toLatin1()); // vtkRenderLargeImage has problems with different layers, therefore we have to // temporarily deactivate all other layers. // we set the background to white, because it is nicer than black... double oldBackground[3]; renderer->GetBackground(oldBackground); double white[] = {1.0, 1.0, 1.0}; renderer->SetBackground(white); mitk::IRenderWindowPart* renderWindowPart = this->GetRenderWindowPart(mitk::WorkbenchUtil::OPEN); renderWindowPart->EnableDecorations(false); fileWriter->Write(); fileWriter->Delete(); renderWindowPart->EnableDecorations(true); renderer->SetBackground(oldBackground); renderer->GetRenderWindow()->SetDoubleBuffer(doubleBuffering); } void QmitkSimpleExampleView::RenderWindowSelected(const QString &id) { if (!id.isEmpty()) { m_SliceStepper.reset(new QmitkStepperAdapter(m_Controls->sliceNavigationWidget, this->GetRenderWindowPart(mitk::WorkbenchUtil::OPEN)->GetQmitkRenderWindow(id)->GetSliceNavigationController()->GetStepper())); } } diff --git a/Modules/Core/TestingHelper/src/mitkInteractionTestHelper.cpp b/Modules/Core/TestingHelper/src/mitkInteractionTestHelper.cpp index 32ca0c577e..d3ac3f381e 100644 --- a/Modules/Core/TestingHelper/src/mitkInteractionTestHelper.cpp +++ b/Modules/Core/TestingHelper/src/mitkInteractionTestHelper.cpp @@ -1,435 +1,436 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include #include #include #include +#include #include +#include // VTK #include #include // us #include #include mitk::InteractionTestHelper::InteractionTestHelper(const std::string &interactionXmlFilePath) : m_InteractionFilePath(interactionXmlFilePath) { this->Initialize(interactionXmlFilePath); } void mitk::InteractionTestHelper::Initialize(const std::string &interactionXmlFilePath) { tinyxml2::XMLDocument document; if (tinyxml2::XML_SUCCESS == document.LoadFile(interactionXmlFilePath.c_str())) { // get RenderingManager instance auto rm = mitk::RenderingManager::GetInstance(); // create data storage m_DataStorage = mitk::StandaloneDataStorage::New(); // for each renderer found create a render window and configure for (auto *element = document.FirstChildElement(mitk::InteractionEventConst::xmlTagInteractions().c_str()) ->FirstChildElement(mitk::InteractionEventConst::xmlTagConfigRoot().c_str()) ->FirstChildElement(mitk::InteractionEventConst::xmlTagRenderer().c_str()); element != nullptr; element = element->NextSiblingElement(mitk::InteractionEventConst::xmlTagRenderer().c_str())) { // get name of renderer const char *rendererName = element->Attribute(mitk::InteractionEventConst::xmlEventPropertyRendererName().c_str()); // get view direction mitk::AnatomicalPlane viewDirection = mitk::AnatomicalPlane::Axial; if (element->Attribute(mitk::InteractionEventConst::xmlEventPropertyViewDirection().c_str()) != nullptr) { int viewDirectionNum = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlEventPropertyViewDirection().c_str())); viewDirection = static_cast(viewDirectionNum); } // get mapper slot id MapperSlotId mapperID = mitk::BaseRenderer::Standard2D; if (element->Attribute(mitk::InteractionEventConst::xmlEventPropertyMapperID().c_str()) != nullptr) { int mapperIDNum = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlEventPropertyMapperID().c_str())); mapperID = static_cast(mapperIDNum); } // Get Size of Render Windows int size[3]; size[0] = size[1] = size[2] = 0; if (element->Attribute(mitk::InteractionEventConst::xmlRenderSizeX().c_str()) != nullptr) { size[0] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlRenderSizeX().c_str())); } if (element->Attribute(mitk::InteractionEventConst::xmlRenderSizeY().c_str()) != nullptr) { size[1] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlRenderSizeY().c_str())); } if (element->Attribute(mitk::InteractionEventConst::xmlRenderSizeZ().c_str()) != nullptr) { size[2] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlRenderSizeZ().c_str())); } // create renderWindow, renderer and dispatcher auto rw = RenderWindow::New(nullptr, rendererName); // VtkRenderWindow is created within constructor if nullptr if (size[0] != 0 && size[1] != 0) { rw->SetSize(size[0], size[1]); rw->GetRenderer()->Resize(size[0], size[1]); } // set storage of renderer rw->GetRenderer()->SetDataStorage(m_DataStorage); // set view direction to axial rw->GetSliceNavigationController()->SetDefaultViewDirection(viewDirection); // set renderer to render 2D rw->GetRenderer()->SetMapperID(mapperID); rw->GetRenderer()->PrepareRender(); // Some more magic for the 3D render window case: // Camera view direction, position and focal point if (mapperID == mitk::BaseRenderer::Standard3D) { if (element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointX().c_str()) != nullptr) { double cameraFocalPoint[3]; cameraFocalPoint[0] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointX().c_str())); cameraFocalPoint[1] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointY().c_str())); cameraFocalPoint[2] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointZ().c_str())); rw->GetRenderer()->GetVtkRenderer()->GetActiveCamera()->SetFocalPoint(cameraFocalPoint); } if (element->Attribute(mitk::InteractionEventConst::xmlCameraPositionX().c_str()) != nullptr) { double cameraPosition[3]; cameraPosition[0] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraPositionX().c_str())); cameraPosition[1] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraPositionY().c_str())); cameraPosition[2] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraPositionZ().c_str())); rw->GetRenderer()->GetVtkRenderer()->GetActiveCamera()->SetPosition(cameraPosition); } if (element->Attribute(mitk::InteractionEventConst::xmlViewUpX().c_str()) != nullptr) { double viewUp[3]; viewUp[0] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlViewUpX().c_str())); viewUp[1] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlViewUpY().c_str())); viewUp[2] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlViewUpZ().c_str())); rw->GetRenderer()->GetVtkRenderer()->GetActiveCamera()->SetViewUp(viewUp); } } rw->GetVtkRenderWindow()->Render(); rw->GetVtkRenderWindow()->WaitForCompletion(); // connect SliceNavigationControllers to timestep changed event of TimeNavigationController rw->GetSliceNavigationController()->ConnectGeometryTimeEvent(rm->GetTimeNavigationController()); rm->GetTimeNavigationController()->ConnectGeometryTimeEvent(rw->GetSliceNavigationController()); // add to list of known render windows m_RenderWindowList.push_back(rw); } // TODO: check the following lines taken from QmitkStdMultiWidget and adapt them to be executed in our code here. // mitkWidget1->GetSliceNavigationController() // ->ConnectGeometrySendEvent(mitk::BaseRenderer::GetInstance(mitkWidget4->GetRenderWindow())); // register interaction event obserer to handle scroll events InitializeDisplayActionEventHandling(); } else { mitkThrow() << "Can not load interaction xml file <" << m_InteractionFilePath << ">"; } // WARNING assumes a 3D window exists !!!! this->AddDisplayPlaneSubTree(); } void mitk::InteractionTestHelper::InitializeDisplayActionEventHandling() { m_DisplayActionEventBroadcast = mitk::DisplayActionEventBroadcast::New(); m_DisplayActionEventBroadcast->LoadStateMachine("DisplayInteraction.xml"); m_DisplayActionEventBroadcast->SetEventConfig("DisplayConfigMITKBase.xml"); m_DisplayActionEventBroadcast->AddEventConfig("DisplayConfigCrosshair.xml"); } mitk::InteractionTestHelper::~InteractionTestHelper() { mitk::RenderingManager *rm = mitk::RenderingManager::GetInstance(); // unregister renderers auto it = m_RenderWindowList.begin(); auto end = m_RenderWindowList.end(); for (; it != end; ++it) { rm->GetTimeNavigationController()->Disconnect((*it)->GetSliceNavigationController()); (*it)->GetSliceNavigationController()->Disconnect(rm->GetTimeNavigationController()); mitk::BaseRenderer::RemoveInstance((*it)->GetVtkRenderWindow()); } rm->RemoveAllObservers(); } mitk::DataStorage::Pointer mitk::InteractionTestHelper::GetDataStorage() { return m_DataStorage; } void mitk::InteractionTestHelper::AddNodeToStorage(mitk::DataNode::Pointer node) { this->m_DataStorage->Add(node); this->Set3dCameraSettings(); } void mitk::InteractionTestHelper::PlaybackInteraction() { mitk::RenderingManager::GetInstance()->InitializeViewsByBoundingObjects(m_DataStorage); // load events if not loaded yet if (m_Events.empty()) this->LoadInteraction(); auto it = m_RenderWindowList.begin(); auto end = m_RenderWindowList.end(); for (; it != end; ++it) { (*it)->GetRenderer()->PrepareRender(); (*it)->GetVtkRenderWindow()->Render(); (*it)->GetVtkRenderWindow()->WaitForCompletion(); } mitk::RenderingManager::GetInstance()->InitializeViewsByBoundingObjects(m_DataStorage); it = m_RenderWindowList.begin(); for (; it != end; ++it) { (*it)->GetVtkRenderWindow()->Render(); (*it)->GetVtkRenderWindow()->WaitForCompletion(); } // mitk::RenderingManager::GetInstance()->ForceImmediateUpdateAll(); // playback all events in queue for (unsigned long i = 0; i < m_Events.size(); ++i) { // let dispatcher of sending renderer process the event m_Events.at(i)->GetSender()->GetDispatcher()->ProcessEvent(m_Events.at(i)); } if (false) { it--; (*it)->GetVtkRenderWindow()->GetInteractor()->Start(); } } void mitk::InteractionTestHelper::LoadInteraction() { // load interaction pattern from xml file std::ifstream xmlStream(m_InteractionFilePath.c_str()); mitk::XML2EventParser parser(xmlStream); m_Events = parser.GetInteractions(); xmlStream.close(); // Avoid VTK warning: Trying to delete object with non-zero reference count. parser.SetReferenceCount(0); } void mitk::InteractionTestHelper::SetTimeStep(int newTimeStep) { - mitk::RenderingManager::GetInstance()->InitializeViewsByBoundingObjects(m_DataStorage); + auto rm = mitk::RenderingManager::GetInstance(); + rm->InitializeViewsByBoundingObjects(m_DataStorage); - bool timeStepIsvalid = - mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetCreatedWorldGeometry()->IsValidTimeStep( - newTimeStep); + bool timeStepIsvalid = rm->GetTimeNavigationController()->GetInputWorldTimeGeometry()->IsValidTimeStep(newTimeStep); if (timeStepIsvalid) { - mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetStepper()->SetPos(newTimeStep); + rm->GetTimeNavigationController()->GetStepper()->SetPos(newTimeStep); } } mitk::RenderWindow *mitk::InteractionTestHelper::GetRenderWindowByName(const std::string &name) { auto it = m_RenderWindowList.begin(); auto end = m_RenderWindowList.end(); for (; it != end; ++it) { if (name.compare((*it)->GetRenderer()->GetName()) == 0) return (*it).GetPointer(); } return nullptr; } mitk::RenderWindow *mitk::InteractionTestHelper::GetRenderWindowByDefaultViewDirection(AnatomicalPlane viewDirection) { auto it = m_RenderWindowList.begin(); auto end = m_RenderWindowList.end(); for (; it != end; ++it) { if (viewDirection == (*it)->GetSliceNavigationController()->GetDefaultViewDirection()) return (*it).GetPointer(); } return nullptr; } mitk::RenderWindow *mitk::InteractionTestHelper::GetRenderWindow(unsigned int index) { if (index < m_RenderWindowList.size()) { return m_RenderWindowList.at(index).GetPointer(); } else { return nullptr; } } void mitk::InteractionTestHelper::AddDisplayPlaneSubTree() { // add the displayed planes of the multiwidget to a node to which the subtree // @a planesSubTree points ... mitk::PlaneGeometryDataMapper2D::Pointer mapper; mitk::IntProperty::Pointer layer = mitk::IntProperty::New(1000); mitk::DataNode::Pointer node = mitk::DataNode::New(); node->SetProperty("name", mitk::StringProperty::New("Widgets")); node->SetProperty("helper object", mitk::BoolProperty::New(true)); m_DataStorage->Add(node); for (auto it : m_RenderWindowList) { if (it->GetRenderer()->GetMapperID() == BaseRenderer::Standard3D) continue; // ... of widget 1 mitk::DataNode::Pointer planeNode1 = (mitk::BaseRenderer::GetInstance(it->GetVtkRenderWindow()))->GetCurrentWorldPlaneGeometryNode(); planeNode1->SetProperty("visible", mitk::BoolProperty::New(true)); planeNode1->SetProperty("name", mitk::StringProperty::New("widget1Plane")); planeNode1->SetProperty("includeInBoundingBox", mitk::BoolProperty::New(false)); planeNode1->SetProperty("helper object", mitk::BoolProperty::New(true)); planeNode1->SetProperty("layer", layer); planeNode1->SetColor(1.0, 0.0, 0.0); mapper = mitk::PlaneGeometryDataMapper2D::New(); planeNode1->SetMapper(mitk::BaseRenderer::Standard2D, mapper); m_DataStorage->Add(planeNode1, node); } } void mitk::InteractionTestHelper::Set3dCameraSettings() { tinyxml2::XMLDocument document; if (tinyxml2::XML_SUCCESS == document.LoadFile(m_InteractionFilePath.c_str())) { // for each renderer found create a render window and configure for (auto *element = document.FirstChildElement(mitk::InteractionEventConst::xmlTagInteractions().c_str()) ->FirstChildElement(mitk::InteractionEventConst::xmlTagConfigRoot().c_str()) ->FirstChildElement(mitk::InteractionEventConst::xmlTagRenderer().c_str()); element != nullptr; element = element->NextSiblingElement(mitk::InteractionEventConst::xmlTagRenderer().c_str())) { // get name of renderer const char *rendererName = element->Attribute(mitk::InteractionEventConst::xmlEventPropertyRendererName().c_str()); // get mapper slot id MapperSlotId mapperID = mitk::BaseRenderer::Standard2D; if (element->Attribute(mitk::InteractionEventConst::xmlEventPropertyMapperID().c_str()) != nullptr) { int mapperIDNum = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlEventPropertyMapperID().c_str())); mapperID = static_cast(mapperIDNum); } if (mapperID == mitk::BaseRenderer::Standard3D) { RenderWindow *namedRenderer = nullptr; for (const auto &it : m_RenderWindowList) { if (strcmp(it->GetRenderer()->GetName(), rendererName) == 0) { namedRenderer = it.GetPointer(); break; } } if (namedRenderer == nullptr) { MITK_ERROR << "No match for render window was found."; return; } namedRenderer->GetRenderer()->PrepareRender(); if (element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointX().c_str()) != nullptr) { double cameraFocalPoint[3]; cameraFocalPoint[0] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointX().c_str())); cameraFocalPoint[1] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointY().c_str())); cameraFocalPoint[2] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraFocalPointZ().c_str())); namedRenderer->GetRenderer()->GetVtkRenderer()->GetActiveCamera()->SetFocalPoint(cameraFocalPoint); } if (element->Attribute(mitk::InteractionEventConst::xmlCameraPositionX().c_str()) != nullptr) { double cameraPosition[3]; cameraPosition[0] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraPositionX().c_str())); cameraPosition[1] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraPositionY().c_str())); cameraPosition[2] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlCameraPositionZ().c_str())); namedRenderer->GetRenderer()->GetVtkRenderer()->GetActiveCamera()->SetPosition(cameraPosition); } if (element->Attribute(mitk::InteractionEventConst::xmlViewUpX().c_str()) != nullptr) { double viewUp[3]; viewUp[0] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlViewUpX().c_str())); viewUp[1] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlViewUpY().c_str())); viewUp[2] = std::atoi(element->Attribute(mitk::InteractionEventConst::xmlViewUpZ().c_str())); namedRenderer->GetRenderer()->GetVtkRenderer()->GetActiveCamera()->SetViewUp(viewUp); } namedRenderer->GetVtkRenderWindow()->Render(); } } } } diff --git a/Modules/Core/include/mitkBaseRenderer.h b/Modules/Core/include/mitkBaseRenderer.h index f89e5bac0c..a6ad38fd83 100644 --- a/Modules/Core/include/mitkBaseRenderer.h +++ b/Modules/Core/include/mitkBaseRenderer.h @@ -1,505 +1,506 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkBaseRenderer_h #define mitkBaseRenderer_h #include #include #include #include #include #include #include +#include #include #include #include #include #include #include namespace mitk { class Mapper; class BaseLocalStorageHandler; #pragma GCC visibility push(default) itkEventMacroDeclaration(RendererResetEvent, itk::AnyEvent); #pragma GCC visibility pop /* * \brief Organizes the rendering process * * A BaseRenderer contains a reference to a given vtkRenderWindow * and a corresponding vtkRenderer. * The BaseRenderer defines which mapper should be used (2D / 3D) * and which view direction should be rendered. * * All existing BaseRenderer are stored in a static variable * that can be accessed / modified via the static functions. * VtkPropRenderer is a concrete implementation of a BaseRenderer. */ class MITKCORE_EXPORT BaseRenderer : public itk::Object { public: typedef std::map BaseRendererMapType; static BaseRendererMapType baseRendererMap; /** * \brief Defines which kind of mapper (e.g. 2D or 3D) should be used. */ enum StandardMapperSlot { Standard2D = 1, Standard3D = 2 }; static BaseRenderer* GetInstance(vtkRenderWindow* renderWindow); static void AddInstance(vtkRenderWindow* renderWindow, BaseRenderer* baseRenderer); static void RemoveInstance(vtkRenderWindow* renderWindow); static BaseRenderer* GetByName(const std::string& name); static vtkRenderWindow* GetRenderWindowByName(const std::string& name); /** * \brief Get a map of specific RenderWindows */ static BaseRendererMapType GetSpecificRenderWindows(MapperSlotId mapper); /** * \brief Convenience function: Get a map of all 2D RenderWindows */ static BaseRendererMapType GetAll2DRenderWindows(); /** * \brief Convenience function: Get a map of all 3D RenderWindows */ static BaseRendererMapType GetAll3DRenderWindows(); mitkClassMacroItkParent(BaseRenderer, itk::Object); BaseRenderer(const char* name = nullptr, vtkRenderWindow* renderWindow = nullptr); void RemoveAllLocalStorages(); void RegisterLocalStorageHandler(BaseLocalStorageHandler* lsh); void UnregisterLocalStorageHandler(BaseLocalStorageHandler* lsh); virtual void SetDataStorage(DataStorage* storage); virtual DataStorage::Pointer GetDataStorage() const { return m_DataStorage.GetPointer(); } vtkRenderWindow* GetRenderWindow() const { return m_RenderWindow; } vtkRenderer* GetVtkRenderer() const { return m_VtkRenderer; } /** * \brief Get the dispatcher, which handles events for this base renderer. */ Dispatcher::Pointer GetDispatcher() const; /** * \brief Set a new size for the render window. */ virtual void Resize(int w, int h); /** * \brief Initialize the base renderer with a vtk render window. * Set the new renderer for the camera controller. */ virtual void InitRenderer(vtkRenderWindow* renderwindow); /** * \brief Set the initial size for the render window. */ virtual void InitSize(int w, int h); virtual void DrawOverlayMouse(Point2D&) { MITK_INFO << "BaseRenderer::DrawOverlayMouse() should be in concret implementation OpenGLRenderer." << std::endl; } /** * \brief Set the world time geometry using the given TimeGeometry. * * Setting a new world time geometry updates the current world geometry and the * curent world plane geometry, using the currently selected slice and timestep. */ virtual void SetWorldTimeGeometry(const TimeGeometry* geometry); itkGetConstObjectMacro(WorldTimeGeometry, TimeGeometry); /** * \brief Set the interaction reference world time geometry using the given TimeGeometry. * * Setting a new interaction reference world time geometry also updates the * alignment status of the reference geometry, which can be retrieved using * 'GetReferenceGeometryAligned'. * Using a nullptr as the interaction reference geomertry implies that * no requirements on the geometry exist, thus in this case any check * will result in 'ReferenceGeometryAligned' being true. * * \param geometry The reference geometry used for render window interaction. */ virtual void SetInteractionReferenceGeometry(const TimeGeometry* geometry); /** * \brief Get the current interaction reference geometry. */ itkGetConstObjectMacro(InteractionReferenceGeometry, TimeGeometry); /** * \brief Return if the reference geometry aligns with the base renderer's world geometry. * If true, the interaction reference geometry aligns with the base renderer's * current world geometry. False otherwise. */ itkGetMacro(ReferenceGeometryAligned, bool); /** * \brief Get the current time-extracted 3D-geometry. */ itkGetConstObjectMacro(CurrentWorldGeometry, BaseGeometry); /** * \brief Get the current slice-extracted 2D-geometry. */ itkGetConstObjectMacro(CurrentWorldPlaneGeometry, PlaneGeometry); virtual bool SetWorldGeometryToDataStorageBounds() { return false; } /** * \brief Set the slice that should be used for geometry extraction. * * The slice defines the current slice-extracted 2D-geometry (CurrentWorldPlaneGeometry). * Setting a new slice will update the current world geometry and the * curent world plane geometry. */ virtual void SetSlice(unsigned int slice); itkGetConstMacro(Slice, unsigned int); /** * \brief Set the timestep that should be used for geometry extraction. * * The timestep defines the current time-extracted 3D-geometry (CurrentWorldGeometry). * Setting a new timestep will update the current world geometry and the * curent world plane geometry. */ virtual void SetTimeStep(unsigned int timeStep); itkGetConstMacro(TimeStep, unsigned int); /** * \brief Get the timestep of a BaseData object which * exists at the time of the currently displayed content. * * Returns -1 if there is no data at the current time. */ TimeStepType GetTimeStep(const BaseData* data) const; /** * \brief Get the time in ms of the currently display content (geometry). */ ScalarType GetTime() const; /** * \brief Set the world time geometry using the geometry of the given event. * * The function is triggered by a SliceNavigationController::GeometrySendEvent. */ virtual void SetGeometry(const itk::EventObject& geometrySliceEvent); /** * \brief Set the current world plane geometry using the existing current world geometry. * * The function is triggered by a SliceNavigationController::GeometryUpdateEvent. */ virtual void UpdateGeometry(const itk::EventObject& geometrySliceEvent); /** * \brief Set the current slice using "SetSlice" and update the current world geometry * and the current world plane geometry. * * The function is triggered by a SliceNavigationController::GeometrySliceEvent. */ virtual void SetGeometrySlice(const itk::EventObject& geometrySliceEvent); /** * \brief Set the current time using "SetTimeStep" and update the current world geometry * and the current world plane geometry. * * The function is triggered by a TimeNavigationController::TimeEvent. */ virtual void SetGeometryTime(const itk::EventObject& geometryTimeEvent); itkGetObjectMacro(CurrentWorldPlaneGeometryNode, DataNode); /** * \brief Modify the update time of the current world plane geometry and force reslicing. */ void SendUpdateSlice(); /** * \brief Get timestamp of the update time of the current world plane geometry. */ itkGetMacro(CurrentWorldPlaneGeometryUpdateTime, unsigned long); /** * \brief Get timestamp of the update time of the current timestep. */ itkGetMacro(TimeStepUpdateTime, unsigned long); /** * \brief Pick a world coordinate (x,y,z) given a display coordinate (x,y). * * \warning Not implemented; has to be overwritten in subclasses. */ virtual void PickWorldPoint(const Point2D& diplayPosition, Point3D& worldPosition) const = 0; /** * \brief Determines the object (mitk::DataNode) closest to the current * position by means of picking. * * \warning Implementation currently empty for 2D rendering; intended to be * implemented for 3D renderers. */ virtual DataNode* PickObject(const Point2D& /*displayPosition*/, Point3D& /*worldPosition*/) const { return nullptr; } /** * \brief Get the currently used mapperID. */ itkGetMacro(MapperID, MapperSlotId); itkGetConstMacro(MapperID, MapperSlotId); /** * \brief Set the used mapperID. */ virtual void SetMapperID(MapperSlotId id); virtual int* GetSize() const; virtual int* GetViewportSize() const; void SetSliceNavigationController(SliceNavigationController* SlicenavigationController); itkGetObjectMacro(CameraController, CameraController); itkGetObjectMacro(SliceNavigationController, SliceNavigationController); itkGetObjectMacro(CameraRotationController, CameraRotationController); itkGetMacro(EmptyWorldGeometry, bool); /** * \brief Getter/Setter for defining if the displayed region should be shifted * or rescaled if the render window is resized. */ itkGetMacro(KeepDisplayedRegion, bool); itkSetMacro(KeepDisplayedRegion, bool); /** * \brief Return the name of the base renderer */ const char* GetName() const { return m_Name.c_str(); } /** * \brief Return the size in x-direction of the base renderer. */ int GetSizeX() const { return this->GetSize()[0]; } /** * \brief Return the size in y-direction of the base renderer. */ int GetSizeY() const { return this->GetSize()[1]; } /** * \brief Return the bounds of the bounding box of the * current world geometry (time-extracted 3D-geometry). * * If the geometry is empty, the bounds are set to zero. */ const double* GetBounds() const; void RequestUpdate(); void ForceImmediateUpdate(); /** * \brief Return the number of mappers which are visible and have * level-of-detail rendering enabled. */ unsigned int GetNumberOfVisibleLODEnabledMappers() const; /** * \brief Convert a display point to the 3D world index * using the geometry of the renderWindow. */ void DisplayToWorld(const Point2D& displayPoint, Point3D& worldIndex) const; /** * \brief Convert a display point to the 2D world index, mapped onto the display plane * using the geometry of the renderWindow. */ void DisplayToPlane(const Point2D& displayPoint, Point2D& planePointInMM) const; /** * \brief Convert a 3D world index to the display point * using the geometry of the renderWindow. */ void WorldToDisplay(const Point3D& worldIndex, Point2D& displayPoint) const; /** * \brief Convert a 3D world index to the point on the viewport * using the geometry of the renderWindow. */ void WorldToView(const Point3D& worldIndex, Point2D& viewPoint) const; /** * \brief Convert a 2D plane coordinate to the display point * using the geometry of the renderWindow. */ void PlaneToDisplay(const Point2D& planePointInMM, Point2D& displayPoint) const; /** * \brief Convert a 2D plane coordinate to the point on the viewport * using the geometry of the renderWindow. */ void PlaneToView(const Point2D& planePointInMM, Point2D& viewPoint) const; double GetScaleFactorMMPerDisplayUnit() const; Point2D GetDisplaySizeInMM() const; Point2D GetViewportSizeInMM() const; Point2D GetOriginInMM() const; itkGetConstMacro(ConstrainZoomingAndPanning, bool) virtual void SetConstrainZoomingAndPanning(bool constrain); protected: ~BaseRenderer() override; virtual void Update() = 0; vtkRenderWindow* m_RenderWindow; vtkRenderer* m_VtkRenderer; MapperSlotId m_MapperID; DataStorage::Pointer m_DataStorage; unsigned long m_LastUpdateTime; CameraController::Pointer m_CameraController; CameraRotationController::Pointer m_CameraRotationController; SliceNavigationController::Pointer m_SliceNavigationController; void UpdateCurrentGeometries(); virtual void SetCurrentWorldPlaneGeometry(const PlaneGeometry* geometry2d); virtual void SetCurrentWorldGeometry(const BaseGeometry *geometry); private: /** * \brief Pointer to the current TimeGeometry. * * This WorldTimeGeometry is used to extract a SlicedGeometry3D, * using the current timestep (set via SetTimeStep). * The time-extracted 3D-geometry is used as the "CurrentWorldGeometry". * A PlaneGeometry can further be extracted using the current slice (set via SetSlice). * The slice-extracted 2D-geometry is used as the "CurrentWorldPlaneGeometry". */ TimeGeometry::ConstPointer m_WorldTimeGeometry; /** * \brief Pointer to the interaction reference geometry used for interaction. * * This InteractionReferenceGeometry is used to decide if a base renderer / * render window is able to correctly handle display interaction, e.g. drawing. * It will be set using the "SetInteractionReferenceGeometry"-function. */ TimeGeometry::ConstPointer m_InteractionReferenceGeometry; /** * \brief Pointer to the current time-extracted 3D-geometry. * * This CurrentWorldGeometry is used to define the bounds for this * BaseRenderer. * It will be set using the "SetCurrentWorldGeometry"-function. */ BaseGeometry::ConstPointer m_CurrentWorldGeometry; /** * \brief Pointer to the current slice-extracted 2D-geometry. * * This CurrentWorldPlaneGeometry is used to define the maximal * area (2D manifold) to be rendered in case we are doing 2D-rendering. * It will be set using the "SetCurrentWorldPlaneGeometry"-function. */ PlaneGeometry::Pointer m_CurrentWorldPlaneGeometry; unsigned int m_Slice; unsigned int m_TimeStep; itk::TimeStamp m_CurrentWorldPlaneGeometryUpdateTime; itk::TimeStamp m_TimeStepUpdateTime; BindDispatcherInteractor* m_BindDispatcherInteractor; bool m_KeepDisplayedRegion; bool m_ReferenceGeometryAligned; protected: void PrintSelf(std::ostream& os, itk::Indent indent) const override; PlaneGeometryData::Pointer m_CurrentWorldPlaneGeometryData; DataNode::Pointer m_CurrentWorldPlaneGeometryNode; unsigned long m_CurrentWorldPlaneGeometryTransformTime; std::string m_Name; double m_Bounds[6]; bool m_EmptyWorldGeometry; typedef std::set LODEnabledMappersType; unsigned int m_NumberOfVisibleLODEnabledMappers; std::list m_RegisteredLocalStorageHandlers; bool m_ConstrainZoomingAndPanning; }; } // namespace mitk #endif diff --git a/Modules/Core/src/Controllers/mitkSliceNavigationHelper.cpp b/Modules/Core/src/Controllers/mitkSliceNavigationHelper.cpp index 0dc248112a..10d3d3f86a 100644 --- a/Modules/Core/src/Controllers/mitkSliceNavigationHelper.cpp +++ b/Modules/Core/src/Controllers/mitkSliceNavigationHelper.cpp @@ -1,144 +1,144 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSliceNavigationHelper.h" #include #include #include #include #include -#include +#include unsigned int mitk::SliceNavigationHelper::SelectSliceByPoint(const TimeGeometry* timeGeometry, const Point3D& point) { int selectedSlice = -1; if (nullptr == timeGeometry) { return selectedSlice; } // get the BaseGeometry of the selected time point auto selectedTimePoint = RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); auto currentGeometry = timeGeometry->GetGeometryForTimePoint(selectedTimePoint); if (nullptr == currentGeometry) { // time point not valid for the ime geometry mitkThrow() << "Cannot extract a base geometry. A time point is selected that is not covered by" << "the given time geometry. Selected time point: " << selectedTimePoint; } const auto* slicedGeometry = dynamic_cast(currentGeometry.GetPointer()); if (nullptr == slicedGeometry) { return selectedSlice; } double bestDistance = itk::NumericTraits::max(); if (slicedGeometry->GetEvenlySpaced()) { PlaneGeometry* plane = slicedGeometry->GetPlaneGeometry(0); const Vector3D& direction = slicedGeometry->GetDirectionVector(); Point3D projectedPoint; plane->Project(point, projectedPoint); // check whether the point is somewhere within the slice stack volume if (direction[0] * (point[0] - projectedPoint[0]) + direction[1] * (point[1] - projectedPoint[1]) + direction[2] * (point[2] - projectedPoint[2]) >= 0) { selectedSlice = static_cast(plane->Distance(point) / slicedGeometry->GetSpacing()[2] + 0.5); } } else { int numberOfSlices = slicedGeometry->GetSlices(); Point3D projectedPoint; for (int slice = 0; slice < numberOfSlices; ++slice) { slicedGeometry->GetPlaneGeometry(slice)->Project(point, projectedPoint); const Vector3D distance = projectedPoint - point; ScalarType currentDistance = distance.GetSquaredNorm(); if (currentDistance < bestDistance) { bestDistance = currentDistance; selectedSlice = slice; } } } if (selectedSlice < 0) { selectedSlice = 0; // do not allow negative slices } return selectedSlice; } mitk::TimeGeometry::Pointer mitk::SliceNavigationHelper::CreateOrientedTimeGeometry(const TimeGeometry* timeGeometry, AnatomicalPlane orientation, bool top, bool frontside, bool rotated) { if (nullptr == timeGeometry) { return nullptr; } // initialize the viewplane SlicedGeometry3D::Pointer slicedGeometry; BaseGeometry::ConstPointer currentGeometry; // get the BaseGeometry of the selected time point auto selectedTimePoint = RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); currentGeometry = timeGeometry->GetGeometryForTimePoint(selectedTimePoint); if(nullptr == currentGeometry) { // time point not valid for the time geometry mitkThrow() << "Cannot extract a base geometry. A time point is selected that is not covered by" << "the given time geometry. Selected time point: " << selectedTimePoint; } slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializePlanes(currentGeometry, orientation, top, frontside, rotated); // use the existing time geometry but replace all time steps with the newly created // sliced geometry (base geometry), initialized to the desired plane orientation auto createdTimeGeometry = timeGeometry->Clone(); createdTimeGeometry->ReplaceTimeStepGeometries(slicedGeometry); return createdTimeGeometry; } mitk::PlaneGeometry* mitk::SliceNavigationHelper::GetCurrentPlaneGeometry(const TimeGeometry* timeGeometry, TimePointType timePoint, unsigned int slicePosition) { if (nullptr == timeGeometry) { return nullptr; } const auto* slicedGeometry = dynamic_cast(timeGeometry->GetGeometryForTimePoint(timePoint).GetPointer()); if (nullptr == slicedGeometry) { // time point not valid for the time geometry mitkThrow() << "Cannot extract a sliced geometry. A time point is selected that is not covered by" << "the given time geometry. Selected time point: " << timePoint; } return slicedGeometry->GetPlaneGeometry(slicePosition); } diff --git a/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp b/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp index be87835ed5..e7718b3a4a 100644 --- a/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp +++ b/Modules/Core/src/Interactions/mitkDisplayActionEventBroadcast.cpp @@ -1,807 +1,808 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkDisplayActionEventBroadcast.h" // us #include "usGetModuleContext.h" #include "usModuleContext.h" // mitk core module #include #include #include #include #include #include +#include #include mitk::DisplayActionEventBroadcast::DisplayActionEventBroadcast() : m_AlwaysReact(false) , m_AutoRepeat(false) , m_IndexToSliceModifier(4) , m_InvertScrollDirection(false) , m_InvertZoomDirection(false) , m_ZoomFactor(2) , m_InvertMoveDirection(false) , m_InvertLevelWindowDirection(false) , m_LinkPlanes(true) { m_StartCoordinateInMM.Fill(0); m_LastDisplayCoordinate.Fill(0); m_CurrentDisplayCoordinate.Fill(0); // register the broadcast class (itself) as an interaction event observer via micro services us::ServiceProperties props; props["name"] = std::string("DisplayActionEventBroadcast"); m_ServiceRegistration = us::GetModuleContext()->RegisterService(this, props); } mitk::DisplayActionEventBroadcast::~DisplayActionEventBroadcast() { m_ServiceRegistration.Unregister(); } void mitk::DisplayActionEventBroadcast::Notify(InteractionEvent* interactionEvent, bool isHandled) { // the event is passed to the state machine interface to be handled if (!isHandled || m_AlwaysReact) { HandleEvent(interactionEvent, nullptr); } } void mitk::DisplayActionEventBroadcast::ConnectActionsAndFunctions() { CONNECT_CONDITION("check_position_event", CheckPositionEvent); CONNECT_CONDITION("check_can_rotate", CheckRotationPossible); CONNECT_CONDITION("check_can_swivel", CheckSwivelPossible); CONNECT_FUNCTION("init", Init); CONNECT_FUNCTION("move", Move); CONNECT_FUNCTION("zoom", Zoom); CONNECT_FUNCTION("scroll", Scroll); CONNECT_FUNCTION("ScrollOneUp", ScrollOneUp); CONNECT_FUNCTION("ScrollOneDown", ScrollOneDown); CONNECT_FUNCTION("levelWindow", AdjustLevelWindow); CONNECT_FUNCTION("setCrosshair", SetCrosshair); CONNECT_FUNCTION("startRotation", StartRotation); CONNECT_FUNCTION("endRotation", EndRotation); CONNECT_FUNCTION("rotate", Rotate); CONNECT_FUNCTION("swivel", Swivel); CONNECT_FUNCTION("IncreaseTimeStep", IncreaseTimeStep); CONNECT_FUNCTION("DecreaseTimeStep", DecreaseTimeStep); } void mitk::DisplayActionEventBroadcast::ConfigurationChanged() { PropertyList::Pointer properties = GetAttributes(); // alwaysReact std::string strAlwaysReact = ""; m_AlwaysReact = false; if (properties->GetStringProperty("alwaysReact", strAlwaysReact)) { if (strAlwaysReact == "true") { m_AlwaysReact = true; } } // auto repeat std::string strAutoRepeat = ""; m_AutoRepeat = false; if (properties->GetStringProperty("autoRepeat", strAutoRepeat)) { if (strAutoRepeat == "true") { m_AutoRepeat = true; } } // pixel movement for scrolling one slice std::string strPixelPerSlice = ""; m_IndexToSliceModifier = 4; if (properties->GetStringProperty("pixelPerSlice", strPixelPerSlice)) { m_IndexToSliceModifier = atoi(strPixelPerSlice.c_str()); } // scroll direction if (!properties->GetStringProperty("scrollDirection", m_ScrollDirection)) { m_ScrollDirection = "updown"; } m_InvertScrollDirection = GetBoolProperty(properties, "invertScrollDirection", false); // zoom direction if (!properties->GetStringProperty("zoomDirection", m_ZoomDirection)) { m_ZoomDirection = "updown"; } m_InvertZoomDirection = GetBoolProperty(properties, "invertZoomDirection", false); m_InvertMoveDirection = GetBoolProperty(properties, "invertMoveDirection", false); if (!properties->GetStringProperty("levelWindowDirection", m_LevelDirection)) { m_LevelDirection = "leftright"; } m_InvertLevelWindowDirection = GetBoolProperty(properties, "invertLevelWindowDirection", false); // coupled rotation std::string strCoupled = ""; m_LinkPlanes = false; if (properties->GetStringProperty("coupled", strCoupled)) { if (strCoupled == "true") { m_LinkPlanes = true; } } // zoom factor std::string strZoomFactor = ""; properties->GetStringProperty("zoomFactor", strZoomFactor); m_ZoomFactor = .05; if (atoi(strZoomFactor.c_str()) > 0) { m_ZoomFactor = 1.0 + (atoi(strZoomFactor.c_str()) / 100.0); } } bool mitk::DisplayActionEventBroadcast::FilterEvents(InteractionEvent* interactionEvent, DataNode * /*dataNode*/) { BaseRenderer* sendingRenderer = interactionEvent->GetSender(); if (nullptr == sendingRenderer) { return false; } if (BaseRenderer::Standard3D == sendingRenderer->GetMapperID()) { return false; } return true; } bool mitk::DisplayActionEventBroadcast::CheckPositionEvent(const InteractionEvent *interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return false; } return true; } bool mitk::DisplayActionEventBroadcast::CheckRotationPossible(const InteractionEvent *interactionEvent) { // Decide between moving and rotation slices. /* Detailed logic: 1. Find the SliceNavigationController that has sent the event: this one defines our rendering plane and will NOT be rotated. Needs not even be counted or checked. 2. Inspect every other SliceNavigationController - calculate the line intersection of this SliceNavigationController's plane with our rendering plane - if there is NO intersection, ignore and continue - IF there is an intersection - check the mouse cursor's distance from that line. 0. if the line is NOT near the cursor, remember the plane as "one of the other planes" (which can be rotated in "locked" mode) 1. on first line near the cursor, just remember this intersection line as THE other plane that we want to rotate 2. on every consecutive line near the cursor, check if the line is geometrically identical to the line that we want to rotate - if yes, we just push this line to the "other" lines and rotate it along - if no, then we have a situation where the mouse is near two other lines (e.g. crossing point) and don't want to rotate */ const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return false; } BaseRenderer* renderer = positionEvent->GetSender(); if (nullptr == renderer) { return false; } const PlaneGeometry* rendererWorldPlaneGeometry = renderer->GetCurrentWorldPlaneGeometry(); if (nullptr == rendererWorldPlaneGeometry) { return false; } Point3D position = positionEvent->GetPositionInWorld(); const auto spacing = rendererWorldPlaneGeometry->GetSpacing(); const PlaneGeometry *geometryToBeRotated = nullptr; // this one is under the mouse cursor const PlaneGeometry *anyOtherGeometry = nullptr; // this is also visible (for calculation of intersection ONLY) Line3D intersectionLineWithGeometryToBeRotated; bool hitMultipleLines(false); m_SNCsToBeRotated.clear(); const ScalarType threshholdDistancePixels = 12.0; auto allRenderWindows = RenderingManager::GetInstance()->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { SliceNavigationController* snc = BaseRenderer::GetInstance(renderWindow)->GetSliceNavigationController(); // If the mouse cursor is in 3D Renderwindow, do not check for intersecting planes. if (BaseRenderer::Standard3D == BaseRenderer::GetInstance(renderWindow)->GetMapperID()) { continue; } const PlaneGeometry* rendererPlaneGeometry = snc->GetCurrentPlaneGeometry(); if (nullptr == rendererPlaneGeometry) { continue; // ignore, we don't see a plane } // check if there is an intersection between rendered / clicked geometry and the one being analyzed Line3D intersectionLine; if (!rendererWorldPlaneGeometry->IntersectionLine(rendererPlaneGeometry, intersectionLine)) { continue; // we ignore this plane, it's parallel to our plane } // check distance from intersection line const double distanceFromIntersectionLine = intersectionLine.Distance(position) / spacing[static_cast(snc->GetDefaultViewDirection())]; // far away line, only remember for linked rotation if necessary if (distanceFromIntersectionLine > threshholdDistancePixels) { // we just take the last one, so overwrite each iteration (we just need some crossing point) // TODO what about multiple crossings? NOW we have undefined behavior / random crossing point is used anyOtherGeometry = rendererPlaneGeometry; if (m_LinkPlanes) { // if planes are linked, apply rotation to all planes m_SNCsToBeRotated.push_back(snc); } } else // close to cursor { if (nullptr == geometryToBeRotated) // first one close to the cursor { geometryToBeRotated = rendererPlaneGeometry; intersectionLineWithGeometryToBeRotated = intersectionLine; m_SNCsToBeRotated.push_back(snc); } else { // compare to the line defined by geometryToBeRotated: if identical, just rotate this otherRenderersRenderPlane // together with the primary one // if different, DON'T rotate if (intersectionLine.IsParallel(intersectionLineWithGeometryToBeRotated) && intersectionLine.Distance(intersectionLineWithGeometryToBeRotated.GetPoint1()) < eps) { m_SNCsToBeRotated.push_back(snc); } else { hitMultipleLines = true; } } } } bool moveSlices(true); if (geometryToBeRotated && anyOtherGeometry && rendererWorldPlaneGeometry && !hitMultipleLines) { // assure all three are valid, so calculation of center of rotation can be done moveSlices = false; } // question in state machine is: "rotate?" if (moveSlices) // i.e. NOT rotate { return false; } else { // we have enough information for rotation // remember where the last cursor position ON THE LINE has been observed m_LastCursorPosition = intersectionLineWithGeometryToBeRotated.Project(position); // find center of rotation by intersection with any of the OTHER lines if (anyOtherGeometry->IntersectionPoint(intersectionLineWithGeometryToBeRotated, m_CenterOfRotation)) { return true; } else { return false; } } return false; } bool mitk::DisplayActionEventBroadcast::CheckSwivelPossible(const InteractionEvent *interactionEvent) { // Decide between moving and rotation: if we're close to the crossing // point of the planes, moving mode is entered, otherwise // rotation/swivel mode const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return false; } BaseRenderer* renderer = positionEvent->GetSender(); if (nullptr == renderer) { return false; } const Point3D& position = positionEvent->GetPositionInWorld(); m_SNCsToBeRotated.clear(); const PlaneGeometry* clickedGeometry(nullptr); const PlaneGeometry* otherGeometry1(nullptr); const PlaneGeometry* otherGeometry2(nullptr); const ScalarType threshholdDistancePixels = 6.0; auto allRenderWindows = RenderingManager::GetInstance()->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { SliceNavigationController* snc = BaseRenderer::GetInstance(renderWindow)->GetSliceNavigationController(); // If the mouse cursor is in 3D Renderwindow, do not check for intersecting planes. if (BaseRenderer::Standard3D == BaseRenderer::GetInstance(renderWindow)->GetMapperID()) { continue; } const PlaneGeometry* rendererPlaneGeometry = snc->GetCurrentPlaneGeometry(); if (nullptr == rendererPlaneGeometry) { continue; // ignore, we don't see a plane } if (snc == renderer->GetSliceNavigationController()) { clickedGeometry = rendererPlaneGeometry; m_SNCsToBeRotated.push_back(snc); } else { if (nullptr == otherGeometry1) { otherGeometry1 = rendererPlaneGeometry; } else { otherGeometry2 = rendererPlaneGeometry; } if (m_LinkPlanes) { // if planes are linked, apply rotation to all planes m_SNCsToBeRotated.push_back(snc); } } } Line3D line; Point3D point; if ((nullptr != clickedGeometry) && (nullptr != otherGeometry1) && (nullptr != otherGeometry2) && clickedGeometry->IntersectionLine(otherGeometry1, line) && otherGeometry2->IntersectionPoint(line, point)) { m_CenterOfRotation = point; if (m_CenterOfRotation.EuclideanDistanceTo(position) < threshholdDistancePixels) { return false; } else { m_ReferenceCursor = positionEvent->GetPointerPositionOnScreen(); // Get main axes of rotation plane and store it for rotation step m_RotationPlaneNormal = clickedGeometry->GetNormal(); ScalarType xVector[] = { 1.0, 0.0, 0.0 }; ScalarType yVector[] = { 0.0, 1.0, 0.0 }; clickedGeometry->BaseGeometry::IndexToWorld(Vector3D(xVector), m_RotationPlaneXVector); clickedGeometry->BaseGeometry::IndexToWorld(Vector3D(yVector), m_RotationPlaneYVector); m_RotationPlaneNormal.Normalize(); m_RotationPlaneXVector.Normalize(); m_RotationPlaneYVector.Normalize(); m_PreviousRotationAxis.Fill(0.0); m_PreviousRotationAxis[2] = 1.0; m_PreviousRotationAngle = 0.0; return true; } } else { return false; } return false; } void mitk::DisplayActionEventBroadcast::Init(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); m_CurrentDisplayCoordinate = m_LastDisplayCoordinate; positionEvent->GetSender()->DisplayToPlane(m_LastDisplayCoordinate, m_StartCoordinateInMM); } void mitk::DisplayActionEventBroadcast::Move(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } BaseRenderer* sender = interactionEvent->GetSender(); Vector2D moveVector = m_LastDisplayCoordinate - positionEvent->GetPointerPositionOnScreen(); if (m_InvertMoveDirection) { moveVector *= -1.0; } moveVector *= sender->GetScaleFactorMMPerDisplayUnit(); // #TODO: put here? // store new display coordinate m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate move event with computed geometry values InvokeEvent(DisplayMoveEvent(interactionEvent, moveVector)); } void mitk::DisplayActionEventBroadcast::SetCrosshair(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } Point3D position = positionEvent->GetPositionInWorld(); // propagate set crosshair event with computed geometry values InvokeEvent(DisplaySetCrosshairEvent(interactionEvent, position)); } void mitk::DisplayActionEventBroadcast::Zoom(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } float factor = 1.0; float distance = 0; if (m_ZoomDirection == "updown") { distance = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; } else { distance = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; } if (m_InvertZoomDirection) { distance *= -1.0; } // set zooming speed if (distance < 0.0) { factor = 1.0 / m_ZoomFactor; } else if (distance > 0.0) { factor = 1.0 * m_ZoomFactor; } // store new display coordinates m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate zoom event with computed geometry values InvokeEvent(DisplayZoomEvent(interactionEvent, factor, m_StartCoordinateInMM)); } void mitk::DisplayActionEventBroadcast::Scroll(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } int sliceDelta = 0; // scroll direction if (m_ScrollDirection == "updown") { sliceDelta = static_cast(m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]); } else { sliceDelta = static_cast(m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]); } if (m_InvertScrollDirection) { sliceDelta *= -1; } // set how many pixels the mouse has to be moved to scroll one slice // if the mouse has been moved less than 'm_IndexToSliceModifier', pixels slice ONE slice only if (sliceDelta > 0 && sliceDelta < m_IndexToSliceModifier) { sliceDelta = m_IndexToSliceModifier; } else if (sliceDelta < 0 && sliceDelta > -m_IndexToSliceModifier) { sliceDelta = -m_IndexToSliceModifier; } sliceDelta /= m_IndexToSliceModifier; // store new display coordinates m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate scroll event with computed geometry values InvokeEvent(DisplayScrollEvent(interactionEvent, sliceDelta, m_AutoRepeat)); } void mitk::DisplayActionEventBroadcast::ScrollOneUp(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { int sliceDelta = 1; if (m_InvertScrollDirection) { sliceDelta = -1; } // propagate scroll event with a single slice delta (increase) InvokeEvent(DisplayScrollEvent(interactionEvent, sliceDelta, m_AutoRepeat)); } void mitk::DisplayActionEventBroadcast::ScrollOneDown(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { int sliceDelta = -1; if (m_InvertScrollDirection) { sliceDelta = 1; } // propagate scroll event with a single slice delta (decrease) InvokeEvent(DisplayScrollEvent(interactionEvent, sliceDelta, m_AutoRepeat)); } void mitk::DisplayActionEventBroadcast::AdjustLevelWindow(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } ScalarType level; ScalarType window; if (m_LevelDirection == "leftright") { level = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; window = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; } else { level = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; window = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; } if (m_InvertLevelWindowDirection) { level *= -1; window *= -1; } level *= static_cast(2); window *= static_cast(2); // store new display coordinates m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // propagate set level window event with the level and window delta InvokeEvent(DisplaySetLevelWindowEvent(interactionEvent, level, window)); } void mitk::DisplayActionEventBroadcast::StartRotation(StateMachineAction* /*stateMachineAction*/, InteractionEvent* /*interactionEvent*/) { SetMouseCursor(rotate_cursor_xpm, 0, 0); } void mitk::DisplayActionEventBroadcast::EndRotation(StateMachineAction* /*stateMachineAction*/, InteractionEvent* /*interactionEvent*/) { ResetMouseCursor(); } void mitk::DisplayActionEventBroadcast::Rotate(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } Point3D position = positionEvent->GetPositionInWorld(); Vector3D toProjected = m_LastCursorPosition - m_CenterOfRotation; Vector3D toCursor = position - m_CenterOfRotation; // cross product: | A x B | = |A| * |B| * sin(angle) Vector3D axisOfRotation; vnl_vector_fixed vnlDirection = vnl_cross_3d(toCursor.GetVnlVector(), toProjected.GetVnlVector()); axisOfRotation.SetVnlVector(vnlDirection.as_ref()); // scalar product: A * B = |A| * |B| * cos(angle) // tan = sin / cos ScalarType angle = -atan2((double)(axisOfRotation.GetNorm()), (double)(toCursor * toProjected)); angle *= 180.0 / vnl_math::pi; m_LastCursorPosition = position; // create RotationOperation and apply to all SNCs that should be rotated RotationOperation rotationOperation(OpROTATE, m_CenterOfRotation, axisOfRotation, angle); // iterate the OTHER slice navigation controllers for (auto iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter) { TimeGeometry* timeGeometry = (*iter)->GetCreatedWorldGeometry(); if (nullptr == timeGeometry) { continue; } timeGeometry->ExecuteOperation(&rotationOperation); (*iter)->SendCreatedWorldGeometryUpdate(); } RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::DisplayActionEventBroadcast::Swivel(StateMachineAction* /*stateMachineAction*/, InteractionEvent* interactionEvent) { const auto* positionEvent = dynamic_cast(interactionEvent); if (nullptr == positionEvent) { return; } // Determine relative mouse movement projected onto world space Point2D position = positionEvent->GetPointerPositionOnScreen(); Vector2D relativeCursor = position - m_ReferenceCursor; Vector3D relativeCursorAxis = m_RotationPlaneXVector * relativeCursor[0] + m_RotationPlaneYVector * relativeCursor[1]; // Determine rotation axis (perpendicular to rotation plane and cursor movement) Vector3D rotationAxis = itk::CrossProduct(m_RotationPlaneNormal, relativeCursorAxis); ScalarType rotationAngle = relativeCursor.GetNorm() / 2.0; // Restore the initial plane pose by undoing the previous rotation operation RotationOperation op(OpROTATE, m_CenterOfRotation, m_PreviousRotationAxis, -m_PreviousRotationAngle); SNCVector::iterator iter; for (iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter) { if (!(*iter)->GetSliceRotationLocked()) { TimeGeometry* timeGeometry = (*iter)->GetCreatedWorldGeometry(); if (nullptr == timeGeometry) { continue; } timeGeometry->ExecuteOperation(&op); (*iter)->SendCreatedWorldGeometryUpdate(); } } // Apply new rotation operation to all relevant SNCs RotationOperation op2(OpROTATE, m_CenterOfRotation, rotationAxis, rotationAngle); for (iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter) { if (!(*iter)->GetSliceRotationLocked()) { // Retrieve the TimeGeometry of this SliceNavigationController TimeGeometry *timeGeometry = (*iter)->GetCreatedWorldGeometry(); if (nullptr == timeGeometry) { continue; } // Execute the new rotation timeGeometry->ExecuteOperation(&op2); // Notify listeners (*iter)->SendCreatedWorldGeometryUpdate(); } } m_PreviousRotationAxis = rotationAxis; m_PreviousRotationAngle = rotationAngle; RenderingManager::GetInstance()->RequestUpdateAll(); return; } void mitk::DisplayActionEventBroadcast::IncreaseTimeStep(StateMachineAction*, InteractionEvent*) { - auto sliceNaviController = RenderingManager::GetInstance()->GetTimeNavigationController(); - auto stepper = sliceNaviController->GetStepper(); + auto* timeNaviController = RenderingManager::GetInstance()->GetTimeNavigationController(); + auto* stepper = timeNaviController->GetStepper(); stepper->SetAutoRepeat(true); stepper->Next(); } void mitk::DisplayActionEventBroadcast::DecreaseTimeStep(StateMachineAction*, InteractionEvent*) { - auto sliceNaviController = RenderingManager::GetInstance()->GetTimeNavigationController(); - auto stepper = sliceNaviController->GetStepper(); + auto* timeNaviController = RenderingManager::GetInstance()->GetTimeNavigationController(); + auto* stepper = timeNaviController->GetStepper(); stepper->SetAutoRepeat(true); stepper->Previous(); } bool mitk::DisplayActionEventBroadcast::GetBoolProperty(PropertyList::Pointer propertyList, const char* propertyName, bool defaultValue) { std::string valueAsString; if (!propertyList->GetStringProperty(propertyName, valueAsString)) { return defaultValue; } else { if (valueAsString == "true") { return true; } else { return false; } } } diff --git a/Modules/Core/src/Interactions/mitkDisplayActionEventFunctions.cpp b/Modules/Core/src/Interactions/mitkDisplayActionEventFunctions.cpp index 41d9b94047..d82e1c125c 100644 --- a/Modules/Core/src/Interactions/mitkDisplayActionEventFunctions.cpp +++ b/Modules/Core/src/Interactions/mitkDisplayActionEventFunctions.cpp @@ -1,320 +1,323 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkDisplayActionEventFunctions.h" // mitk core -#include "mitkBaseRenderer.h" -#include "mitkCameraController.h" -#include "mitkDisplayActionEvents.h" -#include "mitkInteractionPositionEvent.h" -#include "mitkLevelWindow.h" -#include "mitkLevelWindowProperty.h" -#include "mitkNodePredicateDataType.h" +#include +#include +#include +#include +#include +#include +#include +#include ////////////////////////////////////////////////////////////////////////// // STANDARD FUNCTIONS ////////////////////////////////////////////////////////////////////////// mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::MoveSenderCameraAction() { mitk::StdFunctionCommand::ActionFunction actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayMoveEvent().CheckEvent(&displayInteractorEvent)) { const DisplayMoveEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } sendingRenderer->GetCameraController()->MoveBy(displayActionEvent->GetMoveVector()); RenderingManager::GetInstance()->RequestUpdate(sendingRenderer->GetRenderWindow()); } }; return actionFunction; } mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::SetCrosshairAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplaySetCrosshairEvent().CheckEvent(&displayInteractorEvent)) { const DisplaySetCrosshairEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } sendingRenderer->GetSliceNavigationController()->SelectSliceByPoint(displayActionEvent->GetPosition()); } }; return actionFunction; } mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ZoomSenderCameraAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayZoomEvent().CheckEvent(&displayInteractorEvent)) { const DisplayZoomEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } if (1.0 != displayActionEvent->GetZoomFactor()) { sendingRenderer->GetCameraController()->Zoom(displayActionEvent->GetZoomFactor(), displayActionEvent->GetStartCoordinate()); RenderingManager::GetInstance()->RequestUpdate(sendingRenderer->GetRenderWindow()); } } }; return actionFunction; } mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ScrollSliceStepperAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayScrollEvent().CheckEvent(&displayInteractorEvent)) { const DisplayScrollEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } mitk::SliceNavigationController* sliceNavigationController = sendingRenderer->GetSliceNavigationController(); if (nullptr == sliceNavigationController) { return; } if (sliceNavigationController->GetSliceLocked()) { return; } - mitk::Stepper* sliceStepper = sliceNavigationController->GetStepper(); - if (nullptr == sliceStepper) + mitk::Stepper* stepper = sliceNavigationController->GetStepper(); + if (nullptr == stepper) { return; } // if only a single slice image was loaded, scrolling will affect the time steps - if (sliceStepper->GetSteps() <= 1) + if (stepper->GetSteps() <= 1) { - sliceStepper = sliceNavigationController->GetStepper(); + auto* timeNavigationController = mitk::RenderingManager::GetInstance()->GetTimeNavigationController(); + stepper = timeNavigationController->GetStepper(); } - sliceStepper->SetAutoRepeat(displayActionEvent->GetAutoRepeat()); - sliceStepper->MoveSlice(displayActionEvent->GetSliceDelta()); + stepper->SetAutoRepeat(displayActionEvent->GetAutoRepeat()); + stepper->MoveSlice(displayActionEvent->GetSliceDelta()); } }; return actionFunction; } mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::SetLevelWindowAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplaySetLevelWindowEvent().CheckEvent(&displayInteractorEvent)) { const DisplaySetLevelWindowEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } // get the the topmost visible image of the sending renderer DataStorage::Pointer storage = sendingRenderer->GetDataStorage(); DataStorage::SetOfObjects::ConstPointer allImageNodes = storage->GetSubset(NodePredicateDataType::New("Image")); Point3D worldposition; const auto* positionEvent = dynamic_cast(displayActionEvent->GetInteractionEvent()); sendingRenderer->DisplayToWorld(positionEvent->GetPointerPositionOnScreen(), worldposition); auto globalCurrentTimePoint = sendingRenderer->GetTime(); DataNode::Pointer node = FindTopmostVisibleNode(allImageNodes, worldposition, globalCurrentTimePoint, sendingRenderer); if (node.IsNull()) { return; } LevelWindow levelWindow = LevelWindow(); node->GetLevelWindow(levelWindow); ScalarType level = levelWindow.GetLevel(); ScalarType window = levelWindow.GetWindow(); level += displayActionEvent->GetLevel(); window += displayActionEvent->GetWindow(); levelWindow.SetLevelWindow(level, window); auto* levelWindowProperty = dynamic_cast(node->GetProperty("levelwindow")); if (nullptr != levelWindowProperty) { levelWindowProperty->SetLevelWindow(levelWindow); RenderingManager::GetInstance()->RequestUpdateAll(); } } }; return actionFunction; } ////////////////////////////////////////////////////////////////////////// // SYNCHRONIZED FUNCTIONS ////////////////////////////////////////////////////////////////////////// mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::MoveCameraSynchronizedAction() { mitk::StdFunctionCommand::ActionFunction actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayMoveEvent().CheckEvent(&displayInteractorEvent)) { const DisplayMoveEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } auto renderingManager = RenderingManager::GetInstance(); auto allRenderWindows = renderingManager->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { if (BaseRenderer::GetInstance(renderWindow)->GetMapperID() == BaseRenderer::Standard2D) { BaseRenderer::GetInstance(renderWindow)->GetCameraController()->MoveBy(displayActionEvent->GetMoveVector()); renderingManager->RequestUpdate(renderWindow); } } } }; return actionFunction; } mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::SetCrosshairSynchronizedAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplaySetCrosshairEvent().CheckEvent(&displayInteractorEvent)) { const DisplaySetCrosshairEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } auto allRenderWindows = RenderingManager::GetInstance()->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { if (BaseRenderer::GetInstance(renderWindow)->GetMapperID() == BaseRenderer::Standard2D) { BaseRenderer::GetInstance(renderWindow)->GetSliceNavigationController()->SelectSliceByPoint(displayActionEvent->GetPosition()); } } } }; return actionFunction; } mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ZoomCameraSynchronizedAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayZoomEvent().CheckEvent(&displayInteractorEvent)) { const DisplayZoomEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } if (1.0 != displayActionEvent->GetZoomFactor()) { auto renderingManager = RenderingManager::GetInstance(); auto allRenderWindows = renderingManager->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { if (BaseRenderer::GetInstance(renderWindow)->GetMapperID() == BaseRenderer::Standard2D) { BaseRenderer* currentRenderer = BaseRenderer::GetInstance(renderWindow); currentRenderer->GetCameraController()->Zoom(displayActionEvent->GetZoomFactor(), displayActionEvent->GetStartCoordinate()); renderingManager->RequestUpdate(currentRenderer->GetRenderWindow()); } } } } }; return actionFunction; } mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ScrollSliceStepperSynchronizedAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayScrollEvent().CheckEvent(&displayInteractorEvent)) { const DisplayScrollEvent* displayActionEvent = dynamic_cast(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } auto allRenderWindows = RenderingManager::GetInstance()->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { if (BaseRenderer::GetInstance(renderWindow)->GetMapperID() == BaseRenderer::Standard2D) { SliceNavigationController* sliceNavigationController = BaseRenderer::GetInstance(renderWindow)->GetSliceNavigationController(); if (nullptr == sliceNavigationController) { return; } if (sliceNavigationController->GetSliceLocked()) { return; } - mitk::Stepper* sliceStepper = sliceNavigationController->GetStepper(); - if (nullptr == sliceStepper) + mitk::Stepper* stepper = sliceNavigationController->GetStepper(); + if (nullptr == stepper) { return; } // if only a single slice image was loaded, scrolling will affect the time steps - if (sliceStepper->GetSteps() <= 1) + if (stepper->GetSteps() <= 1) { - sliceStepper = sliceNavigationController->GetStepper(); + auto* timeNavigationController = mitk::RenderingManager::GetInstance()->GetTimeNavigationController(); + stepper = timeNavigationController->GetStepper(); } - sliceStepper->SetAutoRepeat(displayActionEvent->GetAutoRepeat()); - sliceStepper->MoveSlice(displayActionEvent->GetSliceDelta()); + stepper->SetAutoRepeat(displayActionEvent->GetAutoRepeat()); + stepper->MoveSlice(displayActionEvent->GetSliceDelta()); } } } }; return actionFunction; } diff --git a/Modules/Core/src/Rendering/mitkBaseRenderer.cpp b/Modules/Core/src/Rendering/mitkBaseRenderer.cpp index d0685e131f..ee33fd92d1 100644 --- a/Modules/Core/src/Rendering/mitkBaseRenderer.cpp +++ b/Modules/Core/src/Rendering/mitkBaseRenderer.cpp @@ -1,776 +1,777 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkBaseRenderer.h" #include "mitkBaseRendererHelper.h" #include "mitkMapper.h" #include "mitkResliceMethodProperty.h" // Geometries #include "mitkSlicedGeometry3D.h" #include "mitkVtkLayerController.h" #include "mitkInteractionConst.h" #include "mitkProperties.h" #include "mitkWeakPointerProperty.h" // VTK #include #include #include #include #include namespace mitk { itkEventMacroDefinition(RendererResetEvent, itk::AnyEvent); } mitk::BaseRenderer::BaseRendererMapType mitk::BaseRenderer::baseRendererMap; mitk::BaseRenderer *mitk::BaseRenderer::GetInstance(vtkRenderWindow *renWin) { for (auto mapit = baseRendererMap.begin(); mapit != baseRendererMap.end(); ++mapit) { if ((*mapit).first == renWin) return (*mapit).second; } return nullptr; } void mitk::BaseRenderer::AddInstance(vtkRenderWindow *renWin, BaseRenderer *baseRenderer) { if (renWin == nullptr || baseRenderer == nullptr) return; // ensure that no BaseRenderer is managed twice mitk::BaseRenderer::RemoveInstance(renWin); baseRendererMap.insert(BaseRendererMapType::value_type(renWin, baseRenderer)); } void mitk::BaseRenderer::RemoveInstance(vtkRenderWindow *renWin) { auto mapit = baseRendererMap.find(renWin); if (mapit != baseRendererMap.end()) baseRendererMap.erase(mapit); } mitk::BaseRenderer *mitk::BaseRenderer::GetByName(const std::string &name) { for (auto mapit = baseRendererMap.begin(); mapit != baseRendererMap.end(); ++mapit) { if ((*mapit).second->m_Name == name) return (*mapit).second; } return nullptr; } vtkRenderWindow *mitk::BaseRenderer::GetRenderWindowByName(const std::string &name) { for (auto mapit = baseRendererMap.begin(); mapit != baseRendererMap.end(); ++mapit) { if ((*mapit).second->m_Name == name) return (*mapit).first; } return nullptr; } mitk::BaseRenderer::BaseRendererMapType mitk::BaseRenderer::GetSpecificRenderWindows(MapperSlotId mapper) { BaseRendererMapType allRenderWindows; for (auto mapit = baseRendererMap.begin(); mapit != baseRendererMap.end(); ++mapit) { if (mapper == mapit->second->GetMapperID()) { allRenderWindows.insert(BaseRendererMapType::value_type(mapit->first, mapit->second)); } } return allRenderWindows; } mitk::BaseRenderer::BaseRendererMapType mitk::BaseRenderer::GetAll2DRenderWindows() { return GetSpecificRenderWindows(BaseRenderer::Standard2D); } mitk::BaseRenderer::BaseRendererMapType mitk::BaseRenderer::GetAll3DRenderWindows() { return GetSpecificRenderWindows(BaseRenderer::Standard3D); } mitk::BaseRenderer::BaseRenderer(const char *name, vtkRenderWindow *renWin) : m_RenderWindow(nullptr), m_VtkRenderer(nullptr), m_MapperID(StandardMapperSlot::Standard2D), m_DataStorage(nullptr), m_LastUpdateTime(0), m_CameraController(nullptr), m_CameraRotationController(nullptr), m_SliceNavigationController(nullptr), m_WorldTimeGeometry(nullptr), m_InteractionReferenceGeometry(nullptr), m_CurrentWorldGeometry(nullptr), m_CurrentWorldPlaneGeometry(nullptr), m_Slice(0), m_TimeStep(), m_CurrentWorldPlaneGeometryUpdateTime(), m_TimeStepUpdateTime(), m_KeepDisplayedRegion(true), m_ReferenceGeometryAligned(true), m_CurrentWorldPlaneGeometryData(nullptr), m_CurrentWorldPlaneGeometryNode(nullptr), m_CurrentWorldPlaneGeometryTransformTime(0), m_Name(name), m_EmptyWorldGeometry(true), m_NumberOfVisibleLODEnabledMappers(0) { m_Bounds[0] = 0; m_Bounds[1] = 0; m_Bounds[2] = 0; m_Bounds[3] = 0; m_Bounds[4] = 0; m_Bounds[5] = 0; if (name != nullptr) { m_Name = name; } else { m_Name = "unnamed renderer"; itkWarningMacro(<< "Created unnamed renderer. Bad for serialization. Please choose a name."); } if (renWin != nullptr) { m_RenderWindow = renWin; m_RenderWindow->Register(nullptr); } else { itkWarningMacro(<< "Created mitkBaseRenderer without vtkRenderWindow present."); } // instances.insert( this ); // adding this BaseRenderer to the List of all BaseRenderer m_BindDispatcherInteractor = new mitk::BindDispatcherInteractor(GetName()); WeakPointerProperty::Pointer rendererProp = WeakPointerProperty::New((itk::Object *)this); m_CurrentWorldPlaneGeometry = mitk::PlaneGeometry::New(); m_CurrentWorldPlaneGeometryData = mitk::PlaneGeometryData::New(); m_CurrentWorldPlaneGeometryData->SetPlaneGeometry(m_CurrentWorldPlaneGeometry); m_CurrentWorldPlaneGeometryNode = mitk::DataNode::New(); m_CurrentWorldPlaneGeometryNode->SetData(m_CurrentWorldPlaneGeometryData); m_CurrentWorldPlaneGeometryNode->GetPropertyList()->SetProperty("renderer", rendererProp); m_CurrentWorldPlaneGeometryNode->GetPropertyList()->SetProperty("layer", IntProperty::New(1000)); m_CurrentWorldPlaneGeometryNode->SetProperty("reslice.thickslices", mitk::ResliceMethodProperty::New()); m_CurrentWorldPlaneGeometryNode->SetProperty("reslice.thickslices.num", mitk::IntProperty::New(1)); m_CurrentWorldPlaneGeometryTransformTime = m_CurrentWorldPlaneGeometryNode->GetVtkTransform()->GetMTime(); m_SliceNavigationController = mitk::SliceNavigationController::New(); m_SliceNavigationController->SetRenderer(this); m_SliceNavigationController->ConnectGeometrySendEvent(this); m_SliceNavigationController->ConnectGeometryUpdateEvent(this); m_SliceNavigationController->ConnectGeometrySliceEvent(this); - m_SliceNavigationController->ConnectGeometryTimeEvent(this); + + auto* timeNavigationController = RenderingManager::GetInstance()->GetTimeNavigationController(); + timeNavigationController->ConnectTimeEvent(this); m_CameraRotationController = mitk::CameraRotationController::New(); m_CameraRotationController->SetRenderWindow(m_RenderWindow); m_CameraRotationController->AcquireCamera(); m_CameraController = mitk::CameraController::New(); m_CameraController->SetRenderer(this); m_VtkRenderer = vtkRenderer::New(); m_VtkRenderer->SetMaximumNumberOfPeels(16); if (AntiAliasing::FastApproximate == RenderingManager::GetInstance()->GetAntiAliasing()) m_VtkRenderer->UseFXAAOn(); if (nullptr == mitk::VtkLayerController::GetInstance(m_RenderWindow)) mitk::VtkLayerController::AddInstance(m_RenderWindow, m_VtkRenderer); mitk::VtkLayerController::GetInstance(m_RenderWindow)->InsertSceneRenderer(m_VtkRenderer); } mitk::BaseRenderer::~BaseRenderer() { if (m_VtkRenderer != nullptr) { m_VtkRenderer->Delete(); m_VtkRenderer = nullptr; } if (m_CameraController.IsNotNull()) m_CameraController->SetRenderer(nullptr); mitk::VtkLayerController::RemoveInstance(m_RenderWindow); RemoveAllLocalStorages(); m_DataStorage = nullptr; if (m_BindDispatcherInteractor != nullptr) { delete m_BindDispatcherInteractor; } if (m_RenderWindow != nullptr) { m_RenderWindow->Delete(); m_RenderWindow = nullptr; } } void mitk::BaseRenderer::RemoveAllLocalStorages() { this->InvokeEvent(RendererResetEvent()); std::list::iterator it; for (it = m_RegisteredLocalStorageHandlers.begin(); it != m_RegisteredLocalStorageHandlers.end(); ++it) (*it)->ClearLocalStorage(this, false); m_RegisteredLocalStorageHandlers.clear(); } void mitk::BaseRenderer::RegisterLocalStorageHandler(mitk::BaseLocalStorageHandler *lsh) { m_RegisteredLocalStorageHandlers.push_back(lsh); } void mitk::BaseRenderer::UnregisterLocalStorageHandler(mitk::BaseLocalStorageHandler *lsh) { m_RegisteredLocalStorageHandlers.remove(lsh); } void mitk::BaseRenderer::SetDataStorage(DataStorage *storage) { if (storage != m_DataStorage && storage != nullptr) { m_DataStorage = storage; m_BindDispatcherInteractor->SetDataStorage(m_DataStorage); this->Modified(); } } mitk::Dispatcher::Pointer mitk::BaseRenderer::GetDispatcher() const { return m_BindDispatcherInteractor->GetDispatcher(); } void mitk::BaseRenderer::Resize(int w, int h) { m_RenderWindow->SetSize(w, h); } void mitk::BaseRenderer::InitRenderer(vtkRenderWindow *renderwindow) { if (m_RenderWindow != renderwindow) { if (m_RenderWindow != nullptr) { m_RenderWindow->Delete(); } m_RenderWindow = renderwindow; if (m_RenderWindow != nullptr) { m_RenderWindow->Register(nullptr); } } RemoveAllLocalStorages(); if (m_CameraController.IsNotNull()) { m_CameraController->SetRenderer(this); } } void mitk::BaseRenderer::InitSize(int w, int h) { m_RenderWindow->SetSize(w, h); } void mitk::BaseRenderer::SetWorldTimeGeometry(const mitk::TimeGeometry* geometry) { if (m_WorldTimeGeometry == geometry) { return; } m_WorldTimeGeometry = geometry; this->UpdateCurrentGeometries(); } void mitk::BaseRenderer::SetInteractionReferenceGeometry(const TimeGeometry* geometry) { if (m_InteractionReferenceGeometry == geometry) { return; } m_InteractionReferenceGeometry = geometry; this->UpdateCurrentGeometries(); } void mitk::BaseRenderer::SetSlice(unsigned int slice) { if (m_Slice == slice) { return; } m_Slice = slice; this->UpdateCurrentGeometries(); } void mitk::BaseRenderer::SetTimeStep(unsigned int timeStep) { if (m_TimeStep == timeStep) { return; } m_TimeStep = timeStep; m_TimeStepUpdateTime.Modified(); this->UpdateCurrentGeometries(); } mitk::TimeStepType mitk::BaseRenderer::GetTimeStep(const mitk::BaseData* data) const { if ((data == nullptr) || (data->IsInitialized() == false)) { return -1; } return data->GetTimeGeometry()->TimePointToTimeStep(GetTime()); } mitk::ScalarType mitk::BaseRenderer::GetTime() const { if (m_WorldTimeGeometry.IsNull()) { return 0; } else { ScalarType timeInMS = m_WorldTimeGeometry->TimeStepToTimePoint(GetTimeStep()); if (timeInMS == itk::NumericTraits::NonpositiveMin()) return 0; else return timeInMS; } } void mitk::BaseRenderer::SetGeometry(const itk::EventObject& geometrySendEvent) { const auto* sendEvent = dynamic_cast(&geometrySendEvent); if (nullptr == sendEvent) { return; } SetWorldTimeGeometry(sendEvent->GetTimeGeometry()); } void mitk::BaseRenderer::UpdateGeometry(const itk::EventObject& geometryUpdateEvent) { const auto* updateEvent = dynamic_cast(&geometryUpdateEvent); if (nullptr == updateEvent) { return; } if (m_CurrentWorldGeometry.IsNull()) { return; } const auto* slicedWorldGeometry = dynamic_cast(m_CurrentWorldGeometry.GetPointer()); if (slicedWorldGeometry) { PlaneGeometry* geometry2D = slicedWorldGeometry->GetPlaneGeometry(m_Slice); SetCurrentWorldPlaneGeometry(geometry2D); // calls Modified() } } void mitk::BaseRenderer::SetGeometrySlice(const itk::EventObject& geometrySliceEvent) { const auto* sliceEvent = dynamic_cast(&geometrySliceEvent); if (nullptr == sliceEvent) { return; } this->SetSlice(sliceEvent->GetPos()); } void mitk::BaseRenderer::SetGeometryTime(const itk::EventObject& geometryTimeEvent) { - const auto* timeEvent = dynamic_cast(&geometryTimeEvent); + const auto* timeEvent = dynamic_cast(&geometryTimeEvent); if (nullptr == timeEvent) { return; } - this->SetTimeStep(timeEvent->GetPos()); + this->SetTimeStep(timeEvent->GetTimeStep()); } void mitk::BaseRenderer::SendUpdateSlice() { m_CurrentWorldPlaneGeometryUpdateTime.Modified(); } void mitk::BaseRenderer::SetMapperID(MapperSlotId id) { if (m_MapperID != id) { bool useDepthPeeling = Standard3D == id; m_VtkRenderer->SetUseDepthPeeling(useDepthPeeling); m_VtkRenderer->SetUseDepthPeelingForVolumes(useDepthPeeling); m_MapperID = id; this->Modified(); } } int* mitk::BaseRenderer::GetSize() const { return m_RenderWindow->GetSize(); } int* mitk::BaseRenderer::GetViewportSize() const { return m_VtkRenderer->GetSize(); } const double* mitk::BaseRenderer::GetBounds() const { return m_Bounds; } void mitk::BaseRenderer::RequestUpdate() { SetConstrainZoomingAndPanning(true); RenderingManager::GetInstance()->RequestUpdate(m_RenderWindow); } void mitk::BaseRenderer::ForceImmediateUpdate() { RenderingManager::GetInstance()->ForceImmediateUpdate(m_RenderWindow); } unsigned int mitk::BaseRenderer::GetNumberOfVisibleLODEnabledMappers() const { return m_NumberOfVisibleLODEnabledMappers; } void mitk::BaseRenderer::SetSliceNavigationController(mitk::SliceNavigationController *SlicenavigationController) { if (SlicenavigationController == nullptr) return; // copy worldgeometry SlicenavigationController->SetInputWorldTimeGeometry(SlicenavigationController->GetCreatedWorldGeometry()); SlicenavigationController->Update(); // set new m_SliceNavigationController = SlicenavigationController; m_SliceNavigationController->SetRenderer(this); if (m_SliceNavigationController.IsNotNull()) { m_SliceNavigationController->ConnectGeometrySendEvent(this); m_SliceNavigationController->ConnectGeometryUpdateEvent(this); m_SliceNavigationController->ConnectGeometrySliceEvent(this); - m_SliceNavigationController->ConnectGeometryTimeEvent(this); } } void mitk::BaseRenderer::DisplayToWorld(const Point2D& displayPoint, Point3D& worldIndex) const { if (m_MapperID == BaseRenderer::Standard2D) { double display[3], * world; // For the right z-position in display coordinates, take the focal point, convert it to display and use it for // correct depth. double* displayCoord; double cameraFP[4]; // Get camera focal point and position. Convert to display (screen) // coordinates. We need a depth value for z-buffer. this->GetVtkRenderer()->GetActiveCamera()->GetFocalPoint(cameraFP); cameraFP[3] = 0.0; this->GetVtkRenderer()->SetWorldPoint(cameraFP[0], cameraFP[1], cameraFP[2], cameraFP[3]); this->GetVtkRenderer()->WorldToDisplay(); displayCoord = this->GetVtkRenderer()->GetDisplayPoint(); // now convert the display point to world coordinates display[0] = displayPoint[0]; display[1] = displayPoint[1]; display[2] = displayCoord[2]; this->GetVtkRenderer()->SetDisplayPoint(display); this->GetVtkRenderer()->DisplayToWorld(); world = this->GetVtkRenderer()->GetWorldPoint(); for (int i = 0; i < 3; i++) { worldIndex[i] = world[i] / world[3]; } } else if (m_MapperID == BaseRenderer::Standard3D) { // Seems to be the same code as above, but subclasses may contain different implementations. PickWorldPoint(displayPoint, worldIndex); } return; } void mitk::BaseRenderer::DisplayToPlane(const Point2D &displayPoint, Point2D &planePointInMM) const { if (m_MapperID == BaseRenderer::Standard2D) { Point3D worldPoint; this->DisplayToWorld(displayPoint, worldPoint); m_CurrentWorldPlaneGeometry->Map(worldPoint, planePointInMM); } else if (m_MapperID == BaseRenderer::Standard3D) { MITK_WARN << "No conversion possible with 3D mapper."; return; } return; } void mitk::BaseRenderer::WorldToDisplay(const Point3D &worldIndex, Point2D &displayPoint) const { double world[4], *display; world[0] = worldIndex[0]; world[1] = worldIndex[1]; world[2] = worldIndex[2]; world[3] = 1.0; this->GetVtkRenderer()->SetWorldPoint(world); this->GetVtkRenderer()->WorldToDisplay(); display = this->GetVtkRenderer()->GetDisplayPoint(); displayPoint[0] = display[0]; displayPoint[1] = display[1]; return; } void mitk::BaseRenderer::WorldToView(const mitk::Point3D &worldIndex, mitk::Point2D &viewPoint) const { double world[4], *view; world[0] = worldIndex[0]; world[1] = worldIndex[1]; world[2] = worldIndex[2]; world[3] = 1.0; this->GetVtkRenderer()->SetWorldPoint(world); this->GetVtkRenderer()->WorldToView(); view = this->GetVtkRenderer()->GetViewPoint(); this->GetVtkRenderer()->ViewToNormalizedViewport(view[0], view[1], view[2]); viewPoint[0] = view[0] * this->GetViewportSize()[0]; viewPoint[1] = view[1] * this->GetViewportSize()[1]; return; } void mitk::BaseRenderer::PlaneToDisplay(const Point2D &planePointInMM, Point2D &displayPoint) const { Point3D worldPoint; m_CurrentWorldPlaneGeometry->Map(planePointInMM, worldPoint); this->WorldToDisplay(worldPoint, displayPoint); return; } void mitk::BaseRenderer::PlaneToView(const Point2D &planePointInMM, Point2D &viewPoint) const { Point3D worldPoint; m_CurrentWorldPlaneGeometry->Map(planePointInMM, worldPoint); this->WorldToView(worldPoint,viewPoint); return; } double mitk::BaseRenderer::GetScaleFactorMMPerDisplayUnit() const { if (this->GetMapperID() == BaseRenderer::Standard2D) { // GetParallelScale returns half of the height of the render window in mm. // Divided by the half size of the Display size in pixel givest the mm per pixel. return this->GetVtkRenderer()->GetActiveCamera()->GetParallelScale() * 2.0 / GetViewportSize()[1]; } else return 1.0; } mitk::Point2D mitk::BaseRenderer::GetDisplaySizeInMM() const { Point2D dispSizeInMM; dispSizeInMM[0] = GetSizeX() * GetScaleFactorMMPerDisplayUnit(); dispSizeInMM[1] = GetSizeY() * GetScaleFactorMMPerDisplayUnit(); return dispSizeInMM; } mitk::Point2D mitk::BaseRenderer::GetViewportSizeInMM() const { Point2D dispSizeInMM; dispSizeInMM[0] = GetViewportSize()[0] * GetScaleFactorMMPerDisplayUnit(); dispSizeInMM[1] = GetViewportSize()[1] * GetScaleFactorMMPerDisplayUnit(); return dispSizeInMM; } mitk::Point2D mitk::BaseRenderer::GetOriginInMM() const { Point2D originPx; originPx[0] = m_VtkRenderer->GetOrigin()[0]; originPx[1] = m_VtkRenderer->GetOrigin()[1]; Point2D displayGeometryOriginInMM; DisplayToPlane(originPx, displayGeometryOriginInMM); // top left of the render window (Origin) return displayGeometryOriginInMM; } void mitk::BaseRenderer::SetConstrainZoomingAndPanning(bool constrain) { m_ConstrainZoomingAndPanning = constrain; if (m_ConstrainZoomingAndPanning) { this->GetCameraController()->AdjustCameraToPlane(); } } void mitk::BaseRenderer::UpdateCurrentGeometries() { m_ReferenceGeometryAligned = true; if (m_WorldTimeGeometry.IsNull()) { // simply mark the base renderer as modified Modified(); return; } if (m_TimeStep >= m_WorldTimeGeometry->CountTimeSteps()) { m_TimeStep = m_WorldTimeGeometry->CountTimeSteps() - 1; } auto slicedWorldGeometry = dynamic_cast(m_WorldTimeGeometry->GetGeometryForTimeStep(m_TimeStep).GetPointer()); if (slicedWorldGeometry != nullptr) { if (m_Slice >= slicedWorldGeometry->GetSlices()) { m_Slice = slicedWorldGeometry->GetSlices() - 1; } SetCurrentWorldGeometry(slicedWorldGeometry); SetCurrentWorldPlaneGeometry(slicedWorldGeometry->GetPlaneGeometry(m_Slice)); m_ReferenceGeometryAligned = BaseRendererHelper::IsRendererGeometryAlignedWithGeometry(this, m_InteractionReferenceGeometry); } } void mitk::BaseRenderer::SetCurrentWorldPlaneGeometry(const mitk::PlaneGeometry* geometry2d) { if (m_CurrentWorldPlaneGeometry == geometry2d) { return; } m_CurrentWorldPlaneGeometry = geometry2d->Clone(); m_CurrentWorldPlaneGeometryData->SetPlaneGeometry(m_CurrentWorldPlaneGeometry); m_CurrentWorldPlaneGeometryUpdateTime.Modified(); Modified(); } void mitk::BaseRenderer::SetCurrentWorldGeometry(const mitk::BaseGeometry* geometry) { if (m_CurrentWorldGeometry == geometry) { return; } m_CurrentWorldGeometry = geometry; if (geometry == nullptr) { m_Bounds[0] = 0; m_Bounds[1] = 0; m_Bounds[2] = 0; m_Bounds[3] = 0; m_Bounds[4] = 0; m_Bounds[5] = 0; m_EmptyWorldGeometry = true; return; } BoundingBox::Pointer boundingBox = m_CurrentWorldGeometry->CalculateBoundingBoxRelativeToTransform(nullptr); const BoundingBox::BoundsArrayType& worldBounds = boundingBox->GetBounds(); m_Bounds[0] = worldBounds[0]; m_Bounds[1] = worldBounds[1]; m_Bounds[2] = worldBounds[2]; m_Bounds[3] = worldBounds[3]; m_Bounds[4] = worldBounds[4]; m_Bounds[5] = worldBounds[5]; if (boundingBox->GetDiagonalLength2() <= mitk::eps) { m_EmptyWorldGeometry = true; } else { m_EmptyWorldGeometry = false; } } void mitk::BaseRenderer::PrintSelf(std::ostream &os, itk::Indent indent) const { os << indent << " MapperID: " << m_MapperID << std::endl; os << indent << " Slice: " << m_Slice << std::endl; os << indent << " TimeStep: " << m_TimeStep << std::endl; os << indent << " CurrentWorldPlaneGeometry: "; if (m_CurrentWorldPlaneGeometry.IsNull()) os << "nullptr" << std::endl; else m_CurrentWorldPlaneGeometry->Print(os, indent); os << indent << " CurrentWorldPlaneGeometryUpdateTime: " << m_CurrentWorldPlaneGeometryUpdateTime << std::endl; os << indent << " CurrentWorldPlaneGeometryTransformTime: " << m_CurrentWorldPlaneGeometryTransformTime << std::endl; Superclass::PrintSelf(os, indent); } diff --git a/Modules/Segmentation/Algorithms/mitkSegmentationHelper.cpp b/Modules/Segmentation/Algorithms/mitkSegmentationHelper.cpp index c65ac2c200..8dac9a7fff 100644 --- a/Modules/Segmentation/Algorithms/mitkSegmentationHelper.cpp +++ b/Modules/Segmentation/Algorithms/mitkSegmentationHelper.cpp @@ -1,45 +1,45 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSegmentationHelper.h" #include #include -#include +#include mitk::Image::Pointer mitk::SegmentationHelper::GetStaticSegmentationTemplate(const Image* referenceImage) { if (referenceImage == nullptr) return nullptr; const auto* referenceGeometry = referenceImage->GetTimeGeometry(); const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); const auto timeStep = referenceGeometry->IsValidTimePoint(timePoint) ? referenceGeometry->TimePointToTimeStep(timePoint) : 0; auto geometry = ProportionalTimeGeometry::New(); geometry->SetFirstTimePoint(referenceGeometry->GetMinimumTimePoint()); geometry->SetStepDuration(referenceGeometry->GetMaximumTimePoint() - referenceGeometry->GetMinimumTimePoint()); geometry->SetTimeStepGeometry(referenceImage->GetGeometry(timeStep), 0); auto selector = mitk::ImageTimeSelector::New(); selector->SetInput(referenceImage); selector->SetTimeNr(timeStep); selector->Update(); Image::Pointer templateImage = selector->GetOutput(); templateImage->SetTimeGeometry(geometry); return templateImage; } diff --git a/Modules/Segmentation/Controllers/mitkToolManager.cpp b/Modules/Segmentation/Controllers/mitkToolManager.cpp index bf4b30c3bf..d1fab073f6 100644 --- a/Modules/Segmentation/Controllers/mitkToolManager.cpp +++ b/Modules/Segmentation/Controllers/mitkToolManager.cpp @@ -1,596 +1,592 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkToolManager.h" #include "mitkToolManagerProvider.h" #include "mitkCoreObjectFactory.h" #include #include #include #include "mitkInteractionEventObserver.h" #include "mitkSegTool2D.h" #include "mitkRenderingManager.h" -#include "mitkSliceNavigationController.h" +#include "mitkTimeNavigationController.h" #include "usGetModuleContext.h" #include "usModuleContext.h" mitk::ToolManager::ToolManager(DataStorage *storage) : m_ActiveTool(nullptr), m_ActiveToolID(-1), m_RegisteredClients(0), m_DataStorage(storage) { CoreObjectFactory::GetInstance(); // to make sure a CoreObjectFactory was instantiated (and in turn, possible tools // are registered) - bug 1029 this->InitializeTools(); } void mitk::ToolManager::EnsureTimeObservation() { - if (nullptr != mitk::RenderingManager::GetInstance() && nullptr != mitk::RenderingManager::GetInstance()->GetTimeNavigationController()) - { - auto timeController = mitk::RenderingManager::GetInstance()->GetTimeNavigationController(); - - m_LastTimePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); + auto* timeController = RenderingManager::GetInstance()->GetTimeNavigationController(); + m_LastTimePoint = timeController->GetSelectedTimePoint(); - auto currentTimeController = m_CurrentTimeNavigationController.Lock(); + auto currentTimeController = m_CurrentTimeNavigationController.Lock(); - if (timeController != currentTimeController) + if (timeController != currentTimeController) + { + if (currentTimeController.IsNotNull()) { - if (currentTimeController.IsNotNull()) - { - currentTimeController->RemoveObserver(m_TimePointObserverTag); - } - - itk::MemberCommand::Pointer command = itk::MemberCommand::New(); - command->SetCallbackFunction(this, &ToolManager::OnTimeChanged); - command->SetCallbackFunction(this, &ToolManager::OnTimeChangedConst); - m_CurrentTimeNavigationController = timeController; - m_TimePointObserverTag = timeController->AddObserver(SliceNavigationController::GeometryTimeEvent(nullptr,0), command); + currentTimeController->RemoveObserver(m_TimePointObserverTag); } + + itk::MemberCommand::Pointer command = itk::MemberCommand::New(); + command->SetCallbackFunction(this, &ToolManager::OnTimeChanged); + command->SetCallbackFunction(this, &ToolManager::OnTimeChangedConst); + m_CurrentTimeNavigationController = timeController; + m_TimePointObserverTag = timeController->AddObserver(TimeNavigationController::TimeEvent(0), command); } } void mitk::ToolManager::StopTimeObservation() { auto currentTimeController = m_CurrentTimeNavigationController.Lock(); if (currentTimeController.IsNotNull()) { currentTimeController->RemoveObserver(m_TimePointObserverTag); m_CurrentTimeNavigationController = nullptr; m_TimePointObserverTag = 0; } } mitk::ToolManager::~ToolManager() { for (auto dataIter = m_WorkingData.begin(); dataIter != m_WorkingData.end(); ++dataIter) (*dataIter)->RemoveObserver(m_WorkingDataObserverTags[(*dataIter)]); if (this->GetDataStorage() != nullptr) this->GetDataStorage()->RemoveNodeEvent.RemoveListener( mitk::MessageDelegate1(this, &ToolManager::OnNodeRemoved)); if (m_ActiveTool) { m_ActiveTool->Deactivated(); m_ActiveToolRegistration.Unregister(); m_ActiveTool = nullptr; m_ActiveToolID = -1; // no tool active ActiveToolChanged.Send(); } for (auto observerTagMapIter = m_ReferenceDataObserverTags.begin(); observerTagMapIter != m_ReferenceDataObserverTags.end(); ++observerTagMapIter) { observerTagMapIter->first->RemoveObserver(observerTagMapIter->second); } this->StopTimeObservation(); } void mitk::ToolManager::InitializeTools() { // clear all previous tool pointers (tools may be still activated from another recently used plugin) if (m_ActiveTool) { m_ActiveTool->Deactivated(); m_ActiveToolRegistration.Unregister(); m_ActiveTool = nullptr; m_ActiveToolID = -1; // no tool active ActiveToolChanged.Send(); } m_Tools.clear(); // get a list of all known mitk::Tools std::list thingsThatClaimToBeATool = itk::ObjectFactoryBase::CreateAllInstance("mitkTool"); // remember these tools for (auto iter = thingsThatClaimToBeATool.begin(); iter != thingsThatClaimToBeATool.end(); ++iter) { if (auto *tool = dynamic_cast(iter->GetPointer())) { tool->InitializeStateMachine(); tool->SetToolManager(this); // important to call right after instantiation tool->ErrorMessage += MessageDelegate1(this, &ToolManager::OnToolErrorMessage); tool->GeneralMessage += MessageDelegate1(this, &ToolManager::OnGeneralToolMessage); m_Tools.push_back(tool); } } } void mitk::ToolManager::OnToolErrorMessage(std::string s) { this->ToolErrorMessage(s); } void mitk::ToolManager::OnGeneralToolMessage(std::string s) { this->GeneralToolMessage(s); } const mitk::ToolManager::ToolVectorTypeConst mitk::ToolManager::GetTools() { ToolVectorTypeConst resultList; for (auto iter = m_Tools.begin(); iter != m_Tools.end(); ++iter) { resultList.push_back(iter->GetPointer()); } return resultList; } mitk::Tool *mitk::ToolManager::GetToolById(int id) { try { return m_Tools.at(id); } catch (const std::exception &) { return nullptr; } } bool mitk::ToolManager::ActivateTool(int id) { const auto workingDataNode = this->GetWorkingData(0); const mitk::BaseData* workingData = nullptr; if (nullptr != workingDataNode) { workingData = workingDataNode->GetData(); } const auto referenceDataNode = this->GetReferenceData(0); const mitk::BaseData* referenceData = nullptr; if (nullptr != referenceDataNode) { referenceData = referenceDataNode->GetData(); } if (id != -1 && !this->GetToolById(id)->CanHandle(referenceData, workingData)) return false; if (this->GetDataStorage()) { this->GetDataStorage()->RemoveNodeEvent.AddListener( mitk::MessageDelegate1(this, &ToolManager::OnNodeRemoved)); } if (GetToolById(id) == m_ActiveTool) return true; // no change needed static int nextTool = -1; nextTool = id; static bool inActivateTool = false; if (inActivateTool) { return true; } inActivateTool = true; while (nextTool != m_ActiveToolID) { // Deactivate all other active tools to ensure a globally single active tool for (const auto& toolManager : ToolManagerProvider::GetInstance()->GetToolManagers()) { if (nullptr != toolManager.second->m_ActiveTool) { toolManager.second->m_ActiveTool->Deactivated(); toolManager.second->m_ActiveToolRegistration.Unregister(); // The active tool of *this* ToolManager is handled below this loop if (this != toolManager.second) { toolManager.second->m_ActiveTool = nullptr; toolManager.second->m_ActiveToolID = -1; toolManager.second->ActiveToolChanged.Send(); } } } m_ActiveTool = GetToolById(nextTool); m_ActiveToolID = m_ActiveTool ? nextTool : -1; // current ID if tool is valid, otherwise -1 ActiveToolChanged.Send(); if (m_ActiveTool) { this->EnsureTimeObservation(); if (m_RegisteredClients > 0) { m_ActiveTool->Activated(); m_ActiveToolRegistration = us::GetModuleContext()->RegisterService(m_ActiveTool, us::ServiceProperties()); } } } inActivateTool = false; return (m_ActiveTool != nullptr); } void mitk::ToolManager::SetReferenceData(DataVectorType data) { if (data != m_ReferenceData) { // remove observers from old nodes for (auto dataIter = m_ReferenceData.begin(); dataIter != m_ReferenceData.end(); ++dataIter) { auto searchIter = m_ReferenceDataObserverTags.find(*dataIter); if (searchIter != m_ReferenceDataObserverTags.end()) { (*dataIter)->RemoveObserver(searchIter->second); } } m_ReferenceData = data; // TODO tell active tool? // attach new observers m_ReferenceDataObserverTags.clear(); for (auto dataIter = m_ReferenceData.begin(); dataIter != m_ReferenceData.end(); ++dataIter) { itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction(this, &ToolManager::OnOneOfTheReferenceDataDeleted); command->SetCallbackFunction(this, &ToolManager::OnOneOfTheReferenceDataDeletedConst); m_ReferenceDataObserverTags.insert( std::pair((*dataIter), (*dataIter)->AddObserver(itk::DeleteEvent(), command))); } ReferenceDataChanged.Send(); } } void mitk::ToolManager::OnOneOfTheReferenceDataDeletedConst(const itk::Object *caller, const itk::EventObject &e) { OnOneOfTheReferenceDataDeleted(const_cast(caller), e); } void mitk::ToolManager::OnOneOfTheReferenceDataDeleted(itk::Object *caller, const itk::EventObject &itkNotUsed(e)) { DataVectorType v; for (auto dataIter = m_ReferenceData.begin(); dataIter != m_ReferenceData.end(); ++dataIter) { if ((void *)(*dataIter) != (void *)caller) { v.push_back(*dataIter); } else { m_ReferenceDataObserverTags.erase(*dataIter); // no tag to remove anymore } } this->SetReferenceData(v); } void mitk::ToolManager::SetReferenceData(DataNode *data) { DataVectorType v; if (data) { v.push_back(data); } SetReferenceData(v); } void mitk::ToolManager::SetWorkingData(DataVectorType data) { if (data != m_WorkingData) { // remove observers from old nodes for (auto dataIter = m_WorkingData.begin(); dataIter != m_WorkingData.end(); ++dataIter) { auto searchIter = m_WorkingDataObserverTags.find(*dataIter); if (searchIter != m_WorkingDataObserverTags.end()) { (*dataIter)->RemoveObserver(searchIter->second); } } m_WorkingData = data; // TODO tell active tool? // Quick workaround for bug #16598 if (m_WorkingData.empty()) this->ActivateTool(-1); // workaround end // attach new observers m_WorkingDataObserverTags.clear(); for (auto dataIter = m_WorkingData.begin(); dataIter != m_WorkingData.end(); ++dataIter) { itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction(this, &ToolManager::OnOneOfTheWorkingDataDeleted); command->SetCallbackFunction(this, &ToolManager::OnOneOfTheWorkingDataDeletedConst); m_WorkingDataObserverTags.insert( std::pair((*dataIter), (*dataIter)->AddObserver(itk::DeleteEvent(), command))); } WorkingDataChanged.Send(); } } void mitk::ToolManager::OnOneOfTheWorkingDataDeletedConst(const itk::Object *caller, const itk::EventObject &e) { OnOneOfTheWorkingDataDeleted(const_cast(caller), e); } void mitk::ToolManager::OnOneOfTheWorkingDataDeleted(itk::Object *caller, const itk::EventObject &itkNotUsed(e)) { DataVectorType v; for (auto dataIter = m_WorkingData.begin(); dataIter != m_WorkingData.end(); ++dataIter) { if ((void *)(*dataIter) != (void *)caller) { v.push_back(*dataIter); } else { m_WorkingDataObserverTags.erase(*dataIter); // no tag to remove anymore } } this->SetWorkingData(v); } void mitk::ToolManager::SetWorkingData(DataNode *data) { DataVectorType v; if (data) // don't allow for nullptr nodes { v.push_back(data); } SetWorkingData(v); } void mitk::ToolManager::SetRoiData(DataVectorType data) { if (data != m_RoiData) { // remove observers from old nodes for (auto dataIter = m_RoiData.begin(); dataIter != m_RoiData.end(); ++dataIter) { auto searchIter = m_RoiDataObserverTags.find(*dataIter); if (searchIter != m_RoiDataObserverTags.end()) { (*dataIter)->RemoveObserver(searchIter->second); } } m_RoiData = data; // TODO tell active tool? // attach new observers m_RoiDataObserverTags.clear(); for (auto dataIter = m_RoiData.begin(); dataIter != m_RoiData.end(); ++dataIter) { itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction(this, &ToolManager::OnOneOfTheRoiDataDeleted); command->SetCallbackFunction(this, &ToolManager::OnOneOfTheRoiDataDeletedConst); m_RoiDataObserverTags.insert( std::pair((*dataIter), (*dataIter)->AddObserver(itk::DeleteEvent(), command))); } RoiDataChanged.Send(); } } void mitk::ToolManager::SetRoiData(DataNode *data) { DataVectorType v; if (data) { v.push_back(data); } this->SetRoiData(v); } void mitk::ToolManager::OnOneOfTheRoiDataDeletedConst(const itk::Object *caller, const itk::EventObject &e) { OnOneOfTheRoiDataDeleted(const_cast(caller), e); } void mitk::ToolManager::OnOneOfTheRoiDataDeleted(itk::Object *caller, const itk::EventObject &itkNotUsed(e)) { DataVectorType v; for (auto dataIter = m_RoiData.begin(); dataIter != m_RoiData.end(); ++dataIter) { if ((void *)(*dataIter) != (void *)caller) { v.push_back(*dataIter); } else { m_RoiDataObserverTags.erase(*dataIter); // no tag to remove anymore } } this->SetRoiData(v); } mitk::ToolManager::DataVectorType mitk::ToolManager::GetReferenceData() { return m_ReferenceData; } mitk::DataNode *mitk::ToolManager::GetReferenceData(int idx) { try { return m_ReferenceData.at(idx); } catch (const std::exception &) { return nullptr; } } mitk::ToolManager::DataVectorType mitk::ToolManager::GetWorkingData() { return m_WorkingData; } mitk::ToolManager::DataVectorType mitk::ToolManager::GetRoiData() { return m_RoiData; } mitk::DataNode *mitk::ToolManager::GetRoiData(int idx) { try { return m_RoiData.at(idx); } catch (const std::exception &) { return nullptr; } } mitk::DataStorage::Pointer mitk::ToolManager::GetDataStorage() const { return m_DataStorage.Lock(); } void mitk::ToolManager::SetDataStorage(DataStorage &storage) { m_DataStorage = &storage; } mitk::DataNode *mitk::ToolManager::GetWorkingData(unsigned int idx) { if (m_WorkingData.empty()) return nullptr; if (m_WorkingData.size() > idx) return m_WorkingData[idx]; return nullptr; } int mitk::ToolManager::GetActiveToolID() { return m_ActiveToolID; } mitk::Tool *mitk::ToolManager::GetActiveTool() { return m_ActiveTool; } void mitk::ToolManager::RegisterClient() { if (m_RegisteredClients < 1) { if (m_ActiveTool) { m_ActiveTool->Activated(); m_ActiveToolRegistration = us::GetModuleContext()->RegisterService(m_ActiveTool, us::ServiceProperties()); } } ++m_RegisteredClients; } void mitk::ToolManager::UnregisterClient() { if (m_RegisteredClients < 1) return; --m_RegisteredClients; if (m_RegisteredClients < 1) { if (m_ActiveTool) { m_ActiveTool->Deactivated(); m_ActiveToolRegistration.Unregister(); } } } int mitk::ToolManager::GetToolID(const Tool *tool) { int id(0); for (auto iter = m_Tools.begin(); iter != m_Tools.end(); ++iter, ++id) { if (tool == iter->GetPointer()) { return id; } } return -1; } void mitk::ToolManager::OnNodeRemoved(const mitk::DataNode *node) { // check all storage vectors OnOneOfTheReferenceDataDeleted(const_cast(node), itk::DeleteEvent()); OnOneOfTheRoiDataDeleted(const_cast(node), itk::DeleteEvent()); OnOneOfTheWorkingDataDeleted(const_cast(node), itk::DeleteEvent()); } void mitk::ToolManager::OnTimeChanged(itk::Object* caller, const itk::EventObject& e) { this->OnTimeChangedConst(caller, e); } void mitk::ToolManager::OnTimeChangedConst(const itk::Object* caller, const itk::EventObject& /*e*/) { - auto currentController = m_CurrentTimeNavigationController.Lock(); + const auto currentController = m_CurrentTimeNavigationController.Lock(); if (caller == currentController) { - const auto currentTimePoint = currentController->GetSelectedTimePoint(); + const TimePointType currentTimePoint = currentController->GetSelectedTimePoint(); if (currentTimePoint != m_LastTimePoint) { m_LastTimePoint = currentTimePoint; SelectedTimePointChanged.Send(); } } } mitk::TimePointType mitk::ToolManager::GetCurrentTimePoint() const { return m_LastTimePoint; } diff --git a/Modules/Segmentation/Controllers/mitkToolManager.h b/Modules/Segmentation/Controllers/mitkToolManager.h index ebade99775..f6bbc61208 100644 --- a/Modules/Segmentation/Controllers/mitkToolManager.h +++ b/Modules/Segmentation/Controllers/mitkToolManager.h @@ -1,302 +1,302 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkToolManager_h #define mitkToolManager_h #include "mitkDataNode.h" #include "mitkDataStorage.h" #include "mitkTool.h" #include "mitkWeakPointer.h" #include #pragma GCC visibility push(default) #include #pragma GCC visibility pop #include namespace mitk { class Image; class PlaneGeometry; /** \brief Manages and coordinates instances of mitk::Tool. \sa QmitkToolSelectionBox \sa Tool \sa QmitkSegmentationView \ingroup Interaction \ingroup ToolManagerEtAl There is a separate page describing the general design of QmitkSegmentationView: \ref QmitkSegmentationTechnicalPage This class creates and manages several instances of mitk::Tool. \li ToolManager creates instances of mitk::Tool by asking the itk::ObjectFactory to list all known implementations of mitk::Tool. As a result, one has to implement both a subclass of mitk::Tool and a matching subclass of itk::ObjectFactoryBase that is registered to the top-level itk::ObjectFactory. For an example, see mitkContourToolFactory.h. (this limitiation of one-class-one-factory is due to the implementation of itk::ObjectFactory). In MITK, the right place to register the factories to itk::ObjectFactory is the mitk::QMCoreObjectFactory or mitk::SBCoreObjectFactory. \li ToolManager knows a set of "reference" DataNodes and a set of "working" DataNodes. The first application are segmentation tools, where the reference is the original image and the working data the (kind of) binary segmentation. However, ToolManager is implemented more generally, so that there could be other tools that work, e.g., with surfaces. \li There is a set of events that are sent by ToolManager. At the moment these are TODO update documentation: - mitk::ToolReferenceDataChangedEvent whenever somebody calls SetReferenceData. Most of the time this actually means that the data has changed, but there might be cases where the same data is passed to SetReferenceData a second time, so don't rely on the assumption that something actually changed. - mitk::ToolSelectedEvent is sent when a (truly) different tool was activated. In reaction to this event you can ask for the active Tool using GetActiveTool or GetActiveToolID (where nullptr or -1 indicate that NO tool is active at the moment). Design descisions: \li Not a singleton, because there could be two functionalities using tools, each one with different reference/working data. $Author$ */ class MITKSEGMENTATION_EXPORT ToolManager : public itk::Object { public: typedef std::vector ToolVectorType; typedef std::vector ToolVectorTypeConst; typedef std::vector DataVectorType; // has to be observed for delete events! typedef std::map NodeTagMapType; Message<> NodePropertiesChanged; Message<> NewNodesGenerated; Message1 NewNodeObjectsGenerated; Message<> ActiveToolChanged; Message<> ReferenceDataChanged; Message<> WorkingDataChanged; Message<> RoiDataChanged; Message<> SelectedTimePointChanged; Message1 ToolErrorMessage; Message1 GeneralToolMessage; mitkClassMacroItkParent(ToolManager, itk::Object); mitkNewMacro1Param(ToolManager, DataStorage *); /** \brief Gives you a list of all tools. This is const on purpose. */ const ToolVectorTypeConst GetTools(); int GetToolID(const Tool *tool); /** \param id The tool of interest. Counting starts with 0. */ Tool *GetToolById(int id); /** \param id The tool to activate. Provide -1 for disabling any tools. Counting starts with 0. Registeres a listner for NodeRemoved event at DataStorage (see mitk::ToolManager::OnNodeRemoved). */ bool ActivateTool(int id); template int GetToolIdByToolType() { int id = 0; for (auto iter = m_Tools.begin(); iter != m_Tools.end(); ++iter, ++id) { if (dynamic_cast(iter->GetPointer())) { return id; } } return -1; } /** \return -1 for "No tool is active" */ int GetActiveToolID(); /** \return nullptr for "No tool is active" */ Tool *GetActiveTool(); /** \brief Set a list of data/images as reference objects. */ void SetReferenceData(DataVectorType); /** \brief Set single data item/image as reference object. */ void SetReferenceData(DataNode *); /** \brief Set a list of data/images as working objects. */ void SetWorkingData(DataVectorType); /** \brief Set single data item/image as working object. */ void SetWorkingData(DataNode *); /** \brief Set a list of data/images as roi objects. */ void SetRoiData(DataVectorType); /** \brief Set a single data item/image as roi object. */ void SetRoiData(DataNode *); /** \brief Get the list of reference data. */ DataVectorType GetReferenceData(); /** \brief Get the current reference data. \warning If there is a list of items, this method will only return the first list item. */ DataNode *GetReferenceData(int); /** \brief Get the list of working data. */ DataVectorType GetWorkingData(); /** \brief Get the current working data. \warning If there is a list of items, this method will only return the first list item. */ DataNode *GetWorkingData(unsigned int); /** \brief Get the current roi data */ DataVectorType GetRoiData(); /** \brief Get the roi data at position idx */ DataNode *GetRoiData(int idx); DataStorage::Pointer GetDataStorage() const; void SetDataStorage(DataStorage &storage); /** Get the current selected time point of the RenderManager */ TimePointType GetCurrentTimePoint() const; /** \brief Tell that someone is using tools. GUI elements should call this when they become active. This method increases an internal "client count". */ void RegisterClient(); /** \brief Tell that someone is NOT using tools. GUI elements should call this when they become active. This method increases an internal "client count". */ void UnregisterClient(); /** \brief Initialize all classes derived from mitk::Tool by itkObjectFactoy */ void InitializeTools(); void OnOneOfTheReferenceDataDeletedConst(const itk::Object *caller, const itk::EventObject &e); void OnOneOfTheReferenceDataDeleted(itk::Object *caller, const itk::EventObject &e); void OnOneOfTheWorkingDataDeletedConst(const itk::Object *caller, const itk::EventObject &e); void OnOneOfTheWorkingDataDeleted(itk::Object *caller, const itk::EventObject &e); void OnOneOfTheRoiDataDeletedConst(const itk::Object *caller, const itk::EventObject &e); void OnOneOfTheRoiDataDeleted(itk::Object *caller, const itk::EventObject &e); /** \brief Connected to tool's messages This method just resends error messages coming from any of the tools. This way clients (GUIs) only have to observe one message. */ void OnToolErrorMessage(std::string s); void OnGeneralToolMessage(std::string s); protected: /** You may specify a list of tool "groups" that should be available for this ToolManager. Every Tool can report its group as a string. This constructor will try to find the tool's group inside the supplied string. If there is a match, the tool is accepted. Effectively, you can provide a human readable list like "default, lymphnodevolumetry, oldERISstuff". */ ToolManager(DataStorage *storage); // purposely hidden ~ToolManager() override; ToolVectorType m_Tools; Tool *m_ActiveTool; int m_ActiveToolID; us::ServiceRegistration m_ActiveToolRegistration; DataVectorType m_ReferenceData; NodeTagMapType m_ReferenceDataObserverTags; DataVectorType m_WorkingData; NodeTagMapType m_WorkingDataObserverTags; DataVectorType m_RoiData; NodeTagMapType m_RoiDataObserverTags; int m_RegisteredClients; WeakPointer m_DataStorage; /// \brief Callback for NodeRemove events void OnNodeRemoved(const mitk::DataNode *node); /** Callback for time changed events*/ void OnTimeChangedConst(const itk::Object* caller, const itk::EventObject& e); void OnTimeChanged(itk::Object* caller, const itk::EventObject& e); void EnsureTimeObservation(); void StopTimeObservation(); private: /** Time point of last detected change*/ TimePointType m_LastTimePoint = 0; /** Tag of the observer that listens to time changes*/ unsigned long m_TimePointObserverTag = 0; /** Pointer to the observed time stepper*/ - WeakPointer m_CurrentTimeNavigationController; + WeakPointer m_CurrentTimeNavigationController; }; } // namespace #endif diff --git a/Modules/Segmentation/Interactions/mitkLiveWireTool2D.cpp b/Modules/Segmentation/Interactions/mitkLiveWireTool2D.cpp index b7a4cd5ad5..7754a8e450 100644 --- a/Modules/Segmentation/Interactions/mitkLiveWireTool2D.cpp +++ b/Modules/Segmentation/Interactions/mitkLiveWireTool2D.cpp @@ -1,261 +1,262 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include #include #include +#include #include #include #include namespace mitk { MITK_TOOL_MACRO(MITKSEGMENTATION_EXPORT, LiveWireTool2D, "LiveWire tool"); } mitk::LiveWireTool2D::LiveWireTool2D() : EditableContourTool(), m_CreateAndUseDynamicCosts(false) { } mitk::LiveWireTool2D::~LiveWireTool2D() { } void mitk::LiveWireTool2D::ConnectActionsAndFunctions() { mitk::EditableContourTool::ConnectActionsAndFunctions(); CONNECT_FUNCTION("MovePoint", OnMouseMoveNoDynamicCosts); } const char **mitk::LiveWireTool2D::GetXPM() const { return mitkLiveWireTool2D_xpm; } us::ModuleResource mitk::LiveWireTool2D::GetIconResource() const { return us::GetModuleContext()->GetModule()->GetResource("LiveWire.svg"); } us::ModuleResource mitk::LiveWireTool2D::GetCursorIconResource() const { return us::GetModuleContext()->GetModule()->GetResource("LiveWire_Cursor.svg"); } const char *mitk::LiveWireTool2D::GetName() const { return "Live Wire"; } void mitk::LiveWireTool2D::UpdateLiveWireContour() { auto contour = this->GetContour(); if (nullptr != contour) { auto timeGeometry = contour->GetTimeGeometry()->Clone(); m_PreviewContour = this->m_LiveWireFilter->GetOutput(); // needed because the results of the filter are always from 0 ms // to 1 ms and the filter also resets its outputs. // generate a time geometry that is always visible as the working contour should always be. auto contourTimeGeometry = ProportionalTimeGeometry::New(); contourTimeGeometry->SetStepDuration(std::numeric_limits::max()); contourTimeGeometry->SetTimeStepGeometry(contour->GetTimeGeometry()->GetGeometryForTimeStep(0)->Clone(), 0); m_PreviewContour->SetTimeGeometry(contourTimeGeometry); m_PreviewContourNode->SetData(this->m_PreviewContour); } } void mitk::LiveWireTool2D::OnTimePointChanged() { auto reference = this->GetReferenceData(); if (nullptr == reference || m_PlaneGeometry.IsNull() || m_LiveWireFilter.IsNull() || m_PreviewContourNode.IsNull()) return; auto timeStep = reference->GetTimeGeometry()->TimePointToTimeStep(this->GetLastTimePointTriggered()); m_ReferenceDataSlice = GetAffectedImageSliceAs2DImageByTimePoint(m_PlaneGeometry, reference, timeStep); m_LiveWireFilter->SetInput(m_ReferenceDataSlice); m_LiveWireFilter->Update(); this->UpdateLiveWireContour(); RenderingManager::GetInstance()->RequestUpdateAll(); }; mitk::Point3D mitk::LiveWireTool2D::PrepareInitContour(const mitk::Point3D& clickedPoint) { // Set current slice as input for ImageToLiveWireContourFilter m_LiveWireFilter = ImageLiveWireContourModelFilter::New(); m_LiveWireFilter->SetUseCostFunction(true); m_LiveWireFilter->SetInput(m_ReferenceDataSlice); itk::Index<3> idx; m_ReferenceDataSlice->GetGeometry()->WorldToIndex(clickedPoint, idx); // Get the pixel with the highest gradient in a 7x7 region itk::Index<3> indexWithHighestGradient; AccessFixedDimensionByItk_2(m_ReferenceDataSlice, FindHighestGradientMagnitudeByITK, 2, idx, indexWithHighestGradient); Point3D adaptedClick; m_ReferenceDataSlice->GetGeometry()->IndexToWorld(indexWithHighestGradient, adaptedClick); m_CreateAndUseDynamicCosts = true; return adaptedClick; } void mitk::LiveWireTool2D::FinalizePreviewContour(const Point3D& clickedPoint) { // Add repulsive points to avoid getting the same path again std::for_each(m_PreviewContour->IteratorBegin(), m_PreviewContour->IteratorEnd(), [this](ContourElement::VertexType* vertex) { ImageLiveWireContourModelFilter::InternalImageType::IndexType idx; this->m_ReferenceDataSlice->GetGeometry()->WorldToIndex(vertex->Coordinates, idx); this->m_LiveWireFilter->AddRepulsivePoint(idx); }); EditableContourTool::FinalizePreviewContour(clickedPoint); } void mitk::LiveWireTool2D::InitializePreviewContour(const Point3D& clickedPoint) { m_PreviewContour->Clear(); // Set new start point m_LiveWireFilter->SetStartPoint(clickedPoint); if (m_CreateAndUseDynamicCosts) { auto contour = this->GetContour(); // Use dynamic cost map for next update m_LiveWireFilter->CreateDynamicCostMap(contour); m_LiveWireFilter->SetUseDynamicCostMap(true); } } void mitk::LiveWireTool2D::UpdatePreviewContour(const Point3D& clickedPoint) { // Compute LiveWire segment from last control point to current mouse position m_LiveWireFilter->SetEndPoint(clickedPoint); m_LiveWireFilter->Update(); this->UpdateLiveWireContour(); } void mitk::LiveWireTool2D::OnMouseMoveNoDynamicCosts(StateMachineAction *, InteractionEvent *interactionEvent) { m_LiveWireFilter->SetUseDynamicCostMap(false); this->OnMouseMoved(nullptr, interactionEvent); m_LiveWireFilter->SetUseDynamicCostMap(true); } void mitk::LiveWireTool2D::FinishTool() { m_LiveWireFilter->SetUseDynamicCostMap(false); m_ContourInteractor = mitk::ContourModelLiveWireInteractor::New(); m_ContourInteractor->SetDataNode(m_ContourNode); m_ContourInteractor->LoadStateMachine("ContourModelModificationInteractor.xml", us::GetModuleContext()->GetModule()); m_ContourInteractor->SetEventConfig("ContourModelModificationConfig.xml", us::GetModuleContext()->GetModule()); m_ContourInteractor->SetWorkingImage(this->m_ReferenceDataSlice); m_ContourInteractor->SetRestrictedArea(this->m_CurrentRestrictedArea); m_ContourNode->SetDataInteractor(m_ContourInteractor.GetPointer()); } template void mitk::LiveWireTool2D::FindHighestGradientMagnitudeByITK(itk::Image *inputImage, itk::Index<3> &index, itk::Index<3> &returnIndex) { typedef itk::Image InputImageType; typedef typename InputImageType::IndexType IndexType; const auto MAX_X = inputImage->GetLargestPossibleRegion().GetSize()[0]; const auto MAX_Y = inputImage->GetLargestPossibleRegion().GetSize()[1]; returnIndex[0] = index[0]; returnIndex[1] = index[1]; returnIndex[2] = 0.0; double gradientMagnitude = 0.0; double maxGradientMagnitude = 0.0; // The size and thus the region of 7x7 is only used to calculate the gradient magnitude in that region, // not for searching the maximum value. // Maximum value in each direction for size typename InputImageType::SizeType size; size[0] = 7; size[1] = 7; // Minimum value in each direction for startRegion IndexType startRegion; startRegion[0] = index[0] - 3; startRegion[1] = index[1] - 3; if (startRegion[0] < 0) startRegion[0] = 0; if (startRegion[1] < 0) startRegion[1] = 0; if (MAX_X - index[0] < 7) startRegion[0] = MAX_X - 7; if (MAX_Y - index[1] < 7) startRegion[1] = MAX_Y - 7; index[0] = startRegion[0] + 3; index[1] = startRegion[1] + 3; typename InputImageType::RegionType region; region.SetSize(size); region.SetIndex(startRegion); typedef typename itk::GradientMagnitudeImageFilter GradientMagnitudeFilterType; typename GradientMagnitudeFilterType::Pointer gradientFilter = GradientMagnitudeFilterType::New(); gradientFilter->SetInput(inputImage); gradientFilter->GetOutput()->SetRequestedRegion(region); gradientFilter->Update(); typename InputImageType::Pointer gradientMagnitudeImage; gradientMagnitudeImage = gradientFilter->GetOutput(); IndexType currentIndex; currentIndex[0] = 0; currentIndex[1] = 0; // Search max (approximate) gradient magnitude for (int x = -1; x <= 1; ++x) { currentIndex[0] = index[0] + x; for (int y = -1; y <= 1; ++y) { currentIndex[1] = index[1] + y; gradientMagnitude = gradientMagnitudeImage->GetPixel(currentIndex); // Check for new max if (maxGradientMagnitude < gradientMagnitude) { maxGradientMagnitude = gradientMagnitude; returnIndex[0] = currentIndex[0]; returnIndex[1] = currentIndex[1]; returnIndex[2] = 0.0; } } currentIndex[1] = index[1]; } } diff --git a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp index 5affb3f67a..e997d62ef6 100644 --- a/Modules/Segmentation/Interactions/mitkSegTool2D.cpp +++ b/Modules/Segmentation/Interactions/mitkSegTool2D.cpp @@ -1,798 +1,799 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSegTool2D.h" #include "mitkToolManager.h" #include "mitkBaseRenderer.h" #include "mitkDataStorage.h" #include "mitkPlaneGeometry.h" +#include // Include of the new ImageExtractor #include "mitkMorphologicalOperations.h" #include "mitkPlanarCircle.h" #include "usGetModuleContext.h" // Includes for 3DSurfaceInterpolation #include "mitkImageTimeSelector.h" #include "mitkImageToContourFilter.h" #include "mitkSurfaceInterpolationController.h" // includes for resling and overwriting #include #include #include #include #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include #include "mitkAbstractTransformGeometry.h" #include "mitkLabelSetImage.h" #include "mitkContourModelUtils.h" // #include #include #include #define ROUND(a) ((a) > 0 ? (int)((a) + 0.5) : -(int)(0.5 - (a))) bool mitk::SegTool2D::m_SurfaceInterpolationEnabled = true; mitk::SegTool2D::SliceInformation::SliceInformation(const mitk::Image* aSlice, const mitk::PlaneGeometry* aPlane, mitk::TimeStepType aTimestep) : slice(aSlice), plane(aPlane), timestep(aTimestep) { } mitk::SegTool2D::SegTool2D(const char *type, const us::Module *interactorModule) : Tool(type, interactorModule), m_Contourmarkername("Position") { Tool::m_EventConfig = "DisplayConfigBlockLMB.xml"; } mitk::SegTool2D::~SegTool2D() { } bool mitk::SegTool2D::FilterEvents(InteractionEvent *interactionEvent, DataNode *) { const auto *positionEvent = dynamic_cast(interactionEvent); bool isValidEvent = (positionEvent && // Only events of type mitk::InteractionPositionEvent interactionEvent->GetSender()->GetMapperID() == BaseRenderer::Standard2D // Only events from the 2D renderwindows ); return isValidEvent; } bool mitk::SegTool2D::DetermineAffectedImageSlice(const Image *image, const PlaneGeometry *plane, int &affectedDimension, int &affectedSlice) { assert(image); assert(plane); // compare normal of plane to the three axis vectors of the image Vector3D normal = plane->GetNormal(); Vector3D imageNormal0 = image->GetSlicedGeometry()->GetAxisVector(0); Vector3D imageNormal1 = image->GetSlicedGeometry()->GetAxisVector(1); Vector3D imageNormal2 = image->GetSlicedGeometry()->GetAxisVector(2); normal.Normalize(); imageNormal0.Normalize(); imageNormal1.Normalize(); imageNormal2.Normalize(); imageNormal0.SetVnlVector(vnl_cross_3d(normal.GetVnlVector(), imageNormal0.GetVnlVector())); imageNormal1.SetVnlVector(vnl_cross_3d(normal.GetVnlVector(), imageNormal1.GetVnlVector())); imageNormal2.SetVnlVector(vnl_cross_3d(normal.GetVnlVector(), imageNormal2.GetVnlVector())); double eps(0.00001); // axial if (imageNormal2.GetNorm() <= eps) { affectedDimension = 2; } // sagittal else if (imageNormal1.GetNorm() <= eps) { affectedDimension = 1; } // coronal else if (imageNormal0.GetNorm() <= eps) { affectedDimension = 0; } else { affectedDimension = -1; // no idea return false; } // determine slice number in image BaseGeometry *imageGeometry = image->GetGeometry(0); Point3D testPoint = imageGeometry->GetCenter(); Point3D projectedPoint; plane->Project(testPoint, projectedPoint); Point3D indexPoint; imageGeometry->WorldToIndex(projectedPoint, indexPoint); affectedSlice = ROUND(indexPoint[affectedDimension]); MITK_DEBUG << "indexPoint " << indexPoint << " affectedDimension " << affectedDimension << " affectedSlice " << affectedSlice; // check if this index is still within the image if (affectedSlice < 0 || affectedSlice >= static_cast(image->GetDimension(affectedDimension))) return false; return true; } void mitk::SegTool2D::UpdateSurfaceInterpolation(const Image *slice, const Image *workingImage, const PlaneGeometry *plane, bool detectIntersection) { std::vector slices = { SliceInformation(slice, plane, 0)}; Self::UpdateSurfaceInterpolation(slices, workingImage, detectIntersection, 0, 0); } void mitk::SegTool2D::RemoveContourFromInterpolator(const SliceInformation& sliceInfo) { mitk::SurfaceInterpolationController::ContourPositionInformation contourInfo; contourInfo.ContourNormal = sliceInfo.plane->GetNormal(); contourInfo.ContourPoint = sliceInfo.plane->GetOrigin(); mitk::SurfaceInterpolationController::GetInstance()->RemoveContour(contourInfo); } void mitk::SegTool2D::UpdateSurfaceInterpolation(const std::vector& sliceInfos, const Image* workingImage, bool detectIntersection, unsigned int activeLayerID, mitk::Label::PixelType activeLabelValue) { if (!m_SurfaceInterpolationEnabled) return; //Remark: the ImageTimeSelector is just needed to extract a timestep/channel of //the image in order to get the image dimension (time dimension and channel dimension //stripped away). Therfore it is OK to always use time step 0 and channel 0 mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(workingImage); timeSelector->SetTimeNr(0); timeSelector->SetChannelNr(0); timeSelector->Update(); const auto dimRefImg = timeSelector->GetOutput()->GetDimension(); if (dimRefImg != 3) return; std::vector contourList; contourList.reserve(sliceInfos.size()); ImageToContourFilter::Pointer contourExtractor = ImageToContourFilter::New(); std::vector relevantSlices = sliceInfos; if (detectIntersection) { relevantSlices.clear(); for (const auto& sliceInfo : sliceInfos) { // Test whether there is something to extract or whether the slice just contains intersections of others mitk::Image::Pointer slice2 = sliceInfo.slice->Clone(); mitk::MorphologicalOperations::Erode(slice2, 2, mitk::MorphologicalOperations::Ball); contourExtractor->SetInput(slice2); contourExtractor->Update(); mitk::Surface::Pointer contour = contourExtractor->GetOutput(); if (contour->GetVtkPolyData()->GetNumberOfPoints() == 0) { Self::RemoveContourFromInterpolator(sliceInfo); } else { relevantSlices.push_back(sliceInfo); } } } if (relevantSlices.empty()) return; std::vector contourPlanes; for (const auto& sliceInfo : relevantSlices) { contourExtractor->SetInput(sliceInfo.slice); contourExtractor->SetContourValue(activeLabelValue); contourExtractor->Update(); mitk::Surface::Pointer contour = contourExtractor->GetOutput(); if (contour->GetVtkPolyData()->GetNumberOfPoints() == 0) { Self::RemoveContourFromInterpolator(sliceInfo); } else { vtkSmartPointer intArray = vtkSmartPointer::New(); intArray->InsertNextValue(activeLabelValue); intArray->InsertNextValue(activeLayerID); contour->GetVtkPolyData()->GetFieldData()->AddArray(intArray); contour->DisconnectPipeline(); contourList.push_back(contour); contourPlanes.push_back(sliceInfo.plane); } } mitk::SurfaceInterpolationController::GetInstance()->AddNewContours(contourList, contourPlanes); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const InteractionPositionEvent *positionEvent, const Image *image, unsigned int component /*= 0*/) { if (!positionEvent) { return nullptr; } assert(positionEvent->GetSender()); // sure, right? const auto timeStep = positionEvent->GetSender()->GetTimeStep(image); // get the timestep of the visible part (time-wise) of the image return GetAffectedImageSliceAs2DImage(positionEvent->GetSender()->GetCurrentWorldPlaneGeometry(), image, timeStep, component); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(const PlaneGeometry* planeGeometry, const Image* image, TimePointType timePoint, unsigned int component /*= 0*/) { if (!image || !planeGeometry) { return nullptr; } if (!image->GetTimeGeometry()->IsValidTimePoint(timePoint)) return nullptr; return SegTool2D::GetAffectedImageSliceAs2DImage(planeGeometry, image, image->GetTimeGeometry()->TimePointToTimeStep(timePoint), component); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedImageSliceAs2DImage(const PlaneGeometry *planeGeometry, const Image *image, TimeStepType timeStep, unsigned int component /*= 0*/) { if (!image || !planeGeometry) { return nullptr; } // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // set to false to extract a slice reslice->SetOverwriteMode(false); reslice->Modified(); // use ExtractSliceFilter with our specific vtkImageReslice for overwriting and extracting mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput(image); extractor->SetTimeStep(timeStep); extractor->SetWorldGeometry(planeGeometry); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry(image->GetTimeGeometry()->GetGeometryForTimeStep(timeStep)); // additionally extract the given component // default is 0; the extractor checks for multi-component images extractor->SetComponent(component); extractor->Modified(); extractor->Update(); Image::Pointer slice = extractor->GetOutput(); return slice; } mitk::Image::Pointer mitk::SegTool2D::GetAffectedWorkingSlice(const InteractionPositionEvent *positionEvent) const { const auto workingNode = this->GetWorkingDataNode(); if (!workingNode) { return nullptr; } const auto *workingImage = dynamic_cast(workingNode->GetData()); if (!workingImage) { return nullptr; } return GetAffectedImageSliceAs2DImage(positionEvent, workingImage); } mitk::Image::Pointer mitk::SegTool2D::GetAffectedReferenceSlice(const InteractionPositionEvent *positionEvent) const { DataNode* referenceNode = this->GetReferenceDataNode(); if (!referenceNode) { return nullptr; } auto *referenceImage = dynamic_cast(referenceNode->GetData()); if (!referenceImage) { return nullptr; } int displayedComponent = 0; if (referenceNode->GetIntProperty("Image.Displayed Component", displayedComponent)) { // found the displayed component return GetAffectedImageSliceAs2DImage(positionEvent, referenceImage, displayedComponent); } else { return GetAffectedImageSliceAs2DImage(positionEvent, referenceImage); } } mitk::Image::Pointer mitk::SegTool2D::GetAffectedReferenceSlice(const PlaneGeometry* planeGeometry, TimeStepType timeStep) const { DataNode* referenceNode = this->GetReferenceDataNode(); if (!referenceNode) { return nullptr; } auto* referenceImage = dynamic_cast(referenceNode->GetData()); if (!referenceImage) { return nullptr; } int displayedComponent = 0; if (referenceNode->GetIntProperty("Image.Displayed Component", displayedComponent)) { // found the displayed component return GetAffectedImageSliceAs2DImage(planeGeometry, referenceImage, timeStep, displayedComponent); } else { return GetAffectedImageSliceAs2DImage(planeGeometry, referenceImage, timeStep); } } void mitk::SegTool2D::Activated() { Superclass::Activated(); this->GetToolManager()->SelectedTimePointChanged += mitk::MessageDelegate(this, &mitk::SegTool2D::OnTimePointChangedInternal); m_LastTimePointTriggered = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); } void mitk::SegTool2D::Deactivated() { this->GetToolManager()->SelectedTimePointChanged -= mitk::MessageDelegate(this, &mitk::SegTool2D::OnTimePointChangedInternal); Superclass::Deactivated(); } void mitk::SegTool2D::OnTimePointChangedInternal() { if (m_IsTimePointChangeAware && nullptr != this->GetWorkingDataNode()) { const auto timePoint = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); if (timePoint != m_LastTimePointTriggered) { m_LastTimePointTriggered = timePoint; this->OnTimePointChanged(); } } } void mitk::SegTool2D::OnTimePointChanged() { //default implementation does nothing } mitk::DataNode* mitk::SegTool2D::GetWorkingDataNode() const { if (nullptr != this->GetToolManager()) { return this->GetToolManager()->GetWorkingData(0); } return nullptr; } mitk::Image* mitk::SegTool2D::GetWorkingData() const { auto node = this->GetWorkingDataNode(); if (nullptr != node) { return dynamic_cast(node->GetData()); } return nullptr; } mitk::DataNode* mitk::SegTool2D::GetReferenceDataNode() const { if (nullptr != this->GetToolManager()) { return this->GetToolManager()->GetReferenceData(0); } return nullptr; } mitk::Image* mitk::SegTool2D::GetReferenceData() const { auto node = this->GetReferenceDataNode(); if (nullptr != node) { return dynamic_cast(node->GetData()); } return nullptr; } void mitk::SegTool2D::WriteBackSegmentationResult(const InteractionPositionEvent *positionEvent, const Image * segmentationResult) { if (!positionEvent) return; const PlaneGeometry *planeGeometry((positionEvent->GetSender()->GetCurrentWorldPlaneGeometry())); const auto *abstractTransformGeometry( dynamic_cast(positionEvent->GetSender()->GetCurrentWorldPlaneGeometry())); if (planeGeometry && segmentationResult && !abstractTransformGeometry) { const auto workingNode = this->GetWorkingDataNode(); auto *image = dynamic_cast(workingNode->GetData()); const auto timeStep = positionEvent->GetSender()->GetTimeStep(image); this->WriteBackSegmentationResult(planeGeometry, segmentationResult, timeStep); } } void mitk::SegTool2D::WriteBackSegmentationResult(const DataNode* workingNode, const PlaneGeometry* planeGeometry, const Image* segmentationResult, TimeStepType timeStep) { if (!planeGeometry || !segmentationResult) return; SliceInformation sliceInfo(segmentationResult, const_cast(planeGeometry), timeStep); Self::WriteBackSegmentationResults(workingNode, { sliceInfo }, true); } void mitk::SegTool2D::WriteBackSegmentationResult(const PlaneGeometry *planeGeometry, const Image * segmentationResult, TimeStepType timeStep) { if (!planeGeometry || !segmentationResult) return; if(m_LastEventSender == nullptr) { return; } unsigned int currentSlicePosition = m_LastEventSender->GetSliceNavigationController()->GetSlice()->GetPos(); SliceInformation sliceInfo(segmentationResult, const_cast(planeGeometry), timeStep); sliceInfo.slicePosition = currentSlicePosition; WriteBackSegmentationResults({ sliceInfo }, true); } void mitk::SegTool2D::WriteBackSegmentationResults(const std::vector &sliceList, bool writeSliceToVolume) { if (sliceList.empty()) { return; } if (nullptr == m_LastEventSender) { MITK_WARN << "Cannot write tool results. Tool seems to be in an invalid state, as no interaction event was recieved but is expected."; return; } const auto workingNode = this->GetWorkingDataNode(); // the first geometry is needed otherwise restoring the position is not working const auto* plane3 = dynamic_cast(dynamic_cast( m_LastEventSender->GetSliceNavigationController()->GetCurrentGeometry3D()) ->GetPlaneGeometry(0)); unsigned int slicePosition = m_LastEventSender->GetSliceNavigationController()->GetStepper()->GetPos(); mitk::SegTool2D::WriteBackSegmentationResults(workingNode, sliceList, writeSliceToVolume); /* A cleaner solution would be to add a contour marker for each slice info. It currently does not work as the contour markers expect that the plane is always the plane of slice 0. Had not the time to do it properly no. Should be solved by T28146*/ this->AddContourmarker(plane3, slicePosition); } void mitk::SegTool2D::WriteBackSegmentationResults(const DataNode* workingNode, const std::vector& sliceList, bool writeSliceToVolume) { if (sliceList.empty()) { return; } if (nullptr == workingNode) { mitkThrow() << "Cannot write slice to working node. Working node is invalid."; } auto image = dynamic_cast(workingNode->GetData()); mitk::Label::PixelType activeLabelValue = 0; unsigned int activeLayerID = 0; try{ auto labelSetImage = dynamic_cast(workingNode->GetData()); activeLayerID = labelSetImage->GetActiveLayer(); activeLabelValue = labelSetImage->GetActiveLabelSet()->GetActiveLabel()->GetValue(); } catch(...) { mitkThrow() << "Working node does not contain labelSetImage."; } if (nullptr == image) { mitkThrow() << "Cannot write slice to working node. Working node does not contain an image."; } for (const auto& sliceInfo : sliceList) { if (writeSliceToVolume && nullptr != sliceInfo.plane && sliceInfo.slice.IsNotNull()) { SegTool2D::WriteSliceToVolume(image, sliceInfo, true); } } SegTool2D::UpdateSurfaceInterpolation(sliceList, image, false, activeLayerID, activeLabelValue); // also mark its node as modified (T27308). Can be removed if T27307 // is properly solved if (workingNode != nullptr) workingNode->Modified(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void mitk::SegTool2D::WriteSliceToVolume(Image* workingImage, const PlaneGeometry* planeGeometry, const Image* slice, TimeStepType timeStep, bool allowUndo) { SliceInformation sliceInfo(slice, planeGeometry, timeStep); WriteSliceToVolume(workingImage, sliceInfo, allowUndo); } void mitk::SegTool2D::WriteSliceToVolume(Image* workingImage, const SliceInformation &sliceInfo, bool allowUndo) { if (nullptr == workingImage) { mitkThrow() << "Cannot write slice to working node. Working node does not contain an image."; } DiffSliceOperation* undoOperation = nullptr; if (allowUndo) { /*============= BEGIN undo/redo feature block ========================*/ // Create undo operation by caching the not yet modified slices mitk::Image::Pointer originalSlice = GetAffectedImageSliceAs2DImage(sliceInfo.plane, workingImage, sliceInfo.timestep); undoOperation = new DiffSliceOperation(workingImage, originalSlice, dynamic_cast(originalSlice->GetGeometry()), sliceInfo.timestep, sliceInfo.plane); /*============= END undo/redo feature block ========================*/ } // Make sure that for reslicing and overwriting the same alogrithm is used. We can specify the mode of the vtk // reslicer vtkSmartPointer reslice = vtkSmartPointer::New(); // Set the slice as 'input' // casting const away is needed and OK as long the OverwriteMode of // mitkVTKImageOverwrite is true. // Reason: because then the input slice is not touched but // used to overwrite the input of the ExtractSliceFilter. auto noneConstSlice = const_cast(sliceInfo.slice.GetPointer()); reslice->SetInputSlice(noneConstSlice->GetVtkImageData()); // set overwrite mode to true to write back to the image volume reslice->SetOverwriteMode(true); reslice->Modified(); mitk::ExtractSliceFilter::Pointer extractor = mitk::ExtractSliceFilter::New(reslice); extractor->SetInput(workingImage); extractor->SetTimeStep(sliceInfo.timestep); extractor->SetWorldGeometry(sliceInfo.plane); extractor->SetVtkOutputRequest(false); extractor->SetResliceTransformByGeometry(workingImage->GetGeometry(sliceInfo.timestep)); extractor->Modified(); extractor->Update(); // the image was modified within the pipeline, but not marked so workingImage->Modified(); workingImage->GetVtkImageData()->Modified(); if (allowUndo) { /*============= BEGIN undo/redo feature block ========================*/ // specify the redo operation with the edited slice auto* doOperation = new DiffSliceOperation(workingImage, extractor->GetOutput(), dynamic_cast(sliceInfo.slice->GetGeometry()), sliceInfo.timestep, sliceInfo.plane); // create an operation event for the undo stack OperationEvent* undoStackItem = new OperationEvent(DiffSliceOperationApplier::GetInstance(), doOperation, undoOperation, "Segmentation"); // add it to the undo controller UndoStackItem::IncCurrObjectEventId(); UndoStackItem::IncCurrGroupEventId(); UndoController::GetCurrentUndoModel()->SetOperationEvent(undoStackItem); /*============= END undo/redo feature block ========================*/ } } void mitk::SegTool2D::SetShowMarkerNodes(bool status) { m_ShowMarkerNodes = status; } void mitk::SegTool2D::SetEnable3DInterpolation(bool enabled) { m_SurfaceInterpolationEnabled = enabled; } int mitk::SegTool2D::AddContourmarker(const PlaneGeometry* planeGeometry, unsigned int sliceIndex) { if (planeGeometry == nullptr) return -1; us::ServiceReference serviceRef = us::GetModuleContext()->GetServiceReference(); PlanePositionManagerService *service = us::GetModuleContext()->GetService(serviceRef); unsigned int size = service->GetNumberOfPlanePositions(); unsigned int id = service->AddNewPlanePosition(planeGeometry, sliceIndex); mitk::PlanarCircle::Pointer contourMarker = mitk::PlanarCircle::New(); mitk::Point2D p1; planeGeometry->Map(planeGeometry->GetCenter(), p1); contourMarker->SetPlaneGeometry(planeGeometry->Clone()); contourMarker->PlaceFigure(p1); contourMarker->SetCurrentControlPoint(p1); contourMarker->SetProperty("initiallyplaced", mitk::BoolProperty::New(true)); std::stringstream markerStream; auto workingNode = this->GetWorkingDataNode(); markerStream << m_Contourmarkername; markerStream << " "; markerStream << id + 1; DataNode::Pointer rotatedContourNode = DataNode::New(); rotatedContourNode->SetData(contourMarker); rotatedContourNode->SetProperty("name", StringProperty::New(markerStream.str())); rotatedContourNode->SetProperty("isContourMarker", BoolProperty::New(true)); rotatedContourNode->SetBoolProperty("PlanarFigureInitializedWindow", true, m_LastEventSender); rotatedContourNode->SetProperty("includeInBoundingBox", BoolProperty::New(false)); rotatedContourNode->SetProperty("helper object", mitk::BoolProperty::New(!m_ShowMarkerNodes)); rotatedContourNode->SetProperty("planarfigure.drawcontrolpoints", BoolProperty::New(false)); rotatedContourNode->SetProperty("planarfigure.drawname", BoolProperty::New(false)); rotatedContourNode->SetProperty("planarfigure.drawoutline", BoolProperty::New(false)); rotatedContourNode->SetProperty("planarfigure.drawshadow", BoolProperty::New(false)); if (planeGeometry) { if (id == size) { this->GetToolManager()->GetDataStorage()->Add(rotatedContourNode, workingNode); } else { mitk::NodePredicateProperty::Pointer isMarker = mitk::NodePredicateProperty::New("isContourMarker", mitk::BoolProperty::New(true)); mitk::DataStorage::SetOfObjects::ConstPointer markers = this->GetToolManager()->GetDataStorage()->GetDerivations(workingNode, isMarker); for (auto iter = markers->begin(); iter != markers->end(); ++iter) { std::string nodeName = (*iter)->GetName(); unsigned int t = nodeName.find_last_of(" "); unsigned int markerId = atof(nodeName.substr(t + 1).c_str()) - 1; if (id == markerId) { return id; } } this->GetToolManager()->GetDataStorage()->Add(rotatedContourNode, workingNode); } } return id; } void mitk::SegTool2D::InteractiveSegmentationBugMessage(const std::string &message) const { MITK_ERROR << "********************************************************************************" << std::endl << " " << message << std::endl << "********************************************************************************" << std::endl << " " << std::endl << " If your image is rotated or the 2D views don't really contain the patient image, try to press the " "button next to the image selection. " << std::endl << " " << std::endl << " Please file a BUG REPORT: " << std::endl << " https://phabricator.mitk.org/" << std::endl << " Contain the following information:" << std::endl << " - What image were you working on?" << std::endl << " - Which region of the image?" << std::endl << " - Which tool did you use?" << std::endl << " - What did you do?" << std::endl << " - What happened (not)? What did you expect?" << std::endl; } void mitk::SegTool2D::WritePreviewOnWorkingImage( Image *targetSlice, const Image *sourceSlice, const Image *workingImage, int paintingPixelValue) { if (nullptr == targetSlice) { mitkThrow() << "Cannot write preview on working image. Target slice does not point to a valid instance."; } if (nullptr == sourceSlice) { mitkThrow() << "Cannot write preview on working image. Source slice does not point to a valid instance."; } if (nullptr == workingImage) { mitkThrow() << "Cannot write preview on working image. Working image does not point to a valid instance."; } auto constVtkSource = sourceSlice->GetVtkImageData(); /*Need to const cast because Vtk interface does not support const correctly. (or I am not experienced enough to use it correctly)*/ auto nonConstVtkSource = const_cast(constVtkSource); ContourModelUtils::FillSliceInSlice(nonConstVtkSource, targetSlice->GetVtkImageData(), workingImage, paintingPixelValue, 1.0); } bool mitk::SegTool2D::IsPositionEventInsideImageRegion(mitk::InteractionPositionEvent* positionEvent, const mitk::BaseData* data) { bool isPositionEventInsideImageRegion = nullptr != data && data->GetGeometry()->IsInside(positionEvent->GetPositionInWorld()); if (!isPositionEventInsideImageRegion) MITK_WARN("EditableContourTool") << "PositionEvent is outside ImageRegion!"; return isPositionEventInsideImageRegion; } diff --git a/Modules/Segmentation/Interactions/mitkSegWithPreviewTool.cpp b/Modules/Segmentation/Interactions/mitkSegWithPreviewTool.cpp index ca649187e3..e9dc8e30e2 100644 --- a/Modules/Segmentation/Interactions/mitkSegWithPreviewTool.cpp +++ b/Modules/Segmentation/Interactions/mitkSegWithPreviewTool.cpp @@ -1,818 +1,819 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "mitkSegWithPreviewTool.h" #include "mitkToolManager.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkDataStorage.h" #include "mitkRenderingManager.h" +#include #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkLabelSetImage.h" #include "mitkMaskAndCutRoiImageFilter.h" #include "mitkPadImageFilter.h" #include "mitkNodePredicateGeometry.h" #include "mitkSegTool2D.h" mitk::SegWithPreviewTool::SegWithPreviewTool(bool lazyDynamicPreviews): Tool("dummy"), m_LazyDynamicPreviews(lazyDynamicPreviews) { m_ProgressCommand = ToolCommand::New(); } mitk::SegWithPreviewTool::SegWithPreviewTool(bool lazyDynamicPreviews, const char* interactorType, const us::Module* interactorModule) : Tool(interactorType, interactorModule), m_LazyDynamicPreviews(lazyDynamicPreviews) { m_ProgressCommand = ToolCommand::New(); } mitk::SegWithPreviewTool::~SegWithPreviewTool() { } void mitk::SegWithPreviewTool::SetMergeStyle(MultiLabelSegmentation::MergeStyle mergeStyle) { m_MergeStyle = mergeStyle; this->Modified(); } void mitk::SegWithPreviewTool::SetOverwriteStyle(MultiLabelSegmentation::OverwriteStyle overwriteStyle) { m_OverwriteStyle = overwriteStyle; this->Modified(); } void mitk::SegWithPreviewTool::SetLabelTransferScope(LabelTransferScope labelTransferScope) { m_LabelTransferScope = labelTransferScope; this->Modified(); } void mitk::SegWithPreviewTool::SetLabelTransferMode(LabelTransferMode labelTransferMode) { m_LabelTransferMode = labelTransferMode; this->Modified(); } void mitk::SegWithPreviewTool::SetSelectedLabels(const SelectedLabelVectorType& labelsToTransfer) { m_SelectedLabels = labelsToTransfer; this->Modified(); } bool mitk::SegWithPreviewTool::CanHandle(const BaseData* referenceData, const BaseData* workingData) const { if (!Superclass::CanHandle(referenceData, workingData)) return false; if (workingData == nullptr) return false; auto* referenceImage = dynamic_cast(referenceData); if (referenceImage == nullptr) return false; auto* labelSet = dynamic_cast(workingData); if (labelSet != nullptr) return true; auto* workingImage = dynamic_cast(workingData); if (workingImage == nullptr) return false; // If the working image is a normal image and not a label set image // it must have the same pixel type as a label set. return MakeScalarPixelType< DefaultSegmentationDataType >() == workingImage->GetPixelType(); } void mitk::SegWithPreviewTool::Activated() { Superclass::Activated(); this->GetToolManager()->RoiDataChanged += MessageDelegate(this, &SegWithPreviewTool::OnRoiDataChanged); this->GetToolManager()->SelectedTimePointChanged += MessageDelegate(this, &SegWithPreviewTool::OnTimePointChanged); m_ReferenceDataNode = this->GetToolManager()->GetReferenceData(0); m_SegmentationInputNode = m_ReferenceDataNode; m_LastTimePointOfUpdate = RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); if (m_PreviewSegmentationNode.IsNull()) { m_PreviewSegmentationNode = DataNode::New(); m_PreviewSegmentationNode->SetProperty("color", ColorProperty::New(0.0, 1.0, 0.0)); m_PreviewSegmentationNode->SetProperty("name", StringProperty::New(std::string(this->GetName())+" preview")); m_PreviewSegmentationNode->SetProperty("opacity", FloatProperty::New(0.3)); m_PreviewSegmentationNode->SetProperty("binary", BoolProperty::New(true)); m_PreviewSegmentationNode->SetProperty("helper object", BoolProperty::New(true)); } if (m_SegmentationInputNode.IsNotNull()) { this->ResetPreviewNode(); this->InitiateToolByInput(); } else { this->GetToolManager()->ActivateTool(-1); } } void mitk::SegWithPreviewTool::Deactivated() { this->GetToolManager()->RoiDataChanged -= MessageDelegate(this, &SegWithPreviewTool::OnRoiDataChanged); this->GetToolManager()->SelectedTimePointChanged -= MessageDelegate(this, &SegWithPreviewTool::OnTimePointChanged); m_SegmentationInputNode = nullptr; m_ReferenceDataNode = nullptr; m_WorkingPlaneGeometry = nullptr; try { if (DataStorage *storage = this->GetToolManager()->GetDataStorage()) { storage->Remove(m_PreviewSegmentationNode); RenderingManager::GetInstance()->RequestUpdateAll(); } } catch (...) { // don't care } if (m_PreviewSegmentationNode.IsNotNull()) { m_PreviewSegmentationNode->SetData(nullptr); } Superclass::Deactivated(); } void mitk::SegWithPreviewTool::ConfirmSegmentation() { bool labelChanged = this->EnsureUpToDateUserDefinedActiveLabel(); if ((m_LazyDynamicPreviews && m_CreateAllTimeSteps) || labelChanged) { // The tool should create all time steps but is currently in lazy mode, // thus ensure that a preview for all time steps is available. this->UpdatePreview(true); } CreateResultSegmentationFromPreview(); RenderingManager::GetInstance()->RequestUpdateAll(); if (!m_KeepActiveAfterAccept) { this->GetToolManager()->ActivateTool(-1); } } void mitk::SegWithPreviewTool::InitiateToolByInput() { //default implementation does nothing. //implement in derived classes to change behavior } mitk::LabelSetImage* mitk::SegWithPreviewTool::GetPreviewSegmentation() { if (m_PreviewSegmentationNode.IsNull()) { return nullptr; } return dynamic_cast(m_PreviewSegmentationNode->GetData()); } const mitk::LabelSetImage* mitk::SegWithPreviewTool::GetPreviewSegmentation() const { if (m_PreviewSegmentationNode.IsNull()) { return nullptr; } return dynamic_cast(m_PreviewSegmentationNode->GetData()); } mitk::DataNode* mitk::SegWithPreviewTool::GetPreviewSegmentationNode() { return m_PreviewSegmentationNode; } const mitk::Image* mitk::SegWithPreviewTool::GetSegmentationInput() const { if (m_SegmentationInputNode.IsNull()) { return nullptr; } return dynamic_cast(m_SegmentationInputNode->GetData()); } const mitk::Image* mitk::SegWithPreviewTool::GetReferenceData() const { if (m_ReferenceDataNode.IsNull()) { return nullptr; } return dynamic_cast(m_ReferenceDataNode->GetData()); } template void ClearBufferProcessing(ImageType* itkImage) { itkImage->FillBuffer(0); } void mitk::SegWithPreviewTool::ResetPreviewContentAtTimeStep(unsigned int timeStep) { auto previewImage = GetImageByTimeStep(this->GetPreviewSegmentation(), timeStep); if (nullptr != previewImage) { AccessByItk(previewImage, ClearBufferProcessing); } } void mitk::SegWithPreviewTool::ResetPreviewContent() { auto previewImage = this->GetPreviewSegmentation(); if (nullptr != previewImage) { auto castedPreviewImage = dynamic_cast(previewImage); if (nullptr == castedPreviewImage) mitkThrow() << "Application is on wrong state / invalid tool implementation. Preview image should always be of type LabelSetImage now."; castedPreviewImage->ClearBuffer(); } } void mitk::SegWithPreviewTool::ResetPreviewNode() { if (m_IsUpdating) { mitkThrow() << "Used tool is implemented incorrectly. ResetPreviewNode is called while preview update is ongoing. Check implementation!"; } itk::RGBPixel previewColor; previewColor[0] = 0.0f; previewColor[1] = 1.0f; previewColor[2] = 0.0f; const auto image = this->GetSegmentationInput(); if (nullptr != image) { LabelSetImage::ConstPointer workingImage = dynamic_cast(this->GetToolManager()->GetWorkingData(0)->GetData()); if (workingImage.IsNotNull()) { auto newPreviewImage = workingImage->Clone(); if (this->GetResetsToEmptyPreview()) { newPreviewImage->ClearBuffer(); } if (newPreviewImage.IsNull()) { MITK_ERROR << "Cannot create preview helper objects. Unable to clone working image"; return; } m_PreviewSegmentationNode->SetData(newPreviewImage); auto* activeLabelSet = newPreviewImage->GetActiveLabelSet(); if (nullptr == activeLabelSet) { newPreviewImage->AddLayer(); activeLabelSet = newPreviewImage->GetActiveLabelSet(); } auto* activeLabel = activeLabelSet->GetActiveLabel(); if (nullptr == activeLabel) { activeLabel = activeLabelSet->AddLabel("toolresult", previewColor); activeLabelSet = newPreviewImage->GetActiveLabelSet(); activeLabelSet->UpdateLookupTable(activeLabel->GetValue()); } else if (m_UseSpecialPreviewColor) { // Let's paint the feedback node green... activeLabel->SetColor(previewColor); activeLabelSet->UpdateLookupTable(activeLabel->GetValue()); } activeLabel->SetVisible(true); } else { Image::ConstPointer workingImageBin = dynamic_cast(this->GetToolManager()->GetWorkingData(0)->GetData()); if (workingImageBin.IsNotNull()) { Image::Pointer newPreviewImage; if (this->GetResetsToEmptyPreview()) { newPreviewImage = Image::New(); newPreviewImage->Initialize(workingImageBin); } else { auto newPreviewImage = workingImageBin->Clone(); } if (newPreviewImage.IsNull()) { MITK_ERROR << "Cannot create preview helper objects. Unable to clone working image"; return; } m_PreviewSegmentationNode->SetData(newPreviewImage); } else { mitkThrow() << "Tool is an invalid state. Cannot setup preview node. Working data is an unsupported class and should have not been accepted by CanHandle()."; } } m_PreviewSegmentationNode->SetColor(previewColor); m_PreviewSegmentationNode->SetOpacity(0.5); int layer(50); m_ReferenceDataNode->GetIntProperty("layer", layer); m_PreviewSegmentationNode->SetIntProperty("layer", layer + 1); if (DataStorage *ds = this->GetToolManager()->GetDataStorage()) { if (!ds->Exists(m_PreviewSegmentationNode)) ds->Add(m_PreviewSegmentationNode, m_ReferenceDataNode); } } } mitk::SegWithPreviewTool::LabelMappingType mitk::SegWithPreviewTool::GetLabelMapping() const { LabelSetImage::LabelValueType offset = 0; if (LabelTransferMode::AddLabel == m_LabelTransferMode && LabelTransferScope::ActiveLabel!=m_LabelTransferScope) { //If we are not just working on active label and transfer mode is add, we need to compute an offset for adding the //preview labels instat of just mapping them to existing segmentation labels. const auto segmentation = this->GetTargetSegmentation(); if (nullptr == segmentation) mitkThrow() << "Invalid state of SegWithPreviewTool. Cannot GetLabelMapping if no target segmentation is set."; auto labels = segmentation->GetLabels(); auto maxLabelIter = std::max_element(std::begin(labels), std::end(labels), [](const Label::Pointer& a, const Label::Pointer& b) { return a->GetValue() < b->GetValue(); }); if (maxLabelIter != labels.end()) { offset = maxLabelIter->GetPointer()->GetValue(); } } LabelMappingType labelMapping = {}; switch (this->m_LabelTransferScope) { case LabelTransferScope::SelectedLabels: { for (auto label : this->m_SelectedLabels) { labelMapping.push_back({label, label + offset}); } } break; case LabelTransferScope::AllLabels: { const auto labelSet = this->GetPreviewSegmentation()->GetActiveLabelSet(); for (auto labelIter = labelSet->IteratorConstBegin(); labelIter != labelSet->IteratorConstEnd(); ++labelIter) { labelMapping.push_back({labelIter->second->GetValue(), labelIter->second->GetValue() + offset}); } } break; default: { if (m_SelectedLabels.empty()) mitkThrow() << "Failed to generate label transfer mapping. Tool is in an invalid state, as " "LabelTransferScope==ActiveLabel but no label is indicated as selected label. Check " "implementation of derived tool class."; if (m_SelectedLabels.size() > 1) mitkThrow() << "Failed to generate label transfer mapping. Tool is in an invalid state, as " "LabelTransferScope==ActiveLabel but more then one selected label is indicated." "Should be only one. Check implementation of derived tool class."; labelMapping.push_back({m_SelectedLabels.front(), this->GetUserDefinedActiveLabel()}); } break; } return labelMapping; } void mitk::SegWithPreviewTool::TransferImageAtTimeStep(const Image* sourceImage, Image* destinationImage, const TimeStepType timeStep, const LabelMappingType& labelMapping) { try { Image::ConstPointer sourceImageAtTimeStep = this->GetImageByTimeStep(sourceImage, timeStep); if (sourceImageAtTimeStep->GetPixelType() != destinationImage->GetPixelType()) { mitkThrow() << "Cannot transfer images. Tool is in an invalid state, source image and destination image do not have the same pixel type. " << "Source pixel type: " << sourceImage->GetPixelType().GetTypeAsString() << "; destination pixel type: " << destinationImage->GetPixelType().GetTypeAsString(); } if (!Equal(*(sourceImage->GetGeometry(timeStep)), *(destinationImage->GetGeometry(timeStep)), NODE_PREDICATE_GEOMETRY_DEFAULT_CHECK_COORDINATE_PRECISION, NODE_PREDICATE_GEOMETRY_DEFAULT_CHECK_DIRECTION_PRECISION, false)) { mitkThrow() << "Cannot transfer images. Tool is in an invalid state, source image and destination image do not have the same geometry."; } if (nullptr != this->GetWorkingPlaneGeometry()) { auto sourceSlice = SegTool2D::GetAffectedImageSliceAs2DImage(this->GetWorkingPlaneGeometry(), sourceImage, timeStep); SegTool2D::WriteBackSegmentationResult(this->GetTargetSegmentationNode(), m_WorkingPlaneGeometry, sourceSlice, timeStep); } else { //take care of the full segmentation volume auto sourceLSImage = dynamic_cast(sourceImage); auto destLSImage = dynamic_cast(destinationImage); TransferLabelContentAtTimeStep(sourceLSImage, destLSImage, timeStep, labelMapping, m_MergeStyle, m_OverwriteStyle); } } catch (mitk::Exception& e) { Tool::ErrorMessage(e.GetDescription()); mitkReThrow(e); } } void mitk::SegWithPreviewTool::CreateResultSegmentationFromPreview() { const auto segInput = this->GetSegmentationInput(); auto previewImage = this->GetPreviewSegmentation(); if (nullptr != segInput && nullptr != previewImage) { DataNode::Pointer resultSegmentationNode = GetTargetSegmentationNode(); if (resultSegmentationNode.IsNotNull()) { const auto timePoint = RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); auto resultSegmentation = dynamic_cast(resultSegmentationNode->GetData()); // REMARK: the following code in this scope assumes that previewImage and resultSegmentation // are clones of the working referenceImage (segmentation provided to the tool). Therefore they have // the same time geometry. if (previewImage->GetTimeSteps() != resultSegmentation->GetTimeSteps()) { mitkThrow() << "Cannot confirm/transfer segmentation. Internal tool state is invalid." << " Preview segmentation and segmentation result image have different time geometries."; } auto labelMapping = this->GetLabelMapping(); this->PreparePreviewToResultTransfer(labelMapping); if (m_CreateAllTimeSteps) { for (unsigned int timeStep = 0; timeStep < previewImage->GetTimeSteps(); ++timeStep) { this->TransferImageAtTimeStep(previewImage, resultSegmentation, timeStep, labelMapping); } } else { const auto timeStep = resultSegmentation->GetTimeGeometry()->TimePointToTimeStep(timePoint); this->TransferImageAtTimeStep(previewImage, resultSegmentation, timeStep, labelMapping); } // since we are maybe working on a smaller referenceImage, pad it to the size of the original referenceImage if (m_ReferenceDataNode.GetPointer() != m_SegmentationInputNode.GetPointer()) { PadImageFilter::Pointer padFilter = PadImageFilter::New(); padFilter->SetInput(0, resultSegmentation); padFilter->SetInput(1, dynamic_cast(m_ReferenceDataNode->GetData())); padFilter->SetBinaryFilter(true); padFilter->SetUpperThreshold(1); padFilter->SetLowerThreshold(1); padFilter->Update(); resultSegmentationNode->SetData(padFilter->GetOutput()); } this->EnsureTargetSegmentationNodeInDataStorage(); } } } void mitk::SegWithPreviewTool::OnRoiDataChanged() { DataNode::ConstPointer node = this->GetToolManager()->GetRoiData(0); if (node.IsNotNull()) { MaskAndCutRoiImageFilter::Pointer roiFilter = MaskAndCutRoiImageFilter::New(); Image::Pointer image = dynamic_cast(m_SegmentationInputNode->GetData()); if (image.IsNull()) return; roiFilter->SetInput(image); roiFilter->SetRegionOfInterest(node->GetData()); roiFilter->Update(); DataNode::Pointer tmpNode = DataNode::New(); tmpNode->SetData(roiFilter->GetOutput()); m_SegmentationInputNode = tmpNode; } else m_SegmentationInputNode = m_ReferenceDataNode; this->ResetPreviewNode(); this->InitiateToolByInput(); this->UpdatePreview(); } void mitk::SegWithPreviewTool::OnTimePointChanged() { if (m_IsTimePointChangeAware && m_PreviewSegmentationNode.IsNotNull() && m_SegmentationInputNode.IsNotNull()) { const auto timePoint = RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); const bool isStaticSegOnDynamicImage = m_PreviewSegmentationNode->GetData()->GetTimeSteps() == 1 && m_SegmentationInputNode->GetData()->GetTimeSteps() > 1; if (timePoint!=m_LastTimePointOfUpdate && (isStaticSegOnDynamicImage || m_LazyDynamicPreviews)) { //we only need to update either because we are lazzy //or because we have a static segmentation with a dynamic referenceImage this->UpdatePreview(); } } } bool mitk::SegWithPreviewTool::EnsureUpToDateUserDefinedActiveLabel() { bool labelChanged = true; const auto workingImage = dynamic_cast(this->GetToolManager()->GetWorkingData(0)->GetData()); if (const auto& labelSetImage = dynamic_cast(workingImage)) { // this is a fix for T28131 / T28986, which should be refactored if T28524 is being worked on auto newLabel = labelSetImage->GetActiveLabel(labelSetImage->GetActiveLayer())->GetValue(); labelChanged = newLabel != m_UserDefinedActiveLabel; m_UserDefinedActiveLabel = newLabel; } else { m_UserDefinedActiveLabel = 1; labelChanged = false; } return labelChanged; } void mitk::SegWithPreviewTool::UpdatePreview(bool ignoreLazyPreviewSetting) { const auto inputImage = this->GetSegmentationInput(); auto previewImage = this->GetPreviewSegmentation(); int progress_steps = 200; const auto workingImage = dynamic_cast(this->GetToolManager()->GetWorkingData(0)->GetData()); this->EnsureUpToDateUserDefinedActiveLabel(); this->CurrentlyBusy.Send(true); m_IsUpdating = true; this->UpdatePrepare(); const auto timePoint = RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint(); try { if (nullptr != inputImage && nullptr != previewImage) { m_ProgressCommand->AddStepsToDo(progress_steps); if (previewImage->GetTimeSteps() > 1 && (ignoreLazyPreviewSetting || !m_LazyDynamicPreviews)) { for (unsigned int timeStep = 0; timeStep < previewImage->GetTimeSteps(); ++timeStep) { Image::ConstPointer feedBackImage; Image::ConstPointer currentSegImage; auto previewTimePoint = previewImage->GetTimeGeometry()->TimeStepToTimePoint(timeStep); auto inputTimeStep = inputImage->GetTimeGeometry()->TimePointToTimeStep(previewTimePoint); if (nullptr != this->GetWorkingPlaneGeometry()) { //only extract a specific slice defined by the working plane as feedback referenceImage. feedBackImage = SegTool2D::GetAffectedImageSliceAs2DImage(this->GetWorkingPlaneGeometry(), inputImage, inputTimeStep); currentSegImage = SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(this->GetWorkingPlaneGeometry(), workingImage, previewTimePoint); } else { //work on the whole feedback referenceImage feedBackImage = this->GetImageByTimeStep(inputImage, inputTimeStep); currentSegImage = this->GetImageByTimePoint(workingImage, previewTimePoint); } this->DoUpdatePreview(feedBackImage, currentSegImage, previewImage, timeStep); } } else { Image::ConstPointer feedBackImage; Image::ConstPointer currentSegImage; if (nullptr != this->GetWorkingPlaneGeometry()) { feedBackImage = SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(this->GetWorkingPlaneGeometry(), inputImage, timePoint); currentSegImage = SegTool2D::GetAffectedImageSliceAs2DImageByTimePoint(this->GetWorkingPlaneGeometry(), workingImage, timePoint); } else { feedBackImage = this->GetImageByTimePoint(inputImage, timePoint); currentSegImage = this->GetImageByTimePoint(workingImage, timePoint); } auto timeStep = previewImage->GetTimeGeometry()->TimePointToTimeStep(timePoint); this->DoUpdatePreview(feedBackImage, currentSegImage, previewImage, timeStep); } RenderingManager::GetInstance()->RequestUpdateAll(); } } catch (itk::ExceptionObject & excep) { MITK_ERROR << "Exception caught: " << excep.GetDescription(); m_ProgressCommand->SetProgress(progress_steps); std::string msg = excep.GetDescription(); ErrorMessage.Send(msg); } catch (...) { m_ProgressCommand->SetProgress(progress_steps); m_IsUpdating = false; CurrentlyBusy.Send(false); throw; } this->UpdateCleanUp(); m_LastTimePointOfUpdate = timePoint; m_ProgressCommand->SetProgress(progress_steps); m_IsUpdating = false; CurrentlyBusy.Send(false); } bool mitk::SegWithPreviewTool::IsUpdating() const { return m_IsUpdating; } void mitk::SegWithPreviewTool::UpdatePrepare() { // default implementation does nothing //reimplement in derived classes for special behavior } void mitk::SegWithPreviewTool::UpdateCleanUp() { // default implementation does nothing //reimplement in derived classes for special behavior } void mitk::SegWithPreviewTool::TransferLabelInformation(const LabelMappingType& labelMapping, const mitk::LabelSetImage* source, mitk::LabelSetImage* target) { for (const auto& [sourceLabel, targetLabel] : labelMapping) { if (LabelSetImage::UnlabeledValue != sourceLabel && LabelSetImage::UnlabeledValue != targetLabel && !target->ExistLabel(targetLabel, target->GetActiveLayer())) { if (!source->ExistLabel(sourceLabel, source->GetActiveLayer())) { mitkThrow() << "Cannot prepare segmentation for preview transfer. Preview seems invalid as label is missing. Missing label: " << sourceLabel; } auto clonedLabel = source->GetLabel(sourceLabel)->Clone(); clonedLabel->SetValue(targetLabel); target->GetActiveLabelSet()->AddLabel(clonedLabel); } } } void mitk::SegWithPreviewTool::PreparePreviewToResultTransfer(const LabelMappingType& labelMapping) { DataNode::Pointer resultSegmentationNode = GetTargetSegmentationNode(); if (resultSegmentationNode.IsNotNull()) { auto resultSegmentation = dynamic_cast(resultSegmentationNode->GetData()); if (nullptr == resultSegmentation) { mitkThrow() << "Cannot prepare segmentation for preview transfer. Tool is in invalid state as segmentation is not existing or of right type"; } auto preview = this->GetPreviewSegmentation(); TransferLabelInformation(labelMapping, preview, resultSegmentation); } } mitk::TimePointType mitk::SegWithPreviewTool::GetLastTimePointOfUpdate() const { return m_LastTimePointOfUpdate; } mitk::LabelSetImage::LabelValueType mitk::SegWithPreviewTool::GetActiveLabelValueOfPreview() const { const auto previewImage = this->GetPreviewSegmentation(); const auto activeLabel = previewImage->GetActiveLabel(previewImage->GetActiveLayer()); if (nullptr == activeLabel) mitkThrow() << this->GetNameOfClass() <<" is in an invalid state, as " "preview has no active label indicated. Check " "implementation of the class."; return activeLabel->GetValue(); } const char* mitk::SegWithPreviewTool::GetGroup() const { return "autoSegmentation"; } mitk::Image::ConstPointer mitk::SegWithPreviewTool::GetImageByTimeStep(const mitk::Image* image, TimeStepType timestep) { return SelectImageByTimeStep(image, timestep); } mitk::Image::Pointer mitk::SegWithPreviewTool::GetImageByTimeStep(mitk::Image* image, TimeStepType timestep) { return SelectImageByTimeStep(image, timestep); } mitk::Image::ConstPointer mitk::SegWithPreviewTool::GetImageByTimePoint(const mitk::Image* image, TimePointType timePoint) { return SelectImageByTimePoint(image, timePoint); } void mitk::SegWithPreviewTool::EnsureTargetSegmentationNodeInDataStorage() const { auto targetNode = this->GetTargetSegmentationNode(); auto dataStorage = this->GetToolManager()->GetDataStorage(); if (!dataStorage->Exists(targetNode)) { dataStorage->Add(targetNode, this->GetToolManager()->GetReferenceData(0)); } } std::string mitk::SegWithPreviewTool::GetCurrentSegmentationName() { auto workingData = this->GetToolManager()->GetWorkingData(0); return nullptr != workingData ? workingData->GetName() : ""; } mitk::DataNode* mitk::SegWithPreviewTool::GetTargetSegmentationNode() const { return this->GetToolManager()->GetWorkingData(0); } mitk::LabelSetImage* mitk::SegWithPreviewTool::GetTargetSegmentation() const { auto node = this->GetTargetSegmentationNode(); if (nullptr == node) return nullptr; return dynamic_cast(node->GetData()); } void mitk::SegWithPreviewTool::TransferLabelSetImageContent(const LabelSetImage* source, LabelSetImage* target, TimeStepType timeStep) { mitk::ImageReadAccessor newMitkImgAcc(source); LabelMappingType labelMapping; const auto labelSet = source->GetActiveLabelSet(); for (auto labelIter = labelSet->IteratorConstBegin(); labelIter != labelSet->IteratorConstEnd(); ++labelIter) { labelMapping.push_back({ labelIter->second->GetValue(),labelIter->second->GetValue() }); } TransferLabelInformation(labelMapping, source, target); target->SetVolume(newMitkImgAcc.GetData(), timeStep); } diff --git a/Modules/SegmentationUI/Qmitk/QmitknnUNetToolGUI.cpp b/Modules/SegmentationUI/Qmitk/QmitknnUNetToolGUI.cpp index 1182ce51b0..6e449c5a4e 100644 --- a/Modules/SegmentationUI/Qmitk/QmitknnUNetToolGUI.cpp +++ b/Modules/SegmentationUI/Qmitk/QmitknnUNetToolGUI.cpp @@ -1,1196 +1,1197 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitknnUNetToolGUI.h" #include "mitkProcessExecutor.h" #include "mitknnUnetTool.h" +#include #include #include #include #include #include #include #include #include #include #include #include #include MITK_TOOL_GUI_MACRO(MITKSEGMENTATIONUI_EXPORT, QmitknnUNetToolGUI, "") QmitknnUNetToolGUI::QmitknnUNetToolGUI() : QmitkMultiLabelSegWithPreviewToolGUIBase(), m_SuperclassEnableConfirmSegBtnFnc(m_EnableConfirmSegBtnFnc) { // Nvidia-smi command returning zero doesn't always imply lack of GPUs. // Pytorch uses its own libraries to communicate to the GPUs. Hence, only a warning can be given. if (m_GpuLoader.GetGPUCount() == 0) { std::string warning = "WARNING: No GPUs were detected on your machine. The nnUNet tool might not work."; this->ShowErrorMessage(warning); } // define predicates for multi modal data selection combobox auto imageType = mitk::TNodePredicateDataType::New(); auto labelSetImageType = mitk::NodePredicateNot::New(mitk::TNodePredicateDataType::New()); m_MultiModalPredicate = mitk::NodePredicateAnd::New(imageType, labelSetImageType).GetPointer(); m_nnUNetThread = new QThread(this); m_Worker = new nnUNetDownloadWorker; m_Worker->moveToThread(m_nnUNetThread); m_EnableConfirmSegBtnFnc = [this](bool enabled) { return !m_FirstPreviewComputation ? m_SuperclassEnableConfirmSegBtnFnc(enabled) : false; }; } QmitknnUNetToolGUI::~QmitknnUNetToolGUI() { m_nnUNetThread->quit(); m_nnUNetThread->wait(); } void QmitknnUNetToolGUI::ConnectNewTool(mitk::SegWithPreviewTool *newTool) { Superclass::ConnectNewTool(newTool); newTool->IsTimePointChangeAwareOff(); m_FirstPreviewComputation = true; } void QmitknnUNetToolGUI::InitializeUI(QBoxLayout *mainLayout) { m_Controls.setupUi(this); #ifndef _WIN32 m_Controls.pythonEnvComboBox->addItem("/usr/bin"); #endif m_Controls.pythonEnvComboBox->addItem("Select"); AutoParsePythonPaths(); SetGPUInfo(); connect(m_Controls.previewButton, SIGNAL(clicked()), this, SLOT(OnPreviewRequested())); connect(m_Controls.modeldirectoryBox, SIGNAL(directoryChanged(const QString &)), this, SLOT(OnDirectoryChanged(const QString &))); connect( m_Controls.modelBox, SIGNAL(currentTextChanged(const QString &)), this, SLOT(OnModelChanged(const QString &))); connect(m_Controls.taskBox, SIGNAL(currentTextChanged(const QString &)), this, SLOT(OnTaskChanged(const QString &))); connect( m_Controls.plannerBox, SIGNAL(currentTextChanged(const QString &)), this, SLOT(OnTrainerChanged(const QString &))); connect(m_Controls.multiModalBox, SIGNAL(stateChanged(int)), this, SLOT(OnCheckBoxChanged(int))); connect(m_Controls.pythonEnvComboBox, #if QT_VERSION >= 0x050F00 // 5.15 SIGNAL(textActivated(const QString &)), #elif QT_VERSION >= 0x050C00 // 5.12 SIGNAL(currentTextChanged(const QString &)), #endif this, SLOT(OnPythonPathChanged(const QString &))); connect(m_Controls.refreshdirectoryBox, SIGNAL(clicked()), this, SLOT(OnRefreshPresssed())); connect(m_Controls.clearCacheButton, SIGNAL(clicked()), this, SLOT(OnClearCachePressed())); connect(m_Controls.startDownloadButton, SIGNAL(clicked()), this, SLOT(OnDownloadModel())); connect(m_Controls.stopDownloadButton, SIGNAL(clicked()), this, SLOT(OnStopDownload())); // Qthreads qRegisterMetaType(); qRegisterMetaType(); connect(this, &QmitknnUNetToolGUI::Operate, m_Worker, &nnUNetDownloadWorker::DoWork); connect(m_Worker, &nnUNetDownloadWorker::Exit, this, &QmitknnUNetToolGUI::OnDownloadWorkerExit); connect(m_nnUNetThread, &QThread::finished, m_Worker, &QObject::deleteLater); m_Controls.multiModalValueLabel->setStyleSheet("font-weight: bold; color: white"); m_Controls.multiModalValueLabel->setVisible(false); m_Controls.requiredModalitiesLabel->setVisible(false); m_Controls.stopDownloadButton->setVisible(false); m_Controls.previewButton->setEnabled(false); QIcon refreshIcon = QmitkStyleManager::ThemeIcon(QStringLiteral(":/org_mitk_icons/icons/awesome/scalable/actions/view-refresh.svg")); m_Controls.refreshdirectoryBox->setIcon(refreshIcon); QIcon dirIcon = QmitkStyleManager::ThemeIcon(QStringLiteral(":/org_mitk_icons/icons/awesome/scalable/actions/document-open.svg")); m_Controls.modeldirectoryBox->setIcon(dirIcon); m_Controls.refreshdirectoryBox->setEnabled(true); QIcon stopIcon = QmitkStyleManager::ThemeIcon(QStringLiteral(":/org_mitk_icons/icons/awesome/scalable/status/dialog-error.svg")); m_Controls.stopDownloadButton->setIcon(stopIcon); m_Controls.statusLabel->setTextFormat(Qt::RichText); if (m_GpuLoader.GetGPUCount() != 0) { WriteStatusMessage(QString("STATUS: Welcome to nnUNet. " + QString::number(m_GpuLoader.GetGPUCount()) + " GPUs were detected.")); } else { WriteErrorMessage(QString("STATUS: Welcome to nnUNet. " + QString::number(m_GpuLoader.GetGPUCount()) + " GPUs were detected.")); } mainLayout->addLayout(m_Controls.verticalLayout); Superclass::InitializeUI(mainLayout); m_UI_ROWS = m_Controls.advancedSettingsLayout->rowCount(); // Must do. Row count is correct only here. this->DisableEverything(); QString lastSelectedPyEnv = m_Settings.value("nnUNet/LastPythonPath").toString(); m_Controls.pythonEnvComboBox->setCurrentText(lastSelectedPyEnv); } void QmitknnUNetToolGUI::EnableWidgets(bool enabled) { Superclass::EnableWidgets(enabled); } void QmitknnUNetToolGUI::ClearAllModalities() { m_Controls.multiModalBox->setChecked(false); this->ClearAllModalLabels(); } void QmitknnUNetToolGUI::ClearAllModalLabels() { for (auto modalLabel : m_ModalLabels) { delete modalLabel; // delete the layout item m_ModalLabels.pop_back(); } m_Controls.advancedSettingsLayout->update(); } void QmitknnUNetToolGUI::DisableEverything() { m_Controls.modeldirectoryBox->setEnabled(false); m_Controls.refreshdirectoryBox->setEnabled(false); m_Controls.previewButton->setEnabled(false); m_Controls.multiModalValueLabel->setVisible(false); m_Controls.multiModalBox->setEnabled(false); this->ClearAllComboBoxes(); this->ClearAllModalities(); } void QmitknnUNetToolGUI::ClearAllComboBoxes() { m_Controls.modelBox->clear(); m_Controls.taskBox->clear(); m_Controls.foldBox->clear(); m_Controls.trainerBox->clear(); m_Controls.plannerBox->clear(); for (auto &layout : m_EnsembleParams) { layout->modelBox->clear(); layout->trainerBox->clear(); layout->plannerBox->clear(); layout->foldBox->clear(); } } std::vector QmitknnUNetToolGUI::FetchMultiModalImagesFromUI() { std::vector modals; if (m_Controls.multiModalBox->isChecked() && !m_Modalities.empty()) { std::set nodeNames; // set container for keeping names of all nodes to check if they are added twice. for (QmitkSingleNodeSelectionWidget *modality : m_Modalities) { mitk::DataNode::Pointer node = modality->GetSelectedNode(); if (nodeNames.find(node->GetName()) == nodeNames.end()) { modals.push_back(dynamic_cast(node->GetData())); nodeNames.insert(node->GetName()); } else { throw std::runtime_error("Same modality is selected more than once. Please change your selection."); break; } } } return modals; } bool QmitknnUNetToolGUI::IsNNUNetInstalled(const QString &pythonPath) { QString fullPath = pythonPath; #ifdef _WIN32 if (!(fullPath.endsWith("Scripts", Qt::CaseInsensitive) || fullPath.endsWith("Scripts/", Qt::CaseInsensitive))) { fullPath += QDir::separator() + QString("Scripts"); } #else if (!(fullPath.endsWith("bin", Qt::CaseInsensitive) || fullPath.endsWith("bin/", Qt::CaseInsensitive))) { fullPath += QDir::separator() + QString("bin"); } #endif fullPath = fullPath.mid(fullPath.indexOf(" ") + 1); bool isExists = QFile::exists(fullPath + QDir::separator() + QString("nnUNet_predict")) && QFile::exists(fullPath + QDir::separator() + QString("python3")); return isExists; } void QmitknnUNetToolGUI::ShowErrorMessage(const std::string &message, QMessageBox::Icon icon) { this->setCursor(Qt::ArrowCursor); QMessageBox *messageBox = new QMessageBox(icon, nullptr, message.c_str()); messageBox->exec(); delete messageBox; MITK_WARN << message; } void QmitknnUNetToolGUI::WriteStatusMessage(const QString &message) { m_Controls.statusLabel->setText(message); m_Controls.statusLabel->setStyleSheet("font-weight: bold; color: white"); } void QmitknnUNetToolGUI::WriteErrorMessage(const QString &message) { m_Controls.statusLabel->setText(message); m_Controls.statusLabel->setStyleSheet("font-weight: bold; color: red"); } void QmitknnUNetToolGUI::ProcessEnsembleModelsParams(mitk::nnUNetTool::Pointer tool) { if (m_EnsembleParams[0]->modelBox->currentText() == m_EnsembleParams[1]->modelBox->currentText()) { throw std::runtime_error("Both models you have selected for ensembling are the same."); } QString taskName = m_Controls.taskBox->currentText(); bool isPPJson = m_Controls.postProcessingCheckBox->isChecked(); std::vector requestQ; QString ppDirFolderNamePart1 = "ensemble_"; QStringList ppDirFolderNameParts; for (auto &layout : m_EnsembleParams) { QStringList ppDirFolderName; QString modelName = layout->modelBox->currentText(); ppDirFolderName << modelName; ppDirFolderName << "__"; QString trainer = layout->trainerBox->currentText(); ppDirFolderName << trainer; ppDirFolderName << "__"; QString planId = layout->plannerBox->currentText(); ppDirFolderName << planId; if (!this->IsModelExists(modelName, taskName, QString(trainer + "__" + planId))) { std::string errorMsg = "The configuration " + modelName.toStdString() + " you have selected doesn't exist. Check your Results Folder again."; throw std::runtime_error(errorMsg); } std::vector testfold = FetchSelectedFoldsFromUI(layout->foldBox); mitk::ModelParams modelObject = MapToRequest(modelName, taskName, trainer, planId, testfold); requestQ.push_back(modelObject); ppDirFolderNameParts << ppDirFolderName.join(QString("")); } tool->EnsembleOn(); if (isPPJson) { QString ppJsonFilePossibility1 = QDir::cleanPath( m_ParentFolder->getResultsFolder() + QDir::separator() + "nnUNet" + QDir::separator() + "ensembles" + QDir::separator() + taskName + QDir::separator() + ppDirFolderNamePart1 + ppDirFolderNameParts.first() + "--" + ppDirFolderNameParts.last() + QDir::separator() + "postprocessing.json"); QString ppJsonFilePossibility2 = QDir::cleanPath( m_ParentFolder->getResultsFolder() + QDir::separator() + "nnUNet" + QDir::separator() + "ensembles" + QDir::separator() + taskName + QDir::separator() + ppDirFolderNamePart1 + ppDirFolderNameParts.last() + "--" + ppDirFolderNameParts.first() + QDir::separator() + "postprocessing.json"); if (QFile(ppJsonFilePossibility1).exists()) { tool->SetPostProcessingJsonDirectory(ppJsonFilePossibility1.toStdString()); const QString statusMsg = "Post Processing JSON file found: " + ppJsonFilePossibility1; this->WriteStatusMessage(statusMsg); } else if (QFile(ppJsonFilePossibility2).exists()) { tool->SetPostProcessingJsonDirectory(ppJsonFilePossibility2.toStdString()); const QString statusMsg = "Post Processing JSON file found:" + ppJsonFilePossibility2; this->WriteStatusMessage(statusMsg); } else { std::string errorMsg = "No post processing file was found for the selected ensemble combination. Continuing anyway..."; this->ShowErrorMessage(errorMsg); } } tool->m_ParamQ.clear(); tool->m_ParamQ = requestQ; } void QmitknnUNetToolGUI::ProcessModelParams(mitk::nnUNetTool::Pointer tool) { tool->EnsembleOff(); std::vector requestQ; QString modelName = m_Controls.modelBox->currentText(); QString taskName = m_Controls.taskBox->currentText(); QString trainer = m_Controls.trainerBox->currentText(); QString planId = m_Controls.plannerBox->currentText(); std::vector fetchedFolds = this->FetchSelectedFoldsFromUI(m_Controls.foldBox); mitk::ModelParams modelObject = MapToRequest(modelName, taskName, trainer, planId, fetchedFolds); requestQ.push_back(modelObject); tool->m_ParamQ.clear(); tool->m_ParamQ = requestQ; } bool QmitknnUNetToolGUI::IsModelExists(const QString &modelName, const QString &taskName, const QString &trainerPlanner) { QString modelSearchPath = QDir::cleanPath(m_ParentFolder->getResultsFolder() + QDir::separator() + "nnUNet" + QDir::separator() + modelName + QDir::separator() + taskName + QDir::separator() + trainerPlanner); if (QDir(modelSearchPath).exists()) { return true; } return false; } void QmitknnUNetToolGUI::CheckAllInCheckableComboBox(ctkCheckableComboBox *foldBox) { // Recalling all added items to check-mark it. const QAbstractItemModel *qaim = foldBox->checkableModel(); auto rows = qaim->rowCount(); for (std::remove_const_t i = 0; i < rows; ++i) { const QModelIndex mi = qaim->index(i, 0); foldBox->setCheckState(mi, Qt::Checked); } } std::pair QmitknnUNetToolGUI::ExtractTrainerPlannerFromString(QStringList trainerPlanners) { QString splitterString = "__"; QStringList trainers, planners; for (const auto &trainerPlanner : trainerPlanners) { trainers << trainerPlanner.split(splitterString, QString::SplitBehavior::SkipEmptyParts).first(); planners << trainerPlanner.split(splitterString, QString::SplitBehavior::SkipEmptyParts).last(); } trainers.removeDuplicates(); planners.removeDuplicates(); return std::make_pair(trainers, planners); } std::vector QmitknnUNetToolGUI::FetchSelectedFoldsFromUI(ctkCheckableComboBox *foldBox) { std::vector folds; if (foldBox->noneChecked()) { this->CheckAllInCheckableComboBox(foldBox); } QModelIndexList foldList = foldBox->checkedIndexes(); for (const auto &index : foldList) { QString foldQString = foldBox->itemText(index.row()); if(foldQString != "dummy_element_that_nobody_can_see") { foldQString = foldQString.split("_", QString::SplitBehavior::SkipEmptyParts).last(); folds.push_back(foldQString.toStdString()); } else { throw std::runtime_error("Folds are not recognized. Please check if your nnUNet results folder structure is legitimate"); } } return folds; } void QmitknnUNetToolGUI::UpdateCacheCountOnUI() { QString cacheText = m_CACHE_COUNT_BASE_LABEL + QString::number(m_Cache.size()); m_Controls.cacheCountLabel->setText(cacheText); } void QmitknnUNetToolGUI::AddToCache(size_t &hashKey, mitk::LabelSetImage::ConstPointer mlPreview) { nnUNetCache *newCacheObj = new nnUNetCache; newCacheObj->m_SegCache = mlPreview; m_Cache.insert(hashKey, newCacheObj); MITK_INFO << "New hash: " << hashKey << " " << newCacheObj->m_SegCache.GetPointer(); this->UpdateCacheCountOnUI(); } void QmitknnUNetToolGUI::SetGPUInfo() { std::vector specs = m_GpuLoader.GetAllGPUSpecs(); for (const QmitkGPUSpec &gpuSpec : specs) { m_Controls.gpuComboBox->addItem(QString::number(gpuSpec.id) + ": " + gpuSpec.name + " (" + gpuSpec.memory + ")"); } if (specs.empty()) { m_Controls.gpuComboBox->setEditable(true); m_Controls.gpuComboBox->addItem(QString::number(0)); m_Controls.gpuComboBox->setValidator(new QIntValidator(0, 999, this)); } } unsigned int QmitknnUNetToolGUI::FetchSelectedGPUFromUI() { QString gpuInfo = m_Controls.gpuComboBox->currentText(); if (m_GpuLoader.GetGPUCount() == 0) { return static_cast(gpuInfo.toInt()); } else { QString gpuId = gpuInfo.split(":", QString::SplitBehavior::SkipEmptyParts).first(); return static_cast(gpuId.toInt()); } } QString QmitknnUNetToolGUI::FetchResultsFolderFromEnv() { const char *pathVal = itksys::SystemTools::GetEnv("RESULTS_FOLDER"); QString retVal; if (pathVal) { retVal = QString::fromUtf8(pathVal); } else { retVal = m_Settings.value("nnUNet/LastRESULTS_FOLDERPath").toString(); } return retVal; } void QmitknnUNetToolGUI::DumpJSONfromPickle(const QString &picklePath) { const QString pickleFile = picklePath + QDir::separator() + m_PICKLE_FILENAME; const QString jsonFile = picklePath + QDir::separator() + m_MITK_EXPORT_JSON_FILENAME; if (!QFile::exists(jsonFile)) { mitk::ProcessExecutor::Pointer spExec = mitk::ProcessExecutor::New(); mitk::ProcessExecutor::ArgumentListType args; args.push_back("-c"); std::string pythonCode; // python syntax to parse plans.pkl file and export as Json file. pythonCode.append("import pickle;"); pythonCode.append("import json;"); pythonCode.append("loaded_pickle = pickle.load(open('"); pythonCode.append(pickleFile.toStdString()); pythonCode.append("','rb'));"); pythonCode.append("modal_dict = {key: loaded_pickle[key] for key in loaded_pickle.keys() if key in " "['modalities','num_modalities']};"); pythonCode.append("json.dump(modal_dict, open('"); pythonCode.append(jsonFile.toStdString()); pythonCode.append("', 'w'))"); args.push_back(pythonCode); try { spExec->Execute(m_PythonPath.toStdString(), "python3", args); } catch (const mitk::Exception &e) { MITK_ERROR << "Pickle parsing FAILED!" << e.GetDescription(); this->WriteStatusMessage( "Parsing failed in backend. Multiple Modalities will now have to be manually entered by the user."); } } } void QmitknnUNetToolGUI::ExportAvailableModelsAsJSON(const QString &resultsFolder) { const QString jsonPath = resultsFolder + QDir::separator() + m_AVAILABLE_MODELS_JSON_FILENAME; if (!QFile::exists(jsonPath)) { auto spExec = mitk::ProcessExecutor::New(); mitk::ProcessExecutor::ArgumentListType args; args.push_back("--export"); args.push_back(resultsFolder.toStdString()); try { spExec->Execute(m_PythonPath.toStdString(), "nnUNet_print_available_pretrained_models", args); } catch (const mitk::Exception &e) { MITK_ERROR << "Exporting information FAILED." << e.GetDescription(); this->WriteStatusMessage("Exporting information FAILED."); } } } void QmitknnUNetToolGUI::DisplayMultiModalInfoFromJSON(const QString &jsonPath) { std::ifstream file(jsonPath.toStdString()); if (file.is_open()) { auto jsonObj = nlohmann::json::parse(file, nullptr, false); if (jsonObj.is_discarded() || !jsonObj.is_object()) { MITK_ERROR << "Could not parse \"" << jsonPath.toStdString() << "\" as JSON object!"; return; } auto num_mods = jsonObj["num_modalities"].get(); this->ClearAllModalLabels(); if (num_mods > 1) { m_Controls.multiModalBox->setChecked(true); m_Controls.multiModalBox->setEnabled(false); m_Controls.multiModalValueLabel->setText(QString::number(num_mods)); OnModalitiesNumberChanged(num_mods); m_Controls.advancedSettingsLayout->update(); auto obj = jsonObj["modalities"]; int count = 0; for (const auto &value : obj) { QLabel *label = new QLabel(QString::fromStdString("" + value.get() + ""), this); m_ModalLabels.push_back(label); m_Controls.advancedSettingsLayout->addWidget(label, m_UI_ROWS + 1 + count, 0); count++; } m_Controls.advancedSettingsLayout->update(); } else { m_Controls.multiModalBox->setChecked(false); } } } void QmitknnUNetToolGUI::FillAvailableModelsInfoFromJSON(const QString &jsonPath) { std::ifstream file(jsonPath.toStdString()); if (file.is_open() && m_Controls.availableBox->count() < 1) { auto jsonObj = nlohmann::json::parse(file, nullptr, false); if (jsonObj.is_discarded() || !jsonObj.is_object()) { MITK_ERROR << "Could not parse \"" << jsonPath.toStdString() << "\" as JSON object!"; return; } for (const auto &obj : jsonObj.items()) { m_Controls.availableBox->addItem(QString::fromStdString(obj.key())); } } } mitk::ModelParams QmitknnUNetToolGUI::MapToRequest(const QString &modelName, const QString &taskName, const QString &trainer, const QString &planId, const std::vector &folds) { mitk::ModelParams requestObject; requestObject.model = modelName.toStdString(); requestObject.trainer = trainer.toStdString(); requestObject.planId = planId.toStdString(); requestObject.task = taskName.toStdString(); requestObject.folds = folds; mitk::nnUNetTool::Pointer tool = this->GetConnectedToolAs(); requestObject.inputName = tool->GetRefNode()->GetName(); requestObject.timeStamp = std::to_string(mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimePoint()); return requestObject; } void QmitknnUNetToolGUI::SetComboBoxToNone(ctkCheckableComboBox* comboBox) { comboBox->clear(); comboBox->addItem("dummy_element_that_nobody_can_see"); qobject_cast(comboBox->view())->setRowHidden(0, true); // For the cosmetic purpose of showing "None" on the combobox. } /* ---------------------SLOTS---------------------------------------*/ void QmitknnUNetToolGUI::OnPreviewRequested() { mitk::nnUNetTool::Pointer tool = this->GetConnectedToolAs(); if (nullptr != tool) { QString pythonPathTextItem = ""; try { size_t hashKey(0); m_Controls.previewButton->setEnabled(false); // To prevent misclicked back2back prediction. qApp->processEvents(); tool->PredictOn(); // purposefully placed to make tool->GetMTime different than before. QString modelName = m_Controls.modelBox->currentText(); if (modelName.startsWith("ensemble", Qt::CaseInsensitive)) { this->ProcessEnsembleModelsParams(tool); } else { this->ProcessModelParams(tool); } pythonPathTextItem = m_Controls.pythonEnvComboBox->currentText(); QString pythonPath = m_PythonPath; if (!this->IsNNUNetInstalled(pythonPath)) { throw std::runtime_error("nnUNet is not detected in the selected python environment. Please select a valid " "python environment or install nnUNet."); } tool->SetPythonPath(pythonPath.toStdString()); tool->SetModelDirectory(m_ParentFolder->getResultsFolder().toStdString()); // checkboxes tool->SetMirror(m_Controls.mirrorBox->isChecked()); tool->SetMixedPrecision(m_Controls.mixedPrecisionBox->isChecked()); tool->SetNoPip(false); bool doCache = m_Controls.enableCachingCheckBox->isChecked(); // Spinboxes tool->SetGpuId(FetchSelectedGPUFromUI()); // Multi-Modal tool->MultiModalOff(); if (m_Controls.multiModalBox->isChecked()) { tool->m_OtherModalPaths.clear(); tool->m_OtherModalPaths = FetchMultiModalImagesFromUI(); tool->MultiModalOn(); } if (doCache) { hashKey = nnUNetCache::GetUniqueHash(tool->m_ParamQ); if (m_Cache.contains(hashKey)) { tool->PredictOff(); // purposefully placed to make tool->GetMTime different than before. } } if (tool->GetPredict()) { tool->m_InputBuffer = nullptr; this->WriteStatusMessage( QString("STATUS: Starting Segmentation task... This might take a while.")); tool->UpdatePreview(); if (nullptr == tool->GetOutputBuffer()) { this->SegmentationProcessFailed(); } else { this->SegmentationResultHandler(tool); if (doCache) { this->AddToCache(hashKey, tool->GetOutputBuffer()); } tool->ClearOutputBuffer(); } tool->PredictOff(); // purposefully placed to make tool->GetMTime different than before. } else { MITK_INFO << "won't do segmentation. Key found: " << QString::number(hashKey).toStdString(); if (m_Cache.contains(hashKey)) { nnUNetCache *cacheObject = m_Cache[hashKey]; MITK_INFO << "fetched pointer " << cacheObject->m_SegCache.GetPointer(); tool->SetOutputBuffer(const_cast(cacheObject->m_SegCache.GetPointer())); this->SegmentationResultHandler(tool, true); } } m_Controls.previewButton->setEnabled(true); } catch (const std::exception &e) { std::stringstream errorMsg; errorMsg << "STATUS: Error while processing parameters for nnUNet segmentation. Reason: " << e.what(); this->ShowErrorMessage(errorMsg.str()); this->WriteErrorMessage(QString::fromStdString(errorMsg.str())); m_Controls.previewButton->setEnabled(true); tool->PredictOff(); return; } catch (...) { std::string errorMsg = "Unkown error occured while generation nnUNet segmentation."; this->ShowErrorMessage(errorMsg); m_Controls.previewButton->setEnabled(true); tool->PredictOff(); return; } if (!pythonPathTextItem.isEmpty()) { // only cache if the prediction ended without errors. m_Settings.setValue("nnUNet/LastPythonPath", pythonPathTextItem); } } } void QmitknnUNetToolGUI::OnRefreshPresssed() { const QString resultsFolder = m_Controls.modeldirectoryBox->directory(); this->OnDirectoryChanged(resultsFolder); } void QmitknnUNetToolGUI::OnDirectoryChanged(const QString &resultsFolder) { m_IsResultsFolderValid = false; m_Controls.previewButton->setEnabled(false); this->ClearAllComboBoxes(); this->ClearAllModalities(); m_ParentFolder = std::make_shared(resultsFolder); auto tasks = m_ParentFolder->getAllTasks(); tasks.removeDuplicates(); std::for_each(tasks.begin(), tasks.end(), [this](QString task) { m_Controls.taskBox->addItem(task); }); m_Settings.setValue("nnUNet/LastRESULTS_FOLDERPath", resultsFolder); } void QmitknnUNetToolGUI::OnModelChanged(const QString &model) { if (model.isEmpty()) { return; } this->ClearAllModalities(); auto selectedTask = m_Controls.taskBox->currentText(); ctkComboBox *box = qobject_cast(sender()); if (box == m_Controls.modelBox) { if (model == m_VALID_MODELS.last()) { m_Controls.trainerBox->setVisible(false); m_Controls.trainerLabel->setVisible(false); m_Controls.plannerBox->setVisible(false); m_Controls.plannerLabel->setVisible(false); m_Controls.foldBox->setVisible(false); m_Controls.foldLabel->setVisible(false); m_Controls.previewButton->setEnabled(false); this->ShowEnsembleLayout(true); auto models = m_ParentFolder->getModelsForTask(m_Controls.taskBox->currentText()); models.removeDuplicates(); models.removeOne(m_VALID_MODELS.last()); for (auto &layout : m_EnsembleParams) { layout->modelBox->clear(); layout->trainerBox->clear(); layout->plannerBox->clear(); std::for_each(models.begin(), models.end(), [&layout, this](QString model) { if (m_VALID_MODELS.contains(model, Qt::CaseInsensitive)) layout->modelBox->addItem(model); }); } } else { m_Controls.trainerBox->setVisible(true); m_Controls.trainerLabel->setVisible(true); m_Controls.plannerBox->setVisible(true); m_Controls.plannerLabel->setVisible(true); m_Controls.foldBox->setVisible(true); m_Controls.foldLabel->setVisible(true); m_Controls.previewButton->setEnabled(false); this->ShowEnsembleLayout(false); m_Controls.trainerBox->clear(); m_Controls.plannerBox->clear(); auto trainerPlanners = m_ParentFolder->getTrainerPlannersForTask(selectedTask, model); if(trainerPlanners.isEmpty()) { this->ShowErrorMessage("No plans.pkl found for "+model.toStdString()+". Check your directory or download the task again."); this->SetComboBoxToNone(m_Controls.foldBox); return; } QStringList trainers, planners; std::tie(trainers, planners) = ExtractTrainerPlannerFromString(trainerPlanners); std::for_each( trainers.begin(), trainers.end(), [this](QString trainer) { m_Controls.trainerBox->addItem(trainer); }); std::for_each( planners.begin(), planners.end(), [this](QString planner) { m_Controls.plannerBox->addItem(planner); }); } } else if (!m_EnsembleParams.empty()) { m_Controls.previewButton->setEnabled(false); for (auto &layout : m_EnsembleParams) { if (box == layout->modelBox) { layout->trainerBox->clear(); layout->plannerBox->clear(); auto trainerPlanners = m_ParentFolder->getTrainerPlannersForTask(selectedTask, model); if(trainerPlanners.isEmpty()) { this->ShowErrorMessage("No plans.pkl found for "+model.toStdString()+". Check your directory or download the task again."); this->SetComboBoxToNone(layout->foldBox); return; } QStringList trainers, planners; std::tie(trainers, planners) = ExtractTrainerPlannerFromString(trainerPlanners); std::for_each(trainers.begin(), trainers.end(), [&layout](const QString &trainer) { layout->trainerBox->addItem(trainer); }); std::for_each(planners.begin(), planners.end(), [&layout](const QString &planner) { layout->plannerBox->addItem(planner); }); break; } } } } void QmitknnUNetToolGUI::OnTaskChanged(const QString &task) { if (task.isEmpty()) { return; } m_Controls.modelBox->clear(); auto models = m_ParentFolder->getModelsForTask(task); models.removeDuplicates(); if (!models.contains(m_VALID_MODELS.last(), Qt::CaseInsensitive)) { models << m_VALID_MODELS.last(); // add ensemble even if folder doesn't exist } std::for_each(models.begin(), models.end(), [this](QString model) { if (m_VALID_MODELS.contains(model, Qt::CaseInsensitive)) m_Controls.modelBox->addItem(model); }); } void QmitknnUNetToolGUI::OnTrainerChanged(const QString &plannerSelected) { if (plannerSelected.isEmpty()) { return; } m_IsResultsFolderValid = false; QString parentPath; auto *box = qobject_cast(sender()); if (box == m_Controls.plannerBox) { m_Controls.foldBox->clear(); auto selectedTrainer = m_Controls.trainerBox->currentText(); auto selectedTask = m_Controls.taskBox->currentText(); auto selectedModel = m_Controls.modelBox->currentText(); auto folds = m_ParentFolder->getFoldsForTrainerPlanner( selectedTrainer, plannerSelected, selectedTask, selectedModel); if(folds.isEmpty()) { this->ShowErrorMessage("No valid folds found. Check your directory or download the task again."); this->SetComboBoxToNone(m_Controls.foldBox); return; } std::for_each(folds.begin(), folds.end(), [this](QString fold) { if (fold.startsWith("fold_", Qt::CaseInsensitive)) // imposed by nnUNet m_Controls.foldBox->addItem(fold); }); if (m_Controls.foldBox->count() != 0) { m_IsResultsFolderValid = true; this->CheckAllInCheckableComboBox(m_Controls.foldBox); auto tempPath = QStringList() << m_ParentFolder->getResultsFolder() << "nnUNet" << selectedModel << selectedTask << QString("%1__%2").arg(selectedTrainer, plannerSelected); parentPath = QDir::cleanPath(tempPath.join(QDir::separator())); } } else if (!m_EnsembleParams.empty()) { for (auto &layout : m_EnsembleParams) { if (box == layout->plannerBox) { layout->foldBox->clear(); auto selectedTrainer = layout->trainerBox->currentText(); auto selectedTask = m_Controls.taskBox->currentText(); auto selectedModel = layout->modelBox->currentText(); auto folds = m_ParentFolder->getFoldsForTrainerPlanner( selectedTrainer, plannerSelected, selectedTask, selectedModel); if(folds.isEmpty()) { this->ShowErrorMessage("No valid folds found. Check your directory."); this->SetComboBoxToNone(layout->foldBox); return; } std::for_each(folds.begin(), folds.end(), [&layout](const QString &fold) { if (fold.startsWith("fold_", Qt::CaseInsensitive)) // imposed by nnUNet layout->foldBox->addItem(fold); }); if (layout->foldBox->count() != 0) { this->CheckAllInCheckableComboBox(layout->foldBox); m_IsResultsFolderValid = true; auto tempPath = QStringList() << m_ParentFolder->getResultsFolder() << "nnUNet" << selectedModel << selectedTask << QString("%1__%2").arg(selectedTrainer, plannerSelected); parentPath = QDir::cleanPath(tempPath.join(QDir::separator())); } break; } } } if (m_IsResultsFolderValid) { m_Controls.previewButton->setEnabled(true); const QString mitkJsonFile = parentPath + QDir::separator() + m_MITK_EXPORT_JSON_FILENAME; this->DumpJSONfromPickle(parentPath); if (QFile::exists(mitkJsonFile)) { this->DisplayMultiModalInfoFromJSON(mitkJsonFile); } } } void QmitknnUNetToolGUI::OnPythonPathChanged(const QString &pyEnv) { if (pyEnv == QString("Select")) { QString path = QFileDialog::getExistingDirectory(m_Controls.pythonEnvComboBox->parentWidget(), "Python Path", "dir"); if (!path.isEmpty()) { this->OnPythonPathChanged(path); // recall same function for new path validation m_Controls.pythonEnvComboBox->insertItem(0, path); m_Controls.pythonEnvComboBox->setCurrentIndex(0); } } else if (!this->IsNNUNetInstalled(pyEnv)) { std::string warning = "WARNING: nnUNet is not detected on the Python environment you selected. Please select another " "environment or create one. For more info refer https://github.com/MIC-DKFZ/nnUNet"; this->ShowErrorMessage(warning); this->DisableEverything(); m_Controls.availableBox->clear(); } else { m_Controls.modeldirectoryBox->setEnabled(true); m_Controls.refreshdirectoryBox->setEnabled(true); m_Controls.multiModalBox->setEnabled(true); QString setVal = this->FetchResultsFolderFromEnv(); if (!setVal.isEmpty()) { m_Controls.modeldirectoryBox->setDirectory(setVal); } this->OnRefreshPresssed(); m_PythonPath = pyEnv.mid(pyEnv.indexOf(" ") + 1); #ifdef _WIN32 if (!(m_PythonPath.endsWith("Scripts", Qt::CaseInsensitive) || m_PythonPath.endsWith("Scripts/", Qt::CaseInsensitive))) { m_PythonPath += QDir::separator() + QString("Scripts"); } #else if (!(m_PythonPath.endsWith("bin", Qt::CaseInsensitive) || m_PythonPath.endsWith("bin/", Qt::CaseInsensitive))) { m_PythonPath += QDir::separator() + QString("bin"); } #endif // Export available model info as json and fill them for Download QString tempPath = QString::fromStdString(mitk::IOUtil::GetTempPath()); this->ExportAvailableModelsAsJSON(tempPath); const QString jsonPath = tempPath + QDir::separator() + m_AVAILABLE_MODELS_JSON_FILENAME; if (QFile::exists(jsonPath)) { this->FillAvailableModelsInfoFromJSON(jsonPath); } } } void QmitknnUNetToolGUI::OnCheckBoxChanged(int state) { bool visibility = false; if (state == Qt::Checked) { visibility = true; } ctkCheckBox *box = qobject_cast(sender()); if (box != nullptr) { if (box->objectName() == QString("multiModalBox")) { m_Controls.requiredModalitiesLabel->setVisible(visibility); m_Controls.multiModalValueLabel->setVisible(visibility); if (!visibility) { this->OnModalitiesNumberChanged(0); m_Controls.multiModalValueLabel->setText("0"); this->ClearAllModalLabels(); } } } } void QmitknnUNetToolGUI::OnModalitiesNumberChanged(int num) { while (num > static_cast(m_Modalities.size())) { QmitkSingleNodeSelectionWidget *multiModalBox = new QmitkSingleNodeSelectionWidget(this); mitk::nnUNetTool::Pointer tool = this->GetConnectedToolAs(); multiModalBox->SetDataStorage(tool->GetDataStorage()); multiModalBox->SetInvalidInfo("Select corresponding modalities"); multiModalBox->SetNodePredicate(m_MultiModalPredicate); multiModalBox->setObjectName(QString("multiModal_" + QString::number(m_Modalities.size() + 1))); m_Controls.advancedSettingsLayout->addWidget(multiModalBox, m_UI_ROWS + m_Modalities.size() + 1, 1, 1, 3); m_Modalities.push_back(multiModalBox); } while (num < static_cast(m_Modalities.size()) && !m_Modalities.empty()) { QmitkSingleNodeSelectionWidget *child = m_Modalities.back(); delete child; // delete the layout item m_Modalities.pop_back(); } m_Controls.advancedSettingsLayout->update(); } void QmitknnUNetToolGUI::AutoParsePythonPaths() { QString homeDir = QDir::homePath(); std::vector searchDirs; #ifdef _WIN32 searchDirs.push_back(QString("C:") + QDir::separator() + QString("ProgramData") + QDir::separator() + QString("anaconda3")); #else // Add search locations for possible standard python paths here searchDirs.push_back(homeDir + QDir::separator() + "environments"); searchDirs.push_back(homeDir + QDir::separator() + "anaconda3"); searchDirs.push_back(homeDir + QDir::separator() + "miniconda3"); searchDirs.push_back(homeDir + QDir::separator() + "opt" + QDir::separator() + "miniconda3"); searchDirs.push_back(homeDir + QDir::separator() + "opt" + QDir::separator() + "anaconda3"); #endif for (QString searchDir : searchDirs) { if (searchDir.endsWith("anaconda3", Qt::CaseInsensitive)) { if (QDir(searchDir).exists()) { m_Controls.pythonEnvComboBox->insertItem(0, "(base): " + searchDir); searchDir.append((QDir::separator() + QString("envs"))); } } for (QDirIterator subIt(searchDir, QDir::AllDirs, QDirIterator::NoIteratorFlags); subIt.hasNext();) { subIt.next(); QString envName = subIt.fileName(); if (!envName.startsWith('.')) // Filter out irrelevent hidden folders, if any. { m_Controls.pythonEnvComboBox->insertItem(0, "(" + envName + "): " + subIt.filePath()); } } } m_Controls.pythonEnvComboBox->setCurrentIndex(-1); } void QmitknnUNetToolGUI::SegmentationProcessFailed() { this->WriteErrorMessage( "STATUS: Error in the segmentation process.
No resulting segmentation can be loaded.
"); this->setCursor(Qt::ArrowCursor); std::stringstream stream; stream << "Error in the segmentation process. No resulting segmentation can be loaded."; this->ShowErrorMessage(stream.str()); } void QmitknnUNetToolGUI::SegmentationResultHandler(mitk::nnUNetTool *tool, bool forceRender) { if (forceRender) { tool->RenderOutputBuffer(); } m_FirstPreviewComputation = false; this->SetLabelSetPreview(tool->GetPreviewSegmentation()); this->WriteStatusMessage("STATUS: Segmentation task finished successfully."); this->ActualizePreviewLabelVisibility(); } void QmitknnUNetToolGUI::ShowEnsembleLayout(bool visible) { if (m_EnsembleParams.empty()) { ctkCollapsibleGroupBox *groupBoxModel1 = new ctkCollapsibleGroupBox(this); auto lay1 = std::make_unique(groupBoxModel1); groupBoxModel1->setObjectName(QString::fromUtf8("model_1_Box")); groupBoxModel1->setTitle(QString::fromUtf8("Model 1")); groupBoxModel1->setMinimumSize(QSize(0, 0)); groupBoxModel1->setCollapsedHeight(5); groupBoxModel1->setCollapsed(false); groupBoxModel1->setFlat(true); groupBoxModel1->setAlignment(Qt::AlignRight); m_Controls.advancedSettingsLayout->addWidget(groupBoxModel1, 5, 0, 1, 2); connect(lay1->modelBox, SIGNAL(currentTextChanged(const QString &)), this, SLOT(OnModelChanged(const QString &))); connect( lay1->plannerBox, SIGNAL(currentTextChanged(const QString &)), this, SLOT(OnTrainerChanged(const QString &))); m_EnsembleParams.push_back(std::move(lay1)); ctkCollapsibleGroupBox *groupBoxModel2 = new ctkCollapsibleGroupBox(this); auto lay2 = std::make_unique(groupBoxModel2); groupBoxModel2->setObjectName(QString::fromUtf8("model_2_Box")); groupBoxModel2->setTitle(QString::fromUtf8("Model 2")); groupBoxModel2->setMinimumSize(QSize(0, 0)); groupBoxModel2->setCollapsedHeight(5); groupBoxModel2->setCollapsed(false); groupBoxModel2->setFlat(true); groupBoxModel2->setAlignment(Qt::AlignLeft); m_Controls.advancedSettingsLayout->addWidget(groupBoxModel2, 5, 2, 1, 2); connect(lay2->modelBox, SIGNAL(currentTextChanged(const QString &)), this, SLOT(OnModelChanged(const QString &))); connect( lay2->plannerBox, SIGNAL(currentTextChanged(const QString &)), this, SLOT(OnTrainerChanged(const QString &))); m_EnsembleParams.push_back(std::move(lay2)); } for (auto &layout : m_EnsembleParams) { layout->setVisible(visible); } } void QmitknnUNetToolGUI::OnDownloadModel() { auto selectedTask = m_Controls.availableBox->currentText(); if(!selectedTask.isEmpty()) { auto spExec = mitk::ProcessExecutor::New(); mitk::ProcessExecutor::ArgumentListType args; args.push_back(selectedTask.toStdString()); this->WriteStatusMessage( "Downloading the requested task in to the selected Results Folder. This might take some time " "depending on your internet connection..."); m_Processes["DOWNLOAD"] = spExec; if (!m_nnUNetThread->isRunning()) { MITK_DEBUG << "Starting thread..."; m_nnUNetThread->start(); } QString resultsFolder = m_ParentFolder->getResultsFolder(); emit Operate(resultsFolder, m_PythonPath, spExec, args); m_Controls.stopDownloadButton->setVisible(true); m_Controls.startDownloadButton->setVisible(false); } } void QmitknnUNetToolGUI::OnDownloadWorkerExit(const bool isSuccess, const QString message) { if (isSuccess) { this->WriteStatusMessage(message + QString(" Click Refresh Results Folder to use the new Task.")); } else { MITK_ERROR << "Download FAILED! " << message.toStdString(); this->WriteStatusMessage(QString("Download failed. Check your internet connection. " + message)); } m_Controls.stopDownloadButton->setVisible(false); m_Controls.startDownloadButton->setVisible(true); } void QmitknnUNetToolGUI::OnStopDownload() { mitk::ProcessExecutor::Pointer spExec = m_Processes["DOWNLOAD"]; spExec->KillProcess(); this->WriteStatusMessage("Download Killed by the user."); m_Controls.stopDownloadButton->setVisible(false); m_Controls.startDownloadButton->setVisible(true); } void QmitknnUNetToolGUI::OnClearCachePressed() { m_Cache.clear(); this->UpdateCacheCountOnUI(); } diff --git a/Plugins/org.mitk.gui.common/src/mitkIRenderWindowPart.h b/Plugins/org.mitk.gui.common/src/mitkIRenderWindowPart.h index f8726b2183..38bd85cbb5 100644 --- a/Plugins/org.mitk.gui.common/src/mitkIRenderWindowPart.h +++ b/Plugins/org.mitk.gui.common/src/mitkIRenderWindowPart.h @@ -1,230 +1,230 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef mitkIRenderWindowPart_h #define mitkIRenderWindowPart_h #include #include #include #include #include #include #include #include class QmitkRenderWindow; namespace mitk { struct IRenderingManager; -class SliceNavigationController; +class TimeNavigationController; /** * \ingroup org_mitk_gui_common * * \brief Interface for a MITK Workbench Part providing a render window. * * This interface allows generic access to Workbench parts which provide some * kind of render window. The interface is intended to be implemented by * subclasses of berry::IWorkbenchPart. Usually, the interface is implemented * by a Workbench editor. * * A IRenderWindowPart provides zero or more QmitkRenderWindow instances which can * be controlled via this interface. QmitkRenderWindow instances have an associated * \e id, which is implementation specific. * Additionally the defined values Axial, Sagittal, Coronal and Original from mitk::AnatomicalPlane * can be used to retrieve a specific QmitkRenderWindow. * * \see ILinkedRenderWindowPart * \see IRenderWindowPartListener * \see QmitkAbstractRenderEditor */ struct MITK_GUI_COMMON_PLUGIN IRenderWindowPart { static const QString DECORATION_BORDER; // = "border" static const QString DECORATION_LOGO; // = "logo" static const QString DECORATION_MENU; // = "menu" static const QString DECORATION_BACKGROUND; // = "background" static const QString DECORATION_CORNER_ANNOTATION; // = "corner annotation" virtual ~IRenderWindowPart(); /** * Get the currently active (focused) render window. * Focus handling is implementation specific. * * \return The active QmitkRenderWindow instance; nullptr * if no render window is active. */ virtual QmitkRenderWindow* GetActiveQmitkRenderWindow() const = 0; /** * Get all render windows with their ids. * * \return A hash map mapping the render window id to the QmitkRenderWindow instance. */ virtual QHash GetQmitkRenderWindows() const = 0; /** * Get a render window with a specific id. * * \param id The render window id. * \return The QmitkRenderWindow instance for id */ virtual QmitkRenderWindow* GetQmitkRenderWindow(const QString& id) const = 0; /** * Get a render window with a specific plane orientation. * * \param orientation The render window plane orientation. * \return The QmitkRenderWindow instance for orientation */ virtual QmitkRenderWindow* GetQmitkRenderWindow(const mitk::AnatomicalPlane& orientation) const = 0; /** * Get the rendering manager used by this render window part. * * \return The current IRenderingManager instance or nullptr * if no rendering manager is used. */ virtual mitk::IRenderingManager* GetRenderingManager() const = 0; /** * Request an update of all render windows. * * \param requestType Specifies the type of render windows for which an update * will be requested. */ virtual void RequestUpdate(mitk::RenderingManager::RequestType requestType = mitk::RenderingManager::REQUEST_UPDATE_ALL) = 0; /** * Force an immediate update of all render windows. * * \param requestType Specifies the type of render windows for which an immediate update * will be requested. */ virtual void ForceImmediateUpdate(mitk::RenderingManager::RequestType requestType = mitk::RenderingManager::REQUEST_UPDATE_ALL) = 0; /** * @brief Initialize the render windows of this render window part to the given geometry. * * @param geometry The geometry to be used to initialize / update a * render window's time and slice navigation controller. * @param resetCamera If true, the camera and crosshair will be reset to the default view (centered, no zoom). * If false, the current crosshair position and the camera zoom will be stored and reset * after the reference geometry has been updated. */ virtual void InitializeViews(const mitk::TimeGeometry* geometry, bool resetCamera) = 0; /** * @brief Define the reference geometry for interaction withing a render window. * * The concrete implementation is subclass-specific, no default implementation is provided here. * An implementation can be found in 'QmitkAbstractMultiWidgetEditor' and will just * forward the argument to the contained multi widget. * * @param referenceGeometry The interaction reference geometry for the concrete multi widget. * For more details, see 'BaseRenderer::SetInteractionReferenceGeometry'. */ virtual void SetInteractionReferenceGeometry(const mitk::TimeGeometry* referenceGeometry) = 0; /** * @brief Returns true if the render windows are coupled; false if not. * * Render windows are coupled if the slice navigation controller of the render windows * are connected which means that always the same geometry is used for the render windows. */ virtual bool HasCoupledRenderWindows() const = 0; /** - * Get the SliceNavigationController for controlling time positions. + * Get the TimeNavigationController for controlling time positions. * - * \return A SliceNavigationController if the render window supports this + * \return A TimeNavigationController if the render window supports this * operation; otherwise returns nullptr. */ - virtual mitk::SliceNavigationController* GetTimeNavigationController() const = 0; + virtual mitk::TimeNavigationController* GetTimeNavigationController() const = 0; /** * Get the selected position in the render window with id id * or in the active render window if id is an empty string. * * \param id The render window id. * \return The currently selected position in world coordinates. */ virtual mitk::Point3D GetSelectedPosition(const QString& id = QString()) const = 0; /** * Set the selected position in the render window with id id * or in the active render window if id is nullptr. * * \param pos The position in world coordinates which should be selected. * \param id The render window id in which the selection should take place. */ virtual void SetSelectedPosition(const mitk::Point3D& pos, const QString& id = QString()) = 0; /** * Get the time point selected in the render window with id id * or in the active render window if id is an empty string. * * \param id The render window id. * \return The currently selected position in world coordinates. */ virtual TimePointType GetSelectedTimePoint(const QString& id = QString()) const = 0; /** * Enable \e decorations like colored borders, menu widgets, logos, text annotations, etc. * * Decorations are implementation specific. A set of standardized decoration names is listed * in GetDecorations(). * * \param enable If true enable the decorations specified in decorations, * otherwise disable them. * \param decorations A list of decoration names. If empty, all supported decorations are affected. * * \see GetDecorations() */ virtual void EnableDecorations(bool enable, const QStringList& decorations = QStringList()) = 0; /** * Return if a specific decoration is enabled. * * \return true if the decoration is enabled, false if it is disabled * or unknown. * * \see GetDecorations() */ virtual bool IsDecorationEnabled(const QString& decoration) const = 0; /** * Get a list of supported decorations. * * The following decoration names are standardized and should not be used for other decoration types: *
    *
  • \e DECORATION_BORDER Any border decorations like colored rectangles, etc. *
  • \e DECORATION_MENU Menus associated with render windows *
  • \e DECORATION_BACKGROUND All kinds of backgrounds (patterns, gradients, etc.) except for solid colored backgrounds *
  • \e DECORATION_LOGO Any kind of logo overlayed on the rendered scene *
* * \return A list of supported decoration names. */ virtual QStringList GetDecorations() const = 0; }; } Q_DECLARE_INTERFACE(mitk::IRenderWindowPart, "org.mitk.ui.IRenderWindowPart") #endif diff --git a/Plugins/org.mitk.gui.qt.basicimageprocessing/src/internal/QmitkBasicImageProcessingView.cpp b/Plugins/org.mitk.gui.qt.basicimageprocessing/src/internal/QmitkBasicImageProcessingView.cpp index c73170f9ab..69d285a9db 100644 --- a/Plugins/org.mitk.gui.qt.basicimageprocessing/src/internal/QmitkBasicImageProcessingView.cpp +++ b/Plugins/org.mitk.gui.qt.basicimageprocessing/src/internal/QmitkBasicImageProcessingView.cpp @@ -1,1345 +1,1342 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkBasicImageProcessingView.h" // QT includes (GUI) #include #include #include #include #include #include #include // MITK includes (general) #include #include #include #include #include #include #include #include #include #include +#include // Includes for image casting between ITK and MITK #include #include // ITK includes (general) #include #include // Morphological Operations #include #include #include #include #include // Smoothing #include #include #include // Threshold #include // Inversion #include // Derivatives #include #include #include // Resampling #include #include #include #include #include // Image Arithmetics #include #include #include #include // Boolean operations #include #include #include // Flip Image #include #include #include // Convenient Definitions typedef itk::Image ImageType; typedef itk::Image SegmentationImageType; typedef itk::Image DoubleImageType; typedef itk::Image, 3> VectorImageType; typedef itk::BinaryBallStructuringElement BallType; typedef itk::GrayscaleDilateImageFilter DilationFilterType; typedef itk::GrayscaleErodeImageFilter ErosionFilterType; typedef itk::GrayscaleMorphologicalOpeningImageFilter OpeningFilterType; typedef itk::GrayscaleMorphologicalClosingImageFilter ClosingFilterType; typedef itk::MedianImageFilter< ImageType, ImageType > MedianFilterType; typedef itk::DiscreteGaussianImageFilter< ImageType, ImageType> GaussianFilterType; typedef itk::TotalVariationDenoisingImageFilter TotalVariationFilterType; typedef itk::TotalVariationDenoisingImageFilter VectorTotalVariationFilterType; typedef itk::BinaryThresholdImageFilter< ImageType, ImageType > ThresholdFilterType; typedef itk::InvertIntensityImageFilter< ImageType, ImageType > InversionFilterType; typedef itk::GradientMagnitudeRecursiveGaussianImageFilter< ImageType, ImageType > GradientFilterType; typedef itk::LaplacianImageFilter< DoubleImageType, DoubleImageType > LaplacianFilterType; typedef itk::SobelEdgeDetectionImageFilter< DoubleImageType, DoubleImageType > SobelFilterType; typedef itk::ResampleImageFilter< ImageType, ImageType > ResampleImageFilterType; typedef itk::ResampleImageFilter< ImageType, ImageType > ResampleImageFilterType2; typedef itk::CastImageFilter< ImageType, DoubleImageType > ImagePTypeToFloatPTypeCasterType; typedef itk::AddImageFilter< ImageType, ImageType, ImageType > AddFilterType; typedef itk::SubtractImageFilter< ImageType, ImageType, ImageType > SubtractFilterType; typedef itk::MultiplyImageFilter< ImageType, ImageType, ImageType > MultiplyFilterType; typedef itk::DivideImageFilter< ImageType, ImageType, DoubleImageType > DivideFilterType; typedef itk::OrImageFilter< ImageType, ImageType > OrImageFilterType; typedef itk::AndImageFilter< ImageType, ImageType > AndImageFilterType; typedef itk::XorImageFilter< ImageType, ImageType > XorImageFilterType; typedef itk::FlipImageFilter< ImageType > FlipImageFilterType; typedef itk::LinearInterpolateImageFunction< ImageType, double > LinearInterpolatorType; typedef itk::NearestNeighborInterpolateImageFunction< ImageType, double > NearestInterpolatorType; const std::string QmitkBasicImageProcessing::VIEW_ID = "org.mitk.views.basicimageprocessing"; QmitkBasicImageProcessing::QmitkBasicImageProcessing() : QmitkAbstractView() , m_Controls(new Ui::QmitkBasicImageProcessingViewControls) , m_TimeStepperAdapter(nullptr) { auto isImage = mitk::TNodePredicateDataType::New(); auto isNotHelperObject = mitk::NodePredicateNot::New( mitk::NodePredicateProperty::New("helper object", mitk::BoolProperty::New(true))); auto dimensionPredicate = mitk::NodePredicateOr::New( mitk::NodePredicateDimension::New(3), mitk::NodePredicateDimension::New(4)); m_IsImagePredicate = mitk::NodePredicateAnd::New( isImage, isNotHelperObject, dimensionPredicate); } QmitkBasicImageProcessing::~QmitkBasicImageProcessing() { } void QmitkBasicImageProcessing::CreateQtPartControl(QWidget *parent) { m_Controls->setupUi(parent); m_Controls->selectedImageWidget->SetDataStorage(this->GetDataStorage()); m_Controls->selectedImageWidget->SetNodePredicate(m_IsImagePredicate); m_Controls->selectedImageWidget->SetSelectionIsOptional(true); m_Controls->selectedImageWidget->SetAutoSelectNewNodes(true); m_Controls->selectedImageWidget->SetEmptyInfo(QString("Please select a 3D / 4D image")); m_Controls->selectedImageWidget->SetPopUpTitel(QString("Select an image")); m_Controls->selectedImageWidget_2->SetDataStorage(this->GetDataStorage()); m_Controls->selectedImageWidget_2->SetNodePredicate(m_IsImagePredicate); m_Controls->selectedImageWidget_2->SetSelectionIsOptional(true); m_Controls->selectedImageWidget_2->SetAutoSelectNewNodes(true); m_Controls->selectedImageWidget_2->SetEmptyInfo(QString("Please select a 3D / 4D image")); m_Controls->selectedImageWidget_2->SetPopUpTitel(QString("Select an image")); m_Controls->gbTwoImageOps->hide(); m_Controls->cbWhat1->clear(); m_Controls->cbWhat1->insertItem(NOACTIONSELECTED, "Please select an operation"); m_Controls->cbWhat1->insertItem(CATEGORY_DENOISING, "--- Denoising ---"); m_Controls->cbWhat1->insertItem(GAUSSIAN, "Gaussian"); m_Controls->cbWhat1->insertItem(MEDIAN, "Median"); m_Controls->cbWhat1->insertItem(TOTALVARIATION, "Total Variation"); m_Controls->cbWhat1->insertItem(CATEGORY_MORPHOLOGICAL, "--- Morphological ---"); m_Controls->cbWhat1->insertItem(DILATION, "Dilation"); m_Controls->cbWhat1->insertItem(EROSION, "Erosion"); m_Controls->cbWhat1->insertItem(OPENING, "Opening"); m_Controls->cbWhat1->insertItem(CLOSING, "Closing"); m_Controls->cbWhat1->insertItem(CATEGORY_EDGE_DETECTION, "--- Edge Detection ---"); m_Controls->cbWhat1->insertItem(GRADIENT, "Gradient"); m_Controls->cbWhat1->insertItem(LAPLACIAN, "Laplacian (2nd Derivative)"); m_Controls->cbWhat1->insertItem(SOBEL, "Sobel Operator"); m_Controls->cbWhat1->insertItem(CATEGORY_MISC, "--- Misc ---"); m_Controls->cbWhat1->insertItem(THRESHOLD, "Threshold"); m_Controls->cbWhat1->insertItem(INVERSION, "Image Inversion"); m_Controls->cbWhat1->insertItem(DOWNSAMPLING, "Downsampling"); m_Controls->cbWhat1->insertItem(FLIPPING, "Flipping"); m_Controls->cbWhat1->insertItem(RESAMPLING, "Resample to"); m_Controls->cbWhat1->insertItem(RESCALE, "Rescale values to interval"); m_Controls->cbWhat1->insertItem(RESCALE2, "Rescale values by scalar"); m_Controls->cbWhat2->clear(); m_Controls->cbWhat2->insertItem(TWOIMAGESNOACTIONSELECTED, "Please select an operation"); m_Controls->cbWhat2->insertItem(CATEGORY_ARITHMETIC, "--- Arithmetric operations ---"); m_Controls->cbWhat2->insertItem(ADD, "Add to Image 1:"); m_Controls->cbWhat2->insertItem(SUBTRACT, "Subtract from Image 1:"); m_Controls->cbWhat2->insertItem(MULTIPLY, "Multiply with Image 1:"); m_Controls->cbWhat2->insertItem(RESAMPLE_TO, "Resample Image 1 to fit geometry:"); m_Controls->cbWhat2->insertItem(DIVIDE, "Divide Image 1 by:"); m_Controls->cbWhat2->insertItem(CATEGORY_BOOLEAN, "--- Boolean operations ---"); m_Controls->cbWhat2->insertItem(AND, "AND"); m_Controls->cbWhat2->insertItem(OR, "OR"); m_Controls->cbWhat2->insertItem(XOR, "XOR"); m_Controls->cbParam4->clear(); m_Controls->cbParam4->insertItem(LINEAR, "Linear"); m_Controls->cbParam4->insertItem(NEAREST, "Nearest neighbor"); m_Controls->dsbParam1->hide(); m_Controls->dsbParam2->hide(); m_Controls->dsbParam3->hide(); m_Controls->tlParam3->hide(); m_Controls->tlParam4->hide(); m_Controls->cbParam4->hide(); this->CreateConnections(); } void QmitkBasicImageProcessing::CreateConnections() { connect(m_Controls->cbWhat1, QOverload::of(&QComboBox::activated), this, &QmitkBasicImageProcessing::SelectAction); connect(m_Controls->btnDoIt, &QPushButton::clicked, this, &QmitkBasicImageProcessing::StartButtonClicked); connect(m_Controls->cbWhat2, QOverload::of(&QComboBox::activated), this, &QmitkBasicImageProcessing::SelectAction2); connect(m_Controls->btnDoIt2, &QPushButton::clicked, this, &QmitkBasicImageProcessing::StartButton2Clicked); connect(m_Controls->rBOneImOp, &QRadioButton::clicked, this, &QmitkBasicImageProcessing::ChangeGUI); connect(m_Controls->rBTwoImOp, &QRadioButton::clicked, this, &QmitkBasicImageProcessing::ChangeGUI); connect(m_Controls->cbParam4, QOverload::of(&QComboBox::activated), this, &QmitkBasicImageProcessing::SelectInterpolator); connect(m_Controls->selectedImageWidget, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &QmitkBasicImageProcessing::OnCurrentSelectionChanged); connect(m_Controls->selectedImageWidget_2, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &QmitkBasicImageProcessing::OnCurrentSelectionChanged); } void QmitkBasicImageProcessing::InternalGetTimeNavigationController() { - auto renwin_part = GetRenderWindowPart(); - if( renwin_part != nullptr ) + auto* timeNavigationController = mitk::RenderingManager::GetInstance()->GetTimeNavigationController(); + if (nullptr != timeNavigationController) { - auto tnc = renwin_part->GetTimeNavigationController(); - if( tnc != nullptr ) - { - m_TimeStepperAdapter = new QmitkStepperAdapter(m_Controls->timeSliceNavigationWidget, tnc->GetStepper()); - } + m_TimeStepperAdapter = new QmitkStepperAdapter(m_Controls->timeSliceNavigationWidget, timeNavigationController->GetStepper()); } } void QmitkBasicImageProcessing::SetFocus() { m_Controls->rBOneImOp->setFocus(); } void QmitkBasicImageProcessing::OnCurrentSelectionChanged(const QList& nodes) { if (nodes.empty() || nodes.front().IsNull()) { m_Controls->timeSliceNavigationWidget->setEnabled(false); m_Controls->tlTime->setEnabled(false); m_Controls->tlWhat1->setEnabled(false); m_Controls->cbWhat1->setEnabled(false); m_Controls->tlWhat2->setEnabled(false); m_Controls->cbWhat2->setEnabled(false); return; } auto selectedImage = dynamic_cast(nodes.front()->GetData()); if (nullptr == selectedImage) { return; } if (selectedImage->GetDimension() > 3) { // try to retrieve the TNC (for 4-D Processing ) this->InternalGetTimeNavigationController(); m_Controls->timeSliceNavigationWidget->setEnabled(true); m_Controls->tlTime->setEnabled(true); } m_Controls->tlWhat1->setEnabled(true); m_Controls->cbWhat1->setEnabled(true); m_Controls->tlWhat2->setEnabled(true); m_Controls->cbWhat2->setEnabled(true); } void QmitkBasicImageProcessing::ChangeGUI() { if(m_Controls->rBOneImOp->isChecked()) { m_Controls->gbTwoImageOps->hide(); m_Controls->gbOneImageOps->show(); } else if(m_Controls->rBTwoImOp->isChecked()) { m_Controls->gbOneImageOps->hide(); m_Controls->gbTwoImageOps->show(); } } void QmitkBasicImageProcessing::ResetParameterPanel() { m_Controls->tlParam->setEnabled(false); m_Controls->tlParam1->setEnabled(false); m_Controls->tlParam2->setEnabled(false); m_Controls->tlParam3->setEnabled(false); m_Controls->tlParam4->setEnabled(false); m_Controls->sbParam1->setEnabled(false); m_Controls->sbParam2->setEnabled(false); m_Controls->dsbParam1->setEnabled(false); m_Controls->dsbParam2->setEnabled(false); m_Controls->dsbParam3->setEnabled(false); m_Controls->cbParam4->setEnabled(false); m_Controls->sbParam1->setValue(0); m_Controls->sbParam2->setValue(0); m_Controls->dsbParam1->setValue(0); m_Controls->dsbParam2->setValue(0); m_Controls->dsbParam3->setValue(0); m_Controls->sbParam1->show(); m_Controls->sbParam2->show(); m_Controls->dsbParam1->hide(); m_Controls->dsbParam2->hide(); m_Controls->dsbParam3->hide(); m_Controls->cbParam4->hide(); m_Controls->tlParam3->hide(); m_Controls->tlParam4->hide(); } void QmitkBasicImageProcessing::SelectAction(int action) { auto selectedImage = m_Controls->selectedImageWidget->GetSelectedNode(); if (selectedImage.IsNull()) { return; } // Prepare GUI this->ResetParameterPanel(); m_Controls->btnDoIt->setEnabled(false); m_Controls->cbHideOrig->setEnabled(false); QString text1 = tr("No Parameters"); QString text2 = text1; QString text3 = text1; QString text4 = text1; if (action != 19) { m_Controls->dsbParam1->hide(); m_Controls->dsbParam2->hide(); m_Controls->dsbParam3->hide(); m_Controls->tlParam1->show(); m_Controls->tlParam2->show(); m_Controls->tlParam3->hide(); m_Controls->tlParam4->hide(); m_Controls->sbParam1->show(); m_Controls->sbParam2->show(); m_Controls->cbParam4->hide(); } switch (action) { case 2: { m_SelectedAction = GAUSSIAN; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->hide(); m_Controls->dsbParam1->show(); m_Controls->dsbParam1->setEnabled(true); text1 = tr("&Variance:"); m_Controls->tlParam2->hide(); m_Controls->sbParam2->hide(); m_Controls->dsbParam1->setMinimum( 0 ); m_Controls->dsbParam1->setMaximum( 200 ); m_Controls->dsbParam1->setValue( 2 ); break; } case 3: { m_SelectedAction = MEDIAN; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); text1 = tr("&Radius:"); m_Controls->sbParam1->setMinimum( 0 ); m_Controls->sbParam1->setMaximum( 200 ); m_Controls->sbParam1->setValue( 3 ); break; } case 4: { m_SelectedAction = TOTALVARIATION; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); m_Controls->tlParam2->setEnabled(true); m_Controls->sbParam2->setEnabled(true); text1 = tr("Number Iterations:"); text2 = tr("Regularization\n(Lambda/1000):"); m_Controls->sbParam1->setMinimum( 1 ); m_Controls->sbParam1->setMaximum( 1000 ); m_Controls->sbParam1->setValue( 40 ); m_Controls->sbParam2->setMinimum( 0 ); m_Controls->sbParam2->setMaximum( 100000 ); m_Controls->sbParam2->setValue( 1 ); break; } case 6: { m_SelectedAction = DILATION; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); text1 = tr("&Radius:"); m_Controls->sbParam1->setMinimum( 0 ); m_Controls->sbParam1->setMaximum( 200 ); m_Controls->sbParam1->setValue( 3 ); break; } case 7: { m_SelectedAction = EROSION; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); text1 = tr("&Radius:"); m_Controls->sbParam1->setMinimum( 0 ); m_Controls->sbParam1->setMaximum( 200 ); m_Controls->sbParam1->setValue( 3 ); break; } case 8: { m_SelectedAction = OPENING; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); text1 = tr("&Radius:"); m_Controls->sbParam1->setMinimum( 0 ); m_Controls->sbParam1->setMaximum( 200 ); m_Controls->sbParam1->setValue( 3 ); break; } case 9: { m_SelectedAction = CLOSING; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); text1 = tr("&Radius:"); m_Controls->sbParam1->setMinimum( 0 ); m_Controls->sbParam1->setMaximum( 200 ); m_Controls->sbParam1->setValue( 3 ); break; } case 11: { m_SelectedAction = GRADIENT; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->hide(); m_Controls->dsbParam1->show(); m_Controls->dsbParam1->setEnabled(true); text1 = tr("Sigma of Gaussian Kernel:\n(in Image Spacing Units)"); m_Controls->tlParam2->hide(); m_Controls->sbParam2->hide(); m_Controls->dsbParam1->setMinimum( 0 ); m_Controls->dsbParam1->setMaximum( 200 ); m_Controls->dsbParam1->setValue( 2 ); break; } case 12: { m_SelectedAction = LAPLACIAN; break; } case 13: { m_SelectedAction = SOBEL; break; } case 15: { m_SelectedAction = THRESHOLD; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); m_Controls->tlParam2->setEnabled(true); m_Controls->sbParam2->setEnabled(true); text1 = tr("Lower threshold:"); text2 = tr("Upper threshold:"); m_Controls->sbParam1->setMinimum( -100000 ); m_Controls->sbParam1->setMaximum( 100000 ); m_Controls->sbParam1->setValue( 0 ); m_Controls->sbParam2->setMinimum( -100000 ); m_Controls->sbParam2->setMaximum( 100000 ); m_Controls->sbParam2->setValue( 300 ); break; } case 16: { m_SelectedAction = INVERSION; break; } case 17: { m_SelectedAction = DOWNSAMPLING; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); text1 = tr("Downsampling by Factor:"); m_Controls->sbParam1->setMinimum( 1 ); m_Controls->sbParam1->setMaximum( 100 ); m_Controls->sbParam1->setValue( 2 ); break; } case 18: { m_SelectedAction = FLIPPING; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(true); text1 = tr("Flip across axis:"); m_Controls->sbParam1->setMinimum( 0 ); m_Controls->sbParam1->setMaximum( 2 ); m_Controls->sbParam1->setValue( 1 ); break; } case 19: { m_SelectedAction = RESAMPLING; m_Controls->tlParam1->setEnabled(true); m_Controls->sbParam1->setEnabled(false); m_Controls->sbParam1->hide(); m_Controls->dsbParam1->show(); m_Controls->dsbParam1->setEnabled(true); m_Controls->tlParam2->setEnabled(true); m_Controls->sbParam2->setEnabled(false); m_Controls->sbParam2->hide(); m_Controls->dsbParam2->show(); m_Controls->dsbParam2->setEnabled(true); m_Controls->tlParam3->show(); m_Controls->tlParam3->setEnabled(true); m_Controls->dsbParam3->show(); m_Controls->dsbParam3->setEnabled(true); m_Controls->tlParam4->show(); m_Controls->tlParam4->setEnabled(true); m_Controls->cbParam4->show(); m_Controls->cbParam4->setEnabled(true); m_Controls->dsbParam1->setMinimum(0.01); m_Controls->dsbParam1->setMaximum(10.0); m_Controls->dsbParam1->setSingleStep(0.1); m_Controls->dsbParam1->setValue(0.3); m_Controls->dsbParam2->setMinimum(0.01); m_Controls->dsbParam2->setMaximum(10.0); m_Controls->dsbParam2->setSingleStep(0.1); m_Controls->dsbParam2->setValue(0.3); m_Controls->dsbParam3->setMinimum(0.01); m_Controls->dsbParam3->setMaximum(10.0); m_Controls->dsbParam3->setSingleStep(0.1); m_Controls->dsbParam3->setValue(1.5); text1 = tr("x-spacing:"); text2 = tr("y-spacing:"); text3 = tr("z-spacing:"); text4 = tr("Interplation:"); break; } case 20: { m_SelectedAction = RESCALE; m_Controls->dsbParam1->show(); m_Controls->tlParam1->show(); m_Controls->dsbParam1->setEnabled(true); m_Controls->tlParam1->setEnabled(true); m_Controls->dsbParam2->show(); m_Controls->tlParam2->show(); m_Controls->dsbParam2->setEnabled(true); m_Controls->tlParam2->setEnabled(true); text1 = tr("Output minimum:"); text2 = tr("Output maximum:"); break; } case 21: { m_SelectedAction = RESCALE2; m_Controls->dsbParam1->show(); m_Controls->tlParam1->show(); m_Controls->dsbParam1->setEnabled(true); m_Controls->tlParam1->setEnabled(true); text1 = tr("Scaling value:"); break; } default: return; } m_Controls->tlParam->setEnabled(true); m_Controls->tlParam1->setText(text1); m_Controls->tlParam2->setText(text2); m_Controls->tlParam3->setText(text3); m_Controls->tlParam4->setText(text4); m_Controls->btnDoIt->setEnabled(true); m_Controls->cbHideOrig->setEnabled(true); } void QmitkBasicImageProcessing::StartButtonClicked() { auto selectedNode = m_Controls->selectedImageWidget->GetSelectedNode(); if (selectedNode.IsNull()) { return; } this->BusyCursorOn(); mitk::Image::Pointer newImage; try { newImage = dynamic_cast(selectedNode->GetData()); } catch ( std::exception &e ) { QString exceptionString = tr("An error occured during image loading:\n"); exceptionString.append( e.what() ); QMessageBox::warning( nullptr, "Basic Image Processing", exceptionString , QMessageBox::Ok, QMessageBox::NoButton ); this->BusyCursorOff(); return; } // check if input image is valid, casting does not throw exception when casting from 'nullptr-Object' if ( (! newImage) || (newImage->IsInitialized() == false) ) { this->BusyCursorOff(); QMessageBox::warning( nullptr, "Basic Image Processing", tr("Input image is broken or not initialized. Returning."), QMessageBox::Ok, QMessageBox::NoButton ); return; } // check if operation is done on 4D a image time step if(newImage->GetDimension() > 3) { auto timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(newImage); timeSelector->SetTimeNr(m_Controls->timeSliceNavigationWidget->GetPos() ); timeSelector->Update(); newImage = timeSelector->GetOutput(); } // check if image or vector image auto itkImage = ImageType::New(); auto itkVecImage = VectorImageType::New(); int isVectorImage = newImage->GetPixelType().GetNumberOfComponents(); if(isVectorImage > 1) { CastToItkImage( newImage, itkVecImage ); } else { CastToItkImage( newImage, itkImage ); } std::stringstream nameAddition(""); int param1 = m_Controls->sbParam1->value(); int param2 = m_Controls->sbParam2->value(); double dparam1 = m_Controls->dsbParam1->value(); double dparam2 = m_Controls->dsbParam2->value(); double dparam3 = m_Controls->dsbParam3->value(); try { switch (m_SelectedAction) { case GAUSSIAN: { GaussianFilterType::Pointer gaussianFilter = GaussianFilterType::New(); gaussianFilter->SetInput( itkImage ); gaussianFilter->SetVariance( dparam1 ); gaussianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(gaussianFilter->GetOutput())->Clone(); nameAddition << "_Gaussian_var_" << dparam1; std::cout << "Gaussian filtering successful." << std::endl; break; } case MEDIAN: { MedianFilterType::Pointer medianFilter = MedianFilterType::New(); MedianFilterType::InputSizeType size; size.Fill(param1); medianFilter->SetRadius( size ); medianFilter->SetInput(itkImage); medianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(medianFilter->GetOutput())->Clone(); nameAddition << "_Median_radius_" << param1; std::cout << "Median Filtering successful." << std::endl; break; } case TOTALVARIATION: { if(isVectorImage > 1) { VectorTotalVariationFilterType::Pointer TVFilter = VectorTotalVariationFilterType::New(); TVFilter->SetInput( itkVecImage.GetPointer() ); TVFilter->SetNumberIterations(param1); TVFilter->SetLambda(double(param2)/1000.); TVFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone(); } else { ImagePTypeToFloatPTypeCasterType::Pointer floatCaster = ImagePTypeToFloatPTypeCasterType::New(); floatCaster->SetInput( itkImage ); floatCaster->Update(); DoubleImageType::Pointer fImage = floatCaster->GetOutput(); TotalVariationFilterType::Pointer TVFilter = TotalVariationFilterType::New(); TVFilter->SetInput( fImage.GetPointer() ); TVFilter->SetNumberIterations(param1); TVFilter->SetLambda(double(param2)/1000.); TVFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone(); } nameAddition << "_TV_Iter_" << param1 << "_L_" << param2; std::cout << "Total Variation Filtering successful." << std::endl; break; } case DILATION: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); DilationFilterType::Pointer dilationFilter = DilationFilterType::New(); dilationFilter->SetInput( itkImage ); dilationFilter->SetKernel( binaryBall ); dilationFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(dilationFilter->GetOutput())->Clone(); nameAddition << "_Dilated_by_" << param1; std::cout << "Dilation successful." << std::endl; break; } case EROSION: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); ErosionFilterType::Pointer erosionFilter = ErosionFilterType::New(); erosionFilter->SetInput( itkImage ); erosionFilter->SetKernel( binaryBall ); erosionFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(erosionFilter->GetOutput())->Clone(); nameAddition << "_Eroded_by_" << param1; std::cout << "Erosion successful." << std::endl; break; } case OPENING: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); OpeningFilterType::Pointer openFilter = OpeningFilterType::New(); openFilter->SetInput( itkImage ); openFilter->SetKernel( binaryBall ); openFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(openFilter->GetOutput())->Clone(); nameAddition << "_Opened_by_" << param1; std::cout << "Opening successful." << std::endl; break; } case CLOSING: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); ClosingFilterType::Pointer closeFilter = ClosingFilterType::New(); closeFilter->SetInput( itkImage ); closeFilter->SetKernel( binaryBall ); closeFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(closeFilter->GetOutput())->Clone(); nameAddition << "_Closed_by_" << param1; std::cout << "Closing successful." << std::endl; break; } case GRADIENT: { GradientFilterType::Pointer gradientFilter = GradientFilterType::New(); gradientFilter->SetInput( itkImage ); gradientFilter->SetSigma( dparam1 ); gradientFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(gradientFilter->GetOutput())->Clone(); nameAddition << "_Gradient_sigma_" << dparam1; std::cout << "Gradient calculation successful." << std::endl; break; } case LAPLACIAN: { // the laplace filter requires a float type image as input, we need to cast the itkImage // to correct type ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New(); caster->SetInput( itkImage ); caster->Update(); DoubleImageType::Pointer fImage = caster->GetOutput(); LaplacianFilterType::Pointer laplacianFilter = LaplacianFilterType::New(); laplacianFilter->SetInput( fImage ); laplacianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(laplacianFilter->GetOutput())->Clone(); nameAddition << "_Second_Derivative"; std::cout << "Laplacian filtering successful." << std::endl; break; } case SOBEL: { // the sobel filter requires a float type image as input, we need to cast the itkImage // to correct type ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New(); caster->SetInput( itkImage ); caster->Update(); DoubleImageType::Pointer fImage = caster->GetOutput(); SobelFilterType::Pointer sobelFilter = SobelFilterType::New(); sobelFilter->SetInput( fImage ); sobelFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(sobelFilter->GetOutput())->Clone(); nameAddition << "_Sobel"; std::cout << "Edge Detection successful." << std::endl; break; } case THRESHOLD: { ThresholdFilterType::Pointer thFilter = ThresholdFilterType::New(); thFilter->SetLowerThreshold(param1 < param2 ? param1 : param2); thFilter->SetUpperThreshold(param2 > param1 ? param2 : param1); thFilter->SetInsideValue(1); thFilter->SetOutsideValue(0); thFilter->SetInput(itkImage); thFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(thFilter->GetOutput())->Clone(); nameAddition << "_Threshold"; std::cout << "Thresholding successful." << std::endl; break; } case INVERSION: { InversionFilterType::Pointer invFilter = InversionFilterType::New(); mitk::ScalarType min = newImage->GetStatistics()->GetScalarValueMin(); mitk::ScalarType max = newImage->GetStatistics()->GetScalarValueMax(); invFilter->SetMaximum( max + min ); invFilter->SetInput(itkImage); invFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(invFilter->GetOutput())->Clone(); nameAddition << "_Inverted"; std::cout << "Image inversion successful." << std::endl; break; } case DOWNSAMPLING: { ResampleImageFilterType::Pointer downsampler = ResampleImageFilterType::New(); downsampler->SetInput( itkImage ); NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New(); downsampler->SetInterpolator( interpolator ); downsampler->SetDefaultPixelValue( 0 ); ResampleImageFilterType::SpacingType spacing = itkImage->GetSpacing(); spacing *= (double) param1; downsampler->SetOutputSpacing( spacing ); downsampler->SetOutputOrigin( itkImage->GetOrigin() ); downsampler->SetOutputDirection( itkImage->GetDirection() ); ResampleImageFilterType::SizeType size = itkImage->GetLargestPossibleRegion().GetSize(); for ( int i = 0; i < 3; ++i ) { size[i] /= param1; } downsampler->SetSize( size ); downsampler->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(downsampler->GetOutput())->Clone(); nameAddition << "_Downsampled_by_" << param1; std::cout << "Downsampling successful." << std::endl; break; } case FLIPPING: { FlipImageFilterType::Pointer flipper = FlipImageFilterType::New(); flipper->SetInput( itkImage ); itk::FixedArray flipAxes; for(int i=0; i<3; ++i) { if(i == param1) { flipAxes[i] = true; } else { flipAxes[i] = false; } } flipper->SetFlipAxes(flipAxes); flipper->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(flipper->GetOutput())->Clone(); std::cout << "Image flipping successful." << std::endl; break; } case RESAMPLING: { std::string selectedInterpolator; ResampleImageFilterType::Pointer resampler = ResampleImageFilterType::New(); switch (m_SelectedInterpolation) { case LINEAR: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } case NEAREST: { NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Nearest"; break; } default: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } } resampler->SetInput( itkImage ); resampler->SetOutputOrigin( itkImage->GetOrigin() ); ImageType::SizeType input_size = itkImage->GetLargestPossibleRegion().GetSize(); ImageType::SpacingType input_spacing = itkImage->GetSpacing(); ImageType::SizeType output_size; ImageType::SpacingType output_spacing; output_size[0] = input_size[0] * (input_spacing[0] / dparam1); output_size[1] = input_size[1] * (input_spacing[1] / dparam2); output_size[2] = input_size[2] * (input_spacing[2] / dparam3); output_spacing [0] = dparam1; output_spacing [1] = dparam2; output_spacing [2] = dparam3; resampler->SetSize( output_size ); resampler->SetOutputSpacing( output_spacing ); resampler->SetOutputDirection( itkImage->GetDirection() ); resampler->UpdateLargestPossibleRegion(); ImageType::Pointer resampledImage = resampler->GetOutput(); newImage = mitk::ImportItkImage( resampledImage )->Clone(); nameAddition << "_Resampled_" << selectedInterpolator; std::cout << "Resampling successful." << std::endl; break; } case RESCALE: { DoubleImageType::Pointer floatImage = DoubleImageType::New(); CastToItkImage( newImage, floatImage ); itk::RescaleIntensityImageFilter::Pointer filter = itk::RescaleIntensityImageFilter::New(); filter->SetInput(0, floatImage); filter->SetOutputMinimum(dparam1); filter->SetOutputMaximum(dparam2); filter->Update(); floatImage = filter->GetOutput(); newImage = mitk::Image::New(); newImage->InitializeByItk(floatImage.GetPointer()); newImage->SetVolume(floatImage->GetBufferPointer()); nameAddition << "_Rescaled"; std::cout << "Rescaling successful." << std::endl; break; } case RESCALE2: { DoubleImageType::Pointer floatImage = DoubleImageType::New(); CastToItkImage( newImage, floatImage ); itk::ShiftScaleImageFilter::Pointer filter = itk::ShiftScaleImageFilter::New(); filter->SetInput(0, floatImage); filter->SetScale(dparam1); filter->Update(); floatImage = filter->GetOutput(); newImage = mitk::Image::New(); newImage->InitializeByItk(floatImage.GetPointer()); newImage->SetVolume(floatImage->GetBufferPointer()); nameAddition << "_Rescaled"; std::cout << "Rescaling successful." << std::endl; break; } default: this->BusyCursorOff(); return; } } catch (...) { this->BusyCursorOff(); QMessageBox::warning(nullptr, "Warning", "Problem when applying filter operation. Check your input..."); return; } newImage->DisconnectPipeline(); // adjust level/window to new image mitk::LevelWindow levelwindow; levelwindow.SetAuto( newImage ); auto levWinProp = mitk::LevelWindowProperty::New(); levWinProp->SetLevelWindow( levelwindow ); // compose new image name std::string name = selectedNode->GetName(); if (name.find(".nrrd") == name.size() -5 ) { name = name.substr(0,name.size() -5); } name.append( nameAddition.str() ); // create final result MITK data storage node auto result = mitk::DataNode::New(); result->SetProperty( "levelwindow", levWinProp ); result->SetProperty( "name", mitk::StringProperty::New( name.c_str() ) ); result->SetData( newImage ); // for vector images, a different mapper is needed if(isVectorImage > 1) { auto mapper = mitk::VectorImageMapper2D::New(); result->SetMapper(1,mapper); } // add new image to data storage and set as active to ease further processing GetDataStorage()->Add(result, selectedNode); if (m_Controls->cbHideOrig->isChecked() == true) { selectedNode->SetProperty("visible", mitk::BoolProperty::New(false)); } // show the results mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->BusyCursorOff(); } void QmitkBasicImageProcessing::SelectAction2(int operation) { switch (operation) { case 2: m_SelectedOperation = ADD; break; case 3: m_SelectedOperation = SUBTRACT; break; case 4: m_SelectedOperation = MULTIPLY; break; case 5: m_SelectedOperation = DIVIDE; break; case 6: m_SelectedOperation = RESAMPLE_TO; break; case 8: m_SelectedOperation = AND; break; case 9: m_SelectedOperation = OR; break; case 10: m_SelectedOperation = XOR; break; default: return; } m_Controls->selectedImageLabel_2->setEnabled(true); m_Controls->selectedImageWidget_2->setEnabled(true); m_Controls->btnDoIt2->setEnabled(true); } void QmitkBasicImageProcessing::StartButton2Clicked() { auto selectedNode = m_Controls->selectedImageWidget->GetSelectedNode(); if (selectedNode.IsNull()) { return; } auto selectedNode2 = m_Controls->selectedImageWidget_2->GetSelectedNode(); if (selectedNode2.IsNull()) { return; } mitk::Image::Pointer newImage1 = dynamic_cast(selectedNode->GetData()); mitk::Image::Pointer newImage2 = dynamic_cast(selectedNode2->GetData()); // check if images are valid if(newImage1.IsNull() || newImage2.IsNull() || false == newImage1->IsInitialized() || false == newImage2->IsInitialized()) { itkGenericExceptionMacro(<< "At least one of the input images is broken or not initialized."); return; } this->BusyCursorOn(); // check if 4D image and use filter on correct time step if(newImage1->GetDimension() > 3) { auto timeSelector = mitk::ImageTimeSelector::New(); auto sn_widget = static_cast(m_Controls->timeSliceNavigationWidget); int time = 0; if( sn_widget != nullptr ) time = sn_widget->GetPos(); timeSelector->SetInput(newImage1); timeSelector->SetTimeNr( time ); timeSelector->UpdateLargestPossibleRegion(); newImage1 = timeSelector->GetOutput(); newImage1->DisconnectPipeline(); timeSelector->SetInput(newImage2); timeSelector->SetTimeNr( time ); timeSelector->UpdateLargestPossibleRegion(); newImage2 = timeSelector->GetOutput(); newImage2->DisconnectPipeline(); } auto itkImage1 = ImageType::New(); auto itkImage2 = ImageType::New(); CastToItkImage( newImage1, itkImage1 ); CastToItkImage( newImage2, itkImage2 ); std::string nameAddition = ""; try { switch (m_SelectedOperation) { case ADD: { AddFilterType::Pointer addFilter = AddFilterType::New(); addFilter->SetInput1( itkImage1 ); addFilter->SetInput2( itkImage2 ); addFilter->UpdateLargestPossibleRegion(); newImage1 = mitk::ImportItkImage(addFilter->GetOutput())->Clone(); nameAddition = "_Added"; } break; case SUBTRACT: { SubtractFilterType::Pointer subFilter = SubtractFilterType::New(); subFilter->SetInput1( itkImage1 ); subFilter->SetInput2( itkImage2 ); subFilter->UpdateLargestPossibleRegion(); newImage1 = mitk::ImportItkImage(subFilter->GetOutput())->Clone(); nameAddition = "_Subtracted"; } break; case MULTIPLY: { MultiplyFilterType::Pointer multFilter = MultiplyFilterType::New(); multFilter->SetInput1( itkImage1 ); multFilter->SetInput2( itkImage2 ); multFilter->UpdateLargestPossibleRegion(); newImage1 = mitk::ImportItkImage(multFilter->GetOutput())->Clone(); nameAddition = "_Multiplied"; } break; case DIVIDE: { DivideFilterType::Pointer divFilter = DivideFilterType::New(); divFilter->SetInput1( itkImage1 ); divFilter->SetInput2( itkImage2 ); divFilter->UpdateLargestPossibleRegion(); newImage1 = mitk::ImportItkImage(divFilter->GetOutput())->Clone(); nameAddition = "_Divided"; } break; case AND: { AndImageFilterType::Pointer andFilter = AndImageFilterType::New(); andFilter->SetInput1( itkImage1 ); andFilter->SetInput2( itkImage2 ); andFilter->UpdateLargestPossibleRegion(); newImage1 = mitk::ImportItkImage(andFilter->GetOutput())->Clone(); nameAddition = "_AND"; break; } case OR: { OrImageFilterType::Pointer orFilter = OrImageFilterType::New(); orFilter->SetInput1( itkImage1 ); orFilter->SetInput2( itkImage2 ); orFilter->UpdateLargestPossibleRegion(); newImage1 = mitk::ImportItkImage(orFilter->GetOutput())->Clone(); nameAddition = "_OR"; break; } case XOR: { XorImageFilterType::Pointer xorFilter = XorImageFilterType::New(); xorFilter->SetInput1( itkImage1 ); xorFilter->SetInput2( itkImage2 ); xorFilter->UpdateLargestPossibleRegion(); newImage1 = mitk::ImportItkImage(xorFilter->GetOutput())->Clone(); nameAddition = "_XOR"; break; } case RESAMPLE_TO: { itk::BSplineInterpolateImageFunction::Pointer bspl_interpolator = itk::BSplineInterpolateImageFunction::New(); bspl_interpolator->SetSplineOrder( 3 ); itk::NearestNeighborInterpolateImageFunction< DoubleImageType >::Pointer nn_interpolator = itk::NearestNeighborInterpolateImageFunction< DoubleImageType>::New(); DoubleImageType::Pointer itkImage1 = DoubleImageType::New(); DoubleImageType::Pointer itkImage2 = DoubleImageType::New(); CastToItkImage( newImage1, itkImage1 ); CastToItkImage( newImage2, itkImage2 ); itk::ResampleImageFilter< DoubleImageType, DoubleImageType >::Pointer resampleFilter = itk::ResampleImageFilter< DoubleImageType, DoubleImageType >::New(); resampleFilter->SetInput( itkImage1 ); resampleFilter->SetReferenceImage( itkImage2 ); resampleFilter->SetUseReferenceImage( true ); // use NN interp with binary images if(selectedNode->GetProperty("binary") ) resampleFilter->SetInterpolator( nn_interpolator ); else resampleFilter->SetInterpolator( bspl_interpolator ); resampleFilter->SetDefaultPixelValue( 0 ); try { resampleFilter->UpdateLargestPossibleRegion(); } catch( const itk::ExceptionObject &e) { MITK_WARN << "Updating resampling filter failed. "; MITK_WARN << "REASON: " << e.what(); } DoubleImageType::Pointer resampledImage = resampleFilter->GetOutput(); newImage1 = mitk::ImportItkImage( resampledImage )->Clone(); nameAddition = "_Resampled"; break; } default: std::cout << "Something went wrong..." << std::endl; this->BusyCursorOff(); return; } } catch (const itk::ExceptionObject& e ) { this->BusyCursorOff(); QMessageBox::warning(nullptr, "ITK Exception", e.what() ); QMessageBox::warning(nullptr, "Warning", tr("Problem when applying arithmetic operation to two images. Check dimensions of input images.")); return; } // disconnect pipeline; images will not be reused newImage1->DisconnectPipeline(); itkImage1 = nullptr; itkImage2 = nullptr; // adjust level/window to new image and compose new image name mitk::LevelWindow levelwindow; levelwindow.SetAuto( newImage1 ); auto levWinProp = mitk::LevelWindowProperty::New(); levWinProp->SetLevelWindow( levelwindow ); std::string name = selectedNode->GetName(); if (name.find(".nrrd") == name.size() -5 ) { name = name.substr(0,name.size() -5); } // create final result MITK data storage node auto result = mitk::DataNode::New(); result->SetProperty( "levelwindow", levWinProp ); result->SetProperty( "name", mitk::StringProperty::New( (name + nameAddition ).c_str() )); result->SetData( newImage1 ); this->GetDataStorage()->Add(result, selectedNode); if (m_Controls->cbHideOrig->isChecked() == true) { selectedNode->SetProperty("visible", mitk::BoolProperty::New(false)); selectedNode2->SetProperty("visible", mitk::BoolProperty::New(false)); } // show the newly created image mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->BusyCursorOff(); } void QmitkBasicImageProcessing::SelectInterpolator(int interpolator) { switch (interpolator) { case 0: { m_SelectedInterpolation = LINEAR; break; } case 1: { m_SelectedInterpolation = NEAREST; break; } } } diff --git a/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.cpp b/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.cpp index dd6b34f1af..6c8c22100b 100644 --- a/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.cpp +++ b/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.cpp @@ -1,145 +1,147 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkAbstractRenderEditor.h" #include "internal/QmitkCommonActivator.h" #include #include #include #include #include +#include + #include class QmitkAbstractRenderEditorPrivate { public: QmitkAbstractRenderEditorPrivate() : m_RenderingManagerInterface(mitk::MakeRenderingManagerInterface(mitk::RenderingManager::GetInstance())) { } ~QmitkAbstractRenderEditorPrivate() { delete m_RenderingManagerInterface; } mitk::IRenderingManager* m_RenderingManagerInterface; mitk::IPreferences* m_Prefs; }; QmitkAbstractRenderEditor::QmitkAbstractRenderEditor() : d(new QmitkAbstractRenderEditorPrivate) { } QmitkAbstractRenderEditor::~QmitkAbstractRenderEditor() { if (d->m_Prefs != nullptr) { d->m_Prefs->OnChanged.RemoveListener(mitk::MessageDelegate1 (this, &QmitkAbstractRenderEditor::OnPreferencesChanged ) ); } } void QmitkAbstractRenderEditor::Init(berry::IEditorSite::Pointer site, berry::IEditorInput::Pointer input) { if (input.Cast().IsNull()) throw berry::PartInitException("Invalid Input: Must be mitk::DataStorageEditorInput"); this->SetSite(site); this->SetInput(input); d->m_Prefs = this->GetPreferences(); if (d->m_Prefs != nullptr) { d->m_Prefs->OnChanged.AddListener(mitk::MessageDelegate1 (this, &QmitkAbstractRenderEditor::OnPreferencesChanged ) ); } } mitk::IDataStorageReference::Pointer QmitkAbstractRenderEditor::GetDataStorageReference() const { mitk::DataStorageEditorInput::Pointer input = this->GetEditorInput().Cast(); if (input.IsNotNull()) { return input->GetDataStorageReference(); } return mitk::IDataStorageReference::Pointer(nullptr); } mitk::DataStorage::Pointer QmitkAbstractRenderEditor::GetDataStorage() const { mitk::IDataStorageReference::Pointer ref = this->GetDataStorageReference(); if (ref.IsNotNull()) return ref->GetDataStorage(); return mitk::DataStorage::Pointer(nullptr); } mitk::IPreferences* QmitkAbstractRenderEditor::GetPreferences() const { mitk::CoreServicePointer prefService(mitk::CoreServices::GetPreferencesService()); return prefService->GetSystemPreferences()->Node(this->GetSite()->GetId().toStdString()); } mitk::IRenderingManager* QmitkAbstractRenderEditor::GetRenderingManager() const { // we use the global rendering manager here. This should maybe replaced // by a local one, managing only the render windows specific for the editor return d->m_RenderingManagerInterface; } void QmitkAbstractRenderEditor::RequestUpdate(mitk::RenderingManager::RequestType requestType) { if (GetRenderingManager()) GetRenderingManager()->RequestUpdateAll(requestType); } void QmitkAbstractRenderEditor::ForceImmediateUpdate(mitk::RenderingManager::RequestType requestType) { if (GetRenderingManager()) GetRenderingManager()->ForceImmediateUpdateAll(requestType); } -mitk::SliceNavigationController* QmitkAbstractRenderEditor::GetTimeNavigationController() const +mitk::TimeNavigationController* QmitkAbstractRenderEditor::GetTimeNavigationController() const { if (GetRenderingManager()) return GetRenderingManager()->GetTimeNavigationController(); return nullptr; } void QmitkAbstractRenderEditor::OnPreferencesChanged(const mitk::IPreferences *) {} void QmitkAbstractRenderEditor::DoSave() {} void QmitkAbstractRenderEditor::DoSaveAs() {} bool QmitkAbstractRenderEditor::IsDirty() const { return false; } bool QmitkAbstractRenderEditor::IsSaveAsAllowed() const { return false; } mitk::TimePointType QmitkAbstractRenderEditor::GetSelectedTimePoint(const QString& /*id*/) const { auto timeNavigator = this->GetTimeNavigationController(); if (nullptr != timeNavigator) { return timeNavigator->GetSelectedTimePoint(); } return 0; } diff --git a/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.h b/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.h index c0f666c001..d1eb9bf302 100644 --- a/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.h +++ b/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractRenderEditor.h @@ -1,166 +1,166 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef QmitkAbstractRenderEditor_h #define QmitkAbstractRenderEditor_h #include #include "mitkIRenderWindowPart.h" #include #include #include class QmitkAbstractRenderEditorPrivate; namespace mitk { class IPreferences; } /** * \ingroup org_mitk_gui_qt_common * * \brief A convenient base class for MITK render window BlueBerry Editors. * * QmitkAbstractRenderEditor provides several convenience methods that ease the introduction of * a new editor for rendering a MITK DataStorage: * *
    *
  1. Access to the DataStorage (~ the shared data repository) *
  2. Access to and update notification for the editor's preferences *
  3. Default implementation of some mitk::IRenderWindowPart methods *
* * When inheriting from QmitkAbstractRenderEditor, you must implement the following methods: *
    *
  • void CreateQtPartControl(QWidget* parent) *
  • void SetFocus() *
* * You may reimplement the following private virtual methods to be notified about certain changes: *
    *
  • void OnPreferencesChanged(const mitk::IPreferences*) *
* * \see IRenderWindowPart * \see ILinkedRenderWindowPart */ class MITK_QT_COMMON QmitkAbstractRenderEditor : public berry::QtEditorPart, public virtual mitk::IRenderWindowPart { Q_OBJECT Q_INTERFACES(mitk::IRenderWindowPart) public: berryObjectMacro(QmitkAbstractRenderEditor, QtEditorPart, mitk::IRenderWindowPart); /** * \see mitk::IRenderWindowPart::GetSelectedTimePoint() This default implementation assumes that all renderer use the same TimeNavigationControl provided by this class (GetTimeNavigationControl()). */ mitk::TimePointType GetSelectedTimePoint(const QString& id = QString()) const override; QmitkAbstractRenderEditor(); ~QmitkAbstractRenderEditor() override; protected: /** * Initializes this editor by checking for a valid mitk::DataStorageEditorInput as input. * * \see berry::IEditorPart::Init */ void Init(berry::IEditorSite::Pointer site, berry::IEditorInput::Pointer input) override; /** * Get a reference to the DataStorage set by the editor input. */ virtual mitk::IDataStorageReference::Pointer GetDataStorageReference() const; /** * Get the DataStorage set by the editor input. */ virtual mitk::DataStorage::Pointer GetDataStorage() const; /** * Get the preferences for this editor. */ virtual mitk::IPreferences* GetPreferences() const; /** * Get the RenderingManager used by this editor. This default implementation uses the * global MITK RenderingManager provided by mitk::RenderingManager::GetInstance(). * * \see mitk::IRenderWindowPart::GetRenderingManager */ mitk::IRenderingManager* GetRenderingManager() const override; /** * Request an update of this editor's render windows. * This implementation calls mitk::IRenderingManager::RequestUpdate on the rendering * manager interface returned by GetRenderingManager(); * * \param requestType The type of render windows for which an update is requested. * * \see mitk::IRenderWindowPart::RequestUpdate */ void RequestUpdate(mitk::RenderingManager::RequestType requestType = mitk::RenderingManager::REQUEST_UPDATE_ALL) override; /** * Force an immediate update of this editor's render windows. * This implementation calls mitk::IRenderingManager::ForceImmediateUpdate() on the rendering * manager interface returned by GetRenderingManager(); * * \param requestType The type of render windows for which an immedate update is forced. * * \see mitk::IRenderWindowPart::ForceImmediateUpdate */ void ForceImmediateUpdate(mitk::RenderingManager::RequestType requestType = mitk::RenderingManager::REQUEST_UPDATE_ALL) override; /** * Get the time navigation controller for this editor. - * This implementation returns the SliceNavigationController returned by the mitk::IRenderingManager::GetTimeNavigationController() + * This implementation returns the TimeNavigationController returned by the mitk::IRenderingManager::GetTimeNavigationController() * method of the interface implementation returned by GetRenderingManager(). * * \see mitk::IRenderingManager::GetTimeNavigationController */ - mitk::SliceNavigationController* GetTimeNavigationController() const override; + mitk::TimeNavigationController* GetTimeNavigationController() const override; /** \see berry::IEditorPart::DoSave */ void DoSave() override; /** \see berry::IEditorPart::DoSaveAs */ void DoSaveAs() override; /** \see berry::IEditorPart::IsDirty */ bool IsDirty() const override; /** \see berry::IEditorPart::IsSaveAsAllowed */ bool IsSaveAsAllowed() const override; private: virtual void OnPreferencesChanged(const mitk::IPreferences*); private: QScopedPointer d; }; #endif diff --git a/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractView.cpp b/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractView.cpp index ba86a491f2..95103106a7 100644 --- a/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractView.cpp +++ b/Plugins/org.mitk.gui.qt.common/src/QmitkAbstractView.cpp @@ -1,521 +1,522 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkAbstractView.h" #include "QmitkDataNodeSelectionProvider.h" #include "internal/QmitkCommonActivator.h" #include "internal/QmitkDataNodeItemModel.h" // mitk Includes #include #include #include #include #include #include #include #include +#include // berry Includes #include #include #include #include // CTK Includes #include // Qt Includes #include #include #include #include #include class QmitkAbstractViewPrivate { public: QmitkAbstractViewPrivate(QmitkAbstractView* qq) : q(qq) , m_DataStorageServiceTracker(QmitkCommonActivator::GetContext()) , m_Parent(nullptr) , m_DataNodeItemModel(new QmitkDataNodeItemModel) , m_DataNodeSelectionModel(new QItemSelectionModel(m_DataNodeItemModel)) , m_InDataStorageChanged(false) { m_DataStorageServiceTracker.open(); } ~QmitkAbstractViewPrivate() { delete m_DataNodeSelectionModel; delete m_DataNodeItemModel; m_DataStorageServiceTracker.close(); } /** * Called when a DataStorage Add Event was thrown. Sets * m_InDataStorageChanged to true and calls NodeAdded afterwards. * \see m_InDataStorageChanged */ void NodeAddedProxy(const mitk::DataNode* node) { // garantuee no recursions when a new node event is thrown in NodeAdded() if(!m_InDataStorageChanged) { m_InDataStorageChanged = true; q->NodeAdded(node); q->DataStorageModified(); m_InDataStorageChanged = false; } } /** * Called when a DataStorage remove event was thrown. Sets * m_InDataStorageChanged to true and calls NodeRemoved afterwards. * \see m_InDataStorageChanged */ void NodeRemovedProxy(const mitk::DataNode* node) { // garantuee no recursions when a new node event is thrown in NodeAdded() if(!m_InDataStorageChanged) { m_InDataStorageChanged = true; q->NodeRemoved(node); q->DataStorageModified(); m_InDataStorageChanged = false; } } /** * Called when a DataStorage changed event was thrown. Sets * m_InDataStorageChanged to true and calls NodeChanged afterwards. * \see m_InDataStorageChanged */ void NodeChangedProxy(const mitk::DataNode* node) { // garantuee no recursions when a new node event is thrown in NodeAdded() if(!m_InDataStorageChanged) { m_InDataStorageChanged = true; q->NodeChanged(node); q->DataStorageModified(); m_InDataStorageChanged = false; } } /** * reactions to selection events from views */ void BlueBerrySelectionChanged(const berry::IWorkbenchPart::Pointer& sourcepart, const berry::ISelection::ConstPointer& selection) { if(sourcepart.IsNull() || sourcepart.GetPointer() == static_cast(q)) return; if(selection.IsNull()) { q->OnNullSelection(sourcepart); return; } mitk::DataNodeSelection::ConstPointer _DataNodeSelection = selection.Cast(); q->OnSelectionChanged(sourcepart, this->DataNodeSelectionToQList(_DataNodeSelection)); } /** * Converts a mitk::DataNodeSelection to a QList (possibly empty) */ QList DataNodeSelectionToQList(mitk::DataNodeSelection::ConstPointer currentSelection) const; QmitkAbstractView* const q; ctkServiceTracker m_DataStorageServiceTracker; /** * Saves the parent of this view (this is the scrollarea created in CreatePartControl(QWidget*) * \see CreatePartControl(QWidget*) */ QWidget* m_Parent; /** * Holds the current selection (selection made by this View !!!) */ QmitkDataNodeSelectionProvider::Pointer m_SelectionProvider; /** * Holds a helper model for firing selection events. */ QmitkDataNodeItemModel* m_DataNodeItemModel; /** * The selection model for the QmitkDataNodeItemModel; */ QItemSelectionModel* m_DataNodeSelectionModel; /** * object to observe BlueBerry selections */ QScopedPointer m_BlueBerrySelectionListener; /** * Saves if this class is currently working on DataStorage changes. * This is a protector variable to avoid recursive calls on event listener functions. */ bool m_InDataStorageChanged; }; QmitkAbstractView::QmitkAbstractView() : d(new QmitkAbstractViewPrivate(this)) { } void QmitkAbstractView::CreatePartControl(QWidget* parent) { // scrollArea auto scrollArea = new QScrollArea; //QVBoxLayout* scrollAreaLayout = new QVBoxLayout(scrollArea); scrollArea->setFrameShadow(QFrame::Plain); scrollArea->setFrameShape(QFrame::NoFrame); scrollArea->setHorizontalScrollBarPolicy(Qt::ScrollBarAsNeeded); scrollArea->setVerticalScrollBarPolicy(Qt::ScrollBarAsNeeded); // m_Parent d->m_Parent = new QWidget; //m_Parent->setSizePolicy(QSizePolicy(QSizePolicy::MinimumExpanding, QSizePolicy::MinimumExpanding)); this->CreateQtPartControl(d->m_Parent); //scrollAreaLayout->addWidget(m_Parent); //scrollArea->setLayout(scrollAreaLayout); // set the widget now scrollArea->setWidgetResizable(true); scrollArea->setWidget(d->m_Parent); // add the scroll area to the real parent (the view tabbar) QWidget* parentQWidget = static_cast(parent); auto parentLayout = new QVBoxLayout(parentQWidget); parentLayout->setMargin(0); parentLayout->setSpacing(0); parentLayout->addWidget(scrollArea); // finally set the layout containing the scroll area to the parent widget (= show it) parentQWidget->setLayout(parentLayout); this->AfterCreateQtPartControl(); } void QmitkAbstractView::AfterCreateQtPartControl() { this->SetSelectionProvider(); // REGISTER DATASTORAGE LISTENER this->GetDataStorage()->AddNodeEvent.AddListener( mitk::MessageDelegate1 ( d.data(), &QmitkAbstractViewPrivate::NodeAddedProxy ) ); this->GetDataStorage()->ChangedNodeEvent.AddListener( mitk::MessageDelegate1 ( d.data(), &QmitkAbstractViewPrivate::NodeChangedProxy ) ); this->GetDataStorage()->RemoveNodeEvent.AddListener( mitk::MessageDelegate1 ( d.data(), &QmitkAbstractViewPrivate::NodeRemovedProxy ) ); // REGISTER PREFERENCES LISTENER auto* prefs = this->GetPreferences(); if (prefs != nullptr) prefs->OnChanged.AddListener(mitk::MessageDelegate1(this, &QmitkAbstractView::OnPreferencesChanged)); // REGISTER FOR WORKBENCH SELECTION EVENTS d->m_BlueBerrySelectionListener.reset(new berry::NullSelectionChangedAdapter( d.data(), &QmitkAbstractViewPrivate::BlueBerrySelectionChanged)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(d->m_BlueBerrySelectionListener.data()); // EMULATE INITIAL SELECTION EVENTS // send the current selection berry::IWorkbenchPart::Pointer activePart = this->GetSite()->GetPage()->GetActivePart(); if (activePart.IsNotNull()) { this->OnSelectionChanged(activePart, this->GetCurrentSelection()); } // send preferences changed event this->OnPreferencesChanged(this->GetPreferences()); } QmitkAbstractView::~QmitkAbstractView() { this->Register(); this->GetDataStorage()->AddNodeEvent.RemoveListener( mitk::MessageDelegate1 ( d.data(), &QmitkAbstractViewPrivate::NodeAddedProxy ) ); this->GetDataStorage()->RemoveNodeEvent.RemoveListener( mitk::MessageDelegate1 ( d.data(), &QmitkAbstractViewPrivate::NodeRemovedProxy) ); this->GetDataStorage()->ChangedNodeEvent.RemoveListener( mitk::MessageDelegate1 ( d.data(), &QmitkAbstractViewPrivate::NodeChangedProxy ) ); auto* prefs = this->GetPreferences(); if(prefs != nullptr) prefs->OnChanged.RemoveListener(mitk::MessageDelegate1(this, &QmitkAbstractView::OnPreferencesChanged)); // REMOVE SELECTION PROVIDER this->GetSite()->SetSelectionProvider(berry::ISelectionProvider::Pointer(nullptr)); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) { s->RemovePostSelectionListener(d->m_BlueBerrySelectionListener.data()); } this->UnRegister(false); } void QmitkAbstractView::SetSelectionProvider() { // REGISTER A SELECTION PROVIDER d->m_SelectionProvider = QmitkDataNodeSelectionProvider::Pointer(new QmitkDataNodeSelectionProvider); d->m_SelectionProvider->SetItemSelectionModel(GetDataNodeSelectionModel()); this->GetSite()->SetSelectionProvider(berry::ISelectionProvider::Pointer(d->m_SelectionProvider)); } QItemSelectionModel *QmitkAbstractView::GetDataNodeSelectionModel() const { return nullptr; } void QmitkAbstractView::OnPreferencesChanged( const mitk::IPreferences* ) { } void QmitkAbstractView::DataStorageModified() { } void QmitkAbstractView::DataStorageChanged(mitk::IDataStorageReference::Pointer /*dsRef*/) { } mitk::IRenderWindowPart* QmitkAbstractView::GetRenderWindowPart(mitk::WorkbenchUtil::IRenderWindowPartStrategies strategies) const { berry::IWorkbenchPage::Pointer page = GetSite()->GetPage(); return mitk::WorkbenchUtil::GetRenderWindowPart(page, strategies); } void QmitkAbstractView::RequestRenderWindowUpdate(mitk::RenderingManager::RequestType requestType) { mitk::IRenderWindowPart* renderPart = this->GetRenderWindowPart(); if (renderPart == nullptr) return; if (mitk::IRenderingManager* renderingManager = renderPart->GetRenderingManager()) { renderingManager->RequestUpdateAll(requestType); } else { renderPart->RequestUpdate(requestType); } } void QmitkAbstractView::HandleException( const char* str, QWidget* parent, bool showDialog ) const { //itkGenericOutputMacro( << "Exception caught: " << str ); MITK_ERROR << str; if ( showDialog ) { QMessageBox::critical ( parent, "Exception caught!", str ); } } void QmitkAbstractView::HandleException( std::exception& e, QWidget* parent, bool showDialog ) const { HandleException( e.what(), parent, showDialog ); } void QmitkAbstractView::WaitCursorOn() { QApplication::setOverrideCursor( QCursor(Qt::WaitCursor) ); } void QmitkAbstractView::BusyCursorOn() { QApplication::setOverrideCursor( QCursor(Qt::BusyCursor) ); } void QmitkAbstractView::WaitCursorOff() { this->RestoreOverrideCursor(); } void QmitkAbstractView::BusyCursorOff() { this->RestoreOverrideCursor(); } void QmitkAbstractView::RestoreOverrideCursor() { QApplication::restoreOverrideCursor(); } mitk::IPreferences* QmitkAbstractView::GetPreferences() const { mitk::CoreServicePointer prefsService(mitk::CoreServices::GetPreferencesService()); auto* prefs = prefsService->GetSystemPreferences(); if (prefs != nullptr) { auto viewSite = const_cast(this)->GetViewSite(); if (viewSite.IsNotNull()) return prefs->Node("/" + viewSite->GetId().toStdString()); } return nullptr; } mitk::DataStorage::Pointer QmitkAbstractView::GetDataStorage() const { mitk::IDataStorageService* dsService = d->m_DataStorageServiceTracker.getService(); if (dsService != nullptr) { return dsService->GetDataStorage()->GetDataStorage(); } return nullptr; } mitk::IDataStorageReference::Pointer QmitkAbstractView::GetDataStorageReference() const { mitk::IDataStorageService* dsService = d->m_DataStorageServiceTracker.getService(); if (dsService != nullptr) { return dsService->GetDataStorage(); } return mitk::IDataStorageReference::Pointer(nullptr); } QList QmitkAbstractView::GetCurrentSelection() const { berry::ISelection::ConstPointer selection( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection()); mitk::DataNodeSelection::ConstPointer currentSelection = selection.Cast(); return d->DataNodeSelectionToQList(currentSelection); } bool QmitkAbstractView::IsCurrentSelectionValid() const { return this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection(); } QList QmitkAbstractView::GetDataManagerSelection() const { berry::ISelection::ConstPointer selection( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); mitk::DataNodeSelection::ConstPointer currentSelection = selection.Cast(); return d->DataNodeSelectionToQList(currentSelection); } bool QmitkAbstractView::IsDataManagerSelectionValid() const { return this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager"); } void QmitkAbstractView::SetDataManagerSelection(const berry::ISelection::ConstPointer &selection, QItemSelectionModel::SelectionFlags flags) const { berry::IViewPart::Pointer datamanagerView = this->GetSite()->GetWorkbenchWindow()->GetActivePage()->FindView("org.mitk.views.datamanager"); if (datamanagerView.IsNull()) return; datamanagerView->GetSite()->GetSelectionProvider().Cast()->SetSelection(selection, flags); } void QmitkAbstractView::SynchronizeDataManagerSelection() const { berry::ISelection::ConstPointer currentSelection = this->GetSite()->GetSelectionProvider()->GetSelection(); if (currentSelection.IsNull()) return; SetDataManagerSelection(currentSelection); } void QmitkAbstractView::OnSelectionChanged(berry::IWorkbenchPart::Pointer /*part*/, const QList& /*nodes*/) { } void QmitkAbstractView::OnNullSelection(berry::IWorkbenchPart::Pointer /*part*/) { } QList QmitkAbstractViewPrivate::DataNodeSelectionToQList(mitk::DataNodeSelection::ConstPointer currentSelection) const { if (currentSelection.IsNull()) return QList(); return QList::fromStdList(currentSelection->GetSelectedDataNodes()); } void QmitkAbstractView::NodeAdded( const mitk::DataNode* /*node*/ ) { } void QmitkAbstractView::NodeRemoved( const mitk::DataNode* /*node*/ ) { } void QmitkAbstractView::NodeChanged( const mitk::DataNode* /*node*/ ) { } void QmitkAbstractView::FireNodeSelected( mitk::DataNode::Pointer node ) { QList nodes; nodes << node; this->FireNodesSelected(nodes); } void QmitkAbstractView::FireNodesSelected( const QList& nodes ) { // if this is the first call to FireNodesSelected and the selection provider has no QItemSelectiomMode // yet, set our helper model if (d->m_SelectionProvider->GetItemSelectionModel() == nullptr) { d->m_SelectionProvider->SetItemSelectionModel(d->m_DataNodeSelectionModel); } else if (d->m_SelectionProvider->GetItemSelectionModel() != d->m_DataNodeSelectionModel) { MITK_WARN << "A custom data node selection model has been set. Ignoring call to FireNodesSelected()."; return; } if (nodes.empty()) { d->m_DataNodeSelectionModel->clearSelection(); d->m_DataNodeItemModel->clear(); } else { // The helper data node model is just used for sending selection events. // We add the to be selected nodes and set the selection range to everything. d->m_DataNodeItemModel->clear(); foreach(mitk::DataNode::Pointer node, nodes) { d->m_DataNodeItemModel->AddDataNode(node); } d->m_DataNodeSelectionModel->select(QItemSelection(d->m_DataNodeItemModel->index(0,0), d->m_DataNodeItemModel->index(nodes.size()-1, 0)), QItemSelectionModel::ClearAndSelect); } } diff --git a/Plugins/org.mitk.gui.qt.fit.inspector/src/internal/ModelFitInspectorView.cpp b/Plugins/org.mitk.gui.qt.fit.inspector/src/internal/ModelFitInspectorView.cpp index 6e608fbb8f..50ae633df5 100644 --- a/Plugins/org.mitk.gui.qt.fit.inspector/src/internal/ModelFitInspectorView.cpp +++ b/Plugins/org.mitk.gui.qt.fit.inspector/src/internal/ModelFitInspectorView.cpp @@ -1,919 +1,918 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ +#include "ModelFitInspectorView.h" // Blueberry #include #include #include // mitk #include // Qt #include #include #include #include -#include "QmitkPlotWidget.h" - -#include "mitkNodePredicateFunction.h" -#include "mitkScalarListLookupTableProperty.h" -#include "mitkModelFitConstants.h" -#include "mitkExtractTimeGrid.h" -#include "mitkModelGenerator.h" -#include "mitkModelFitException.h" -#include "mitkModelFitParameterValueExtraction.h" -#include "mitkTimeGridHelper.h" -#include "mitkModelFitResultRelationRule.h" - -#include "mitkModelFitPlotDataHelper.h" - -#include "ModelFitInspectorView.h" +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include const std::string ModelFitInspectorView::VIEW_ID = "org.mitk.views.fit.inspector"; const unsigned int ModelFitInspectorView::INTERPOLATION_STEPS = 10; const std::string DEFAULT_X_AXIS = "Time [s]"; ModelFitInspectorView::ModelFitInspectorView() : m_renderWindowPart(nullptr), m_internalUpdateFlag(false), m_currentFit(nullptr), m_currentModelParameterizer(nullptr), m_currentModelProviderService(nullptr), m_currentSelectedTimeStep(0), m_currentSelectedNode(nullptr) { m_currentSelectedPosition.Fill(0.0); m_modelfitList.clear(); } ModelFitInspectorView::~ModelFitInspectorView() { } void ModelFitInspectorView::RenderWindowPartActivated(mitk::IRenderWindowPart* renderWindowPart) { if (m_renderWindowPart != renderWindowPart) { m_renderWindowPart = renderWindowPart; } this->m_SliceChangeListener.RenderWindowPartActivated(renderWindowPart); } void ModelFitInspectorView::RenderWindowPartDeactivated( mitk::IRenderWindowPart* renderWindowPart) { m_renderWindowPart = nullptr; this->m_SliceChangeListener.RenderWindowPartDeactivated(renderWindowPart); } void ModelFitInspectorView::CreateQtPartControl(QWidget* parent) { m_Controls.setupUi(parent); m_SelectionServiceConnector = std::make_unique(); m_SelectionServiceConnector->AddPostSelectionListener(this->GetSite()->GetWorkbenchWindow()->GetSelectionService()); m_Controls.inputNodeSelector->SetDataStorage(GetDataStorage()); m_Controls.inputNodeSelector->SetEmptyInfo(QString("Please select input data to be viewed.")); m_Controls.inputNodeSelector->SetInvalidInfo(QString("No input data is selected")); m_Controls.inputNodeSelector->SetPopUpTitel(QString("Choose 3D+t input data that should be viewed!")); m_Controls.inputNodeSelector->SetSelectionIsOptional(false); m_Controls.inputNodeSelector->SetSelectOnlyVisibleNodes(true); auto predicate = mitk::NodePredicateFunction::New([](const mitk::DataNode *node) { bool isModelFitNode = node->GetData() && node->GetData()->GetProperty(mitk::ModelFitConstants::FIT_UID_PROPERTY_NAME().c_str()).IsNotNull(); return isModelFitNode || (node && node->GetData() && node->GetData()->GetTimeSteps() > 1); }); m_Controls.inputNodeSelector->SetNodePredicate(predicate); connect(m_SelectionServiceConnector.get(), &QmitkSelectionServiceConnector::ServiceSelectionChanged, m_Controls.inputNodeSelector, &QmitkSingleNodeSelectionWidget::SetCurrentSelection); connect(m_Controls.inputNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &ModelFitInspectorView::OnInputChanged); this->m_SliceChangeListener.RenderWindowPartActivated(this->GetRenderWindowPart()); connect(&m_SliceChangeListener, SIGNAL(SliceChanged()), this, SLOT(OnSliceChanged())); connect(m_Controls.cmbFit, SIGNAL(currentIndexChanged(int)), this, SLOT(OnFitSelectionChanged(int))); connect(m_Controls.radioScaleFixed, SIGNAL(toggled(bool)), m_Controls.sbFixMin, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed, SIGNAL(toggled(bool)), m_Controls.sbFixMax, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed, SIGNAL(toggled(bool)), m_Controls.labelFixMin, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed, SIGNAL(toggled(bool)), m_Controls.labelFixMax, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed, SIGNAL(toggled(bool)), m_Controls.btnScaleToData, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed, SIGNAL(toggled(bool)), this, SLOT(OnScaleFixedYChecked(bool))); connect(m_Controls.btnScaleToData, SIGNAL(clicked()), this, SLOT(OnScaleToDataYClicked())); connect(m_Controls.sbFixMax, SIGNAL(valueChanged(double)), this, SLOT(OnFixedScalingYChanged(double))); connect(m_Controls.sbFixMin, SIGNAL(valueChanged(double)), this, SLOT(OnFixedScalingYChanged(double))); connect(m_Controls.radioScaleFixed_x, SIGNAL(toggled(bool)), m_Controls.sbFixMin_x, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed_x, SIGNAL(toggled(bool)), m_Controls.sbFixMax_x, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed_x, SIGNAL(toggled(bool)), m_Controls.labelFixMin_x, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed_x, SIGNAL(toggled(bool)), m_Controls.labelFixMax_x, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed_x, SIGNAL(toggled(bool)), m_Controls.btnScaleToData_x, SLOT(setEnabled(bool))); connect(m_Controls.radioScaleFixed_x, SIGNAL(toggled(bool)), this, SLOT(OnScaleFixedXChecked(bool))); connect(m_Controls.btnScaleToData_x, SIGNAL(clicked()), this, SLOT(OnScaleToDataXClicked())); connect(m_Controls.sbFixMax_x, SIGNAL(valueChanged(double)), this, SLOT(OnFixedScalingXChanged(double))); connect(m_Controls.sbFixMin_x, SIGNAL(valueChanged(double)), this, SLOT(OnFixedScalingXChanged(double))); connect(m_Controls.btnFullPlot, SIGNAL(clicked(bool)), this, SLOT(OnFullPlotClicked(bool))); this->EnsureBookmarkPointSet(); m_Controls.inspectionPositionWidget->SetPositionBookmarkNode(m_PositionBookmarksNode.Lock()); connect(m_Controls.inspectionPositionWidget, SIGNAL(PositionBookmarksChanged()), this, SLOT(OnPositionBookmarksChanged())); // For some reason this needs to be called to set the plot widget's minimum width to an // acceptable level (since Qwt 6). // Otherwise it tries to keep both axes equal in length, resulting in a minimum width of // 400-500px which is way too much. m_Controls.widgetPlot->GetPlot()->updateAxes(); m_Controls.cmbFit->clear(); mitk::IRenderWindowPart* renderWindowPart = GetRenderWindowPart(); RenderWindowPartActivated(renderWindowPart); } void ModelFitInspectorView::SetFocus() { } void ModelFitInspectorView::NodeRemoved(const mitk::DataNode* node) { if (node == this->m_currentSelectedNode) { QmitkSingleNodeSelectionWidget::NodeList emptylist; this->m_Controls.inputNodeSelector->SetCurrentSelection(emptylist); } } void ModelFitInspectorView::OnScaleFixedYChecked(bool checked) { m_Controls.widgetPlot->GetPlot()->setAxisAutoScale(QwtPlot::yLeft, !checked); if (checked) { OnScaleToDataYClicked(); } m_Controls.widgetPlot->GetPlot()->replot(); }; void ModelFitInspectorView::OnScaleFixedXChecked(bool checked) { m_Controls.widgetPlot->GetPlot()->setAxisAutoScale(QwtPlot::xBottom, !checked); if (checked) { OnScaleToDataXClicked(); } m_Controls.widgetPlot->GetPlot()->replot(); }; void ModelFitInspectorView::OnScaleToDataYClicked() { auto minmax = this->m_PlotCurves.GetYMinMax(); auto min = minmax.first - std::abs(minmax.first) * 0.01; auto max = minmax.second + std::abs(minmax.second) * 0.01; m_Controls.sbFixMin->setValue(min); m_Controls.sbFixMax->setValue(max); }; void ModelFitInspectorView::OnScaleToDataXClicked() { auto minmax = this->m_PlotCurves.GetXMinMax(); auto min = minmax.first - std::abs(minmax.first) * 0.01; auto max = minmax.second + std::abs(minmax.second) * 0.01; m_Controls.sbFixMin_x->setValue(min); m_Controls.sbFixMax_x->setValue(max); }; void ModelFitInspectorView::OnFixedScalingYChanged(double /*value*/) { m_Controls.widgetPlot->GetPlot()->setAxisScale(QwtPlot::yLeft, m_Controls.sbFixMin->value(), m_Controls.sbFixMax->value()); m_Controls.widgetPlot->GetPlot()->replot(); }; void ModelFitInspectorView::OnFixedScalingXChanged(double /*value*/) { m_Controls.widgetPlot->GetPlot()->setAxisScale(QwtPlot::xBottom, m_Controls.sbFixMin_x->value(), m_Controls.sbFixMax_x->value()); m_Controls.widgetPlot->GetPlot()->replot(); }; void ModelFitInspectorView::OnFullPlotClicked(bool checked) { m_Controls.tabWidget->setVisible(!checked); }; int ModelFitInspectorView::ActualizeFitSelectionWidget() { mitk::modelFit::ModelFitInfo::UIDType selectedFitUD = ""; bool isModelFitNode = false; if (this->m_Controls.inputNodeSelector->GetSelectedNode().IsNotNull()) { isModelFitNode = this->m_Controls.inputNodeSelector->GetSelectedNode()->GetData()->GetPropertyList()->GetStringProperty( mitk::ModelFitConstants::FIT_UID_PROPERTY_NAME().c_str(), selectedFitUD); } mitk::DataStorage::Pointer storage = this->GetDataStorage(); mitk::modelFit::NodeUIDSetType fitUIDs = mitk::modelFit::GetFitUIDsOfNode( this->m_currentSelectedNode, storage); this->m_modelfitList.clear(); this->m_Controls.cmbFit->clear(); for (const auto & fitUID : fitUIDs) { mitk::modelFit::ModelFitInfo::ConstPointer info = mitk::modelFit::CreateFitInfoFromNode(fitUID, storage).GetPointer(); if (info.IsNotNull()) { this->m_modelfitList.insert(std::make_pair(info->uid, info)); std::ostringstream nameStrm; if (info->fitName.empty()) { nameStrm << info->uid; } else { nameStrm << info->fitName; } nameStrm << " (" << info->modelName << ")"; QVariant data(info->uid.c_str()); m_Controls.cmbFit->addItem(QString::fromStdString(nameStrm.str()), data); } else { MITK_ERROR << "Was not able to extract model fit information from storage. Node properties in storage may be invalid. Failed fit UID:" << fitUID; } } int cmbIndex = 0; if (m_modelfitList.empty()) { cmbIndex = -1; }; if (isModelFitNode) { //model was selected, thus select this one in combobox QVariant data(selectedFitUD.c_str()); cmbIndex = m_Controls.cmbFit->findData(data); if (cmbIndex == -1) { MITK_WARN << "Model fit Inspector in invalid state. Selected fit seems to be not avaible in plugin selection. Failed fit UID:" << selectedFitUD; } }; m_Controls.cmbFit->setCurrentIndex(cmbIndex); return cmbIndex; } void ModelFitInspectorView::OnInputChanged(const QList& nodes) { if (nodes.size() > 0) { if (nodes.front() != this->m_currentSelectedNode) { m_internalUpdateFlag = true; this->m_currentSelectedNode = nodes.front(); mitk::modelFit::ModelFitInfo::UIDType selectedFitUD = ""; bool isModelFitNode = this->m_currentSelectedNode->GetData()->GetPropertyList()->GetStringProperty( mitk::ModelFitConstants::FIT_UID_PROPERTY_NAME().c_str(), selectedFitUD); if (isModelFitNode) { this->m_currentSelectedNode = this->GetInputNode(this->m_currentSelectedNode); if (this->m_currentSelectedNode.IsNull()) { MITK_WARN << "Model fit Inspector in invalid state. Input image for selected fit cannot be found in data storage. Failed fit UID:" << selectedFitUD; } } auto cmbIndex = ActualizeFitSelectionWidget(); m_internalUpdateFlag = false; m_selectedNodeTime.Modified(); if (cmbIndex == -1) { //only raw 4D data selected. Just update plots for current position m_currentFit = nullptr; m_currentFitTime.Modified(); OnSliceChanged(); m_Controls.plotDataWidget->SetXName(DEFAULT_X_AXIS); } else { //refresh fit selection (and implicitly update plots) OnFitSelectionChanged(cmbIndex); } } } else { if (this->m_currentSelectedNode.IsNotNull()) { m_internalUpdateFlag = true; this->m_currentSelectedNode = nullptr; this->m_currentFit = nullptr; this->m_modelfitList.clear(); this->m_Controls.cmbFit->clear(); m_internalUpdateFlag = false; m_selectedNodeTime.Modified(); OnFitSelectionChanged(0); RefreshPlotData(); m_Controls.plotDataWidget->SetPlotData(&(this->m_PlotCurves)); m_Controls.fitParametersWidget->setFits(QmitkFitParameterModel::FitVectorType()); RenderPlot(); } } } mitk::DataNode::ConstPointer ModelFitInspectorView::GetInputNode(mitk::DataNode::ConstPointer node) { if (node.IsNotNull()) { std::string selectedFitUD = ""; auto rule = mitk::ModelFitResultRelationRule::New(); auto predicate = rule->GetDestinationsDetector(node); mitk::DataStorage::SetOfObjects::ConstPointer parentNodeList = GetDataStorage()->GetSubset(predicate); if (parentNodeList->size() > 0) { return parentNodeList->front().GetPointer(); } } return mitk::DataNode::ConstPointer(); } void ModelFitInspectorView::ValidateAndSetCurrentPosition() { const mitk::Point3D currentSelectedPosition = GetRenderWindowPart(mitk::WorkbenchUtil::OPEN)->GetSelectedPosition(nullptr); - const unsigned int currentSelectedTimestep = m_renderWindowPart->GetTimeNavigationController()->GetStepper()->GetPos(); + const unsigned int currentSelectedTimestep = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimeStep(); if (m_currentSelectedPosition != currentSelectedPosition || m_currentSelectedTimeStep != currentSelectedTimestep || m_selectedNodeTime > m_currentPositionTime) { //the current position has been changed or the selected node has been changed since the last position validation -> check position m_currentSelectedPosition = currentSelectedPosition; m_currentSelectedTimeStep = currentSelectedTimestep; m_currentPositionTime.Modified(); m_validSelectedPosition = false; auto inputImage = this->GetCurrentInputImage(); if (inputImage.IsNull()) { return; } mitk::BaseGeometry::ConstPointer geometry = inputImage->GetTimeGeometry()->GetGeometryForTimeStep( m_currentSelectedTimeStep).GetPointer(); // check for invalid time step if (geometry.IsNull()) { geometry = inputImage->GetTimeGeometry()->GetGeometryForTimeStep(0); } if (geometry.IsNull()) { return; } m_validSelectedPosition = geometry->IsInside(m_currentSelectedPosition); } } mitk::Image::ConstPointer ModelFitInspectorView::GetCurrentInputImage() const { mitk::Image::ConstPointer result = nullptr; if (this->m_currentFit.IsNotNull()) { result = m_currentFit->inputImage; } else if (this->m_currentSelectedNode.IsNotNull()) { result = dynamic_cast(this->m_currentSelectedNode->GetData()); if (result.IsNotNull() && result->GetTimeSteps() <= 1) { //if the image is not dynamic, we can't use it. result = nullptr; } } return result; }; const mitk::ModelBase::TimeGridType ModelFitInspectorView::GetCurrentTimeGrid() const { if (m_currentModelProviderService && m_currentFit.IsNotNull()) { return m_currentModelProviderService->GetVariableGrid(m_currentFit); } else { //fall back if there is no model provider we assume to use the normal time grid. return ExtractTimeGrid(GetCurrentInputImage()); } }; void ModelFitInspectorView::OnSliceChanged() { ValidateAndSetCurrentPosition(); m_Controls.widgetPlot->setEnabled(m_validSelectedPosition); if (m_currentSelectedNode.IsNotNull()) { m_Controls.inspectionPositionWidget->SetCurrentPosition(m_currentSelectedPosition); if (RefreshPlotData()) { RenderPlot(); m_Controls.plotDataWidget->SetPlotData(&m_PlotCurves); RenderFitInfo(); } } } void ModelFitInspectorView::OnPositionBookmarksChanged() { if (RefreshPlotData()) { RenderPlot(); m_Controls.plotDataWidget->SetPlotData(&m_PlotCurves); RenderFitInfo(); } } void ModelFitInspectorView::OnFitSelectionChanged(int index) { if (!m_internalUpdateFlag) { MITK_DEBUG << "selected fit index: " << index; std::string uid = ""; if (m_Controls.cmbFit->count() > index) { uid = m_Controls.cmbFit->itemData(index).toString().toStdString(); } mitk::modelFit::ModelFitInfo::ConstPointer newFit = nullptr; ModelFitInfoListType::iterator finding = m_modelfitList.find(uid); if (finding != m_modelfitList.end()) { newFit = finding->second; } if (m_currentFit != newFit) { m_currentModelParameterizer = nullptr; m_currentModelProviderService = nullptr; if (newFit.IsNotNull()) { m_currentModelParameterizer = mitk::ModelGenerator::GenerateModelParameterizer(*newFit); m_currentModelProviderService = mitk::ModelGenerator::GetProviderService(newFit->functionClassID); } m_currentFit = newFit; m_currentFitTime.Modified(); auto name = m_currentFit->xAxisName; if (!m_currentFit->xAxisUnit.empty()) { name += " [" + m_currentFit->xAxisUnit + "]"; } m_Controls.plotDataWidget->SetXName(name); OnSliceChanged(); } } } mitk::PlotDataCurveCollection::Pointer ModelFitInspectorView::RefreshPlotDataCurveCollection(const mitk::Point3D& position, const mitk::Image* input, const mitk::modelFit::ModelFitInfo* fitInfo, const mitk::ModelBase::TimeGridType& timeGrid, mitk::ModelParameterizerBase* parameterizer) { mitk::PlotDataCurveCollection::Pointer result = mitk::PlotDataCurveCollection::New(); //sample curve if (input) { result->InsertElement(mitk::MODEL_FIT_PLOT_SAMPLE_NAME(), GenerateImageSamplePlotData(position, input, timeGrid)); } //model signal curve if (fitInfo) { // Interpolate time grid (x values) so the curve looks smooth const mitk::ModelBase::TimeGridType interpolatedTimeGrid = mitk::GenerateSupersampledTimeGrid(timeGrid, INTERPOLATION_STEPS); auto hires_curve = mitk::GenerateModelSignalPlotData(position, fitInfo, interpolatedTimeGrid, parameterizer); result->InsertElement(mitk::MODEL_FIT_PLOT_INTERPOLATED_SIGNAL_NAME(), hires_curve); auto curve = mitk::GenerateModelSignalPlotData(position, fitInfo, timeGrid, parameterizer); result->InsertElement(mitk::MODEL_FIT_PLOT_SIGNAL_NAME(), curve); } return result; }; bool ModelFitInspectorView::RefreshPlotData() { bool changed = false; if (m_currentSelectedNode.IsNull()) { this->m_PlotCurves = mitk::ModelFitPlotData(); changed = m_selectedNodeTime > m_lastRefreshTime; m_lastRefreshTime.Modified(); } else { assert(GetRenderWindowPart() != NULL); const mitk::Image* input = GetCurrentInputImage(); const mitk::ModelBase::TimeGridType timeGrid = GetCurrentTimeGrid(); if (m_currentFitTime > m_lastRefreshTime || m_currentPositionTime > m_lastRefreshTime) { if (m_validSelectedPosition) { m_PlotCurves.currentPositionPlots = RefreshPlotDataCurveCollection(m_currentSelectedPosition,input,m_currentFit, timeGrid, m_currentModelParameterizer); } else { m_PlotCurves.currentPositionPlots = mitk::PlotDataCurveCollection::New(); } changed = true; } auto bookmarks = m_PositionBookmarks.Lock(); if (bookmarks.IsNotNull()) { if (m_currentFitTime > m_lastRefreshTime || bookmarks->GetMTime() > m_lastRefreshTime) { m_PlotCurves.positionalPlots.clear(); auto endIter = bookmarks->End(); for (auto iter = bookmarks->Begin(); iter != endIter; iter++) { auto collection = RefreshPlotDataCurveCollection(iter.Value(), input, m_currentFit, timeGrid, m_currentModelParameterizer); m_PlotCurves.positionalPlots.emplace(iter.Index(), std::make_pair(iter.Value(), collection)); } changed = true; } } else { m_PlotCurves.positionalPlots.clear(); } // input data curve if (m_currentFitTime > m_lastRefreshTime) { m_PlotCurves.staticPlots->clear(); if (m_currentFit.IsNotNull()) { m_PlotCurves.staticPlots = GenerateAdditionalModelFitPlotData(m_currentSelectedPosition, m_currentFit, timeGrid); } changed = true; } m_lastRefreshTime.Modified(); } return changed; } void ModelFitInspectorView::RenderFitInfo() { assert(m_renderWindowPart != nullptr); // configure fit information if (m_currentFit.IsNull()) { m_Controls.lFitType->setText(""); m_Controls.lFitUID->setText(""); m_Controls.lModelName->setText(""); m_Controls.lModelType->setText(""); } else { m_Controls.lFitType->setText(QString::fromStdString(m_currentFit->fitType)); m_Controls.lFitUID->setText(QString::fromStdString(m_currentFit->uid)); m_Controls.lModelName->setText(QString::fromStdString(m_currentFit->modelName)); m_Controls.lModelType->setText(QString::fromStdString(m_currentFit->modelType)); } // print results std::stringstream infoOutput; m_Controls.fitParametersWidget->setVisible(false); m_Controls.groupSettings->setVisible(false); if (m_currentFit.IsNull()) { infoOutput << "No fit selected. Only raw image data is plotted."; } else if (!m_validSelectedPosition) { infoOutput << "Current position is outside of the input image of the selected fit.\nInspector is deactivated."; } else { m_Controls.fitParametersWidget->setVisible(true); m_Controls.fitParametersWidget->setFits({ m_currentFit }); m_Controls.fitParametersWidget->setPositionBookmarks(m_PositionBookmarks.Lock()); m_Controls.fitParametersWidget->setCurrentPosition(m_currentSelectedPosition); } // configure data table m_Controls.tableInputData->clearContents(); if (m_currentFit.IsNull()) { infoOutput << "No fit selected. Only raw image data is plotted."; } else { m_Controls.groupSettings->setVisible(true); m_Controls.tableInputData->setRowCount(m_PlotCurves.staticPlots->size()); unsigned int rowIndex = 0; for (mitk::PlotDataCurveCollection::const_iterator pos = m_PlotCurves.staticPlots->begin(); pos != m_PlotCurves.staticPlots->end(); ++pos, ++rowIndex) { QColor dataColor; if (pos->first == "ROI") { dataColor = QColor(0, 190, 0); } else { //Use HSV schema of QColor to calculate a different color depending on the //number of already existing free iso lines. dataColor.setHsv(((rowIndex + 1) * 85) % 360, 255, 255); } QTableWidgetItem* newItem = new QTableWidgetItem(QString::fromStdString(pos->first)); m_Controls.tableInputData->setItem(rowIndex, 0, newItem); newItem = new QTableWidgetItem(); newItem->setBackgroundColor(dataColor); m_Controls.tableInputData->setItem(rowIndex, 1, newItem); } } m_Controls.lInfo->setText(QString::fromStdString(infoOutput.str())); } void ModelFitInspectorView::RenderPlotCurve(const mitk::PlotDataCurveCollection* curveCollection, const QColor& sampleColor, const QColor& signalColor, const std::string& posString) { auto sampleCurve = mitk::ModelFitPlotData::GetSamplePlot(curveCollection); if (sampleCurve) { std::string name = mitk::MODEL_FIT_PLOT_SAMPLE_NAME() + posString; unsigned int curveId = m_Controls.widgetPlot->InsertCurve(name.c_str()); m_Controls.widgetPlot->SetCurveData(curveId, sampleCurve->GetValues()); m_Controls.widgetPlot->SetCurvePen(curveId, QPen(Qt::NoPen)); // QwtSymbol needs to passed as a real pointer from MITK v2013.09.0 on // (QwtPlotCurve deletes it on destruction and assignment). QwtSymbol* dataSymbol = new QwtSymbol(QwtSymbol::Diamond, sampleColor, sampleColor, QSize(8, 8)); m_Controls.widgetPlot->SetCurveSymbol(curveId, dataSymbol); // Again, there is no way to set a curve's legend attributes via QmitkPlotWidget so this // gets unnecessarily complicated. QwtPlotCurve* measurementCurve = dynamic_cast(m_Controls.widgetPlot-> GetPlot()->itemList(QwtPlotItem::Rtti_PlotCurve).back()); measurementCurve->setLegendAttribute(QwtPlotCurve::LegendShowSymbol); measurementCurve->setLegendIconSize(QSize(8, 8)); } //draw model curve auto signalCurve = mitk::ModelFitPlotData::GetInterpolatedSignalPlot(curveCollection); if (signalCurve) { std::string name = mitk::MODEL_FIT_PLOT_SIGNAL_NAME() + posString; QPen pen; pen.setColor(signalColor); pen.setWidth(2); unsigned int curveId = m_Controls.widgetPlot->InsertCurve(name.c_str()); m_Controls.widgetPlot->SetCurveData(curveId, signalCurve->GetValues()); m_Controls.widgetPlot->SetCurvePen(curveId, pen); // Manually set the legend attribute to use the symbol as the legend icon and alter its // size. Otherwise it would revert to default which is drawing a square which is the color // of the curve's pen, so in this case none which defaults to black. // Unfortunately, QmitkPlotWidget offers no way to set the legend attribute and icon size so // this looks a bit hacky. QwtPlotCurve* fitCurve = dynamic_cast(m_Controls.widgetPlot->GetPlot()-> itemList(QwtPlotItem::Rtti_PlotCurve).back()); fitCurve->setLegendAttribute(QwtPlotCurve::LegendShowLine); } } void ModelFitInspectorView::RenderPlot() { m_Controls.widgetPlot->Clear(); std::string xAxis = DEFAULT_X_AXIS; std::string yAxis = "Intensity"; std::string plotTitle = "Raw data plot: no data"; if (m_currentSelectedNode.IsNotNull()) { plotTitle = "Raw data plot: " + m_currentSelectedNode->GetName(); } if (m_currentFit.IsNotNull()) { plotTitle = m_currentFit->modelName.c_str(); xAxis = m_currentFit->xAxisName; if (!m_currentFit->xAxisUnit.empty()) { xAxis += " [" + m_currentFit->xAxisUnit + "]"; } yAxis = m_currentFit->yAxisName; if (!m_currentFit->yAxisUnit.empty()) { yAxis += " [" + m_currentFit->yAxisUnit + "]"; } } m_Controls.widgetPlot->SetAxisTitle(QwtPlot::xBottom, xAxis.c_str()); m_Controls.widgetPlot->SetAxisTitle(QwtPlot::yLeft, yAxis.c_str()); m_Controls.widgetPlot->SetPlotTitle(plotTitle.c_str()); // Draw static curves unsigned int colorIndex = 0; for (mitk::PlotDataCurveCollection::const_iterator pos = m_PlotCurves.staticPlots->begin(); pos != m_PlotCurves.staticPlots->end(); ++pos) { QColor dataColor; unsigned int curveId = m_Controls.widgetPlot->InsertCurve(pos->first.c_str()); m_Controls.widgetPlot->SetCurveData(curveId, pos->second->GetValues()); if (pos->first == "ROI") { dataColor = QColor(0, 190, 0); QPen pen; pen.setColor(dataColor); pen.setStyle(Qt::SolidLine); m_Controls.widgetPlot->SetCurvePen(curveId, pen); } else { //Use HSV schema of QColor to calculate a different color depending on the //number of already existing curves. dataColor.setHsv((++colorIndex * 85) % 360, 255, 150); m_Controls.widgetPlot->SetCurvePen(curveId, QPen(Qt::NoPen)); } // QwtSymbol needs to passed as a real pointer from MITK v2013.09.0 on // (QwtPlotCurve deletes it on destruction and assignment). QwtSymbol* dataSymbol = new QwtSymbol(QwtSymbol::Triangle, dataColor, dataColor, QSize(8, 8)); m_Controls.widgetPlot->SetCurveSymbol(curveId, dataSymbol); // Again, there is no way to set a curve's legend attributes via QmitkPlotWidget so this // gets unnecessarily complicated. QwtPlotCurve* measurementCurve = dynamic_cast(m_Controls.widgetPlot-> GetPlot()->itemList(QwtPlotItem::Rtti_PlotCurve).back()); measurementCurve->setLegendAttribute(QwtPlotCurve::LegendShowSymbol); measurementCurve->setLegendIconSize(QSize(8, 8)); } // Draw positional curves for (const auto& posIter : this->m_PlotCurves.positionalPlots) { QColor dataColor; dataColor.setHsv((++colorIndex * 85) % 360, 255, 150); this->RenderPlotCurve(posIter.second.second, dataColor, dataColor, " @ "+mitk::ModelFitPlotData::GetPositionalCollectionName(posIter)); } // Draw current pos curve this->RenderPlotCurve(m_PlotCurves.currentPositionPlots, QColor(Qt::red), QColor(Qt::black), ""); QwtLegend* legend = new QwtLegend(); legend->setFrameShape(QFrame::Box); legend->setFrameShadow(QFrame::Sunken); legend->setLineWidth(1); m_Controls.widgetPlot->SetLegend(legend, QwtPlot::BottomLegend); m_Controls.widgetPlot->Replot(); } void ModelFitInspectorView::EnsureBookmarkPointSet() { if (m_PositionBookmarks.IsExpired() || m_PositionBookmarksNode.IsExpired()) { const char* nodeName = "org.mitk.gui.qt.fit.inspector.positions"; mitk::DataNode::Pointer node = this->GetDataStorage()->GetNamedNode(nodeName); if (!node) { node = mitk::DataNode::New(); node->SetName(nodeName); node->SetBoolProperty("helper object", true); this->GetDataStorage()->Add(node); } m_PositionBookmarksNode = node; mitk::PointSet::Pointer pointSet = dynamic_cast(node->GetData()); if (pointSet.IsNull()) { pointSet = mitk::PointSet::New(); node->SetData(pointSet); } m_PositionBookmarks = pointSet; } } diff --git a/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationItem.cpp b/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationItem.cpp index 827c994c39..eaff2baba6 100644 --- a/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationItem.cpp +++ b/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationItem.cpp @@ -1,70 +1,72 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkTimeSliceAnimationItem.h" -#include + +#include +#include QmitkTimeSliceAnimationItem::QmitkTimeSliceAnimationItem(int from, int to, bool reverse, double duration, double delay, bool startWithPrevious) : QmitkAnimationItem("Time", duration, delay, startWithPrevious) { this->SetFrom(from); this->SetTo(to); this->SetReverse(reverse); } QmitkTimeSliceAnimationItem::~QmitkTimeSliceAnimationItem() { } int QmitkTimeSliceAnimationItem::GetFrom() const { return this->data(FromRole).toInt(); } void QmitkTimeSliceAnimationItem::SetFrom(int from) { this->setData(from, FromRole); } int QmitkTimeSliceAnimationItem::GetTo() const { return this->data(ToRole).toInt(); } void QmitkTimeSliceAnimationItem::SetTo(int to) { this->setData(to, ToRole); } bool QmitkTimeSliceAnimationItem::GetReverse() const { return this->data(ReverseRole).toBool(); } void QmitkTimeSliceAnimationItem::SetReverse(bool reverse) { this->setData(reverse, ReverseRole); } void QmitkTimeSliceAnimationItem::Animate(double s) { mitk::Stepper* stepper = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetStepper(); if (stepper == nullptr) return; int newPos = this->GetReverse() ? this->GetTo() - static_cast((this->GetTo() - this->GetFrom()) * s) : this->GetFrom() + static_cast((this->GetTo() - this->GetFrom()) * s); stepper->SetPos(static_cast(newPos)); } diff --git a/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationWidget.cpp b/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationWidget.cpp index f7d158f949..2a30581a37 100644 --- a/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationWidget.cpp +++ b/Plugins/org.mitk.gui.qt.moviemaker/src/internal/QmitkTimeSliceAnimationWidget.cpp @@ -1,99 +1,99 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkTimeSliceAnimationItem.h" #include "QmitkTimeSliceAnimationWidget.h" #include -#include +#include #include #include namespace { int GetNumberOfSlices() { mitk::Stepper* stepper = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetStepper(); if (stepper != nullptr) return std::max(1, static_cast(stepper->GetSteps())); return 1; } } QmitkTimeSliceAnimationWidget::QmitkTimeSliceAnimationWidget(QWidget* parent) : QmitkAnimationWidget(parent), m_Ui(new Ui::QmitkTimeSliceAnimationWidget) { m_Ui->setupUi(this); connect(m_Ui->sliceRangeWidget, SIGNAL(minimumValueChanged(double)), this, SLOT(OnFromChanged(double))); connect(m_Ui->sliceRangeWidget, SIGNAL(maximumValueChanged(double)), this, SLOT(OnToChanged(double))); connect(m_Ui->reverseCheckBox, SIGNAL(clicked(bool)), this, SLOT(OnReverseChanged(bool))); } QmitkTimeSliceAnimationWidget::~QmitkTimeSliceAnimationWidget() { } void QmitkTimeSliceAnimationWidget::SetAnimationItem(QmitkAnimationItem* sliceAnimationItem) { m_AnimationItem = dynamic_cast(sliceAnimationItem); if (nullptr == m_AnimationItem) return; const int maximum = GetNumberOfSlices() - 1; const int from = std::min(m_AnimationItem->GetFrom(), maximum); int to = std::max(from, std::min(m_AnimationItem->GetTo(), maximum)); if (0 == to) to = maximum; m_AnimationItem->SetFrom(from); m_AnimationItem->SetTo(to); m_Ui->sliceRangeWidget->setMaximum(maximum); m_Ui->sliceRangeWidget->setValues(from, to); m_Ui->reverseCheckBox->setChecked(m_AnimationItem->GetReverse()); } void QmitkTimeSliceAnimationWidget::OnFromChanged(double from) { if (nullptr == m_AnimationItem) return; int intFrom = static_cast(from); if (m_AnimationItem->GetFrom() != intFrom) m_AnimationItem->SetFrom(intFrom); } void QmitkTimeSliceAnimationWidget::OnToChanged(double to) { if (nullptr == m_AnimationItem) return; int intTo = static_cast(to); if (m_AnimationItem->GetTo() != intTo) m_AnimationItem->SetTo(intTo); } void QmitkTimeSliceAnimationWidget::OnReverseChanged(bool reverse) { if (nullptr == m_AnimationItem) return; if (m_AnimationItem->GetReverse() != reverse) m_AnimationItem->SetReverse(reverse); } diff --git a/Plugins/org.mitk.gui.qt.preprocessing.resampling/src/internal/QmitkPreprocessingResamplingView.cpp b/Plugins/org.mitk.gui.qt.preprocessing.resampling/src/internal/QmitkPreprocessingResamplingView.cpp index 39c1b8a713..8927b738ff 100644 --- a/Plugins/org.mitk.gui.qt.preprocessing.resampling/src/internal/QmitkPreprocessingResamplingView.cpp +++ b/Plugins/org.mitk.gui.qt.preprocessing.resampling/src/internal/QmitkPreprocessingResamplingView.cpp @@ -1,456 +1,453 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkPreprocessingResamplingView.h" // QT includes (GUI) #include #include #include #include #include #include #include // Berry includes (selection service) #include #include // MITK includes (GUI) #include "QmitkDataNodeSelectionProvider.h" #include "mitkDataNodeObject.h" // MITK includes (general) #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateDimension.h" #include "mitkNodePredicateAnd.h" #include "mitkImageTimeSelector.h" #include "mitkVectorImageMapper2D.h" #include "mitkProperties.h" #include "mitkLevelWindowProperty.h" +#include // Includes for image casting between ITK and MITK #include "mitkImageCast.h" #include "mitkITKImageImport.h" // ITK includes (general) #include #include // Resampling #include #include #include #include #include #include #include // STD #include // Convenient Definitions typedef itk::Image ImageType; typedef itk::Image SegmentationImageType; typedef itk::Image DoubleImageType; typedef itk::Image, 3> VectorImageType; typedef itk::ResampleImageFilter< ImageType, ImageType > ResampleImageFilterType; typedef itk::ResampleImageFilter< ImageType, ImageType > ResampleImageFilterType2; typedef itk::CastImageFilter< ImageType, DoubleImageType > ImagePTypeToFloatPTypeCasterType; typedef itk::LinearInterpolateImageFunction< ImageType, double > LinearInterpolatorType; typedef itk::NearestNeighborInterpolateImageFunction< ImageType, double > NearestInterpolatorType; typedef itk::BSplineInterpolateImageFunction BSplineInterpolatorType; QmitkPreprocessingResampling::QmitkPreprocessingResampling() : QmitkAbstractView(), m_Controls(nullptr), m_SelectedImageNode(nullptr), m_TimeStepperAdapter(nullptr) { } QmitkPreprocessingResampling::~QmitkPreprocessingResampling() { } void QmitkPreprocessingResampling::CreateQtPartControl(QWidget *parent) { if (m_Controls == nullptr) { m_Controls = new Ui::QmitkPreprocessingResamplingViewControls; m_Controls->setupUi(parent); this->CreateConnections(); mitk::NodePredicateDimension::Pointer dimensionPredicate = mitk::NodePredicateDimension::New(3); mitk::NodePredicateDataType::Pointer imagePredicate = mitk::NodePredicateDataType::New("Image"); } m_SelectedImageNode = mitk::DataStorageSelection::New(this->GetDataStorage(), false); // Setup Controls this->m_Controls->cbParam4->clear(); this->m_Controls->cbParam4->insertItem(LINEAR, "Linear"); this->m_Controls->cbParam4->insertItem(NEAREST, "Nearest neighbor"); this->m_Controls->cbParam4->insertItem(SPLINE, "B-Spline"); } void QmitkPreprocessingResampling::CreateConnections() { if ( m_Controls ) { connect((QObject*)(m_Controls->btnDoIt), SIGNAL(clicked()), (QObject*) this, SLOT(StartButtonClicked())); connect((QObject*)(m_Controls->buttonExecuteOnMultipleImages), SIGNAL(clicked()), (QObject*) this, SLOT(StartMultipleImagesButtonClicked())); connect( (QObject*)(m_Controls->cbParam4), SIGNAL( activated(int) ), this, SLOT( SelectInterpolator(int) ) ); } } void QmitkPreprocessingResampling::InternalGetTimeNavigationController() { - auto renwin_part = GetRenderWindowPart(); - if( renwin_part != nullptr ) + auto* timeNavigationController = mitk::RenderingManager::GetInstance()->GetTimeNavigationController(); + if(nullptr != timeNavigationController) { - auto tnc = renwin_part->GetTimeNavigationController(); - if( tnc != nullptr ) - { - m_TimeStepperAdapter = new QmitkStepperAdapter(m_Controls->timeSliceNavigationWidget, tnc->GetStepper()); - } + m_TimeStepperAdapter = new QmitkStepperAdapter(m_Controls->timeSliceNavigationWidget, timeNavigationController->GetStepper()); } } void QmitkPreprocessingResampling::SetFocus() { } //datamanager selection changed void QmitkPreprocessingResampling::OnSelectionChanged(berry::IWorkbenchPart::Pointer, const QList& nodes) { ResetOneImageOpPanel(); //any nodes there? if (!nodes.empty()) { // reset GUI m_Controls->timeSliceNavigationWidget->setEnabled(false); m_Controls->leImage1->setText(tr("Select an Image in Data Manager")); m_SelectedNodes.clear(); for (mitk::DataNode* _DataNode : nodes) { m_SelectedImageNode->RemoveAllNodes(); *m_SelectedImageNode = _DataNode; mitk::Image::Pointer tempImage = dynamic_cast(m_SelectedImageNode->GetNode()->GetData()); //no image if (tempImage.IsNull() || (tempImage->IsInitialized() == false)) { if (m_SelectedNodes.size() < 1) { m_Controls->leImage1->setText(tr("Not an image.")); } continue; } //2D image if (tempImage->GetDimension() < 3) { if (m_SelectedNodes.size() < 1) { m_Controls->leImage1->setText(tr("2D images are not supported.")); } continue; } if (m_SelectedNodes.size() < 1) { m_Controls->leImage1->setText(QString(m_SelectedImageNode->GetNode()->GetName().c_str())); mitk::Vector3D aSpacing = tempImage->GetGeometry()->GetSpacing(); std::string text("x-spacing (" + std::to_string(aSpacing[0]) + ")"); m_Controls->tlParam1->setText(text.c_str()); text = "y-spacing (" + std::to_string(aSpacing[1]) + ")"; m_Controls->tlParam2->setText(text.c_str()); text = "z-spacing (" + std::to_string(aSpacing[2]) + ")"; m_Controls->tlParam3->setText(text.c_str()); if (tempImage->GetDimension() > 3) { // try to retrieve the TNC (for 4-D Processing ) this->InternalGetTimeNavigationController(); m_Controls->timeSliceNavigationWidget->setEnabled(true); m_Controls->tlTime->setEnabled(true); } } m_SelectedNodes.push_back(_DataNode); } if (m_SelectedNodes.size() > 0) { *m_SelectedImageNode = m_SelectedNodes[0]; } ResetParameterPanel(); } } void QmitkPreprocessingResampling::ResetOneImageOpPanel() { m_Controls->tlTime->setEnabled(false); m_Controls->btnDoIt->setEnabled(false); m_Controls->buttonExecuteOnMultipleImages->setEnabled(false); m_Controls->cbHideOrig->setEnabled(false); m_Controls->leImage1->setText(tr("Select an Image in Data Manager")); m_Controls->tlParam1->setText("x-spacing"); m_Controls->tlParam1->setText("y-spacing"); m_Controls->tlParam1->setText("z-spacing"); } void QmitkPreprocessingResampling::ResetParameterPanel() { m_Controls->btnDoIt->setEnabled(true); m_Controls->buttonExecuteOnMultipleImages->setEnabled(true); m_Controls->cbHideOrig->setEnabled(true); } void QmitkPreprocessingResampling::ResetTwoImageOpPanel() { } void QmitkPreprocessingResampling::StartMultipleImagesButtonClicked() { for (auto currentSelectedNode : m_SelectedNodes) { m_SelectedImageNode->RemoveAllNodes(); *m_SelectedImageNode = currentSelectedNode; StartButtonClicked(); } } void QmitkPreprocessingResampling::StartButtonClicked() { if(!m_SelectedImageNode->GetNode()) return; this->BusyCursorOn(); mitk::Image::Pointer newImage; try { newImage = dynamic_cast(m_SelectedImageNode->GetNode()->GetData()); } catch ( std::exception &e ) { QString exceptionString = tr("An error occured during image loading:\n"); exceptionString.append( e.what() ); QMessageBox::warning( nullptr, "Preprocessing - Resampling: ", exceptionString , QMessageBox::Ok, QMessageBox::NoButton ); this->BusyCursorOff(); return; } // check if input image is valid, casting does not throw exception when casting from 'NULL-Object' if ( (! newImage) || (newImage->IsInitialized() == false) ) { this->BusyCursorOff(); QMessageBox::warning( nullptr, "Preprocessing - Resampling", tr("Input image is broken or not initialized. Returning."), QMessageBox::Ok, QMessageBox::NoButton ); return; } // check if operation is done on 4D a image time step if(newImage->GetDimension() > 3) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(newImage); timeSelector->SetTimeNr(m_Controls->timeSliceNavigationWidget->GetPos()); timeSelector->Update(); newImage = timeSelector->GetOutput(); } // check if image or vector image ImageType::Pointer itkImage = ImageType::New(); VectorImageType::Pointer itkVecImage = VectorImageType::New(); int isVectorImage = newImage->GetPixelType().GetNumberOfComponents(); if(isVectorImage > 1) { CastToItkImage( newImage, itkVecImage ); } else { CastToItkImage( newImage, itkImage ); } std::stringstream nameAddition(""); double dparam1 = m_Controls->dsbParam1->value(); double dparam2 = m_Controls->dsbParam2->value(); double dparam3 = m_Controls->dsbParam3->value(); try{ std::string selectedInterpolator; ResampleImageFilterType::Pointer resampler = ResampleImageFilterType::New(); switch (m_SelectedInterpolation) { case LINEAR: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } case NEAREST: { NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Nearest"; break; } case SPLINE: { BSplineInterpolatorType::Pointer interpolator = BSplineInterpolatorType::New(); interpolator->SetSplineOrder(3); resampler->SetInterpolator(interpolator); selectedInterpolator = "B-Spline"; break; } default: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } } resampler->SetInput( itkImage ); resampler->SetOutputOrigin( itkImage->GetOrigin() ); ImageType::SizeType input_size = itkImage->GetLargestPossibleRegion().GetSize(); ImageType::SpacingType input_spacing = itkImage->GetSpacing(); ImageType::SizeType output_size; ImageType::SpacingType output_spacing; if (dparam1 > 0) { output_size[0] = std::ceil(input_size[0] * (input_spacing[0] / dparam1)); output_spacing[0] = dparam1; } else { output_size[0] = std::ceil(input_size[0] * (-1.0 / dparam1)); output_spacing[0] = -1.0*input_spacing[0] * dparam1; } if (dparam2 > 0) { output_size[1] = std::ceil(input_size[1] * (input_spacing[1] / dparam2)); output_spacing[1] = dparam2; } else { output_size[1] = std::ceil(input_size[1] * (-1.0 / dparam2)); output_spacing[1] = -1.0*input_spacing[1] * dparam2; } if (dparam3 > 0) { output_size[2] = std::ceil(input_size[2] * (input_spacing[2] / dparam3)); output_spacing[2] = dparam3; } else { output_size[2] = std::ceil(input_size[2] * (-1.0 / dparam3)); output_spacing[2] = -1.0*input_spacing[2] * dparam3; } resampler->SetSize( output_size ); resampler->SetOutputSpacing( output_spacing ); resampler->SetOutputDirection( itkImage->GetDirection() ); resampler->UpdateLargestPossibleRegion(); ImageType::Pointer resampledImage = resampler->GetOutput(); newImage = mitk::ImportItkImage( resampledImage )->Clone(); nameAddition << "_Resampled_" << selectedInterpolator; std::cout << "Resampling successful." << std::endl; } catch (...) { this->BusyCursorOff(); QMessageBox::warning(nullptr, "Warning", "Problem when applying filter operation. Check your input..."); return; } newImage->DisconnectPipeline(); // adjust level/window to new image mitk::LevelWindow levelwindow; levelwindow.SetAuto( newImage ); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); levWinProp->SetLevelWindow( levelwindow ); // compose new image name std::string name = m_SelectedImageNode->GetNode()->GetName(); if (name.find(".nrrd") == name.size() -5 ) { name = name.substr(0,name.size() -5); } name.append( nameAddition.str() ); // create final result MITK data storage node mitk::DataNode::Pointer result = mitk::DataNode::New(); result->SetProperty( "levelwindow", levWinProp ); result->SetProperty( "name", mitk::StringProperty::New( name.c_str() ) ); result->SetData( newImage ); // for vector images, a different mapper is needed if(isVectorImage > 1) { mitk::VectorImageMapper2D::Pointer mapper = mitk::VectorImageMapper2D::New(); result->SetMapper(1,mapper); } // add new image to data storage and set as active to ease further processing GetDataStorage()->Add( result, m_SelectedImageNode->GetNode() ); if ( m_Controls->cbHideOrig->isChecked() == true ) m_SelectedImageNode->GetNode()->SetProperty( "visible", mitk::BoolProperty::New(false) ); // show the results mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->BusyCursorOff(); } void QmitkPreprocessingResampling::SelectInterpolator(int interpolator) { switch (interpolator) { case 0: { m_SelectedInterpolation = LINEAR; break; } case 1: { m_SelectedInterpolation = NEAREST; break; } case 2: { m_SelectedInterpolation = SPLINE; } } } diff --git a/Plugins/org.mitk.gui.qt.volumevisualization/src/internal/QmitkVolumeVisualizationView.cpp b/Plugins/org.mitk.gui.qt.volumevisualization/src/internal/QmitkVolumeVisualizationView.cpp index 0170559e19..cba95f5cf5 100755 --- a/Plugins/org.mitk.gui.qt.volumevisualization/src/internal/QmitkVolumeVisualizationView.cpp +++ b/Plugins/org.mitk.gui.qt.volumevisualization/src/internal/QmitkVolumeVisualizationView.cpp @@ -1,243 +1,245 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "QmitkVolumeVisualizationView.h" #include #include +#include + #include #include #include #include #include #include #include #include #include #include const std::string QmitkVolumeVisualizationView::VIEW_ID = "org.mitk.views.volumevisualization"; enum { DEFAULT_RENDERMODE = 0, RAYCAST_RENDERMODE = 1, GPU_RENDERMODE = 2 }; QmitkVolumeVisualizationView::QmitkVolumeVisualizationView() : QmitkAbstractView() , m_Controls(nullptr) { } void QmitkVolumeVisualizationView::SetFocus() { } void QmitkVolumeVisualizationView::CreateQtPartControl(QWidget* parent) { m_Controls = new Ui::QmitkVolumeVisualizationViewControls; m_Controls->setupUi(parent); m_Controls->volumeSelectionWidget->SetDataStorage(GetDataStorage()); m_Controls->volumeSelectionWidget->SetNodePredicate(mitk::NodePredicateAnd::New( mitk::TNodePredicateDataType::New(), mitk::NodePredicateOr::New(mitk::NodePredicateDimension::New(3), mitk::NodePredicateDimension::New(4)), mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("helper object")))); m_Controls->volumeSelectionWidget->SetSelectionIsOptional(true); m_Controls->volumeSelectionWidget->SetEmptyInfo(QString("Please select a 3D / 4D image volume")); m_Controls->volumeSelectionWidget->SetPopUpTitel(QString("Select image volume")); // Fill the transfer function presets in the generator widget std::vector names; mitk::TransferFunctionInitializer::GetPresetNames(names); for (const auto& name : names) { m_Controls->transferFunctionGeneratorWidget->AddPreset(QString::fromStdString(name)); } // see vtkVolumeMapper::BlendModes m_Controls->blendMode->addItem("Composite", vtkVolumeMapper::COMPOSITE_BLEND); m_Controls->blendMode->addItem("Maximum intensity", vtkVolumeMapper::MAXIMUM_INTENSITY_BLEND); m_Controls->blendMode->addItem("Minimum intensity", vtkVolumeMapper::MINIMUM_INTENSITY_BLEND); m_Controls->blendMode->addItem("Average intensity", vtkVolumeMapper::AVERAGE_INTENSITY_BLEND); m_Controls->blendMode->addItem("Additive", vtkVolumeMapper::ADDITIVE_BLEND); connect(m_Controls->volumeSelectionWidget, &QmitkSingleNodeSelectionWidget::CurrentSelectionChanged, this, &QmitkVolumeVisualizationView::OnCurrentSelectionChanged); connect(m_Controls->enableRenderingCB, SIGNAL(toggled(bool)), this, SLOT(OnEnableRendering(bool))); connect(m_Controls->blendMode, SIGNAL(activated(int)), this, SLOT(OnBlendMode(int))); connect(m_Controls->transferFunctionGeneratorWidget, SIGNAL(SignalUpdateCanvas()), m_Controls->transferFunctionWidget, SLOT(OnUpdateCanvas())); connect(m_Controls->transferFunctionGeneratorWidget, SIGNAL(SignalTransferFunctionModeChanged(int)), SLOT(OnMitkInternalPreset(int))); m_Controls->enableRenderingCB->setEnabled(false); m_Controls->blendMode->setEnabled(false); m_Controls->transferFunctionWidget->setEnabled(false); m_Controls->transferFunctionGeneratorWidget->setEnabled(false); m_Controls->volumeSelectionWidget->SetAutoSelectNewNodes(true); this->m_TimePointChangeListener.RenderWindowPartActivated(this->GetRenderWindowPart()); connect(&m_TimePointChangeListener, &QmitkSliceNavigationListener::SelectedTimePointChanged, this, &QmitkVolumeVisualizationView::OnSelectedTimePointChanged); } void QmitkVolumeVisualizationView::RenderWindowPartActivated(mitk::IRenderWindowPart *renderWindowPart) { this->m_TimePointChangeListener.RenderWindowPartActivated(renderWindowPart); } void QmitkVolumeVisualizationView::RenderWindowPartDeactivated(mitk::IRenderWindowPart *renderWindowPart) { this->m_TimePointChangeListener.RenderWindowPartDeactivated(renderWindowPart); } void QmitkVolumeVisualizationView::OnMitkInternalPreset(int mode) { auto node = m_SelectedNode.Lock(); if (node.IsNull()) { return; } mitk::TransferFunctionProperty::Pointer transferFuncProp; if (node->GetProperty(transferFuncProp, "TransferFunction")) { // first item is only information if (--mode == -1) return; // -- Creat new TransferFunction mitk::TransferFunctionInitializer::Pointer tfInit = mitk::TransferFunctionInitializer::New(transferFuncProp->GetValue()); tfInit->SetTransferFunctionMode(mode); RequestRenderWindowUpdate(); m_Controls->transferFunctionWidget->OnUpdateCanvas(); } } void QmitkVolumeVisualizationView::OnCurrentSelectionChanged(QList nodes) { m_SelectedNode = nullptr; if (nodes.empty() || nodes.front().IsNull()) { UpdateInterface(); return; } auto selectedNode = nodes.front(); auto image = dynamic_cast(selectedNode->GetData()); if (nullptr != image) { m_SelectedNode = selectedNode; } UpdateInterface(); } void QmitkVolumeVisualizationView::OnEnableRendering(bool state) { auto selectedNode = m_SelectedNode.Lock(); if (selectedNode.IsNull()) { return; } selectedNode->SetProperty("volumerendering", mitk::BoolProperty::New(state)); UpdateInterface(); RequestRenderWindowUpdate(); } void QmitkVolumeVisualizationView::OnBlendMode(int index) { auto selectedNode = m_SelectedNode.Lock(); if (selectedNode.IsNull()) return; int mode = m_Controls->blendMode->itemData(index).toInt(); selectedNode->SetProperty("volumerendering.blendmode", mitk::IntProperty::New(mode)); this->RequestRenderWindowUpdate(); } void QmitkVolumeVisualizationView::OnSelectedTimePointChanged(const mitk::TimePointType & /*newTimePoint*/) { this->UpdateInterface(); } void QmitkVolumeVisualizationView::UpdateInterface() { if (m_SelectedNode.IsExpired()) { // turnoff all m_Controls->enableRenderingCB->setChecked(false); m_Controls->enableRenderingCB->setEnabled(false); m_Controls->blendMode->setCurrentIndex(0); m_Controls->blendMode->setEnabled(false); m_Controls->transferFunctionWidget->SetDataNode(nullptr); m_Controls->transferFunctionWidget->setEnabled(false); m_Controls->transferFunctionGeneratorWidget->SetDataNode(nullptr); m_Controls->transferFunctionGeneratorWidget->setEnabled(false); return; } bool enabled = false; auto selectedNode = m_SelectedNode.Lock(); selectedNode->GetBoolProperty("volumerendering", enabled); m_Controls->enableRenderingCB->setEnabled(true); m_Controls->enableRenderingCB->setChecked(enabled); if (!enabled) { // turnoff all except volumerendering checkbox m_Controls->blendMode->setCurrentIndex(0); m_Controls->blendMode->setEnabled(false); m_Controls->transferFunctionWidget->SetDataNode(nullptr); m_Controls->transferFunctionWidget->setEnabled(false); m_Controls->transferFunctionGeneratorWidget->SetDataNode(nullptr); m_Controls->transferFunctionGeneratorWidget->setEnabled(false); return; } // otherwise we can activate em all m_Controls->blendMode->setEnabled(true); // Determine Combo Box mode int blendMode; if (selectedNode->GetIntProperty("volumerendering.blendmode", blendMode)) m_Controls->blendMode->setCurrentIndex(blendMode); - auto time = this->GetRenderWindowPart()->GetTimeNavigationController()->GetSelectedTimeStep(); - m_Controls->transferFunctionWidget->SetDataNode(selectedNode, time); + const auto timeStep = mitk::RenderingManager::GetInstance()->GetTimeNavigationController()->GetSelectedTimeStep(); + m_Controls->transferFunctionWidget->SetDataNode(selectedNode, timeStep); m_Controls->transferFunctionWidget->setEnabled(true); - m_Controls->transferFunctionGeneratorWidget->SetDataNode(selectedNode, time); + m_Controls->transferFunctionGeneratorWidget->SetDataNode(selectedNode, timeStep); m_Controls->transferFunctionGeneratorWidget->setEnabled(true); }