diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h
index 6e7bccd182..f1e55fa6ac 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h
@@ -1,220 +1,220 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_h_
 #define __itkDiffusionMultiShellQballReconstructionImageFilter_h_
 
 #include <itkImageToImageFilter.h>
 
 namespace itk{
 /** \class DiffusionMultiShellQballReconstructionImageFilter
     I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil, and N. Harel, “Reconstruction of the orientation distribution function in single and multiple shell q-ball imaging within constant solid angle,” Magnetic Resonance in Medicine, vol. 64, no. 2, pp. 554–566, 2010.
  */
 
 template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections>
 class DiffusionMultiShellQballReconstructionImageFilter : public ImageToImageFilter< Image< TReferenceImagePixelType, 3 >, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > >
 {
 
 public:
 
     typedef DiffusionMultiShellQballReconstructionImageFilter Self;
     typedef SmartPointer<Self>                      Pointer;
     typedef SmartPointer<const Self>                ConstPointer;
     typedef ImageToImageFilter< Image< TReferenceImagePixelType, 3>, Image< Vector< TOdfPixelType, NrOdfDirections >, 3 > > Superclass;
     typedef typename Superclass::OutputImageRegionType OutputImageRegionType;
 
     typedef TReferenceImagePixelType                  ReferencePixelType;
 
     /** GradientImageType
     * (e.g. type short)*/
     typedef TGradientImagePixelType                   GradientPixelType;
 
     /** GradientImageType
     * 3D VectorImage containing GradientPixelTypes */
 
     typedef VectorImage< GradientPixelType, 3 >       GradientImagesType;
 
     /** ODF PixelType */
     typedef Vector< TOdfPixelType, NrOdfDirections >  OdfPixelType;
     /** ODF ImageType */
     typedef Image< OdfPixelType, 3 >                  OdfImageType;
     /** BzeroImageType */
     typedef Image< TOdfPixelType, 3 >                 BZeroImageType;
 
 
     /** Container to hold gradient directions of the 'n' DW measurements */
     typedef VectorContainer< unsigned int, vnl_vector_fixed< double, 3 > > GradientDirectionContainerType;
 
     typedef Image< Vector< TOdfPixelType, (NOrderL*NOrderL + NOrderL + 2)/2 + NOrderL >, 3 > CoefficientImageType;
 
     typedef std::map<unsigned int, std::vector<unsigned int> > BValueMap;
     typedef std::map<unsigned int, std::vector<unsigned int> >::iterator BValueMapIteraotr;
     typedef std::vector<unsigned int> IndiciesVector;
 
     // --------------------------------------------------------------------------------------------//
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
     /** Runtime information support. */
     itkTypeMacro(DiffusionMultiShellQballReconstructionImageFilter, ImageToImageFilter)
 
     /** Get reference image */
     virtual typename Superclass::InputImageType * GetInputImage()
     { return ( static_cast< typename Superclass::InputImageType *>(this->ProcessObject::GetInput(0)) ); }
 
     /** Replaces the Input method.
-      * Var vols = mitk::DiffusionImage<type>
+      * Var vols = mitk::Image
       * -----------------------------------------------------
-      * GradientDirectionContainerType-Input gradientDirectionContainer (e.g. vols->GetDirections)
-      * GradientImagesType-Input gradientImage (e.g. vols->GetVectorImage)
-      * float-Input bvalue (e.g. vols->GetB_Value) */
+      * GradientDirectionContainerType-Input gradientDirectionContainer (e.g. GradientDirectionsContainerProperty)
+      * GradientImagesType-Input gradientImage (e.g. itkVectorImage)
+      * float-Input bvalue (e.g. ReferenceBValueProperty) */
     void SetGradientImage( const GradientDirectionContainerType * gradientDirectionContainer, const GradientImagesType *gradientImage , float bvalue);//, std::vector<bool> listOfUserSelctedBValues );
 
    /** Set a BValue Map (key = bvalue, value = indicies splittet for each shell)
      * If the input image containes more than three q-shells
      * (e.g. b-Values of 0, 1000, 2000, 3000, 4000, ...).
      * For the Analytical-Reconstruction it is needed to set a
      * BValue Map containing three shells in an arithmetic series
      *  (e.g. 0, 1000, 2000, 3000).
      */
     inline void SetBValueMap(BValueMap map){this->m_BValueMap = map;}
 
     /** Threshold on the reference image data. The output ODF will be a null
    * pdf for pixels in the reference image that have a value less than this
    * threshold. */
     itkSetMacro( Threshold, ReferencePixelType )
     itkGetMacro( Threshold, ReferencePixelType )
 
     itkGetMacro( CoefficientImage, typename CoefficientImageType::Pointer )
     /** Return non-diffusion weighted images */
     itkGetMacro( BZeroImage, typename BZeroImageType::Pointer)
 
     /** Factor for Laplacian-Baltrami smoothing of the SH-coefficients*/
     itkSetMacro( Lambda, double )
     itkGetMacro( Lambda, double )
 
 protected:
     DiffusionMultiShellQballReconstructionImageFilter();
     ~DiffusionMultiShellQballReconstructionImageFilter() { }
     void PrintSelf(std::ostream& os, Indent indent) const;
     void BeforeThreadedGenerateData();
     void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType NumberOfThreads );
 
 
 private:
 
     enum ReconstructionType
     {
         Mode_Analytical3Shells,
         Mode_NumericalNShells,
         Mode_Standard1Shell
     };
 
     ReconstructionType m_ReconstructionType;
 
     // Interpolation
     bool m_Interpolation_Flag;
     vnl_matrix< double > * m_Interpolation_SHT1_inv;
     vnl_matrix< double > * m_Interpolation_SHT2_inv;
     vnl_matrix< double > * m_Interpolation_SHT3_inv;
     vnl_matrix< double > * m_TARGET_SH_shell1;
     vnl_matrix< double > * m_TARGET_SH_shell2;
     vnl_matrix< double > * m_TARGET_SH_shell3;
     unsigned int m_MaxDirections;
 
     vnl_matrix< double > * m_CoeffReconstructionMatrix;
     vnl_matrix< double > * m_ODFSphericalHarmonicBasisMatrix;
 
     /** container to hold gradient directions */
     GradientDirectionContainerType::Pointer m_GradientDirectionContainer;
 
     /** Number of gradient measurements */
     unsigned int m_NumberOfGradientDirections;
 
     /** Number of baseline images */
     unsigned int m_NumberOfBaselineImages;
 
     /** Threshold on the reference image data */
     ReferencePixelType m_Threshold;
 
     typename BZeroImageType::Pointer m_BZeroImage;
 
     typename CoefficientImageType::Pointer m_CoefficientImage;
 
     float m_BValue;
 
     BValueMap m_BValueMap;
 
     double m_Lambda;
 
     bool m_IsHemisphericalArrangementOfGradientDirections;
 
     bool m_IsArithmeticProgession;
 
     void ComputeReconstructionMatrix(IndiciesVector const & refVector);
     void ComputeODFSHBasis();
     bool CheckDuplicateDiffusionGradients();
     bool CheckForDifferingShellDirections();
     IndiciesVector GetAllDirections();
     void ComputeSphericalHarmonicsBasis(vnl_matrix<double>* QBallReference, vnl_matrix<double>* SHBasisOutput, int Lorder , vnl_matrix<double>* LaplaciaBaltramiOutput =0 , vnl_vector<int>* SHOrderAssociation =0 , vnl_matrix<double> * SHEigenvalues =0);
     void Normalize(OdfPixelType & odf );
     void S_S0Normalization( vnl_vector<double> & vec, double b0  = 0 );
     void DoubleLogarithm(vnl_vector<double> & vec);
     double CalculateThreashold(const double value, const double delta);
     void Projection1(vnl_vector<double> & vec, double delta = 0.01);
     void Projection2( vnl_vector<double> & E1, vnl_vector<double> & E2, vnl_vector<double> & E3, double delta = 0.01);
     void Projection3( vnl_vector<double> & A, vnl_vector<double> & alpha, vnl_vector<double> & beta, double delta = 0.01);
     void StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread);
     void AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread);
     void NumericalNShellReconstruction(const OutputImageRegionType& outputRegionForThread);
     void GenerateAveragedBZeroImage(const OutputImageRegionType& outputRegionForThread);
     void ComputeSphericalFromCartesian(vnl_matrix<double> * Q, const IndiciesVector & refShell);
 
 
     //------------------------- VNL-function ------------------------------------
 
     template<typename CurrentValue, typename WntValue>
     vnl_vector< WntValue> element_cast (vnl_vector< CurrentValue> const& v1)
     {
       vnl_vector<WntValue> result(v1.size());
 
       for(unsigned int i = 0 ; i < v1.size(); i++)
            result[i] = static_cast< WntValue>(v1[i]);
 
       return result;
     }
 
     template<typename type>
     double dot (vnl_vector_fixed< type ,3> const& v1, vnl_vector_fixed< type ,3 > const& v2 )
     {
       double result = (v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]) / (v1.two_norm() * v2.two_norm());
       return result ;
     }
 
 
 
 
 };
 
 }
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkDiffusionMultiShellQballReconstructionImageFilter.cpp"
 #endif
 
 #endif //__itkDiffusionMultiShellQballReconstructionImageFilter_h_
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/mitkTeemDiffusionTensor3DReconstructionImageFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/mitkTeemDiffusionTensor3DReconstructionImageFilter.h
index 32bccf0800..f465a7c29c 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/mitkTeemDiffusionTensor3DReconstructionImageFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/mitkTeemDiffusionTensor3DReconstructionImageFilter.h
@@ -1,117 +1,116 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 
 #ifndef __mitkTeemDiffusionTensor3DReconstructionImageFilter_h__
 #define __mitkTeemDiffusionTensor3DReconstructionImageFilter_h__
 
 #include "mitkImage.h"
 #include "mitkTensorImage.h"
-#include "mitkDiffusionImage.h"
 #include "itkDiffusionTensor3D.h"
 
 namespace mitk
 {
 
   enum TeemTensorEstimationMethods{
     TeemTensorEstimationMethodsLLS,
     TeemTensorEstimationMethodsNLS,
     TeemTensorEstimationMethodsWLS,
     TeemTensorEstimationMethodsMLE,
   };
 
   template< class DiffusionImagePixelType = short,
     class TTensorPixelType=float >
   class TeemDiffusionTensor3DReconstructionImageFilter : public itk::Object
   {
   public:
 
     typedef TTensorPixelType TensorPixelType;
 
     typedef itk::Vector<TensorPixelType,7> VectorType;
     typedef itk::Image<VectorType,3> VectorImageType;
 
     typedef itk::DiffusionTensor3D<TensorPixelType> TensorType;
     typedef itk::Image<TensorType,3 > ItkTensorImageType;
 
     typedef itk::Vector<TensorPixelType,6> ItkTensorVectorType;
     typedef itk::Image<ItkTensorVectorType,3> ItkTensorVectorImageType;
 
     typedef DiffusionImagePixelType DiffusionPixelType;
     typedef itk::VectorImage< DiffusionPixelType, 3 >   DiffusionImageType;
 
     mitkClassMacro( TeemDiffusionTensor3DReconstructionImageFilter,
       itk::Object );
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     itkGetMacro(Input,
-      typename DiffusionImage<DiffusionImagePixelType>::Pointer);
+      mitk::Image::Pointer);
     itkSetMacro(Input,
-      typename DiffusionImage<DiffusionImagePixelType>::Pointer);
+      mitk::Image::Pointer);
 
     itkGetMacro(EstimateErrorImage, bool);
     itkSetMacro(EstimateErrorImage, bool);
 
     itkGetMacro(Sigma, float);
     itkSetMacro(Sigma, float);
 
     itkGetMacro(EstimationMethod, TeemTensorEstimationMethods);
     itkSetMacro(EstimationMethod, TeemTensorEstimationMethods);
 
     itkGetMacro(NumIterations, int);
     itkSetMacro(NumIterations, int);
 
     itkGetMacro(ConfidenceThreshold, double);
     itkSetMacro(ConfidenceThreshold, double);
 
     itkGetMacro(ConfidenceFuzzyness, float);
     itkSetMacro(ConfidenceFuzzyness, float);
 
     itkGetMacro(MinPlausibleValue, double);
     itkSetMacro(MinPlausibleValue, double);
 
     itkGetMacro(Output, mitk::TensorImage::Pointer);
     itkGetMacro(OutputItk, mitk::TensorImage::Pointer);
 
     // do the work
     virtual void Update();
 
   protected:
 
     TeemDiffusionTensor3DReconstructionImageFilter();
     virtual ~TeemDiffusionTensor3DReconstructionImageFilter();
 
-    typename DiffusionImage<DiffusionImagePixelType>::Pointer m_Input;
+    mitk::Image::Pointer m_Input;
     bool m_EstimateErrorImage;
     float m_Sigma;
     TeemTensorEstimationMethods m_EstimationMethod;
     int m_NumIterations;
     double m_ConfidenceThreshold;
     float m_ConfidenceFuzzyness;
     double m_MinPlausibleValue;
     mitk::TensorImage::Pointer m_Output;
     mitk::TensorImage::Pointer m_OutputItk;
     mitk::Image::Pointer m_ErrorImage;
   };
 
 }
 
 #include "mitkTeemDiffusionTensor3DReconstructionImageFilter.cpp"
 
 #endif
 
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp
index d11c505925..3f6fbc61a9 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp
@@ -1,327 +1,316 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 
-#ifndef MITKDIFFUSIONIMAGETODIFFUSIONIMAGEFILTER_CPP
-#define MITKDIFFUSIONIMAGETODIFFUSIONIMAGEFILTER_CPP
+#ifndef MITKDWIHEADMOTIONCORRECTIONFILTER_CPP
+#define MITKDWIHEADMOTIONCORRECTIONFILTER_CPP
 
 #include "mitkDWIHeadMotionCorrectionFilter.h"
 
 #include "itkSplitDWImageFilter.h"
 #include "itkB0ImageExtractionToSeparateImageFilter.h"
 
 #include "mitkImageTimeSelector.h"
 
 #include "mitkPyramidImageRegistrationMethod.h"
 //#include "mitkRegistrationMethodITK4.h"
-#include "mitkImageToDiffusionImageSource.h"
+#include <mitkDiffusionPropertyHelper.h>
 
 #include "mitkDiffusionImageCorrectionFilter.h"
 #include <mitkImageWriteAccessor.h>
+#include <mitkProperties.h>
 
 #include <vector>
 
 #include "mitkIOUtil.h"
 #include <itkImage.h>
 
-template< typename DiffusionPixelType>
-mitk::DWIHeadMotionCorrectionFilter<DiffusionPixelType>
-  ::DWIHeadMotionCorrectionFilter()
+mitk::DWIHeadMotionCorrectionFilter::DWIHeadMotionCorrectionFilter()
   : m_CurrentStep(0),
     m_Steps(100),
     m_IsInValidState(true),
     m_AbortRegistration(false),
     m_AverageUnweighted(true)
 {
 
 }
 
-template< typename DiffusionPixelType>
-void mitk::DWIHeadMotionCorrectionFilter<DiffusionPixelType>
-::GenerateData()
+
+void mitk::DWIHeadMotionCorrectionFilter::GenerateData()
 {
   typedef itk::SplitDWImageFilter< DiffusionPixelType, DiffusionPixelType> SplitFilterType;
 
-  DiffusionImageType* input = const_cast<DiffusionImageType*>(this->GetInput(0));
+  InputImageType* input = const_cast<InputImageType*>(this->GetInput(0));
+
+  ITKDiffusionImageType::Pointer itkVectorImagePointer = ITKDiffusionImageType::New();
+  mitk::CastToItkImage(input, itkVectorImagePointer);
 
   typedef mitk::PyramidImageRegistrationMethod RegistrationMethod;
   // typedef mitk::RegistrationMethodITKV4 RegistrationMethod
-
-  unsigned int numberOfSteps = input->GetVectorImage()->GetNumberOfComponentsPerPixel () ;
+  unsigned int numberOfSteps = itkVectorImagePointer->GetNumberOfComponentsPerPixel () ;
   m_Steps = numberOfSteps;
   //
   //  (1) Extract the b-zero images to a 3d+t image, register them by NCorr metric and
   //     rigid registration : they will then be used are reference image for registering
   //     the gradient images
   //
   typedef itk::B0ImageExtractionToSeparateImageFilter< DiffusionPixelType, DiffusionPixelType> B0ExtractorType;
-  typename B0ExtractorType::Pointer b0_extractor = B0ExtractorType::New();
-  b0_extractor->SetInput( input->GetVectorImage() );
-  b0_extractor->SetDirections( input->GetDirections() );
+  B0ExtractorType::Pointer b0_extractor = B0ExtractorType::New();
+  b0_extractor->SetInput( itkVectorImagePointer );
+  b0_extractor->SetDirections( static_cast<mitk::GradientDirectionsProperty*>( input->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer() );
   b0_extractor->Update();
 
   mitk::Image::Pointer b0Image = mitk::Image::New();
   b0Image->InitializeByItk( b0_extractor->GetOutput() );
   b0Image->SetImportChannel( b0_extractor->GetOutput()->GetBufferPointer(),
                              mitk::Image::CopyMemory );
 
   // (2.1) Use the extractor to access the extracted b0 volumes
   mitk::ImageTimeSelector::Pointer t_selector =
       mitk::ImageTimeSelector::New();
 
   t_selector->SetInput( b0Image );
   t_selector->SetTimeNr(0);
   t_selector->Update();
 
   // first unweighted image as reference space for the registration
   mitk::Image::Pointer b0referenceImage = t_selector->GetOutput();
   const unsigned int numberOfb0Images = b0Image->GetTimeSteps();
 
   // register b-zeros only if the flag to average is set, use the first one otherwise
   if( m_AverageUnweighted && numberOfb0Images > 1)
   {
 
     RegistrationMethod::Pointer registrationMethod = RegistrationMethod::New();
     registrationMethod->SetFixedImage( b0referenceImage );
     registrationMethod->SetTransformToRigid();
 
     // the unweighted images are of same modality
     registrationMethod->SetCrossModalityOff();
 
     // use the advanced (windowed sinc) interpolation
     registrationMethod->SetUseAdvancedInterpolation(true);
 
     // Initialize the temporary output image
     mitk::Image::Pointer registeredB0Image = b0Image->Clone();
 
     mitk::ImageTimeSelector::Pointer t_selector2 =
           mitk::ImageTimeSelector::New();
 
     t_selector2->SetInput( b0Image );
 
     for( unsigned int i=1; i<numberOfb0Images; i++)
       {
 
         m_CurrentStep = i + 1;
         if( m_AbortRegistration == true) {
           m_IsInValidState = false;
           mitkThrow() << "Stopped by user.";
         };
 
         t_selector2->SetTimeNr(i);
         t_selector2->Update();
 
         registrationMethod->SetMovingImage( t_selector2->GetOutput() );
 
         try
         {
           MITK_INFO << " === (" << i <<"/"<< numberOfb0Images-1 << ") :: Starting registration";
           registrationMethod->Update();
         }
         catch( const itk::ExceptionObject& e)
         {
           m_IsInValidState = false;
           mitkThrow() << "Failed to register the b0 images, the PyramidRegistration threw an exception: \n" << e.what();
         }
 
       // import volume to the inter-results
       mitk::ImageWriteAccessor imac(registrationMethod->GetResampledMovingImage());
       registeredB0Image->SetImportVolume( imac.GetData(),
         i, 0, mitk::Image::ReferenceMemory );
       }
 
     // use the accumulateImageFilter as provided by the ItkAccumulateFilter method in the header file
     AccessFixedDimensionByItk_1(registeredB0Image, ItkAccumulateFilter, (4), b0referenceImage );
 
   }
 
 
   //
   // (2) Split the diffusion image into a 3d+t regular image, extract only the weighted images
   //
-  typename SplitFilterType::Pointer split_filter = SplitFilterType::New();
-  split_filter->SetInput (input->GetVectorImage() );
-  split_filter->SetExtractAllAboveThreshold(8, input->GetBValueMap() );
+  SplitFilterType::Pointer split_filter = SplitFilterType::New();
+  split_filter->SetInput (itkVectorImagePointer );
+  split_filter->SetExtractAllAboveThreshold(8, static_cast<mitk::BValueMapProperty*>(input->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() )->GetBValueMap() );
 
   try
   {
     split_filter->Update();
   }
   catch( const itk::ExceptionObject &e)
   {
     m_IsInValidState = false;
     mitkThrow() << " Caught exception from SplitImageFilter : " << e.what();
   }
 
   mitk::Image::Pointer splittedImage = mitk::Image::New();
   splittedImage->InitializeByItk( split_filter->GetOutput() );
   splittedImage->SetImportChannel( split_filter->GetOutput()->GetBufferPointer(),
                                    mitk::Image::CopyMemory );
 
 
   //
   // (3) Use again the time-selector to access the components separately in order
   //     to perform the registration of  Image -> unweighted reference
   //
 
   RegistrationMethod::Pointer weightedRegistrationMethod
       = RegistrationMethod::New();
 
   weightedRegistrationMethod->SetTransformToAffine();
   weightedRegistrationMethod->SetCrossModalityOn();
 
   //
   //   - (3.1) Set the reference image
   //      - a single b0 image
   //      - average over the registered b0 images if multiple present
   //
   weightedRegistrationMethod->SetFixedImage( b0referenceImage );
   // use the advanced (windowed sinc) interpolation
   weightedRegistrationMethod->SetUseAdvancedInterpolation(true);
   weightedRegistrationMethod->SetVerboseOn();
 
   //
   //   - (3.2) Register all timesteps in the splitted image onto the first reference
   //
   unsigned int maxImageIdx = splittedImage->GetTimeSteps();
   mitk::TimeGeometry* tsg = splittedImage->GetTimeGeometry();
   mitk::ProportionalTimeGeometry* ptg = dynamic_cast<ProportionalTimeGeometry*>(tsg);
   ptg->Expand(maxImageIdx+1);
   ptg->SetTimeStepGeometry( ptg->GetGeometryForTimeStep(0), maxImageIdx );
 
 
   mitk::Image::Pointer registeredWeighted = mitk::Image::New();
   registeredWeighted->Initialize( splittedImage->GetPixelType(0), *tsg );
 
   // insert the first unweighted reference as the first volume
   // in own scope to release the accessor asap after copy
   {
     mitk::ImageWriteAccessor imac(b0referenceImage);
     registeredWeighted->SetImportVolume( imac.GetData(),
       0,0, mitk::Image::CopyMemory );
   }
 
 
   // mitk::Image::Pointer registeredWeighted = splittedImage->Clone();
   // this time start at 0, we have only gradient images in the 3d+t file
   // the reference image comes form an other image
   mitk::ImageTimeSelector::Pointer t_selector_w =
       mitk::ImageTimeSelector::New();
 
   t_selector_w->SetInput( splittedImage );
 
   // store the rotation parts of the transformations in a vector
   typedef RegistrationMethod::TransformMatrixType MatrixType;
   std::vector< MatrixType > estimated_transforms;
 
 
   for( unsigned int i=0; i<maxImageIdx; i++)
   {
     m_CurrentStep = numberOfb0Images + i + 1;
     if( m_AbortRegistration == true) {
       m_IsInValidState = false;
       mitkThrow() << "Stopped by user.";
     };
 
     t_selector_w->SetTimeNr(i);
     t_selector_w->Update();
 
     weightedRegistrationMethod->SetMovingImage( t_selector_w->GetOutput() );
 
     try
     {
       MITK_INFO << " === (" << i+1 <<"/"<< maxImageIdx << ") :: Starting registration";
       weightedRegistrationMethod->Update();
     }
     catch( const itk::ExceptionObject& e)
     {
       m_IsInValidState = false;
       mitkThrow() << "Failed to register the b0 images, the PyramidRegistration threw an exception: \n" << e.what();
     }
 
     // allow expansion
     mitk::ImageWriteAccessor imac(weightedRegistrationMethod->GetResampledMovingImage());
     registeredWeighted->SetImportVolume( imac.GetData(),
       i+1, 0, mitk::Image::CopyMemory);
 
     estimated_transforms.push_back( weightedRegistrationMethod->GetLastRotationMatrix() );
   }
 
 
   //
   // (4) Cast the resulting image back to an diffusion weighted image
   //
-  typename DiffusionImageType::GradientDirectionContainerType *gradients = input->GetDirections();
-  typename DiffusionImageType::GradientDirectionContainerType::Pointer gradients_new =
-      DiffusionImageType::GradientDirectionContainerType::New();
-  typename DiffusionImageType::GradientDirectionType bzero_vector;
+  mitk::DiffusionPropertyHelper::GradientDirectionsContainerType *gradients = static_cast<mitk::GradientDirectionsProperty*>( input->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer();
+  mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradients_new =
+    mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::New();
+  mitk::DiffusionPropertyHelper::GradientDirectionType bzero_vector;
   bzero_vector.fill(0);
 
   // compose the direction vector
   //  - no direction for the first image
   //  - correct ordering of the directions based on the index list
   gradients_new->push_back( bzero_vector );
 
-  typename SplitFilterType::IndexListType index_list = split_filter->GetIndexList();
-  typename SplitFilterType::IndexListType::const_iterator lIter = index_list.begin();
+  SplitFilterType::IndexListType index_list = split_filter->GetIndexList();
+  SplitFilterType::IndexListType::const_iterator lIter = index_list.begin();
 
   while( lIter != index_list.end() )
   {
     gradients_new->push_back( gradients->at( *lIter ) );
     ++lIter;
   }
 
-  typename mitk::ImageToDiffusionImageSource< DiffusionPixelType >::Pointer caster =
-      mitk::ImageToDiffusionImageSource< DiffusionPixelType >::New();
-
-  caster->SetImage( registeredWeighted );
-  caster->SetBValue( input->GetReferenceBValue() );
-  caster->SetGradientDirections( gradients_new.GetPointer() );
-
-  try
-  {
-    caster->Update();
-  }
-  catch( const itk::ExceptionObject& e)
-  {
-    m_IsInValidState = false;
-    MITK_ERROR << "Casting back to diffusion image failed: ";
-    mitkThrow() << "Subprocess failed with exception: " << e.what();
-  }
+  registeredWeighted->SetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( gradients_new.GetPointer() ));
+  registeredWeighted->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast<mitk::FloatProperty*>(input->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() )->GetValue() ) );
 
   //
   // (5) Adapt the gradient directions according to the estimated transforms
   //
-  typedef mitk::DiffusionImageCorrectionFilter< DiffusionPixelType > CorrectionFilterType;
-  typename CorrectionFilterType::Pointer corrector = CorrectionFilterType::New();
+  typedef mitk::DiffusionImageCorrectionFilter CorrectionFilterType;
+  CorrectionFilterType::Pointer corrector = CorrectionFilterType::New();
 
-  OutputImagePointerType output = caster->GetOutput();
+  mitk::Image::Pointer output = registeredWeighted;
   corrector->SetImage( output );
   corrector->CorrectDirections( estimated_transforms );
 
   //
   // (6) Pass the corrected image to the filters output port
   //
   m_CurrentStep += 1;
-  this->GetOutput()->SetVectorImage(output->GetVectorImage());
-  this->GetOutput()->SetReferenceBValue(output->GetReferenceBValue());
-  this->GetOutput()->SetMeasurementFrame(output->GetMeasurementFrame());
-  this->GetOutput()->SetDirections(output->GetDirections());
-  this->GetOutput()->InitializeFromVectorImage();
+
+  this->GetOutput()->Initialize( output );
+
+  this->GetOutput()->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( static_cast<mitk::GradientDirectionsProperty*>( output->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer() ) );
+  this->GetOutput()->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast<mitk::MeasurementFrameProperty*>( output->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() )->GetMeasurementFrame() ) );
+  this->GetOutput()->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast<mitk::FloatProperty*>(output->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() )->GetValue() ) );
+
+  mitk::DiffusionPropertyHelper propertyHelper( this->GetOutput() );
+  propertyHelper.InitializeImage();
   this->GetOutput()->Modified();
 }
 
-#endif // MITKDIFFUSIONIMAGETODIFFUSIONIMAGEFILTER_CPP
+#endif // MITKDWIHEADMOTIONCORRECTIONFILTER_CPP
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.h
index d8065ff27d..e159597b08 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.h
@@ -1,132 +1,131 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #ifndef MITKDWIHEADMOTIONCORRECTIONFILTER_H
 #define MITKDWIHEADMOTIONCORRECTIONFILTER_H
 
-#include "mitkDiffusionImageToDiffusionImageFilter.h"
+#include "mitkImageToImageFilter.h"
 
 #include <itkAccumulateImageFilter.h>
 #include <itkExtractImageFilter.h>
 
 #include "mitkITKImageImport.h"
+#include <itkVectorImage.h>
+#include <MitkDiffusionCoreExports.h>
 
 namespace mitk
 {
 
 /**
  * @class DWIHeadMotionCorrectionFilter
  *
  * @brief Performs standard head-motion correction by using affine registration of the gradient images.
  *
  * (Head) motion correction is a essential pre-processing step before performing any further analysis of a diffusion-weighted
  * images since all model fits ( tensor, QBI ) rely on an aligned diffusion-weighted dataset. The correction is done in two steps. First the
  * unweighted images ( if multiple present ) are separately registered on the first one by means of rigid registration and normalized correlation
  * as error metric. Second, the weighted gradient images are registered to the unweighted reference ( computed as average from the aligned images from first step )
  * by an affine transformation using the MattesMutualInformation metric as optimizer guidance.
  *
  */
-template< typename DiffusionPixelType>
-class DWIHeadMotionCorrectionFilter
-    : public DiffusionImageToDiffusionImageFilter< DiffusionPixelType >
+
+class MitkDiffusionCore_EXPORT DWIHeadMotionCorrectionFilter
+    : public ImageToImageFilter
 {
 public:
 
   // class macros
   mitkClassMacro( DWIHeadMotionCorrectionFilter,
-                  DiffusionImageToDiffusionImageFilter<DiffusionPixelType> )
+                  ImageToImageFilter )
 
   itkFactorylessNewMacro(Self)
   itkCloneMacro(Self)
 
   itkGetMacro( Steps, unsigned long )
   itkGetMacro( CurrentStep, unsigned long )
   itkGetMacro( IsInValidState, bool)
   itkSetMacro( AbortRegistration, bool )
   itkSetMacro( AverageUnweighted, bool )
 
   // public typedefs
-  typedef typename Superclass::InputImageType         DiffusionImageType;
-  typedef typename Superclass::InputImagePointerType  DiffusionImagePointerType;
-
-  typedef typename Superclass::OutputImageType        OutputImageType;
-  typedef typename Superclass::OutputImagePointerType OutputImagePointerType;
+  typedef short         DiffusionPixelType;
+  typedef Superclass::InputImageType         InputImageType;
+  typedef Superclass::OutputImageType        OutputImageType;
+  typedef itk::VectorImage<DiffusionPixelType, 3> ITKDiffusionImageType;
 
 protected:
   DWIHeadMotionCorrectionFilter();
   virtual ~DWIHeadMotionCorrectionFilter() {}
 
   virtual void GenerateData();
 
   unsigned long   m_CurrentStep;
   unsigned long   m_Steps;
   bool            m_IsInValidState;       ///< Whether the filter is in a valid state, false if error occured
   bool            m_AbortRegistration;        ///< set flag to abort
   bool            m_AverageUnweighted;
 
 };
 
 /**
  * @brief Averages an 3d+t image along the time axis.
  *
  * The method uses the AccumulateImageFilter as provided by ITK and collapses the given 3d+t image
  * to an 3d image while computing the average over the time axis for each of the spatial voxels.
  */
 template< typename TPixel, unsigned int VDimensions>
 static void ItkAccumulateFilter(
     const itk::Image< TPixel, VDimensions>* image,
     mitk::Image::Pointer& output)
 {
   // input 3d+t --> output 3d
   typedef itk::Image< TPixel, 4> InputItkType;
   typedef itk::Image< TPixel, 3> OutputItkType;
   // the accumulate filter requires the same dimension in output and input image
   typedef typename itk::AccumulateImageFilter< InputItkType, InputItkType > FilterType;
 
   typename FilterType::Pointer filter = FilterType::New();
   filter->SetInput( image );
   filter->SetAccumulateDimension( 3 );
   filter->SetAverage( true );
 
   // we need to extract the volume to reduce the size from 4 to 3 for further processing
   typedef typename itk::ExtractImageFilter< InputItkType, OutputItkType > ExtractFilterType;
   typename ExtractFilterType::Pointer extractor = ExtractFilterType::New();
   extractor->SetInput( filter->GetOutput() );
   extractor->SetDirectionCollapseToIdentity();
 
   typename InputItkType::RegionType extractRegion = image->GetLargestPossibleRegion();
   // crop out the time axis
   extractRegion.SetSize( 3, 0);
   extractor->SetExtractionRegion( extractRegion );
 
   try
   {
     extractor->Update();
   }
   catch( const itk::ExceptionObject& e)
   {
     mitkThrow() << " Exception while averaging: " << e.what();
   }
 
   output = mitk::GrabItkImageMemory( extractor->GetOutput() );
 }
 
 } //end namespace mitk
 
-#include "mitkDWIHeadMotionCorrectionFilter.cpp"
-
 
 #endif // MITKDWIHEADMOTIONCORRECTIONFILTER_H
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkRegistrationWrapper.cpp b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkRegistrationWrapper.cpp
index 0e1982705b..2f488f4334 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkRegistrationWrapper.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Registration/mitkRegistrationWrapper.cpp
@@ -1,196 +1,216 @@
 #include "mitkRegistrationWrapper.h"
 
 #include "mitkPyramidImageRegistrationMethod.h"
-#include "mitkDiffusionImage.h"
+#include "mitkImage.h"
 #include <mitkDiffusionImageCorrectionFilter.h>
 #include "itkB0ImageExtractionImageFilter.h"
 #include <itkResampleImageFilter.h>
 #include <itkWindowedSincInterpolateImageFunction.h>
 #include <itkLinearInterpolateImageFunction.h>
 #include <itkNearestNeighborExtrapolateImageFunction.h>
 #include <itkBSplineInterpolateImageFunction.h>
+#include <mitkDiffusionPropertyHelper.h>
 
 #include <vnl/vnl_inverse.h>
 
 void mitk::RegistrationWrapper::ApplyTransformationToImage(mitk::Image::Pointer img, const mitk::RegistrationWrapper::RidgidTransformType &transformation,double* offset, mitk::Image* resampleReference,  bool binary)
 {
-  typedef mitk::DiffusionImage<short> DiffusionImageType;
+  mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientDirections =
+  static_cast<mitk::GradientDirectionsProperty*>( img->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer();
 
-  if (dynamic_cast<DiffusionImageType*> (img.GetPointer()) == NULL)
+  if (gradientDirections.IsNull() || ( gradientDirections->Size() == 0) )
   {
 
     ItkImageType::Pointer itkImage = ItkImageType::New();
 
     CastToItkImage(img, itkImage);
 
     typedef itk::Euler3DTransform< double > RigidTransformType;
     RigidTransformType::Pointer rtransform = RigidTransformType::New();
     RigidTransformType::ParametersType parameters(RigidTransformType::ParametersDimension);
 
     for (int i = 0; i<6;++i)
       parameters[i] = transformation[i];
 
     rtransform->SetParameters( parameters );
 
     mitk::Point3D origin = itkImage->GetOrigin();
     origin[0]-=offset[0];
     origin[1]-=offset[1];
     origin[2]-=offset[2];
 
     mitk::Point3D newOrigin = rtransform->GetInverseTransform()->TransformPoint(origin);
 
     itk::Matrix<double,3,3> dir = itkImage->GetDirection();
     itk::Matrix<double,3,3> transM  ( vnl_inverse(rtransform->GetMatrix().GetVnlMatrix()));
     itk::Matrix<double,3,3> newDirection = transM * dir;
 
     itkImage->SetOrigin(newOrigin);
     itkImage->SetDirection(newDirection);
 
     // Perform Resampling if reference image is provided
     if (resampleReference != NULL)
     {
       typedef itk::ResampleImageFilter<ItkImageType, ItkImageType>  ResampleFilterType;
 
       ItkImageType::Pointer itkReference = ItkImageType::New();
       CastToItkImage(resampleReference,itkReference);
 
       typedef itk::Function::WelchWindowFunction<4> WelchWindowFunction;
       typedef itk::WindowedSincInterpolateImageFunction< ItkImageType, 4,WelchWindowFunction> WindowedSincInterpolatorType;
       WindowedSincInterpolatorType::Pointer sinc_interpolator = WindowedSincInterpolatorType::New();
 
 
       typedef itk::LinearInterpolateImageFunction< ItkImageType> LinearInterpolatorType;
       LinearInterpolatorType::Pointer lin_interpolator = LinearInterpolatorType::New();
 
       typedef itk::NearestNeighborInterpolateImageFunction< ItkImageType, double > NearestNeighborInterpolatorType;
       NearestNeighborInterpolatorType::Pointer nn_interpolator = NearestNeighborInterpolatorType::New();
 
       typedef itk::BSplineInterpolateImageFunction< ItkImageType, double > BSplineInterpolatorType;
       BSplineInterpolatorType::Pointer bSpline_interpolator = BSplineInterpolatorType::New();
 
 
       ResampleFilterType::Pointer resampler = ResampleFilterType::New();
       resampler->SetInput(itkImage);
       resampler->SetReferenceImage( itkReference );
       resampler->UseReferenceImageOn();
       if (binary)
         resampler->SetInterpolator(nn_interpolator);
       else
         resampler->SetInterpolator(lin_interpolator);
 
       resampler->Update();
 
       GrabItkImageMemory(resampler->GetOutput(), img);
     }
     else
     {
       // !! CastToItk behaves very differently depending on the original data type
       // if the target type is the same as the original, only a pointer to the data is set
       // and an additional GrabItkImageMemory will cause a segfault when the image is destroyed
       // GrabItkImageMemory - is not necessary in this case since we worked on the original data
       // See Bug 17538.
       if (img->GetPixelType().GetComponentTypeAsString() != "double")
         img = GrabItkImageMemory(itkImage);
     }
   }
   else
   {
-    DiffusionImageType::Pointer diffImages = dynamic_cast<DiffusionImageType*>(img.GetPointer());
+    mitk::Image::Pointer diffImages = dynamic_cast<mitk::Image*>(img.GetPointer());
 
     typedef itk::Euler3DTransform< double > RigidTransformType;
     RigidTransformType::Pointer rtransform = RigidTransformType::New();
     RigidTransformType::ParametersType parameters(RigidTransformType::ParametersDimension);
 
     for (int i = 0; i<6;++i)
     {
       parameters[i] = transformation[i];
     }
 
     rtransform->SetParameters( parameters );
 
-    mitk::Point3D b0origin = diffImages->GetVectorImage()->GetOrigin();
+    typedef itk::VectorImage<short, 3> ITKDiffusionImageType;
+    ITKDiffusionImageType::Pointer itkVectorImagePointer = ITKDiffusionImageType::New();
+    mitk::CastToItkImage(diffImages, itkVectorImagePointer);
+
+    mitk::Point3D b0origin = itkVectorImagePointer->GetOrigin();
     b0origin[0]-=offset[0];
     b0origin[1]-=offset[1];
     b0origin[2]-=offset[2];
 
     mitk::Point3D newOrigin = rtransform->GetInverseTransform()->TransformPoint(b0origin);
 
-    itk::Matrix<double,3,3> dir = diffImages->GetVectorImage()->GetDirection();
+    itk::Matrix<double,3,3> dir = itkVectorImagePointer->GetDirection();
     itk::Matrix<double,3,3> transM  ( vnl_inverse(rtransform->GetMatrix().GetVnlMatrix()));
     itk::Matrix<double,3,3> newDirection = transM * dir;
 
-    diffImages->GetVectorImage()->SetOrigin(newOrigin);
-    diffImages->GetVectorImage()->SetDirection(newDirection);
+    itkVectorImagePointer->SetOrigin(newOrigin);
+    itkVectorImagePointer->SetDirection(newDirection);
     diffImages->Modified();
 
-    mitk::DiffusionImageCorrectionFilter<short>::Pointer correctionFilter = mitk::DiffusionImageCorrectionFilter<short>::New();
+    mitk::DiffusionImageCorrectionFilter::Pointer correctionFilter = mitk::DiffusionImageCorrectionFilter::New();
 
     // For Diff. Images: Need to rotate the gradients (works in-place)
     correctionFilter->SetImage(diffImages);
     correctionFilter->CorrectDirections(transM.GetVnlMatrix());
     img = diffImages;
   }
 }
 
 void mitk::RegistrationWrapper::GetTransformation(mitk::Image::Pointer fixedImage, mitk::Image::Pointer movingImage, RidgidTransformType transformation,double* offset, bool useSameOrigin, mitk::Image* mask)
 {
   // Handle the case that fixed/moving image is a DWI image
-  mitk::DiffusionImage<short>* fixedDwi = dynamic_cast<mitk::DiffusionImage<short>*> (fixedImage.GetPointer());
-  mitk::DiffusionImage<short>* movingDwi = dynamic_cast<mitk::DiffusionImage<short>*> (movingImage.GetPointer());
+  mitk::Image* fixedDwi = dynamic_cast<mitk::Image*> (fixedImage.GetPointer());
+  mitk::Image* movingDwi = dynamic_cast<mitk::Image*> (movingImage.GetPointer());
   itk::B0ImageExtractionImageFilter<short,short >::Pointer b0Extraction = itk::B0ImageExtractionImageFilter<short,short>::New();
   offset[0]=offset[1]=offset[2]=0;
-  if (fixedDwi != NULL)
+
+  typedef itk::VectorImage<short, 3> ITKDiffusionImageType;
+  ITKDiffusionImageType::Pointer itkFixedDwiPointer = ITKDiffusionImageType::New();
+  mitk::CastToItkImage(fixedDwi, itkFixedDwiPointer);
+
+  ITKDiffusionImageType::Pointer itkMovingDwiPointer = ITKDiffusionImageType::New();
+  mitk::CastToItkImage(movingDwi, itkMovingDwiPointer);
+
+  mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer fixedGradientDirections =
+    static_cast<mitk::GradientDirectionsProperty*>( fixedDwi->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer();
+
+  mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer movingGradientDirections =
+    static_cast<mitk::GradientDirectionsProperty*>( movingDwi->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer();
+
+  if (fixedGradientDirections.IsNull() || ( fixedGradientDirections->Size() == 0))
   { // Set b0 extraction as fixed image
-    b0Extraction->SetInput(fixedDwi->GetVectorImage());
-    b0Extraction->SetDirections(fixedDwi->GetDirections());
+    b0Extraction->SetInput( itkFixedDwiPointer );
+    b0Extraction->SetDirections(fixedGradientDirections);
     b0Extraction->Update();
     mitk::Image::Pointer tmp = mitk::Image::New();
     tmp->InitializeByItk(b0Extraction->GetOutput());
     tmp->SetVolume(b0Extraction->GetOutput()->GetBufferPointer());
     fixedImage = tmp;
   }
-  if (movingDwi != NULL)
+  if (movingGradientDirections || ( movingGradientDirections->Size() == 0))
   { // Set b0 extraction as moving image
-    b0Extraction->SetInput(movingDwi->GetVectorImage());
-    b0Extraction->SetDirections(movingDwi->GetDirections());
+    b0Extraction->SetInput( itkMovingDwiPointer );
+    b0Extraction->SetDirections(movingGradientDirections);
     b0Extraction->Update();
     mitk::Image::Pointer tmp = mitk::Image::New();
     tmp->InitializeByItk(b0Extraction->GetOutput());
     tmp->SetVolume(b0Extraction->GetOutput()->GetBufferPointer());
     movingImage = tmp;
   }
 
   // align the offsets of the two images. this is done to avoid non-overlapping initialization
   Point3D origin = fixedImage->GetGeometry()->GetOrigin();
   Point3D originMoving = movingImage->GetGeometry()->GetOrigin();
 
   mitk::Image::Pointer tmpImage = movingImage->Clone();
   if (useSameOrigin)
   {
     offset[0] = originMoving[0]-origin[0];
     offset[1] = originMoving[1]-origin[1];
     offset[2] = originMoving[2]-origin[2];
     tmpImage->GetGeometry()->SetOrigin(origin);
   }
 
   // Start registration
   mitk::PyramidImageRegistrationMethod::Pointer registrationMethod = mitk::PyramidImageRegistrationMethod::New();
   registrationMethod->SetFixedImage( fixedImage );
 
   if (mask != NULL)
   {
     registrationMethod->SetFixedImageMask(mask);
     registrationMethod->SetUseFixedImageMask(true);
   }
   else
   {
     registrationMethod->SetUseFixedImageMask(false);
   }
 
   registrationMethod->SetTransformToRigid();
   registrationMethod->SetCrossModalityOn();
 
   registrationMethod->SetMovingImage(tmpImage);
   registrationMethod->Update();
   registrationMethod->GetParameters(transformation); // first three: euler angles, last three translation
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkAdcImageFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkAdcImageFilter.h
index deead178e9..7b7802c3cc 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkAdcImageFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkAdcImageFilter.h
@@ -1,80 +1,80 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 /*===================================================================
 
 This file is based heavily on a corresponding ITK filter.
 
 ===================================================================*/
 #ifndef __itkAdcImageFilter_h_
 #define __itkAdcImageFilter_h_
 
 #include "itkImageToImageFilter.h"
 #include "itkVectorImage.h"
-#include <mitkDiffusionImage.h>
+#include <mitkDiffusionPropertyHelper.h>
 
 namespace itk{
 /** \class AdcImageFilter
  */
 
 template< class TInPixelType, class TOutPixelType >
 class AdcImageFilter :
         public ImageToImageFilter< VectorImage< TInPixelType, 3 >, Image< TOutPixelType, 3 > >
 {
 
 public:
 
     typedef AdcImageFilter Self;
     typedef SmartPointer<Self>                      Pointer;
     typedef SmartPointer<const Self>                ConstPointer;
     typedef ImageToImageFilter< VectorImage< TInPixelType, 3 >, Image< TOutPixelType, 3 > >  Superclass;
-    typedef mitk::DiffusionImage< short >::GradientDirectionType GradientDirectionType;
-    typedef mitk::DiffusionImage< short >::GradientDirectionContainerType::Pointer GradientContainerType;
+    typedef mitk::DiffusionPropertyHelper::GradientDirectionType GradientDirectionType;
+    typedef mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer GradientContainerType;
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     /** Runtime information support. */
     itkTypeMacro(AdcImageFilter, ImageToImageFilter)
 
     typedef typename Superclass::InputImageType InputImageType;
     typedef typename Superclass::OutputImageType OutputImageType;
     typedef typename Superclass::OutputImageRegionType OutputImageRegionType;
 
     itkSetMacro( B_value, double )
     itkSetMacro( GradientDirections, GradientContainerType )
 
     protected:
         AdcImageFilter();
     ~AdcImageFilter() {}
     void PrintSelf(std::ostream& os, Indent indent) const;
 
     void BeforeThreadedGenerateData();
     void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType);
 
     double    m_B_value;
     GradientContainerType m_GradientDirections;
 };
 
 }
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkAdcImageFilter.txx"
 #endif
 
 #endif //__itkAdcImageFilter_h_
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkDwiNormilzationFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkDwiNormilzationFilter.h
index cdb43eec2e..c268bb5e40 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkDwiNormilzationFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkDwiNormilzationFilter.h
@@ -1,100 +1,100 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 /*===================================================================
 
 This file is based heavily on a corresponding ITK filter.
 
 ===================================================================*/
 #ifndef __itkDwiNormilzationFilter_h_
 #define __itkDwiNormilzationFilter_h_
 
 #include "itkImageToImageFilter.h"
 #include "itkVectorImage.h"
-#include <mitkDiffusionImage.h>
 #include <itkLabelStatisticsImageFilter.h>
 #include <itkImageRegionIteratorWithIndex.h>
 #include <itkShiftScaleImageFilter.h>
+#include <mitkDiffusionPropertyHelper.h>
 
 namespace itk{
 /** \class DwiNormilzationFilter
  *  \brief Normalizes the data vectors either using the specified reference value or the voxelwise baseline value.
  */
 
 template< class TInPixelType >
 class DwiNormilzationFilter :
         public ImageToImageFilter< VectorImage< TInPixelType, 3 >, VectorImage< TInPixelType, 3 > >
 {
 
 public:
 
     typedef DwiNormilzationFilter Self;
     typedef SmartPointer<Self>                      Pointer;
     typedef SmartPointer<const Self>                ConstPointer;
     typedef ImageToImageFilter< VectorImage< TInPixelType, 3 >, VectorImage< TInPixelType, 3 > >  Superclass;
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     /** Runtime information support. */
     itkTypeMacro(DwiNormilzationFilter, ImageToImageFilter)
 
     typedef itk::Image< double, 3 > DoubleImageType;
     typedef itk::Image< unsigned char, 3 > UcharImageType;
     typedef itk::Image< unsigned short, 3 > BinImageType;
     typedef itk::Image< TInPixelType, 3 > TInPixelImageType;
     typedef typename Superclass::InputImageType InputImageType;
     typedef typename Superclass::OutputImageType OutputImageType;
     typedef typename Superclass::OutputImageRegionType OutputImageRegionType;
-    typedef mitk::DiffusionImage< short >::GradientDirectionType GradientDirectionType;
-    typedef mitk::DiffusionImage< short >::GradientDirectionContainerType::Pointer GradientContainerType;
+    typedef mitk::DiffusionPropertyHelper::GradientDirectionType GradientDirectionType;
+    typedef mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer GradientContainerType;
     typedef itk::LabelStatisticsImageFilter< TInPixelImageType,BinImageType >  StatisticsFilterType;
     typedef itk::Statistics::Histogram< typename TInPixelImageType::PixelType  > HistogramType;
     typedef typename HistogramType::MeasurementType MeasurementType;
     typedef itk::ShiftScaleImageFilter<TInPixelImageType, DoubleImageType>  ShiftScaleImageFilterType;
 
     itkSetMacro( GradientDirections, GradientContainerType )
     itkSetMacro( ScalingFactor, TInPixelType )
     itkSetMacro( UseGlobalReference, bool )
     itkSetMacro( MaskImage, UcharImageType::Pointer )
     itkSetMacro( Reference, double )
 
     protected:
         DwiNormilzationFilter();
     ~DwiNormilzationFilter() {}
     void PrintSelf(std::ostream& os, Indent indent) const;
 
     void BeforeThreadedGenerateData();
     void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType);
 
     UcharImageType::Pointer m_MaskImage;
     GradientContainerType   m_GradientDirections;
     int                     m_B0Index;
     TInPixelType            m_ScalingFactor;
     bool                    m_UseGlobalReference;
     double                  m_Reference;
 
 };
 
 }
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkDwiNormilzationFilter.txx"
 #endif
 
 #endif //__itkDwiNormilzationFilter_h_
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.h
index dd75de3f14..9c80bb27e4 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.h
@@ -1,123 +1,126 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 /*=========================================================================
 
 Program:   Tensor ToolKit - TTK
 Module:    $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.h $
 Language:  C++
 Date:      $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $
 Version:   $Revision: 68 $
 
 Copyright (c) INRIA 2010. All rights reserved.
 See LICENSE.txt for details.
 
 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.
 
 =========================================================================*/
 #ifndef _itk_ElectrostaticRepulsionDiffusionGradientReductionFilter_h_
 #define _itk_ElectrostaticRepulsionDiffusionGradientReductionFilter_h_
 
 #include <itkImageToImageFilter.h>
 #include <itkVectorImage.h>
 #include <itkPointShell.h>
 
 namespace itk
 {
 
 /**
 * \brief Select subset of the input vectors equally distributed over the sphere using an iterative electrostatic repulsion strategy.   */
 
   template <class TInputScalarType, class TOutputScalarType>
   class ElectrostaticRepulsionDiffusionGradientReductionFilter
     : public ImageToImageFilter<itk::VectorImage<TInputScalarType,3>, itk::VectorImage<TOutputScalarType,3> >
   {
 
   public:
 
     typedef ElectrostaticRepulsionDiffusionGradientReductionFilter Self;
     typedef SmartPointer<Self>                      Pointer;
     typedef SmartPointer<const Self>                ConstPointer;
     typedef ImageToImageFilter< itk::VectorImage<TOutputScalarType,3>, itk::VectorImage<TOutputScalarType,3> >
       Superclass;
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     /** Runtime information support. */
     itkTypeMacro(ElectrostaticRepulsionDiffusionGradientReductionFilter, ImageToImageFilter)
 
     typedef TInputScalarType                         InputScalarType;
     typedef itk::VectorImage<InputScalarType,3>      InputImageType;
     typedef typename InputImageType::PixelType       InputPixelType;
 
     typedef TOutputScalarType                         OutputScalarType;
     typedef itk::VectorImage<OutputScalarType,3>      OutputImageType;
     typedef typename OutputImageType::PixelType       OutputPixelType;
 
     typedef OutputScalarType                          BaselineScalarType;
     typedef BaselineScalarType                        BaselinePixelType;
     typedef typename itk::Image<BaselinePixelType,3>  BaselineImageType;
 
     typedef vnl_vector_fixed< double, 3 >                               GradientDirectionType;
     typedef itk::VectorContainer< unsigned int, GradientDirectionType > GradientDirectionContainerType;
 
     typedef std::vector<unsigned int>           IndicesVector;
     typedef std::map<unsigned int, IndicesVector>     BValueMap;
 
     itkGetMacro(OriginalGradientDirections, GradientDirectionContainerType::Pointer)
     itkSetMacro(OriginalGradientDirections, GradientDirectionContainerType::Pointer)
 
     itkGetMacro(GradientDirections, GradientDirectionContainerType::Pointer)
     itkSetMacro(GradientDirections, GradientDirectionContainerType::Pointer)
 
     IndicesVector GetUsedGradientIndices(){return m_UsedGradientIndices;}
     void SetOriginalBValueMap(BValueMap inp){m_OriginalBValueMap = inp;}
     void SetShellSelectionBValueMap(BValueMap inp){m_InputBValueMap = inp;}
     void SetNumGradientDirections(std::vector<unsigned int> numDirs){m_NumGradientDirections = numDirs;}
 
+
+    void UpdateOutputInformation();
+
   protected:
     ElectrostaticRepulsionDiffusionGradientReductionFilter();
     ~ElectrostaticRepulsionDiffusionGradientReductionFilter() {}
 
     void GenerateData();
     double Costs(); ///< calculates electrostatic energy of current direction set
 
     GradientDirectionContainerType::Pointer m_GradientDirections;   ///< container for the subsampled output gradient directions
     GradientDirectionContainerType::Pointer m_OriginalGradientDirections;   ///< input gradient directions
 
     IndicesVector m_UsedGradientIndices;
     IndicesVector m_UnusedGradientIndices;
     IndicesVector m_BaselineImageIndices;
 
     BValueMap m_OriginalBValueMap;
     BValueMap m_InputBValueMap;
 
     std::vector<unsigned int> m_NumGradientDirections;
   };
 
 
 } // end of namespace
 
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkElectrostaticRepulsionDiffusionGradientReductionFilter.txx"
 #endif
 
 
 #endif
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.txx
index 3b601cdb0a..7253e35b42 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.txx
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.txx
@@ -1,247 +1,261 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 /*=========================================================================
 
 Program:   Tensor ToolKit - TTK
 Module:    $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.txx $
 Language:  C++
 Date:      $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $
 Version:   $Revision: 68 $
 
 Copyright (c) INRIA 2010. All rights reserved.
 See LICENSE.txt for details.
 
 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.
 
 =========================================================================*/
 #ifndef _itk_ElectrostaticRepulsionDiffusionGradientReductionFilter_txx_
 #define _itk_ElectrostaticRepulsionDiffusionGradientReductionFilter_txx_
 #endif
 
 #define _USE_MATH_DEFINES
 
 #include "itkElectrostaticRepulsionDiffusionGradientReductionFilter.h"
 #include <math.h>
 #include <time.h>
 #include <itkImageRegionIterator.h>
 #include <itkImageRegion.h>
 
 namespace itk
 {
 
 template <class TInputScalarType, class TOutputScalarType>
 ElectrostaticRepulsionDiffusionGradientReductionFilter<TInputScalarType, TOutputScalarType>
 ::ElectrostaticRepulsionDiffusionGradientReductionFilter()
 {
     this->SetNumberOfRequiredInputs( 1 );
 }
 
 template <class TInputScalarType, class TOutputScalarType>
 double
 ElectrostaticRepulsionDiffusionGradientReductionFilter<TInputScalarType, TOutputScalarType>
 ::Costs()
 {
     double costs = 2*M_PI;
     for (IndicesVector::iterator it = m_UsedGradientIndices.begin(); it!=m_UsedGradientIndices.end(); ++it)
     {
         for (IndicesVector::iterator it2 = m_UsedGradientIndices.begin(); it2!=m_UsedGradientIndices.end(); ++it2)
             if (it != it2)
             {
                 vnl_vector_fixed<double,3> v1 = m_OriginalGradientDirections->at(*it);
                 vnl_vector_fixed<double,3> v2 = m_OriginalGradientDirections->at(*it2);
 
                 v1.normalize(); v2.normalize();
                 double temp = dot_product(v1,v2);
                 if (temp>1)
                     temp = 1;
                 else if (temp<-1)
                     temp = -1;
 
                 double angle = acos(temp);
 
                 if (angle<costs)
                     costs = angle;
 
                 temp = dot_product(-v1,v2);
                 if (temp>1)
                     temp = 1;
                 else if (temp<-1)
                     temp = -1;
 
                 angle = acos(temp);
                 if (angle<costs)
                     costs = angle;
             }
     }
 
     return costs;
 }
 
 template <class TInputScalarType, class TOutputScalarType>
 void
 ElectrostaticRepulsionDiffusionGradientReductionFilter<TInputScalarType, TOutputScalarType>
 ::GenerateData()
 {
     unsigned int randSeed = time(NULL);
 
     if(m_InputBValueMap.empty() || m_NumGradientDirections.size()!=m_InputBValueMap.size())
         return;
 
     BValueMap manipulatedMap = m_InputBValueMap;
 
     int shellCounter = 0;
     for(BValueMap::iterator it = m_InputBValueMap.begin(); it != m_InputBValueMap.end(); it++ )
     {
         srand(randSeed);
 
         // initialize index vectors
         m_UsedGradientIndices.clear();
         m_UnusedGradientIndices.clear();
 
         if ( it->second.size() <= m_NumGradientDirections[shellCounter] )
         {
             itkWarningMacro( << "current directions: " << it->second.size() << " wanted directions: " << m_NumGradientDirections[shellCounter]);
             m_NumGradientDirections[shellCounter] = it->second.size();
             shellCounter++;
             continue;
         }
         MITK_INFO << "Shell number: " << shellCounter;
 
         unsigned int c=0;
 
         for (unsigned int i=0; i<it->second.size(); i++)
         {
             if (c<m_NumGradientDirections[shellCounter])
                 m_UsedGradientIndices.push_back(it->second.at(i));
             else
                 m_UnusedGradientIndices.push_back(it->second.at(i));
             c++;
         }
 
         double minAngle = Costs();
         double newMinAngle = 0;
 
         MITK_INFO << "minimum angle: " << 180*minAngle/M_PI;
         int stagnationCount = 0;
         int rejectionCount = 0;
         int maxRejections = m_NumGradientDirections[shellCounter] * 1000;
         if (maxRejections<10000)
             maxRejections = 10000;
         int iUsed = 0;
         if (m_UsedGradientIndices.size()>0)
             while ( stagnationCount<1000 && rejectionCount<maxRejections )
             {
                 // make proposal for new gradient configuration by randomly removing one of the currently used directions and instead adding one of the unused directions
                 //int iUsed = rand() % m_UsedGradientIndices.size();
                 int iUnUsed = rand() % m_UnusedGradientIndices.size();
                 int vUsed = m_UsedGradientIndices.at(iUsed);
                 int vUnUsed = m_UnusedGradientIndices.at(iUnUsed);
                 m_UsedGradientIndices.at(iUsed) = vUnUsed;
                 m_UnusedGradientIndices.at(iUnUsed) = vUsed;
 
                 newMinAngle = Costs();          // calculate costs of proposed configuration
                 if (newMinAngle > minAngle)     // accept or reject proposal
                 {
                     MITK_INFO << "minimum angle: " << 180*newMinAngle/M_PI;
 
                     if ( (newMinAngle-minAngle)<0.01 )
                         stagnationCount++;
                     else
                         stagnationCount = 0;
 
                     minAngle = newMinAngle;
                     rejectionCount = 0;
                 }
                 else
                 {
                     rejectionCount++;
                     m_UsedGradientIndices.at(iUsed) = vUsed;
                     m_UnusedGradientIndices.at(iUnUsed) = vUnUsed;
                 }
                 iUsed++;
                 iUsed = iUsed % m_UsedGradientIndices.size();
             }
         manipulatedMap[it->first] = m_UsedGradientIndices;
         shellCounter++;
     }
 
     int vecLength = 0 ;
     for(BValueMap::iterator it = manipulatedMap.begin(); it != manipulatedMap.end(); it++)
         vecLength += it->second.size();
 
     // initialize output image
     typename OutputImageType::Pointer outImage = OutputImageType::New();
     outImage->SetSpacing( this->GetInput()->GetSpacing() );   // Set the image spacing
     outImage->SetOrigin( this->GetInput()->GetOrigin() );     // Set the image origin
     outImage->SetDirection( this->GetInput()->GetDirection() );  // Set the image direction
     outImage->SetLargestPossibleRegion( this->GetInput()->GetLargestPossibleRegion());
     outImage->SetBufferedRegion( this->GetInput()->GetLargestPossibleRegion() );
     outImage->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
     outImage->SetVectorLength( vecLength ); // Set the vector length
     outImage->Allocate();
 
     itk::ImageRegionIterator< OutputImageType > newIt(outImage, outImage->GetLargestPossibleRegion());
     newIt.GoToBegin();
 
     typename InputImageType::Pointer inImage = const_cast<InputImageType*>(this->GetInput(0));
     itk::ImageRegionIterator< InputImageType > oldIt(inImage, inImage->GetLargestPossibleRegion());
     oldIt.GoToBegin();
 
     // initial new value of voxel
     OutputPixelType newVec;
     newVec.SetSize( vecLength );
     newVec.AllocateElements( vecLength );
 
     // generate new pixel values
     while(!newIt.IsAtEnd())
     {
         // init new vector with zeros
         newVec.Fill(0.0);
         InputPixelType oldVec = oldIt.Get();
 
         int index = 0;
         for(BValueMap::iterator it=manipulatedMap.begin(); it!=manipulatedMap.end(); it++)
             for(unsigned int j=0; j<it->second.size(); j++)
             {
                 newVec[index] = oldVec[it->second.at(j)];
                 index++;
             }
         newIt.Set(newVec);
 
         ++newIt;
         ++oldIt;
     }
 
     // set new gradient directions
     m_GradientDirections = GradientDirectionContainerType::New();
     int index = 0;
     for(BValueMap::iterator it = manipulatedMap.begin(); it != manipulatedMap.end(); it++)
         for(unsigned int j = 0; j < it->second.size(); j++)
         {
             m_GradientDirections->InsertElement(index, m_OriginalGradientDirections->at(it->second.at(j)));
             index++;
         }
 
     this->SetNumberOfRequiredOutputs (1);
     this->SetNthOutput (0, outImage);
     MITK_INFO << "...done";
 }
 
+template <class TInputScalarType, class TOutputScalarType>
+void
+ElectrostaticRepulsionDiffusionGradientReductionFilter<TInputScalarType, TOutputScalarType>
+::UpdateOutputInformation()
+{
+  Superclass::UpdateOutputInformation();
 
+  int vecLength = 0 ;
+    for(unsigned int index = 0; index < m_NumGradientDirections.size(); index++)
+    {
+      vecLength += m_NumGradientDirections[index];
+    }
+
+  this->GetOutput()->SetVectorLength( vecLength );
+}
 
 } // end of namespace
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkExtractDwiChannelFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkExtractDwiChannelFilter.h
index 5db210b559..54fcc4e434 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkExtractDwiChannelFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkExtractDwiChannelFilter.h
@@ -1,78 +1,77 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 /*===================================================================
 
 This file is based heavily on a corresponding ITK filter.
 
 ===================================================================*/
 #ifndef __itkExtractDwiChannelFilter_h_
 #define __itkExtractDwiChannelFilter_h_
 
 #include "itkImageToImageFilter.h"
 #include "itkVectorImage.h"
-#include <mitkDiffusionImage.h>
 #include <itkImageRegionIteratorWithIndex.h>
-#include <mitkDiffusionImage.h>
+#include <mitkImage.h>
 
 namespace itk{
 /** \class ExtractDwiChannelFilter
- *  \brief Remove spcified channels from diffusion-weighted image.
+ *  \brief Remove specified channels from diffusion-weighted image.
  */
 
 template< class TInPixelType >
 class ExtractDwiChannelFilter :
         public ImageToImageFilter< VectorImage< TInPixelType, 3 >, Image< TInPixelType, 3 > >
 {
 
 public:
 
     typedef ExtractDwiChannelFilter Self;
     typedef SmartPointer<Self>                      Pointer;
     typedef SmartPointer<const Self>                ConstPointer;
     typedef ImageToImageFilter< VectorImage< TInPixelType, 3 >, Image< TInPixelType, 3 > >  Superclass;
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     /** Runtime information support. */
     itkTypeMacro(ExtractDwiChannelFilter, ImageToImageFilter)
 
     typedef typename Superclass::InputImageType                                             InputImageType;
     typedef typename Superclass::OutputImageType                                            OutputImageType;
     typedef typename Superclass::OutputImageRegionType                                      OutputImageRegionType;
 
     itkSetMacro( ChannelIndex, unsigned int )
 
     protected:
         ExtractDwiChannelFilter();
     ~ExtractDwiChannelFilter() {}
 
     void BeforeThreadedGenerateData();
     void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType );
 
     unsigned int    m_ChannelIndex;
 };
 
 }
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkExtractDwiChannelFilter.txx"
 #endif
 
 #endif //__itkExtractDwiChannelFilter_h_
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkNonLocalMeansDenoisingFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkNonLocalMeansDenoisingFilter.h
index 878443938b..34cf4ef219 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkNonLocalMeansDenoisingFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkNonLocalMeansDenoisingFilter.h
@@ -1,147 +1,145 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #ifndef __itkNonLocalMeansDenoisingFilter_h_
 #define __itkNonLocalMeansDenoisingFilter_h_
 
 #include "itkImageToImageFilter.h"
 #include "itkVectorImage.h"
-#include <mitkDiffusionImage.h>
-
 
 
 namespace itk{
   /** @class NonLocalMeansDenoisingFilter
    * @brief This class denoises a vectorimage according to the non-local means procedure.
    *
    * This Filter needs as an input a diffusion weigthed image, which will be denoised unsing the non-local means principle.
    * An input mask is optional to denoise only inside the mask range. All other voxels will be set to 0.
   */
 
   template< class TPixelType >
   class NonLocalMeansDenoisingFilter :
     public ImageToImageFilter< VectorImage < TPixelType, 3 >, VectorImage < TPixelType, 3 > >
   {
   public:
 
     /** Typedefs */
     typedef NonLocalMeansDenoisingFilter                                                          Self;
     typedef SmartPointer<Self>                                                                    Pointer;
     typedef SmartPointer<const Self>                                                              ConstPointer;
     typedef ImageToImageFilter< VectorImage < TPixelType, 3 >, VectorImage < TPixelType, 3 > >    Superclass;
     typedef typename Superclass::InputImageType                                                   InputImageType;
     typedef typename Superclass::OutputImageType                                                  OutputImageType;
     typedef typename Superclass::OutputImageRegionType                                            OutputImageRegionType;
     typedef Image <TPixelType, 3>                                                                 MaskImageType;
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     /** Runtime information support. */
     itkTypeMacro(NonLocalMeansDenoisingFilter, ImageToImageFilter)
 
     /**
      * @brief Set flag to use joint information
      */
     itkSetMacro(UseJointInformation, bool)
     /**
      * @brief Set the searchradius
      *
      * The searchradius generates a neighborhood of size (2 * searchradius + 1)³.
      * Default is 4.
      */
     itkSetMacro(SearchRadius, int)
     /**
      * @brief Set the comparisonradius
      *
      * The comparisonradius generates neighborhoods of size (2 * comparisonradius +1)³.
      * Default is 1.
      */
     itkSetMacro(ComparisonRadius, int)
     /**
      * @brief Set the variance of the noise
      *
      * The variance of the noise needs to be estimated to use this filter properly.
      * Default is 1.
      */
     itkSetMacro(Variance, double)
     /**
      * @brief Set flag to use a rician adaption
      *
      * If this flag is true the filter uses a method which is optimized for Rician distributed noise.
      */
     itkSetMacro(UseRicianAdaption, bool)
     /**
      * @brief Get the amount of calculated Voxels
      *
      * @return the number of calculated Voxels until yet, useful for the use of a progressbars.
      */
     itkGetMacro(CurrentVoxelCount, unsigned int)
 
 
     /** @brief Set the input image. **/
     void SetInputImage(const InputImageType* image);
     /**
      * @brief Set a denoising mask
      *
      * optional
      *
      * Set a mask to denoise only the masked area, all voxel outside this area will be set to 0.
      */
     void SetInputMask(MaskImageType* mask);
 
   protected:
     NonLocalMeansDenoisingFilter();
     ~NonLocalMeansDenoisingFilter() {}
 
     /**
      * @brief Calculations which need to be done before the denoising starts
      *
      * This method is called before the denoising starts. It calculates the ROI if a mask is used
      * and sets the number of processed voxels to zero.
      */
     void BeforeThreadedGenerateData();
 
     /**
      * @brief Denoising procedure
      *
      * This method calculates the denoised voxelvalue for each voxel in the image in multiple threads.
      * If a mask is used, voxels outside the masked area will be set to 0.
      *
      * @param outputRegionForThread Region to denoise for each thread.
      */
     void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType);
 
 
 
   private:
 
     int m_SearchRadius;                               ///< Radius of the searchblock.
     int m_ComparisonRadius;                           ///< Radius of the comparisonblock.
     bool m_UseJointInformation;                       ///< Flag to use joint information.
     bool m_UseRicianAdaption;                         ///< Flag to use rician adaption.
     unsigned int m_CurrentVoxelCount;                 ///< Amount of processed voxels.
     double m_Variance;                                ///< Estimated noise variance.
     typename MaskImageType::Pointer m_Mask;           ///< Pointer to the mask image.
   };
 }
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkNonLocalMeansDenoisingFilter.txx"
 #endif
 
 #endif //__itkNonLocalMeansDenoisingFilter_h_
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkRemoveDwiChannelFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkRemoveDwiChannelFilter.h
index 7e18435d36..168a92b5f8 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkRemoveDwiChannelFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkRemoveDwiChannelFilter.h
@@ -1,85 +1,84 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 /*===================================================================
 
 This file is based heavily on a corresponding ITK filter.
 
 ===================================================================*/
 #ifndef __itkRemoveDwiChannelFilter_h_
 #define __itkRemoveDwiChannelFilter_h_
 
 #include "itkImageToImageFilter.h"
 #include "itkVectorImage.h"
-#include <mitkDiffusionImage.h>
 #include <itkImageRegionIteratorWithIndex.h>
-#include <mitkDiffusionImage.h>
+#include <mitkDiffusionPropertyHelper.h>
 
 namespace itk{
 /** \class RemoveDwiChannelFilter
  *  \brief Remove spcified channels from diffusion-weighted image.
  */
 
 template< class TInPixelType >
 class RemoveDwiChannelFilter :
         public ImageToImageFilter< VectorImage< TInPixelType, 3 >, VectorImage< TInPixelType, 3 > >
 {
 
 public:
 
     typedef RemoveDwiChannelFilter Self;
     typedef SmartPointer<Self>                      Pointer;
     typedef SmartPointer<const Self>                ConstPointer;
     typedef ImageToImageFilter< VectorImage< TInPixelType, 3 >, VectorImage< TInPixelType, 3 > >  Superclass;
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     /** Runtime information support. */
     itkTypeMacro(RemoveDwiChannelFilter, ImageToImageFilter)
 
     typedef typename Superclass::InputImageType                                             InputImageType;
     typedef typename Superclass::OutputImageType                                            OutputImageType;
     typedef typename Superclass::OutputImageRegionType                                      OutputImageRegionType;
-    typedef typename mitk::DiffusionImage< TInPixelType >::GradientDirectionType            DirectionType;
-    typedef typename mitk::DiffusionImage< TInPixelType >::GradientDirectionContainerType   DirectionContainerType;
+    typedef typename mitk::DiffusionPropertyHelper::GradientDirectionType            DirectionType;
+    typedef typename mitk::DiffusionPropertyHelper::GradientDirectionsContainerType   DirectionContainerType;
 
     void SetChannelIndices( std::vector< unsigned int > indices ){ m_ChannelIndices = indices; }
     void SetDirections( typename DirectionContainerType::Pointer directions ){ m_Directions = directions; }
     typename DirectionContainerType::Pointer GetNewDirections(){ return m_NewDirections; }
 
     protected:
         RemoveDwiChannelFilter();
     ~RemoveDwiChannelFilter() {}
     void PrintSelf(std::ostream& os, Indent indent) const;
 
     void BeforeThreadedGenerateData();
     void ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType id );
 
     std::vector< unsigned int >                 m_ChannelIndices;
     typename DirectionContainerType::Pointer    m_Directions;
     typename DirectionContainerType::Pointer    m_NewDirections;
 };
 
 }
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkRemoveDwiChannelFilter.txx"
 #endif
 
 #endif //__itkRemoveDwiChannelFilter_h_
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.h
index 2bbaf13288..925d1ff77a 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.h
@@ -1,138 +1,146 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 /*=========================================================================
 
 Program:   Tensor ToolKit - TTK
 Module:    $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkResampleDwiImageFilter.h $
 Language:  C++
 Date:      $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $
 Version:   $Revision: 68 $
 
 Copyright (c) INRIA 2010. All rights reserved.
 See LICENSE.txt for details.
 
 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.
 
 =========================================================================*/
 #ifndef _itk_ResampleDwiImageFilter_h_
 #define _itk_ResampleDwiImageFilter_h_
 
 #include <itkImageToImageFilter.h>
 #include <itkVectorImage.h>
 #include <itkPointShell.h>
 
 namespace itk
 {
 
 /**
 * \brief Resample DWI channel by channel.   */
 
 template <class TScalarType>
 class ResampleDwiImageFilter
         : public ImageToImageFilter<itk::VectorImage<TScalarType,3>, itk::VectorImage<TScalarType,3> >
 {
 
 public:
 
     enum Interpolation {
         Interpolate_NearestNeighbour,
         Interpolate_Linear,
         Interpolate_BSpline,
         Interpolate_WindowedSinc
     };
 
     typedef ResampleDwiImageFilter Self;
     typedef SmartPointer<Self>                      Pointer;
     typedef SmartPointer<const Self>                ConstPointer;
     typedef ImageToImageFilter< itk::VectorImage<TScalarType,3>, itk::VectorImage<TScalarType,3> >
     Superclass;
 
     typedef itk::Vector< double, 3 > DoubleVectorType;
     typedef itk::VectorImage<TScalarType,3> DwiImageType;
     typedef itk::Image<TScalarType,3> DwiChannelType;
 
     /** Method for creation through the object factory. */
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     /** Runtime information support. */
     itkTypeMacro(ResampleDwiImageFilter, ImageToImageFilter)
 
     itkSetMacro( Interpolation, Interpolation )
 
     void SetSamplingFactor(DoubleVectorType sampling)
     {
         m_NewSpacing = this->GetInput()->GetSpacing();
         m_NewSpacing[0] /= sampling[0];
         m_NewSpacing[1] /= sampling[1];
         m_NewSpacing[2] /= sampling[2];
         m_NewImageRegion = this->GetInput()->GetLargestPossibleRegion();
         m_NewImageRegion.SetSize(0, m_NewImageRegion.GetSize(0)*sampling[0]);
         m_NewImageRegion.SetSize(1, m_NewImageRegion.GetSize(1)*sampling[1]);
         m_NewImageRegion.SetSize(2, m_NewImageRegion.GetSize(2)*sampling[2]);
     }
     void SetNewSpacing(DoubleVectorType spacing)
     {
         DoubleVectorType oldSpacing = this->GetInput()->GetSpacing();
         DoubleVectorType sampling;
         sampling[0] = oldSpacing[0]/spacing[0];
         sampling[1] = oldSpacing[1]/spacing[1];
         sampling[2] = oldSpacing[2]/spacing[2];
 
         m_NewSpacing = spacing;
         m_NewImageRegion = this->GetInput()->GetLargestPossibleRegion();
         m_NewImageRegion.SetSize(0, m_NewImageRegion.GetSize(0)*sampling[0]);
         m_NewImageRegion.SetSize(1, m_NewImageRegion.GetSize(1)*sampling[1]);
         m_NewImageRegion.SetSize(2, m_NewImageRegion.GetSize(2)*sampling[2]);
     }
     void SetNewImageSize(ImageRegion<3> region)
     {
         ImageRegion<3> oldRegion = this->GetInput()->GetLargestPossibleRegion();
         DoubleVectorType sampling;
         sampling[0] = (double)region.GetSize(0)/oldRegion.GetSize(0);
         sampling[1] = (double)region.GetSize(1)/oldRegion.GetSize(1);
         sampling[2] = (double)region.GetSize(2)/oldRegion.GetSize(2);
 
         m_NewImageRegion = region;
         m_NewSpacing = this->GetInput()->GetSpacing();
         m_NewSpacing[0] /= sampling[0];
         m_NewSpacing[1] /= sampling[1];
         m_NewSpacing[2] /= sampling[2];
     }
 
+    virtual void UpdateOutputInformation();
+
+    virtual void PropagateRequestedRegion(){}
+
+    virtual void PropagateRequestedRegion(itk::DataObject *output){}
+
+    virtual void VerifyInputInformation(){}
+
     protected:
         ResampleDwiImageFilter();
     ~ResampleDwiImageFilter(){}
 
     void GenerateData();
 
     DoubleVectorType m_NewSpacing;
     ImageRegion<3>   m_NewImageRegion;
     Interpolation    m_Interpolation;
 };
 
 
 } // end of namespace
 
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkResampleDwiImageFilter.txx"
 #endif
 
 
 #endif
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.txx
index 516c121104..b317f88f4d 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.txx
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResampleDwiImageFilter.txx
@@ -1,166 +1,176 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 /*=========================================================================
 
 Program:   Tensor ToolKit - TTK
 Module:    $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkResampleDwiImageFilter.txx $
 Language:  C++
 Date:      $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $
 Version:   $Revision: 68 $
 
 Copyright (c) INRIA 2010. All rights reserved.
 See LICENSE.txt for details.
 
 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.
 
 =========================================================================*/
 #ifndef _itk_ResampleDwiImageFilter_txx_
 #define _itk_ResampleDwiImageFilter_txx_
 #endif
 
 #define _USE_MATH_DEFINES
 
 #include "itkResampleDwiImageFilter.h"
 #include <itkImageRegionIterator.h>
 #include <itkImageRegion.h>
 #include <itkResampleImageFilter.h>
 #include <itkBSplineInterpolateImageFunction.h>
 #include <itkNearestNeighborInterpolateImageFunction.h>
 #include <itkLinearInterpolateImageFunction.h>
 #include <itkWindowedSincInterpolateImageFunction.h>
 
 namespace itk
 {
 
 template <class TScalarType>
 ResampleDwiImageFilter<TScalarType>
 ::ResampleDwiImageFilter()
     : m_Interpolation(Interpolate_Linear)
 {
     this->SetNumberOfRequiredInputs( 1 );
 }
 
 template <class TScalarType>
 void
 ResampleDwiImageFilter<TScalarType>
 ::GenerateData()
 {
 //    // initialize output image
 //    itk::Vector< double, 3 > spacing = this->GetInput()->GetSpacing();
 //    spacing[0] /= m_SamplingFactor[0];
 //    spacing[1] /= m_SamplingFactor[1];
 //    spacing[2] /= m_SamplingFactor[2];
 //    ImageRegion<3> region = this->GetInput()->GetLargestPossibleRegion();
 //    region.SetSize(0, region.GetSize(0)*m_SamplingFactor[0]);
 //    region.SetSize(1, region.GetSize(1)*m_SamplingFactor[1]);
 //    region.SetSize(2, region.GetSize(2)*m_SamplingFactor[2]);
 
     itk::Point<double,3> origin = this->GetInput()->GetOrigin();
     origin[0] -= this->GetInput()->GetSpacing()[0]/2;
     origin[1] -= this->GetInput()->GetSpacing()[1]/2;
     origin[2] -= this->GetInput()->GetSpacing()[2]/2;
 
     origin[0] += m_NewSpacing[0]/2;
     origin[1] += m_NewSpacing[1]/2;
     origin[2] += m_NewSpacing[2]/2;
 
     typename DwiImageType::Pointer outImage = DwiImageType::New();
     outImage->SetSpacing( m_NewSpacing );
     outImage->SetOrigin( origin );
     outImage->SetDirection( this->GetInput()->GetDirection() );
     outImage->SetLargestPossibleRegion( m_NewImageRegion );
     outImage->SetBufferedRegion( m_NewImageRegion );
     outImage->SetRequestedRegion( m_NewImageRegion );
     outImage->SetVectorLength( this->GetInput()->GetVectorLength() );
     outImage->Allocate();
 
     typename itk::ResampleImageFilter<DwiChannelType, DwiChannelType>::Pointer resampler = itk::ResampleImageFilter<DwiChannelType, DwiChannelType>::New();
     resampler->SetOutputParametersFromImage(outImage);
 
     switch (m_Interpolation)
     {
     case Interpolate_NearestNeighbour:
     {
         typename itk::NearestNeighborInterpolateImageFunction<DwiChannelType>::Pointer interp = itk::NearestNeighborInterpolateImageFunction<DwiChannelType>::New();
         resampler->SetInterpolator(interp);
         break;
     }
     case Interpolate_Linear:
     {
         typename itk::LinearInterpolateImageFunction<DwiChannelType>::Pointer interp = itk::LinearInterpolateImageFunction<DwiChannelType>::New();
         resampler->SetInterpolator(interp);
         break;
     }
     case Interpolate_BSpline:
     {
         typename itk::BSplineInterpolateImageFunction<DwiChannelType>::Pointer interp = itk::BSplineInterpolateImageFunction<DwiChannelType>::New();
         resampler->SetInterpolator(interp);
         break;
     }
     case Interpolate_WindowedSinc:
     {
         typename itk::WindowedSincInterpolateImageFunction<DwiChannelType, 3>::Pointer interp = itk::WindowedSincInterpolateImageFunction<DwiChannelType, 3>::New();
         resampler->SetInterpolator(interp);
         break;
     }
     default:
     {
         typename itk::LinearInterpolateImageFunction<DwiChannelType>::Pointer interp = itk::LinearInterpolateImageFunction<DwiChannelType>::New();
         resampler->SetInterpolator(interp);
     }
     }
 
     for (unsigned int i=0; i<this->GetInput()->GetVectorLength(); i++)
     {
         typename DwiChannelType::Pointer channel = DwiChannelType::New();
         channel->SetSpacing( this->GetInput()->GetSpacing() );
         channel->SetOrigin( this->GetInput()->GetOrigin() );
         channel->SetDirection( this->GetInput()->GetDirection() );
         channel->SetLargestPossibleRegion( this->GetInput()->GetLargestPossibleRegion() );
         channel->SetBufferedRegion( this->GetInput()->GetLargestPossibleRegion() );
         channel->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
         channel->Allocate();
 
         ImageRegionIterator<DwiChannelType> it(channel, channel->GetLargestPossibleRegion());
         while(!it.IsAtEnd())
         {
             typename DwiImageType::PixelType pix = this->GetInput()->GetPixel(it.GetIndex());
             it.Set(pix[i]);
             ++it;
         }
 
         resampler->SetInput(channel);
         resampler->Update();
         channel = resampler->GetOutput();
 
         ImageRegionIterator<DwiImageType> it2(outImage, outImage->GetLargestPossibleRegion());
         while(!it2.IsAtEnd())
         {
             typename DwiImageType::PixelType pix = it2.Get();
             pix[i] = channel->GetPixel(it2.GetIndex());
             it2.Set(pix);
             ++it2;
         }
     }
 
     this->SetNthOutput(0, outImage);
 }
 
+template <class TScalarType>
+void
+ResampleDwiImageFilter<TScalarType>
+::UpdateOutputInformation()
+{
+  // Calls to superclass updateoutputinformation
+  //Superclass::UpdateOutputInformation();
 
+  this->GetOutput()->SetSpacing(m_NewSpacing);
+  this->GetOutput()->SetLargestPossibleRegion(m_NewImageRegion);
+}
 
 } // end of namespace
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResidualImageFilter.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResidualImageFilter.txx
index 49715a1226..fb1c06a99a 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResidualImageFilter.txx
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkResidualImageFilter.txx
@@ -1,285 +1,285 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 /*=========================================================================
 
 Program:   Tensor ToolKit - TTK
 Module:    $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkTensorImageToDiffusionImageFilter.txx $
 Language:  C++
 Date:      $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $
 Version:   $Revision: 68 $
 
 Copyright (c) INRIA 2010. All rights reserved.
 See LICENSE.txt for details.
 
 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.
 
 =========================================================================*/
 #ifndef _itk_ResidualImageFilter_txx_
 #define _itk_ResidualImageFilter_txx_
 #endif
 
 #include "itkResidualImageFilter.h"
 #include <mitkCommon.h>
 #include <cmath>
 
 namespace itk
 {
 
 
 
 
   template <class TInputScalarType, class TOutputScalarType>
   void
   ResidualImageFilter<TInputScalarType, TOutputScalarType>
   ::GenerateData()
   {
     typename InputImageType::SizeType size = this->GetInput()->GetLargestPossibleRegion().GetSize();
     typename InputImageType::SizeType size2 = m_SecondDiffusionImage->GetLargestPossibleRegion().GetSize();
 
     if(size != size2)
     {
       MITK_ERROR << "Sizes do not match";
       return;
     }
 
     // Initialize output image
     typename OutputImageType::Pointer outputImage =
         static_cast< OutputImageType * >(this->ProcessObject::GetPrimaryOutput());
 
     outputImage->SetSpacing( this->GetInput()->GetSpacing() );   // Set the image spacing
     outputImage->SetOrigin( this->GetInput()->GetOrigin() );     // Set the image origin
     outputImage->SetDirection( this->GetInput()->GetDirection() );  // Set the image direction
     outputImage->SetRegions( this->GetInput()->GetLargestPossibleRegion() );
     outputImage->Allocate();
     outputImage->FillBuffer(0.0);
 
 
 
 
 
     std::vector< std::vector<double> > residuals;
 
     // per slice, per volume
     std::vector< std::vector <std::vector<double> > > residualsPerSlice;
 
     // Detrmine number of B0 images
     int numberB0=0;
     for(unsigned int i=0; i<m_Gradients->Size(); i++)
     {
       GradientDirectionType grad = m_Gradients->ElementAt(i);
 
       if(fabs(grad[0]) < 0.001 && fabs(grad[1]) < 0.001 && fabs(grad[2]) < 0.001)
       {
         numberB0++;
       }
     }
 
     residuals.resize(this->GetInput()->GetVectorLength()-numberB0);
 
     // Calculate the standard residual image and for each volume put all residuals in a vector
     for(unsigned int z=0; z<size[2]; z++)
     {
       std::vector< std::vector<double> > sliceResiduals; // residuals per volume for this slice
       sliceResiduals.resize(this->GetInput()->GetVectorLength()-numberB0);
 
       for(unsigned int y=0; y<size[1]; y++)
       {
         for(unsigned int x=0; x<size[0]; x++)
         {
 
           // Check if b0 exceeds threshold
           itk::Index<3> ix;
           ix[0] = x;
           ix[1] = y;
           ix[2] = z;
 
 
           typename InputImageType::PixelType p1 = this->GetInput()->GetPixel(ix);
           typename InputImageType::PixelType p2 = m_SecondDiffusionImage->GetPixel(ix);
 
           if(p1.GetSize() != p2.GetSize())
           {
             MITK_ERROR << "Vector sizes do not match";
             return;
           }
 
 
           if(p1.GetElement(m_B0Index) <= m_B0Threshold)
           {
             continue;
           }
 
 
 
           double res = 0;
           int shift = 0; // correction for the skipped B0 images
 
           for(unsigned int i = 0; i<p1.GetSize(); i++)
           {
 
 
 
             GradientDirectionType grad = m_Gradients->ElementAt(i);
             if(!(fabs(grad[0]) < 0.001 && fabs(grad[1]) < 0.001 && fabs(grad[2]) < 0.001))
             {
               double val1 = (double)p1.GetElement(i);
               double val2 = (double)p2.GetElement(i);
 
               res += abs(val1-val2);
 
               residuals[i-shift].push_back(val1-val2);
               sliceResiduals[i-shift].push_back(val1-val2);
 
             }
             else
             {
               shift++;
             }
 
 
 
           }
 
 
           res = res/p1.GetSize();
 
           outputImage->SetPixel(ix, res);
 
         }
       }
 
       residualsPerSlice.push_back(sliceResiduals);
     }
 
 
 
 
 
     // for each dw volume: sort the the measured residuals (for each voxel) to enable determining Q1 and Q3; calculate means
     // determine percentage of errors as described in QUALITY ASSESSMENT THROUGH ANALYSIS OF RESIDUALS OF DIFFUSION IMAGE FITTING
     // Leemans et al 2008
 
     double q1,q3, median;
     std::vector< std::vector<double> >::iterator it = residuals.begin();
     while(it != residuals.end())
     {
       std::vector<double> res = *it;
 
       // sort
       std::sort(res.begin(), res.end());
 
       q1 = res[0.25*res.size()];
       m_Q1.push_back(q1);
       q3 = res[0.75*res.size()];
       m_Q3.push_back(q3);
 
 
 
       median = res[0.5*res.size()];
       double iqr = q3-q1;
       double outlierThreshold = median + 1.5*iqr;
       double numberOfOutliers = 0.0;
 
       std::vector<double>::iterator resIt = res.begin();
       double mean = 0;
       while(resIt != res.end())
       {
         double f = *resIt;
         if(f>outlierThreshold)
         {
           numberOfOutliers++;
         }
         mean += f;
         ++resIt;
       }
 
       double percOfOutliers = 100 * numberOfOutliers / res.size();
       m_PercentagesOfOutliers.push_back(percOfOutliers);
 
       mean /= res.size();
       m_Means.push_back(mean);
 
       ++it;
     }
 
 
 
     // Calculate for each slice the number of outliers per volume(dw volume)
     std::vector< std::vector <std::vector<double> > >::iterator sliceIt = residualsPerSlice.begin();
 
     while(sliceIt != residualsPerSlice.end())
     {
       std::vector< std::vector<double> > currentSlice = *sliceIt;
       std::vector<double> percentages;
 
       std::vector< std::vector<double> >::iterator volIt = currentSlice.begin();
       while(volIt != currentSlice.end())
       {
 
 
         std::vector<double> currentVolume = *volIt;
 
         //sort
         std::sort(currentVolume.begin(), currentVolume.end());
 
 
 
         q1 = currentVolume[0.25*currentVolume.size()];
         q3 = currentVolume[0.75*currentVolume.size()];
         median = currentVolume[0.5*currentVolume.size()];
         double iqr = q3-q1;
         double outlierThreshold = median + 1.5*iqr;
         double numberOfOutliers = 0.0;
 
         std::vector<double>::iterator resIt = currentVolume.begin();
-        double mean;
+        double mean(0.0);
         while(resIt != currentVolume.end())
         {
           double f = *resIt;
           if(f>outlierThreshold)
           {
             numberOfOutliers++;
           }
           mean += f;
           ++resIt;
        }
 
        double percOfOutliers = 100 * numberOfOutliers / currentVolume.size();
        percentages.push_back(percOfOutliers);
 
        ++volIt;
      }
 
      m_OutliersPerSlice.push_back(percentages);
 
 
 
       ++sliceIt;
     }
 
 
 
 
   }
 
 
 
 
 
 
 } // end of namespace
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorDerivedMeasurementsFilter.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorDerivedMeasurementsFilter.txx
index 34cb1f08cb..ad119b1a73 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorDerivedMeasurementsFilter.txx
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorDerivedMeasurementsFilter.txx
@@ -1,145 +1,145 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #ifndef __itkTensorDerivedMeasurementsFilter_txx
 #define __itkTensorDerivedMeasurementsFilter_txx
 
 
-
+#include <itkImageRegionIterator.h>
 
 
 namespace itk {
 
   template <class TPixel>
       TensorDerivedMeasurementsFilter<TPixel>::TensorDerivedMeasurementsFilter() : m_Measure(AD)
   {
   }
 
   template <class TPixel>
       void TensorDerivedMeasurementsFilter<TPixel>::GenerateData()
   {
     typename TensorImageType::Pointer tensorImage = static_cast< TensorImageType * >( this->ProcessObject::GetInput(0) );
     typedef ImageRegionConstIterator< TensorImageType > TensorImageIteratorType;
     typedef ImageRegionIterator< OutputImageType > OutputImageIteratorType;
 
 
     typename OutputImageType::Pointer outputImage =
         static_cast< OutputImageType * >(this->ProcessObject::GetPrimaryOutput());
 
     typename TensorImageType::RegionType region = tensorImage->GetLargestPossibleRegion();
 
 
     outputImage->SetSpacing( tensorImage->GetSpacing() );   // Set the image spacing
     outputImage->SetOrigin( tensorImage->GetOrigin() );     // Set the image origin
     outputImage->SetDirection( tensorImage->GetDirection() );  // Set the image direction
     outputImage->SetRegions( tensorImage->GetLargestPossibleRegion());
     outputImage->Allocate();
 
     TensorImageIteratorType tensorIt(tensorImage, tensorImage->GetLargestPossibleRegion());
     OutputImageIteratorType outputIt(outputImage, outputImage->GetLargestPossibleRegion());
 
     tensorIt.GoToBegin();
     outputIt.GoToBegin();
 
     while(!tensorIt.IsAtEnd() && !outputIt.IsAtEnd()){
 
       TensorType tensor = tensorIt.Get();
 
       switch(m_Measure)
       {
       case FA:
         {
           TPixel diffusionIndex = tensor.GetFractionalAnisotropy();
           outputIt.Set(diffusionIndex);
           break;
         }
       case RA:
         {
           TPixel diffusionIndex = tensor.GetRelativeAnisotropy();
           outputIt.Set(diffusionIndex);
           break;
         }
       case AD:
         {
           // eigenvalues are sorted in ascending order by default because the
           // itk::SymmetricEigenAnalysis defaults are not touched in the tensor implementation
           typename TensorType::EigenValuesArrayType evs;
           tensor.ComputeEigenValues(evs);
           outputIt.Set(evs[2]);
           break;
         }
       case RD:
         {
           // eigenvalues are sorted in ascending order by default because the
           // itk::SymmetricEigenAnalysis defaults are not touched in the tensor implementation
           typename TensorType::EigenValuesArrayType evs;
           tensor.ComputeEigenValues(evs);
           outputIt.Set((evs[0]+evs[1])/2.0);
 
           break;
         }
       case CA:
         {
           // eigenvalues are sorted in ascending order by default because the
           // itk::SymmetricEigenAnalysis defaults are not touched in the tensor implementation
           typename TensorType::EigenValuesArrayType evs;
           tensor.ComputeEigenValues(evs);
           if (evs[2] == 0)
           {
             outputIt.Set(0);
             break;
           }
           outputIt.Set(1.0-(evs[0]+evs[1])/(2.0*evs[2]));
           break;
         }
       case L2:
         {
           // eigenvalues are sorted in ascending order by default because the
           // itk::SymmetricEigenAnalysis defaults are not touched in the tensor implementation
           typename TensorType::EigenValuesArrayType evs;
           tensor.ComputeEigenValues(evs);
           outputIt.Set(evs[1]);
           break;
         }
       case L3:
         {
           // eigenvalues are sorted in ascending order by default because the
           // itk::SymmetricEigenAnalysis defaults are not touched in the tensor implementation
           typename TensorType::EigenValuesArrayType evs;
           tensor.ComputeEigenValues(evs);
           outputIt.Set(evs[0]);
           break;
         }
       case MD:
         {
           typename TensorType::EigenValuesArrayType evs;
           tensor.ComputeEigenValues(evs);
           outputIt.Set((evs[0]+evs[1]+evs[2])/3.0);
           break;
         }
       }
 
       ++tensorIt;
       ++outputIt;
     }
 
 
   }
 
 
 }
 
 #endif // __itkTensorDerivedMeasurements_txx
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.h b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.h
index cbed2d792b..b588be572a 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.h
@@ -1,168 +1,171 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 /*=========================================================================
 
 Program:   Tensor ToolKit - TTK
 Module:    $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkTensorImageToDiffusionImageFilter.h $
 Language:  C++
 Date:      $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $
 Version:   $Revision: 68 $
 
 Copyright (c) INRIA 2010. All rights reserved.
 See LICENSE.txt for details.
 
 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.
 
 =========================================================================*/
 #ifndef _itk_TensorImageToDiffusionImageFilter_h_
 #define _itk_TensorImageToDiffusionImageFilter_h_
 
 #include "itkImageToImageFilter.h"
 
 #include <itkDiffusionTensor3D.h>
 #include <itkVectorContainer.h>
 
 namespace itk
 {
 
   template <class TInputScalarType, class TOutputScalarType>
   class TensorImageToDiffusionImageFilter
     : public ImageToImageFilter<itk::Image<itk::DiffusionTensor3D<TInputScalarType>,3>, itk::VectorImage<TOutputScalarType,3> >
   {
 
   public:
 
     typedef TInputScalarType                          InputScalarType;
     typedef itk::DiffusionTensor3D<InputScalarType>   InputPixelType;
     typedef itk::Image<InputPixelType,3>              InputImageType;
     typedef typename InputImageType::RegionType       InputImageRegionType;
 
     typedef TOutputScalarType                         OutputScalarType;
     typedef itk::VectorImage<OutputScalarType,3>      OutputImageType;
     typedef typename OutputImageType::PixelType       OutputPixelType;
     typedef typename OutputImageType::RegionType      OutputImageRegionType;
 
     typedef OutputScalarType                          BaselineScalarType;
     typedef BaselineScalarType                        BaselinePixelType;
     typedef typename itk::Image<BaselinePixelType,3>  BaselineImageType;
     typedef typename BaselineImageType::RegionType    BaselineImageRegionType;
 
     typedef itk::Image< short, 3>                     MaskImageType;
     typedef MaskImageType::RegionType                  MaskImageRegionType;
 
     typedef TensorImageToDiffusionImageFilter Self;
     typedef ImageToImageFilter<InputImageType, OutputImageType> Superclass;
 
     typedef SmartPointer<Self> Pointer;
     typedef SmartPointer<const Self> ConstPointer;
 
     itkTypeMacro (TensorImageToDiffusionImageFilter, ImageToImageFilter);
 
     itkStaticConstMacro (ImageDimension, unsigned int,
       OutputImageType::ImageDimension);
 
     itkFactorylessNewMacro(Self)
     itkCloneMacro(Self)
 
     typedef vnl_vector_fixed<double,3>    GradientType;
     typedef VectorContainer<unsigned int, GradientType> GradientListType;
     typedef GradientListType::Pointer     GradientListPointerType;
 
     /** Manually Set/Get a list of gradients */
     void SetGradientList(const GradientListPointerType list)
     {
       m_GradientList = list;
       this->Modified();
     }
     GradientListPointerType GetGradientList(void) const
     {return m_GradientList;}
 
 
     void SetBValue( const double& bval)
     { m_BValue = bval; }
 
     void SetMaskImage( MaskImageType::Pointer maskimage )
     {
       m_MaskImage = maskimage;
     }
 
 
     /**
      * @brief Set an external baseline image for signal generation (optional)
      *
      * An option to enforce a specific baseline image. If none provided (default) the filter uses
      * the itk::TensorToL2NormImageFilter to generate the modelled baseline image.
      */
     void SetExternalBaselineImage( typename BaselineImageType::Pointer bimage)
     {
       m_BaselineImage = bimage;
     }
 
     itkSetMacro(Min, OutputScalarType);
     itkSetMacro(Max, OutputScalarType);
 
 
   protected:
     TensorImageToDiffusionImageFilter()
     {
       m_BValue = 1.0;
       m_BaselineImage = 0;
       m_Min = 0.0;
       m_Max = 10000.0;
     }
 
     virtual ~TensorImageToDiffusionImageFilter(){}
 
     void PrintSelf (std::ostream& os, Indent indent) const
     {
       Superclass::PrintSelf (os, indent);
     }
 
     virtual void BeforeThreadedGenerateData( void );
 
     virtual void ThreadedGenerateData( const
       OutputImageRegionType &outputRegionForThread, ThreadIdType);
 
     //void GenerateData();
 
-    GradientListPointerType              m_GradientList;
+    virtual void UpdateOutputInformation();
+
+
+  private:
+
+    TensorImageToDiffusionImageFilter (const Self&);
+    void operator=(const Self&);
+
+    GradientListType::Pointer            m_GradientList;
     double                               m_BValue;
     typename BaselineImageType::Pointer  m_BaselineImage;
 
     OutputScalarType                     m_Min;
     OutputScalarType                     m_Max;
 
     MaskImageType::Pointer               m_MaskImage;
 
-  private:
-
-    TensorImageToDiffusionImageFilter (const Self&);
-    void operator=(const Self&);
-
   };
 
 
 } // end of namespace
 
 
 #ifndef ITK_MANUAL_INSTANTIATION
 #include "itkTensorImageToDiffusionImageFilter.txx"
 #endif
 
 
 #endif
diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.txx
index e812dfb51a..67a9b355d2 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.txx
+++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/itkTensorImageToDiffusionImageFilter.txx
@@ -1,235 +1,244 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 /*=========================================================================
    2
    3 Program:   Tensor ToolKit - TTK
    4 Module:    $URL: svn://scm.gforge.inria.fr/svn/ttk/trunk/Algorithms/itkTensorImageToDiffusionImageFilter.txx $
    5 Language:  C++
    6 Date:      $Date: 2010-06-07 13:39:13 +0200 (Mo, 07 Jun 2010) $
    7 Version:   $Revision: 68 $
    8
    9 Copyright (c) INRIA 2010. All rights reserved.
   10 See LICENSE.txt for details.
   11
   12 This software is distributed WITHOUT ANY WARRANTY; without even
   13 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
   14 PURPOSE.  See the above copyright notices for more information.
   15
   16 =========================================================================*/
 #ifndef _itk_TensorImageToDiffusionImageFilter_txx_
 #define _itk_TensorImageToDiffusionImageFilter_txx_
 #endif
 
 #include "itkTensorImageToDiffusionImageFilter.h"
 #include "itkTensorToL2NormImageFilter.h"
 #include "itkRescaleIntensityImageFilter.h"
 #include <itkImageRegionIterator.h>
 #include <itkImageRegionConstIterator.h>
 
 namespace itk
 {
 
 template <class TInputScalarType, class TOutputScalarType>
 void
 TensorImageToDiffusionImageFilter<TInputScalarType, TOutputScalarType>
 ::BeforeThreadedGenerateData()
 {
 
   if( m_GradientList->Size()==0 )
   {
     throw itk::ExceptionObject (__FILE__,__LINE__,"Error: gradient list is empty, cannot generate DWI.");
   }
 
   if( m_BaselineImage.IsNull() )
   {
     // create a B0 image by taking the norm of the tensor field * scale:
     typedef itk::TensorToL2NormImageFilter<InputImageType, itk::Image<InputScalarType,3> >
         TensorToL2NormFilterType;
 
     typename TensorToL2NormFilterType::Pointer myFilter1 = TensorToL2NormFilterType::New();
     myFilter1->SetInput (this->GetInput());
 
     try
     {
       myFilter1->Update();
     }
     catch (itk::ExceptionObject &e)
     {
       std::cerr << e;
       return;
     }
 
     typename itk::RescaleIntensityImageFilter< itk::Image<InputScalarType,3>, BaselineImageType>::Pointer rescaler=
         itk::RescaleIntensityImageFilter<itk::Image<InputScalarType,3>, BaselineImageType>::New();
 
     rescaler->SetOutputMinimum ( m_Min );
     rescaler->SetOutputMaximum ( m_Max );
     rescaler->SetInput ( myFilter1->GetOutput() );
     try
     {
       rescaler->Update();
     }
     catch (itk::ExceptionObject &e)
     {
       std::cerr << e;
       return;
     }
 
     m_BaselineImage = rescaler->GetOutput();
   }
 
   typename OutputImageType::Pointer outImage = OutputImageType::New();
   outImage->SetSpacing( this->GetInput()->GetSpacing() );   // Set the image spacing
   outImage->SetOrigin( this->GetInput()->GetOrigin() );     // Set the image origin
   outImage->SetDirection( this->GetInput()->GetDirection() );  // Set the image direction
   outImage->SetLargestPossibleRegion( this->GetInput()->GetLargestPossibleRegion());
   outImage->SetBufferedRegion( this->GetInput()->GetLargestPossibleRegion() );
   outImage->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
   outImage->SetVectorLength(m_GradientList->Size());
   outImage->Allocate();
 
   this->SetNumberOfRequiredOutputs (1);
   this->SetNthOutput (0, outImage);
 
 }
 
 template <class TInputScalarType, class TOutputScalarType>
 void TensorImageToDiffusionImageFilter<TInputScalarType, TOutputScalarType>
 ::ThreadedGenerateData (const OutputImageRegionType &outputRegionForThread, ThreadIdType threadId )
 {
   typedef ImageRegionIterator<OutputImageType>      IteratorOutputType;
   typedef ImageRegionConstIterator<InputImageType>  IteratorInputType;
   typedef ImageRegionConstIterator<BaselineImageType>  IteratorBaselineType;
 
   unsigned long numPixels = outputRegionForThread.GetNumberOfPixels();
   unsigned long step = numPixels/100;
   unsigned long progress = 0;
 
   IteratorOutputType itOut (this->GetOutput(), outputRegionForThread);
   IteratorInputType  itIn (this->GetInput(), outputRegionForThread);
   IteratorBaselineType itB0 (m_BaselineImage, outputRegionForThread);
 
   typedef ImageRegionConstIterator< MaskImageType >   IteratorMaskImageType;
   IteratorMaskImageType itMask;
 
   if( m_MaskImage.IsNotNull() )
   {
     itMask = IteratorMaskImageType( m_MaskImage, outputRegionForThread);
     itMask.GoToBegin();
   }
 
   if( threadId==0 )
   {
     this->UpdateProgress (0.0);
   }
 
   while(!itIn.IsAtEnd())
   {
 
     if( this->GetAbortGenerateData() )
     {
       throw itk::ProcessAborted(__FILE__,__LINE__);
     }
 
     InputPixelType T = itIn.Get();
 
     BaselinePixelType b0 = itB0.Get();
 
     OutputPixelType out;
     out.SetSize(m_GradientList->Size());
     out.Fill(0);
 
     short maskvalue = 1;
     if( m_MaskImage.IsNotNull() )
     {
       maskvalue = itMask.Get();
       ++itMask;
     }
 
     std::vector<unsigned int> b0_indices;
     if( b0 > 0)
     {
       for( unsigned int i=0; i<m_GradientList->Size(); i++)
       {
         GradientType g = m_GradientList->at(i);
 
         // normalize vector so the following computations work
         const double twonorm = g.two_norm();
         if( twonorm < vnl_math::eps )
         {
           b0_indices.push_back(i);
           continue;
         }
 
         GradientType gn = g.normalize();
 
         InputPixelType S;
         S[0] = gn[0]*gn[0];
         S[1] = gn[1]*gn[0];
         S[2] = gn[2]*gn[0];
         S[3] = gn[1]*gn[1];
         S[4] = gn[2]*gn[1];
         S[5] = gn[2]*gn[2];
 
         const double res =
                 T[0]*S[0] +
             2 * T[1]*S[1] +     T[3]*S[3] +
             2 * T[2]*S[2] + 2 * T[4]*S[4] + T[5]*S[5];
 
         // check for corrupted tensor
         if (res>=0)
         {
           // estimate the bvalue from the base value and the norm of the gradient
           //   - because of this estimation the vector have to be normalized beforehand
           //     otherwise the modelled signal is wrong ( i.e. not scaled properly )
           const double bval = m_BValue * twonorm * twonorm;
           out[i] = static_cast<OutputScalarType>( maskvalue * 1.0 * b0 * exp ( -1.0 * bval * res ) );
         }
       }
     }
 
     for(unsigned int idx = 0; idx < b0_indices.size(); idx++ )
     {
       out[b0_indices.at(idx)] = b0;
     }
 
 
     itOut.Set(out);
 
     if( threadId==0 && step>0)
     {
       if( (progress%step)==0 )
       {
         this->UpdateProgress ( double(progress)/double(numPixels) );
       }
     }
 
     ++progress;
     ++itB0;
     ++itIn;
     ++itOut;
 
   }
 
   if( threadId==0 )
   {
     this->UpdateProgress (1.0);
   }
 }
 
+template <class TInputScalarType, class TOutputScalarType>
+void
+TensorImageToDiffusionImageFilter<TInputScalarType, TOutputScalarType>
+::UpdateOutputInformation()
+{
+  // Calls to superclass updateoutputinformation
+  Superclass::UpdateOutputInformation();
 
+  this->GetOutput()->SetVectorLength( m_GradientList->size() );
+}
 
 } // end of namespace
diff --git a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReader.cpp b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReader.cpp
index b4fb13c110..93dc5802af 100644
--- a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReader.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReader.cpp
@@ -1,306 +1,311 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkDiffusionDICOMFileReader.h"
 
 #include "mitkDiffusionDICOMFileReaderHelper.h"
 
 #include "mitkDiffusionHeaderSiemensDICOMFileReader.h"
 #include "mitkDiffusionHeaderSiemensMosaicDICOMFileReader.h"
 #include "mitkDiffusionHeaderGEDICOMFileReader.h"
 #include "mitkDiffusionHeaderPhilipsDICOMFileReader.h"
+#include <mitkDiffusionPropertyHelper.h>
+#include <mitkITKImageImport.h>
 
 #include "mitkStringProperty.h"
+#include <mitkImageCast.h>
 
 static void PerformHeaderAnalysis( mitk::DiffusionHeaderDICOMFileReader::DICOMHeaderListType headers )
 {
   unsigned int images = headers.size();
 
   unsigned int unweighted_images = 0;
   unsigned int weighted_images = 0;
 
   mitk::DiffusionHeaderDICOMFileReader::DICOMHeaderListType::const_iterator c_iter = headers.begin();
   while( c_iter != headers.end() )
   {
     const mitk::DiffusionImageDICOMHeaderInformation h = *c_iter;
     if( h.baseline ) unweighted_images++;
     if( h.b_value > 0 ) weighted_images++;
 
     ++c_iter;
   }
 
   MITK_INFO << "  :: Analyzed volumes " << images  << "\n"
             << "  :: \t"<< unweighted_images << " b = 0" << "\n"
             << "  :: \t"<< weighted_images << " b > 0";
 }
 
 mitk::DiffusionDICOMFileReader::DiffusionDICOMFileReader()
 {
 
 }
 
 mitk::DiffusionDICOMFileReader::~DiffusionDICOMFileReader()
 {
 
 }
 
 bool mitk::DiffusionDICOMFileReader
 ::LoadImages()
 {
   unsigned int numberOfOutputs = this->GetNumberOfOutputs();
   bool success = true;
 
   for(unsigned int o = 0; o < numberOfOutputs; ++o)
   {
     success &= this->LoadSingleOutputImage( this->m_OutputHeaderContainer.at(o),
                                             this->InternalGetOutput(o), this->m_IsMosaicData.at(o) );
   }
 
   return success;
 }
 
 bool mitk::DiffusionDICOMFileReader
 ::LoadSingleOutputImage( DiffusionHeaderDICOMFileReader::DICOMHeaderListType retrievedHeader,
                          DICOMImageBlockDescriptor& block, bool is_mosaic)
 {
   // prepare data reading
   DiffusionDICOMFileReaderHelper helper;
   DiffusionDICOMFileReaderHelper::VolumeFileNamesContainer filenames;
 
   const DICOMImageFrameList& frames = block.GetImageFrameList();
   int numberOfDWImages = block.GetIntProperty("timesteps", 1);
 
   int numberOfFramesPerDWImage = frames.size() / numberOfDWImages;
 
   assert( int( double((double) frames.size() / (double) numberOfDWImages)) == numberOfFramesPerDWImage );
   for( int idx = 0; idx < numberOfDWImages; idx++ )
   {
     std::vector< std::string > FileNamesPerVolume;
 
     DICOMImageFrameList::const_iterator timeStepStart = frames.begin() + idx * numberOfFramesPerDWImage;
     DICOMImageFrameList::const_iterator timeStepEnd   = frames.begin() + (idx+1) * numberOfFramesPerDWImage;
     for (DICOMImageFrameList::const_iterator frameIter = timeStepStart;
          frameIter != timeStepEnd;
          ++frameIter)
     {
       FileNamesPerVolume.push_back( (*frameIter)->Filename );
     }
 
     filenames.push_back( FileNamesPerVolume );
   }
 
   // TODO : only prototyping to test loading of diffusion images
   // we need some solution for the different types
-  typedef mitk::DiffusionImage<short> DiffusionImageType;
-  DiffusionImageType::Pointer output_image = DiffusionImageType::New();
+  mitk::Image::Pointer output_image = mitk::Image::New();
 
-  DiffusionImageType::GradientDirectionContainerType::Pointer directions =
-      DiffusionImageType::GradientDirectionContainerType::New();
+  mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer directions =
+      mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::New();
 
 
   double max_bvalue = 0;
   for( int idx = 0; idx < numberOfDWImages; idx++ )
   {
     DiffusionImageDICOMHeaderInformation header = retrievedHeader.at(idx);
 
     if( max_bvalue < header.b_value )
       max_bvalue = header.b_value;
   }
 
   // normalize the retrieved gradient directions according to the set b-value (maximal one)
   for( int idx = 0; idx < numberOfDWImages; idx++ )
   {
     DiffusionImageDICOMHeaderInformation header = retrievedHeader.at(idx);
-    DiffusionImageType::GradientDirectionType grad = header.g_vector;
+    mitk::DiffusionPropertyHelper::GradientDirectionType grad = header.g_vector;
 
     grad.normalize();
     grad *= sqrt( header.b_value / max_bvalue );
 
     directions->push_back( grad );
   }
 
   // initialize the output image
-  output_image->SetReferenceBValue( max_bvalue );
-  output_image->SetDirections( directions );
+  output_image->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( directions ) );
+  output_image->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( max_bvalue ) );
 
   if( is_mosaic && this->m_ResolveMosaic )
   {
     mitk::DiffusionHeaderSiemensMosaicDICOMFileReader::Pointer mosaic_reader =
         mitk::DiffusionHeaderSiemensMosaicDICOMFileReader::New();
 
     // retrieve the remaining meta-information needed for mosaic reconstruction
     // it suffices to get it exemplatory from the first file in the file list
     mosaic_reader->RetrieveMosaicInformation( filenames.at(0).at(0) );
 
     mitk::MosaicDescriptor mdesc = mosaic_reader->GetMosaicDescriptor();
-    output_image->SetVectorImage( helper.LoadMosaicToVector<short, 3>( filenames, mdesc ) );
+    mitk::CastToMitkImage( helper.LoadMosaicToVector<short, 3>( filenames, mdesc ), output_image );
 
   }
   else
   {
-    output_image->SetVectorImage( helper.LoadToVector<short, 3>( filenames ) );
+    mitk::CastToMitkImage( helper.LoadToVector<short, 3>( filenames ), output_image );
   }
-  output_image->InitializeFromVectorImage();
+
+  mitk::DiffusionPropertyHelper propertyHelper( output_image );
+  propertyHelper.InitializeImage();
+
   output_image->SetProperty("diffusion.dicom.importname", mitk::StringProperty::New( helper.GetOutputName(filenames) ) );
   block.SetMitkImage( (mitk::Image::Pointer) output_image );
 
   return block.GetMitkImage().IsNotNull();
 
 }
 
 void mitk::DiffusionDICOMFileReader
 ::AnalyzeInputFiles()
 {
   this->SetGroup3DandT(true);
 
   Superclass::AnalyzeInputFiles();
 
   // collect output from superclass
   size_t number_of_outputs = this->GetNumberOfOutputs();
 
   if(number_of_outputs == 0)
   {
     MITK_ERROR << "Failed to parse input, retrieved 0 outputs from SeriesGDCMReader ";
   }
 
   MITK_INFO("diffusion.dicomreader") << "Retrieved " << number_of_outputs << "outputs.";
 
   for( unsigned int outputidx = 0; outputidx < this->GetNumberOfOutputs(); outputidx++ )
   {
     DICOMImageBlockDescriptor block_0 = this->GetOutput(outputidx);
 
     // collect vendor ID from the first output, first image
     StringList inputFilename;
     DICOMImageFrameInfo::Pointer frame_0 = block_0.GetImageFrameList().at(0);
     inputFilename.push_back( frame_0->Filename );
 
 
     mitk::DiffusionHeaderDICOMFileReader::Pointer headerReader;
 
     bool isMosaic = false;
     gdcm::Scanner gdcmScanner;
 
     gdcm::Tag t_vendor(0x008, 0x0070);
     gdcm::Tag t_imagetype(0x008, 0x008);
 
     // add DICOM Tag for vendor
     gdcmScanner.AddTag( t_vendor );
     // add DICOM Tag for image type
     gdcmScanner.AddTag( t_imagetype );
     if( gdcmScanner.Scan( inputFilename ) )
     {
 
       // retrieve both vendor and image type
       std::string vendor = gdcmScanner.GetValue( frame_0->Filename.c_str(), t_vendor );
       std::string image_type = gdcmScanner.GetValue( frame_0->Filename.c_str(), t_imagetype );
       MITK_INFO("diffusion.dicomreader") << "Output " << outputidx+1 << "  Got vendor: " << vendor << " image type " << image_type;
 
       // parse vendor tag
       if(    vendor.find("SIEMENS") != std::string::npos )
         //&& image_type.find("DIFFUSION") != std::string::npos )
       {
         if( image_type.find("MOSAIC") != std::string::npos )
         {
           headerReader = mitk::DiffusionHeaderSiemensMosaicDICOMFileReader::New();
           isMosaic = true;
         }
         else
         {
           headerReader = mitk::DiffusionHeaderSiemensDICOMFileReader::New();
         }
 
       }
       else if( vendor.find("GE") != std::string::npos )
       {
         headerReader = mitk::DiffusionHeaderGEDICOMFileReader::New();
       }
       else if( vendor.find("Philips") != std::string::npos )
       {
         headerReader = mitk::DiffusionHeaderPhilipsDICOMFileReader::New();
       }
       else
       {
         // unknown vendor
       }
 
       if( headerReader.IsNull() )
       {
         MITK_ERROR << "No header reader for given vendor. ";
         continue;
       }
 
     }
     else
     {
       continue;
     }
 
 
     bool canread = false;
     // iterate over the threeD+t block
 
     int numberOfTimesteps = block_0.GetIntProperty("timesteps", 1);
     int framesPerTimestep = block_0.GetImageFrameList().size() / numberOfTimesteps;
 
     for( int idx = 0; idx < numberOfTimesteps; idx++ )
     {
       int access_idx = idx * framesPerTimestep;
       DICOMImageFrameInfo::Pointer frame = this->GetOutput( outputidx ).GetImageFrameList().at( access_idx );
       canread = headerReader->ReadDiffusionHeader( frame->Filename );
     }
 
     if( canread )
     {
       // collect the information
       mitk::DiffusionHeaderDICOMFileReader::DICOMHeaderListType retrievedHeader = headerReader->GetHeaderInformation();
 
       m_IsMosaicData.push_back(isMosaic);
       m_OutputHeaderContainer.push_back( retrievedHeader );
       m_OutputReaderContainer.push_back( headerReader );
     }
   }
 
   this->SetNumberOfOutputs( this->m_OutputHeaderContainer.size() );
 
   for( unsigned int outputidx = 0; outputidx < this->GetNumberOfOutputs(); outputidx++ )
   {
     // TODO : Analyze outputs + header information, i.e. for the loading confidence
     MITK_INFO("diffusion.dicomreader") << "---- DICOM Analysis Report ----  :: Output " << outputidx+1 << " of " << this->GetNumberOfOutputs();
 
     try{
       PerformHeaderAnalysis( this->m_OutputHeaderContainer.at( outputidx) );
     }
     catch( const std::exception& se)
     {
       MITK_ERROR << "STD Exception " << se.what();
     }
 
     MITK_INFO("diffusion.dicomreader") << "===========================================";
 
   }
 
 
 
 }
 
 
 bool mitk::DiffusionDICOMFileReader
 ::CanHandleFile(const std::string & /* filename */)
 {
   //FIXME :
   return true;
 }
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReaderHelper.h b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReaderHelper.h
index 6cd30e36d7..e4da4b1849 100644
--- a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReaderHelper.h
+++ b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionDICOMFileReaderHelper.h
@@ -1,283 +1,281 @@
 #ifndef MITKDIFFUSIONDICOMFILEREADERHELPER_H
 #define MITKDIFFUSIONDICOMFILEREADERHELPER_H
 
-#include "mitkDiffusionImage.h"
-
 #include "itkImageSeriesReader.h"
 #include "itkVectorImage.h"
 
 #include "itkImageRegionIteratorWithIndex.h"
 
 namespace mitk
 {
 
 /**
  * @brief The MosaicDescriptor struct is a help struct holding the necessary information for
  *        loading a mosaic DICOM file into an MITK file with correct geometry information
  */
 struct MosaicDescriptor
 {
   unsigned int nimages;
   bool slicenormalup;
 
   itk::ImageBase<3>::SpacingType spacing;
   itk::ImageBase<3>::DirectionType direction;
   float origin[3];
 };
 
 class DiffusionDICOMFileReaderHelper
 {
 public:
   typedef std::vector< std::string > StringContainer;
 
   typedef std::vector< StringContainer > VolumeFileNamesContainer;
 
   std::string GetOutputName(const VolumeFileNamesContainer& filenames)
   {
     typedef itk::Image< short, 3> InputImageType;
     typedef itk::ImageSeriesReader< InputImageType > SeriesReaderType;
 
     SeriesReaderType::Pointer probe_reader = SeriesReaderType::New();
     probe_reader->SetFileNames( filenames.at(0) );
     probe_reader->GenerateOutputInformation();
     probe_reader->Update();
 
     std::string seriesDescTag, seriesNumberTag, patientName;
     SeriesReaderType::DictionaryArrayRawPointer inputDict = probe_reader->GetMetaDataDictionaryArray();
 
     if( ! itk::ExposeMetaData< std::string > ( *(*inputDict)[0], "0008|103e", seriesDescTag ) )
       seriesDescTag = "UNSeries";
 
     if( ! itk::ExposeMetaData< std::string > ( *(*inputDict)[0], "0020|0011", seriesNumberTag ) )
       seriesNumberTag = "00000";
 
     if( ! itk::ExposeMetaData< std::string > ( *(*inputDict)[0], "0010|0010", patientName ) )
       patientName = "UnknownName";
 
     std::stringstream ss;
     ss << seriesDescTag << "_" << seriesNumberTag << "_" << patientName;
 
     return ss.str();
 
   }
 
   template< typename PixelType, unsigned int VecImageDimension>
   typename itk::VectorImage< PixelType, VecImageDimension >::Pointer LoadToVector(
       const VolumeFileNamesContainer& filenames
       //const itk::ImageBase<3>::RegionType requestedRegion
       )
   {
     typedef itk::Image< PixelType, 3> InputImageType;
     typedef itk::ImageSeriesReader< InputImageType > SeriesReaderType;
 
     typename SeriesReaderType::Pointer probe_reader = SeriesReaderType::New();
     probe_reader->SetFileNames( filenames.at(0) );
     probe_reader->GenerateOutputInformation();
     const itk::ImageBase<3>::RegionType requestedRegion = probe_reader->GetOutput()->GetLargestPossibleRegion();
 
     MITK_INFO << " --- Probe reader : \n" <<
                  " Retrieved LPR " << requestedRegion;
 
     typedef itk::VectorImage< PixelType, 3 > VectorImageType;
 
     typename VectorImageType::Pointer output_image = VectorImageType::New();
     output_image->SetNumberOfComponentsPerPixel( filenames.size() );
     output_image->SetSpacing( probe_reader->GetOutput()->GetSpacing() );
     output_image->SetOrigin( probe_reader->GetOutput()->GetOrigin() );
     output_image->SetDirection( probe_reader->GetOutput()->GetDirection() );
     output_image->SetLargestPossibleRegion( probe_reader->GetOutput()->GetLargestPossibleRegion() );
     output_image->SetBufferedRegion( requestedRegion );
     output_image->Allocate();
 
     itk::ImageRegionIterator< VectorImageType > vecIter(
           output_image, requestedRegion );
 
     VolumeFileNamesContainer::const_iterator volumesFileNamesIter = filenames.begin();
 
     // iterate over the given volumes
     unsigned int component = 0;
     while( volumesFileNamesIter != filenames.end() )
     {
 
       MITK_INFO << " ======== Loading volume " << component+1 << " of " << filenames.size();
 
       typename SeriesReaderType::Pointer volume_reader = SeriesReaderType::New();
       volume_reader->SetFileNames( *volumesFileNamesIter );
 
       try
       {
         volume_reader->UpdateLargestPossibleRegion();
       }
       catch( const itk::ExceptionObject &e)
       {
         mitkThrow() << " ITK Series reader failed : "<< e.what();
       }
 
       itk::ImageRegionConstIterator< InputImageType > iRCIter (
             volume_reader->GetOutput(),
             volume_reader->GetOutput()->GetLargestPossibleRegion() );
 
       // transfer to vector image
       iRCIter.GoToBegin();
       vecIter.GoToBegin();
 
 
 
       while( !iRCIter.IsAtEnd() )
       {
         typename VectorImageType::PixelType vector_pixel = vecIter.Get();
         vector_pixel.SetElement( component, iRCIter.Get() );
         vecIter.Set( vector_pixel );
 
         ++vecIter;
         ++iRCIter;
       }
 
       ++volumesFileNamesIter;
       component++;
     }
 
     return output_image;
 
   }
 
 
   /**
    * Create the vector image for the resulting diffusion image from a mosaic DICOM image set,
    * The method needs to be provided with the MosaicDescriptor struct to be able to compute the
    * correct index and to set the geometry information of the image itself.
    */
   template< typename PixelType, unsigned int VecImageDimension>
   typename itk::VectorImage< PixelType, VecImageDimension >::Pointer LoadMosaicToVector(
       const VolumeFileNamesContainer& filenames,
       const MosaicDescriptor& mosaicInfo )
   {
     typedef itk::Image< PixelType, 3> MosaicImageType;
     typedef itk::ImageFileReader< MosaicImageType > SingleImageReaderType;
 
     // generate output
     typedef itk::VectorImage< PixelType, 3 > VectorImageType;
 
         VolumeFileNamesContainer::const_iterator volumesFileNamesIter = filenames.begin();
 
     // probe the first file to retrieve the size of the 2d image
     // we need this information to compute the index relation between mosaic and resulting 3d position
     // but we need it only once
     typename SingleImageReaderType::Pointer mosaic_probe = SingleImageReaderType::New();
     mosaic_probe->SetFileName( (*volumesFileNamesIter).at(0) );
     try
     {
       mosaic_probe->UpdateLargestPossibleRegion();
     }
     catch( const itk::ExceptionObject &e)
     {
       mitkThrow() << " ITK Image file reader failed : "<< e.what();
     }
 
     typename MosaicImageType::RegionType mosaic_lpr = mosaic_probe->GetOutput()->GetLargestPossibleRegion();
     MITK_INFO << " == MOSAIC: " << mosaic_lpr;
 
     itk::ImageBase<3>::SizeValueType images_per_row = ceil( sqrt( (float) mosaicInfo.nimages ) );
 
     itk::ImageBase<3>::RegionType requestedRegion;
     requestedRegion.SetSize( 0, mosaic_lpr.GetSize()[0]/images_per_row);
     requestedRegion.SetSize( 1, mosaic_lpr.GetSize()[1]/images_per_row);
     requestedRegion.SetSize( 2, mosaicInfo.nimages);
 
     typename VectorImageType::Pointer output_image = VectorImageType::New();
     output_image->SetNumberOfComponentsPerPixel( filenames.size() );
 
     typename VectorImageType::DirectionType dmatrix;
     dmatrix.SetIdentity();
 
     std::vector<double> dirx = mosaic_probe->GetImageIO()->GetDirection(0);
     std::vector<double> diry = mosaic_probe->GetImageIO()->GetDirection(1);
     std::vector<double> dirz = mosaic_probe->GetImageIO()->GetDirection(2);
 
     dmatrix.GetVnlMatrix().set_column( 0,  &dirx[0] );
     dmatrix.GetVnlMatrix().set_column( 1,  &diry[0] );
     dmatrix.GetVnlMatrix().set_column( 2,  &dirz[0] );
 
 
     /*
      FIXME!!! The struct currently does not provide the geometry information
               the loading works as required*/
     output_image->SetSpacing( mosaicInfo.spacing );
     output_image->SetOrigin( mosaic_probe->GetOutput()->GetOrigin() );
     output_image->SetDirection( dmatrix );
     output_image->SetLargestPossibleRegion( requestedRegion );
     output_image->SetBufferedRegion( requestedRegion );
     output_image->Allocate();
 
     itk::ImageRegionIteratorWithIndex< VectorImageType > vecIter(
           output_image, requestedRegion );
 
     // hold the image sizes in an extra variable ( used very often )
     typename MosaicImageType::SizeValueType dx = requestedRegion.GetSize()[0];
     typename MosaicImageType::SizeValueType dy = requestedRegion.GetSize()[1];
 
     // iterate over the given volumes
     unsigned int component = 0;
     while( volumesFileNamesIter != filenames.end() )
     {
 
       MITK_INFO << " ======== Loading volume " << component+1 << " of " << filenames.size();
 
       typename SingleImageReaderType::Pointer mosaic_reader = SingleImageReaderType::New();
       mosaic_reader->SetFileName( (*volumesFileNamesIter).at(0) );
 
       try
       {
         mosaic_reader->UpdateLargestPossibleRegion();
       }
       catch( const itk::ExceptionObject &e)
       {
         mitkThrow() << " ITK Image file reader failed : "<< e.what();
       }
 
       typename MosaicImageType::Pointer current_mosaic = mosaic_reader->GetOutput();
 
       vecIter.GoToBegin();
       while( !vecIter.IsAtEnd() )
       {
         typename VectorImageType::PixelType vector_pixel = vecIter.Get();
         typename VectorImageType::IndexType threeD_index = vecIter.GetIndex();
 
         typename MosaicImageType::IndexType mosaic_index;
 
         mosaic_index[2] = 0;
 
         // first find the corresponding tile in the mosaic
         // this is defined by the z-position of the vector (3D) image iterator
         //      in x : z_index % #images_in_grid
         //      in y : z_index / #images_in_grid
         //
         // the remaining is just computing the correct position in the mosaic, done by
         //                --------- index of (0,0,z) -----        + --- current 2d position ---
         mosaic_index[0] = (threeD_index[2] % images_per_row) * dx + threeD_index[0];
         mosaic_index[1] = (threeD_index[2] / images_per_row) * dy + threeD_index[1];
 
         typename MosaicImageType::PixelType mosaic_pixel = current_mosaic->GetPixel( mosaic_index );
 
         vector_pixel.SetElement( component, mosaic_pixel );
 
         vecIter.Set( vector_pixel );
 
         ++vecIter;
       }
 
       ++volumesFileNamesIter;
       component++;
 
     }
 
     return output_image;
 
   }
 
 };
 
 
 }
 
 #endif // MITKDIFFUSIONDICOMFILEREADERHELPER_H
diff --git a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderDICOMFileReader.h b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderDICOMFileReader.h
index ed62cf3f1e..7e1f348f36 100644
--- a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderDICOMFileReader.h
+++ b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderDICOMFileReader.h
@@ -1,117 +1,120 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #ifndef MITKDIFFUSIONHEADERFILEREADER_H
 #define MITKDIFFUSIONHEADERFILEREADER_H
 
 #include <MitkDiffusionCoreExports.h>
+#include <mitkCommon.h>
 
 #include <itkLightObject.h>
-#include "mitkDiffusionImage.h"
+#include <itkObjectFactory.h>
 
 #include "gdcmScanner.h"
 #include "gdcmReader.h"
+#include <vnl/vnl_vector_fixed.h>
+
 
 namespace mitk
 {
 
 /**
  * @brief The DiffusionImageHeaderInformation struct
  */
 struct DiffusionImageDICOMHeaderInformation
 {
   DiffusionImageDICOMHeaderInformation()
     : b_value(0),
       baseline(false),
       isotropic(false)
   {
     g_vector.fill(0);
   }
 
   void Print()
   {
     MITK_INFO << " DiffusionImageHeaderInformation : \n"
               << "    : b value   : " << b_value << "\n"
               << "    : gradient  : " << g_vector << "\n"
               << "    : isotropic : " << isotropic << "\n --- \n";
   }
 
   unsigned int b_value;
   vnl_vector_fixed< double, 3> g_vector;
   bool baseline;
   bool isotropic;
 };
 
 struct DiffusionImageMosaicDICOMHeaderInformation
     : public DiffusionImageDICOMHeaderInformation
 {
   unsigned long n_images;
   bool slicenormalup;
 };
 
 
 
 /**
  * @class DiffusionHeaderDICOMFileReader
  *
  * @brief Abstract class for all vendor specific diffusion file header reader
  *
  * To provide a diffusion header reader for a new vendor, reimplement the \sa ReadDiffusionHeader method.
  */
 class MitkDiffusionCore_EXPORT DiffusionHeaderDICOMFileReader
     : public itk::LightObject
 {
 public:
 
   typedef std::vector< DiffusionImageDICOMHeaderInformation > DICOMHeaderListType;
 
   mitkClassMacro( DiffusionHeaderDICOMFileReader, itk::LightObject )
   itkSimpleNewMacro( Self )
 
   /**
    * @brief IsDiffusionHeader Parse the given dicom file and collect the special diffusion image information
    * @return
    */
   virtual bool ReadDiffusionHeader( std::string ){ return false; }
 
   DICOMHeaderListType GetHeaderInformation();
 
 protected:
   DiffusionHeaderDICOMFileReader();
 
   virtual ~DiffusionHeaderDICOMFileReader();
 
   DICOMHeaderListType m_HeaderInformationList;
 };
 
 /**
  * @brief Retrieve the value of a gdcm tag to the given string
  *
  * @param tag the gdcm::Tag to be search for
  * @param dataset a gdcm::DataSet to look into
  * @param target a string to store the value of the given tag if found
  * @param verbose make some output
  *
  * @return true if a string was found, false otherwise
  */
 bool RevealBinaryTag(const gdcm::Tag tag, const gdcm::DataSet& dataset, std::string& target);
 
 bool RevealBinaryTagC(const gdcm::Tag tag, const gdcm::DataSet& dataset, char* target_array );
 
 
 } // end namespace mitk
 
 #endif // MITKDIFFUSIONHEADERFILEREADER_H
diff --git a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderGEDICOMFileReader.cpp b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderGEDICOMFileReader.cpp
index 04f552619e..e90e9b77a4 100644
--- a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderGEDICOMFileReader.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderGEDICOMFileReader.cpp
@@ -1,101 +1,102 @@
 #include "mitkDiffusionHeaderGEDICOMFileReader.h"
+#include <vnl/vnl_math.h>
 
 mitk::DiffusionHeaderGEDICOMFileReader
 ::DiffusionHeaderGEDICOMFileReader()
 {
 
 }
 
 mitk::DiffusionHeaderGEDICOMFileReader
 ::~DiffusionHeaderGEDICOMFileReader()
 {
 
 }
 
 bool mitk::DiffusionHeaderGEDICOMFileReader
 ::ReadDiffusionHeader(std::string filename)
 {
 
   gdcm::Reader gdcmReader;
   gdcmReader.SetFileName( filename.c_str() );
 
   gdcmReader.Read();
 
   gdcm::Tag ge_bvalue_tag( 0x0043, 0x1039 );
   gdcm::Tag ge_gradient_x( 0x0019, 0x10bb );
   gdcm::Tag ge_gradient_y( 0x0019, 0x10bc );
   gdcm::Tag ge_gradient_z( 0x0019, 0x10bd );
 
   bool success = true;
   DiffusionImageDICOMHeaderInformation header_info;
 
   std::string ge_tagvalue_string;
   char* pEnd;
 
   // start with b-value
   success = RevealBinaryTag( ge_bvalue_tag, gdcmReader.GetFile().GetDataSet(), ge_tagvalue_string );
   // b value stored in the first bytes
   // typical example:  "1000\8\0\0" for bvalue=1000
   //                   "40\8\0\0" for bvalue=40
   // so we need to cut off the last 6 elements
   const char* bval_string = ge_tagvalue_string.substr(0,ge_tagvalue_string.length()-6).c_str();
   header_info.b_value = static_cast<unsigned int>(strtod( bval_string, &pEnd ));
 
   // now retrieve the gradient direction
   if(success &&
      RevealBinaryTag( ge_gradient_x, gdcmReader.GetFile().GetDataSet(), ge_tagvalue_string ) )
   {
     header_info.g_vector[0] = strtod( ge_tagvalue_string.c_str(), &pEnd );
   }
   else
   {
     success = false;
   }
 
   if( success &&
       RevealBinaryTag( ge_gradient_y, gdcmReader.GetFile().GetDataSet(), ge_tagvalue_string ) )
   {
     header_info.g_vector[1] = strtod( ge_tagvalue_string.c_str(), &pEnd );
   }
   else
   {
     success = false;
   }
 
   if( success &&
       RevealBinaryTag( ge_gradient_z, gdcmReader.GetFile().GetDataSet(), ge_tagvalue_string ) )
   {
     header_info.g_vector[2] = strtod( ge_tagvalue_string.c_str(), &pEnd );
   }
   else
   {
     success = false;
   }
 
   if( success )
   {
     // Fix for (0,0,0) direction in IVIM datasets
     if( header_info.b_value > 0 &&
         header_info.g_vector.two_norm() < vnl_math::eps )
     {
       header_info.g_vector.fill(1);
       header_info.g_vector.normalize();
       header_info.isotropic = true;
     }
 
     // mark baseline
     if( header_info.b_value == 0 )
       header_info.baseline = true;
 
     this->m_HeaderInformationList.push_back( header_info );
 
     header_info.Print();
   }
 
   return success;
 
 
 
 }
 
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderPhilipsDICOMFileReader.cpp b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderPhilipsDICOMFileReader.cpp
index b037bbb3da..a9c8710521 100644
--- a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderPhilipsDICOMFileReader.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderPhilipsDICOMFileReader.cpp
@@ -1,95 +1,97 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkDiffusionHeaderPhilipsDICOMFileReader.h"
 
 #include <sstream>
 
+#include <vnl/vnl_math.h>
+
 mitk::DiffusionHeaderPhilipsDICOMFileReader::DiffusionHeaderPhilipsDICOMFileReader()
 {
 }
 
 mitk::DiffusionHeaderPhilipsDICOMFileReader::~DiffusionHeaderPhilipsDICOMFileReader()
 {
 
 }
 
 bool mitk::DiffusionHeaderPhilipsDICOMFileReader::ReadDiffusionHeader(std::string filename)
 {
   gdcm::Reader gdcmReader;
   gdcmReader.SetFileName( filename.c_str() );
 
   gdcmReader.Read();
 
   gdcm::Tag philips_bvalue_tag( 0x2001, 0x1003 );
   //gdcm::Tag philips_gradient_direction( 0x2001, 0x1004 );
 
   DiffusionImageDICOMHeaderInformation header_info;
   //std::string tagvalue_string;
   //char* pEnd;
 
   // reveal b-value
   float bvalue = 0;
   if( RevealBinaryTagC( philips_bvalue_tag, gdcmReader.GetFile().GetDataSet(), (char*) &bvalue) )
   {
 
     header_info.b_value = std::ceil( bvalue );
 
     if( header_info.b_value == 0)
       header_info.baseline = true;
   }
   else
   {
     MITK_WARN("diffusion.dicomreader.philips") << "No b-value found. Most probably no diffusion-weighted image.";
     return false;
   }
 
   gdcm::Tag philips_new_bvalue_tag( 0x0018,0x9087 );
   double dbvalue = 0;
   if( RevealBinaryTagC( philips_new_bvalue_tag, gdcmReader.GetFile().GetDataSet(), (char*) &dbvalue) )
   {
     MITK_INFO("philips.dicom.diffusion.bvalue") << dbvalue;
   }
 
   if( header_info.baseline )
   {
     // no direction in unweighted images
     header_info.g_vector.fill(0);
   }
   else
   {
     MITK_INFO("philips.dicom.diffusion.gradientdir") << "Parsing gradient direction.";
 
     gdcm::Tag philips_gradient_direction_new( 0x0018, 0x9089 );
     double gr_dir_arr[3] = {1,0,-1};
 
     if( RevealBinaryTagC( philips_gradient_direction_new, gdcmReader.GetFile().GetDataSet(), (char*) &gr_dir_arr ) )
     {
       MITK_INFO("philips.dicom.diffusion.gradient") << "(" << gr_dir_arr[0] <<"," << gr_dir_arr[1] <<"," <<gr_dir_arr[2] <<")";
     }
 
     header_info.g_vector.copy_in( &gr_dir_arr[0] );
     if( header_info.g_vector.two_norm() < vnl_math::eps )
     {
       header_info.g_vector.fill(1);
       header_info.isotropic = true;
     }
   }
 
   this->m_HeaderInformationList.push_back( header_info );
 
   return true;
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileHelper.cpp b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileHelper.cpp
index 043f5e94f2..d5e17f2e14 100644
--- a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileHelper.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileHelper.cpp
@@ -1,42 +1,42 @@
 #include "mitkDiffusionHeaderSiemensDICOMFileHelper.h"
 
 #include <cstdlib>
 #include <cmath>
 
 mitk::SiemensDiffusionHeaderType mitk::GetHeaderType( std::string header )
 {
   // The CSA2 format begins with the string ‘SV10’, the CSA1 format does not.
   if( header.find("SV10") != std::string::npos )
   {
     return mitk::SIEMENS_CSA2;
   }
   else
   {
     return mitk::SIEMENS_CSA1;
   }
 }
 
 bool mitk::ParseInputString( std::string input, std::vector<double>& values, Siemens_Header_Format format_specs )
 {
-
   // TODO : Compute offset based on the format_specs, where does the 84 come from???
   int offset = 84;
   int vm = *(input.c_str() + format_specs.NameLength );
 
   for (int k = 0; k < vm; k++)
   {
     int itemLength = *(input.c_str() + offset + 4);
 
     int strideSize = static_cast<int> (ceil(static_cast<double>(itemLength)/4) * 4);
     std::string valueString = input.substr( offset+16, itemLength );
 
     double value = atof( valueString.c_str() );
     values.push_back( value );
 
     offset += 16+strideSize;
   }
 
-  return true;
+  // If there are no values it is invalid
+  return (values.size() > 0 );
 }
 
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileReader.cpp b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileReader.cpp
index 62416888ca..5cf26e5b8e 100644
--- a/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileReader.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/DicomImport/mitkDiffusionHeaderSiemensDICOMFileReader.cpp
@@ -1,151 +1,152 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkDiffusionHeaderSiemensDICOMFileReader.h"
 #include "mitkDiffusionHeaderSiemensDICOMFileHelper.h"
 
 #include "gdcmScanner.h"
 #include "gdcmReader.h"
 
+#include <vnl/vnl_math.h>
 
 /**
  * @brief Extract b value from the siemens diffusion tag
  */
 bool mitk::DiffusionHeaderSiemensDICOMFileReader
 ::ExtractSiemensDiffusionTagInformation( std::string tag_value, mitk::DiffusionImageDICOMHeaderInformation& values)
 {
   SiemensDiffusionHeaderType hformat = mitk::GetHeaderType( tag_value );
   Siemens_Header_Format specs = this->m_SiemensFormatsCollection.at( hformat );
 
   MITK_DEBUG << " Header format: " << hformat;
   MITK_DEBUG << " :: Retrieving b value. ";
 
   std::string::size_type tag_position =
       tag_value.find( "B_value", 0 );
 
   if( tag_position == std::string::npos )
   {
     MITK_ERROR << "No b value information found. ";
     return false;
   }
 
   std::string value_string = tag_value.substr( tag_position, tag_value.size() - tag_position + 1 );
 
   std::vector<double> value_array;
   if( ParseInputString(value_string, value_array, specs) )
   {
     values.b_value = value_array.at(0);
   }
   else
   {
     MITK_INFO("diffusion.dicomreader.siemens") << "No b-value tag found. ";
     return false;
   }
 
   // search for GradientDirectionInformation if the bvalue is not null
   if( values.b_value > 0 )
   {
     std::string::size_type tag_position = tag_value.find( "DiffusionGradientDirection", 0 );
     // Possibly it is a IVIM dataset, i.e. the gradient direction is not relevant
     // and possibly either not set or set to zero
     if( tag_position == std::string::npos )
     {
       MITK_WARN << "No gradient direction information, but non-zero b-value. Possibly an IVIM dataset. " << "\n"
                 << "Setting gradient to (1,1,1).";
 
       values.isotropic = true;
       values.g_vector.fill(1);
       return false;
     }
 
     value_array.clear();
     std::string gradient_direction_str = tag_value.substr( tag_position, tag_value.size() - tag_position + 1 );
 
     if( ParseInputString(gradient_direction_str, value_array, specs) )
     {
       if( value_array.size() != 3 )
       {
         MITK_ERROR << " Retrieved gradient information of length " << value_array.size();
         return false;
       }
 
       for( unsigned int i=0; i<value_array.size(); i++)
       {
         values.g_vector[i] = value_array.at(i);
       }
 
       // Test for isotropic data (i.e. IVIM)
       if( values.g_vector.two_norm() < vnl_math::eps )
       {
         values.g_vector.fill(1);
         values.isotropic = true;
       }
     }
 
   }
   else
   {
     values.baseline = true;
   }
 
   return true;
 }
 
 mitk::DiffusionHeaderSiemensDICOMFileReader
 ::DiffusionHeaderSiemensDICOMFileReader()
 {
   Siemens_Header_Format Siemens_CSA1_Format( 64, sizeof(int32_t), 4, sizeof(int32_t), sizeof(int32_t)  );
   Siemens_Header_Format Siemens_CSA2_Format( 64, sizeof(int32_t), 4, sizeof(int32_t), sizeof(int32_t)  );
 
   m_SiemensFormatsCollection.push_back( Siemens_CSA1_Format );
   m_SiemensFormatsCollection.push_back( Siemens_CSA2_Format );
 }
 
 mitk::DiffusionHeaderSiemensDICOMFileReader
 ::~DiffusionHeaderSiemensDICOMFileReader()
 {
 
 }
 
 bool mitk::DiffusionHeaderSiemensDICOMFileReader
 ::ReadDiffusionHeader(std::string filename)
 {
   gdcm::Reader gdcmReader;
   gdcmReader.SetFileName( filename.c_str() );
 
   gdcmReader.Read();
 
   MITK_INFO << " -- Analyzing: " << filename;
 
   const gdcm::DataSet& dataset = gdcmReader.GetFile().GetDataSet();
 
   const gdcm::Tag t_sie_diffusion( 0x0029,0x1010 );
   //const gdcm::Tag t_sie_diffusion_vec( 0x0029,0x100e );
   //const gdcm::Tag t_sie_diffusion2( 0x0029,0x100c );
 
   std::string siemens_diffusionheader_str;
   if( RevealBinaryTag( t_sie_diffusion, dataset, siemens_diffusionheader_str ) )
   {
     DiffusionImageDICOMHeaderInformation values;
     this->ExtractSiemensDiffusionTagInformation( siemens_diffusionheader_str, values );
 
     m_HeaderInformationList.push_back( values );
   }
 
   return true;
 
 
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.cpp b/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.cpp
index 2f909c5b73..d93af7cf2d 100644
--- a/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.cpp
@@ -1,117 +1,118 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 
 #ifndef MITKDIFFUSIONIMAGECORRECTIONFILTER_CPP
 #define MITKDIFFUSIONIMAGECORRECTIONFILTER_CPP
 
 #include "mitkDiffusionImageCorrectionFilter.h"
+#include <mitkDiffusionPropertyHelper.h>
 
 #include <vnl/algo/vnl_symmetric_eigensystem.h>
 #include <vnl/vnl_inverse.h>
 
-template< typename TPixelType >
-mitk::DiffusionImageCorrectionFilter<TPixelType>::DiffusionImageCorrectionFilter()
+
+mitk::DiffusionImageCorrectionFilter::DiffusionImageCorrectionFilter()
 {
 
 }
 
-template< typename TPixelType >
-typename mitk::DiffusionImageCorrectionFilter<TPixelType>::TransformMatrixType
-mitk::DiffusionImageCorrectionFilter<TPixelType>
+
+mitk::DiffusionImageCorrectionFilter::TransformMatrixType
+mitk::DiffusionImageCorrectionFilter
 ::GetRotationComponent(const TransformMatrixType &A)
 {
   TransformMatrixType B;
 
   B = A * A.transpose();
 
   // get the eigenvalues and eigenvectors
   typedef double MType;
   vnl_vector< MType > eigvals;
   vnl_matrix< MType > eigvecs;
   vnl_symmetric_eigensystem_compute< MType > ( B, eigvecs, eigvals );
 
   vnl_matrix_fixed< MType, 3, 3 > eigvecs_fixed;
   eigvecs_fixed.set_columns(0, eigvecs );
 
   TransformMatrixType C;
   C.set_identity();
 
   vnl_vector_fixed< MType, 3 > eigvals_sqrt;
   for(unsigned int i=0; i<3; i++)
   {
     C(i,i) = std::sqrt( eigvals[i] );
   }
 
   TransformMatrixType S = vnl_inverse( eigvecs_fixed * C * vnl_inverse( eigvecs_fixed )) * A;
 
   return S;
 }
 
-template< typename TPixelType >
-void mitk::DiffusionImageCorrectionFilter<TPixelType>
+
+void mitk::DiffusionImageCorrectionFilter
 ::CorrectDirections( const TransformsVectorType& transformations)
 {
   if( m_SourceImage.IsNull() )
   {
     mitkThrow() << " No diffusion image given! ";
   }
 
-  GradientDirectionContainerPointerType directions = m_SourceImage->GetDirections();
+  GradientDirectionContainerPointerType directions = static_cast<mitk::GradientDirectionsProperty*>( m_SourceImage->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer();
   GradientDirectionContainerPointerType corrected_directions =
       GradientDirectionContainerType::New();
 
   unsigned int transformed = 0;
   for(size_t i=0; i< directions->Size(); i++ )
   {
 
     // skip b-zero images
     if( directions->ElementAt(i).one_norm() <= 0.0 )
     {
       corrected_directions->push_back( directions->ElementAt(i) );
       continue;
     }
 
     GradientDirectionType corrected = GetRotationComponent(
                                           transformations.at(transformed))
                                         * directions->ElementAt(i);
     // store the corrected direction
     corrected_directions->push_back( corrected );
     transformed++;
   }
 
   // replace the old directions with the corrected ones
-  m_SourceImage->SetDirections( corrected_directions );
+  m_SourceImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( corrected_directions ) );
 
 }
 
-template< typename TPixelType >
-void mitk::DiffusionImageCorrectionFilter<TPixelType>
+
+void mitk::DiffusionImageCorrectionFilter
 ::CorrectDirections( const TransformMatrixType& transformation)
 {
   if( m_SourceImage.IsNull() )
   {
     mitkThrow() << " No diffusion image given! ";
   }
   TransformsVectorType transfVec;
-  for (unsigned int i=0; i< m_SourceImage->GetDirections()->Size();i++)
+  for (unsigned int i=0; i< static_cast<mitk::GradientDirectionsProperty*>( m_SourceImage->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer()->Size();i++)
   {
     transfVec.push_back(transformation);
   }
   this->CorrectDirections(transfVec);
 }
 
 #endif
diff --git a/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.h b/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.h
index 7d6c3b3e59..405cea700d 100644
--- a/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.h
+++ b/Modules/DiffusionImaging/DiffusionCore/IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.h
@@ -1,97 +1,96 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #ifndef MITKDIFFUSIONIMAGECORRECTIONFILTER_H
 #define MITKDIFFUSIONIMAGECORRECTIONFILTER_H
 
-#include "mitkDiffusionImageSource.h"
+#include "mitkImageSource.h"
+#include <MitkDiffusionCoreExports.h>
 
 namespace mitk
 {
 /**
  * @class DiffusionImageCorrectionFilter
  */
-template< typename TPixelType >
-class DiffusionImageCorrectionFilter
-        : public DiffusionImageSource< TPixelType >
+class MitkDiffusionCore_EXPORT DiffusionImageCorrectionFilter
+        : public ImageSource
 {
 public:
   /** class macros */
   mitkClassMacro( DiffusionImageCorrectionFilter,
-                  DiffusionImageSource<TPixelType> )
+                  ImageSource )
 
   itkSimpleNewMacro(Self)
 
+  typedef short DiffusionPixelType;
   typedef vnl_vector_fixed< double, 3 >      GradientDirectionType;
   typedef vnl_matrix_fixed< double, 3, 3 >   TransformMatrixType;
   typedef itk::VectorContainer< unsigned int, GradientDirectionType >
                                              GradientDirectionContainerType;
   typedef GradientDirectionContainerType::Pointer GradientDirectionContainerPointerType;
 
   typedef std::vector< TransformMatrixType >  TransformsVectorType;
 
-  typedef typename Superclass::OutputType DiffusionImageType;
-  typedef typename DiffusionImageType::Pointer    DiffusionImageTypePointer;
-  typedef itk::VectorImage<TPixelType,3>     ImageType;
+  typedef Superclass::OutputType DiffusionImageType;
+  typedef DiffusionImageType::Pointer    DiffusionImageTypePointer;
+  typedef itk::VectorImage<DiffusionPixelType,3>     ImageType;
 
   /**
    * @brief Set the mitk image ( a 3d+t image ) which is to be reinterpreted as dw image
    * @param mitkImage
    */
   void SetImage( DiffusionImageTypePointer input )
   {
     m_SourceImage = input;
   }
 
   /**
    * @brief Correct each gradient direction according to the given transform
    *
    * The size of the input is expected to correspond to the count of gradient images in the image.
    */
   void CorrectDirections( const TransformsVectorType& );
 
   /**
    * @brief Correct all gradient directions according to the given transform
    *
    * This will apply the same rotation to all directions.
    */
   void CorrectDirections( const TransformMatrixType& );
 
 
 protected:
   DiffusionImageCorrectionFilter();
   virtual ~DiffusionImageCorrectionFilter() {}
 
   /**
    * @brief Get the rotation component following the Finite Strain
    *
    * For a given transformation \f$A\f$ its rotation component is defined as \f$ (AA^{T})^{-1/2}\f$.
    *
    * The computation first computes \f$ B = AA^T \f$ and then estimates the square root. Square root of
    * diagonal matrices is defined as
    *  \f$ S = Q * \sqrt{C} * Q^{-1} \f$ with \f$ C \f$ having the eigenvalues on the diagonal.
    *
    */
   TransformMatrixType GetRotationComponent( const TransformMatrixType& );
 
   DiffusionImageTypePointer m_SourceImage;
 };
 
 }
 
-#include "mitkDiffusionImageCorrectionFilter.cpp"
-
 #endif // MITKDIFFUSIONIMAGECORRECTIONFILTER_H
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake b/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake
index 4a2a9d22b0..9e87b8b605 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/files.cmake
@@ -1,16 +1,15 @@
 set(MODULE_TESTS
-  mitkDiffusionImageEqualTest.cpp
   mitkNonLocalMeansDenoisingTest.cpp
-  mitkDiffusionImageEqualTest.cpp
+  mitkDiffusionPropertySerializerTest.cpp
 )
 
 set(MODULE_CUSTOM_TESTS
   mitkPyramidImageRegistrationMethodTest.cpp
   mitkDWHeadMotionCorrectionTest.cpp
   mitkImageReconstructionTest.cpp
   mitkConvertDWITypeTest.cpp
   mitkExtractSingleShellTest.cpp
   mitkNonLocalMeansDenoisingTest.cpp
   mitkDiffusionDICOMFileReaderTest.cpp
 )
 
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkB0ExtractionToSeparateImagesFilterTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkB0ExtractionToSeparateImagesFilterTest.cpp
index c157efef62..101143f9d9 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkB0ExtractionToSeparateImagesFilterTest.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkB0ExtractionToSeparateImagesFilterTest.cpp
@@ -1,109 +1,108 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkTestingMacros.h"
 #include "itkVectorImage.h"
 #include "mitkBaseData.h"
 #include "mitkBaseDataIOFactory.h"
 
 #include "mitkImageWriter.h"
 #include "itkImageFileWriter.h"
 
 #include "itkB0ImageExtractionToSeparateImageFilter.h"
-#include "mitkDiffusionImage.h"
 
 #include "mitkDiffusionCoreObjectFactory.h"
 
 /** Documentation
  *  Test for factory registration
  */
 int mitkB0ExtractionToSeparateImagesFilterTest(int  argc , char* argv[])
 {
   // always start with this!
   MITK_TEST_BEGIN("mitkB0ExtractionToSeparateImagesFilterTest");
 
   MITK_TEST_CONDITION_REQUIRED(argc > 2, "Test image is specified. ");
 
   typedef short DiffusionPixelType;
-  typedef mitk::DiffusionImage< DiffusionPixelType > DiffusionImageType;
+  typedef mitk::Image DiffusionImageType;
   typedef mitk::NrrdDiffusionImageReader< DiffusionPixelType> DiffusionNrrdReaderType;
 
   RegisterDiffusionImagingObjectFactory();
 
   std::string inputFileName( argv[1] );
 
   std::vector<mitk::BaseData::Pointer> inputBaseDataVector = mitk::BaseDataIO::LoadBaseDataFromFile( inputFileName, "","",false);
 
   MITK_TEST_CONDITION_REQUIRED( inputBaseDataVector.size() > 0, "BaseDataIO returned non-empty vector.");
 
   mitk::BaseData::Pointer baseData = inputBaseDataVector.at(0);
 
   MITK_TEST_CONDITION_REQUIRED( baseData.IsNotNull(), "BaseData is not null")
 
       DiffusionImageType* vols = dynamic_cast< DiffusionImageType* >(baseData.GetPointer());
 
   MITK_TEST_CONDITION_REQUIRED( vols != NULL, "Casting basedata to diffusion image successfull." );
 
   // filter
   typedef itk::B0ImageExtractionToSeparateImageFilter< short, short> FilterType;
   typename FilterType::Pointer filter = FilterType::New();
 
   MITK_TEST_CONDITION_REQUIRED(filter.IsNotNull(), "Filter instance created. ");
 
   filter->SetInput(vols->GetVectorImage());
   filter->SetDirections(vols->GetDirections());
   filter->Update();
 
   // output
   mitk::Image::Pointer mitkImage = mitk::Image::New();
 
   MITK_TEST_CONDITION_REQUIRED( mitkImage.IsNotNull(), "mitkImage not null." );
 
   mitkImage->InitializeByItk( filter->GetOutput() );
 
   MITK_TEST_CONDITION_REQUIRED( mitkImage->GetDimension()==4, "Output image is a 4D image.");
 
   mitkImage->SetImportChannel( filter->GetOutput()->GetBufferPointer() );
 
   typedef itk::ImageFileWriter< FilterType::OutputImageType > itkImageWriterType;
   typename itkImageWriterType::Pointer itkWriter = itkImageWriterType::New();
 
   itkWriter->SetFileName( argv[2] );
   itkWriter->SetInput( filter->GetOutput() );
 
   try
   {
     itkWriter->Update();
   }
   catch(itk::ExceptionObject &e)
   {
     MITK_ERROR << "Catched exception from image writer. " << e.what();
   }
 
   /*
   // write output
   mitk::ImageWriter::Pointer writer = mitk::ImageWriter::New();
   MITK_TEST_CONDITION_REQUIRED( writer.IsNotNull(), "Writer instance created. ");
 
   writer->SetInput( mitkImage );
   writer->SetExtension(".nrrd");
   writer->SetFileName( "/localdata/hering/_Images/TestB0Extraction" );
 
   writer->Update();
 */
   // always end with this!
   MITK_TEST_END();
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkConvertDWITypeTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkConvertDWITypeTest.cpp
index aeae0f8536..4e6449576a 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkConvertDWITypeTest.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkConvertDWITypeTest.cpp
@@ -1,51 +1,46 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkTestingMacros.h"
 #include "mitkIOUtil.h"
 
 #include "mitkDWIHeadMotionCorrectionFilter.h"
 
-typedef short                                       DiffusionPixelType;
-typedef mitk::DiffusionImage< DiffusionPixelType >  DiffusionImageType;
-
 /**
  * @brief Custom test to provide CMD-line access to the mitk::DWIHeadMotionCorrectionFilter
  *
  * @param argv : Input and Output image full path
  */
 int mitkConvertDWITypeTest( int argc, char* argv[] )
 {
   MITK_TEST_BEGIN("mitkConvertDWITypeTest");
 
   MITK_TEST_CONDITION_REQUIRED( argc > 2, "Specify input and output.");
 
   mitk::Image::Pointer inputImage = mitk::IOUtil::LoadImage( argv[1] );
-  DiffusionImageType* dwimage =
-      static_cast<DiffusionImageType*>( inputImage.GetPointer() );
 
   try
   {
-    mitk::IOUtil::Save(dwimage, argv[2]);
+    mitk::IOUtil::Save(inputImage, argv[2]);
   }
   catch( const itk::ExceptionObject& e)
   {
-    MITK_ERROR << "Catched exception: " << e.what();
+    MITK_ERROR << "Caught exception: " << e.what();
     mitkThrow() << "Failed with exception from subprocess!";
   }
 
   MITK_TEST_END();
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDWHeadMotionCorrectionTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDWHeadMotionCorrectionTest.cpp
index 7805c72b3c..e19fc61f9c 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDWHeadMotionCorrectionTest.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDWHeadMotionCorrectionTest.cpp
@@ -1,60 +1,60 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkTestingMacros.h"
 #include "mitkIOUtil.h"
 
-#include "mitkDWIHeadMotionCorrectionFilter.h"
+#include <mitkDWIHeadMotionCorrectionFilter.h>
 
 typedef short                                       DiffusionPixelType;
-typedef mitk::DiffusionImage< DiffusionPixelType >  DiffusionImageType;
+typedef mitk::Image  DiffusionImageType;
 
 /**
  * @brief Custom test to provide CMD-line access to the mitk::DWIHeadMotionCorrectionFilter
  *
  * @param argv : Input and Output image full path
  */
 int mitkDWHeadMotionCorrectionTest( int argc, char* argv[] )
 {
   MITK_TEST_BEGIN("mitkDWHeadMotionCorrectionTest");
 
   MITK_TEST_CONDITION_REQUIRED( argc > 2, "Specify input and output.");
 
 //  itk::MultiThreader::SetGlobalMaximumNumberOfThreads(1);
 
   mitk::Image::Pointer inputImage = mitk::IOUtil::LoadImage( argv[1] );
   DiffusionImageType* dwimage =
       static_cast<DiffusionImageType*>( inputImage.GetPointer() );
 
-  mitk::DWIHeadMotionCorrectionFilter<DiffusionPixelType>::Pointer corrfilter =
-      mitk::DWIHeadMotionCorrectionFilter<DiffusionPixelType>::New();
+  mitk::DWIHeadMotionCorrectionFilter::Pointer corrfilter =
+      mitk::DWIHeadMotionCorrectionFilter::New();
 
   corrfilter->SetInput( dwimage );
   corrfilter->SetAverageUnweighted(false);
   corrfilter->Update();
 
   try
   {
     mitk::IOUtil::SaveBaseData(corrfilter->GetOutput(), argv[2]);
   }
   catch( const itk::ExceptionObject& e)
   {
     MITK_ERROR << "Catched exception: " << e.what();
     mitkThrow() << "Failed with exception from subprocess!";
   }
 
   MITK_TEST_END();
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDiffusionDICOMFileReaderTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDiffusionDICOMFileReaderTest.cpp
index 1b18949742..bfdd73c944 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDiffusionDICOMFileReaderTest.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDiffusionDICOMFileReaderTest.cpp
@@ -1,115 +1,113 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkDiffusionDICOMFileReader.h"
 #include "mitkDiffusionDICOMFileReaderTestHelper.h"
 #include "mitkDICOMTagBasedSorter.h"
 #include "mitkDICOMSortByTag.h"
 
 #include <mitkIOUtil.h>
 
 #include "mitkTestingMacros.h"
 
 using mitk::DICOMTag;
 
 int mitkDiffusionDICOMFileReaderTest(int argc, char* argv[])
 {
   MITK_TEST_BEGIN("mitkDiffusionDICOMFileReaderTest");
 
   mitk::DiffusionDICOMFileReader::Pointer gdcmReader = mitk::DiffusionDICOMFileReader::New();
   MITK_TEST_CONDITION_REQUIRED(gdcmReader.IsNotNull(), "DICOMITKSeriesGDCMReader can be instantiated.");
 
   std::string output_filename = "/tmp/dicom_out.dwi";
   if( argc > 3)
   {
     mitk::DICOMFileReaderTestHelper::SetTestInputFilenames( argc-1,argv );
     output_filename = std::string( argv[argc-1] );
   }
   else
   {
     mitk::DICOMFileReaderTestHelper::SetTestInputFilenames( argc,argv );
   }
 
   // check the Set/GetInput function
   mitk::DICOMFileReaderTestHelper::TestInputFilenames( gdcmReader );
   MITK_INFO << "Test input filenanems";
 
   // check that output is a good reproduction of input (no duplicates, no new elements)
   mitk::DICOMFileReaderTestHelper::TestOutputsContainInputs( gdcmReader );
   MITK_INFO << "Test output";
 
   // repeat test with some more realistic sorting
   gdcmReader = mitk::DiffusionDICOMFileReader::New(); // this also tests destruction
   mitk::DICOMTagBasedSorter::Pointer tagSorter = mitk::DICOMTagBasedSorter::New();
 
   // Use tags as in Qmitk
   // all the things that split by tag in DicomSeriesReader
   tagSorter->AddDistinguishingTag( DICOMTag(0x0028, 0x0010) ); // Number of Rows
   tagSorter->AddDistinguishingTag( DICOMTag(0x0028, 0x0011) ); // Number of Columns
   tagSorter->AddDistinguishingTag( DICOMTag(0x0028, 0x0030) ); // Pixel Spacing
   tagSorter->AddDistinguishingTag( DICOMTag(0x0018, 0x1164) ); // Imager Pixel Spacing
   tagSorter->AddDistinguishingTag( DICOMTag(0x0020, 0x0037) ); // Image Orientation (Patient) // TODO add tolerance parameter (l. 1572 of original code)
   // TODO handle as real vectors! cluster with configurable errors!
   //tagSorter->AddDistinguishingTag( DICOMTag(0x0020, 0x000e) ); // Series Instance UID
   //tagSorter->AddDistinguishingTag( DICOMTag(0x0020, 0x0010) );
   tagSorter->AddDistinguishingTag( DICOMTag(0x0018, 0x0050) ); // Slice Thickness
   tagSorter->AddDistinguishingTag( DICOMTag(0x0028, 0x0008) ); // Number of Frames
   tagSorter->AddDistinguishingTag( DICOMTag(0x0020, 0x0052) ); // Frame of Reference UID
 
  // gdcmReader->AddSortingElement( tagSorter );
   //mitk::DICOMFileReaderTestHelper::TestOutputsContainInputs( gdcmReader );
 
   mitk::DICOMSortCriterion::ConstPointer sorting =
     mitk::DICOMSortByTag::New( DICOMTag(0x0020, 0x0013), // instance number
       mitk::DICOMSortByTag::New( DICOMTag(0x0020, 0x0012), // aqcuisition number
         mitk::DICOMSortByTag::New( DICOMTag(0x0008, 0x0032), // aqcuisition time
           mitk::DICOMSortByTag::New( DICOMTag(0x0018, 0x1060), // trigger time
             mitk::DICOMSortByTag::New( DICOMTag(0x0008, 0x0018) // SOP instance UID (last resort, not really meaningful but decides clearly)
             ).GetPointer()
           ).GetPointer()
         ).GetPointer()
       ).GetPointer()
     ).GetPointer();
   tagSorter->SetSortCriterion( sorting );
 
   MITK_INFO << "Created sort";
 
   gdcmReader->AddSortingElement( tagSorter );
   mitk::DICOMFileReaderTestHelper::TestOutputsContainInputs( gdcmReader );
 
   MITK_INFO << "Created sort";
 
   //gdcmReader->PrintOutputs(std::cout, true);
 
   // really load images
   //mitk::DICOMFileReaderTestHelper::TestMitkImagesAreLoaded( gdcmReader );
   gdcmReader->LoadImages();
 
   mitk::Image::Pointer loaded_image = gdcmReader->GetOutput(0).GetMitkImage();
 
-  mitk::DiffusionImage<short>::Pointer d_img = static_cast<mitk::DiffusionImage<short>*>( loaded_image.GetPointer() );
-
   try
   {
-    mitk::IOUtil::Save(d_img, output_filename.c_str());
+    mitk::IOUtil::Save(loaded_image, output_filename.c_str());
   }
   catch( const itk::ExceptionObject& e)
   {
     MITK_TEST_FAILED_MSG( << "Writer failed : " << e.what() );
   }
 
   MITK_TEST_END();
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDiffusionPropertySerializerTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDiffusionPropertySerializerTest.cpp
new file mode 100644
index 0000000000..436646692c
--- /dev/null
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkDiffusionPropertySerializerTest.cpp
@@ -0,0 +1,184 @@
+/*===================================================================
+
+The Medical Imaging Interaction Toolkit (MITK)
+
+Copyright (c) German Cancer Research Center,
+Division of Medical and Biological Informatics.
+All rights reserved.
+
+This software is distributed WITHOUT ANY WARRANTY; without
+even the implied warranty of MERCHANTABILITY or FITNESS FOR
+A PARTICULAR PURPOSE.
+
+See LICENSE.txt or http://www.mitk.org for details.
+
+===================================================================*/
+
+#include "mitkIOUtil.h"
+#include "mitkTestingMacros.h"
+#include "mitkTestFixture.h"
+
+#include <mitkBasePropertySerializer.h>
+
+#include <mitkBValueMapProperty.h>
+
+#include <mitkGradientDirectionsProperty.h>
+#include <mitkMeasurementFrameProperty.h>
+
+#include <mitkDiffusionPropertyHelper.h>
+
+class mitkDiffusionPropertySerializerTestSuite : public mitk::TestFixture
+{
+
+  CPPUNIT_TEST_SUITE(mitkDiffusionPropertySerializerTestSuite);
+  MITK_TEST(Equal_SerializeandDeserialize_ReturnsTrue);
+
+  //MITK_TEST(Equal_DifferentChannels_ReturnFalse);
+
+
+  CPPUNIT_TEST_SUITE_END();
+
+private:
+
+  /** Members used inside the different (sub-)tests. All members are initialized via setUp().*/
+  mitk::PropertyList::Pointer propList; //represet image propertylist
+  mitk::BValueMapProperty::Pointer bvaluemap_prop;
+  mitk::GradientDirectionsProperty::Pointer gradientdirection_prop;
+  mitk::MeasurementFrameProperty::Pointer measurementframe_prop;
+
+public:
+
+  /**
+* @brief Setup Always call this method before each Test-case to ensure correct and new intialization of the used members for a new test case. (If the members are not used in a test, the method does not need to be called).
+*/
+  void setUp()
+  {
+
+    propList = mitk::PropertyList::New();
+
+    mitk::BValueMapProperty::BValueMap map;
+    std::vector<unsigned int> indices1;
+    indices1.push_back(1);
+    indices1.push_back(2);
+    indices1.push_back(3);
+    indices1.push_back(4);
+
+    map[0] = indices1;
+    std::vector<unsigned int> indices2;
+    indices2.push_back(4);
+    indices2.push_back(3);
+    indices2.push_back(2);
+    indices2.push_back(1);
+
+    map[1000] = indices2;
+    bvaluemap_prop = mitk::BValueMapProperty::New(map).GetPointer();
+    propList->SetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str(),bvaluemap_prop);
+
+
+    mitk::GradientDirectionsProperty::GradientDirectionsContainerType::Pointer gdc;
+    gdc = mitk::GradientDirectionsProperty::GradientDirectionsContainerType::New();
+
+    double a[3] = {3.0,4.0,1.4};
+    vnl_vector_fixed<double,3> vec1;
+    vec1.set(a);
+    gdc->push_back(vec1);
+
+    double b[3] = {1.0,5.0,123.4};
+    vnl_vector_fixed<double,3> vec2;
+    vec2.set(b);
+    gdc->push_back(vec2);
+
+    double c[3] = {13.0,84.02,13.4};
+    vnl_vector_fixed<double,3> vec3;
+    vec3.set(c);
+    gdc->push_back(vec3);
+
+
+    gradientdirection_prop = mitk::GradientDirectionsProperty::New(gdc.GetPointer()).GetPointer();
+    propList->SetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), gradientdirection_prop);
+
+    mitk::MeasurementFrameProperty::MeasurementFrameType mft;
+
+    double row0[3] = {1,0,0};
+    double row1[3] = {0,1,0};
+    double row2[3] = {0,0,1};
+
+    mft.set_row(0,row0);
+    mft.set_row(1,row1);
+    mft.set_row(2,row2);
+
+    measurementframe_prop = mitk::MeasurementFrameProperty::New(mft).GetPointer();
+    propList->SetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), measurementframe_prop);
+  }
+
+  void tearDown()
+  {
+
+  }
+
+  void Equal_SerializeandDeserialize_ReturnsTrue()
+  {
+
+    assert(propList);
+
+    /* try to serialize each property in the list, then deserialize again and check for equality */
+    for (mitk::PropertyList::PropertyMap::const_iterator it = propList->GetMap()->begin(); it != propList->GetMap()->end(); ++it)
+    {
+      const mitk::BaseProperty* prop = it->second;
+      // construct name of serializer class
+      std::string serializername = std::string(prop->GetNameOfClass()) + "Serializer";
+      std::list<itk::LightObject::Pointer> allSerializers = itk::ObjectFactoryBase::CreateAllInstance(serializername.c_str());
+      MITK_TEST_CONDITION(allSerializers.size() > 0, std::string("Creating serializers for ") + serializername);
+      if (allSerializers.size() == 0)
+      {
+        MITK_TEST_OUTPUT( << "serialization not possible, skipping " << prop->GetNameOfClass());
+        continue;
+      }
+      if (allSerializers.size() > 1)
+      {
+        MITK_TEST_OUTPUT (<< "Warning: " << allSerializers.size() << " serializers found for " << prop->GetNameOfClass() << "testing only the first one.");
+      }
+      mitk::BasePropertySerializer* serializer = dynamic_cast<mitk::BasePropertySerializer*>( allSerializers.begin()->GetPointer());
+      MITK_TEST_CONDITION(serializer != NULL, serializername + std::string(" is valid"));
+      if (serializer != NULL)
+      {
+        serializer->SetProperty(prop);
+        TiXmlElement* valueelement = NULL;
+        try
+        {
+          valueelement = serializer->Serialize();
+//          TiXmlPrinter p;
+//          valueelement->Accept(&p);
+//          MITK_INFO << p.CStr();
+        }
+        catch (...)
+        {
+        }
+        MITK_TEST_CONDITION(valueelement != NULL, std::string("Serialize property with ") + serializername);
+
+        if (valueelement == NULL)
+        {
+          MITK_TEST_OUTPUT( << "serialization failed, skipping deserialization");
+          continue;
+        }
+
+        mitk::BaseProperty::Pointer deserializedProp = serializer->Deserialize( valueelement );
+        MITK_TEST_CONDITION(deserializedProp.IsNotNull(), "serializer created valid property");
+        if (deserializedProp.IsNotNull())
+        {
+          MITK_TEST_CONDITION(*(deserializedProp.GetPointer()) == *prop, "deserialized property equals initial property for type " << prop->GetNameOfClass());
+        }
+
+      }
+      else
+      {
+        MITK_TEST_OUTPUT( << "created serializer object is of class " << allSerializers.begin()->GetPointer()->GetNameOfClass())
+      }
+    } // for all properties
+
+  }
+
+
+};
+
+MITK_TEST_SUITE_REGISTRATION(mitkDiffusionPropertySerializer)
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkExtractSingleShellTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkExtractSingleShellTest.cpp
index f2b1ae2338..43686ea03e 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkExtractSingleShellTest.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkExtractSingleShellTest.cpp
@@ -1,96 +1,103 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include "mitkTestingMacros.h"
 #include "mitkIOUtil.h"
 
 #include <itkElectrostaticRepulsionDiffusionGradientReductionFilter.h>
 
 #include "mitkDWIHeadMotionCorrectionFilter.h"
+#include <mitkDiffusionPropertyHelper.h>
+#include <mitkImageCast.h>
+#include <mitkProperties.h>
 
 typedef short                                       DiffusionPixelType;
-typedef mitk::DiffusionImage< DiffusionPixelType >  DiffusionImageType;
 
 
 int mitkExtractSingleShellTest( int argc, char* argv[] )
 {
   MITK_TEST_BEGIN("mitkExtractSingleShellTest");
 
   MITK_TEST_CONDITION_REQUIRED( argc > 3, "Specify input and output and the shell to be extracted");
 
   /*
     1. Get input data
     */
-  mitk::Image::Pointer inputImage = mitk::IOUtil::LoadImage( argv[1] );
-  DiffusionImageType* dwimage =
-      static_cast<DiffusionImageType*>( inputImage.GetPointer() );
+  mitk::Image::Pointer dwimage = mitk::IOUtil::LoadImage( argv[1] );
 
-  MITK_TEST_CONDITION_REQUIRED( dwimage != NULL, "Input is a dw-image");
+  mitk::GradientDirectionsProperty::Pointer gradientsProperty = static_cast<mitk::GradientDirectionsProperty *>( dwimage->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() );
+
+  MITK_TEST_CONDITION_REQUIRED( gradientsProperty.IsNotNull(), "Input is a dw-image");
 
   unsigned int extract_value = 0;
   std::istringstream input(argv[3]);
 
   input >> extract_value;
 
   typedef itk::ElectrostaticRepulsionDiffusionGradientReductionFilter<DiffusionPixelType, DiffusionPixelType> FilterType;
-  typedef DiffusionImageType::BValueMap BValueMap;
+  typedef mitk::DiffusionPropertyHelper::BValueMapType BValueMap;
 
   // GetShellSelection from GUI
   BValueMap shellSelectionMap;
-  BValueMap originalShellMap = dwimage->GetBValueMap();
+  BValueMap originalShellMap = static_cast<mitk::BValueMapProperty*>(dwimage->GetProperty(mitk::DiffusionPropertyHelper::BVALUEMAPPROPERTYNAME.c_str()).GetPointer() )->GetBValueMap();
   std::vector<unsigned int> newNumGradientDirections;
 
   shellSelectionMap[extract_value] = originalShellMap[extract_value];
   newNumGradientDirections.push_back( originalShellMap[extract_value].size() ) ;
 
-  DiffusionImageType::GradientDirectionContainerType::Pointer gradientContainer = dwimage->GetDirections();
+  itk::VectorImage< short, 3 >::Pointer itkVectorImagePointer = itk::VectorImage< short, 3 >::New();
+  mitk::CastToItkImage(dwimage, itkVectorImagePointer);
+  itk::VectorImage< short, 3 > *vectorImage = itkVectorImagePointer.GetPointer();
+
+  mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradientContainer = static_cast<mitk::GradientDirectionsProperty*>( dwimage->GetProperty(mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str()).GetPointer() )->GetGradientDirectionsContainer();
   FilterType::Pointer filter = FilterType::New();
-  filter->SetInput(dwimage->GetVectorImage());
+  filter->SetInput(vectorImage);
   filter->SetOriginalGradientDirections(gradientContainer);
   filter->SetNumGradientDirections(newNumGradientDirections);
   filter->SetOriginalBValueMap(originalShellMap);
   filter->SetShellSelectionBValueMap(shellSelectionMap);
 
   try
   {
     filter->Update();
   }
   catch( const itk::ExceptionObject& e)
   {
     MITK_TEST_FAILED_MSG( << "Failed due to ITK exception: " << e.what() );
   }
 
-  DiffusionImageType::Pointer image = DiffusionImageType::New();
-  image->SetVectorImage( filter->GetOutput() );
-  image->SetReferenceBValue(dwimage->GetReferenceBValue());
-  image->SetDirections(filter->GetGradientDirections());
-  image->SetMeasurementFrame(dwimage->GetMeasurementFrame());
-  image->InitializeFromVectorImage();
+  mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( filter->GetOutput() );
+  outImage->SetProperty( mitk::DiffusionPropertyHelper::GRADIENTCONTAINERPROPERTYNAME.c_str(), mitk::GradientDirectionsProperty::New( filter->GetGradientDirections() ) );
+  outImage->SetProperty( mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str(), mitk::FloatProperty::New( static_cast<mitk::FloatProperty*>(dwimage->GetProperty(mitk::DiffusionPropertyHelper::REFERENCEBVALUEPROPERTYNAME.c_str()).GetPointer() )->GetValue() ) );
+  outImage->SetProperty( mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str(), mitk::MeasurementFrameProperty::New( static_cast<mitk::MeasurementFrameProperty*>(dwimage->GetProperty(mitk::DiffusionPropertyHelper::MEASUREMENTFRAMEPROPERTYNAME.c_str()).GetPointer() )->GetMeasurementFrame() ) );
+  mitk::DiffusionPropertyHelper propertyHelper( outImage );
+  propertyHelper.InitializeImage();
+
   /*
    * 3. Write output data
    **/
   try
   {
-    mitk::IOUtil::Save(image, argv[2]);
+    mitk::IOUtil::Save(outImage, argv[2]);
   }
   catch( const itk::ExceptionObject& e)
   {
     MITK_ERROR << "Catched exception: " << e.what();
     mitkThrow() << "Failed with exception from subprocess!";
   }
 
   MITK_TEST_END();
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkImageReconstructionTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkImageReconstructionTest.cpp
index e1f16dcca7..33bfd4cd53 100755
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkImageReconstructionTest.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkImageReconstructionTest.cpp
@@ -1,152 +1,158 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
 #include <mitkImageCast.h>
 #include <mitkTensorImage.h>
 #include <mitkQBallImage.h>
-#include <mitkDiffusionImage.h>
 #include <mitkIOUtil.h>
 #include <mitkBaseDataIOFactory.h>
 #include <itkDiffusionTensor3D.h>
 #include <mitkTestingMacros.h>
 #include <itkDiffusionTensor3DReconstructionImageFilter.h>
 #include <itkDiffusionTensor3D.h>
 #include <itkDiffusionQballReconstructionImageFilter.h>
 #include <itkAnalyticalDiffusionQballReconstructionImageFilter.h>
+#include <mitkImage.h>
+#include <mitkDiffusionPropertyHelper.h>
 
 using namespace std;
 
 int mitkImageReconstructionTest(int argc, char* argv[])
 {
     MITK_TEST_BEGIN("mitkImageReconstructionTest");
 
     MITK_TEST_CONDITION_REQUIRED(argc>1,"check for input data")
 
     try
     {
-        mitk::DiffusionImage<short>::Pointer dwi = dynamic_cast<mitk::DiffusionImage<short>*>(mitk::IOUtil::LoadDataNode(argv[1])->GetData());
+        mitk::Image::Pointer dwi = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(argv[1])->GetData());
 
+        itk::VectorImage<short,3>::Pointer itkVectorImagePointer = itk::VectorImage<short,3>::New();
+        mitk::CastToItkImage(dwi, itkVectorImagePointer);
+
+        float b_value = mitk::DiffusionPropertyHelper::GetReferenceBValue( dwi );
+        mitk::DiffusionPropertyHelper::GradientDirectionsContainerType::Pointer gradients = mitk::DiffusionPropertyHelper::GetGradientContainer(dwi);
         {
             MITK_INFO << "Tensor reconstruction " << argv[2];
             mitk::TensorImage::Pointer tensorImage = dynamic_cast<mitk::TensorImage*>(mitk::IOUtil::LoadDataNode(argv[2])->GetData());
             typedef itk::DiffusionTensor3DReconstructionImageFilter< short, short, float > TensorReconstructionImageFilterType;
             TensorReconstructionImageFilterType::Pointer filter = TensorReconstructionImageFilterType::New();
-            filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage() );
-            filter->SetBValue(dwi->GetReferenceBValue());
+            filter->SetGradientImage( gradients, itkVectorImagePointer );
+            filter->SetBValue( b_value );
             filter->Update();
             mitk::TensorImage::Pointer testImage = mitk::TensorImage::New();
             testImage->InitializeByItk( filter->GetOutput() );
             testImage->SetVolume( filter->GetOutput()->GetBufferPointer() );
             MITK_TEST_CONDITION_REQUIRED(mitk::Equal(*testImage, *tensorImage, 0.0001, true), "tensor reconstruction test.");
         }
 
         {
             MITK_INFO << "Numerical Q-ball reconstruction " << argv[3];
             mitk::QBallImage::Pointer qballImage = dynamic_cast<mitk::QBallImage*>(mitk::IOUtil::LoadDataNode(argv[3])->GetData());
             typedef itk::DiffusionQballReconstructionImageFilter<short, short, float, QBALL_ODFSIZE> QballReconstructionImageFilterType;
             QballReconstructionImageFilterType::Pointer filter = QballReconstructionImageFilterType::New();
-            filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage() );
-            filter->SetBValue(dwi->GetReferenceBValue());
+            filter->SetGradientImage( gradients, itkVectorImagePointer );
+            filter->SetBValue( b_value );
             filter->SetNormalizationMethod(QballReconstructionImageFilterType::QBR_STANDARD);
             filter->Update();
             mitk::QBallImage::Pointer testImage = mitk::QBallImage::New();
             testImage->InitializeByItk( filter->GetOutput() );
             testImage->SetVolume( filter->GetOutput()->GetBufferPointer() );
             MITK_TEST_CONDITION_REQUIRED(mitk::Equal(*testImage, *qballImage, 0.0001, true), "Numerical Q-ball reconstruction test.");
         }
 
         {
             MITK_INFO << "Standard Q-ball reconstruction " << argv[4];
             mitk::QBallImage::Pointer qballImage = dynamic_cast<mitk::QBallImage*>(mitk::IOUtil::LoadDataNode(argv[4])->GetData());
             typedef itk::AnalyticalDiffusionQballReconstructionImageFilter<short,short,float,4,QBALL_ODFSIZE> FilterType;
             FilterType::Pointer filter = FilterType::New();
-            filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage() );
-            filter->SetBValue(dwi->GetReferenceBValue());
+            filter->SetGradientImage( gradients, itkVectorImagePointer );
+            filter->SetBValue( b_value );
             filter->SetLambda(0.006);
             filter->SetNormalizationMethod(FilterType::QBAR_STANDARD);
             filter->Update();
             mitk::QBallImage::Pointer testImage = mitk::QBallImage::New();
             testImage->InitializeByItk( filter->GetOutput() );
             testImage->SetVolume( filter->GetOutput()->GetBufferPointer() );
             MITK_TEST_CONDITION_REQUIRED(mitk::Equal(*testImage, *qballImage, 0.0001, true), "Standard Q-ball reconstruction test.");
         }
 
         {
             MITK_INFO << "CSA Q-ball reconstruction " << argv[5];
             mitk::QBallImage::Pointer qballImage = dynamic_cast<mitk::QBallImage*>(mitk::IOUtil::LoadDataNode(argv[5])->GetData());
             typedef itk::AnalyticalDiffusionQballReconstructionImageFilter<short,short,float,4,QBALL_ODFSIZE> FilterType;
             FilterType::Pointer filter = FilterType::New();
-            filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage() );
-            filter->SetBValue(dwi->GetReferenceBValue());
+            filter->SetGradientImage( gradients, itkVectorImagePointer );
+            filter->SetBValue( b_value );
             filter->SetLambda(0.006);
             filter->SetNormalizationMethod(FilterType::QBAR_SOLID_ANGLE);
             filter->Update();
             mitk::QBallImage::Pointer testImage = mitk::QBallImage::New();
             testImage->InitializeByItk( filter->GetOutput() );
             testImage->SetVolume( filter->GetOutput()->GetBufferPointer() );
             MITK_TEST_CONDITION_REQUIRED(mitk::Equal(*testImage, *qballImage, 0.0001, true), "CSA Q-ball reconstruction test.");
         }
 
         {
             MITK_INFO << "ADC profile reconstruction " << argv[6];
             mitk::QBallImage::Pointer qballImage = dynamic_cast<mitk::QBallImage*>(mitk::IOUtil::LoadDataNode(argv[6])->GetData());
             typedef itk::AnalyticalDiffusionQballReconstructionImageFilter<short,short,float,4,QBALL_ODFSIZE> FilterType;
             FilterType::Pointer filter = FilterType::New();
-            filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage() );
-            filter->SetBValue(dwi->GetReferenceBValue());
+            filter->SetGradientImage( gradients, itkVectorImagePointer );
+            filter->SetBValue( b_value );
             filter->SetLambda(0.006);
             filter->SetNormalizationMethod(FilterType::QBAR_ADC_ONLY);
             filter->Update();
             mitk::QBallImage::Pointer testImage = mitk::QBallImage::New();
             testImage->InitializeByItk( filter->GetOutput() );
             testImage->SetVolume( filter->GetOutput()->GetBufferPointer() );
             MITK_TEST_CONDITION_REQUIRED(mitk::Equal(*testImage, *qballImage, 0.0001, true), "ADC profile reconstruction test.");
         }
 
         {
             MITK_INFO << "Raw signal modeling " << argv[7];
             mitk::QBallImage::Pointer qballImage = dynamic_cast<mitk::QBallImage*>(mitk::IOUtil::LoadDataNode(argv[7])->GetData());
             typedef itk::AnalyticalDiffusionQballReconstructionImageFilter<short,short,float,4,QBALL_ODFSIZE> FilterType;
             FilterType::Pointer filter = FilterType::New();
-            filter->SetGradientImage( dwi->GetDirections(), dwi->GetVectorImage() );
-            filter->SetBValue(dwi->GetReferenceBValue());
+            filter->SetGradientImage( gradients, itkVectorImagePointer );
+            filter->SetBValue( b_value );
             filter->SetLambda(0.006);
             filter->SetNormalizationMethod(FilterType::QBAR_RAW_SIGNAL);
             filter->Update();
             mitk::QBallImage::Pointer testImage = mitk::QBallImage::New();
             testImage->InitializeByItk( filter->GetOutput() );
             testImage->SetVolume( filter->GetOutput()->GetBufferPointer() );
             MITK_TEST_CONDITION_REQUIRED(mitk::Equal(*testImage, *qballImage, 0.0001, true), "Raw signal modeling test.");
         }
     }
     catch (itk::ExceptionObject e)
     {
         MITK_INFO << e;
         return EXIT_FAILURE;
     }
     catch (std::exception e)
     {
         MITK_INFO << e.what();
         return EXIT_FAILURE;
     }
     catch (...)
     {
         MITK_INFO << "ERROR!?!";
         return EXIT_FAILURE;
     }
 
     MITK_TEST_END();
 }
diff --git a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkNonLocalMeansDenoisingTest.cpp b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkNonLocalMeansDenoisingTest.cpp
index 680b5c6295..62a7941cb4 100644
--- a/Modules/DiffusionImaging/DiffusionCore/Testing/mitkNonLocalMeansDenoisingTest.cpp
+++ b/Modules/DiffusionImaging/DiffusionCore/Testing/mitkNonLocalMeansDenoisingTest.cpp
@@ -1,176 +1,169 @@
 /*===================================================================
 
 The Medical Imaging Interaction Toolkit (MITK)
 
 Copyright (c) German Cancer Research Center,
 Division of Medical and Biological Informatics.
 All rights reserved.
 
 This software is distributed WITHOUT ANY WARRANTY; without
 even the implied warranty of MERCHANTABILITY or FITNESS FOR
 A PARTICULAR PURPOSE.
 
 See LICENSE.txt or http://www.mitk.org for details.
 
 ===================================================================*/
 
-#include "mitkDiffusionImage.h"
 #include "mitkIOUtil.h"
 #include "mitkTestingMacros.h"
 #include "mitkTestFixture.h"
 #include "itkNonLocalMeansDenoisingFilter.h"
+#include "mitkGradientDirectionsProperty.h"
+#include "mitkITKImageImport.h"
+#include <mitkImageCast.h>
 
 class mitkNonLocalMeansDenoisingTestSuite : public mitk::TestFixture
 {
 
   CPPUNIT_TEST_SUITE(mitkNonLocalMeansDenoisingTestSuite);
   MITK_TEST(Denoise_NLMg_shouldReturnTrue);
   MITK_TEST(Denoise_NLMr_shouldReturnTrue);
   MITK_TEST(Denoise_NLMv_shouldReturnTrue);
   MITK_TEST(Denoise_NLMvr_shouldReturnTrue);
   CPPUNIT_TEST_SUITE_END();
 
 private:
 
+  typedef itk::VectorImage<short,3> VectorImagetType;
+
   /** Members used inside the different (sub-)tests. All members are initialized via setUp().*/
-  mitk::DiffusionImage<short>::Pointer m_Image;
-  mitk::DiffusionImage<short>::Pointer m_ReferenceImage;
-  mitk::DiffusionImage<short>::Pointer m_DenoisedImage;
+  mitk::Image::Pointer m_Image;
+  mitk::Image::Pointer m_ReferenceImage;
+  mitk::Image::Pointer m_DenoisedImage;
   itk::Image<short, 3>::Pointer m_ImageMask;
   itk::NonLocalMeansDenoisingFilter<short>::Pointer m_DenoisingFilter;
 
 public:
 
   /**
 * @brief Setup Always call this method before each Test-case to ensure correct and new intialization of the used members for a new test case. (If the members are not used in a test, the method does not need to be called).
 */
   void setUp()
   {
     //generate test images
     std::string imagePath = GetTestDataFilePath("DiffusionImaging/Denoising/test_multi.dwi");
-//    std::string maskPath = GetTestDataFilePath("DiffusionImaging/Denoising/denoising_mask.nrrd");
 
-    m_Image = static_cast<mitk::DiffusionImage<short>*>( mitk::IOUtil::LoadImage(imagePath).GetPointer());
-//    mitk::Image::Pointer imageMask = static_cast<mitk::Image*>( mitk::IOUtil::LoadImage(maskPath).GetPointer());
-//    mitk::CastToItkImage(imageMask, m_ImageMask);
+    m_Image =  mitk::IOUtil::LoadImage(imagePath);
     m_ReferenceImage = NULL;
-    m_DenoisedImage = mitk::DiffusionImage<short>::New();
+    m_DenoisedImage = mitk::Image::New();
 
     //initialise Filter
     m_DenoisingFilter = itk::NonLocalMeansDenoisingFilter<short>::New();
-    m_DenoisingFilter->SetInputImage(m_Image->GetVectorImage());
-//    m_DenoisingFilter->SetInputMask(m_ImageMask);
+    VectorImagetType::Pointer vectorImage;
+    mitk::CastToItkImage(m_Image,vectorImage);
+    m_DenoisingFilter->SetInputImage(vectorImage);
     m_DenoisingFilter->SetNumberOfThreads(1);
     m_DenoisingFilter->SetComparisonRadius(1);
     m_DenoisingFilter->SetSearchRadius(1);
     m_DenoisingFilter->SetVariance(500);
   }
 
   void tearDown()
   {
     m_Image = NULL;
     m_ImageMask = NULL;
     m_ReferenceImage = NULL;
     m_DenoisingFilter = NULL;
     m_DenoisedImage = NULL;
   }
 
   void Denoise_NLMg_shouldReturnTrue()
   {
     std::string referenceImagePath = GetTestDataFilePath("DiffusionImaging/Denoising/test_multi_NLMg.dwi");
-    m_ReferenceImage = static_cast<mitk::DiffusionImage<short>*>( mitk::IOUtil::LoadImage(referenceImagePath).GetPointer());
+    m_ReferenceImage =  mitk::IOUtil::LoadImage(referenceImagePath);
 
     m_DenoisingFilter->SetUseRicianAdaption(false);
     m_DenoisingFilter->SetUseJointInformation(false);
     try
     {
       m_DenoisingFilter->Update();
     }
     catch(std::exception& e)
     {
       MITK_ERROR << e.what();
     }
 
-    m_DenoisedImage->SetVectorImage(m_DenoisingFilter->GetOutput());
-    m_DenoisedImage->SetReferenceBValue(m_Image->GetReferenceBValue());
-    m_DenoisedImage->SetDirections(m_Image->GetDirections());
-    m_DenoisedImage->InitializeFromVectorImage();
+    mitk::GrabItkImageMemory(m_DenoisingFilter->GetOutput(),m_DenoisedImage);
+    m_DenoisedImage->SetPropertyList(m_Image->GetPropertyList()->Clone());
 
     MITK_ASSERT_EQUAL( m_DenoisedImage, m_ReferenceImage, "NLMg should always return the same result.");
   }
 
   void Denoise_NLMr_shouldReturnTrue()
   {
     std::string referenceImagePath = GetTestDataFilePath("DiffusionImaging/Denoising/test_multi_NLMr.dwi");
-    m_ReferenceImage = static_cast<mitk::DiffusionImage<short>*>( mitk::IOUtil::LoadImage(referenceImagePath).GetPointer());
+    m_ReferenceImage = mitk::IOUtil::LoadImage(referenceImagePath);
 
     m_DenoisingFilter->SetUseRicianAdaption(true);
     m_DenoisingFilter->SetUseJointInformation(false);
     try
     {
       m_DenoisingFilter->Update();
     }
     catch(std::exception& e)
     {
       MITK_ERROR << e.what();
     }
 
-    m_DenoisedImage->SetVectorImage(m_DenoisingFilter->GetOutput());
-    m_DenoisedImage->SetReferenceBValue(m_Image->GetReferenceBValue());
-    m_DenoisedImage->SetDirections(m_Image->GetDirections());
-    m_DenoisedImage->InitializeFromVectorImage();
+    mitk::GrabItkImageMemory(m_DenoisingFilter->GetOutput(),m_DenoisedImage);
+    m_DenoisedImage->SetPropertyList(m_Image->GetPropertyList()->Clone());
 
     MITK_ASSERT_EQUAL( m_DenoisedImage, m_ReferenceImage, "NLMr should always return the same result.");
   }
 
   void Denoise_NLMv_shouldReturnTrue()
   {
     std::string referenceImagePath = GetTestDataFilePath("DiffusionImaging/Denoising/test_multi_NLMv.dwi");
-    m_ReferenceImage = static_cast<mitk::DiffusionImage<short>*>( mitk::IOUtil::LoadImage(referenceImagePath).GetPointer());
-
+    m_ReferenceImage = mitk::IOUtil::LoadImage(referenceImagePath);
     m_DenoisingFilter->SetUseRicianAdaption(false);
     m_DenoisingFilter->SetUseJointInformation(true);
     try
     {
       m_DenoisingFilter->Update();
     }
     catch(std::exception& e)
     {
       MITK_ERROR << e.what();
     }
 
-    m_DenoisedImage->SetVectorImage(m_DenoisingFilter->GetOutput());
-    m_DenoisedImage->SetReferenceBValue(m_Image->GetReferenceBValue());
-    m_DenoisedImage->SetDirections(m_Image->GetDirections());
-    m_DenoisedImage->InitializeFromVectorImage();
+    mitk::GrabItkImageMemory(m_DenoisingFilter->GetOutput(),m_DenoisedImage);
+    m_DenoisedImage->SetPropertyList(m_Image->GetPropertyList()->Clone());
 
     MITK_ASSERT_EQUAL( m_DenoisedImage, m_ReferenceImage, "NLMv should always return the same result.");
   }
 
   void Denoise_NLMvr_shouldReturnTrue()
   {
     std::string referenceImagePath = GetTestDataFilePath("DiffusionImaging/Denoising/test_multi_NLMvr.dwi");
-    m_ReferenceImage = static_cast<mitk::DiffusionImage<short>*>( mitk::IOUtil::LoadImage(referenceImagePath).GetPointer());
+    m_ReferenceImage = mitk::IOUtil::LoadImage(referenceImagePath);
 
     m_DenoisingFilter->SetUseRicianAdaption(true);
     m_DenoisingFilter->SetUseJointInformation(true);
     try
     {
       m_DenoisingFilter->Update();
     }
     catch(std::exception& e)
     {
       MITK_ERROR << e.what();
     }
 
-    m_DenoisedImage->SetVectorImage(m_DenoisingFilter->GetOutput());
-    m_DenoisedImage->SetReferenceBValue(m_Image->GetReferenceBValue());
-    m_DenoisedImage->SetDirections(m_Image->GetDirections());
-    m_DenoisedImage->InitializeFromVectorImage();
+    mitk::GrabItkImageMemory(m_DenoisingFilter->GetOutput(),m_DenoisedImage);
+    m_DenoisedImage->SetPropertyList(m_Image->GetPropertyList()->Clone());
 
     MITK_ASSERT_EQUAL( m_DenoisedImage, m_ReferenceImage, "NLMvr should always return the same result.");
   }
 
 };
 
 MITK_TEST_SUITE_REGISTRATION(mitkNonLocalMeansDenoising)
diff --git a/Modules/DiffusionImaging/DiffusionCore/files.cmake b/Modules/DiffusionImaging/DiffusionCore/files.cmake
index d5ad2057eb..dae157948b 100644
--- a/Modules/DiffusionImaging/DiffusionCore/files.cmake
+++ b/Modules/DiffusionImaging/DiffusionCore/files.cmake
@@ -1,150 +1,149 @@
 set(CPP_FILES
 
   # DicomImport
   DicomImport/mitkDicomDiffusionImageReader.cpp
   # DicomImport/mitkGroupDiffusionHeadersFilter.cpp
   DicomImport/mitkDicomDiffusionImageHeaderReader.cpp
   DicomImport/mitkGEDicomDiffusionImageHeaderReader.cpp
   DicomImport/mitkPhilipsDicomDiffusionImageHeaderReader.cpp
   DicomImport/mitkSiemensDicomDiffusionImageHeaderReader.cpp
   DicomImport/mitkSiemensMosaicDicomDiffusionImageHeaderReader.cpp
 
   DicomImport/mitkDiffusionDICOMFileReader.cpp
   DicomImport/mitkDiffusionHeaderDICOMFileReader.cpp
   DicomImport/mitkDiffusionHeaderSiemensDICOMFileReader.cpp
   DicomImport/mitkDiffusionHeaderSiemensDICOMFileHelper.cpp
   DicomImport/mitkDiffusionHeaderSiemensMosaicDICOMFileReader.cpp
   DicomImport/mitkDiffusionHeaderGEDICOMFileReader.cpp
   DicomImport/mitkDiffusionHeaderPhilipsDICOMFileReader.cpp
 
 
   # DataStructures -> DWI
   IODataStructures/DiffusionWeightedImages/mitkDiffusionImageHeaderInformation.cpp
-  IODataStructures/DiffusionWeightedImages/mitkDiffusionImageSource.cpp
-
-  IODataStructures/DiffusionWeightedImages/mitkImageToDiffusionImageSource.cpp
   IODataStructures/DiffusionWeightedImages/mitkDiffusionImageCorrectionFilter.cpp
 
   # Properties
   IODataStructures/Properties/mitkBValueMapProperty.cpp
   IODataStructures/Properties/mitkGradientDirectionsProperty.cpp
   IODataStructures/Properties/mitkMeasurementFrameProperty.cpp
   IODataStructures/Properties/mitkDiffusionPropertyHelper.cpp
   IODataStructures/Properties/mitkNodePredicateIsDWI.cpp
 
   # Serializer
   IODataStructures/Properties/mitkBValueMapPropertySerializer.cpp
   IODataStructures/Properties/mitkGradientDirectionsPropertySerializer.cpp
   IODataStructures/Properties/mitkMeasurementFramePropertySerializer.cpp
 
   # DataStructures -> QBall
   IODataStructures/QBallImages/mitkQBallImageSource.cpp
   IODataStructures/QBallImages/mitkQBallImage.cpp
 
   # DataStructures -> Tensor
   IODataStructures/TensorImages/mitkTensorImage.cpp
 
   Rendering/vtkMaskedProgrammableGlyphFilter.cpp
   Rendering/mitkVectorImageVtkGlyphMapper3D.cpp
   Rendering/vtkOdfSource.cxx
   Rendering/vtkThickPlane.cxx
   Rendering/mitkOdfNormalizationMethodProperty.cpp
   Rendering/mitkOdfScaleByProperty.cpp
 
   # Algorithms
   Algorithms/mitkPartialVolumeAnalysisHistogramCalculator.cpp
   Algorithms/mitkPartialVolumeAnalysisClusteringCalculator.cpp
   Algorithms/itkDwiGradientLengthCorrectionFilter.cpp
   Algorithms/itkElectrostaticRepulsionDiffusionGradientReductionFilter.h
 
   # Registration Algorithms & Co.
   Algorithms/Registration/mitkRegistrationWrapper.cpp
   Algorithms/Registration/mitkPyramidImageRegistrationMethod.cpp
   # Algorithms/Registration/mitkRegistrationMethodITK4.cpp
+  Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.cpp
 
 
   # MultishellProcessing
   Algorithms/Reconstruction/MultishellProcessing/itkADCAverageFunctor.cpp
   Algorithms/Reconstruction/MultishellProcessing/itkADCFitFunctor.cpp
   Algorithms/Reconstruction/MultishellProcessing/itkKurtosisFitFunctor.cpp
   Algorithms/Reconstruction/MultishellProcessing/itkBiExpFitFunctor.cpp
 
   # Function Collection
   mitkDiffusionFunctionCollection.cpp
 )
 
 set(H_FILES
   # function Collection
   mitkDiffusionFunctionCollection.h
 
   # Rendering
-  Rendering/mitkDiffusionImageMapper.h
   Rendering/mitkOdfVtkMapper2D.h
 
   # Reconstruction
   Algorithms/Reconstruction/itkDiffusionQballReconstructionImageFilter.h
   Algorithms/Reconstruction/mitkTeemDiffusionTensor3DReconstructionImageFilter.h
   Algorithms/Reconstruction/itkAnalyticalDiffusionQballReconstructionImageFilter.h
   Algorithms/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.h
   Algorithms/Reconstruction/itkPointShell.h
   Algorithms/Reconstruction/itkOrientationDistributionFunction.h
   Algorithms/Reconstruction/itkDiffusionIntravoxelIncoherentMotionReconstructionImageFilter.h
 
   # MultishellProcessing
   Algorithms/Reconstruction/MultishellProcessing/itkRadialMultishellToSingleshellImageFilter.h
   Algorithms/Reconstruction/MultishellProcessing/itkDWIVoxelFunctor.h
   Algorithms/Reconstruction/MultishellProcessing/itkADCAverageFunctor.h
   Algorithms/Reconstruction/MultishellProcessing/itkKurtosisFitFunctor.h
   Algorithms/Reconstruction/MultishellProcessing/itkBiExpFitFunctor.h
   Algorithms/Reconstruction/MultishellProcessing/itkADCFitFunctor.h
 
-  # IO Datastructures
-  IODataStructures/DiffusionWeightedImages/mitkDiffusionImage.h
+  # Properties
+  IODataStructures/Properties/mitkBValueMapProperty.h
+  IODataStructures/Properties/mitkGradientDirectionsProperty.h
+  IODataStructures/Properties/mitkMeasurementFrameProperty.h
+  IODataStructures/Properties/mitkDiffusionPropertyHelper.h
 
   # Algorithms
   Algorithms/itkDiffusionQballGeneralizedFaImageFilter.h
   Algorithms/itkDiffusionQballPrepareVisualizationImageFilter.h
   Algorithms/itkTensorDerivedMeasurementsFilter.h
   Algorithms/itkBrainMaskExtractionImageFilter.h
   Algorithms/itkB0ImageExtractionImageFilter.h
   Algorithms/itkB0ImageExtractionToSeparateImageFilter.h
   Algorithms/itkTensorImageToDiffusionImageFilter.h
   Algorithms/itkTensorToL2NormImageFilter.h
   Algorithms/itkGaussianInterpolateImageFunction.h
   Algorithms/mitkPartialVolumeAnalysisHistogramCalculator.h
   Algorithms/mitkPartialVolumeAnalysisClusteringCalculator.h
   Algorithms/itkDiffusionTensorPrincipalDirectionImageFilter.h
   Algorithms/itkCartesianToPolarVectorImageFilter.h
   Algorithms/itkPolarToCartesianVectorImageFilter.h
   Algorithms/itkDistanceMapFilter.h
   Algorithms/itkProjectionFilter.h
   Algorithms/itkResidualImageFilter.h
   Algorithms/itkExtractChannelFromRgbaImageFilter.h
   Algorithms/itkTensorReconstructionWithEigenvalueCorrectionFilter.h
   Algorithms/itkMergeDiffusionImagesFilter.h
   Algorithms/itkDwiPhantomGenerationFilter.h
   Algorithms/itkFiniteDiffOdfMaximaExtractionFilter.h
   Algorithms/itkMrtrixPeakImageConverter.h
   Algorithms/itkFslPeakImageConverter.h
   Algorithms/itkShCoefficientImageImporter.h
   Algorithms/itkShCoefficientImageExporter.h
   Algorithms/itkOdfMaximaExtractionFilter.h
   Algorithms/itkResampleDwiImageFilter.h
   Algorithms/itkDwiGradientLengthCorrectionFilter.h
   Algorithms/itkAdcImageFilter.h
   Algorithms/itkDwiNormilzationFilter.h
   Algorithms/itkSplitDWImageFilter.h
   Algorithms/itkRemoveDwiChannelFilter.h
   Algorithms/itkExtractDwiChannelFilter.h
 
   Algorithms/Registration/mitkDWIHeadMotionCorrectionFilter.h
-  Algorithms/mitkDiffusionImageToDiffusionImageFilter.h
   Algorithms/itkNonLocalMeansDenoisingFilter.h
   Algorithms/itkVectorImageToImageFilter.h
 
 
 )
 
 set( TOOL_FILES
 )