diff --git a/Modules/Pharmacokinetics/cmdapps/MRSignal2ConcentrationMiniApp.cpp b/Modules/Pharmacokinetics/cmdapps/MRSignal2ConcentrationMiniApp.cpp index 66828da564..918f310434 100644 --- a/Modules/Pharmacokinetics/cmdapps/MRSignal2ConcentrationMiniApp.cpp +++ b/Modules/Pharmacokinetics/cmdapps/MRSignal2ConcentrationMiniApp.cpp @@ -1,305 +1,286 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // std includes #include // itk includes #include "itksys/SystemTools.hxx" // CTK includes #include "mitkCommandLineParser.h" // MITK includes #include #include #include #include #include std::string inFilename; std::string outFileName; mitk::Image::Pointer image; bool verbose(false); bool t1_absolute(false); bool t1_relative(false); -bool t1_flash(false); bool t2(false); float k(1.0); float te(0); float rec_time(0); float relaxivity(0); float rel_time(0); void setupParser(mitkCommandLineParser& parser) { // set general information about your MiniApp parser.setCategory("Dynamic Data Analysis Tools"); parser.setTitle("MR Signal to Concentration Converter"); parser.setDescription("MiniApp that allows to convert a T1 or T2 signal image into a concentration image for perfusion analysis."); parser.setContributor("DKFZ MIC"); //! [create parser] //! [add arguments] // how should arguments be prefixed parser.setArgumentPrefix("--", "-"); // add each argument, unless specified otherwise each argument is optional // see mitkCommandLineParser::addArgument for more information parser.beginGroup("Required I/O parameters"); parser.addArgument( "input", "i", mitkCommandLineParser::File, "Input file", "input 3D+t image file", us::Any(), false, false, false, mitkCommandLineParser::Input); parser.addArgument("output", "o", mitkCommandLineParser::File, "Output file", "where to save the output concentration image.", us::Any(), false, false, false, mitkCommandLineParser::Output); parser.endGroup(); parser.beginGroup("Conversion parameters"); parser.addArgument( "t1-absolute", "", mitkCommandLineParser::Bool, "T1 absolute signal enhancement", "Activate conversion for T1 absolute signal enhancement."); parser.addArgument( "t1-relative", "", mitkCommandLineParser::Bool, "T1 relative signal enhancement", "Activate conversion for T1 relative signal enhancement."); - parser.addArgument( - "t1-flash", "", mitkCommandLineParser::Bool, "T1 turbo flash", "Activate specific conversion for T1 turbo flash sequences."); parser.addArgument( "t2", "", mitkCommandLineParser::Bool, "T2 signal conversion", "Activate conversion for T2 signal enhancement to concentration."); parser.addArgument( "k", "k", mitkCommandLineParser::Float, "Conversion factor k", "Needed for the following conversion modes: T1-absolute, T1-relative, T2. Default value is 1.", us::Any(1)); parser.addArgument( "recovery-time", "", mitkCommandLineParser::Float, "Recovery time", "Needed for the following conversion modes: T1-flash."); parser.addArgument( "relaxivity", "", mitkCommandLineParser::Float, "Relaxivity", "Needed for the following conversion modes: T1-flash."); parser.addArgument( "relaxation-time", "", mitkCommandLineParser::Float, "Relaxation time", "Needed for the following conversion modes: T1-flash."); parser.addArgument( "te", "", mitkCommandLineParser::Float, "Echo time TE", "Needed for the following conversion modes: T2.", us::Any(1)); parser.beginGroup("Optional parameters"); parser.addArgument( "verbose", "v", mitkCommandLineParser::Bool, "Verbose Output", "Whether to produce verbose output"); parser.addArgument("help", "h", mitkCommandLineParser::Bool, "Help:", "Show this help text"); parser.endGroup(); //! [add arguments] } bool configureApplicationSettings(std::map parsedArgs) { if (parsedArgs.size() == 0) return false; inFilename = us::any_cast(parsedArgs["input"]); outFileName = us::any_cast(parsedArgs["output"]); verbose = false; if (parsedArgs.count("verbose")) { verbose = us::any_cast(parsedArgs["verbose"]); } t1_absolute = false; if (parsedArgs.count("t1-absolute")) { t1_absolute = us::any_cast(parsedArgs["t1-absolute"]); } t1_relative = false; if (parsedArgs.count("t1-relative")) { t1_relative = us::any_cast(parsedArgs["t1-relative"]); } - t1_flash = false; - if (parsedArgs.count("t1-flash")) - { - t1_flash = us::any_cast(parsedArgs["t1-flash"]); - } t2 = false; if (parsedArgs.count("t2")) { t2 = us::any_cast(parsedArgs["t2"]); } k = 0.0; if (parsedArgs.count("k")) { k = us::any_cast(parsedArgs["k"]); } relaxivity = 0.0; if (parsedArgs.count("relaxivity")) { relaxivity = us::any_cast(parsedArgs["relaxivity"]); } rec_time = 0.0; if (parsedArgs.count("recovery-time")) { rec_time = us::any_cast(parsedArgs["recovery-time"]); } rel_time = 0.0; if (parsedArgs.count("relaxation-time")) { rel_time = us::any_cast(parsedArgs["relaxation-time"]); } te = 0.0; if (parsedArgs.count("te")) { te = us::any_cast(parsedArgs["te"]); } //consistency checks int modeCount = 0; if (t1_absolute) ++modeCount; - if (t1_flash) ++modeCount; if (t1_relative) ++modeCount; if (t2) ++modeCount; if (modeCount==0) { mitkThrow() << "Invalid program call. Please select the type of conversion."; } if (modeCount >1) { mitkThrow() << "Invalid program call. Please select only ONE type of conversion."; } if (!k && (t2 || t1_absolute || t1_relative)) { mitkThrow() << "Invalid program call. Please set 'k', if you use t1-absolute, t1-relative or t2."; } if (!te && t2) { mitkThrow() << "Invalid program call. Please set 'te', if you use t2 mode."; } - if ((!rec_time||!rel_time||!relaxivity) && t1_flash) - { - mitkThrow() << "Invalid program call. Please set 'recovery-time', 'relaxation-time' and 'relaxivity', if you use t1-flash mode."; - } return true; } void doConversion() { mitk::ConcentrationCurveGenerator::Pointer concentrationGen = mitk::ConcentrationCurveGenerator::New(); concentrationGen->SetDynamicImage(image); - concentrationGen->SetisTurboFlashSequence(t1_flash); + //concentrationGen->SetisTurboFlashSequence(t1_flash); concentrationGen->SetAbsoluteSignalEnhancement(t1_absolute); concentrationGen->SetRelativeSignalEnhancement(t1_relative); concentrationGen->SetisT2weightedImage(t2); - if (t1_flash) - { - concentrationGen->SetRecoveryTime(rec_time); - concentrationGen->SetRelaxationTime(rel_time); - concentrationGen->SetRelaxivity(relaxivity); - } - else if (t2) + if (t2) { concentrationGen->SetT2Factor(k); concentrationGen->SetT2EchoTime(te); } else { concentrationGen->SetFactor(k); } mitk::Image::Pointer concentrationImage = concentrationGen->GetConvertedImage(); mitk::IOUtil::Save(concentrationImage, outFileName); std::cout << "Store result: " << outFileName << std::endl; } int main(int argc, char* argv[]) { mitkCommandLineParser parser; setupParser(parser); const std::map& parsedArgs = parser.parseArguments(argc, argv); try { if (!configureApplicationSettings(parsedArgs)) { return EXIT_FAILURE; } } catch (const itk::ExceptionObject& e) { MITK_ERROR << e.what(); return EXIT_FAILURE; } catch (const std::exception& e) { MITK_ERROR << e.what(); return EXIT_FAILURE; } catch (...) { MITK_ERROR << "Unexpected error encountered when parsing the CLI arguments."; return EXIT_FAILURE; } mitk::PreferenceListReaderOptionsFunctor readerFilterFunctor = mitk::PreferenceListReaderOptionsFunctor({ "MITK DICOM Reader v2 (autoselect)" }, { "" }); // Show a help message if (parsedArgs.count("help") || parsedArgs.count("h")) { std::cout << parser.helpText(); return EXIT_SUCCESS; } //! [do processing] try { image = mitk::IOUtil::Load(inFilename, &readerFilterFunctor); std::cout << "Input: " << inFilename << std::endl; doConversion(); std::cout << "Processing finished." << std::endl; return EXIT_SUCCESS; } catch (const itk::ExceptionObject& e) { MITK_ERROR << e.what(); return EXIT_FAILURE; } catch (const std::exception& e) { MITK_ERROR << e.what(); return EXIT_FAILURE; } catch (...) { MITK_ERROR << "Unexpected error encountered."; return EXIT_FAILURE; } } diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/Manual.dox b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/Manual.dox index 3fa2edaef1..03d7930ef2 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/Manual.dox +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/Manual.dox @@ -1,53 +1,52 @@ /** \page org_mitk_views_pharmacokinetics_concentration_mri The DCE Concentration Curve Converter View \imageMacro{pharmacokinetics_concentration_doc.svg,"Icon of the DCE Concentration Curve Converter View",3.0} \tableofcontents \section org_mitk_views_pharmacokinetics_concentration_mri_overview Overview This view offers a dedicated tool for the conversion of DCE MR image signal intensities to contrast agent (CA) concentration. It contains a subset of the conversion tools for T1-weighted signal intensities, which are also a part of the DCE MR Perfusion Datafit View. Additionally, it allows for the conversion between T2-weighted MR signal intensities and contrast agent concentration. \section org_mitk_views_pharmacokinetics_concentration_mri_Contact Contact information If you have any questions, need support, find a bug or have a feature request, feel free to contact us at www.mitk.org. \section org_mitk_views_pharmacokinetics_concentration_mri_T1_conversion Conversion of T1-weighted MRI data -\imageMacro{concentration_curve_converter_T1_weighted4D.png,"Example screenshot of the conversion of T1-weighted MR images",3.0 } +\imageMacro{concentration_curve_converter_T1_weighted4D.png,"Example screenshot of the conversion of T1-weighted MR images",3.0} + The view offers the choice between a 3D Image and a 4D image. If a 4D image is selected, the Selected Time Series needs to be specified. For 4D images, for all conversion methods which require a baseline value, the range of the time points which are part of the baseline can be specified. The baseline signal SBL will be averaged between the signal of the time points within this range. If not specified, the baseline signal SBL is set as the signal of the first time point image of the time series. In case of a 3D image to be converted, additionally to the selected 3D image a Baseline Image (without CA) has to be specified.\n\n The following types of conversion can be chosen: - Absolute Signal Enhancement: The dynamic contrast agent concentration C(t) is calculated according to the formula: C(t) = k*(S(t)-SBL), where S(t) is the dynamic T1-weighted signal intensity, SBL the baseline signal and k a user-defined conversion factor. - Relative Signal Enhancement: The dynamic contrast agent concentration C(t) is calculated according to the formula: C(t) = k*(S(t)-SBL)/SBL, where S(t) is the dynamic T1-weighted signal intensity, SBL the baseline signal and k a user-defined conversion factor. - Variable Flip Angle: This conversion uses the method described in \ref org_mitk_views_pharmacokinetics_concentration_mri_lit_ref1 "[1]". As additional input to the dynamic time series, a proton density weighted (PDW) image is provided, which has been acquired pre-contrast with the same sequence parameters as for the dynamic image but a smaller flip angle. Both flip angles are provided by the user. Furthermore, the repetition time TR and the longitudinal relaxivity r1 are required as input.
It is assumed that the MR data has been acquired according to the spoiled gradient recalled echo model. The sequence formulas for the PDW image signal and for the baseline signal of the dynamic time series are two equations with two unknowns: the pre-contrast R1-relaxation rate R10 and the signal scaling factor S0. These are calculated by solving the system of equations.
With the knowledge of S0, the dynamic contrast-enhanced relaxation rate R1(t) is computed. Finally, the concentration is calculated by inverting the linear model: R1(t)=R10+r1*C(t). -- Turbo FLASH Sequence: The conversion from signal S(t) to contrast agent concentration C(t) is calculated according to the turboFLASH (ultrafast gradient echo) sequence specific formula. - \section org_mitk_views_pharmacokinetics_concentration_mri_T2_conversion Conversion of T2-weighted MRI data \imageMacro{concentration_curve_converter_T2_weighted.png,"Example screenshot of the conversion of T2-weighted MR images",3.0} The dynamic contrast agent concentration C(t) is calculated according to the formula: C(t) = -k/TE*ln(S(t)/SBL), where S(t) is the dynamic T2-weighted signal intensity, SBL the baseline signal, k a user-defined conversion factor and TE the echo time of the employed sequence. In practice, the factor k is often set to unity. \section org_mitk_views_pharmacokinetics_concentration_mri_lit References/Literature - \anchor org_mitk_views_pharmacokinetics_concentration_mri_lit_ref1 [1] Wang, H. Z., Riederer, S. J., and Lee, J. N. (1987). Optimization the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med, 5:399–416. */ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T1_weighted4D.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T1_weighted4D.png index 6de9b777c8..1d31055997 100644 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T1_weighted4D.png and b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T1_weighted4D.png differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T2_weighted.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T2_weighted.png index 91e1b6cdc8..0a85d2d6d7 100644 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T2_weighted.png and b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/documentation/UserManual/concentration_curve_converter_T2_weighted.png differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterView.cpp b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterView.cpp index 05548ce5de..4067d16e83 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterView.cpp +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterView.cpp @@ -1,565 +1,519 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include #include "mitkWorkbenchUtil.h" #include "ConcentrationCurveConverterView.h" #include "mitkConcentrationCurveGenerator.h" #include "mitkNodePredicateDataType.h" -#include "mitkConvertToConcentrationTurboFlashFunctor.h" #include "mitkConvertToConcentrationAbsoluteFunctor.h" #include "mitkConvertToConcentrationRelativeFunctor.h" #include "itkBinaryFunctorImageFilter.h" #include "boost/math/constants/constants.hpp" #include #include #include #include #include #include #include "mitkNodePredicateFunction.h" #include #include // Includes for image casting between ITK and MITK #include "mitkImageTimeSelector.h" #include "mitkImageCast.h" #include "mitkITKImageImport.h" #include #include const std::string ConcentrationCurveConverterView::VIEW_ID = "org.mitk.views.pharmacokinetics.concentration.mri"; void ConcentrationCurveConverterView::SetFocus() { m_Controls.btnConvertToConcentration->setFocus(); } void ConcentrationCurveConverterView::CreateQtPartControl(QWidget* parent) { m_Controls.setupUi(parent); m_Controls.btnConvertToConcentration->setEnabled(false); connect(m_Controls.btnConvertToConcentration, SIGNAL(clicked()), this, SLOT(OnConvertToConcentrationButtonClicked())); m_Controls.timeSeriesNodeSelector->SetNodePredicate(this->m_isValidTimeSeriesImagePredicate); m_Controls.timeSeriesNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.timeSeriesNodeSelector->SetSelectionIsOptional(false); m_Controls.timeSeriesNodeSelector->SetInvalidInfo("Please select time series."); m_Controls.image3DNodeSelector->SetNodePredicate(this->m_isValidPDWImagePredicate); m_Controls.image3DNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.image3DNodeSelector->SetSelectionIsOptional(false); m_Controls.image3DNodeSelector->SetInvalidInfo("Please select 3D image."); m_Controls.baselineImageNodeSelector->SetNodePredicate(this->m_isValidPDWImagePredicate); m_Controls.baselineImageNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.baselineImageNodeSelector->SetSelectionIsOptional(false); m_Controls.baselineImageNodeSelector->SetInvalidInfo("Please select baseline image."); m_Controls.t2TimeSeriesNodeSelector->SetNodePredicate(this->m_isValidTimeSeriesImagePredicate); m_Controls.t2TimeSeriesNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.t2TimeSeriesNodeSelector->SetSelectionIsOptional(false); m_Controls.t2TimeSeriesNodeSelector->SetInvalidInfo("Please select time series."); m_Controls.PDWImageNodeSelector->SetNodePredicate(m_isValidPDWImagePredicate); m_Controls.PDWImageNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.PDWImageNodeSelector->SetInvalidInfo("Please select PDW Image."); m_Controls.PDWImageNodeSelector->setEnabled(false); m_Controls.groupBox_T1->hide(); m_Controls.groupBox_T2->hide(); m_Controls.groupBox3D->hide(); m_Controls.groupBox4D->hide(); - m_Controls.groupBoxTurboFlash->hide(); m_Controls.groupConcentration->hide(); m_Controls.groupBox_baselineRangeSelection->hide(); m_Controls.groupBox_BaselineRangeSelectionT2->hide(); connect(m_Controls.radioButton_T1, SIGNAL(toggled(bool)),this, SLOT(OnSettingChanged())); connect(m_Controls.radioButton_T2, SIGNAL(toggled(bool)),this, SLOT(OnSettingChanged())); connect(m_Controls.radioButton3D, SIGNAL(toggled(bool)),this, SLOT(OnSettingChanged())); connect(m_Controls.radioButton4D, SIGNAL(toggled(bool)),this, SLOT(OnSettingChanged())); //Concentration m_Controls.groupConcentration->hide(); m_Controls.groupBoxEnhancement->hide(); - m_Controls.groupBoxTurboFlash->hide(); m_Controls.groupBox_T1MapviaVFA->hide(); m_Controls.spinBox_baselineStartTimeStep->setValue(0); m_Controls.spinBox_baselineEndTimeStep->setValue(0); m_Controls.spinBox_baselineEndTimeStep->setMinimum(0); m_Controls.spinBox_baselineStartTimeStep->setMinimum(0); m_Controls.spinBox_baselineStartTimeStepT2->setValue(0); m_Controls.spinBox_baselineEndTimeStepT2->setValue(0); m_Controls.spinBox_baselineEndTimeStepT2->setMinimum(0); m_Controls.spinBox_baselineStartTimeStepT2->setMinimum(0); - connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), m_Controls.groupBoxTurboFlash, SLOT(setVisible(bool))); - connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); - connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), this, SLOT(OnSettingChanged())); - connect(m_Controls.relaxationtime, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); - connect(m_Controls.recoverytime, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); - connect(m_Controls.relaxivity, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); connect(m_Controls.timeSeriesNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &ConcentrationCurveConverterView::OnNodeSelectionChanged); connect(m_Controls.image3DNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &ConcentrationCurveConverterView::OnNodeSelectionChanged); connect(m_Controls.baselineImageNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &ConcentrationCurveConverterView::OnNodeSelectionChanged); connect(m_Controls.t2TimeSeriesNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &ConcentrationCurveConverterView::OnNodeSelectionChanged); connect(m_Controls.PDWImageNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &ConcentrationCurveConverterView::OnSettingChanged); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), m_Controls.groupBoxEnhancement, SLOT(setVisible(bool))); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), this, SLOT(OnSettingChanged())); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), m_Controls.groupBoxEnhancement, SLOT(setVisible(bool))); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), this, SLOT(OnSettingChanged())); connect(m_Controls.factorSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); connect(m_Controls.spinBox_baselineStartTimeStep, SIGNAL(valueChanged(int)), this, SLOT(OnSettingChanged())); connect(m_Controls.spinBox_baselineEndTimeStep, SIGNAL(valueChanged(int)), this, SLOT(OnSettingChanged())); connect(m_Controls.spinBox_baselineStartTimeStepT2, SIGNAL(valueChanged(int)), this, SLOT(OnSettingChanged())); connect(m_Controls.spinBox_baselineEndTimeStepT2, SIGNAL(valueChanged(int)), this, SLOT(OnSettingChanged())); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), m_Controls.groupBox_T1MapviaVFA, SLOT(setVisible(bool))); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), this, SLOT(OnSettingChanged())); connect(m_Controls.FlipangleSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); connect(m_Controls.RelaxivitySpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); connect(m_Controls.TRSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); connect(m_Controls.T2EchoTimeSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); connect(m_Controls.T2FactorSpinBox, SIGNAL(valueChanged(double)), this, SLOT(OnSettingChanged())); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), m_Controls.PDWImageNodeSelector, SLOT(setEnabled(bool))); } void ConcentrationCurveConverterView::OnSettingChanged() { bool ok = false; m_Controls.groupBox_T1->setVisible(m_Controls.radioButton_T1->isChecked()); m_Controls.groupBox_T2->setVisible(m_Controls.radioButton_T2->isChecked()); m_Controls.groupBox_BaselineRangeSelectionT2->setVisible(m_Controls.radioButton_T2->isChecked()); if(m_Controls.radioButton_T1->isChecked()) { m_Controls.groupBox3D->setVisible(m_Controls.radioButton3D->isChecked()); m_Controls.groupBox4D->setVisible(m_Controls.radioButton4D->isChecked()); if(m_Controls.radioButton4D->isChecked()) { m_Controls.groupConcentration->setVisible(true); - if (m_Controls.radioButton_absoluteEnhancement->isChecked() || m_Controls.radioButton_relativeEnchancement->isChecked() || m_Controls.radioButtonUsingT1viaVFA->isChecked() || m_Controls.radioButtonTurboFlash->isChecked()) + if (m_Controls.radioButton_absoluteEnhancement->isChecked() || m_Controls.radioButton_relativeEnchancement->isChecked() || m_Controls.radioButtonUsingT1viaVFA->isChecked()) m_Controls.groupBox_baselineRangeSelection->setVisible(true); ok = m_selectedImage.IsNotNull() && CheckSettings(); } else if(m_Controls.radioButton3D->isChecked()) { m_Controls.groupConcentration->setVisible(true); m_Controls.groupBox_baselineRangeSelection->hide(); ok = m_selectedImage.IsNotNull() && m_selectedBaselineImage.IsNotNull() && CheckSettings(); } } else if (m_Controls.radioButton_T2->isChecked()) { m_Controls.groupConcentration->setVisible(false); ok = m_selectedImage.IsNotNull() && CheckSettings(); } m_Controls.btnConvertToConcentration->setEnabled(ok); } bool ConcentrationCurveConverterView::CheckSettings() const { bool ok = true; if (m_Controls.radioButton_T1->isChecked()) { - if (this->m_Controls.radioButtonTurboFlash->isChecked()) - { - ok = ok && (m_Controls.recoverytime->value() > 0); - ok = ok && (m_Controls.relaxationtime->value() > 0); - ok = ok && (m_Controls.relaxivity->value() > 0); - ok = ok && (m_Controls.AifRecoverytime->value() > 0); - ok = ok && CheckBaselineSelectionSettings(); - } - else if (this->m_Controls.radioButton_absoluteEnhancement->isChecked() + if (this->m_Controls.radioButton_absoluteEnhancement->isChecked() || this->m_Controls.radioButton_relativeEnchancement->isChecked()) { ok = ok && (m_Controls.factorSpinBox->value() > 0); ok = ok && CheckBaselineSelectionSettings(); } else if (this->m_Controls.radioButtonUsingT1viaVFA->isChecked()) { ok = ok && (m_Controls.FlipangleSpinBox->value() > 0); ok = ok && (m_Controls.TRSpinBox->value() > 0); ok = ok && (m_Controls.RelaxivitySpinBox->value() > 0); ok = ok && (m_Controls.PDWImageNodeSelector->GetSelectedNode().IsNotNull()); ok = ok && CheckBaselineSelectionSettings(); } else { ok = false; } } else if (this->m_Controls.radioButton_T2->isChecked()) { ok = ok && m_Controls.T2EchoTimeSpinBox->value() > 0; ok = ok && m_Controls.T2FactorSpinBox->value() > 0; ok = ok && CheckBaselineSelectionSettings(); } else { ok = false; } return ok; } bool ConcentrationCurveConverterView::CheckBaselineSelectionSettings() const { if (this->m_Controls.radioButton_T1->isChecked()) { return m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value(); } else if (this->m_Controls.radioButton_T2->isChecked()) { return m_Controls.spinBox_baselineStartTimeStepT2->value() <= m_Controls.spinBox_baselineEndTimeStepT2->value(); } else { return 0; } } void ConcentrationCurveConverterView::OnConvertToConcentrationButtonClicked() { mitk::Image::Pointer concentrationImage; mitk::DataNode::Pointer concentrationNode; if(m_Controls.radioButton_T1->isChecked()) { if(m_Controls.radioButton4D->isChecked()) { concentrationImage = this->Convert4DConcentrationImage(this->m_selectedImage); } else if(m_Controls.radioButton3D->isChecked()) { concentrationImage = Convert3DConcentrationImage(this->m_selectedImage, this->m_selectedBaselineImage); } } else if(m_Controls.radioButton_T2->isChecked()) { concentrationImage = this->ConvertT2ConcentrationImgage(this->m_selectedImage); } std::string nameOfResultImage = m_selectedNode->GetName(); nameOfResultImage.append("_Concentration"); concentrationNode = AddConcentrationImage(concentrationImage,nameOfResultImage); } mitk::Image::Pointer ConcentrationCurveConverterView::Convert3DConcentrationImage(mitk::Image::Pointer inputImage,mitk::Image::Pointer baselineImage) { typedef itk::Image InputImageType; InputImageType::Pointer itkInputImage = InputImageType::New(); InputImageType::Pointer itkBaselineImage = InputImageType::New(); mitk::CastToItkImage(inputImage, itkInputImage ); mitk::CastToItkImage(baselineImage, itkBaselineImage ); mitk::Image::Pointer outputImage; - if(this->m_Controls.radioButtonTurboFlash->isChecked()) - { - typedef mitk::ConvertToConcentrationTurboFlashFunctor ConversionFunctorTurboFlashType; - typedef itk::BinaryFunctorImageFilter FilterTurboFlashType; - - ConversionFunctorTurboFlashType ConversionTurboFlashFunctor; - ConversionTurboFlashFunctor.initialize(m_Controls.relaxationtime->value(), m_Controls.relaxivity->value(), m_Controls.recoverytime->value()); - - FilterTurboFlashType::Pointer ConversionTurboFlashFilter = FilterTurboFlashType::New(); - - ConversionTurboFlashFilter->SetFunctor(ConversionTurboFlashFunctor); - ConversionTurboFlashFilter->SetInput1(itkInputImage); - ConversionTurboFlashFilter->SetInput2(itkBaselineImage); - - ConversionTurboFlashFilter->Update(); - outputImage = mitk::ImportItkImage(ConversionTurboFlashFilter->GetOutput())->Clone(); - - - } - else if(this->m_Controls.radioButton_absoluteEnhancement->isChecked()) + if(this->m_Controls.radioButton_absoluteEnhancement->isChecked()) { typedef mitk::ConvertToConcentrationAbsoluteFunctor ConversionFunctorAbsoluteType; typedef itk::BinaryFunctorImageFilter FilterAbsoluteType; ConversionFunctorAbsoluteType ConversionAbsoluteFunctor; ConversionAbsoluteFunctor.initialize(m_Controls.factorSpinBox->value()); FilterAbsoluteType::Pointer ConversionAbsoluteFilter = FilterAbsoluteType::New(); ConversionAbsoluteFilter->SetFunctor(ConversionAbsoluteFunctor); ConversionAbsoluteFilter->SetInput1(itkInputImage); ConversionAbsoluteFilter->SetInput2(itkBaselineImage); ConversionAbsoluteFilter->Update(); outputImage = mitk::ImportItkImage(ConversionAbsoluteFilter->GetOutput())->Clone(); } else if(m_Controls.radioButton_relativeEnchancement->isChecked()) { typedef mitk::ConvertToConcentrationRelativeFunctor ConversionFunctorRelativeType; typedef itk::BinaryFunctorImageFilter FilterRelativeType; ConversionFunctorRelativeType ConversionRelativeFunctor; ConversionRelativeFunctor.initialize(m_Controls.factorSpinBox->value()); FilterRelativeType::Pointer ConversionRelativeFilter = FilterRelativeType::New(); ConversionRelativeFilter->SetFunctor(ConversionRelativeFunctor); ConversionRelativeFilter->SetInput1(itkInputImage); ConversionRelativeFilter->SetInput2(itkBaselineImage); ConversionRelativeFilter->Update(); outputImage = mitk::ImportItkImage(ConversionRelativeFilter->GetOutput())->Clone(); } return outputImage; } mitk::DataNode::Pointer ConcentrationCurveConverterView::AddConcentrationImage(mitk::Image* image, std::string nodeName) const { if (!image) { mitkThrow() << "Cannot generate concentration node. Passed image is null. parameter name: "; } mitk::DataNode::Pointer result = mitk::DataNode::New(); result->SetData(image); result->SetName(nodeName); result->SetVisibility(true); this->GetDataStorage()->Add(result, m_selectedNode); return result; }; mitk::Image::Pointer ConcentrationCurveConverterView::Convert4DConcentrationImage(mitk::Image::Pointer inputImage) { //Compute Concentration image mitk::ConcentrationCurveGenerator::Pointer concentrationGen = mitk::ConcentrationCurveGenerator::New(); concentrationGen->SetDynamicImage(inputImage); - concentrationGen->SetisTurboFlashSequence(m_Controls.radioButtonTurboFlash->isChecked()); concentrationGen->SetAbsoluteSignalEnhancement(m_Controls.radioButton_absoluteEnhancement->isChecked()); concentrationGen->SetRelativeSignalEnhancement(m_Controls.radioButton_relativeEnchancement->isChecked()); concentrationGen->SetUsingT1Map(m_Controls.radioButtonUsingT1viaVFA->isChecked()); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStepT2->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStepT2->value()); concentrationGen->SetisT2weightedImage(false); - if (m_Controls.radioButtonTurboFlash->isChecked()) - { - concentrationGen->SetRecoveryTime(m_Controls.recoverytime->value()); - concentrationGen->SetRelaxationTime(m_Controls.relaxationtime->value()); - concentrationGen->SetRelaxivity(m_Controls.relaxivity->value()); - concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); - concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); - } - else if (this->m_Controls.radioButtonUsingT1viaVFA->isChecked()) + if (this->m_Controls.radioButtonUsingT1viaVFA->isChecked()) { concentrationGen->SetRepetitionTime(m_Controls.TRSpinBox->value()); concentrationGen->SetRelaxivity(m_Controls.RelaxivitySpinBox->value()); concentrationGen->SetPDWImage(dynamic_cast(m_Controls.PDWImageNodeSelector->GetSelectedNode()->GetData())); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); //Convert Flipangle from degree to radiant double alpha = m_Controls.FlipangleSpinBox->value()/360*2* boost::math::constants::pi(); concentrationGen->SetFlipAngle(alpha); double alphaPDW = m_Controls.FlipanglePDWSpinBox->value() / 360 * 2 * boost::math::constants::pi(); concentrationGen->SetFlipAnglePDW(alphaPDW); } else { concentrationGen->SetFactor(m_Controls.factorSpinBox->value()); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); } mitk::Image::Pointer concentrationImage = concentrationGen->GetConvertedImage(); return concentrationImage; } mitk::Image::Pointer ConcentrationCurveConverterView::ConvertT2ConcentrationImgage(mitk::Image::Pointer inputImage) { //Compute Concentration image mitk::ConcentrationCurveGenerator::Pointer concentrationGen = mitk::ConcentrationCurveGenerator::New(); concentrationGen->SetDynamicImage(inputImage); - concentrationGen->SetisTurboFlashSequence(false); concentrationGen->SetAbsoluteSignalEnhancement(false); concentrationGen->SetRelativeSignalEnhancement(false); concentrationGen->SetisT2weightedImage(true); concentrationGen->SetT2Factor(m_Controls.T2FactorSpinBox->value()); concentrationGen->SetT2EchoTime(m_Controls.T2EchoTimeSpinBox->value()); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); mitk::Image::Pointer concentrationImage = concentrationGen->GetConvertedImage(); return concentrationImage; } void ConcentrationCurveConverterView::OnNodeSelectionChanged(QList/*nodes*/) { m_selectedNode = nullptr; m_selectedImage = nullptr; m_selectedBaselineNode = nullptr; m_selectedBaselineImage = nullptr; if (m_Controls.radioButton_T1->isChecked()) { if (m_Controls.radioButton4D->isChecked()) { if (m_Controls.timeSeriesNodeSelector->GetSelectedNode().IsNotNull()) { this->m_selectedNode = m_Controls.timeSeriesNodeSelector->GetSelectedNode(); m_selectedImage = dynamic_cast(m_selectedNode->GetData()); } else { this->m_selectedNode = nullptr; this->m_selectedImage = nullptr; } } else if (m_Controls.radioButton3D->isChecked()) { if (m_Controls.image3DNodeSelector->GetSelectedNode().IsNotNull() && m_Controls.baselineImageNodeSelector->GetSelectedNode().IsNotNull()) { this->m_selectedNode = m_Controls.image3DNodeSelector->GetSelectedNode(); m_selectedImage = dynamic_cast(m_selectedNode->GetData()); this->m_selectedBaselineNode = m_Controls.baselineImageNodeSelector->GetSelectedNode(); m_selectedBaselineImage = dynamic_cast(m_selectedBaselineNode->GetData()); } else { this->m_selectedNode = nullptr; this->m_selectedImage = nullptr; m_selectedBaselineNode = nullptr; m_selectedBaselineImage = nullptr; } } if (this->m_selectedImage.IsNotNull()) { m_Controls.spinBox_baselineStartTimeStep->setMaximum((this->m_selectedImage->GetDimension(3)) - 1); m_Controls.spinBox_baselineEndTimeStep->setMaximum((this->m_selectedImage->GetDimension(3)) - 1); } } if (m_Controls.radioButton_T2->isChecked()) { if (m_Controls.t2TimeSeriesNodeSelector->GetSelectedNode().IsNotNull()) { this->m_selectedNode = m_Controls.t2TimeSeriesNodeSelector->GetSelectedNode(); m_selectedImage = dynamic_cast(m_selectedNode->GetData()); } else { this->m_selectedNode = nullptr; this->m_selectedImage = nullptr; } if (this->m_selectedImage.IsNotNull()) { m_Controls.spinBox_baselineStartTimeStepT2->setMaximum((this->m_selectedImage->GetDimension(3)) - 1); m_Controls.spinBox_baselineEndTimeStepT2->setMaximum((this->m_selectedImage->GetDimension(3)) - 1); } } m_Controls.btnConvertToConcentration->setEnabled(m_selectedImage.IsNotNull() && CheckSettings()); } ConcentrationCurveConverterView::ConcentrationCurveConverterView() { mitk::NodePredicateDataType::Pointer isLabelSet = mitk::NodePredicateDataType::New("LabelSetImage"); mitk::NodePredicateDataType::Pointer isImage = mitk::NodePredicateDataType::New("Image"); mitk::NodePredicateProperty::Pointer isBinary = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateAnd::Pointer isLegacyMask = mitk::NodePredicateAnd::New(isImage, isBinary); mitk::NodePredicateDimension::Pointer is3D = mitk::NodePredicateDimension::New(3); mitk::NodePredicateOr::Pointer isMask = mitk::NodePredicateOr::New(isLegacyMask, isLabelSet); mitk::NodePredicateAnd::Pointer isNoMask = mitk::NodePredicateAnd::New(isImage, mitk::NodePredicateNot::New(isMask)); mitk::NodePredicateAnd::Pointer is3DImage = mitk::NodePredicateAnd::New(isImage, is3D, isNoMask); this->m_IsMaskPredicate = mitk::NodePredicateAnd::New(isMask, mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("helper object"))).GetPointer(); this->m_IsNoMaskImagePredicate = mitk::NodePredicateAnd::New(isNoMask, mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("helper object"))).GetPointer(); auto isDynamicData = mitk::NodePredicateFunction::New([](const mitk::DataNode* node) { return (node && node->GetData() && node->GetData()->GetTimeSteps() > 1); }); auto modelFitResultRelationRule = mitk::ModelFitResultRelationRule::New(); auto isNoModelFitNodePredicate = mitk::NodePredicateNot::New(modelFitResultRelationRule->GetConnectedSourcesDetector()); this->m_isValidPDWImagePredicate = mitk::NodePredicateAnd::New(is3DImage, isNoModelFitNodePredicate); this->m_isValidTimeSeriesImagePredicate = mitk::NodePredicateAnd::New(isDynamicData, isImage, isNoMask); } diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterViewControls.ui b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterViewControls.ui index 4f493e46c3..b9382c9420 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterViewControls.ui +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.concentration.mri/src/internal/ConcentrationCurveConverterViewControls.ui @@ -1,475 +1,416 @@ ConcentrationCurveConverterViewControls 0 0 475 866 0 0 QmitkTemplate 10 T1 weighted MRI T2 weighted MRI T1 weighted images 10 10 10 3D Image 4D Image 4D Image Selected Time Series: 3D Image Selected 3D Image: QFrame::NoFrame QFrame::Plain Selected Baseline Image: QLayout::SetDefaultConstraint - + 4 Absolute Signal Enhancement Relative Signal Enhancement Variable Flip Angle - - - - TurboFLASH Sequence - - - Qt::Vertical 20 40 Enhancement Parameters: Conversion Factor k: Variable Flip Angle Parameters: Repetition Time [ms] : Proton Density Weighted Image : Relaxivity [mM⁻¹ s⁻¹] : Flip Angle PDW Image [°] 10000.000000000000000 Flip Angle [ ° ] : - - - - true - - - Turbo FLASH Parameters: - - - - - - - - - Recovery Time [s]: - - - - - - - Relaxation Time [s]: - - - - - - - - - - AIF Recovery Time [s]: - - - - - - - - - - Relaxivity [ ]: - - - - - - - - - Baseline Range Selection: Start Time Frame End Time Frame Convert To Concentration 0 2 0 0 T2 weighted images Selected Time Series: Conversion Factor k Echo Time TE [ms] Baseline Range Selection: Start Time Frame End Time Frame Qt::Vertical 20 40 QmitkSingleNodeSelectionWidget QWidget
QmitkSingleNodeSelectionWidget.h
1
diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/Manual.dox b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/Manual.dox index dc7a2ebaa9..a698450740 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/Manual.dox +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/Manual.dox @@ -1,103 +1,103 @@ /** \page org_mitk_views_pharmacokinetics_mri The DCE MR Perfusion DataFit View \imageMacro{pharmacokinetics_mri_doc.svg,"Icon of the DCE MR Perfusion View",3.0} \tableofcontents \section FIT_DCE_Introduction Introduction In dynamic contrast-enhanced (DCE) MRI, pharmacokinetic (PK) modeling can be used to quantify tissue physiology. Parameters describing the tissue microvasculature can be derived by fitting a pharmacokinetic model, e.g. a compartment model, to the dynamic data. This view offers a comprehensive set of tools to perform pharmacokinetic analysis. \section FIT_DCE_Contact Contact information If you have any questions, need support, find a bug or have a feature request, feel free to contact us at www.mitk.org. \subsection FIT_DCE_Cite Citation information If you use the view for your research please cite our work as reference:\n\n Debus C and Floca R, Ingrisch M, Kompan I, Maier-Hein K, Abdollahi A, Nolden M, MITK-ModelFit: generic open-source framework for model fits and their exploration in medical imaging – design, implementation and application on the example of DCE-MRI. https://doi.org/10.1186/s12859-018-2588-1 (BMC Bioinformatics 2019 20:31) \section FIT_DCE_Data_and_ROI_Selection Time series and mask selection -\imageMacro{dce_mri_maskAndFittingStrategy.png, "Time series and mask selection.", 10} +\imageMacro{dce_mri_maskAndFittingStrategy.png, "Time series and mask selection.", 3.0} In principle, every model can be fitted on the entire image. However, for model configuration reasons (e.g. AIF required) and computational time cost, this is often not advisable. Therefore, apart from the image to be fitted (Selected Time Series), a ROI segmentation can be defined (Selected Mask), within which model fitting is performed. The view currently offers Pixel based and/or ROI based averaged fits of time-varying curves. The ROI based fitting option becomes enabled, if a mask is selected. \section FIT_DCE_General_models Supported models Currently the following pharmacokinetic models for gadolinium-based contrast agent are available: -- The Descriptive Brix model \ref FIT_DCE_lit_ref1 "[1]" -- The standard tofts model \ref FIT_DCE_lit_ref2 "[2]" +- The descriptive Brix model \ref FIT_DCE_lit_ref1 "[1]" +- The standard Tofts model \ref FIT_DCE_lit_ref2 "[2]" - The extended Tofts model \ref FIT_DCE_lit_ref3 "[3]" - The two compartment exchange model (2CXM) \ref FIT_DCE_lit_ref4 "[4, 5]" \section FIT_DCE_Settings Model settings \imageMacro{dce_mri_modelSettings.png, "Model settings of the view for the standard Tofts model.", 10} \subsection FIT_DCE_Settings_model Model specific settings Selecting one of the \ref FIT_DCE_General_models "supported models" will open below tabs for further configuration of the model. - The descriptive Brix model requires only definition of the duration of the bolus, i.e. the overall time of the injection (Injection Time [min]). - The standard Tofts model, the extended Tofts model and the 2CXM are compartment models that require the input of the concentration time curve in the tissue feeding artery, the arterial input function (AIF). In the DCE MR Perfusion Datafit View, the arterial input function can be defined in several ways. For patient individual image derived AIFs, select the radio button Select AIF from Image. In that case, a segmentation ROI for the artery has to be selected. This can be done by clicking on the AIF Mask selection widget and selecting a suitable AIF segmentation from the data loaded in the Data Manager. In cases where the respective artery does not lie in the same image as the investigated tissue (e.g. in animal experiments, where a slice through the heart is used for AIF extraction), a dedicated AIF image can be selected using the corresponding Dedicated AIF image selection widget. An alternative option is to define the AIF via an external file by selecting Select AIF from File (e.g. for population derived AIFs or AIFs from blood sampling). By clicking the Browse button, one can select a csv file that holds the AIF values and corresponding timepoints (in tuple format (Time, Value)). Caution: the file must not contain a header line, but the first line must start with Time and Intensity values. Furthermore, the Hematocrit Level has to be set (from 0 to 1) for conversion from whole blood to plasma concentration. It is set as default to the literature value of 0.45. \subsection FIT_DCE_Settings_start Start parameter \imageMacro{dce_mri_start.png, "Example screenshot for start parameter settings.", 10} In cases of noisy data it can be useful to define the initial starting values of the parameter estimates, at which optimization starts, in order to prevent optimization results in local optima. Each model has default scalar values (applied to every voxel) for initial values of each parameter, however these can be adjusted. Moreover, initial values can also be defined locally for each individual voxel via starting value images. To load a starting value image, change the Type from scalar to image. This can be done by double-clicking on the type cell. In the Value column, selection of a starting value image will be available. \subsection FIT_DCE_Settings_constraint Constraints settings \imageMacro{dce_mri_constraints.png, "Example screenshot for constraints settings.", 10} To limit the fitting search space and to exclude unphysical/illogical results for model parameter estimates, constraints to individual parameters as well as combinations can be imposed. Each model has default constraints, however, new ones can be defined or removed by the + and – buttons in the table. The first column specifies the parameter(s) involved in the constraint (if multiple parameters are selected, their sum will be used) by selection in the drop down menu. The second column Type defines whether the constraint defines an upper or lower boundary. Value defines the actual constraint value, that should not be crossed, and Width allows for a certain tolerance width. \subsection FIT_DCE_Settings_concentration Signal to concentration conversion settings \imageMacro{dce_mri_concentration.png, "Example screenshot for concentration conversion settings.", 10} Most models require contrast agent concentration values as input rather than raw signal intensities (i.e. all compartment models). The DCE MR Perfusion DataFit View offers a variety of tools for the conversion from signal to concentration: -by means of relative and absolute signal enhancement, via a T1-map calculated by the variable flip angle method, as well as a special conversion for turbo flash sequences. -A more detailed description of these conversion methods, for example the exact formulas used for the absolute and relative signal enhancement calculations, can be found here: \ref org_mitk_views_pharmacokinetics_concentration_mri. +by means of relative and absolute signal enhancement and via a T1-map calculated by the variable flip angle method. +A more detailed description of these conversion methods can be found here: \ref org_mitk_views_pharmacokinetics_concentration_mri. For the conversion methods, a baseline image prior to contrast agent arrival is required. -In many data sets, multiple baseline images are available. The Baseline Range Selection allows for selection of a range of time frames, from which the average image (along the time dimension) is calculated and set as baseline input image. +In many dynamic data sets, multiple images are part of the baseline. The Baseline Range Selection allows for selection of a range of time frames, from which the average image (along the time dimension) is calculated and set as baseline input image. Remark: The number of the first time frame is 0. \section FIT_DCE_Fitting Executing a fit In order to distinguish results from different model fits to the data, a Fitting name can be defined. As default, the name of the model and the fitting strategy (pixel/ROI) are given. This name will then be appended by the respective parameter name.\n\n For development purposes and evaluation of the fits, the option Generate debug parameter images is available. Enabling this option will result in additional parameter maps displaying the status of the optimizer at fit termination. In the following definitions, an evaluation describes the process of cost function calculation and evaluation by the optimizer for a given parameter set. - Stop condition: Reasons for the fit termination, i.e. criterion reached, maximum number of iterations,... - Optimization time: The overall time from fitting start to termination. - Number of iterations: The number of iterations from fitting start to termination. - Constraint penalty ratio: Ratio between evaluations that were penalized and all evaluations. 0.0 means no evaluation was penalized; 1.0 all evaluations were. Evaluations that hit the failure threshold count as penalized, too. - Constraint last failed parameter: Ratio between evaluations that were beyond the failure threshold. 0.0 means no evaluation was a failure (but some may be penalized). - Constraint failure ratio: Index of the first (in terms of index position) parameter, which failed the constraints in the last evaluation. After all necessary configurations are set, the button Start Modelling is enabled, which starts the fitting routine. Progress can be seen in the message box on the bottom. Resulting parameter maps will afterwards be added to the Data Manager as sub-nodes of the analyzed 4D image. \section FIT_DCE_lit References/Literature - \anchor FIT_DCE_lit_ref1 [1] Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr. 1991;15:621–8. - \anchor FIT_DCE_lit_ref2 [2] Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17:357–67. - \anchor FIT_DCE_lit_ref3 [3] Sourbron SP, Buckley DL. On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med. 2011;66:735–45. - \anchor FIT_DCE_lit_ref4 [4] Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 2004;52:420–9. - \anchor FIT_DCE_lit_ref5 [5] Sourbron, Buckley. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability - pdf. Phys Med Biol. 2012. https://iopscience.iop.org/article/10.1088/0031-9155/57/2/R1/pdf. Accessed 1 May 2016. */ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_concentration.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_concentration.png index bcf2d51953..ee055936d4 100644 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_concentration.png and b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_concentration.png differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_config.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_config.png deleted file mode 100644 index c7ca984653..0000000000 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_config.png and /dev/null differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_constraints.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_constraints.png index 200837c59b..a9492c8a2b 100644 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_constraints.png and b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_constraints.png differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_init.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_init.png deleted file mode 100644 index 074fdd8f4a..0000000000 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_init.png and /dev/null differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_maskAndFittingStrategy.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_maskAndFittingStrategy.png index 65f7604cd6..18ea040b1f 100644 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_maskAndFittingStrategy.png and b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_maskAndFittingStrategy.png differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_modelSettings.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_modelSettings.png index 45d1ac1ab0..8a3de90eee 100644 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_modelSettings.png and b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_modelSettings.png differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_start.png b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_start.png index b7c2275720..c65b91894d 100644 Binary files a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_start.png and b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/documentation/UserManual/dce_mri_start.png differ diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp index b9e675e860..4de3092800 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.cpp @@ -1,1372 +1,1334 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #include "MRPerfusionView.h" #include "boost/tokenizer.hpp" #include "boost/math/constants/constants.hpp" #include #include "mitkWorkbenchUtil.h" #include "mitkAterialInputFunctionGenerator.h" #include "mitkConcentrationCurveGenerator.h" #include #include #include #include #include #include #include #include "mitkTwoCompartmentExchangeModelFactory.h" #include "mitkTwoCompartmentExchangeModelParameterizer.h" #include #include #include #include #include #include #include #include "mitkNodePredicateFunction.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Includes for image casting between ITK and MITK #include #include "mitkImageCast.h" #include "mitkITKImageImport.h" #include #include const std::string MRPerfusionView::VIEW_ID = "org.mitk.views.pharmacokinetics.mri"; inline double convertToDouble(const std::string& data) { std::istringstream stepStream(data); stepStream.imbue(std::locale("C")); double value = 0.0; if (!(stepStream >> value) || !(stepStream.eof())) { mitkThrow() << "Cannot convert string to double. String: " << data; } return value; } void MRPerfusionView::SetFocus() { m_Controls.btnModelling->setFocus(); } void MRPerfusionView::CreateQtPartControl(QWidget* parent) { m_Controls.setupUi(parent); m_Controls.btnModelling->setEnabled(false); this->InitModelComboBox(); m_Controls.timeSeriesNodeSelector->SetNodePredicate(this->m_isValidTimeSeriesImagePredicate); m_Controls.timeSeriesNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.timeSeriesNodeSelector->SetSelectionIsOptional(false); m_Controls.timeSeriesNodeSelector->SetInvalidInfo("Please select time series."); m_Controls.timeSeriesNodeSelector->SetAutoSelectNewNodes(true); m_Controls.maskNodeSelector->SetNodePredicate(this->m_IsMaskPredicate); m_Controls.maskNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.maskNodeSelector->SetSelectionIsOptional(true); m_Controls.maskNodeSelector->SetEmptyInfo("Please select (optional) mask."); connect(m_Controls.btnModelling, SIGNAL(clicked()), this, SLOT(OnModellingButtonClicked())); connect(m_Controls.comboModel, SIGNAL(currentIndexChanged(int)), this, SLOT(OnModellSet(int))); connect(m_Controls.radioPixelBased, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.timeSeriesNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &MRPerfusionView::OnNodeSelectionChanged); connect(m_Controls.maskNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &MRPerfusionView::OnNodeSelectionChanged); connect(m_Controls.AIFMaskNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &MRPerfusionView::UpdateGUIControls); connect(m_Controls.AIFImageNodeSelector, &QmitkAbstractNodeSelectionWidget::CurrentSelectionChanged, this, &MRPerfusionView::UpdateGUIControls); //AIF setting m_Controls.groupAIF->hide(); m_Controls.btnAIFFile->setEnabled(false); m_Controls.btnAIFFile->setEnabled(false); m_Controls.radioAIFImage->setChecked(true); m_Controls.AIFMaskNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.AIFMaskNodeSelector->SetNodePredicate(m_IsMaskPredicate); m_Controls.AIFMaskNodeSelector->setVisible(true); m_Controls.AIFMaskNodeSelector->setEnabled(true); m_Controls.AIFMaskNodeSelector->SetAutoSelectNewNodes(true); m_Controls.AIFImageNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.AIFImageNodeSelector->SetNodePredicate(this->m_isValidTimeSeriesImagePredicate); m_Controls.AIFImageNodeSelector->setEnabled(false); + m_Controls.AIFImageNodeSelector->setVisible(false); m_Controls.checkDedicatedAIFImage->setEnabled(true); + m_Controls.HCLSpinBox->setValue(mitk::AterialInputFunctionGenerator::DEFAULT_HEMATOCRIT_LEVEL); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.AIFMaskNodeSelector, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.labelAIFMask, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.checkDedicatedAIFImage, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.AIFMaskNodeSelector, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.checkDedicatedAIFImage, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.checkDedicatedAIFImage, SLOT(setVisible(bool))); - connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), m_Controls.AIFImageNodeSelector, SLOT(setVisible(bool))); connect(m_Controls.checkDedicatedAIFImage, SIGNAL(toggled(bool)), m_Controls.AIFImageNodeSelector, SLOT(setEnabled(bool))); + connect(m_Controls.checkDedicatedAIFImage, SIGNAL(toggled(bool)), m_Controls.AIFImageNodeSelector, SLOT(setVisible(bool))); connect(m_Controls.radioAIFImage, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioAIFFile, SIGNAL(toggled(bool)), m_Controls.btnAIFFile, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFFile, SIGNAL(toggled(bool)), m_Controls.aifFilePath, SLOT(setEnabled(bool))); connect(m_Controls.radioAIFFile, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); + connect(m_Controls.btnAIFFile, SIGNAL(clicked()), this, SLOT(LoadAIFfromFile())); //Brix setting m_Controls.groupDescBrix->hide(); connect(m_Controls.injectiontime, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); - //Num2CX setting - m_Controls.groupNum2CXM->hide(); - connect(m_Controls.odeStepSize, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); //Model fit configuration m_Controls.groupBox_FitConfiguration->hide(); m_Controls.checkBox_Constraints->setEnabled(false); m_Controls.constraintManager->setEnabled(false); m_Controls.initialValuesManager->setEnabled(false); m_Controls.initialValuesManager->setDataStorage(this->GetDataStorage()); connect(m_Controls.radioButton_StartParameters, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.checkBox_Constraints, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.initialValuesManager, SIGNAL(initialValuesChanged(void)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_StartParameters, SIGNAL(toggled(bool)), m_Controls.initialValuesManager, SLOT(setEnabled(bool))); connect(m_Controls.checkBox_Constraints, SIGNAL(toggled(bool)), m_Controls.constraintManager, SLOT(setEnabled(bool))); connect(m_Controls.checkBox_Constraints, SIGNAL(toggled(bool)), m_Controls.constraintManager, SLOT(setVisible(bool))); //Concentration m_Controls.groupConcentration->hide(); m_Controls.groupBoxEnhancement->hide(); - m_Controls.groupBoxTurboFlash->hide(); m_Controls.radioButtonNoConversion->setChecked(true); m_Controls.groupBox_T1MapviaVFA->hide(); m_Controls.spinBox_baselineStartTimeStep->setValue(0); m_Controls.spinBox_baselineEndTimeStep->setValue(0); m_Controls.spinBox_baselineEndTimeStep->setMinimum(0); m_Controls.spinBox_baselineStartTimeStep->setMinimum(0); m_Controls.groupBox_baselineRangeSelection->hide(); - connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), m_Controls.groupBoxTurboFlash, SLOT(setVisible(bool))); - connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); - connect(m_Controls.radioButtonTurboFlash, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); - connect(m_Controls.relaxationtime, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); - connect(m_Controls.recoverytime, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); - connect(m_Controls.relaxivity, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), m_Controls.groupBoxEnhancement, SLOT(setVisible(bool))); connect(m_Controls.radioButton_absoluteEnhancement, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), m_Controls.groupBoxEnhancement, SLOT(setVisible(bool))); connect(m_Controls.radioButton_relativeEnchancement, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); connect(m_Controls.factorSpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.spinBox_baselineStartTimeStep, SIGNAL(valueChanged(int)), this, SLOT(UpdateGUIControls())); connect(m_Controls.spinBox_baselineEndTimeStep, SIGNAL(valueChanged(int)), this, SLOT(UpdateGUIControls())); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), m_Controls.groupBox_T1MapviaVFA, SLOT(setVisible(bool))); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), m_Controls.groupBox_baselineRangeSelection, SLOT(setVisible(bool))); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), this, SLOT(UpdateGUIControls())); connect(m_Controls.FlipangleSpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.RelaxivitySpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); connect(m_Controls.TRSpinBox, SIGNAL(valueChanged(double)), this, SLOT(UpdateGUIControls())); m_Controls.PDWImageNodeSelector->SetNodePredicate(m_isValidPDWImagePredicate); m_Controls.PDWImageNodeSelector->SetDataStorage(this->GetDataStorage()); m_Controls.PDWImageNodeSelector->SetInvalidInfo("Please select PDW Image."); m_Controls.PDWImageNodeSelector->setEnabled(false); connect(m_Controls.radioButtonUsingT1viaVFA, SIGNAL(toggled(bool)), m_Controls.PDWImageNodeSelector, SLOT(setEnabled(bool))); UpdateGUIControls(); } -bool MRPerfusionView::IsTurboFlashSequenceFlag() const -{ - return this->m_Controls.radioButtonTurboFlash->isChecked(); -}; void MRPerfusionView::UpdateGUIControls() { m_Controls.lineFitName->setPlaceholderText(QString::fromStdString(this->GetDefaultFitName())); m_Controls.lineFitName->setEnabled(!m_FittingInProgress); m_Controls.checkBox_Constraints->setEnabled(m_modelConstraints.IsNotNull()); bool isDescBrixFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr || dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; m_Controls.groupAIF->setVisible(isToftsFactory || is2CXMFactory); m_Controls.groupDescBrix->setVisible(isDescBrixFactory); m_Controls.groupConcentration->setVisible(isToftsFactory || is2CXMFactory ); m_Controls.groupBox_FitConfiguration->setVisible(m_selectedModelFactory); m_Controls.groupBox->setEnabled(!m_FittingInProgress); m_Controls.comboModel->setEnabled(!m_FittingInProgress); m_Controls.groupAIF->setEnabled(!m_FittingInProgress); m_Controls.groupDescBrix->setEnabled(!m_FittingInProgress); - m_Controls.groupNum2CXM->setEnabled(!m_FittingInProgress); m_Controls.groupConcentration->setEnabled(!m_FittingInProgress); m_Controls.groupBox_FitConfiguration->setEnabled(!m_FittingInProgress); m_Controls.radioROIbased->setEnabled(m_selectedMask.IsNotNull()); m_Controls.btnModelling->setEnabled(m_selectedImage.IsNotNull() && m_selectedModelFactory.IsNotNull() && !m_FittingInProgress && CheckModelSettings()); - m_Controls.spinBox_baselineStartTimeStep->setEnabled(m_Controls.radioButtonTurboFlash->isChecked() || m_Controls.radioButton_absoluteEnhancement->isChecked() || m_Controls.radioButton_relativeEnchancement->isChecked() || m_Controls.radioButtonUsingT1viaVFA->isChecked()); - m_Controls.spinBox_baselineEndTimeStep->setEnabled(m_Controls.radioButton_absoluteEnhancement->isChecked() || m_Controls.radioButton_relativeEnchancement->isChecked() || m_Controls.radioButtonUsingT1viaVFA->isChecked() || m_Controls.radioButtonTurboFlash->isChecked()); + m_Controls.spinBox_baselineStartTimeStep->setEnabled( m_Controls.radioButton_absoluteEnhancement->isChecked() || m_Controls.radioButton_relativeEnchancement->isChecked() || m_Controls.radioButtonUsingT1viaVFA->isChecked()); + m_Controls.spinBox_baselineEndTimeStep->setEnabled(m_Controls.radioButton_absoluteEnhancement->isChecked() || m_Controls.radioButton_relativeEnchancement->isChecked() || m_Controls.radioButtonUsingT1viaVFA->isChecked()); } void MRPerfusionView::OnModellSet(int index) { m_selectedModelFactory = nullptr; if (index > 0) { if (static_cast(index) <= m_FactoryStack.size() ) { m_selectedModelFactory = m_FactoryStack[index - 1]; } else { MITK_WARN << "Invalid model index. Index outside of the factory stack. Factory stack size: "<< m_FactoryStack.size() << "; invalid index: "<< index; } } if (m_selectedModelFactory) { this->m_modelConstraints = dynamic_cast (m_selectedModelFactory->CreateDefaultConstraints().GetPointer()); m_Controls.initialValuesManager->setInitialValues(m_selectedModelFactory->GetParameterNames(), m_selectedModelFactory->GetDefaultInitialParameterization()); if (this->m_modelConstraints.IsNull()) { this->m_modelConstraints = mitk::SimpleBarrierConstraintChecker::New(); } m_Controls.constraintManager->setChecker(this->m_modelConstraints, this->m_selectedModelFactory->GetParameterNames()); } UpdateGUIControls(); } std::string MRPerfusionView::GetFitName() const { std::string fitName = m_Controls.lineFitName->text().toStdString(); if (fitName.empty()) { fitName = m_Controls.lineFitName->placeholderText().toStdString(); } return fitName; } std::string MRPerfusionView::GetDefaultFitName() const { std::string defaultName = "undefined model"; if (this->m_selectedModelFactory.IsNotNull()) { defaultName = this->m_selectedModelFactory->GetClassID(); } if (this->m_Controls.radioPixelBased->isChecked()) { defaultName += "_pixel"; } else { defaultName += "_roi"; } return defaultName; } void MRPerfusionView::OnModellingButtonClicked() { //check if all static parameters set if (m_selectedModelFactory.IsNotNull() && CheckModelSettings()) { m_HasGeneratedNewInput = false; m_HasGeneratedNewInputAIF = false; mitk::ParameterFitImageGeneratorBase::Pointer generator = nullptr; mitk::modelFit::ModelFitInfo::Pointer fitSession = nullptr; bool isDescBrixFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isExtToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isStanToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; if (isDescBrixFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateDescriptiveBrixModel_PixelBased(fitSession, generator); } else { GenerateDescriptiveBrixModel_ROIBased(fitSession, generator); } } else if (isStanToftsFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateAIFbasedModelFit_PixelBased(fitSession, generator); } else { GenerateAIFbasedModelFit_ROIBased(fitSession, generator); } } else if (isExtToftsFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateAIFbasedModelFit_PixelBased(fitSession, generator); } else { GenerateAIFbasedModelFit_ROIBased(fitSession, generator); } } else if (is2CXMFactory) { if (this->m_Controls.radioPixelBased->isChecked()) { GenerateAIFbasedModelFit_PixelBased(fitSession, generator); } else { GenerateAIFbasedModelFit_ROIBased(fitSession, generator); } } //add other models with else if if (generator.IsNotNull() && fitSession.IsNotNull()) { m_FittingInProgress = true; UpdateGUIControls(); DoFit(fitSession, generator); } else { QMessageBox box; box.setText("Fitting error!"); box.setInformativeText("Could not establish fitting job. Error when setting ab generator, model parameterizer or session info."); box.setStandardButtons(QMessageBox::Ok); box.setDefaultButton(QMessageBox::Ok); box.setIcon(QMessageBox::Warning); box.exec(); } } else { QMessageBox box; box.setText("Static parameters for model are not set!"); box.setInformativeText("Some static parameters, that are needed for calculation are not set and equal to zero. Modeling not possible"); box.setStandardButtons(QMessageBox::Ok); box.setDefaultButton(QMessageBox::Ok); box.setIcon(QMessageBox::Warning); box.exec(); } } void MRPerfusionView::OnNodeSelectionChanged(QList/*nodes*/) { m_selectedMaskNode = nullptr; m_selectedMask = nullptr; if (m_Controls.timeSeriesNodeSelector->GetSelectedNode().IsNotNull()) { this->m_selectedNode = m_Controls.timeSeriesNodeSelector->GetSelectedNode(); m_selectedImage = dynamic_cast(m_selectedNode->GetData()); if (m_selectedImage) { this->m_Controls.initialValuesManager->setReferenceImageGeometry(m_selectedImage->GetGeometry()); } else { this->m_Controls.initialValuesManager->setReferenceImageGeometry(nullptr); } } else { this->m_selectedNode = nullptr; this->m_selectedImage = nullptr; this->m_Controls.initialValuesManager->setReferenceImageGeometry(nullptr); } if (m_Controls.maskNodeSelector->GetSelectedNode().IsNotNull()) { this->m_selectedMaskNode = m_Controls.maskNodeSelector->GetSelectedNode(); this->m_selectedMask = dynamic_cast(m_selectedMaskNode->GetData()); if (this->m_selectedMask.IsNotNull() && this->m_selectedMask->GetTimeSteps() > 1) { MITK_INFO << "Selected mask has multiple timesteps. Only use first timestep to mask model fit. Mask name: " << m_Controls.maskNodeSelector->GetSelectedNode()->GetName(); mitk::ImageTimeSelector::Pointer maskedImageTimeSelector = mitk::ImageTimeSelector::New(); maskedImageTimeSelector->SetInput(this->m_selectedMask); maskedImageTimeSelector->SetTimeNr(0); maskedImageTimeSelector->UpdateLargestPossibleRegion(); this->m_selectedMask = maskedImageTimeSelector->GetOutput(); } } if (m_selectedMask.IsNull()) { this->m_Controls.radioPixelBased->setChecked(true); } if (this->m_selectedImage.IsNotNull()) { m_Controls.spinBox_baselineStartTimeStep->setMaximum((this->m_selectedImage->GetDimension(3))-1); m_Controls.spinBox_baselineEndTimeStep->setMaximum((this->m_selectedImage->GetDimension(3)) - 1); } UpdateGUIControls(); } bool MRPerfusionView::CheckModelSettings() const { bool ok = true; //check whether any model is set at all. Otherwise exit with false if (m_selectedModelFactory.IsNotNull()) { bool isDescBrixFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool isToftsFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr|| dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; bool is2CXMFactory = dynamic_cast (m_selectedModelFactory.GetPointer()) != nullptr; if (isDescBrixFactory) { //if all static parameters for this model are set, exit with true, Otherwise exit with false ok = m_Controls.injectiontime->value() > 0; } else if (isToftsFactory || is2CXMFactory) { if (this->m_Controls.radioAIFImage->isChecked()) { ok = ok && m_Controls.AIFMaskNodeSelector->GetSelectedNode().IsNotNull(); if (this->m_Controls.checkDedicatedAIFImage->isChecked()) { ok = ok && m_Controls.AIFImageNodeSelector->GetSelectedNode().IsNotNull(); } } else if (this->m_Controls.radioAIFFile->isChecked()) { ok = ok && (this->AIFinputGrid.size() != 0) && (this->AIFinputFunction.size() != 0); } else { ok = false; } - if (this->m_Controls.radioButtonTurboFlash->isChecked() ) - { - ok = ok && (m_Controls.recoverytime->value() > 0); - ok = ok && (m_Controls.relaxationtime->value() > 0); - ok = ok && (m_Controls.relaxivity->value() > 0); - ok = ok && (m_Controls.AifRecoverytime->value() > 0); - ok = ok && CheckBaselineSelectionSettings(); - - } - else if (this->m_Controls.radioButton_absoluteEnhancement->isChecked() + if (this->m_Controls.radioButton_absoluteEnhancement->isChecked() || this->m_Controls.radioButton_relativeEnchancement->isChecked() ) { ok = ok && (m_Controls.factorSpinBox->value() > 0); ok = ok && CheckBaselineSelectionSettings(); } else if (this->m_Controls.radioButtonUsingT1viaVFA->isChecked() ) { ok = ok && (m_Controls.FlipangleSpinBox->value() > 0); ok = ok && (m_Controls.TRSpinBox->value() > 0); ok = ok && (m_Controls.RelaxivitySpinBox->value() > 0); ok = ok && (m_Controls.PDWImageNodeSelector->GetSelectedNode().IsNotNull()); ok = ok && CheckBaselineSelectionSettings(); } else if (this->m_Controls.radioButtonNoConversion->isChecked()) { ok = ok && true; } else { ok = false; } } //add other models as else if and check whether all needed static parameters are set else { ok = false; } if (this->m_Controls.radioButton_StartParameters->isChecked() && !this->m_Controls.initialValuesManager->hasValidInitialValues()) { std::string warning = "Warning. Invalid start parameters. At least one parameter as an invalid image setting as source."; MITK_ERROR << warning; m_Controls.infoBox->append(QString("") + QString::fromStdString(warning) + QString("")); ok = false; }; } else { ok = false; } return ok; } bool MRPerfusionView::CheckBaselineSelectionSettings() const { return m_Controls.spinBox_baselineStartTimeStep->value() <= m_Controls.spinBox_baselineEndTimeStep->value(); } void MRPerfusionView::ConfigureInitialParametersOfParameterizer(mitk::ModelParameterizerBase* parameterizer) const { if (m_Controls.radioButton_StartParameters->isChecked()) { //use user defined initial parameters mitk::InitialParameterizationDelegateBase::Pointer paramDelegate = m_Controls.initialValuesManager->getInitialParametrizationDelegate(); parameterizer->SetInitialParameterizationDelegate(paramDelegate); } } void MRPerfusionView::GenerateDescriptiveBrixModel_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { mitk::PixelBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::PixelBasedParameterFitImageGenerator::New(); mitk::DescriptivePharmacokineticBrixModelParameterizer::Pointer modelParameterizer = mitk::DescriptivePharmacokineticBrixModelParameterizer::New(); //Model configuration (static parameters) can be done now modelParameterizer->SetTau(m_Controls.injectiontime->value()); mitk::ImageTimeSelector::Pointer imageTimeSelector = mitk::ImageTimeSelector::New(); imageTimeSelector->SetInput(this->m_selectedImage); imageTimeSelector->SetTimeNr(0); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::DescriptivePharmacokineticBrixModelParameterizer::BaseImageType::Pointer baseImage; mitk::CastToItkImage(imageTimeSelector->GetOutput(), baseImage); modelParameterizer->SetBaseImage(baseImage); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); std::string roiUID = ""; if (m_selectedMask.IsNotNull()) { fitGenerator->SetMask(m_selectedMask); roiUID = m_selectedMask->GetUID(); } fitGenerator->SetDynamicImage(m_selectedImage); fitGenerator->SetFitFunctor(fitFunctor); generator = fitGenerator.GetPointer(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_PIXELBASED(), this->GetFitName(), roiUID); } void MRPerfusionView::GenerateDescriptiveBrixModel_ROIBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { if (m_selectedMask.IsNull()) { return; } mitk::ROIBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::ROIBasedParameterFitImageGenerator::New(); mitk::DescriptivePharmacokineticBrixModelValueBasedParameterizer::Pointer modelParameterizer = mitk::DescriptivePharmacokineticBrixModelValueBasedParameterizer::New(); //Compute ROI signal mitk::MaskedDynamicImageStatisticsGenerator::Pointer signalGenerator = mitk::MaskedDynamicImageStatisticsGenerator::New(); signalGenerator->SetMask(m_selectedMask); signalGenerator->SetDynamicImage(m_selectedImage); signalGenerator->Generate(); mitk::MaskedDynamicImageStatisticsGenerator::ResultType roiSignal = signalGenerator->GetMean(); //Model configuration (static parameters) can be done now modelParameterizer->SetTau(m_Controls.injectiontime->value()); modelParameterizer->SetBaseValue(roiSignal[0]); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); fitGenerator->SetMask(m_selectedMask); fitGenerator->SetFitFunctor(fitFunctor); fitGenerator->SetSignal(roiSignal); fitGenerator->SetTimeGrid(mitk::ExtractTimeGrid(m_selectedImage)); generator = fitGenerator.GetPointer(); std::string roiUID = this->m_selectedMask->GetUID(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_ROIBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::MaskedDynamicImageStatisticsGenerator::ResultType::const_iterator pos = roiSignal.begin(); pos != roiSignal.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("ROI", infoSignal); } template void MRPerfusionView::GenerateLinearModelFit_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { mitk::PixelBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::PixelBasedParameterFitImageGenerator::New(); typename TParameterizer::Pointer modelParameterizer = TParameterizer::New(); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); std::string roiUID = ""; if (m_selectedMask.IsNotNull()) { fitGenerator->SetMask(m_selectedMask); roiUID = this->m_selectedMask->GetUID(); } fitGenerator->SetDynamicImage(m_selectedImage); fitGenerator->SetFitFunctor(fitFunctor); generator = fitGenerator.GetPointer(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_PIXELBASED(), this->GetFitName(), roiUID); } template void MRPerfusionView::GenerateLinearModelFit_ROIBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { if (m_selectedMask.IsNull()) { return; } mitk::ROIBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::ROIBasedParameterFitImageGenerator::New(); typename TParameterizer::Pointer modelParameterizer = TParameterizer::New(); //Compute ROI signal mitk::MaskedDynamicImageStatisticsGenerator::Pointer signalGenerator = mitk::MaskedDynamicImageStatisticsGenerator::New(); signalGenerator->SetMask(m_selectedMask); signalGenerator->SetDynamicImage(m_selectedImage); signalGenerator->Generate(); mitk::MaskedDynamicImageStatisticsGenerator::ResultType roiSignal = signalGenerator->GetMean(); //Model configuration (static parameters) can be done now this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); fitGenerator->SetMask(m_selectedMask); fitGenerator->SetFitFunctor(fitFunctor); fitGenerator->SetSignal(roiSignal); fitGenerator->SetTimeGrid(mitk::ExtractTimeGrid(m_selectedImage)); generator = fitGenerator.GetPointer(); std::string roiUID = this->m_selectedMask->GetUID(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, m_selectedNode->GetData(), mitk::ModelFitConstants::FIT_TYPE_VALUE_ROIBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::MaskedDynamicImageStatisticsGenerator::ResultType::const_iterator pos = roiSignal.begin(); pos != roiSignal.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("ROI", infoSignal); } template void MRPerfusionView::GenerateAIFbasedModelFit_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { mitk::PixelBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::PixelBasedParameterFitImageGenerator::New(); typename TParameterizer::Pointer modelParameterizer = TParameterizer::New(); PrepareConcentrationImage(); mitk::AIFBasedModelBase::AterialInputFunctionType aif; mitk::AIFBasedModelBase::AterialInputFunctionType aifTimeGrid; GetAIF(aif, aifTimeGrid); modelParameterizer->SetAIF(aif); modelParameterizer->SetAIFTimeGrid(aifTimeGrid); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); std::string roiUID = ""; if (m_selectedMask.IsNotNull()) { fitGenerator->SetMask(m_selectedMask); roiUID = this->m_selectedMask->GetUID(); } fitGenerator->SetDynamicImage(this->m_inputImage); fitGenerator->SetFitFunctor(fitFunctor); generator = fitGenerator.GetPointer(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, this->m_inputImage, mitk::ModelFitConstants::FIT_TYPE_VALUE_PIXELBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::AIFBasedModelBase::AterialInputFunctionType::const_iterator pos = aif.begin(); pos != aif.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("AIF", infoSignal); } template void MRPerfusionView::GenerateAIFbasedModelFit_ROIBased( mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator) { if (m_selectedMask.IsNull()) { return; } mitk::ROIBasedParameterFitImageGenerator::Pointer fitGenerator = mitk::ROIBasedParameterFitImageGenerator::New(); typename TParameterizer::Pointer modelParameterizer = TParameterizer::New(); PrepareConcentrationImage(); mitk::AIFBasedModelBase::AterialInputFunctionType aif; mitk::AIFBasedModelBase::AterialInputFunctionType aifTimeGrid; GetAIF(aif, aifTimeGrid); modelParameterizer->SetAIF(aif); modelParameterizer->SetAIFTimeGrid(aifTimeGrid); this->ConfigureInitialParametersOfParameterizer(modelParameterizer); //Compute ROI signal mitk::MaskedDynamicImageStatisticsGenerator::Pointer signalGenerator = mitk::MaskedDynamicImageStatisticsGenerator::New(); signalGenerator->SetMask(m_selectedMask); signalGenerator->SetDynamicImage(this->m_inputImage); signalGenerator->Generate(); mitk::MaskedDynamicImageStatisticsGenerator::ResultType roiSignal = signalGenerator->GetMean(); //Specify fitting strategy and criterion parameters mitk::ModelFitFunctorBase::Pointer fitFunctor = CreateDefaultFitFunctor(modelParameterizer); //Parametrize fit generator fitGenerator->SetModelParameterizer(modelParameterizer); fitGenerator->SetMask(m_selectedMask); fitGenerator->SetFitFunctor(fitFunctor); fitGenerator->SetSignal(roiSignal); fitGenerator->SetTimeGrid(mitk::ExtractTimeGrid(this->m_inputImage)); generator = fitGenerator.GetPointer(); std::string roiUID = this->m_selectedMask->GetUID(); //Create model info modelFitInfo = mitk::modelFit::CreateFitInfoFromModelParameterizer(modelParameterizer, this->m_inputImage, mitk::ModelFitConstants::FIT_TYPE_VALUE_ROIBASED(), this->GetFitName(), roiUID); mitk::ScalarListLookupTable::ValueType infoSignal; for (mitk::MaskedDynamicImageStatisticsGenerator::ResultType::const_iterator pos = roiSignal.begin(); pos != roiSignal.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("ROI", infoSignal); infoSignal.clear(); for (mitk::AIFBasedModelBase::AterialInputFunctionType::const_iterator pos = aif.begin(); pos != aif.end(); ++pos) { infoSignal.push_back(*pos); } modelFitInfo->inputData.SetTableValue("AIF", infoSignal); } void MRPerfusionView::DoFit(const mitk::modelFit::ModelFitInfo* fitSession, mitk::ParameterFitImageGeneratorBase* generator) { this->m_Controls.infoBox->append(QString("" + QString("Fitting Data Set . . .") + QString (""))); ///////////////////////// //create job and put it into the thread pool mitk::modelFit::ModelFitResultNodeVectorType additionalNodes; if (m_HasGeneratedNewInput) { additionalNodes.push_back(m_inputNode); } if (m_HasGeneratedNewInputAIF) { additionalNodes.push_back(m_inputAIFNode); } ParameterFitBackgroundJob* pJob = new ParameterFitBackgroundJob(generator, fitSession, this->m_selectedNode, additionalNodes); pJob->setAutoDelete(true); connect(pJob, SIGNAL(Error(QString)), this, SLOT(OnJobError(QString))); connect(pJob, SIGNAL(Finished()), this, SLOT(OnJobFinished())); connect(pJob, SIGNAL(ResultsAreAvailable(mitk::modelFit::ModelFitResultNodeVectorType, const ParameterFitBackgroundJob*)), this, SLOT(OnJobResultsAreAvailable(mitk::modelFit::ModelFitResultNodeVectorType, const ParameterFitBackgroundJob*)), Qt::BlockingQueuedConnection); connect(pJob, SIGNAL(JobProgress(double)), this, SLOT(OnJobProgress(double))); connect(pJob, SIGNAL(JobStatusChanged(QString)), this, SLOT(OnJobStatusChanged(QString))); QThreadPool* threadPool = QThreadPool::globalInstance(); threadPool->start(pJob); } MRPerfusionView::MRPerfusionView() : m_FittingInProgress(false), m_HasGeneratedNewInput(false), m_HasGeneratedNewInputAIF(false) { m_selectedImage = nullptr; m_selectedMask = nullptr; mitk::ModelFactoryBase::Pointer factory = mitk::DescriptivePharmacokineticBrixModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::StandardToftsModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::ExtendedToftsModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); factory = mitk::TwoCompartmentExchangeModelFactory::New().GetPointer(); m_FactoryStack.push_back(factory); mitk::NodePredicateDataType::Pointer isLabelSet = mitk::NodePredicateDataType::New("LabelSetImage"); mitk::NodePredicateDataType::Pointer isImage = mitk::NodePredicateDataType::New("Image"); mitk::NodePredicateProperty::Pointer isBinary = mitk::NodePredicateProperty::New("binary", mitk::BoolProperty::New(true)); mitk::NodePredicateAnd::Pointer isLegacyMask = mitk::NodePredicateAnd::New(isImage, isBinary); mitk::NodePredicateDimension::Pointer is3D = mitk::NodePredicateDimension::New(3); mitk::NodePredicateOr::Pointer isMask = mitk::NodePredicateOr::New(isLegacyMask, isLabelSet); mitk::NodePredicateAnd::Pointer isNoMask = mitk::NodePredicateAnd::New(isImage, mitk::NodePredicateNot::New(isMask)); mitk::NodePredicateAnd::Pointer is3DImage = mitk::NodePredicateAnd::New(isImage, is3D, isNoMask); this->m_IsMaskPredicate = mitk::NodePredicateAnd::New(isMask, mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("helper object"))).GetPointer(); this->m_IsNoMaskImagePredicate = mitk::NodePredicateAnd::New(isNoMask, mitk::NodePredicateNot::New(mitk::NodePredicateProperty::New("helper object"))).GetPointer(); auto isDynamicData = mitk::NodePredicateFunction::New([](const mitk::DataNode* node) { return (node && node->GetData() && node->GetData()->GetTimeSteps() > 1); }); auto modelFitResultRelationRule = mitk::ModelFitResultRelationRule::New(); auto isNoModelFitNodePredicate = mitk::NodePredicateNot::New(modelFitResultRelationRule->GetConnectedSourcesDetector()); this->m_isValidPDWImagePredicate = mitk::NodePredicateAnd::New(is3DImage, isNoModelFitNodePredicate); this->m_isValidTimeSeriesImagePredicate = mitk::NodePredicateAnd::New(isDynamicData, isImage, isNoMask); } void MRPerfusionView::OnJobFinished() { this->m_Controls.infoBox->append(QString("Fitting finished.")); this->m_FittingInProgress = false; this->UpdateGUIControls(); }; void MRPerfusionView::OnJobError(QString err) { MITK_ERROR << err.toStdString().c_str(); m_Controls.infoBox->append(QString("") + err + QString("")); }; void MRPerfusionView::OnJobResultsAreAvailable(mitk::modelFit::ModelFitResultNodeVectorType results, const ParameterFitBackgroundJob* pJob) { //Store the resulting parameter fit image via convenience helper function in data storage //(handles the correct generation of the nodes and their properties) mitk::modelFit::StoreResultsInDataStorage(this->GetDataStorage(), results, pJob->GetParentNode()); //this stores the concentration image and AIF concentration image, if generated for this fit in the storage. //if not generated for this fit, relevant nodes are empty. mitk::modelFit::StoreResultsInDataStorage(this->GetDataStorage(), pJob->GetAdditionalRelevantNodes(), pJob->GetParentNode()); }; void MRPerfusionView::OnJobProgress(double progress) { QString report = QString("Progress. ") + QString::number(progress); this->m_Controls.infoBox->append(report); }; void MRPerfusionView::OnJobStatusChanged(QString info) { this->m_Controls.infoBox->append(info); } void MRPerfusionView::InitModelComboBox() const { this->m_Controls.comboModel->clear(); this->m_Controls.comboModel->addItem(tr("No model selected")); for (ModelFactoryStackType::const_iterator pos = m_FactoryStack.begin(); pos != m_FactoryStack.end(); ++pos) { this->m_Controls.comboModel->addItem(QString::fromStdString((*pos)->GetClassID())); } this->m_Controls.comboModel->setCurrentIndex(0); }; mitk::DataNode::Pointer MRPerfusionView::GenerateConcentrationNode(mitk::Image* image, const std::string& nodeName) const { if (!image) { mitkThrow() << "Cannot generate concentration node. Passed image is null. parameter name: "; } mitk::DataNode::Pointer result = mitk::DataNode::New(); result->SetData(image); result->SetName(nodeName); result->SetVisibility(true); return result; }; mitk::Image::Pointer MRPerfusionView::ConvertConcentrationImage(bool AIFMode) { //Compute Concentration image mitk::ConcentrationCurveGenerator::Pointer concentrationGen = mitk::ConcentrationCurveGenerator::New(); if (m_Controls.checkDedicatedAIFImage->isChecked() && AIFMode) { concentrationGen->SetDynamicImage(this->m_selectedAIFImage); } else { concentrationGen->SetDynamicImage(this->m_selectedImage); } - concentrationGen->SetisTurboFlashSequence(IsTurboFlashSequenceFlag()); concentrationGen->SetAbsoluteSignalEnhancement(m_Controls.radioButton_absoluteEnhancement->isChecked()); concentrationGen->SetRelativeSignalEnhancement(m_Controls.radioButton_relativeEnchancement->isChecked()); concentrationGen->SetUsingT1Map(m_Controls.radioButtonUsingT1viaVFA->isChecked()); - if (IsTurboFlashSequenceFlag()) - { - if (AIFMode) - { - concentrationGen->SetRecoveryTime(m_Controls.AifRecoverytime->value()); - } - else - { - concentrationGen->SetRecoveryTime(m_Controls.recoverytime->value()); - } - - concentrationGen->SetRelaxationTime(m_Controls.relaxationtime->value()); - concentrationGen->SetRelaxivity(m_Controls.relaxivity->value()); - concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); - concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); - } - else if (this->m_Controls.radioButtonUsingT1viaVFA->isChecked()) + if (this->m_Controls.radioButtonUsingT1viaVFA->isChecked()) { concentrationGen->SetRepetitionTime(m_Controls.TRSpinBox->value()); concentrationGen->SetRelaxivity(m_Controls.RelaxivitySpinBox->value()); concentrationGen->SetPDWImage(dynamic_cast(m_Controls.PDWImageNodeSelector->GetSelectedNode()->GetData())); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); //Convert Flipangle from degree to radiant double alpha = m_Controls.FlipangleSpinBox->value()/360*2* boost::math::constants::pi(); concentrationGen->SetFlipAngle(alpha); double alphaPDW = m_Controls.FlipanglePDWSpinBox->value() / 360 * 2 * boost::math::constants::pi(); concentrationGen->SetFlipAnglePDW(alphaPDW); } else { concentrationGen->SetFactor(m_Controls.factorSpinBox->value()); concentrationGen->SetBaselineStartTimeStep(m_Controls.spinBox_baselineStartTimeStep->value()); concentrationGen->SetBaselineEndTimeStep(m_Controls.spinBox_baselineEndTimeStep->value()); } mitk::Image::Pointer concentrationImage = concentrationGen->GetConvertedImage(); return concentrationImage; } void MRPerfusionView::GetAIF(mitk::AIFBasedModelBase::AterialInputFunctionType& aif, mitk::AIFBasedModelBase::AterialInputFunctionType& aifTimeGrid) { if (this->m_Controls.radioAIFFile->isChecked()) { aif.clear(); aifTimeGrid.clear(); aif.SetSize(AIFinputFunction.size()); aifTimeGrid.SetSize(AIFinputGrid.size()); aif.fill(0.0); aifTimeGrid.fill(0.0); itk::Array::iterator aifPos = aif.begin(); for (std::vector::const_iterator pos = AIFinputFunction.begin(); pos != AIFinputFunction.end(); ++pos, ++aifPos) { *aifPos = *pos; } itk::Array::iterator gridPos = aifTimeGrid.begin(); for (std::vector::const_iterator pos = AIFinputGrid.begin(); pos != AIFinputGrid.end(); ++pos, ++gridPos) { *gridPos = *pos; } } else if (this->m_Controls.radioAIFImage->isChecked()) { aif.clear(); aifTimeGrid.clear(); mitk::AterialInputFunctionGenerator::Pointer aifGenerator = mitk::AterialInputFunctionGenerator::New(); //Hematocrit level aifGenerator->SetHCL(this->m_Controls.HCLSpinBox->value()); //mask settings this->m_selectedAIFMaskNode = m_Controls.AIFMaskNodeSelector->GetSelectedNode(); this->m_selectedAIFMask = dynamic_cast(this->m_selectedAIFMaskNode->GetData()); if (this->m_selectedAIFMask->GetTimeSteps() > 1) { MITK_INFO << "Selected AIF mask has multiple timesteps. Only use first timestep to mask model fit. AIF Mask name: " << m_selectedAIFMaskNode->GetName() ; mitk::ImageTimeSelector::Pointer maskedImageTimeSelector = mitk::ImageTimeSelector::New(); maskedImageTimeSelector->SetInput(this->m_selectedAIFMask); maskedImageTimeSelector->SetTimeNr(0); maskedImageTimeSelector->UpdateLargestPossibleRegion(); this->m_selectedAIFMask = maskedImageTimeSelector->GetOutput(); } if (this->m_selectedAIFMask.IsNotNull()) { aifGenerator->SetMask(this->m_selectedAIFMask); } //image settings if (this->m_Controls.checkDedicatedAIFImage->isChecked()) { this->m_selectedAIFImageNode = m_Controls.AIFImageNodeSelector->GetSelectedNode(); this->m_selectedAIFImage = dynamic_cast(this->m_selectedAIFImageNode->GetData()); } else { this->m_selectedAIFImageNode = m_selectedNode; this->m_selectedAIFImage = m_selectedImage; } this->PrepareAIFConcentrationImage(); aifGenerator->SetDynamicImage(this->m_inputAIFImage); aif = aifGenerator->GetAterialInputFunction(); aifTimeGrid = aifGenerator->GetAterialInputFunctionTimeGrid(); } else { mitkThrow() << "Cannot generate AIF. View is in a invalid state. No AIF mode selected."; } } void MRPerfusionView::LoadAIFfromFile() { QFileDialog dialog; dialog.setNameFilter(tr("Images (*.csv")); QString fileName = dialog.getOpenFileName(); m_Controls.aifFilePath->setText(fileName); std::string m_aifFilePath = fileName.toStdString(); //Read Input typedef boost::tokenizer< boost::escaped_list_separator > Tokenizer; ///////////////////////////////////////////////////////////////////////////////////////////////// //AIF Data std::ifstream in1(m_aifFilePath.c_str()); if (!in1.is_open()) { this->m_Controls.infoBox->append(QString("Could not open AIF File!")); } std::vector< std::string > vec1; std::string line1; while (getline(in1, line1)) { Tokenizer tok(line1); vec1.assign(tok.begin(), tok.end()); this->AIFinputGrid.push_back(convertToDouble(vec1[0])); this->AIFinputFunction.push_back(convertToDouble(vec1[1])); } } void MRPerfusionView::PrepareConcentrationImage() { mitk::Image::Pointer concentrationImage = this->m_selectedImage; mitk::DataNode::Pointer concentrationNode = this->m_selectedNode; m_HasGeneratedNewInput = false; if (!this->m_Controls.radioButtonNoConversion->isChecked()) { concentrationImage = this->ConvertConcentrationImage(false); concentrationNode = GenerateConcentrationNode(concentrationImage, "Concentration"); m_HasGeneratedNewInput = true; } m_inputImage = concentrationImage; m_inputNode = concentrationNode; } void MRPerfusionView::PrepareAIFConcentrationImage() { mitk::Image::Pointer concentrationImage = this->m_selectedImage; mitk::DataNode::Pointer concentrationNode = this->m_selectedNode; m_HasGeneratedNewInputAIF = false; if (this->m_Controls.checkDedicatedAIFImage->isChecked()) { concentrationImage = this->m_selectedAIFImage; concentrationNode = this->m_selectedAIFImageNode; } if (!this->m_Controls.radioButtonNoConversion->isChecked()) { - if (!IsTurboFlashSequenceFlag() && !this->m_Controls.checkDedicatedAIFImage->isChecked()) + if (!this->m_Controls.checkDedicatedAIFImage->isChecked()) { if (m_inputImage.IsNull()) { mitkThrow() << "Cannot get AIF concentration image. Invalid view state. Input image is not defined yet, but should be."; } //we can directly use the concentration input image/node (generated by GetConcentrationImage) also for the AIF concentrationImage = this->m_inputImage; concentrationNode = this->m_inputNode; } else { concentrationImage = this->ConvertConcentrationImage(true); concentrationNode = GenerateConcentrationNode(concentrationImage, "AIF Concentration"); m_HasGeneratedNewInputAIF = true; } } m_inputAIFImage = concentrationImage; m_inputAIFNode = concentrationNode; } mitk::ModelFitFunctorBase::Pointer MRPerfusionView::CreateDefaultFitFunctor( const mitk::ModelParameterizerBase* parameterizer) const { mitk::LevenbergMarquardtModelFitFunctor::Pointer fitFunctor = mitk::LevenbergMarquardtModelFitFunctor::New(); mitk::NormalizedSumOfSquaredDifferencesFitCostFunction::Pointer chi2 = mitk::NormalizedSumOfSquaredDifferencesFitCostFunction::New(); fitFunctor->RegisterEvaluationParameter("Chi^2", chi2); if (m_Controls.checkBox_Constraints->isChecked()) { fitFunctor->SetConstraintChecker(m_modelConstraints); } mitk::ModelBase::Pointer refModel = parameterizer->GenerateParameterizedModel(); ::itk::LevenbergMarquardtOptimizer::ScalesType scales; scales.SetSize(refModel->GetNumberOfParameters()); scales.Fill(1.0); fitFunctor->SetScales(scales); fitFunctor->SetDebugParameterMaps(m_Controls.checkDebug->isChecked()); return fitFunctor.GetPointer(); } diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.h b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.h index 7c65eca0a4..7c85b296a4 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.h +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionView.h @@ -1,206 +1,205 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MRPerfusionView_h #define MRPerfusionView_h #include #include "QmitkAbstractView.h" #include "itkCommand.h" #include "ui_MRPerfusionViewControls.h" #include "mitkModelBase.h" #include "QmitkParameterFitBackgroundJob.h" #include "mitkModelFitResultHelper.h" #include "mitkModelFactoryBase.h" #include "mitkLevenbergMarquardtModelFitFunctor.h" #include "mitkSimpleBarrierConstraintChecker.h" #include "mitkAIFBasedModelBase.h" /*! * @brief Test Plugin for SUV calculations of PET images */ class MRPerfusionView : public QmitkAbstractView { Q_OBJECT public: /*! @brief The view's unique ID - required by MITK */ static const std::string VIEW_ID; MRPerfusionView(); protected slots: void OnModellingButtonClicked(); void OnJobFinished(); void OnJobError(QString err); void OnJobResultsAreAvailable(mitk::modelFit::ModelFitResultNodeVectorType results, const ParameterFitBackgroundJob* pJob); void OnJobProgress(double progress); void OnJobStatusChanged(QString info); void OnModellSet(int); void LoadAIFfromFile(); /**Sets visibility and enabled state of the GUI depending on the settings and workflow state.*/ void UpdateGUIControls(); protected: typedef QList SelectedDataNodeVectorType; // Overridden base class functions /*! * @brief Sets up the UI controls and connects the slots and signals. Gets * called by the framework to create the GUI at the right time. * @param[in,out] parent The parent QWidget, as this class itself is not a QWidget * subclass. */ void CreateQtPartControl(QWidget* parent) override; /*! * @brief Sets the focus to the plot curve button. Gets called by the framework to set the * focus on the right widget. */ void SetFocus() override; /*! @brief Generates a configured fit generator and the corresponding modelinfo for a descriptive brix model with pixel based strategy. * @remark add GenerateFunction for each model in the Combo box*/ void GenerateDescriptiveBrixModel_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator); void GenerateDescriptiveBrixModel_ROIBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator); template void GenerateLinearModelFit_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator); template void GenerateLinearModelFit_ROIBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator); template void GenerateAIFbasedModelFit_ROIBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator); template void GenerateAIFbasedModelFit_PixelBased(mitk::modelFit::ModelFitInfo::Pointer& modelFitInfo, mitk::ParameterFitImageGeneratorBase::Pointer& generator); /** Helper function that configures the initial parameter strategy of a parameterizer according to the settings of the GUI.*/ void ConfigureInitialParametersOfParameterizer(mitk::ModelParameterizerBase* parameterizer) const; /*! Starts the fitting job with the passed generator and session info*/ void DoFit(const mitk::modelFit::ModelFitInfo* fitSession, mitk::ParameterFitImageGeneratorBase* generator); /**Checks if the settings in the GUI are valid for the chosen model.*/ bool CheckModelSettings() const; bool CheckBaselineSelectionSettings() const; void InitModelComboBox() const; /*! Helper method that generates a node for the passed concentration image.*/ mitk::DataNode::Pointer GenerateConcentrationNode(mitk::Image* image, const std::string& nodeName) const; void OnNodeSelectionChanged(QList /*nodes*/); /*! @brief The view's UI controls */ Ui::MRPerfusionViewControls m_Controls; /* Nodes selected by user/ui for the fit */ mitk::DataNode::Pointer m_selectedNode; mitk::DataNode::Pointer m_selectedMaskNode; mitk::DataNode::Pointer m_selectedAIFMaskNode; mitk::DataNode::Pointer m_selectedAIFImageNode; /* Images selected by user/ui for the fit */ mitk::Image::Pointer m_selectedImage; mitk::Image::Pointer m_selectedMask; mitk::Image::Pointer m_selectedAIFMask; mitk::Image::Pointer m_selectedAIFImage; mitk::ModelFactoryBase::Pointer m_selectedModelFactory; mitk::SimpleBarrierConstraintChecker::Pointer m_modelConstraints; private: - bool IsTurboFlashSequenceFlag() const; bool m_FittingInProgress; typedef std::vector ModelFactoryStackType; ModelFactoryStackType m_FactoryStack; /**Converts the selected image to a concentration image based on the given gui settings. AIFMode controls if the concentration image for the fit input or the AIF will be converted.*/ mitk::Image::Pointer ConvertConcentrationImage(bool AIFMode); /**Helper function that (depending on the gui settings) prepares m_inputNode and m_inputImage. Either by directly pass back the selected image/node or the newly generated concentration image/node. After calling this method m_inputImage are always what should be used as input image for the fitting.*/ void PrepareConcentrationImage(); /**Helper function that (depending on the gui settings) prepares m_inputAIFNode and m_inputAIFImage. Either by directly pass back the selected image/node or the newly generated concentration image/node. After calling this method m_inputAIFImage are always what should be used as AIF image for the fitting.*/ void PrepareAIFConcentrationImage(); /**Helper function that (depending on the gui settings) generates and passes back the AIF and its time grid that should be used for fitting. @remark the parameters aif and aifTimeGrid will be initialized accordingly if the method returns.*/ void GetAIF(mitk::AIFBasedModelBase::AterialInputFunctionType& aif, mitk::AIFBasedModelBase::AterialInputFunctionType& aifTimeGrid); /**Helper function that generates a default fitting functor * default is a levenberg marquart based optimizer with all scales set to 1.0. * Constraint setter will be set based on the gui setting and a evaluation parameter * "sum of squared differences" will always be set.*/ mitk::ModelFitFunctorBase::Pointer CreateDefaultFitFunctor(const mitk::ModelParameterizerBase* parameterizer) const; /**Returns the default fit name, derived from the current GUI settings.*/ std::string GetDefaultFitName() const; /**Returns the current set name of the fit (either default name or use defined name).*/ std::string GetFitName() const; std::vector AIFinputGrid; std::vector AIFinputFunction; mitk::NodePredicateBase::Pointer m_IsNoMaskImagePredicate; mitk::NodePredicateBase::Pointer m_IsMaskPredicate; mitk::NodePredicateBase::Pointer m_isValidPDWImagePredicate; mitk::NodePredicateBase::Pointer m_isValidTimeSeriesImagePredicate; /* Node used for the fit (my be the selected image or converted ones (depending on the ui settings */ mitk::DataNode::Pointer m_inputNode; mitk::DataNode::Pointer m_inputAIFNode; bool m_HasGeneratedNewInput; bool m_HasGeneratedNewInputAIF; /* Image used for the fit (my be the selected image or converted ones (depending on the ui settings */ mitk::Image::Pointer m_inputImage; mitk::Image::Pointer m_inputAIFImage; }; #endif diff --git a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionViewControls.ui b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionViewControls.ui index 2ca927f7a8..fcdc0cbdd8 100644 --- a/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionViewControls.ui +++ b/Plugins/org.mitk.gui.qt.pharmacokinetics.mri/src/internal/MRPerfusionViewControls.ui @@ -1,750 +1,662 @@ MRPerfusionViewControls 0 0 489 1124 0 0 0 0 QmitkTemplate QLayout::SetDefaultConstraint 4 QLayout::SetDefaultConstraint Selected Time Series: Selected Mask: 0 40 0 40 0 0 0 40 Fitting strategy 5 QLayout::SetMinAndMaxSize 5 5 5 5 0 0 Pixel based true 0 0 ROI based Select pharmacokinetic model... - AIF Mask: + Arterial Input Function (AIF): Select AIF from Image: 20 AIF Mask: false Dedicated AIF Image: 0 40 false 0 40 0 Select AIF from File: false Browse 5 Hematocrit Level [ ]: 1.000000000000000 0.010000000000000 Descriptive Brix-Model Parameters: QFormLayout::AllNonFixedFieldsGrow Injection Time [min]: - - - - Numeric Two Compartment Exchange Model Parameters: - - - - - - ODE Int Step Size [s]: - - - - - - - 3 - - - 0.001000000000000 - - - 0.050000000000000 - - - - - - 0 0 Model Fit Configuration 0 0 0 0 459 - 84 + 112 Start parameter Enter Fit Starting Parameters 0 0 0 0 158 232 Constraints Enter Constraints for Fit Parameters 0 0 0 200 0 - -111 - 449 - 437 + 0 + 345 + 306 Conversion: Signal to Concentration 10 No Signal Conversion true Absolute Signal Enhancement Relative Signal Enhancement Variable Flip Angle - - - - TurboFLASH Sequence - - - Qt::Vertical 20 40 Enhancement Parameters: Conversion Factor k: Variable Flip Angle Parameters: Repetition Time TR [ms] : Flip Angle [ ° ] : Proton Density Weighted Image : Relaxivity [mM⁻¹ s⁻¹] : 10000.000000000000000 Flip Angle PDW Image [ ° ]: - - - - true - - - Turbo FLASH Parameters: - - - - - - Relaxivity [ ]: - - - - - - - Recovery Time [s]: - - - - - - - - - - Relaxation Time [s]: - - - - - - - - - - AIF Recovery Time [s]: - - - - - - - - - - - - Baseline Range Selection: Start Time Frame End Time Frame 5 Fitting name: <html><head/><body><p>Name/prefix that should be used for the fitting results.</p><p>May be explicitly defined by the user.</p></body></html> default fit name Start Modelling Generate debug parameter images 0 0 true Qt::Vertical QSizePolicy::Expanding 20 40 QmitkSimpleBarrierManagerWidget QWidget
QmitkSimpleBarrierManagerWidget.h
QmitkInitialValuesManagerWidget QWidget
QmitkInitialValuesManagerWidget.h
QmitkSingleNodeSelectionWidget QWidget
QmitkSingleNodeSelectionWidget.h
1