diff --git a/Modules/ToFHardware/Testing/mitkToFOpenCVImageGrabberTest.cpp b/Modules/ToFHardware/Testing/mitkToFOpenCVImageGrabberTest.cpp index 4de1245eb9..ae0467a08e 100644 --- a/Modules/ToFHardware/Testing/mitkToFOpenCVImageGrabberTest.cpp +++ b/Modules/ToFHardware/Testing/mitkToFOpenCVImageGrabberTest.cpp @@ -1,100 +1,100 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include static bool CompareImages(mitk::Image::Pointer mitkImage, cv::Mat openCVImage) { float equal = true; if ((mitkImage->GetDimension(0)!=openCVImage.cols)||(mitkImage->GetDimension(1)!=openCVImage.rows)) { equal = false; } - mitk::ImagePixelReadAccessor imageAcces(mitkImage, mitkImage->GetSliceData(0)); + mitk::ImagePixelReadAccessor imageAcces(mitkImage, mitkImage->GetSliceData(0)); for (unsigned int i=0; i currentIndex; currentIndex[0] = i; currentIndex[1] = j; float mitkImageValue = imageAcces.GetPixelByIndex(currentIndex); float openCVImageValue = openCVImage.at(j,i); if (!mitk::Equal(mitkImageValue,openCVImageValue)) { equal = false; } } } return equal; } /**Documentation * test for the class "ToFOpenCVImageGrabber". */ int mitkToFOpenCVImageGrabberTest(int /* argc */, char* /*argv*/[]) { MITK_TEST_BEGIN("ToFOpenCVImageGrabber"); std::string dirName = MITK_TOF_DATA_DIR; mitk::ToFImageGrabber::Pointer tofImageGrabber = mitk::ToFImageGrabber::New(); tofImageGrabber->SetCameraDevice(mitk::ToFCameraMITKPlayerDevice::New()); std::string distanceFileName = dirName + "/PMDCamCube2_MF0_IT0_1Images_DistanceImage.pic"; tofImageGrabber->SetProperty("DistanceImageFileName",mitk::StringProperty::New(distanceFileName)); std::string amplitudeFileName = dirName + "/PMDCamCube2_MF0_IT0_1Images_AmplitudeImage.pic"; tofImageGrabber->SetProperty("AmplitudeImageFileName",mitk::StringProperty::New(amplitudeFileName)); std::string intensityFileName = dirName + "/PMDCamCube2_MF0_IT0_1Images_IntensityImage.pic"; tofImageGrabber->SetProperty("IntensityImageFileName",mitk::StringProperty::New(intensityFileName)); mitk::PicFileReader::Pointer mitkFileReader = mitk::PicFileReader::New(); mitkFileReader->SetFileName(distanceFileName); mitkFileReader->Update(); mitk::Image::Pointer image = mitkFileReader->GetOutput(); mitk::ToFOpenCVImageGrabber::Pointer tofOpenCVImageGrabber = mitk::ToFOpenCVImageGrabber::New(); tofOpenCVImageGrabber->SetToFImageGrabber(tofImageGrabber); MITK_TEST_CONDITION_REQUIRED(tofImageGrabber==tofOpenCVImageGrabber->GetToFImageGrabber(),"Test Set/GetToFImageGrabber()"); MITK_TEST_OUTPUT(<<"Call StartCapturing()"); tofOpenCVImageGrabber->StartCapturing(); cv::Mat cvImage = tofOpenCVImageGrabber->GetImage(); MITK_TEST_CONDITION_REQUIRED(CompareImages(image,cvImage),"Test distance image"); mitkFileReader->SetFileName(amplitudeFileName); mitkFileReader->Update(); image = mitkFileReader->GetOutput(); tofOpenCVImageGrabber->SetImageType(1); cvImage = tofOpenCVImageGrabber->GetImage(); MITK_TEST_CONDITION_REQUIRED(CompareImages(image,cvImage),"Test amplitude image"); mitkFileReader->SetFileName(intensityFileName); mitkFileReader->Update(); image = mitkFileReader->GetOutput(); tofOpenCVImageGrabber->SetImageType(2); cvImage = tofOpenCVImageGrabber->GetImage(); MITK_TEST_CONDITION_REQUIRED(CompareImages(image,cvImage),"Test intensity image"); MITK_TEST_OUTPUT(<<"Call StopCapturing()"); tofOpenCVImageGrabber->StopCapturing(); MITK_TEST_END(); } diff --git a/Modules/ToFProcessing/Testing/mitkToFDistanceImageToPointSetFilterTest.cpp b/Modules/ToFProcessing/Testing/mitkToFDistanceImageToPointSetFilterTest.cpp index 7edac5e3b8..a698d5851d 100644 --- a/Modules/ToFProcessing/Testing/mitkToFDistanceImageToPointSetFilterTest.cpp +++ b/Modules/ToFProcessing/Testing/mitkToFDistanceImageToPointSetFilterTest.cpp @@ -1,309 +1,309 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include /**Documentation * test for the class "ToFDistanceImageToPointSetFilter". */ mitk::PointSet::Pointer CreateTestPointSet() { mitk::PointSet::Pointer subSet = mitk::PointSet::New(); mitk::Point3D point; point[0] = 10; point[1] = 20; point[2] = 0; subSet->InsertPoint(0,point); point[0] = 100; point[1] = 150; point[2] = 0; subSet->InsertPoint(1,point); point[0] = 110; point[1] = 30; point[2] = 0; subSet->InsertPoint(2,point); point[0] = 40; point[1] = 200; point[2] = 0; subSet->InsertPoint(3,point); return subSet; } // Create image with pixelValue in every pixel except for the pixels in subSet, which get successively the values of distances -inline static mitk::Image::Pointer CreateTestImageWithPointSet(mitk::ScalarType pixelValue, unsigned int dimX, unsigned int dimY, mitk::PointSet::Pointer subSet) +inline static mitk::Image::Pointer CreateTestImageWithPointSet(float pixelValue, unsigned int dimX, unsigned int dimY, mitk::PointSet::Pointer subSet) { - typedef itk::Image ItkImageType2D; + typedef itk::Image ItkImageType2D; typedef itk::ImageRegionIterator ItkImageRegionIteratorType2D; ItkImageType2D::Pointer image = ItkImageType2D::New(); ItkImageType2D::IndexType start; start[0] = 0; start[1] = 0; ItkImageType2D::SizeType size; size[0] = dimX; size[1] = dimY; ItkImageType2D::RegionType region; region.SetSize(size); region.SetIndex( start); ItkImageType2D::SpacingType spacing; spacing[0] = 1.0; spacing[1] = 1.0; image->SetRegions( region ); image->SetSpacing ( spacing ); image->Allocate(); //Obtaining image data from ToF camera// //Correlate inten values to PixelIndex// ItkImageRegionIteratorType2D imageIterator(image,image->GetLargestPossibleRegion()); imageIterator.GoToBegin(); while (!imageIterator.IsAtEnd()) { imageIterator.Set(pixelValue); ++imageIterator; } // distances varying from pixelValue - std::vector distances; + std::vector distances; distances.push_back(50); distances.push_back(500); distances.push_back(2050); distances.push_back(300); // set the pixel values for the subset for(int i=0; iGetSize(); i++) { mitk::Point3D point = subSet->GetPoint(i); ItkImageType2D::IndexType index; index[0] = point[0]; index[1] = point[1]; - mitk::ScalarType distance = distances.at(i); + float distance = distances.at(i); image->SetPixel(index,distance); } mitk::Image::Pointer mitkImage = mitk::Image::New(); mitk::CastToMitkImage(image,mitkImage); return mitkImage; } int mitkToFDistanceImageToPointSetFilterTest(int /* argc */, char* /*argv*/[]) { MITK_TEST_BEGIN("ToFDistanceImageToPointSetFilter"); mitk::ToFDistanceImageToPointSetFilter::Pointer filter = mitk::ToFDistanceImageToPointSetFilter::New(); //create test sub set MITK_INFO<<"Create test pointset"; mitk::PointSet::Pointer subSet = CreateTestPointSet(); //create test image unsigned int dimX = 204; unsigned int dimY = 204; MITK_INFO<<"Create test image"; mitk::Image::Pointer image = CreateTestImageWithPointSet(1000.0f,dimX,dimY,subSet); //initialize intrinsic parameters //initialize intrinsic parameters with some arbitrary values mitk::ToFProcessingCommon::ToFPoint2D interPixelDistance; interPixelDistance[0] = 0.04564; interPixelDistance[1] = 0.0451564; mitk::ToFProcessingCommon::ToFScalarType focalLengthX = 295.78960; mitk::ToFProcessingCommon::ToFScalarType focalLengthY = 296.348535; mitk::ToFProcessingCommon::ToFScalarType focalLength = (focalLengthX*interPixelDistance[0]+focalLengthY*interPixelDistance[1])/2.0; mitk::ToFProcessingCommon::ToFScalarType k1=-0.36,k2=-0.14,p1=0.001,p2=-0.00; mitk::ToFProcessingCommon::ToFPoint2D principalPoint; principalPoint[0] = 103.576546; principalPoint[1] = 100.1532; mitk::CameraIntrinsics::Pointer cameraIntrinsics = mitk::CameraIntrinsics::New(); cameraIntrinsics->SetFocalLength(focalLengthX,focalLengthY); cameraIntrinsics->SetPrincipalPoint(principalPoint[0],principalPoint[1]); cameraIntrinsics->SetDistorsionCoeffs(k1,k2,p1,p2); // test SetCameraIntrinsics() filter->SetCameraIntrinsics(cameraIntrinsics); MITK_TEST_CONDITION_REQUIRED((focalLengthX==filter->GetCameraIntrinsics()->GetFocalLengthX()),"Testing SetCameraIntrinsics with focalLength"); mitk::ToFProcessingCommon::ToFPoint2D pp; pp[0] = filter->GetCameraIntrinsics()->GetPrincipalPointX(); pp[1] = filter->GetCameraIntrinsics()->GetPrincipalPointY(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(principalPoint,pp),"Testing SetCameraIntrinsics with principalPoint()"); // test SetInterPixelDistance() filter->SetInterPixelDistance(interPixelDistance); mitk::ToFProcessingCommon::ToFPoint2D ipD = filter->GetInterPixelDistance(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(ipD,interPixelDistance),"Testing Set/GetInterPixelDistance()"); // test SetReconstructionMode() filter->SetReconstructionMode(false); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == false,"Testing Set/GetReconstructionMode()"); // test Set/GetInput() filter->SetInput(image); MITK_TEST_CONDITION_REQUIRED((image==filter->GetInput()),"Testing Set/GetInput()"); // test filter without subset (without using the interpixeldistance) MITK_INFO<<"Test filter without subset without using the interpixeldistance"; filter->SetReconstructionMode(true); mitk::PointSet::Pointer expectedResult = mitk::PointSet::New(); unsigned int counter = 0; - mitk::ImagePixelReadAccessor imageAcces(image, image->GetSliceData(0)); + mitk::ImagePixelReadAccessor imageAcces(image, image->GetSliceData(0)); for (unsigned int j=0; j index; index[0] = i; index[1] = j; - mitk::ScalarType distance = imageAcces.GetPixelByIndex(index); + float distance = imageAcces.GetPixelByIndex(index); mitk::Point3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinates(i,j,distance,focalLengthX,focalLengthY,principalPoint[0],principalPoint[1]); expectedResult->InsertPoint(counter,coordinate); counter++; } } filter->Update(); mitk::PointSet::Pointer result = filter->GetOutput(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetSize()==result->GetSize()),"Test if point set size is equal"); MITK_TEST_CONDITION_REQUIRED(mitk::ToFTestingCommon::PointSetsEqual(expectedResult,result),"Testing filter without subset"); // compare filter result with ToFDistanceImageToSurfaceFilter MITK_INFO<<"Compare filter result with ToFDistanceImageToSurfaceFilter"; mitk::ToFDistanceImageToSurfaceFilter::Pointer surfaceFilter = mitk::ToFDistanceImageToSurfaceFilter::New(); surfaceFilter->SetInput(image); surfaceFilter->SetInterPixelDistance(interPixelDistance); surfaceFilter->SetCameraIntrinsics(cameraIntrinsics); surfaceFilter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithOutInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithOutInterPixelDistance,"Testing Set/GetReconstructionMode()"); mitk::Surface::Pointer surface = surfaceFilter->GetOutput(); surface->Update(); // create point set from surface mitk::PointSet::Pointer pointSet = mitk::ToFTestingCommon::VtkPolyDataToMitkPointSet(surface->GetVtkPolyData()); //compare pointset against ground truth MITK_TEST_CONDITION_REQUIRED((pointSet->GetSize()==result->GetSize()),"Test if point set size is equal"); MITK_TEST_CONDITION_REQUIRED(mitk::ToFTestingCommon::PointSetsEqual(pointSet,result),"Compare with surface points"); // test filter without subset (with using the interpixeldistance) MITK_INFO<<"Test filter without subset with using the interpixeldistance"; filter->Modified(); filter->SetReconstructionMode(false); expectedResult = mitk::PointSet::New(); counter = 0; for (unsigned int j=0; j index; index[0] = i; index[1] = j; - mitk::ScalarType distance = imageAcces.GetPixelByIndex(index); + float distance = imageAcces.GetPixelByIndex(index); mitk::Point3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinatesWithInterpixdist(i,j,distance,focalLength,interPixelDistance,principalPoint); expectedResult->InsertPoint(counter,coordinate); counter++; } } filter->Update(); result = filter->GetOutput(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetSize()==result->GetSize()),"Test if point set size is equal"); MITK_TEST_CONDITION_REQUIRED(mitk::ToFTestingCommon::PointSetsEqual(expectedResult,result),"Testing filter without subset"); // compare filter result with ToFDistanceImageToSurfaceFilter MITK_INFO<<"Compare filter result with ToFDistanceImageToSurfaceFilter"; surfaceFilter = mitk::ToFDistanceImageToSurfaceFilter::New(); surfaceFilter->SetInput(image); surfaceFilter->SetInterPixelDistance(interPixelDistance); surfaceFilter->SetCameraIntrinsics(cameraIntrinsics); surfaceFilter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(surfaceFilter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance,"Testing Set/GetReconstructionMode()"); surface = surfaceFilter->GetOutput(); surface->Update(); // create point set from surface pointSet = mitk::ToFTestingCommon::VtkPolyDataToMitkPointSet(surface->GetVtkPolyData()); //compare against ground truth MITK_TEST_CONDITION_REQUIRED((pointSet->GetSize()==result->GetSize()),"Test if point set size is equal"); MITK_TEST_CONDITION_REQUIRED(mitk::ToFTestingCommon::PointSetsEqual(pointSet,result),"Compare with surface points"); // test filter with subset (without using the interpixeldistance) MITK_INFO<<"Test filter with subset without using the interpixeldistance"; filter = mitk::ToFDistanceImageToPointSetFilter::New(); filter->SetInput(image); filter->SetInterPixelDistance(interPixelDistance); filter->SetCameraIntrinsics(cameraIntrinsics); filter->SetReconstructionMode(true); expectedResult = mitk::PointSet::New(); counter = 0; for(int i=0; iGetSize(); i++) { mitk::Point3D point = subSet->GetPoint(i); itk::Index<2> index; index[0] = point[0]; index[1] = point[1]; - mitk::ScalarType distance = imageAcces.GetPixelByIndex(index); + float distance = imageAcces.GetPixelByIndex(index); mitk::Point3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinates(point[0],point[1], distance,focalLengthX,focalLengthY,principalPoint[0],principalPoint[1]); expectedResult->InsertPoint(counter,coordinate); counter++; } filter->SetSubset(subSet); filter->Modified(); filter->Update(); result = filter->GetOutput(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetSize()==result->GetSize()),"Test if point set size is equal"); MITK_TEST_CONDITION_REQUIRED(mitk::ToFTestingCommon::PointSetsEqual(expectedResult,result),"Testing filter with subset"); // test filter with subset (with using the interpixeldistance) MITK_INFO<<"Test filter with subset with using the interpixeldistance"; filter = mitk::ToFDistanceImageToPointSetFilter::New(); filter->SetInput(image); filter->SetInterPixelDistance(interPixelDistance); filter->SetCameraIntrinsics(cameraIntrinsics); filter->SetReconstructionMode(false); expectedResult = mitk::PointSet::New(); counter = 0; for(int i=0; iGetSize(); i++) { mitk::Point3D point = subSet->GetPoint(i); itk::Index<2> index; index[0] = point[0]; index[1] = point[1]; - mitk::ScalarType distance = imageAcces.GetPixelByIndex(index); + float distance = imageAcces.GetPixelByIndex(index); mitk::Point3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinatesWithInterpixdist(point[0],point[1], distance,focalLength,interPixelDistance,principalPoint); expectedResult->InsertPoint(counter,coordinate); counter++; } filter->SetSubset(subSet); filter->Modified(); filter->Update(); result = filter->GetOutput(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetSize()==result->GetSize()),"Test if point set size is equal"); MITK_TEST_CONDITION_REQUIRED(mitk::ToFTestingCommon::PointSetsEqual(expectedResult,result),"Testing filter with subset"); MITK_TEST_END(); } diff --git a/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp b/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp index 2d56b24d90..3971189dd9 100644 --- a/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp +++ b/Modules/ToFProcessing/Testing/mitkToFDistanceImageToSurfaceFilterTest.cpp @@ -1,392 +1,392 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include /** * @brief Test for the class "ToFDistanceImageToSurfaceFilter". */ typedef mitk::ToFProcessingCommon::ToFPoint2D ToFPoint2D; typedef mitk::ToFProcessingCommon::ToFPoint3D ToFPoint3D; typedef mitk::ToFProcessingCommon::ToFScalarType ToFScalarType; int mitkToFDistanceImageToSurfaceFilterTest(int /* argc */, char* /*argv*/[]) { MITK_TEST_BEGIN("ToFDistanceImageToSurfaceFilter"); mitk::ToFDistanceImageToSurfaceFilter::Pointer filter = mitk::ToFDistanceImageToSurfaceFilter::New(); // create test image unsigned int dimX =204; unsigned int dimY =204; mitk::Image::Pointer image = mitk::ImageGenerator::GenerateRandomImage(dimX,dimY); //initialize intrinsic parameters with some arbitrary values ToFScalarType focalLengthX = 295.78960; ToFScalarType focalLengthY = 296.348535; ToFPoint2D focalLengthXY; focalLengthXY[0]=focalLengthX; focalLengthXY[1]=focalLengthY; ToFScalarType k1=-0.36,k2=-0.14,p1=0.001,p2=-0.00; ToFPoint2D principalPoint; principalPoint[0] = 103.576546; principalPoint[1] = 100.1532; mitk::CameraIntrinsics::Pointer cameraIntrinsics = mitk::CameraIntrinsics::New(); cameraIntrinsics->SetFocalLength(focalLengthX,focalLengthY); cameraIntrinsics->SetPrincipalPoint(principalPoint[0],principalPoint[1]); cameraIntrinsics->SetDistorsionCoeffs(k1,k2,p1,p2); // test SetCameraIntrinsics() filter->SetCameraIntrinsics(cameraIntrinsics); MITK_TEST_CONDITION_REQUIRED((focalLengthX==filter->GetCameraIntrinsics()->GetFocalLengthX()),"Testing SetCameraIntrinsics with focalLength"); ToFPoint2D pp; pp[0] = filter->GetCameraIntrinsics()->GetPrincipalPointX(); pp[1] = filter->GetCameraIntrinsics()->GetPrincipalPointY(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(principalPoint,pp),"Testing SetCameraIntrinsics with principalPoint()"); // test SetInterPixelDistance() ToFPoint2D interPixelDistance; interPixelDistance[0] = 0.04564; interPixelDistance[1] = 0.0451564; filter->SetInterPixelDistance(interPixelDistance); ToFPoint2D ipD = filter->GetInterPixelDistance(); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(ipD,interPixelDistance),"Testing Set/GetInterPixelDistance()"); // test SetReconstructionMode() filter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance,"Testing Set/GetReconstructionMode()"); // test Set/GetInput() filter->SetInput(image); MITK_TEST_CONDITION_REQUIRED((image==filter->GetInput()),"Testing Set/GetInput()"); // test filter without subset (without interpixeldistance) MITK_INFO<<"Test filter with subset without interpixeldistance "; filter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithOutInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithOutInterPixelDistance,"Testing Set/GetReconstructionMode()"); vtkSmartPointer expectedResult = vtkSmartPointer::New(); expectedResult->SetDataTypeToDouble(); unsigned int counter = 0; double* point = new double[3]; // MITK_INFO<<"Test"; // MITK_INFO<<"focal: "< index = {{ i, j }}; float distance = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distance = readAccess.GetPixelByIndex(index); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } ToFPoint3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinates(i,j,distance,focalLengthX,focalLengthY,principalPoint[0],principalPoint[1]); // if ((i==0)&&(j==0)) // { // MITK_INFO<<"Distance test: "<InsertPoint(pointID,point); } counter++; } } filter->Update(); mitk::Surface::Pointer resultSurface = filter->GetOutput(); vtkSmartPointer result = vtkSmartPointer::New(); result->SetDataTypeToDouble(); result = resultSurface->GetVtkPolyData()->GetPoints(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetNumberOfPoints()==result->GetNumberOfPoints()),"Test if number of points in surface is equal"); bool pointSetsEqual = true; for (unsigned int i=0; iGetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; if (!mitk::Equal(expectedPoint,resultPoint)) { // MITK_INFO << i; pointSetsEqual = false; } } MITK_TEST_CONDITION_REQUIRED(pointSetsEqual,"Testing filter without subset"); // test filter without subset (with interpixeldistance) MITK_INFO<<"Test filter with subset with interpixeldistance "; filter->SetReconstructionMode(mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance); MITK_TEST_CONDITION_REQUIRED(filter->GetReconstructionMode() == mitk::ToFDistanceImageToSurfaceFilter::WithInterPixelDistance,"Testing Set/GetReconstructionMode()"); // calculate focal length considering inter pixel distance ToFScalarType focalLength = (focalLengthX*interPixelDistance[0]+focalLengthY*interPixelDistance[1])/2.0; expectedResult = vtkSmartPointer::New(); expectedResult->SetDataTypeToDouble(); counter = 0; point = new double[3]; // MITK_INFO<<"Test"; // MITK_INFO<<"focal: "< index = {{ i, j }}; float distance = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distance = readAccess.GetPixelByIndex(index); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } ToFPoint3D coordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinatesWithInterpixdist(i,j,distance,focalLength,interPixelDistance,principalPoint); // if ((i==0)&&(j==0)) // { // MITK_INFO<<"Distance test: "<InsertPoint(pointID,point); } counter++; } } filter->Modified(); filter->Update(); resultSurface = filter->GetOutput(); result = vtkSmartPointer::New(); result->SetDataTypeToDouble(); result = resultSurface->GetVtkPolyData()->GetPoints(); MITK_TEST_CONDITION_REQUIRED((expectedResult->GetNumberOfPoints()==result->GetNumberOfPoints()),"Test if number of points in surface is equal"); pointSetsEqual = true; for (unsigned int i=0; iGetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; if (!mitk::Equal(expectedPoint,resultPoint)) { // MITK_INFO << i; MITK_INFO<<"expected: "<GetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D expectedPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinates(expectedPoint,focalLengthXY,principalPoint); ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinates(resultPoint,focalLengthXY,principalPoint); if (!mitk::Equal(expectedPointBackward,resultPointBackward)) { // MITK_INFO << i; // MITK_INFO<<"expected: "<GetNumberOfPoints(); i++) { double* expected = expectedResult->GetPoint(i); double* res = result->GetPoint(i); ToFPoint3D expectedPoint; expectedPoint[0] = expected[0]; expectedPoint[1] = expected[1]; expectedPoint[2] = expected[2]; ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D expectedPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinatesWithInterpixdist(expectedPoint,focalLength,interPixelDistance,principalPoint); ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinatesWithInterpixdist(resultPoint,focalLength,interPixelDistance,principalPoint); if (!mitk::Equal(expectedPointBackward,resultPointBackward)) { // MITK_INFO << i; // MITK_INFO<<"expected: "<GetNumberOfPoints(); i++) { double* res = result->GetPoint(i); ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinates(resultPoint,focalLengthXY,principalPoint); itk::Index<2> index = {{ (int) (resultPointBackward[0]+0.5), (int) (resultPointBackward[1]+0.5) }}; float distanceBackward = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distanceBackward = readAccess.GetPixelByIndex(index); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } - if (!mitk::Equal(distanceBackward,resultPointBackward[2])) + if (!mitk::Equal(distanceBackward,(float) resultPointBackward[2])) { -// MITK_INFO<<"expected: "<< image->GetPixelValueByIndex(pixelIndex); -// MITK_INFO<<"result: "<< resultPoint; + MITK_INFO<<"expected: " << resultPointBackward[2]; + MITK_INFO<<"result: "<< distanceBackward; compareToInput = false; } } MITK_TEST_CONDITION_REQUIRED(compareToInput,"Testing backward transformation compared to original image without interpixeldistance"); //Backwardtransformation test compare to original input with interpixeldistance compareToInput = true; for (unsigned int i=0; iGetNumberOfPoints(); i++) { double* res = result->GetPoint(i); ToFPoint3D resultPoint; resultPoint[0] = res[0]; resultPoint[1] = res[1]; resultPoint[2] = res[2]; ToFPoint3D resultPointBackward = mitk::ToFProcessingCommon::CartesianToIndexCoordinatesWithInterpixdist(resultPoint,focalLength,interPixelDistance,principalPoint); itk::Index<2> pixelIndex = {{ (int) (resultPointBackward[0]+0.5), (int) (resultPointBackward[1]+0.5) }}; float distanceBackward = 0.0; try { mitk::ImagePixelReadAccessor readAccess(image, image->GetSliceData()); distanceBackward = readAccess.GetPixelByIndex(pixelIndex); } catch(mitk::Exception& e) { MITK_ERROR << "Image read exception!" << e.what(); } - if (!mitk::Equal(distanceBackward,resultPointBackward[2])) + if (!mitk::Equal(distanceBackward, (float) resultPointBackward[2])) { // MITK_INFO<<"expected: "<< image->GetPixelValueByIndex(pixelIndex); // MITK_INFO<<"result: "<< resultPoint; compareToInput = false; } } MITK_TEST_CONDITION_REQUIRED(compareToInput,"Testing backward transformation compared to original image with interpixeldistance"); //clean up delete point; // expectedResult->Delete(); MITK_TEST_END(); } diff --git a/Modules/ToFProcessing/Testing/mitkToFProcessingCommonTest.cpp b/Modules/ToFProcessing/Testing/mitkToFProcessingCommonTest.cpp index 152194cf14..c7c914d4b1 100644 --- a/Modules/ToFProcessing/Testing/mitkToFProcessingCommonTest.cpp +++ b/Modules/ToFProcessing/Testing/mitkToFProcessingCommonTest.cpp @@ -1,91 +1,91 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include /**Documentation * test for the class "ToFProcessingCommon". */ int mitkToFProcessingCommonTest(int /* argc */, char* /*argv*/[]) { MITK_TEST_BEGIN("ToFProcessingCommon"); unsigned int i = 10; unsigned int j = 50; - mitk::ScalarType distance = 1000; - mitk::ScalarType focalLength = 10; + float distance = 1000; + float focalLength = 10; mitk::Point2D focalLength_XY; focalLength_XY[0] = 200; focalLength_XY[1] = 200; mitk::Point2D interPixelDistance; interPixelDistance[0] = 0.05; interPixelDistance[1] = 0.05; mitk::Point2D principalPoint; principalPoint[0] = 100; principalPoint[1] = 100; // expected coordinate mitk::ToFProcessingCommon::ToFPoint3D expectedCoordinate; expectedCoordinate[0] = -400.0988; expectedCoordinate[1] = -222.2771; expectedCoordinate[2] = 889.1084; // resulting coordinate without using the interpixeldistance mitk::ToFProcessingCommon::ToFPoint3D resultingCoordinate = mitk::ToFProcessingCommon::IndexToCartesianCoordinates(i,j,distance,focalLength_XY,principalPoint); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(expectedCoordinate,resultingCoordinate,1e-3),"Testing IndexToCartesianCoordinates()"); // resulting coordinate with using the interpixeldistance mitk::ToFProcessingCommon::ToFPoint3D resultingCoordinateInterpix = mitk::ToFProcessingCommon::IndexToCartesianCoordinatesWithInterpixdist(i,j,distance,focalLength,interPixelDistance,principalPoint); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(expectedCoordinate,resultingCoordinateInterpix,1e-3),"Testing IndexToCartesianCoordinatesWithInterpixdist()"); // expected index mitk::ToFProcessingCommon::ToFPoint3D expectedIndex; expectedIndex[0] = i; expectedIndex[1] = j; expectedIndex[2] = 1000; mitk::ToFProcessingCommon::ToFPoint3D resultingIndex = mitk::ToFProcessingCommon::CartesianToIndexCoordinates(expectedCoordinate,focalLength_XY,principalPoint); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(expectedIndex,resultingIndex,1e-3),"Testing CartesianToIndexCoordinates()"); mitk::ToFProcessingCommon::ToFPoint3D resultingIndexInterpix = mitk::ToFProcessingCommon::CartesianToIndexCoordinatesWithInterpixdist(expectedCoordinate,focalLength,interPixelDistance,principalPoint); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(expectedIndex,resultingIndexInterpix,1e-3),"Testing CartesianToIndexCoordinatesWithInterpixdist()"); //########## Kinect Reconstruction ############# mitk::ToFProcessingCommon::ToFPoint3D expectedKinectCoordinate; expectedKinectCoordinate[0] = -450.0; expectedKinectCoordinate[1] = -250.0; expectedKinectCoordinate[2] = 1000.0; mitk::Index3D index; index[0] = i; index[1] = j; index[2] = 0; mitk::ToFProcessingCommon::ToFPoint3D kinectReconstructionResult = mitk::ToFProcessingCommon::KinectIndexToCartesianCoordinates(index,distance, focalLength_XY,principalPoint); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(expectedKinectCoordinate,kinectReconstructionResult),"Compare the expected result with the result of reconstruction from KinectIndexToCartesianCoordinates()"); mitk::ToFProcessingCommon::ToFPoint3D kinectReconstructionResultBackward = mitk::ToFProcessingCommon::CartesianToKinectIndexCoordinates(kinectReconstructionResult, focalLength_XY, principalPoint); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(expectedIndex,kinectReconstructionResultBackward),"Transform everything back to distance image and compare it to the original input"); mitk::Point2D continuousIndex; continuousIndex[0] = i; continuousIndex[1] = j; mitk::ToFProcessingCommon::ToFPoint3D continuousKinectReconstructionResult = mitk::ToFProcessingCommon::ContinuousKinectIndexToCartesianCoordinates(continuousIndex,distance, focalLength_XY[0], focalLength_XY[1], principalPoint[0], principalPoint[1]); MITK_TEST_CONDITION_REQUIRED(mitk::Equal(expectedKinectCoordinate,continuousKinectReconstructionResult),"Compare the expected result with the result of reconstruction from ContinuousKinectIndexToCartesianCoordinates(). Since the index is not continuous, the result has to be the same like for KinectIndexToCartesianCoordinates()."); //########## End Kinect Reconstruction ############# MITK_TEST_END(); } diff --git a/Modules/ToFProcessing/mitkToFDistanceImageToPointSetFilter.cpp b/Modules/ToFProcessing/mitkToFDistanceImageToPointSetFilter.cpp index aa6f4ab8c6..dd2ea7853e 100644 --- a/Modules/ToFProcessing/mitkToFDistanceImageToPointSetFilter.cpp +++ b/Modules/ToFProcessing/mitkToFDistanceImageToPointSetFilter.cpp @@ -1,211 +1,211 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkToFDistanceImageToPointSetFilter.h" #include "mitkImageDataItem.h" #include "mitkPointSet.h" #include #include "mitkToFProcessingCommon.h" mitk::ToFDistanceImageToPointSetFilter::ToFDistanceImageToPointSetFilter() : m_Subset(NULL), m_CameraIntrinsics(), m_InterPixelDistance() { m_InterPixelDistance.Fill(0.045); m_CameraIntrinsics = mitk::CameraIntrinsics::New(); m_CameraIntrinsics->SetFocalLength(5.9421434211923247e+02,5.9104053696870778e+02); m_CameraIntrinsics->SetPrincipalPoint(3.3930780975300314e+02,2.4273913761751615e+02); m_CameraIntrinsics->SetDistorsionCoeffs(-0.36874385358645773f,-0.14339503290129013,0.0033210108720361795,-0.004277703352074105); m_ReconstructionMode = true; } mitk::ToFDistanceImageToPointSetFilter::~ToFDistanceImageToPointSetFilter() { } void mitk::ToFDistanceImageToPointSetFilter::SetInput(const mitk::Image* distanceImage ) { this->SetInput(0,distanceImage); } void mitk::ToFDistanceImageToPointSetFilter::SetInput( unsigned int idx,const mitk::Image* distanceImage ) { if ((distanceImage == NULL) && (idx == this->GetNumberOfInputs() - 1)) // if the last input is set to NULL, reduce the number of inputs by one { this->SetNumberOfInputs(this->GetNumberOfInputs() - 1); } else { this->ProcessObject::SetNthInput(idx, const_cast(distanceImage)); // Process object is not const-correct so the const_cast is required here this->CreateOutputsForAllInputs(); } } mitk::Image* mitk::ToFDistanceImageToPointSetFilter::GetInput() { return this->GetInput(0); } mitk::Image* mitk::ToFDistanceImageToPointSetFilter::GetInput( unsigned int idx ) { if (this->GetNumberOfInputs() < 1) return NULL; return static_cast< mitk::Image*>(this->ProcessObject::GetInput(idx)); } void mitk::ToFDistanceImageToPointSetFilter::SetSubset(std::vector subset) { // check if points of PointSet are inside the input image mitk::Image::Pointer input = this->GetInput(); unsigned int xDim = input->GetDimension(0); unsigned int yDim = input->GetDimension(1); bool pointSetValid = true; for (unsigned int i=0; ixDim||currentIndex[1]<0||currentIndex[1]>yDim) { pointSetValid = false; } } if (pointSetValid) { m_Subset = subset; } else { MITK_ERROR<<"One or more indizes are located outside the image domain"; } } void mitk::ToFDistanceImageToPointSetFilter::SetSubset( mitk::PointSet::Pointer pointSet) { std::vector subset; for (int i=0; iGetSize(); i++) { mitk::Point3D currentPoint = pointSet->GetPoint(i); mitk::Index3D currentIndex; currentIndex[0] = currentPoint[0]; currentIndex[1] = currentPoint[1]; currentIndex[2] = currentPoint[2]; subset.push_back(currentIndex); } this->SetSubset(subset); } void mitk::ToFDistanceImageToPointSetFilter::GenerateData() { //calculate world coordinates mitk::ToFProcessingCommon::ToFPoint2D focalLengthInPixelUnits; mitk::ToFProcessingCommon::ToFScalarType focalLengthInMm; if (m_ReconstructionMode) { focalLengthInPixelUnits[0] = m_CameraIntrinsics->GetFocalLengthX(); focalLengthInPixelUnits[1] = m_CameraIntrinsics->GetFocalLengthY(); } else focalLengthInMm = (m_CameraIntrinsics->GetFocalLengthX()*m_InterPixelDistance[0]+m_CameraIntrinsics->GetFocalLengthY()*m_InterPixelDistance[1])/2.0; mitk::ToFProcessingCommon::ToFPoint2D principalPoint; principalPoint[0] = m_CameraIntrinsics->GetPrincipalPointX(); principalPoint[1] = m_CameraIntrinsics->GetPrincipalPointY(); mitk::PointSet::Pointer output = this->GetOutput(); assert(output); mitk::Image::Pointer input = this->GetInput(); assert(input); //compute subset of points if input PointSet is defined if (m_Subset.size()!=0) { - mitk::ImagePixelReadAccessor imageAcces(input, input->GetSliceData(0)); + mitk::ImagePixelReadAccessor imageAcces(input, input->GetSliceData(0)); for (unsigned int i=0; i index2D; index2D[0] = currentIndex[0]; index2D[1] = currentIndex[1]; mitk::ToFProcessingCommon::ToFScalarType distance = (double)imageAcces.GetPixelByIndex(index2D); mitk::Point3D currentPoint; if (m_ReconstructionMode) currentPoint = mitk::ToFProcessingCommon::IndexToCartesianCoordinates(currentIndex,distance,focalLengthInPixelUnits,principalPoint); else currentPoint = mitk::ToFProcessingCommon::IndexToCartesianCoordinatesWithInterpixdist(currentIndex,distance,focalLengthInMm,m_InterPixelDistance,principalPoint); output->InsertPoint(i,currentPoint); } } else //compute PointSet holding cartesian coordinates for every image point { int xDimension = (int)input->GetDimension(0); int yDimension = (int)input->GetDimension(1); int pointCount = 0; - mitk::ImagePixelReadAccessor imageAcces(input, input->GetSliceData(0)); + mitk::ImagePixelReadAccessor imageAcces(input, input->GetSliceData(0)); for (int j=0; j pixel; pixel[0] = i; pixel[1] = j; mitk::ToFProcessingCommon::ToFScalarType distance = (double)imageAcces.GetPixelByIndex(pixel); mitk::Point3D currentPoint; if (m_ReconstructionMode) currentPoint = mitk::ToFProcessingCommon::IndexToCartesianCoordinates(i,j,distance,focalLengthInPixelUnits,principalPoint); else currentPoint = mitk::ToFProcessingCommon::IndexToCartesianCoordinatesWithInterpixdist(i,j,distance,focalLengthInMm,m_InterPixelDistance,principalPoint); if (distance>mitk::eps) { output->InsertPoint( pointCount, currentPoint ); pointCount++; } } } } } void mitk::ToFDistanceImageToPointSetFilter::CreateOutputsForAllInputs() { this->SetNumberOfOutputs(this->GetNumberOfInputs()); // create outputs for all inputs for (unsigned int idx = 0; idx < this->GetNumberOfIndexedOutputs(); ++idx) if (this->GetOutput(idx) == NULL) { DataObjectPointer newOutput = this->MakeOutput(idx); this->SetNthOutput(idx, newOutput); } this->Modified(); } void mitk::ToFDistanceImageToPointSetFilter::GenerateOutputInformation() { this->GetOutput(); itkDebugMacro(<<"GenerateOutputInformation()"); } void mitk::ToFDistanceImageToPointSetFilter::SetReconstructionMode(bool withoutInterpixdist) { this->m_ReconstructionMode = withoutInterpixdist; } bool mitk::ToFDistanceImageToPointSetFilter::GetReconstructionMode() { return (this->m_ReconstructionMode); } diff --git a/Modules/ToFProcessing/mitkToFDistanceImageToSurfaceFilter.cpp b/Modules/ToFProcessing/mitkToFDistanceImageToSurfaceFilter.cpp index 7b5e48ca80..46cdc6b870 100644 --- a/Modules/ToFProcessing/mitkToFDistanceImageToSurfaceFilter.cpp +++ b/Modules/ToFProcessing/mitkToFDistanceImageToSurfaceFilter.cpp @@ -1,345 +1,345 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include "mitkImageReadAccessor.h" #include #include #include #include #include #include #include #include #include #include mitk::ToFDistanceImageToSurfaceFilter::ToFDistanceImageToSurfaceFilter() : m_IplScalarImage(NULL), m_CameraIntrinsics(), m_TextureImageWidth(0), m_TextureImageHeight(0), m_InterPixelDistance(), m_TextureIndex(0), m_GenerateTriangularMesh(true), m_TriangulationThreshold(0.0) { m_InterPixelDistance.Fill(0.045); m_CameraIntrinsics = mitk::CameraIntrinsics::New(); m_CameraIntrinsics->SetFocalLength(273.138946533,273.485900879); m_CameraIntrinsics->SetPrincipalPoint(107.867935181,98.3807373047); m_CameraIntrinsics->SetDistorsionCoeffs(-0.486690014601f,0.553943634033f,0.00222016777843f,-0.00300851115026f); m_ReconstructionMode = WithInterPixelDistance; } mitk::ToFDistanceImageToSurfaceFilter::~ToFDistanceImageToSurfaceFilter() { } void mitk::ToFDistanceImageToSurfaceFilter::SetInput( Image* distanceImage, mitk::CameraIntrinsics::Pointer cameraIntrinsics ) { this->SetCameraIntrinsics(cameraIntrinsics); this->SetInput(0,distanceImage); } void mitk::ToFDistanceImageToSurfaceFilter::SetInput( unsigned int idx, Image* distanceImage, mitk::CameraIntrinsics::Pointer cameraIntrinsics ) { this->SetCameraIntrinsics(cameraIntrinsics); this->SetInput(idx,distanceImage); } void mitk::ToFDistanceImageToSurfaceFilter::SetInput( mitk::Image* distanceImage ) { this->SetInput(0,distanceImage); } void mitk::ToFDistanceImageToSurfaceFilter::SetInput( unsigned int idx, mitk::Image* distanceImage ) { if ((distanceImage == NULL) && (idx == this->GetNumberOfInputs() - 1)) // if the last input is set to NULL, reduce the number of inputs by one this->SetNumberOfInputs(this->GetNumberOfInputs() - 1); else this->ProcessObject::SetNthInput(idx, distanceImage); // Process object is not const-correct so the const_cast is required here this->CreateOutputsForAllInputs(); } mitk::Image* mitk::ToFDistanceImageToSurfaceFilter::GetInput() { return this->GetInput(0); } mitk::Image* mitk::ToFDistanceImageToSurfaceFilter::GetInput( unsigned int idx ) { if (this->GetNumberOfInputs() < 1) { mitkThrow() << "No input given for ToFDistanceImageToSurfaceFilter"; } return static_cast< mitk::Image*>(this->ProcessObject::GetInput(idx)); } void mitk::ToFDistanceImageToSurfaceFilter::GenerateData() { mitk::Surface::Pointer output = this->GetOutput(); assert(output); mitk::Image::Pointer input = this->GetInput(); assert(input); // mesh points int xDimension = input->GetDimension(0); int yDimension = input->GetDimension(1); unsigned int size = xDimension*yDimension; //size of the image-array std::vector isPointValid; isPointValid.resize(size); vtkSmartPointer points = vtkSmartPointer::New(); points->SetDataTypeToDouble(); vtkSmartPointer polys = vtkSmartPointer::New(); vtkSmartPointer vertices = vtkSmartPointer::New(); vtkSmartPointer scalarArray = vtkSmartPointer::New(); vtkSmartPointer textureCoords = vtkSmartPointer::New(); textureCoords->SetNumberOfComponents(2); textureCoords->Allocate(size); //Make a vtkIdList to save the ID's of the polyData corresponding to the image //pixel ID's. See below for more documentation. m_VertexIdList = vtkSmartPointer::New(); //Allocate the object once else it would automatically allocate new memory //for every vertex and perform a copy which is expensive. m_VertexIdList->Allocate(size); m_VertexIdList->SetNumberOfIds(size); for(unsigned int i = 0; i < size; ++i) { m_VertexIdList->SetId(i, 0); } - ScalarType* scalarFloatData = NULL; + float* scalarFloatData = NULL; if (this->m_IplScalarImage) // if scalar image is defined use it for texturing { - scalarFloatData = (ScalarType*)this->m_IplScalarImage->imageData; + scalarFloatData = (float*)this->m_IplScalarImage->imageData; } else if (this->GetInput(m_TextureIndex)) // otherwise use intensity image (input(2)) { ImageReadAccessor inputAcc(this->GetInput(m_TextureIndex)); - scalarFloatData = (ScalarType*)inputAcc.GetData(); + scalarFloatData = (float*)inputAcc.GetData(); } ImageReadAccessor inputAcc(input, input->GetSliceData(0,0,0)); - ScalarType* inputFloatData = (ScalarType*)inputAcc.GetData(); + float* inputFloatData = (float*)inputAcc.GetData(); //calculate world coordinates mitk::ToFProcessingCommon::ToFPoint2D focalLengthInPixelUnits; mitk::ToFProcessingCommon::ToFScalarType focalLengthInMm; if((m_ReconstructionMode == WithOutInterPixelDistance) || (m_ReconstructionMode == Kinect)) { focalLengthInPixelUnits[0] = m_CameraIntrinsics->GetFocalLengthX(); focalLengthInPixelUnits[1] = m_CameraIntrinsics->GetFocalLengthY(); } else if( m_ReconstructionMode == WithInterPixelDistance) { //convert focallength from pixel to mm focalLengthInMm = (m_CameraIntrinsics->GetFocalLengthX()*m_InterPixelDistance[0]+m_CameraIntrinsics->GetFocalLengthY()*m_InterPixelDistance[1])/2.0; } mitk::ToFProcessingCommon::ToFPoint2D principalPoint; principalPoint[0] = m_CameraIntrinsics->GetPrincipalPointX(); principalPoint[1] = m_CameraIntrinsics->GetPrincipalPointY(); mitk::Point3D origin = input->GetGeometry()->GetOrigin(); for (int j=0; jInsertPoint(pixelID, cartesianCoordinates.GetDataPointer()). //If we use points->InsertNextPoint(...) instead, the ID's do not //correspond to the image pixel ID's. Thus, we have to save them //in the vertexIdList. m_VertexIdList->SetId(pixelID, points->InsertNextPoint(cartesianCoordinates.GetDataPointer())); if (m_GenerateTriangularMesh) { if((i >= 1) && (j >= 1)) { //This little piece of art explains the ID's: // // P(x_1y_1)---P(xy_1) // | | // | | // | | // P(x_1y)-----P(xy) // //We can only start triangulation if we are at vertex (1,1), //because we need the other 3 vertices near this one. //To go one pixel line back in the image array, we have to //subtract 1x xDimension. vtkIdType xy = pixelID; vtkIdType x_1y = pixelID-1; vtkIdType xy_1 = pixelID-xDimension; vtkIdType x_1y_1 = xy_1-1; //Find the corresponding vertex ID's in the saved vertexIdList: vtkIdType xyV = m_VertexIdList->GetId(xy); vtkIdType x_1yV = m_VertexIdList->GetId(x_1y); vtkIdType xy_1V = m_VertexIdList->GetId(xy_1); vtkIdType x_1y_1V = m_VertexIdList->GetId(x_1y_1); if (isPointValid[xy]&&isPointValid[x_1y]&&isPointValid[x_1y_1]&&isPointValid[xy_1]) // check if points of cell are valid { double pointXY[3], pointX_1Y[3], pointXY_1[3], pointX_1Y_1[3]; points->GetPoint(xyV, pointXY); points->GetPoint(x_1yV, pointX_1Y); points->GetPoint(xy_1V, pointXY_1); points->GetPoint(x_1y_1V, pointX_1Y_1); if( (mitk::Equal(m_TriangulationThreshold, 0.0)) || ((vtkMath::Distance2BetweenPoints(pointXY, pointX_1Y) <= m_TriangulationThreshold) && (vtkMath::Distance2BetweenPoints(pointXY, pointXY_1) <= m_TriangulationThreshold) && (vtkMath::Distance2BetweenPoints(pointX_1Y, pointX_1Y_1) <= m_TriangulationThreshold) && (vtkMath::Distance2BetweenPoints(pointXY_1, pointX_1Y_1) <= m_TriangulationThreshold))) { polys->InsertNextCell(3); polys->InsertCellPoint(x_1yV); polys->InsertCellPoint(xyV); polys->InsertCellPoint(x_1y_1V); polys->InsertNextCell(3); polys->InsertCellPoint(x_1y_1V); polys->InsertCellPoint(xyV); polys->InsertCellPoint(xy_1V); } else { //We dont want triangulation, but we want to keep the vertex vertices->InsertNextCell(1); vertices->InsertCellPoint(xyV); } } //Scalar values are necessary for mapping colors/texture onto the surface if (scalarFloatData) { scalarArray->InsertTuple1(m_VertexIdList->GetId(pixelID), scalarFloatData[pixelID]); } //These Texture Coordinates will map color pixel and vertices 1:1 (e.g. for Kinect). - ScalarType xNorm = (((ScalarType)i)/xDimension);// correct video texture scale for kinect - ScalarType yNorm = ((ScalarType)j)/yDimension; //don't flip. we don't need to flip. + float xNorm = (((float)i)/xDimension);// correct video texture scale for kinect + float yNorm = ((float)j)/yDimension; //don't flip. we don't need to flip. textureCoords->InsertTuple2(m_VertexIdList->GetId(pixelID), xNorm, yNorm); } } else { //We dont want triangulation, we only want vertices vertices->InsertNextCell(1); vertices->InsertCellPoint(m_VertexIdList->GetId(pixelID)); } } } } vtkSmartPointer mesh = vtkSmartPointer::New(); mesh->SetPoints(points); mesh->SetPolys(polys); mesh->SetVerts(vertices); //Pass the scalars to the polydata (if they were set). if (scalarArray->GetNumberOfTuples()>0) { mesh->GetPointData()->SetScalars(scalarArray); } //Pass the TextureCoords to the polydata anyway (to save them). mesh->GetPointData()->SetTCoords(textureCoords); output->SetVtkPolyData(mesh); } void mitk::ToFDistanceImageToSurfaceFilter::CreateOutputsForAllInputs() { this->SetNumberOfOutputs(this->GetNumberOfInputs()); // create outputs for all inputs for (unsigned int idx = 0; idx < this->GetNumberOfOutputs(); ++idx) if (this->GetOutput(idx) == NULL) { DataObjectPointer newOutput = this->MakeOutput(idx); this->SetNthOutput(idx, newOutput); } this->Modified(); } void mitk::ToFDistanceImageToSurfaceFilter::GenerateOutputInformation() { this->GetOutput(); itkDebugMacro(<<"GenerateOutputInformation()"); } void mitk::ToFDistanceImageToSurfaceFilter::SetScalarImage(IplImage* iplScalarImage) { this->m_IplScalarImage = iplScalarImage; this->Modified(); } IplImage* mitk::ToFDistanceImageToSurfaceFilter::GetScalarImage() { return this->m_IplScalarImage; } void mitk::ToFDistanceImageToSurfaceFilter::SetTextureImageWidth(int width) { this->m_TextureImageWidth = width; } void mitk::ToFDistanceImageToSurfaceFilter::SetTextureImageHeight(int height) { this->m_TextureImageHeight = height; } void mitk::ToFDistanceImageToSurfaceFilter::SetTriangulationThreshold(double triangulationThreshold) { //vtkMath::Distance2BetweenPoints returns the squared distance between two points and //hence we square m_TriangulationThreshold in order to save run-time. this->m_TriangulationThreshold = triangulationThreshold*triangulationThreshold; }